WO2021163847A1 - 一种球形二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用 - Google Patents

一种球形二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用 Download PDF

Info

Publication number
WO2021163847A1
WO2021163847A1 PCT/CN2020/075559 CN2020075559W WO2021163847A1 WO 2021163847 A1 WO2021163847 A1 WO 2021163847A1 CN 2020075559 W CN2020075559 W CN 2020075559W WO 2021163847 A1 WO2021163847 A1 WO 2021163847A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder filler
preparation
silica powder
spherical silica
spherical
Prior art date
Application number
PCT/CN2020/075559
Other languages
English (en)
French (fr)
Inventor
陈树真
李锐
王珂
丁烈平
陈晨
Original Assignee
浙江三时纪新材科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江三时纪新材科技有限公司 filed Critical 浙江三时纪新材科技有限公司
Priority to JP2022547703A priority Critical patent/JP7406854B2/ja
Priority to KR1020227025699A priority patent/KR20220120644A/ko
Priority to US17/799,763 priority patent/US20230081969A1/en
Priority to CN202080001767.XA priority patent/CN111868159B/zh
Priority to PCT/CN2020/075559 priority patent/WO2021163847A1/zh
Priority to US17/800,073 priority patent/US20230108010A1/en
Priority to CN202310518627.5A priority patent/CN116443886A/zh
Priority to PCT/CN2020/086980 priority patent/WO2021164124A1/zh
Priority to JP2022549424A priority patent/JP7401943B2/ja
Priority to CN202080001764.6A priority patent/CN111886201A/zh
Priority to CN202310519256.2A priority patent/CN116354355A/zh
Priority to KR1020227028777A priority patent/KR102653643B1/ko
Priority to PCT/CN2020/106794 priority patent/WO2021164209A1/zh
Priority to CN202080001763.1A priority patent/CN112236393B/zh
Priority to PCT/CN2021/079708 priority patent/WO2021218396A1/zh
Publication of WO2021163847A1 publication Critical patent/WO2021163847A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/181Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by a dry process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3009Physical treatment, e.g. grinding; treatment with ultrasonic vibrations
    • C09C1/3027Drying, calcination
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3081Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/309Combinations of treatments provided for in groups C09C1/3009 - C09C1/3081
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/70Siloxanes defined by use of the MDTQ nomenclature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the invention relates to a circuit board, and more specifically to a preparation method of a spherical silica powder filler, a powder filler obtained therefrom, and applications thereof.
  • radio frequency devices In the field of 5G communication, it is necessary to use radio frequency devices to assemble into equipment, high-density interconnect (HDI), high-frequency high-speed boards and motherboards and other circuit boards.
  • These circuit boards are generally composed of epoxy resin, aromatic polyether, fluororesin and other organic polymers and fillers.
  • the fillers are mainly angular or spherical silica whose main function is to reduce the thermal expansion coefficient of organic polymers.
  • the existing filler selects spherical or angular silica for tight packing gradation.
  • the signal frequency used by semiconductors is getting higher and higher, and the high-speed and low-loss signal transmission speed requires fillers with low dielectric loss and dielectric constant.
  • the dielectric constant of a material basically depends on the chemical composition and structure of the material, and silicon dioxide has its inherent dielectric constant.
  • the dielectric loss is related to the adsorbed moisture content of the filler. The more the moisture content, the greater the dielectric loss.
  • Traditional spherical silica mostly adopts high-temperature flame heating method, using physical melting or chemical oxidation to prepare spherical silica.
  • the flame temperature is generally higher than the boiling point of silica at 2230 degrees, causing the silica to condense after gasification to produce silica of less than tens of nanometers (such as 50 nanometers).
  • the calculated specific surface area of spherical silica with a diameter of 0.5 microns is 5.6 m 2 /g
  • the calculated specific surface area of spherical silica with a diameter of 50 nanometers is 54.5 m 2 /g.
  • silica water molecules are adsorbed on the surface of silica, so spherical silica containing silica below 50 nanometers has a high water content, resulting in increased dielectric loss, which is not suitable for the dielectric properties of high-frequency and high-speed circuit boards in the 5G communication era. Require.
  • the present invention provides a method for preparing a spherical silica powder filler, and a powder filler obtained therefrom. And its application.
  • the present invention provides a method for preparing spherical silica powder filler, which includes the following steps: S1, a spherical polysiloxane comprising T units is provided by the hydrolysis condensation reaction of R 1 SiX 3 , wherein R 1 is Hydrogen atom or independently selectable organic group with carbon atoms 1 to 18, X is a water-decomposable group, T unit is R 1 SiO 3 -; S2, spherical polysiloxane is calcined in a dry oxidizing gas atmosphere, The calcination temperature is between 850 degrees and 1200 degrees to obtain spherical silica powder fillers that do not contain silica particles with a diameter of less than 50 nanometers.
  • the water-decomposable group X is an alkoxy group such as a methoxy group, an ethoxy group, and a propoxy group, or a halogen atom such as a chlorine atom.
  • the catalyst for the hydrolysis condensation reaction may be a base and/or an acid.
  • the generation of polysiloxane particles below 50 nm is prevented by controlling the speed of the hydrolysis and condensation reaction.
  • the present invention has no particular limitation on the synthesis method of polysiloxane.
  • methyltrimethoxysilane or propyltrimethoxysilane is hydrolyzed and dissolved in deionized water under acidic conditions (for example, the pH is adjusted to about 5 with acetic acid), and then ammonia water (for example, Ammonia water with a mass fraction of 5%) is condensed under alkaline conditions to obtain spherical polysiloxane.
  • acidic conditions for example, the pH is adjusted to about 5 with acetic acid
  • ammonia water for example, Ammonia water with a mass fraction of 5%
  • the temperature of the hydrolysis reaction is between room temperature and 70 degrees.
