WO2021169237A1 - 用于空调防冻结控制的方法及装置、空调 - Google Patents

用于空调防冻结控制的方法及装置、空调 Download PDF

Info

Publication number
WO2021169237A1
WO2021169237A1 PCT/CN2020/113774 CN2020113774W WO2021169237A1 WO 2021169237 A1 WO2021169237 A1 WO 2021169237A1 CN 2020113774 W CN2020113774 W CN 2020113774W WO 2021169237 A1 WO2021169237 A1 WO 2021169237A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
current
temperature
freezing
acquisition time
Prior art date
Application number
PCT/CN2020/113774
Other languages
English (en)
French (fr)
Inventor
王秀霞
孙治国
张强
任夫虎
Original Assignee
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2021169237A1 publication Critical patent/WO2021169237A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Definitions

  • This application relates to the technical field of smart home appliances, for example, it relates to a method and device for anti-freezing control of an air conditioner, and an air conditioner.
  • air conditioners can also work in multiple modes, including: cooling mode, heating mode, dehumidification mode, anti-air blowing mode, and anti-freezing protection mode.
  • the anti-freeze protection mode can enter the anti-freeze protection mode when the coil temperature of the evaporator of the air conditioner is lower than the set temperature.
  • the flow path of the evaporator generally has two or more paths, and the coil temperature can only be the temperature corresponding to one flow path.
  • the temperature of one way may have been lower than the set temperature, frosting or even freezing, and the temperature of the other way is detected, and the detected temperature If the temperature is higher than the set temperature, the freeze protection will not be effective at this time, which will cause the air conditioner to malfunction, which will affect the service life of the air conditioner and reduce the user experience.
  • the embodiments of the present disclosure provide a method, a device and an air conditioner for anti-freezing control of an air conditioner, so as to solve the technical problem of the failure of the air conditioner due to the failure of anti-freezing.
  • the method includes:
  • the air conditioner is controlled to perform anti-freezing protection.
  • the device for anti-freezing control of an air conditioner includes:
  • the obtaining module is configured to obtain the current coil temperature of the air conditioner evaporator and the current return air temperature of the compressor;
  • the first control module is configured to control the air conditioner to perform anti-freezing protection when the current coil temperature is greater than a first set temperature and the current return air temperature is less than a second set temperature.
  • the apparatus for anti-freezing control of an air conditioner includes a processor and a memory storing program instructions, and the processor is configured to execute the aforementioned antifreeze control for air conditioner when the program instructions are executed. Freeze control method.
  • the air conditioner includes the aforementioned device for anti-freezing control of the air conditioner.
  • the method, device and air conditioner for anti-freezing control of an air conditioner provided by the embodiments of the present disclosure can achieve the following technical effects:
  • the air conditioner can be controlled for anti-freezing protection.
  • the anti-freezing protection control is performed by the coil temperature and the return air temperature to reduce the factor. The probability of failure of the anti-freezing protection caused by the bias current of the heat exchanger, thereby effectively preventing the occurrence of failures, and improving the service life of the air conditioner and the user experience.
  • FIG. 1 is a schematic flowchart of a method for anti-freezing control of an air conditioner in an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a method for anti-freezing control of an air conditioner in an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a method for anti-freezing control of an air conditioner in an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of an anti-freezing control device for an air conditioner provided by an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of an anti-freezing control device for an air conditioner provided by an embodiment of the present disclosure
  • Fig. 6 is a schematic structural diagram of an anti-freezing control device for an air conditioner provided by an embodiment of the present disclosure.
  • A/B means: A or B.
  • a and/or B means: A or B, or, A and B.
  • the anti-freezing protection control can be performed according to the coil temperature of the air-conditioning evaporator and the return air temperature of the compressor. In this way, the probability of failure of the anti-freezing protection caused by the bias current of the heat exchanger is reduced. Thereby, the occurrence of failures is effectively prevented, and the service life of the air conditioner and the user experience are improved.
  • Fig. 1 is a schematic flowchart of a method for anti-freezing control of an air conditioner in an embodiment of the present disclosure. As shown in Figure 1, the process for anti-freezing control of the air conditioner may include:
  • Step 101 Obtain the current coil temperature of the air conditioner evaporator and the current return air temperature of the compressor.
  • the anti-freezing protection function of the air conditioner is a function of protecting the air conditioner from damage when the air conditioner operates in a low temperature state for a long time. Generally, when the temperature of the air conditioner evaporator is too low, it can enter the anti-freezing protection. Therefore, in the embodiment of the present disclosure, the coil temperature of the air conditioner evaporator can be obtained.
  • the anti-freezing control of the air conditioner can be performed in real time, or at a fixed time, or only when the set conditions are met, and the corresponding coil temperature is the current coil temperature each time it is acquired.
  • the evaporator flow path generally has two or more paths, if a bias flow occurs, the actual temperature of one path of the evaporator may be very low, but the current collected coil temperature is still very high. Therefore, the embodiment of the present disclosure In the process, the return air temperature of the compressor also needs to be acquired. Similarly, each time the return air temperature is acquired, the corresponding return air temperature is the current return air temperature of the compressor.
  • Step 102 When the current coil temperature is greater than the first set temperature, and the current return air temperature is less than the second set temperature, control the air conditioner to perform anti-freezing protection.
  • the detected coil temperature may be relatively high, but the return air temperature of the compressor is also very high. Low, indicating that the corresponding temperature of some evaporator coils may be relatively low, and anti-freezing protection is required. Therefore, here, when the current coil temperature is greater than the first set temperature, and the current return air temperature is less than the second set temperature, the air conditioner can be controlled to perform anti-freezing protection.
  • the first set temperature is 1°C
  • the second set temperature is -1°C
  • the part can be determined
  • the temperature corresponding to the evaporator coil may be relatively low, and anti-freezing protection is required, and the air conditioner can be controlled for anti-freezing protection.
  • the first set temperature and the second set temperature are not limited to this.
  • the first set temperature can be 1.5°C, 1.2°C, 1°C, 0.8°C, 0.5°C, etc.
  • the second set temperature It can also be -2°C, -1.5°C, -0.5°C, and so on, and the details are not listed one by one.
  • controlling the air conditioner to perform anti-freezing protection includes: when the current coil temperature is greater than the first set temperature, and the current return air temperature is less than the second set temperature, determining the time corresponding to this acquisition time The air conditioner is in the anti-freeze protection state; the current duration of the air conditioner is in the anti-freeze protection state is obtained; when the current duration is greater than the set time, the air conditioner is controlled to perform anti-freeze protection.
