WO2021149358A1 - Optical stack and production method therefor - Google Patents

Optical stack and production method therefor Download PDF

Info

Publication number
WO2021149358A1
WO2021149358A1 PCT/JP2020/044456 JP2020044456W WO2021149358A1 WO 2021149358 A1 WO2021149358 A1 WO 2021149358A1 JP 2020044456 W JP2020044456 W JP 2020044456W WO 2021149358 A1 WO2021149358 A1 WO 2021149358A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
sensitive adhesive
pressure
adhesive layer
liquid crystal
Prior art date
Application number
PCT/JP2020/044456
Other languages
French (fr)
Japanese (ja)
Inventor
載鎬 沈
承柏 洪
東輝 金
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202080094320.1A priority Critical patent/CN115038999A/en
Priority to KR1020227015111A priority patent/KR20220126710A/en
Publication of WO2021149358A1 publication Critical patent/WO2021149358A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present invention relates to an optical laminate and a method for producing the same.
  • a polarizing plate having excellent crack resistance is known as a polarizing plate used in a liquid crystal display device, an organic electroluminescence (EL) display device, or the like (Patent Document 1).
  • a polarizing plate containing a liquid crystal layer made of a cured product of a polymerizable liquid crystal compound has a problem that cracks are likely to occur in the liquid crystal layer when bent.
  • An object of the present invention is to provide an optical laminate in which cracks are suppressed in the liquid crystal layer even when bent, and a method for producing the same.
  • the present invention provides an optical laminate illustrated below and a method for producing the same.
  • An optical laminate including a front plate, a first pressure-sensitive adhesive layer, a polarizing plate, and a second pressure-sensitive adhesive layer in this order.
  • the polarizing plate includes a liquid crystal layer made of a cured product of a polymerizable liquid crystal compound.
  • Ra [ ⁇ m] be the surface roughness of the first pressure-sensitive adhesive layer on the target side surface, which is a part of the entire circumference of the optical laminate and the side surface extending in the stacking direction is the target side surface.
  • the polarizing plate includes a linear polarizer layer and a retardation layer in this order from the side of the first pressure-sensitive adhesive layer toward the side of the second pressure-sensitive adhesive layer.
  • the optical laminate can be bent along a bending axis and can be bent.
  • a method for producing an optical laminate comprising a step of cutting the optical laminate film with a laser beam to form the target side surface.
  • FIG. 1 is a schematic cross-sectional view showing an example of the optical laminate of the present invention.
  • the optical laminate 100 shown in FIG. 1 includes a front plate 101, a first pressure-sensitive adhesive layer 102, a polarizing plate 103, and a second pressure-sensitive adhesive layer 104 in this order.
  • the polarizing plate 103 includes a liquid crystal layer made of a cured product of a polymerizable liquid crystal compound.
  • the liquid crystal layer means a layer containing a cured product of a polymerizable liquid crystal compound, and it is not necessary to exhibit liquid crystal property.
  • the optical laminate 100 may have a release film 105 bonded to the surface of the second pressure-sensitive adhesive layer 104.
  • the optical laminate 100 may have a back plate that is bonded to the surface of the second pressure-sensitive adhesive layer 104.
  • a side surface that is a part of the entire circumference of the optical laminated body 100 and extends in the stacking direction is defined as the target side surface 100a.
  • the surface roughness of the side surface 102a of the first pressure-sensitive adhesive layer 102 is Ra [ ⁇ m] on the target side surface 100a
  • the side surface 102a of the first pressure-sensitive adhesive layer 102 satisfies the relationship of the following formula (1a), and is preferable.
  • the relationship of the following equation (1b) is satisfied.
  • the surface roughness Ra is a value measured according to the method described in Examples. Ra ⁇ 10 ⁇ m (1a) Ra ⁇ 6 ⁇ m (1b)
  • the side surface 102a of the first pressure-sensitive adhesive layer 102 preferably satisfies the relationship of the following formula (2a), and more preferably satisfies the relationship of the following formula (2b).
  • the target side surface 100a may be at least a part of the entire circumference of the optical laminate 100, and may have an arbitrary size at any location as long as it includes the side surface 102a of the first pressure-sensitive adhesive layer 102. ..
  • the target side surface 100a may be the entire circumference of the optical laminate 100.
  • the optical laminated body 100 may have a bending axis in the main surface direction of the optical laminated body, and the optical laminated body 100 can be bent along the bending axis.
  • the target side surface preferably includes a side surface that intersects the bending axis.
  • the main surface of the optical laminate means a surface perpendicular to the thickness direction of the optical laminate.