  • the concentration of the hydrolyzed product of methyltrimethoxysilane or propyltrimethoxysilane in water should not be too low to avoid the production of polysiloxane particles below 50 nanometers.
  • the mass ratio of water to methyltrimethoxysilane or propyltrimethoxysilane is between 600-2500:80.
  • add deionized water to a reactor with a stirrer at room temperature add methyltrimethoxysilane or propyltrimethoxysilane and acetic acid while stirring, add ammonia water and stir, then stand still, filter, and dry Get spherical polysiloxane.
  • methyltrimethoxysilane or propyltrimethoxysilane is added to the top of the dilute ammonia water to keep the oil and water two phases separated and stirred slowly, methyltrimethoxysilane or propyltrimethoxysilane
  • the hydrolysis of silane at the oil-water interface migrates to the water phase, and the migrated hydrolysis product is condensed in the water phase to form spherical polysiloxane particles.
  • the ratio of methyltrimethoxysilane or propyltrimethoxysilane/dilute ammonia water should not be too low, otherwise, polysiloxane particles below 50 nanometers will be produced.
  • the oxidizing gas contains oxygen to oxidize all the organic substances in the polysiloxane.
  • the oxidizing gas is the best air. In order to reduce the hydroxyl content of the calcined silica, the less moisture content in the air, the better. From a cost point of view, it is suitable for the calcination atmosphere of the present invention to remove moisture with a freeze dryer after the air is compressed.
  • the invention has no particular limitation on the heating method, but since the gas burner contains moisture, the invention needs to avoid direct heating by the gas flame as much as possible. Electric heating or gas indirect heating is more suitable for the present invention. The temperature can be gradually increased during calcination.
  • the step S2 includes: putting the spherical polysiloxane powder into a muffle furnace and passing dry air into it for calcination.
  • the calcination temperature is between 850 degrees and 1100 degrees, and the calcination time is between 6 hours and 12 hours.
  • Q unit SiO 4 -
  • D unit R 2 R 3 SiO 2 -
  • M unit R 4 R 5 R 6 SiO 2 -
  • R 2 , R 3 , R 4 , R 5 , and R 6 are each a hydrogen atom or an independently selectable hydrocarbon group of 1 to 18 carbon atoms.
  • Si(OC 2 C 3 ) 4 , CH 3 CH 3 Si(OCH 3 ) 2 can be mixed and used with CH 3 Si(OCH 3 ) 3.
  • the preparation method further includes adding a treatment agent to perform surface treatment on the spherical silica powder filler, the treatment agent including a silane coupling agent and/or disilazane;
  • the silane coupling agent is (R 7 ) a (R 8 ) b Si(M) 4-ab
  • the present invention also provides a spherical silica powder filler obtained according to the above preparation method, which does not contain silica particles with a diameter of less than 50 nanometers, and the average particle size of the spherical silica powder filler is between 0.1 micron- Between 5 microns. More preferably, the average particle size of the spherical silica powder filler is between 0.15 ⁇ m and 4.5 ⁇ m.
  • the present invention also provides an application of spherical silica powder filler.
  • the spherical silica powder fillers of different particle diameters are tightly packed and graded in the resin to form a composite material, which is suitable for circuit board materials and semiconductor packaging materials.
  • the spherical silica powder filler is suitable for high-frequency and high-speed circuit board materials, prepregs, copper clad laminates and other semiconductor packaging materials that require low dielectric loss.
  • the application includes the use of dry or wet sieving or inertial classification to remove coarse particles of 1 micron, 3 microns, 5 microns, 10 microns, 20 microns or more in the spherical silica powder filler.
  • the spherical silica powder filler according to the present invention does not contain silica particles with a diameter of less than 50 nanometers, has low dielectric loss and low thermal expansion coefficient, and is suitable for high-frequency and high-speed circuit boards, prepregs or copper clad laminates.
  • the average particle size is measured with HORIBA's LA-700 laser particle size distribution analyzer
  • silica particles below 50 nanometers are directly observed with a field emission scanning electron microscope (FE-SEM), and 10 20,000-magnification photos are randomly selected, and spherical silica particles below 50 nanometers are substantially less than 50 nanometers.
  • FE-SEM field emission scanning electron microscope
  • the dielectric loss test method is to mix different volume fractions of sample powder and paraffin to make a test sample, and use a commercially available high-frequency dielectric loss meter to measure the dielectric loss under the condition of 10 GHz. Then plot the dielectric loss on the ordinate and the volume fraction of the sample on the abscissa, and obtain the dielectric loss of the sample from the slope. Although the absolute value of the dielectric loss is generally difficult to obtain, the dielectric loss of the embodiment of the present application and the comparative example can at least be relatively compared.
  • the average particle size refers to the volume average diameter of the particles.
  • the crushed silica with an average particle diameter of 2 microns is sent to a spheroidizing furnace with a flame temperature of 2500 degrees for melting and spheroidizing. All the spheroidized powders were collected as samples of Comparative Example 2. The analysis results of the samples are listed in Table 5 below.
  • samples of the examples obtained in the foregoing Examples 1 to 6 may be surface-treated. Specifically, vinyl silane coupling agent, epoxy silane coupling, disilazane, etc. can be treated as needed. More than one type of treatment can be carried out as needed.
  • preparation method includes the use of dry or wet sieving or inertial classification to remove coarse particles above 1, 3, 5, 10, and 20 microns in the filler.
  • spherical silica fillers of different particle sizes are tightly packed and graded in the resin to form a composite material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种球形二氧化硅粉体填料的制备方法,其包括如下步骤:S1,由R 1SiX 3的加水分解缩合反应来提供包括T单位的球形聚硅氧烷,其中,R 1为氢原子或可独立选择的碳原子1至18的有机基,X为加水可分解基团,T单位为R 1SiO 3-;S2,在干燥的氧化气体氛围条件下煅烧球形聚硅氧烷,煅烧温度介于850度-1200度之间,得到不含有直径小于50纳米的二氧化硅粒子的球形二氧化硅粉体填料。所述球形二氧化硅粉体填料不含有直径小于50纳米的二氧化硅粒子,具有低介电损失和低热膨胀系数,适用于高频高速电路板,半固化片或覆铜板等。