  • Obtaining the current duration of the air conditioner in the anti-freezing protection state may include: in the case where the air conditioner corresponding to the previous acquisition time is in the anti-freezing protection state, acquiring the first duration corresponding to the previous acquisition time, according to the first duration Time, the previous acquisition time and the current acquisition time, determine the current duration corresponding to the acquisition time; and in the case that the air conditioner corresponding to the previous acquisition time is not in the anti-freezing protection state, determine the corresponding acquisition time The current duration is zero.
  • the previous coil temperature is greater than the first set temperature
  • the previous return air temperature is less than the second set temperature
  • the coil temperature was not greater than the first set temperature, or the return air temperature was not less than the second set temperature.
  • the air conditioner corresponding to the previous acquisition time is not in the state of anti-freezing protection. In this way, This acquisition time is the beginning of the duration, that is, the current duration is zero.
  • the air conditioner can be controlled for anti-freezing protection.
  • the specific measures for each type of air conditioner are not necessarily the same, and may include: compressor shutdown, evaporator defrosting treatment, and so on.
  • the air conditioner when the coil temperature is greater than the first set temperature and the return air temperature is less than the second set temperature, the air conditioner can be controlled for anti-freezing protection.
  • the anti-freezing protection control reduces the probability of failure of the anti-freezing protection caused by the bias current of the heat exchanger, thereby effectively preventing the occurrence of failures and improving the service life of the air conditioner and the user experience.
  • the temperature of the evaporator must be relatively low, and the anti-freeze protection can be entered. That is, in some embodiments, the current coil temperature is less than or equal to the first set temperature. In the case of temperature, control the air conditioner for anti-freezing protection.
  • the first set temperature can be preset to 1°C, and the second set temperature is -0.5°C.
  • Fig. 2 is a schematic flowchart of a method for anti-freezing control in an embodiment of the present disclosure. As shown in Figure 2, the process for anti-freezing control can include:
  • Step 201 Obtain the current coil temperature tp of the air conditioner evaporator and the current return air temperature th of the compressor.
  • Step 202 Determine whether tp>1°C holds true? If yes, go to step 203, otherwise, go to step 204.
  • Step 203 Determine whether th ⁇ -0.5°C holds? If yes, go to step 204, otherwise, this process ends.
  • Step 204 Control the air conditioner to perform anti-freezing protection.
  • the air conditioner when the coil temperature is greater than the first set temperature and the return air temperature is less than the second set temperature, the air conditioner can be controlled for anti-freezing protection. In this way, the coil temperature and return air temperature can be used to prevent freezing.
  • the freezing protection control reduces the probability of failure of the anti-freezing protection caused by the bias current of the heat exchanger, thereby effectively preventing the occurrence of failures and improving the service life of the air conditioner and the user experience.
  • the first set temperature can be preset to 1.2°C, and the second set temperature is -1°C.
  • the set time is 60s.
  • Fig. 3 is a schematic flowchart of a method for anti-freezing control in an embodiment of the present disclosure. As shown in Figure 3, the process for anti-freezing control of the air conditioner may include:
  • Step 301 Obtain the current coil temperature tp of the air conditioner evaporator and the current return air temperature th of the compressor.
  • Step 302 Determine whether tp>1.2°C holds true? If yes, go to step 303; otherwise, go to step 308.
  • Step 303 Determine whether th ⁇ -1°C holds? If yes, go to step 304, otherwise, this process ends.
  • Step 304 Determine whether the air conditioner corresponding to the previous acquisition time is in the state of anti-freezing protection? If yes, go to step 305; otherwise, go to step 306.
  • step 305 If the previous coil temperature is greater than the first set temperature, and the previous return air temperature is less than the second set temperature, it can be determined that the air conditioner is in the anti-freezing protection state, and step 305 is executed.
  • Step 305 Determine the current duration corresponding to the current acquisition time according to the first duration corresponding to the previous acquisition time, and the previous acquisition time and the current acquisition time. Go to step 307
  • Step 306 Determine the current duration corresponding to this acquisition time as zero. Go to step 307.
  • Step 307 Determine whether the current duration is greater than 60s? If yes, go to step 308, otherwise, this process ends.
  • Step 308 Control the air conditioner to perform anti-freezing protection.
  • the air conditioner when the coil temperature is greater than the first set temperature, the return air temperature is less than the second set temperature, and the duration is greater than the set time, the air conditioner can be controlled for anti-freezing protection.
  • the tube temperature and return air temperature are controlled for anti-freezing protection, which reduces the probability of failure of the anti-freezing protection caused by the bias current of the heat exchanger, thereby effectively preventing the occurrence of failures, improving the service life of the air conditioner and the user experience, and also reducing The probability of misjudgment is improved, and the stability of the air conditioner is further improved.
  • a device for anti-freezing control of the air conditioner can be constructed.
  • Fig. 4 is a schematic structural diagram of an anti-freezing control device for an air conditioner provided by an embodiment of the present disclosure.
  • the anti-freezing control device for an air conditioner includes: an acquisition module 410 and a first control module 420.
  • the obtaining module 410 is configured to obtain the current coil temperature of the air conditioner evaporator and the current return air temperature of the compressor.
  • the first control module 420 is configured to control the air conditioner to perform anti-freezing protection when the current coil temperature is greater than the first set temperature and the current return air temperature is less than the second set temperature.
  • the first control module 420 includes:
  • the determining unit is configured to determine that the air conditioner corresponding to the current acquisition time is in a freeze protection state when the current coil temperature is greater than the first set temperature and the current return air temperature is less than the second set temperature.
  • the acquiring unit is configured to acquire the current duration of time that the air conditioner is in the anti-freezing protection state.
  • the control unit is configured to control the air conditioner to perform anti-freezing protection when the current duration is greater than the set time.
  • the acquiring unit is specifically configured to acquire the first duration corresponding to the previous acquisition time when the air conditioner corresponding to the previous acquisition time is in the anti-freezing protection state, and according to the first duration, the previous Determine the current duration corresponding to the acquisition time for the second acquisition time and the current acquisition time; when the air conditioner corresponding to the previous acquisition time is not in the anti-freezing protection state, the current duration corresponding to the acquisition time is determined to be zero.
  • the device further includes: a second control module configured to control the air conditioner to perform anti-freezing protection when the current coil temperature is less than or equal to the first set temperature.