  • the side surface 102a of the first pressure-sensitive adhesive layer 102 on the target side surface 100a may be formed on the first pressure-sensitive adhesive layer 102 before the first pressure-sensitive adhesive layer 102 is laminated, or the first pressure-sensitive adhesive layer 102 may be laminated. It may be formed at the time of cutting or after cutting the optical laminated film.
  • the side surface 102a of the first pressure-sensitive adhesive layer 102 is preferably formed by irradiating the optical laminated film with laser light. By irradiating the laser beam, the first pressure-sensitive adhesive layer 102 starts to melt, and before the first pressure-sensitive adhesive layer 102 is completely melted, a force such as cutting is applied, and the relationship between the formulas (1a) and (2a) is established. A filling side surface 102a can be formed.
  • the laser light an appropriate laser light can be selected depending on the material and thickness of the layer constituting the optical laminated film, and for example, a laser radiating a wavelength in the range of 200 nm to 11 ⁇ m is used.
  • the laser may be a continuous wave (CW) laser or a pulsed laser.
  • the type of laser light examples include a gas laser such as a CO 2 laser, a solid-state laser such as a YAG laser, and a semiconductor laser.
  • the laser used is preferably a CO 2 laser.
  • the surface roughness Ra of the side surface 102a of the first pressure-sensitive adhesive layer 102 can be adjusted according to the cutting method and cutting conditions.
  • the surface roughness Ra of the side surface 102a of the first pressure-sensitive adhesive layer 102 can be adjusted by the incident direction, the depth of focus, the output condition, the moving speed, and the focal position of the laser light.
  • the laser light may be incident from the front plate 101 side of the optical laminated film, or may be incident from the second adhesive layer 104 side.
  • the laser beam is incident from the front plate 101 side.
  • the laser light irradiation conditions any appropriate conditions can be adopted depending on the laser to be used.
  • the output conditions are preferably 1 W or more and 100 W or less, more preferably 2 W or more and 60 W or less, and further preferably 4 W or more and 10 W or less.
  • the moving speed is preferably 30 mm / sec or more and 1000 mm / sec or less, more preferably 100 mm / sec or more and 500 mm / sec or less, and further preferably 250 mm / sec or more and 400 mm / sec or less.
  • the focus of the laser light may be aligned with the surface of the optical laminated film on the front plate 101 side, or may be aligned with the inside of the first pressure-sensitive adhesive layer 102.
  • the surface roughness Ra of the side surface 102a of the first pressure-sensitive adhesive layer 102 can be easily adjusted to a predetermined range.
  • the optical laminate 100 may form the side surface 102a of the first pressure-sensitive adhesive layer 102 by cutting the optical laminate film into a predetermined shape using a cutter, a cutting blade, or the like, and then irradiating the cut surface with a laser beam.
  • the optical laminated film is irradiated with a laser beam, and cutting and formation of the side surface 102a are performed by the same step.
  • the target side surface 100a of the optical laminate 100 becomes a cut surface by laser light.
  • the liquid crystal layer tends to crack along the bending axis.
  • the side surface 102a of the first pressure-sensitive adhesive layer 102 on the target side surface 100a satisfies the relationship of the formula (1a)
  • the optical laminate 100 is bent so that the target side surface 100a and the bending axis intersect. Can also suppress the occurrence of cracks.
  • the side surface 102a of the first pressure-sensitive adhesive layer 102 satisfies the relationship of the formula (1a
  • the cured product of the polymerizable liquid crystal compound is used. It is considered that stress concentration on the side surface of the liquid crystal layer (particularly the retardation layer which is the liquid crystal layer) can be avoided and the occurrence of cracks can be suppressed.
  • the crack means a crack that occurs in at least one layer of the optical laminate 100, and tends to occur in the liquid crystal layer contained in the polarizing plate 103.
  • the polarizing plate 103 includes a plurality of liquid crystal layers, the thinner the liquid crystal layer, the more likely it is that cracks will occur. The occurrence of cracks can be discriminated by observation with an optical microscope.
  • Examples of the liquid crystal layer contained in the polarizing plate 103 include a linear polarizing element layer and a retardation layer, and examples of the retardation layer include a positive C layer, a ⁇ / 4 layer, a ⁇ / 2 layer, or a combination thereof. Is exemplified.
  • the polarizing plate 103 may be configured to include at least one liquid crystal layer, and may be configured to include a plurality of liquid crystal layers.
  • the polarizing plate 103 includes a positive C layer as a liquid crystal layer, cracks tend to occur in the positive C layer.
  • the positive C layer is usually thin, which is considered to be one of the reasons why cracks are likely to occur. According to the present invention, even in the optical laminate 100 including the polarizing plate 103 including the positive C layer as the liquid crystal layer, the occurrence of cracks can be suppressed.