Description

一种球形二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用 技术领域
本发明涉及电路板,更具体地涉及一种球形二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用。
背景技术
在5G通讯领域,需要用到射频器件等组装成设备,高密度互连板(high density inerconnect,HDI)、高频高速板和母板等电路板。这些电路板一般主要由环氧树脂,芳香族聚醚,氟树脂等有机高分子和填料所构成,其中的填料主要是角形或球形二氧化硅,其主要功能是降低有机高分子的热膨胀系数。现有的填料选用球形或角形二氧化硅进行紧密充填级配。
一方面,随着技术的进步,半导体所用的信号频率越来越高,信号传输速度的高速化低损耗化要求填料具有低介电损失和介电常数。材料的介电常数基本取决于材料的化学组成和结构,二氧化硅有其固有的介电常数。另一方面介电损失和填料的吸附水分量有关,水分量越多,介电损失越大。传统球形二氧化硅多采用高温火焰加热方式,利用物理熔融或化学氧化来制得球形二氧化硅。火焰温度一般高于二氧化硅沸点2230度,导致二氧化硅气化后凝聚产生数十纳米(如50纳米)以下的二氧化硅。球形二氧化硅的比表面积和直径之间存在比表面积=常数/粒子直径的倒数函数关系,即直径的减小导致比表面积的急剧增加。如直径0.5微米的球形二氧化硅的比表面积计算值是5.6m 2/g,50纳米的球形二氧化硅的比表面积计算值是54.5m 2/g。另外,水分子吸附在二氧化硅表面,因此含有50纳米以下二氧化硅的球形二氧化硅吸附水分量高,导致介电损失增加,不适合5G通讯时代的高频高速电路板的介电性能要求。
发明内容
为了解决现有技术中的二氧化硅粉体填料中含有直径小于50纳米的二 氧化硅粒子的问题,本发明提供一种球形二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用。
本发明提供一种球形二氧化硅粉体填料的制备方法,其包括如下步骤:S1,由R 1SiX 3的加水分解缩合反应来提供包括T单位的球形聚硅氧烷,其中,R 1为氢原子或可独立选择的碳原子1至18的有机基,X为加水可分解基团,T单位为R 1SiO 3-;S2,在干燥的氧化气体氛围条件下煅烧球形聚硅氧烷,煅烧温度介于850度-1200度之间,得到不含有直径小于50纳米的二氧化硅粒子的球形二氧化硅粉体填料。
优选地,加水可分解基团X为例如甲氧基、乙氧基、丙氧基等烷氧基,或者例如氯原子等卤素原子。加水分解缩合反应的催化剂可为碱和/或酸。
优选地,通过控制加水分解和缩合反应的速度来防止50纳米以下的聚硅氧烷粒子的生成。只要实质上不含50纳米以下的聚硅氧烷粒子,本发明对聚硅氧烷的合成方法没有特别限制。
在一个优选的实施例中,将甲基三甲氧基硅烷或丙基三甲氧基硅烷在酸性条件(例如利用醋酸将PH调至5左右)下加水分解溶于去离子水中,然后加入氨水(例如质量分数5%的氨水)在碱性条件下缩合得球形聚硅氧烷。特别地,加水分解反应的温度介于室温-70度之间。此时,甲基三甲氧基硅烷或丙基三甲氧基硅烷加水分解物在水中的浓度不宜过低,以避免产生50纳米以下聚硅氧烷粒子。特别地,水与甲基三甲氧基硅烷或丙基三甲氧基硅烷的质量比介于600-2500:80之间。例如,室温下将去离子水加入带有搅拌器的反应釜内,在搅拌的情况下加入甲基三甲氧基硅烷或丙基三甲氧基硅烷和醋酸,加入氨水搅拌后静置,过滤,干燥得球形聚硅氧烷。
在另一个优选的实施例中,将甲基三甲氧基硅烷或丙基三甲氧基硅烷加在稀氨水上部保持油水两相维持分离并缓慢搅拌,甲基三甲氧基硅烷或丙基三甲氧基硅烷在油水界面的加水分解向水相迁移,迁移后的加水分解物在水相中缩合得球形聚硅氧烷粒子。此时甲基三甲氧基硅烷或丙基三甲氧基硅烷/稀氨水的比例同样不宜过低,否则会产生50纳米以下聚硅氧烷粒子。
优选地,氧化气体中含有氧气以将聚硅氧烷中的有机物全部氧化。从成本角度来看,该氧化气体为空气最佳。为了减少煅烧后的二氧化硅的羟基 含量,空气中的水分含量越少越好。从成本角度来看,将空气压缩后用冷干机除去水分适合于本发明的煅烧氛围气体。本发明对加热方式没有特别限制,但由于燃气的燃烧器中含有水分,本发明需尽量避免燃气火焰直接加热。电加热或燃气间接加热更适合于本发明。煅烧时温度可逐步升高,在低于850度和室温的温度段缓慢加热有利于有机基的缓慢分解,减少最终煅烧后的二氧化硅中的残碳。残碳量高时二氧化硅的白度下降。具体地,所述步骤S2包括:将球形聚硅氧烷粉体放入马弗炉中通入干燥空气进行煅烧。
优选地,煅烧温度介于850度-1100度之间,煅烧时间介于6小时-12小时之间。
优选地,该球形聚硅氧烷还含有Q单位、D单位、和/或M单位,其中,Q单位=SiO 4-,D单位=R 2R 3SiO 2-,M单位=R 4R 5R 6SiO 2-,R 2,R 3,R 4,R 5,R 6分别为氢原子或可独立选择的碳原子1至18的烃基。例如在一个优选的实施例中,Si(OC 2C 3) 4,CH 3CH 3Si(OCH 3) 2可以和CH 3Si(OCH 3) 3混合使用。