  • the device for anti-freezing control of the air conditioner can be applied to the air conditioner.
  • Fig. 5 is a schematic structural diagram of an anti-freezing control device for an air conditioner provided by an embodiment of the present disclosure.
  • the anti-freezing control device for the air conditioner includes: an acquisition module 410, a first control module 420, and a second control module 430; and the first control module 420 may include: a determination unit 421, an acquisition unit 422, and a control unit 423.
  • the acquiring module 410 can acquire the current coil temperature tp of the air conditioner evaporator and the current return air temperature th of the compressor. In this way, when tp is greater than the first set temperature and th is less than the second set temperature, the determining unit 421 in the first control module 420 can determine that the air conditioner corresponding to the current acquisition time is in the anti-freezing protection state, so that, The obtaining unit 422 may obtain the current duration of time that the air conditioner is in the anti-freezing protection state. In the case that the current duration is greater than the set time, the control unit 423 may control the air conditioner to perform anti-freezing protection.
  • the second control module 430 may directly control the air conditioner to perform anti-freezing protection.
  • the anti-freezing control device for the air conditioner can control the air conditioner to prevent it when the coil temperature is greater than the first set temperature, the return air temperature is less than the second set temperature, and the duration is greater than the set time. Freeze protection.
  • the anti-freeze protection control is carried out through the coil temperature and the return air temperature, which reduces the probability of failure of the anti-freeze protection caused by the bias current of the heat exchanger, thereby effectively preventing the occurrence of failures and improving the service life of the air conditioner As well as user experience, it also reduces the chance of misjudgment and further improves the stability of the air conditioner.
  • the embodiment of the present disclosure provides an air conditioner anti-freezing control device, which includes a processor and a memory storing program instructions.
  • the processor is configured to execute the aforementioned air-conditioning anti-freezing control process when the program instructions are executed.
  • the embodiment of the present disclosure provides an anti-freezing control device for an air conditioner, the structure of which is shown in FIG. 6 and includes:
  • a processor (processor) 100 and a memory (memory) 101 may also include a communication interface (Communication Interface) 102 and a bus 103. Among them, the processor 100, the communication interface 102, and the memory 101 can communicate with each other through the bus 103. The communication interface 102 can be used for information transmission.
  • the processor 100 can call the logic instructions in the memory 101 to execute the anti-freezing control method for the air conditioner in any of the foregoing embodiments.
  • the above-mentioned logical instructions in the memory 101 can be implemented in the form of a software functional unit and when sold or used as an independent product, they can be stored in a computer readable storage medium.
  • the memory 101 can be used to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 100 executes functional applications and data processing by running the program instructions/modules stored in the memory 101, that is, realizes the anti-freezing control method for the air conditioner in any of the foregoing method embodiments.
  • the memory 101 may include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of a terminal device, and the like.
  • the memory 101 may include a high-speed random access memory, and may also include a non-volatile memory.
  • the embodiments of the present disclosure provide an air conditioner, including any of the above-mentioned anti-freezing control devices for the air conditioner.
  • the embodiment of the present disclosure provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are configured to execute the air conditioner anti-freezing control method in any of the foregoing embodiments.
  • the embodiments of the present disclosure provide a computer program product, the computer program product includes a computer program stored on a computer-readable storage medium, the computer program includes program instructions, when the program instructions are executed by a computer, the computer program The computer executes the anti-freezing control method of the air conditioner in any of the above embodiments.
  • the aforementioned computer-readable storage medium may be a transitory computer-readable storage medium or a non-transitory computer-readable storage medium.
  • the technical solutions of the embodiments of the present disclosure can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes one or more instructions to enable a computer device (which can be a personal computer, a server, or a network). Equipment, etc.) execute all or part of the steps of the method described in the embodiments of the present disclosure.
  • the aforementioned storage medium may be a non-transitory storage medium, including: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks, etc.
  • the first element can be called the second element, and likewise, the second element can be called the first element, as long as all occurrences of the "first element” are renamed consistently and all occurrences "Second component” can be renamed consistently.
  • the first element and the second element are both elements, but they may not be the same element.
  • the terms used in this application are only used to describe the embodiments and are not used to limit the claims. As used in the description of the embodiments and claims, unless the context clearly indicates, the singular forms "a” (a), “an” (an) and “the” (the) are intended to also include plural forms .
  • the term “and/or” as used in this application refers to any and all possible combinations that include one or more of the associated lists.
  • the term “comprise” (comprise) and its variants “comprises” and/or including (comprising) and the like refer to the stated features, wholes, steps, operations, elements, and/or The existence of components does not exclude the existence or addition of one or more other features, wholes, steps, operations, elements, components, and/or groups of these. If there are no more restrictions, the element defined by the sentence “including a" does not exclude the existence of other same elements in the process, method, or device that includes the element.
  • each embodiment focuses on the differences from other embodiments, and the same or similar parts between the various embodiments can be referred to each other.
  • the methods, products, etc. disclosed in the embodiments if they correspond to the method parts disclosed in the embodiments, then the related parts can be referred to the description of the method parts.
  • the disclosed methods and products can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units may only be a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined. Or it can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to implement this embodiment.
  • the functional units in the embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • each block in the flowchart or block diagram may represent a module, program segment, or part of the code, and the module, program segment, or part of the code contains one or more functions for realizing the specified logical function.
  • Executable instructions may also occur in a different order from the order marked in the drawings. For example, two consecutive blocks can actually be executed substantially in parallel, and they can sometimes be executed in the reverse order, depending on the functions involved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请涉及智能家电技术领域,公开一种用于空调防冻结控制的方法及装置、空调。该方法包括:获取空调蒸发器的当前盘管温度以及压缩机的当前回气温度;在所述当前盘管温度大于第一设定温度,且所述当前回气温度小于第二设定温度的情况下,控制所述空调进行防冻结保护。这样,可降低了因换热器出现偏流而导致的防冻结保护失效的几率,从而有效防止故障的发生,提高了空调的使用寿命。