  • bending includes a form of bending in which a curved surface is formed in a bent portion, and the bending radius of the bent inner surface is not particularly limited. Bending also includes refraction with an inner surface refraction angle greater than 0 degrees and less than 180 degrees, and folding with an inner surface bending radius close to zero or an inner surface refraction angle of 0 degrees.
  • the thickness of the optical laminate 100 is not particularly limited because it varies depending on the function required for the optical laminate, the application of the optical laminate, etc., but is, for example, 20 ⁇ m or more and 2000 ⁇ m or less, preferably 50 ⁇ m or more and 1000 ⁇ m or less, and more. It is preferably 100 ⁇ m or more and 500 ⁇ m or less.
  • the plan view shape of the optical laminate 100 may be, for example, a square shape, preferably a square shape having a long side and a short side, and more preferably a rectangle.
  • the length of the long side may be, for example, 10 mm or more and 1400 mm or less, preferably 50 mm or more and 600 mm or less.
  • the length of the short side is, for example, 5 mm or more and 800 mm or less, preferably 30 mm or more and 500 mm or less, and more preferably 50 mm or more and 300 mm or less.
  • Each layer constituting the optical laminate 100 may have corners R-processed, end portions notched, or perforated.
  • the optical laminate 100 can be used, for example, in a display device or the like.
  • the display device is not particularly limited, and examples thereof include an organic electroluminescence (organic EL) display device, an inorganic electroluminescence (inorganic EL) display device, a liquid crystal display device, and an electroluminescent display device.
  • the optical laminate 100 is suitable for a display device having flexibility that allows bending.
  • the material and thickness of the front plate 101 are not limited as long as it is a plate-like body capable of transmitting light.
  • the front plate may be composed of only one layer, or may be composed of two or more layers.
  • the front plate 101 includes a resin plate (for example, a resin plate, a resin sheet, a resin film, etc.), a glass plate (for example, a glass plate, a glass film, etc.), a resin plate, and a glass.
  • a laminated body with a plate-like body of the above can be mentioned.
  • the front plate 101 can form the outermost surface of the display device.
  • the thickness of the front plate 101 may be, for example, 30 ⁇ m or more and 500 ⁇ m or less, preferably 40 ⁇ m or more and 200 ⁇ m or less, and more preferably 50 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of each layer constituting the optical laminate 100 can be measured according to the thickness measuring method described in Examples described later.
  • the resin plate-like body is not limited as long as it can transmit light.
  • the resin constituting the resin plate-like body include triacetyl cellulose, acetyl cellulose butyrate, ethylene-vinyl acetate copolymer, propionyl cellulose, butyryl cellulose, acetyl propionyl cellulose, polyester, polystyrene, polyamide, and polyether.
  • the resin plate-like body is preferably a resin film formed of a polymer such as polyimide, polyamide, or polyamideimide.
  • the front plate 101 may be a resin film provided with a hard coat layer.
  • the hard coat layer may be formed on one surface of the resin film or may be formed on both sides.
  • the hard coat layer is, for example, a cured layer of an ultraviolet curable resin.
  • the ultraviolet curable resin include acrylic resin, silicone resin, polyester resin, urethane resin, amide resin, epoxy resin and the like.
  • the hard coat layer may contain additives to improve strength.
  • the additive is not particularly limited, and examples thereof include inorganic fine particles, organic fine particles, or a mixture thereof.
  • the front plate 101 is a glass plate
  • tempered glass for a display is preferably used as the glass plate.
  • the thickness of the glass plate may be, for example, 20 ⁇ m or more and 1000 ⁇ m or less.
  • the front plate 101 not only has a function of protecting the front surface (screen) of the display device (function as a window film), but also functions as a touch sensor and blue light cut. It may have a function, a viewing angle adjusting function, and the like.
  • the first pressure-sensitive adhesive layer 102 is interposed between the front plate 101 and the polarizing plate 103, and these are bonded together.
  • the first pressure-sensitive adhesive layer 102 may be composed of one layer or two or more layers, but is preferably composed of one layer.
  • the first pressure-sensitive adhesive layer 102 is composed of a pressure-sensitive adhesive composition containing (meth) acrylic resin, rubber-based resin, urethane-based resin, ester-based resin, silicone-based resin, and polyvinyl ether-based resin as main components (base polymer). can do.
  • a pressure-sensitive adhesive composition containing (meth) acrylic resin, rubber-based resin, urethane-based resin, ester-based resin, silicone-based resin, and polyvinyl ether-based resin as main components (base polymer).
  • base polymer base polymer
  • the pressure-sensitive adhesive composition may be an active energy ray-curable type or a thermosetting type.