优选地,该制备方法还包括加入处理剂对球形二氧化硅粉体填料进行表面处理,该处理剂包括硅烷偶联剂和/或二硅氮烷;该硅烷偶联剂为(R 7) a(R 8) bSi(M) 4-a-b,R 7,R 8为可独立选择的碳原子1至18的烃基、氢原子、或被官能团置换的碳原子1至18的烃基,该官能团选自由以下有机官能团组成的组中的至少一种:乙烯基,烯丙基,苯乙烯基,环氧基,脂肪族氨基,芳香族氨基,甲基丙烯酰氧丙基,丙烯酰氧丙基,脲基丙基,氯丙基,巯基丙基,聚硫化物基,异氰酸酯丙基;M为碳原子1至18的烃氧基或卤素原子,a=0、1、2或3,b=0、1、2或3,a+b=1、2或3;该二硅氮烷为(R 9R 10R 11)SiNHSi(R 12R 13R 14),R 9,R 10,R 11,R 12,R 13,R 14为可独立选择的碳原子1至18的烃基或氢原子。
本发明还提供一种根据上述的制备方法得到的球形二氧化硅粉体填料,其不含有直径小于50纳米的二氧化硅粒子,球形二氧化硅粉体填料的平均粒径介于0.1微米-5微米之间。更优选地,球形二氧化硅粉体填料的平均粒径介于0.15微米-4.5微米之间。
本发明又提供一种球形二氧化硅粉体填料的应用,不同粒径的球形二氧化硅粉体填料紧密填充级配在树脂中形成复合材料以适用于电路板材料和 半导体封装材料。优选地,该球形二氧化硅粉体填料适用于高频高速电路板材料、半固化片、覆铜板和其他需要低介电损失的半导体封装材料。
优选地,该应用包括使用干法或湿法的筛分或惯性分级来除去球形二氧化硅粉体填料中的1微米、3微米、5微米、10微米、20微米以上的粗大颗粒。
根据本发明的球形二氧化硅粉体填料不含有直径小于50纳米的二氧化硅粒子,具有低介电损失和低热膨胀系数,适用于高频高速电路板,半固化片或覆铜板等。
具体实施方式
下面给出本发明的较佳实施例,并予以详细描述。
以下实施例中涉及的检测方法包括:
平均粒径用HORIBA的激光粒度分布仪LA-700测定;
50纳米以下二氧化硅粒子的有无用场发射扫描电子显微镜(FE-SEM)直接观测,任意选择10张2万倍照片,以实质上观测不到50纳米以下球形二氧化硅粒子为不含50纳米粒子;
介电损失的测试方法是将不同体积分数的试样粉体和石蜡混合制成测试样,用市贩高频介电损失仪在10GHz的条件下测介电损失。然后将介电损失为纵坐标,试样体积分数为横坐标作图,从斜率求得试样的介电损失。虽然介电损失的绝对值一般较难取得,但本申请的实施例和对比例的介电损失至少可以进行相对比较。
在本文中,“度”指的是“摄氏度”,即℃。
在本文中,平均粒径指粒子的体积平均直径。
例1
室温下取一定重量部的去离子水放入带有搅拌器的反应釜内,开启搅拌,加入80重量部的甲基三甲氧基硅烷和少量醋酸将PH调至5左右。甲基三甲氧基硅烷溶解后加入25重量部5%的氨水搅拌10秒钟后停止搅拌。静止1小时后过滤,干燥后得球形聚硅氧烷。将聚硅氧烷粉体放入马弗炉中通入干燥空气进行煅烧,最终煅烧温度为850,1000度或1100度,煅烧时间为12 小时。样品的分析结果列入下表1。
表1
Figure PCTCN2020075559-appb-000001
例2
室温下取1100重量部的去离子水放入带有搅拌器的反应釜内,开启搅拌加入80重量部的丙基三甲氧基硅烷和少量醋酸将PH调至5左右。丙基三甲氧基硅烷溶解后加入25重量部5%的氨水搅拌10秒钟后停止搅拌。静止1小时后过滤,干燥后得球形聚硅氧烷。将聚硅氧烷粉体放入马弗炉中通入干燥空气进行煅烧,最终煅烧温度为950度煅烧时间为6小时。样品的分析结果列入下表2。
表2
Figure PCTCN2020075559-appb-000002
例3
取2500重量部40度的去离子水放入带有搅拌器的反应釜内,开启搅拌加入80重量部的甲基三甲氧基硅烷和少量醋酸将PH调至5左右。甲基三甲氧基硅烷溶解后加入60重量部5%的氨水搅拌10秒钟后停止搅拌。静止1小时后过滤,干燥后得球形聚硅氧烷。将聚硅氧烷粉体放入马弗炉中通入干燥空气进行煅烧,最终煅烧温度为1000度,煅烧时间为12小时。样品的分 析结果列入下表3。
表3
Figure PCTCN2020075559-appb-000003
例4
取5000重量部70度的去离子水放入带有搅拌器的反应釜内,开启搅拌加入80重量部的甲基三甲氧基硅烷和少量醋酸将PH调至5左右。甲基三甲氧基硅烷溶解后加入200重量部5%的氨水搅拌1小时后过滤,干燥后得球形聚硅氧烷。将聚硅氧烷粉体放入马弗炉中通入干燥空气进行煅烧,最终煅烧温度为1000度煅烧时间为12小时。样品的分析结果列入下表4。
表4
Figure PCTCN2020075559-appb-000004
例5
将平均粒径2微米的破碎二氧化硅送入火焰温度2500度的球化炉进行熔融球化。球化后的粉体全部收集作为对比例2的样品。样品的分析结果列入下表5。
表5
Figure PCTCN2020075559-appb-000005
应该理解,上述实施例1-实施例6所得到的实施例样品可以进行表面处理。具体的,根据需要可进行乙烯基硅烷偶联剂,环氧硅烷偶联,二硅氮烷等进行处理。根据需要还可以进行一种以上的处理。
应该理解,该制备方法包括使用干法或湿法的筛分或惯性分级来除去填料中的1、3、5、10、20微米以上的粗大颗粒。
应该理解,不同粒径的球形二氧化硅填料紧密填充级配在树脂中形成复合材料。
以上所述的,仅为本发明的较佳实施例,并非用以限定本发明的范围,本发明的上述实施例还可以做出各种变化。即凡是依据本发明申请的权利要求书及说明书内容所作的简单、等效变化与修饰,皆落入本发明专利的权利要求保护范围。本发明未详尽描述的均为常规技术内容。