Description

用于空调防冻结控制的方法及装置、空调
本申请基于申请号为202010123272.6、申请日为2020年02月27日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及智能家电技术领域,例如涉及用于空调防冻结控制的方法及装置、空调。
背景技术
随着人工智能技术的发展,空调也可以多种工作模式,包括:制冷模式、制热模式、除湿模式、防吹风模式、防冻结保护模式。
目前,防冻结保护模式可以在空调的蒸发器的盘管温度小于设定温度时,即可进入防冻结保护模式。但是,蒸发器的流路一般有两路或多路,而盘管温度只能是一条流路对应的温度。但是,当盘管的一路出现焊堵或者分流不均匀时,那么就可能一路温度已经低于设定温度了,出现结霜甚至结冰现象,而检测的是另一路温度,且检测到的温度大于设定温度,此时,冻结保护就会不及时效,从而导致空调出现故障,进而影响空调的使用寿命,降低用户体验。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种用于空调防冻结控制的方法、装置及空调,以解决因防冻结失效导致空调故障的技术问题。
在一些实施例中,所述方法包括:
获取空调蒸发器的当前盘管温度以及压缩机的当前回气温度;
在所述当前盘管温度大于第一设定温度,且所述当前回气温度小于第二设定温度的情况下,控制所述空调进行防冻结保护。
在一些实施例中,所述用于空调防冻结控制的装置包括:
获取模块,被配置为获取空调蒸发器的当前盘管温度以及压缩机的当前回气温度;
第一控制模块,被配置为在所述当前盘管温度大于第一设定温度,且所述当前回气温度小于第二设定温度的情况下,控制所述空调进行防冻结保护。
在一些实施例中,所述用于空调防冻结控制的装置,包括,处理器和存储有程序指令的存储器,所述处理器被配置为在执行所述程序指令时,执行上述用于空调防冻结控制的 方法。
在一些实施例中,所述空调,包括上述用于空调防冻结控制的装置。
本公开实施例提供的用于空调防冻结控制的方法、装置和空调,可以实现以下技术效果:
在盘管温度大于第一设定温度,回气温度小于第二设定温度的情况,可控制空调进行防冻结保护,这样,通过盘管温度和回气温度进行防冻结保护控制,降低了因换热器出现偏流而导致的防冻结保护失效的几率,从而有效防止故障的发生,提高了空调的使用寿命以及用户体验。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例中一种用于空调防冻结控制方法的流程示意图;
图2是本公开实施例中一种用于空调防冻结控制方法的流程示意图;
图3是本公开实施例中一种用于空调防冻结控制方法的流程示意图;
图4是本公开实施例提供的一种用于空调防冻结控制装置的结构示意图;
图5是本公开实施例提供的一种用于空调防冻结控制装置的结构示意图;
图6是本公开实施例提供的一种用于空调防冻结控制装置的结构示意图。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
除非另有说明,术语“多个”表示两个或两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B, 表示:A或B,或,A和B这三种关系。
本公开实施例中,可根据空调蒸发器的盘管温度,以及压缩机的回气温度,进行防冻结保护控制,这样,降低了因换热器出现偏流而导致的防冻结保护失效的几率,从而有效防止故障的发生,提高了空调的使用寿命以及用户体验。
图1是本公开实施例中一种用于空调防冻结控制方法的流程示意图。如图1所示,用于空调防冻结控制的过程可包括:
步骤101:获取空调蒸发器的当前盘管温度以及压缩机的当前回气温度。
空调防冻结保护功能是空调在长时间低温状态下运行而起到的一种保护空调免受损坏的功能。一般,当空调蒸发器温度过低时,即可进入防冻结保护。因此,本公开实施例中,可获取空调蒸发器的盘管温度。空调的防冻结控制可是实时进行,也可定时进行,或者,满足设定条件才进行,每次获取时,对应的盘管温度即为当前盘管温度。
由于蒸发器流路一般有两路或多路,如果发生偏流想象,那么,可能蒸发器的一路的实际温度很低了,但是采集到的当前盘管温度还很高,因此,本公开实施例中,还需要获取压缩机的回气温度,同样,每次获取时,对应的回气温度即为压缩机的当前回气温度。
步骤102:在当前盘管温度大于第一设定温度,且当前回气温度小于第二设定温度的情况下,控制空调进行防冻结保护。
在现有相关技术中,盘管温度比较高的时候,是不会进入防冻结保护的,而本公开实施例中,检测到的盘管温度可能比较高,但是压缩机的回气温度也很低,表明有部分蒸发器盘管对应的温度可能比较低了,是需要进行防冻结保护的。因此,这里,在当前盘管温度大于第一设定温度,且当前回气温度小于第二设定温度的情况下,即可控制空调进行防冻结保护。
例如:第一设定温度为1℃,而第二设定温度为-1℃,那么若当前盘管度tp>1℃,并且,当前回气温度th<-1℃时,即可确定部分蒸发器盘管对应的温度可能比较低了,是需要进行防冻结保护的,即可控制空调进行防冻结保护。
当然,第一设定温度,第二设定温度不限于此,例如:第一设定温度为可为1.5℃、1.2℃、1℃、0.8℃、0.5℃等等,而第二设定温度也可为-2℃、-1.5℃、-0.5℃等等,具体就不一一列举了。