  • Examples of the (meth) acrylic resin used in the pressure-sensitive adhesive composition include (meth) butyl (meth) acrylate, ethyl (meth) acrylate, isooctyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate.
  • a polymer or copolymer containing one or more acrylates as a monomer is preferably used. It is preferable that the base polymer is copolymerized with a polar monomer.
  • Examples of the polar monomer include (meth) acrylic acid compound, (meth) acrylic acid 2-hydroxypropyl compound, (meth) acrylic acid hydroxyethyl compound, (meth) acrylamide compound, and N, N-dimethylaminoethyl (meth) acrylate compound.
  • the pressure-sensitive adhesive composition may contain only the above-mentioned base polymer, but usually further contains a cross-linking agent.
  • the cross-linking agent is a metal ion having a divalent value or higher and forming a carboxylic acid metal salt with the carboxyl group, a polyamine compound forming an amide bond with the carboxyl group, and a carboxyl group. Examples thereof include polyepoxy compounds or polyols that form an ester bond with, and polyisocyanate compounds that form an amide bond with a carboxyl group.
  • the cross-linking agent is preferably a polyisocyanate compound.
  • the active energy ray-curable pressure-sensitive adhesive composition has a property of being cured by being irradiated with active energy rays such as ultraviolet rays and electron beams, and has adhesiveness even before irradiation with active energy rays, such as a film. It has the property that it can be brought into close contact with the adherend of the above, and can be cured by irradiation with active energy rays to adjust the adhesion.
  • the active energy ray-curable pressure-sensitive adhesive composition is preferably an ultraviolet-curable type.
  • the active energy ray-curable pressure-sensitive adhesive composition further contains an active energy ray-polymerizable compound in addition to the base polymer and the cross-linking agent. If necessary, a photopolymerization initiator, a photosensitizer, or the like may be contained.
  • the active energy ray-polymerizable compound is, for example, a (meth) acrylate monomer having at least one (meth) acryloyloxy group in the molecule; obtained by reacting two or more kinds of functional group-containing compounds, and at least 2 in the molecule.
  • (Meta) acrylic compounds such as (meth) acryloyloxy group-containing compounds such as (meth) acrylate oligomers having one (meth) acryloyloxy group, and compounds having at least two benzoylphenylmethacryloyl groups in the molecule. Can be mentioned.
  • the pressure-sensitive adhesive composition can contain 0.1 part by mass or more of the active energy ray-polymerizable compound with respect to 100 parts by mass of the solid content of the pressure-sensitive adhesive composition, and is 10 parts by mass or less, 5 parts by mass or less, or 2 parts by mass. Can include less than one copy.
  • Benzoylphenylmethacryloyl group means a group represented by the following structure. * Represents a bond.
  • the number of benzoylphenylmethacryloyl groups contained in the molecule of the active energy ray-polymerizable compound can be 5 or less, and can be 4 or less.
  • Examples of the compound having at least two benzoylphenyl metaacryloyl groups in the molecule include the following compounds.
  • the photopolymerization initiator examples include benzophenone, benzyl dimethyl ketal, 1-hydroxycyclohexyl ketone and the like.
  • the photopolymerization initiator may contain one kind or two or more kinds.
  • the total content thereof may be, for example, 0.01 part by mass or more and 3.0 parts by mass or less with respect to 100 parts by mass of the solid content of the pressure-sensitive adhesive composition.
  • the pressure-sensitive adhesive composition includes fine particles for imparting light scattering properties, beads (resin beads, glass beads, etc.), glass fibers, resins other than the base polymer, pressure-sensitive imparting agents, and fillers (metal powders and other inorganic powders). Etc.), antioxidants, UV absorbers, dyes, pigments, colorants, antifoaming agents, corrosion inhibitors, photopolymerization initiators and other additives can be included.
  • the first pressure-sensitive adhesive layer 102 can be formed by applying an organic solvent diluent of the pressure-sensitive adhesive composition on a substrate and drying it.
  • the first pressure-sensitive adhesive layer 102 can also be formed by using a pressure-sensitive adhesive sheet formed by using the pressure-sensitive adhesive composition.
  • the first pressure-sensitive adhesive layer 102 can also be formed by applying the pressure-sensitive adhesive composition to the surface of the front plate 101 or the polarizing plate 103 and drying it.
  • a method for applying the pressure-sensitive adhesive composition for example, a bar coating method, a knife coating method, a roll coating method, a blade coating method, a die coating method, a gravure coating method and the like can be used.
  • the active energy ray-curable pressure-sensitive adhesive composition is used, the formed pressure-sensitive adhesive layer can be irradiated with active energy rays to obtain a pressure-sensitive adhesive layer having a desired degree of curing.