Claims (10)

  1. 一种球形二氧化硅粉体填料的制备方法,其特征在于,该制备方法包括如下步骤:
    S1,由R 1SiX 3的加水分解缩合反应来提供包括T单位的球形聚硅氧烷,其中,R 1为氢原子或可独立选择的碳原子1至18的有机基,X为加水可分解基团,T单位为R 1SiO 3-;
    S2,在干燥的氧化气体氛围条件下煅烧球形聚硅氧烷,煅烧温度介于850度-1200度之间,得到不含有直径小于50纳米的二氧化硅粒子的球形二氧化硅粉体填料。
  2. 根据权利要求1所述的制备方法,其特征在于,加水可分解基团为烷氧基或卤素原子。
  3. 根据权利要求1所述的制备方法,其特征在于,通过控制加水分解缩合反应的速度来防止50纳米以下的聚硅氧烷粒子的生成。
  4. 根据权利要求1所述的制备方法,其特征在于,氧化气体中含有氧气以将聚硅氧烷中的有机物全部氧化。
  5. 根据权利要求1所述的制备方法,其特征在于,煅烧温度介于850度-1100度之间,煅烧时间介于6小时-12小时之间。
  6. 根据权利要求1所述的制备方法,其特征在于,该球形聚硅氧烷还含有Q单位、D单位、和/或M单位,其中,Q单位=SiO 4-,D单位=R 2R 3SiO 2-,M单位=R 4R 5R 6SiO 2-,R 2,R 3,R 4,R 5,R 6分别为氢原子或可独立选择的碳原子1至18的烃基。
  7. 根据权利要求1所述的制备方法,其特征在于,该制备方法还包括加入处理剂对球形二氧化硅粉体填料进行表面处理,该处理剂包括硅烷偶联剂和/或二硅氮烷;该硅烷偶联剂为(R 7) a(R 8) bSi(M) 4-a-b,R 7,R 8为可独立选择的碳原子1至18的烃基、氢原子、或被官能团置换的碳原子1至18的烃基,该官能团选自由以下有机官能团组成的组中的至少一种:乙烯基,烯丙基,苯乙烯基,环氧基,脂肪族氨基,芳香族氨基,甲基丙烯酰氧丙基,丙烯酰氧丙基,脲基丙基,氯丙基,巯基丙基,聚硫化物基,异氰酸酯丙基;M为 碳原子1至18的烃氧基或卤素原子,a=0、1、2或3,b=0、1、2或3,a+b=1、2或3;该二硅氮烷为(R 9R 10R 11)SiNHSi(R 12R 13R 14),R 9,R 10,R 11,R 12,R 13,R 14为可独立选择的碳原子1至18的烃基或氢原子。
  8. 根据权利要求1-7中任一项所述的制备方法得到的球形二氧化硅粉体填料,其特征在于,该球形二氧化硅粉体填料中不含有直径小于50纳米的二氧化硅粒子,球形二氧化硅粉体填料的平均粒径介于0.1微米-5微米之间。
  9. 根据权利要求8所述的球形二氧化硅粉体填料的应用,其特征在于,不同粒径的球形二氧化硅粉体填料紧密填充级配在树脂中形成复合材料以适用于电路板材料和半导体封装材料。
  10. 根据权利要求9所述的应用,其特征在于,该应用包括使用干法或湿法的筛分或惯性分级来除去球形二氧化硅粉体填料中的1微米、3微米、5微米、10微米、20微米以上的粗大颗粒。
PCT/CN2020/075559 2020-02-17 2020-02-17 一种球形二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用 WO2021163847A1 (zh)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP2022547703A JP7406854B2 (ja) 2020-02-17 2020-02-17 球状シリカ粉末充填剤の調製方法、これによって得られた粉末充填剤およびその使用
KR1020227025699A KR20220120644A (ko) 2020-02-17 2020-02-17 구형 실리카 파우더 필러의 제조 방법, 이로부터 획득된 파우더 필러 및 그 응용
US17/799,763 US20230081969A1 (en) 2020-02-17 2020-02-17 Preparation method for spherical silica powder filler, powder filler obtained thereby and use thereof
CN202080001767.XA CN111868159B (zh) 2020-02-17 2020-02-17 一种球形二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用
PCT/CN2020/075559 WO2021163847A1 (zh) 2020-02-17 2020-02-17 一种球形二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用
US17/800,073 US20230108010A1 (en) 2020-02-17 2020-04-26 Preparation method for spherical silica powder filler, powder filler obtained thereby and use thereof
CN202310518627.5A CN116443886A (zh) 2020-02-17 2020-04-26 一种球形二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用
PCT/CN2020/086980 WO2021164124A1 (zh) 2020-02-17 2020-04-26 一种球形二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用
JP2022549424A JP7401943B2 (ja) 2020-02-17 2020-04-26 球状シリカ粉末充填剤の調製方法、これによって得られた粉末充填剤およびその使用
CN202080001764.6A CN111886201A (zh) 2020-02-17 2020-04-26 一种球形二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用
CN202310519256.2A CN116354355A (zh) 2020-02-17 2020-04-26 一种球形二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用
KR1020227028777A KR102653643B1 (ko) 2020-02-17 2020-04-26 구형 실리카 파우더 필러의 제조 방법, 이로부터 획득된 파우더 필러 및 그 응용
PCT/CN2020/106794 WO2021164209A1 (zh) 2020-02-17 2020-08-04 一种球形二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用
CN202080001763.1A CN112236393B (zh) 2020-02-17 2020-08-04 一种球形二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用
PCT/CN2021/079708 WO2021218396A1 (zh) 2020-02-17 2021-03-09 一种无内部孔的球形二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/075559 WO2021163847A1 (zh) 2020-02-17 2020-02-17 一种球形二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用

Publications (1)

Publication Number Publication Date
WO2021163847A1 true WO2021163847A1 (zh) 2021-08-26

Family

ID=72968430

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/CN2020/075559 WO2021163847A1 (zh) 2020-02-17 2020-02-17 一种球形二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用
PCT/CN2020/086980 WO2021164124A1 (zh) 2020-02-17 2020-04-26 一种球形二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用
PCT/CN2020/106794 WO2021164209A1 (zh) 2020-02-17 2020-08-04 一种球形二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用
PCT/CN2021/079708 WO2021218396A1 (zh) 2020-02-17 2021-03-09 一种无内部孔的球形二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/CN2020/086980 WO2021164124A1 (zh) 2020-02-17 2020-04-26 一种球形二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用
PCT/CN2020/106794 WO2021164209A1 (zh) 2020-02-17 2020-08-04 一种球形二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用
PCT/CN2021/079708 WO2021218396A1 (zh) 2020-02-17 2021-03-09 一种无内部孔的球形二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用

Country Status (5)