为减少偶尔因素引起的误差,还可在当前盘管温度大于第一设定温度,且当前回气温度小于第二设定温度,且持续时间超过设定时间的情况下,控制空调进行防冻结保护。因此,在一些实施例中,控制空调进行防冻结保护包括:在当前盘管温度大于第一设定温度,且当前回气温度小于第二设定温度的情况下,确定本次获取时间对应的空调处于待防冻结保护状态;获取空调处于待防冻结保护状态的当前持续时间;在当前持续时间大于设定时间的情况下,控制空调进行防冻结保护。
而获取空调处于待防冻结保护状态的当前持续时间可包括:在前次获取时间对应的空调处于待防冻结保护状态的情况下,获取前次获取时间对应的第一持续时间,根据第一持 续时间,前次获取时间以及本次获取时间,确定本次获取时间对应的当前持续时间;而在前次获取时间对应的空调不处于待防冻结保护状态的情况下,确定本次获取时间对应的当前持续时间为零。
例如:前一次盘管温度大于第一设定温度,且前一次回气温度小于第二设定温度,记录对应的获取时间t n-1,对应的持续时间t,此时,本次的获取时间t n,从而,本次获取时间对应的当前持续时间(t n-t n-1)+t。
而前次获取的时候,盘管温度不是大于第一设定温度,或者回气温度不是小于第二设定温度,此时,前次获取时间对应的空调不处于待防冻结保护状态,这样,本次获取时间才是持续时间的开始,即当前持续时间为零。
确定当前盘管温度大于第一设定温度,且当前回气温度小于第二设定温度,或者,盘管温度大于第一设定温度,且回气温度小于第二设定温度,并且持续时间大于设定时间的情况下,可控制空调进行防冻结保护。具体的防冻结保护,每种类型的空调的具体措施不一定相同,可包括:压缩机停机,蒸发器化霜处理等等。
可见,本公开实施例中,在盘管温度大于第一设定温度,回气温度小于第二设定温度的情况,可控制空调进行防冻结保护,这样,通过盘管温度和回气温度进行防冻结保护控制,降低了因换热器出现偏流而导致的防冻结保护失效的几率,从而有效防止故障的发生,提高了空调的使用寿命以及用户体验。
当然,盘管温度小于或等于第一设定温度时,蒸发器的温度肯定已经比较低了,即可进入防冻结保护,即在一些实施例,在当前盘管温度小于或等于第一设定温度的情况下,控制空调进行防冻结保护。
下面将操作流程集合到具体实施例中,举例说明本发明实施例提供的用于空调防冻结控制过程。
本公开一实施例中,可预设第一设定温度为1℃,第二设定温度为-0.5℃。
图2是本公开实施例中一种用于防冻结控制方法的流程示意图。如图2所示,用于防冻结控制的过程可包括:
步骤201:获取空调蒸发器的当前盘管温度tp以及压缩机的当前回气温度th。
到达采样时间,或者,满足设定采样条件时,即可获取tp以及th。
步骤202:判断tp>1℃是否成立?若是,执行步骤203,否则,执行步骤204。
步骤203:判断th<-0.5℃是否成立?若是,执行步骤204,否则,本次流程结束。
当然,tp>1℃,且th≥-0.5℃,此时,蒸发器的盘管各个气路对应的温度较低的可能性极低,因此,空调正常运行,本次控制流程结束。
步骤204:控制空调进行防冻结保护。
可见,本实施例中,在盘管温度大于第一设定温度,回气温度小于第二设定温度的情况,可控制空调进行防冻结保护,这样,通过盘管温度和回气温度进行防冻结保护控制,降低了因换热器出现偏流而导致的防冻结保护失效的几率,从而有效防止故障的发生,提 高了空调的使用寿命以及用户体验。
本公开一实施例中,可预设第一设定温度为1.2℃,第二设定温度为-1℃。设定时间为60s。
图3是本公开实施例中一种用于防冻结控制方法的流程示意图。如图3所示,用于空调防冻结控制的过程可包括:
步骤301:获取空调蒸发器的当前盘管温度tp以及压缩机的当前回气温度th。
步骤302:判断tp>1.2℃是否成立?若是,执行步骤303,否则,执行步骤308。
步骤303:判断th<-1℃是否成立?若是,执行步骤304,否则,本次流程结束。
步骤304:判断前次获取时间对应的空调是否处于待防冻结保护状态?若是,执行步骤305,否则,执行306。
若前次盘管温度大于第一设定温度,且前次回气温度小于第二设定温度,则可确定空调处于待防冻结保护状态执行步骤305。
步骤305:根据前次获取时间对应的第一持续时间,以及,前次获取时间和本次获取时间,确定本次获取时间对应的当前持续时间。转入步骤307
步骤306:将本次获取时间对应的当前持续时间确定为零。转入步骤307。
步骤307:判断当前持续时间是否大于60s?若是,执行步骤308,否则,本次流程结束。
步骤308:控制空调进行防冻结保护。
可见,本实施例中,在盘管温度大于第一设定温度,回气温度小于第二设定温度,且持续时间大于设定时间的情况,可控制空调进行防冻结保护,这样,通过盘管温度和回气温度进行防冻结保护控制,降低了因换热器出现偏流而导致的防冻结保护失效的几率,从而有效防止故障的发生,提高了空调的使用寿命以及用户体验,同时也减少了误判断的几率,进一步提高了空调的稳定性。
根据上述空调防冻结控制的过程,可构建空调防冻结控制的装置。
图4是本公开实施例提供的一种用于空调防冻结控制装置的结构示意图。如图4所示,用于空调防冻结控制装置包括:获取模块410和第一控制模块420。
获取模块410,被配置为获取空调蒸发器的当前盘管温度以及压缩机的当前回气温度。
第一控制模块420,被配置为在当前盘管温度大于第一设定温度,且当前回气温度小于第二设定温度的情况下,控制空调进行防冻结保护。