  • the thickness of the first pressure-sensitive adhesive layer 102 is not particularly limited, but is preferably 1 ⁇ m or more and 100 ⁇ m or less, more preferably 3 ⁇ m or more and 50 ⁇ m or less, 10 ⁇ m or more, or 20 ⁇ m or more. You may.
  • the polarizing plate 103 includes a linear polarizing element layer.
  • the linear polarizing element layer may be a liquid crystal layer, and in that case, the polarizing plate 103 may or may not include a liquid crystal layer other than the linear polarizing element layer.
  • the other liquid crystal layer is, for example, a retardation layer.
  • the polarizing plate 103 may be, for example, a linear polarizing plate, a circular polarizing plate, an elliptical polarizing plate, or the like. Since the circularly polarizing plate includes a linear polarizing element layer and a retardation layer and can absorb external light reflected in the image display device, it imparts a function as an antireflection film to the optical laminate 100. be able to.
  • the thickness of the polarizing plate 103 is usually 5 ⁇ m or more, may be 20 ⁇ m or more, 25 ⁇ m or more, or 30 ⁇ m or more.
  • the thickness of the polarizing plate 103 is preferably 80 ⁇ m or less, and more preferably 60 ⁇ m or less.
  • the linearly polarized light element layer has a function of selectively transmitting unidirectional linearly polarized light composed of unpolarized light rays such as natural light.
  • the linear polarizer layer is also simply referred to as a polarizer layer.
  • the polarizer layer may be a stretched film or a stretched layer on which a dichroic dye is adsorbed, and contains a cured product of a polymerizable liquid crystal compound and a dichroic dye, and the dichroic dye is a curing of the polymerizable liquid crystal compound. It may be a liquid crystal layer dispersed in an object and oriented.
  • the dichroic dye refers to a dye having a property in which the absorbance in the major axis direction and the absorbance in the minor axis direction of the molecule are different.
  • the polarizing layer is a liquid crystal layer, it is preferable because there is no limitation in the bending direction as compared with the case where the stretched film or the stretched layer has the dichroic dye adsorbed.
  • the polarizer layer which is a stretched film on which a bicolor dye is adsorbed, is usually obtained by dyeing the polyvinyl alcohol-based resin film with a bicolor dye such as iodine in a step of uniaxially stretching the polyvinyl alcohol-based resin film. It can be produced through a step of adsorbing a bicolor dye, a step of treating a polyvinyl alcohol-based resin film on which the bicolor dye is adsorbed with an aqueous boric acid solution, and a step of washing with water after the treatment with the aqueous boric acid solution.
  • the thickness of the polarizer layer is usually 30 ⁇ m or less, preferably 18 ⁇ m or less, and more preferably 15 ⁇ m or less. Reducing the thickness of the polarizer layer is advantageous for thinning the polarizing plate 103.
  • the thickness of the polarizer layer is usually 1 ⁇ m or more, and may be, for example, 5 ⁇ m or more.
  • the polyvinyl alcohol-based resin is obtained by saponifying the polyvinyl acetate-based resin.
  • the polyvinyl acetate-based resin in addition to polyvinyl acetate which is a homopolymer of vinyl acetate, a copolymer of vinyl acetate and another monomer copolymerizable therewith is used.
  • examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acid compounds, olefin compounds, vinyl ether compounds, unsaturated sulfone compounds, and (meth) acrylamide compounds having an ammonium group. ..
  • the saponification degree of the polyvinyl alcohol-based resin is usually about 85 mol% or more and 100 mol% or less, preferably 98 mol% or more.
  • the polyvinyl alcohol-based resin may be modified, and polyvinyl formal, polyvinyl acetal, and the like modified with aldehydes can also be used.
  • the degree of polymerization of the polyvinyl alcohol-based resin is usually 1000 or more and 10000 or less, preferably 1500 or more and 5000 or less.
  • the polarizer layer which is a stretched layer on which a dichroic dye is adsorbed, is usually a step of applying a coating liquid containing the above-mentioned polyvinyl alcohol-based resin on a base film, a step of uniaxially stretching the obtained laminated film, and uniaxial.
  • the base film used for forming the polarizer layer may be used as a protective layer for the polarizer layer. If necessary, the base film may be peeled off from the polarizer layer.
  • the material and thickness of the base film may be the same as the material and thickness of the thermoplastic resin film described later.
  • the stretched film on which the dichroic dye is adsorbed or the polarizing layer, which is a stretched layer, may be used as it is as a component of the polarizing plate, and a protective layer may be formed on one or both sides thereof and used as a component of the polarizing plate. May be good.
  • a thermoplastic resin film described later can be used as the protective layer.