Country Link
US (1) US20230081969A1 (zh)
JP (1) JP7406854B2 (zh)
KR (1) KR20220120644A (zh)
CN (1) CN111868159B (zh)
WO (4) WO2021163847A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116354355A (zh) * 2020-02-17 2023-06-30 衢州三时纪新材料有限公司 一种球形二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用
JP7406854B2 (ja) * 2020-02-17 2023-12-28 浙江三時紀新材科技有限公司 球状シリカ粉末充填剤の調製方法、これによって得られた粉末充填剤およびその使用
WO2021218662A1 (zh) * 2020-04-26 2021-11-04 浙江三时纪新材科技有限公司 一种固化后抛光面上无凹坑的含球形二氧化硅粉体的热固化树脂组合物及其制备方法
CN112645339A (zh) * 2020-11-23 2021-04-13 江苏联瑞新材料股份有限公司 一种hdi用抗树脂固化球形硅微粉及其制备方法和应用
CN112812361B (zh) * 2020-12-31 2024-01-09 浙江三时纪新材科技有限公司 一种二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用
CN113603103A (zh) * 2021-08-13 2021-11-05 浙江三时纪新材科技有限公司 半导体封装材料,基板材料的制备方法,由此得到的半导体封装材料,基板材料及其应用
CN113736142B (zh) * 2021-09-01 2023-06-02 浙江三时纪新材科技有限公司 半导体封装材料或基板材料
CN114604872B (zh) * 2022-03-03 2023-08-18 山东宝龙达新材料有限公司 一种纳米片状二氧化硅及制备方法
CN114702038B (zh) * 2022-04-25 2023-09-29 江苏联瑞新材料股份有限公司 超低介电损耗球形二氧化硅微粉的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1311266A (zh) * 2000-01-13 2001-09-05 Ge东芝硅氧烷株式会社 球形聚硅氧烷微粒及其制备方法
JP2002037620A (ja) * 2000-07-25 2002-02-06 Ube Nitto Kasei Co Ltd 真球状シリカ粒子集合体、その製造方法およびそれを用いた樹脂組成物
CN1738850A (zh) * 2003-02-27 2006-02-22 宇部日东化成株式会社 聚有机硅氧烷颗粒的制备方法和二氧化硅颗粒的制备方法
CN104245874A (zh) * 2012-04-26 2014-12-24 古河电气工业株式会社 膜状接合剂用组合物及其制造方法、膜状接合剂和使用了膜状接合剂的半导体封装及其制造方法
CN104355314A (zh) * 2014-11-04 2015-02-18 陕西宝塔山油漆股份有限公司 一种非晶态纳米二氧化硅微粉及其制备方法
CN109399648A (zh) * 2018-11-10 2019-03-01 天津大学 微米级单分散多孔二氧化硅微球及其制备方法
CN110015666A (zh) * 2019-04-29 2019-07-16 江苏辉迈粉体科技有限公司 一种高纯亚微米球形硅微粉的制备方法
CN110016242A (zh) * 2019-04-04 2019-07-16 深圳先进技术研究院 纳米二氧化硅的单分子层表面改性方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103812A (ja) * 1986-10-20 1988-05-09 Toshiba Silicone Co Ltd 真球状シリカ粉末の製造方法
JPH01183421A (ja) * 1988-01-19 1989-07-21 Shin Etsu Chem Co Ltd 石英ガラスの製造方法
JP4397981B2 (ja) 1998-04-28 2010-01-13 宇部日東化成株式会社 ポリオルガノシロキサン微粒子の製造方法
EP1153063A4 (en) * 1998-12-18 2003-05-28 Univ California BIOMIMETIC METHODS, COMPOSITIONS AND CATALYSTS FOR IN VITRO SYNTHESIS OF SILICA, POLYSILSEQUIOXANE, POLYSILOXANE AND POLYMETALLO-OXANES