在一些实施例中,第一控制模块420包括:
确定单元,被配置为在当前盘管温度大于第一设定温度,且当前回气温度小于第二设定温度的情况下,确定本次获取时间对应的空调处于待防冻结保护状态。
获取单元,被配置为获取空调处于待防冻结保护状态的当前持续时间。
控制单元,被配置为在当前持续时间大于设定时间的情况下,控制空调进行防冻结保护。
在一些实施例中,获取单元,具体被配置为在前次获取时间对应的空调处于待防冻结保护状态的情况下,获取前次获取时间对应的第一持续时间,根据第一持续时间,前次获取时间以及本次获取时间,确定本次获取时间对应的当前持续时间;在前次获取时间对应的空调不处于待防冻结保护状态的情况下,确定本次获取时间对应的当前持续时间为零。
在一些实施例中,该装置还包括:第二控制模块,被配置为在当前盘管温度小于或等于第一设定温度的情况下,控制空调进行防冻结保护。
本实施例中,用于空调防冻结控制的装置可应用于空调中。
图5是本公开实施例提供的一种用于空调防冻结控制装置的结构示意图。如图5所示,用于空调防冻结控制装置包括:获取模块410,第一控制模块420,第二控制模块430;而第一控制模块420可包括:确定单元421、获取单元422以及控制单元423。
其中,获取模块410可获取空调蒸发器的当前盘管温度tp以及压缩机的当前回气温度th。这样,在tp大于第一设定温度,而th小于第二设定温度情况下,第一控制模块420中的确定单元421可确定本次获取时间对应的空调处于待防冻结保护状态,从而,获取单元422可获取空调处于待防冻结保护状态的当前持续时间。而在当前持续时间大于设定时间的情况下,控制单元423可控制空调进行防冻结保护。
当然,在tp小于或等于第一设定温度的情况下,第二控制模块430可直接控制空调进行防冻结保护。
可见,本实施例中,用于空调防冻结控制装置在盘管温度大于第一设定温度,回气温度小于第二设定温度,且持续时间大于设定时间的情况,可控制空调进行防冻结保护,这样,通过盘管温度和回气温度进行防冻结保护控制,降低了因换热器出现偏流而导致的防冻结保护失效的几率,从而有效防止故障的发生,提高了空调的使用寿命以及用户体验,同时也减少了误判断的几率,进一步提高了空调的稳定性。
本公开实施例提供了一种空调防冻结控制装置,包括处理器和存储有程序指令的存储器,处理器被配置为在执行程序指令时,执行上述的用于空调防冻结控制过程。
本公开实施例提供了一种空调防冻结控制装置,其结构如图6所示,包括:
处理器(processor)100和存储器(memory)101,还可以包括通信接口(Communication Interface)102和总线103。其中,处理器100、通信接口102、存储器101可以通过总线103完成相互间的通信。通信接口102可以用于信息传输。处理器100可以调用存储器101中的逻辑指令,以执行上述任一实施例的用于空调防冻结控制方法。
此外,上述的存储器101中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器101作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器100通过运行存储在存储器101中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述任一方法实施例中的用于空调防冻结控制方法。
存储器101可包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器101可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例提供了一种空调,包含上述任一的用于空调防冻结控制装置。
本公开实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述任一实施例中的空调防冻结控制方法。
本公开实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述任一实施例中的空调防冻结控制方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。本公开实施例的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。当用于本申请中时,虽然术语“第一”、“第二”等可能会在本申请中使用以描述各元件,但这些元件不应受到这些术语的限制。这些术语仅用于将一个元件与另一个元件区别开。比如,在不改变描述的含义的情况下,第一元件可以叫做第二元件,并且同样第,第二元件可以叫做第一元件,只要所有出现的“第一元件”一致重命名并且所有出现的“第二元件”一致重命名即可。第一元件和第二元件都是元件,但可以不是相同的元件。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、 方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的***、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的***来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (10)