  • the thermoplastic resin film is, for example, a cyclopolyolefin resin film; a cellulose acetate resin film made of a resin such as triacetyl cellulose or diacetyl cellulose; a polyester resin film made of a resin such as polyethylene terephthalate, polyethylene naphthalate, or polybutylene terephthalate; Examples of films known in the art such as polycarbonate-based resin films; (meth) acrylic-based resin films; polypropylene-based resin films and the like can be mentioned.
  • the polarizer layer and the protective layer can be laminated via a bonding layer described later.
  • the thickness of the thermoplastic resin film is usually 100 ⁇ m or less, preferably 80 ⁇ m or less, more preferably 60 ⁇ m or less, still more preferably 40 ⁇ m or less, still more preferably 30 ⁇ m or less. Yes, it is usually 5 ⁇ m or more, preferably 10 ⁇ m or more.
  • a hard coat layer may be formed on the thermoplastic resin film.
  • the hard coat layer may be formed on one side of the thermoplastic resin film, or may be formed on both sides. By providing the hard coat layer, a thermoplastic resin film having improved hardness and scratchability can be obtained.
  • the hard coat layer can be formed in the same manner as the hard coat layer formed on the resin film described above.
  • the polymerizable liquid crystal compound used for forming the liquid crystal layer is a compound having a polymerizable reactive group and exhibiting liquid crystallinity.
  • the polymerizable reactive group is a group involved in the polymerization reaction, and is preferably a photopolymerizable reactive group.
  • the photopolymerizable reactive group refers to a group that can participate in the polymerization reaction by an active radical, an acid, or the like generated from the photopolymerization initiator.
  • Examples of the photopolymerizable functional group include a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, an acryloyloxy group, a methacryloyloxy group, an oxylanyl group, an oxetanyl group and the like.
  • an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxylanyl group and an oxetanyl group are preferable, and an acryloyloxy group is more preferable.
  • the type of the polymerizable liquid crystal compound is not particularly limited, and a rod-shaped liquid crystal compound, a disk-shaped liquid crystal compound, and a mixture thereof can be used.
  • the liquid crystal property of the polymerizable liquid crystal compound may be a thermotropic liquid crystal or a lyotropic liquid crystal, and the phase-ordered structure may be a nematic liquid crystal or a smectic liquid crystal.
  • the dichroic dye used for the polarizer layer which is a liquid crystal layer, preferably has an absorption maximum wavelength ( ⁇ MAX) in the range of 300 to 700 nm.
  • a bicolor dye include an acridine dye, an oxazine dye, a cyanine dye, a naphthalene dye, an azo dye, an anthraquinone dye and the like, and among them, the azo dye is preferable.
  • the azo dye include a monoazo dye, a bisazo dye, a trisazo dye, a tetrakisazo dye, a stilbene azo dye, and the like, and a bisazo dye and a trisazo dye are preferable.
  • the dichroic dye may be used alone or in combination of two or more, but it is preferable to combine three or more. In particular, it is more preferable to combine three or more kinds of azo compounds.
  • a part of the dichroic dye may have a reactive group or may have a liquid crystallinity.
  • a composition for forming a polarizing layer containing a polymerizable liquid crystal compound and a dichroic dye is applied onto an alignment film formed on a base film, and the polymerizable liquid crystal compound is polymerized. It can be formed by curing it.
  • a polarizer layer may be formed by applying a composition for forming a polarizer layer on a substrate film to form a coating film, and then stretching the coating film together with the substrate film.
  • the base film used for forming the polarizer layer may be used as a protective layer for the polarizer layer.
  • the material and thickness of the base film may be the same as the material and thickness of the thermoplastic resin film described above.
  • compositions for forming a polarizer layer containing a polymerizable liquid crystal compound and a dichroic dye examples include JP-A-2013-373353 and JP-A-2013-33249. , JP-A-2017-83843, etc. can be exemplified.
  • additives such as a solvent, a polymerization initiator, a cross-linking agent, a leveling agent, an antioxidant, a plasticizer, and a sensitizer are further added. It may be included. Only one of these components may be used, or two or more of these components may be used in combination.
  • the polymerization initiator that may be contained in the composition for forming a polarizer layer is a compound that can initiate a polymerization reaction of a polymerizable liquid crystal compound, and is photopolymerized in that the polymerization reaction can be initiated under lower temperature conditions.
  • Sex initiators are preferred. Specific examples thereof include photopolymerization initiators capable of generating active radicals or acids by the action of light, and among them, photopolymerization initiators that generate radicals by the action of light are preferable.
  • the content of the polymerization initiator is preferably 1 part by mass or more and 10 parts by mass or less, and more preferably 3 parts by mass or more and 8 parts by mass or less, based on 100 parts by mass of the total amount of the polymerizable liquid crystal compound. Within this range, the reaction of the polymerizable group proceeds sufficiently, and the orientation state of the liquid crystal compound is likely to be stabilized.