JPWO2007011057A1 (ja) * 2005-07-19 2009-02-05 東レ・ダウコーニング株式会社 ポリシロキサンおよびその製造方法
KR100692612B1 (ko) * 2006-04-21 2007-03-14 한국화학연구원 구형 실리콘 미립자의 제조 방법
TWI372139B (en) * 2006-06-02 2012-09-11 Evonik Degussa Gmbh Pelletized silica particles
JP5364277B2 (ja) 2008-02-28 2013-12-11 花王株式会社 中空シリカ粒子
DE102009002499A1 (de) 2009-04-20 2010-10-21 Evonik Degussa Gmbh Dispersion enthaltend mit quartären, aminofunktionellen siliciumorganischen Verbindungen oberflächenmodifizierte Siliciumdioxidpartikel
US9517939B2 (en) * 2012-05-09 2016-12-13 The Board Of Trustees Of The University Of Illinois Method of enhancing the connectivity of a colloidal template, and a highly interconnected porous structure
CN104744700A (zh) * 2015-03-09 2015-07-01 华南理工大学 一种可控粒径的单分散性聚硅氧烷微球的制备方法
CN107128935A (zh) * 2017-05-23 2017-09-05 苏州纳迪微电子有限公司 一种高纯度球形二氧化硅微粉的制备方法
CN107573507A (zh) * 2017-09-29 2018-01-12 贵州正业工程技术投资有限公司 一种大粒径聚硅氧烷微球的制备方法
JP7052495B2 (ja) 2018-03-30 2022-04-12 Jnc株式会社 球状水素ポリシルセスキオキサン微粒子及び球状ケイ素酸化物微粒子並びにこれらの製造方法
US20210309832A1 (en) 2018-07-27 2021-10-07 Zhejiang Third Age Material Technology Co., Ltd. Method For Preparing Spherical Or Angular Powder Filler, Spherical Or Angular Powder Filler Obtained Therefrom, And Use Thereof
JP7406854B2 (ja) * 2020-02-17 2023-12-28 浙江三時紀新材科技有限公司 球状シリカ粉末充填剤の調製方法、これによって得られた粉末充填剤およびその使用
CN112236393B (zh) * 2020-02-17 2021-10-22 浙江三时纪新材科技有限公司 一种球形二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用
CN116354355A (zh) * 2020-02-17 2023-06-30 衢州三时纪新材料有限公司 一种球形二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1311266A (zh) * 2000-01-13 2001-09-05 Ge东芝硅氧烷株式会社 球形聚硅氧烷微粒及其制备方法
JP2002037620A (ja) * 2000-07-25 2002-02-06 Ube Nitto Kasei Co Ltd 真球状シリカ粒子集合体、その製造方法およびそれを用いた樹脂組成物
CN1738850A (zh) * 2003-02-27 2006-02-22 宇部日东化成株式会社 聚有机硅氧烷颗粒的制备方法和二氧化硅颗粒的制备方法
CN104245874A (zh) * 2012-04-26 2014-12-24 古河电气工业株式会社 膜状接合剂用组合物及其制造方法、膜状接合剂和使用了膜状接合剂的半导体封装及其制造方法
CN104355314A (zh) * 2014-11-04 2015-02-18 陕西宝塔山油漆股份有限公司 一种非晶态纳米二氧化硅微粉及其制备方法
CN109399648A (zh) * 2018-11-10 2019-03-01 天津大学 微米级单分散多孔二氧化硅微球及其制备方法
CN110016242A (zh) * 2019-04-04 2019-07-16 深圳先进技术研究院 纳米二氧化硅的单分子层表面改性方法
CN110015666A (zh) * 2019-04-29 2019-07-16 江苏辉迈粉体科技有限公司 一种高纯亚微米球形硅微粉的制备方法