  1. 一种用于空调防冻结控制的方法,其特征在于,所述方法包括:
    获取空调蒸发器的当前盘管温度以及压缩机的当前回气温度;
    在所述当前盘管温度大于第一设定温度,且所述当前回气温度小于第二设定温度的情况下,控制所述空调进行防冻结保护。
  2. 根据权利要求1所述的方法,其特征在于,所述控制所述空调进行防冻结保护包括:
    在所述当前盘管温度大于第一设定温度,且所述当前回气温度小于第二设定温度的情况下,确定本次获取时间对应的所述空调处于待防冻结保护状态;
    获取空调处于所述待防冻结保护状态的当前持续时间;
    在所述当前持续时间大于设定时间的情况下,控制所述空调进行防冻结保护。
  3. 根据权利要求2所述的方法,其特征在于,所述获取空调处于所述待防冻结保护状态的当前持续时间包括:
    在前次获取时间对应的所述空调处于待防冻结保护状态的情况下,获取前次获取时间对应的第一持续时间,根据所述第一持续时间,所述前次获取时间以及所述本次获取时间,确定所述本次获取时间对应的当前持续时间;
    在前次获取时间对应的所述空调不处于待防冻结保护状态的情况下,确定所述本次获取时间对应的当前持续时间为零。
  4. 根据权利要求1、2或3所述的方法,其特征在于,所述方法还包括:
    在所述当前盘管温度小于或等于所述第一设定温度的情况下,控制所述空调进行防冻结保护。
  5. 一种用于空调防冻结控制的装置,其特征在于,包括:
    获取模块,被配置为获取空调蒸发器的当前盘管温度以及压缩机的当前回气温度;
    第一控制模块,被配置为在所述当前盘管温度大于第一设定温度,且所述当前回气温度小于第二设定温度的情况下,控制所述空调进行防冻结保护。
  6. 根据权利要求5所述的装置,其特征在于,所述第一控制模块包括:
    确定单元,被配置为在所述当前盘管温度大于第一设定温度,且所述当前回气温度小于第二设定温度的情况下,确定本次获取时间对应的所述空调处于待防冻结保护状态;
    获取单元,被配置为获取空调处于所述待防冻结保护状态的当前持续时间;
    控制单元,被配置为在所述当前持续时间大于设定时间的情况下,控制所述空调进行防冻结保护。
  7. 根据权利要求6所述的装置,其特征在于,
    所述获取单元,具体被配置为在前次获取时间对应的所述空调处于待防冻结保护状态的情况下,获取前次获取时间对应的第一持续时间,根据所述第一持续时间,所述前次获取时间以及所述本次获取时间,确定所述本次获取时间对应的当前持续时间;在前次获取 时间对应的所述空调不处于待防冻结保护状态的情况下,确定所述本次获取时间对应的当前持续时间为零。
  8. 根据权利要求5、6或7所述的装置,其特征在于,
    第二控制模块,被配置为在所述当前盘管温度小于或等于所述第一设定温度的情况下,控制所述空调进行防冻结保护。
  9. 一种用于空调防冻结控制的装置,其特征在于,包括,处理器和存储有程序指令的存储器,所述处理器被配置为在执行所述程序指令时,执行如权利要求1至4任一项所述用于空调防冻结控制的方法。
  10. 一种空调,其特征在于,包括如权利要求5或9所述用于空调防冻结控制的装置。
PCT/CN2020/113774 2020-02-27 2020-09-07 用于空调防冻结控制的方法及装置、空调 WO2021169237A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010123272.6 2020-02-27
CN202010123272.6A CN113310172A (zh) 2020-02-27 2020-02-27 用于空调防冻结控制的方法及装置、空调