  • the thickness of the polarizer layer which is a liquid crystal layer, is usually 10 ⁇ m or less, preferably 0.5 ⁇ m or more and 8 ⁇ m or less, and more preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the polarizer layer which is a liquid crystal layer, may be used as a linear polarizing plate without peeling and removing the base film, or may be used as a linear polarizing plate by peeling and removing the base film from the polarizer layer.
  • the polarizing element layer which is a liquid crystal layer, may be used as a linear polarizing plate by forming a protective layer on one side or both sides thereof.
  • the protective layer the above-mentioned thermoplastic resin film can be used.
  • the polarizer layer which is a liquid crystal layer, may have an overcoat layer on one side or both sides of the polarizer layer for the purpose of protecting the polarizer layer.
  • the overcoat layer can be formed, for example, by applying a material (composition) for forming the overcoat layer on the polarizer layer.
  • the material constituting the overcoat layer include a photocurable resin and a water-soluble polymer.
  • a (meth) acrylic resin, a polyvinyl alcohol-based resin, or the like can be used as a material constituting the overcoat layer.
  • the polarizing plate 103 When the polarizing plate 103 has a retardation layer, the polarizing plate 103 usually includes a linear polarizing element layer and a retardation layer in this order from the side of the first pressure-sensitive adhesive layer 102 toward the side of the second pressure-sensitive adhesive layer 104. It is a configuration having.
  • the outermost layer that constitutes the polarizing plate 103 and is in contact with the first pressure-sensitive adhesive layer 102 is preferably a base film or a protective layer used for forming the polarizer layer.
  • the retardation layer may be one layer or two or more layers.
  • the retardation layer may be configured as a retardation laminate in which an overcoat layer that protects the surface thereof, a base film that supports the retardation layer, and the like are laminated.
  • the retardation layer includes a ⁇ / 4 layer, and further includes at least one of a ⁇ / 2 layer and a positive C layer.
  • the retardation layer includes the ⁇ / 2 layer, the ⁇ / 2 layer and the ⁇ / 4 layer are laminated in order from the linear polarizer layer side.
  • the ⁇ / 4 layer and the positive C layer may be laminated in order from the linear polarizer layer side, and the positive C layer and the ⁇ / 4 layer may be stacked in order from the linear polarizer layer side. It may be laminated.
  • the thickness of the retardation layer is, for example, 0.1 ⁇ m or more and 10 ⁇ m or less, preferably 0.5 ⁇ m or more and 8 ⁇ m or less, and more preferably 1 ⁇ m or more and 6 ⁇ m or less.
  • the retardation layer may be formed from the resin film exemplified as the material of the protective layer of the polarizing plate, or may be a liquid crystal layer made of a cured product of a polymerizable liquid crystal compound.
  • the retardation layer may have a bonding layer for bonding the ⁇ / 4 layer and the ⁇ / 2 layer or the positive C layer.
  • the retardation layer can be formed by applying a composition containing the polymerizable liquid crystal compound to a base film and curing it. An orientation layer may be formed between the base film and the coating layer. The material and thickness of the base film may be the same as the material and thickness of the thermoplastic resin film.
  • the retardation layer is formed from a layer obtained by curing a polymerizable liquid crystal compound, the retardation layer may be incorporated into the optical laminate in the form of a retardation laminate having an alignment layer and a base film. It may be incorporated into the optical laminate in the form of a retardation laminate having an alignment film.
  • the retardation layer can be bonded to the linear polarizing plate via the bonding layer.
  • the second pressure-sensitive adhesive layer 104 is bonded to the surface of the polarizing plate 103 opposite to the surface to which the first pressure-sensitive adhesive layer 102 is bonded.
  • the second pressure-sensitive adhesive layer 104 may be composed of one layer or two or more layers, but is preferably composed of one layer.
  • the additives to be obtained, the method for producing the second pressure-sensitive adhesive layer, the thickness of the second pressure-sensitive adhesive layer, and the like are the same as those shown in the above description of the first pressure-sensitive adhesive layer 102.
  • the second pressure-sensitive adhesive layer 104 may be the same as or different from the first pressure-sensitive adhesive layer 102 in terms of the composition, composition, thickness, and the like of the pressure-sensitive adhesive composition.
  • a release film 105 may be attached to the surface of the second pressure-sensitive adhesive layer 104.
  • the surface roughness Ra of the side surface of the second pressure-sensitive adhesive layer 104 is preferably 7 ⁇ m or less, more preferably 4 ⁇ m or less, and further 1 ⁇ m or more, from the viewpoint of being able to further suppress the occurrence of cracks. Is preferably 2 ⁇ m or more.