Also Published As

Publication number Publication date
WO2021164209A1 (zh) 2021-08-26
CN111868159A (zh) 2020-10-30
JP7406854B2 (ja) 2023-12-28
WO2021164124A1 (zh) 2021-08-26
WO2021218396A1 (zh) 2021-11-04
JP2023513516A (ja) 2023-03-31
KR20220120644A (ko) 2022-08-30
US20230081969A1 (en) 2023-03-16
CN111868159B (zh) 2022-07-26

Similar Documents

Publication Publication Date Title
WO2021163847A1 (zh) 一种球形二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用
JP7401943B2 (ja) 球状シリカ粉末充填剤の調製方法、これによって得られた粉末充填剤およびその使用
CN108589272B (zh) 含二氧化硅气凝胶的毡的制备方法和使用该制备方法制备的含二氧化硅气凝胶的毡
JP5074012B2 (ja) 機能強化型窒化ホウ素組成物及びそれで作った組成物
Sun et al. Preparation of superhydrophobic nanocomposite fiber membranes by electrospinning poly (vinylidene fluoride)/silane coupling agent modified SiO2 nanoparticles
Zawrah et al. Facile and economic synthesis of silica nanoparticles
CN112236393B (zh) 一种球形二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用
CN112812361B (zh) 一种二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用
JP2010534617A (ja) 表面改質された、熱分解法で製造されたシリカ
CN112624126A (zh) 一种中空二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用
JP2004315300A (ja) シリカ微粒子、それが分散したシリカコロイド及びその製造方法
KR20150060832A (ko) 단열 혼합물의 제조 방법
Senemar et al. A novel and facile method for silica nanoparticles synthesis from high temperature vulcanization (HTV) silicon
JP2003165718A (ja) 無孔質球状シリカ及びその製造方法
WO2023029865A1 (zh) 半导体封装材料或基板材料的制备方法,由此得到的半导体封装材料或基板材料及其应用
Huang et al. Surface Modification of Nano‐SiO2 Particles with Polycarboxylate Ether‐Based Superplasticizer under Microwave Irradiation
WO2023016316A1 (zh) 半导体封装材料,基板材料的制备方法,由此得到的半导体封装材料,基板材料及其应用
PY et al. The synthesis of solvent-free TiO 2 nanofluids through surface modification
JP2024506276A (ja) シラノール基密度が低減されたヒュームドシリカ粉末
Babanzadeh et al. Preparation and Characterization of Novel Polyimide/SiO 2 Nano-hybrid Films by In Situ Polymerization
JP2021031338A (ja) 表面改質された酸化マグネシウム粒子
Yi et al. Enhancing thermal mechanical properties of polymer composites with hollow porous fillers
JP2023181992A (ja) 球状シリカ粉末の製造方法
Yoo et al. Application of Simple Cycloalkylsilanetriols as Surface Modifier for Inorganic Particles
WO2023112281A1 (ja) 電子材料用フィラー及びその製造方法、電子材料用スラリー、並びに電子材料用樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920319

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227025699

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022547703

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920319

Country of ref document: EP

Kind code of ref document: A1