Publications (1)

Publication Number Publication Date
WO2021169237A1 true WO2021169237A1 (zh) 2021-09-02

Family

ID=77370230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113774 WO2021169237A1 (zh) 2020-02-27 2020-09-07 用于空调防冻结控制的方法及装置、空调

Country Status (2)

Country Link
CN (1) CN113310172A (zh)
WO (1) WO2021169237A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113959105A (zh) * 2021-11-03 2022-01-21 青岛海尔空调电子有限公司 用于供气***的控制方法及装置、制冷设备、存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101464033A (zh) * 2007-12-19 2009-06-24 海尔集团公司 一种空调室内机的防冻方法及防冻***
JP2010032167A (ja) * 2008-07-30 2010-02-12 Daikin Ind Ltd 冷凍装置
CN105423495A (zh) * 2015-12-16 2016-03-23 美的集团武汉制冷设备有限公司 空调器及其防冻结控制方法和装置
CN108317667A (zh) * 2018-01-22 2018-07-24 青岛海尔空调器有限总公司 一种空调内机结冰检测方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110736215B (zh) * 2019-09-27 2022-04-15 青岛海尔空调器有限总公司 用于空调除霜的控制方法、控制装置及空调
CN110736234A (zh) * 2019-10-11 2020-01-31 青岛海尔空调器有限总公司 空调控制的方法及装置、空调
CN110793159B (zh) * 2019-11-19 2021-10-26 宁波奥克斯电气股份有限公司 一种空调器制冷防冻结保护控制方法、装置及空调器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101464033A (zh) * 2007-12-19 2009-06-24 海尔集团公司 一种空调室内机的防冻方法及防冻***
JP2010032167A (ja) * 2008-07-30 2010-02-12 Daikin Ind Ltd 冷凍装置
CN105423495A (zh) * 2015-12-16 2016-03-23 美的集团武汉制冷设备有限公司 空调器及其防冻结控制方法和装置
CN108317667A (zh) * 2018-01-22 2018-07-24 青岛海尔空调器有限总公司 一种空调内机结冰检测方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113959105A (zh) * 2021-11-03 2022-01-21 青岛海尔空调电子有限公司 用于供气***的控制方法及装置、制冷设备、存储介质
CN113959105B (zh) * 2021-11-03 2023-06-20 青岛海尔空调电子有限公司 用于供气***的控制方法及装置、制冷设备、存储介质

Also Published As

Publication number Publication date
CN113310172A (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
WO2021093310A1 (zh) 空调防冻结保护的方法及装置、空调
EP3657086B1 (en) Apparatus control method and device
WO2020248764A1 (zh) 用于空气调节***的控制方法、空气调节控制***及空气调节***
CN114636225B (zh) 用于空调器冻结保护的方法及装置、空调器、存储介质
WO2021134959A1 (zh) 空调及用于空调除霜控制的方法、装置
US8783048B2 (en) System and Method for Oil Return in an HVAC system
WO2021088359A1 (zh) 空调停机控制的方法及装置、空调
US8417386B2 (en) System and method for defrost of an HVAC system
WO2021169237A1 (zh) 用于空调防冻结控制的方法及装置、空调
CN105371420A (zh) 一种制冷控制方法、装置及***
CN113849366A (zh) 基于多源传感数据的智能综合管理方法与***
CN111780326B (zh) 用于空调接线管理的方法及装置、空调
CN111720968B (zh) 用于空调控制的方法及装置、空调
CN114608145A (zh) 用于空调器的控制方法、控制装置、空调器和存储介质
CN114909724A (zh) 用于空调外机降温的方法、装置、空调、存储介质
CN110160209B (zh) 一种电化学空调的故障检测方法及装置、电化学空调
EP3539870B1 (en) Cooling systems having inline supplemental ram air heat exchangers
CN112378045B (zh) 低温防冻保护方法及多联式空调设备
CN106016586A (zh) 过温保护方法和***
CN115408802B (zh) 基于Modelica仿真模型的故障树构建方法
US11378296B2 (en) Multi-split air conditioner and control method thereof
CN113834183B (zh) 用于空调的控制方法、装置和服务器
CN116717870A (zh) 用于控制空调器的方法及装置、空调器、存储介质
CN114484719A (zh) 用于控制空调的方法及装置、空调
CN116263266A (zh) 空调节流装置及控制的方法、装置、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20921889

Country of ref document: EP

Kind code of ref document: A1