  • the surface roughness Ra is a value measured according to the method described in Examples.
  • the optical laminate 100 can include a laminating layer for joining the two layers.
  • the bonding layer is a layer composed of a pressure-sensitive adhesive or an adhesive.
  • the pressure-sensitive adhesive used as the material of the bonding layer the same pressure-sensitive adhesive composition as the pressure-sensitive adhesive composition constituting the first pressure-sensitive adhesive layer 102 can be used.
  • the bonding layer is different from other adhesives, for example, the adhesives constituting the first adhesive layer 102 (meth) acrylic adhesive, styrene adhesive, silicone adhesive, rubber adhesive, urethane adhesive. Adhesives, polyester adhesives, epoxy copolymer adhesives and the like can also be used.
  • the adhesive used as the material of the bonding layer can be formed by combining one or more of, for example, a water-based adhesive, an active energy ray-curable adhesive, and the like.
  • a water-based adhesive include a polyvinyl alcohol-based resin aqueous solution, a water-based two-component urethane-based emulsion adhesive, and the like.
  • the active energy ray-curable adhesive is an adhesive that cures by irradiating with active energy rays such as ultraviolet rays, and is, for example, an adhesive containing a polymerizable compound and a photopolymerizable initiator, and an adhesive containing a photoreactive resin.
  • Adhesives containing a binder resin and a photoreactive cross-linking agent Adhesives containing a binder resin and a photoreactive cross-linking agent, and the like.
  • the polymerizable compound include photopolymerizable monomers such as a photocurable epoxy monomer, a photocurable acrylic monomer, and a photocurable urethane monomer, and oligomers derived from these monomers.
  • the photopolymerization initiator include compounds containing substances that generate active species such as neutral radicals, anion radicals, and cationic radicals by irradiating them with active energy rays such as ultraviolet rays.
  • the thickness of the bonded layer may be, for example, 1 ⁇ m or more, preferably 1 ⁇ m or more and 25 ⁇ m or less, more preferably 2 ⁇ m or more and 15 ⁇ m or less, and further preferably 2.5 ⁇ m or more and 5 ⁇ m or less.
  • the two opposing surfaces that are bonded via the bonding layer may be subjected to corona treatment, plasma treatment, flame treatment, etc. in advance, or may have a primer layer or the like.
  • Back plate As the back plate, a plate-like body capable of transmitting light, a component used in a normal display device, or the like can be used.
  • the thickness of the back plate may be, for example, 5 ⁇ m or more and 2000 ⁇ m or less, preferably 10 ⁇ m or more and 1000 ⁇ m or less, and more preferably 15 ⁇ m or more and 500 ⁇ m or less.
  • the plate-like body used for the back plate may be composed of only one layer, may be composed of two or more layers, and an example of the plate-like body described in the front plate 101 may be used. can.
  • Examples of components used in a normal display device used for a back plate include a touch sensor panel, an organic EL display element, and the like.
  • the touch sensor panel is not limited as long as it is a panel having a sensor (that is, a touch sensor) capable of detecting the touched position.
  • the detection method of the touch sensor is not limited, and touch sensor panels such as a resistive film method, a capacitance coupling method, an optical sensor method, an ultrasonic method, an electromagnetic induction coupling method, and a surface acoustic wave method are exemplified. Since the cost is low, a touch sensor panel of a resistance film type or a capacitance coupling type is preferably used.
  • a resistance film type touch sensor As an example of a resistance film type touch sensor, a pair of substrates arranged opposite to each other, an insulating spacer sandwiched between the pair of substrates, and a transparent conductive film provided as a resistance film on the inner front surface of each substrate. Examples thereof include a member composed of a film and a touch position detection circuit.
  • a touch position detection circuit In an image display device provided with a resistance film type touch sensor, when the surface of the front plate is touched, the opposing resistance films are short-circuited and a current flows through the resistance film.
  • the touch position detection circuit detects the change in voltage at this time, and the touched position is detected.
  • An example of a capacitance coupling type touch sensor is a member composed of a substrate, a transparent electrode for position detection provided on the entire surface of the substrate, and a touch position detection circuit.
  • a capacitance coupling type touch sensor when the surface of the front plate is touched, the transparent electrode is grounded via the capacitance of the human body at the touched point.
  • the touch position detection circuit detects the grounding of the transparent electrode, and the touched position is detected.
  • the thickness of the touch sensor panel may be, for example, 5 ⁇ m or more and 2000 ⁇ m or less, preferably 5 ⁇ m or more and 100 ⁇ m or less, and more preferably 5 ⁇ m or more and 50 ⁇ m or less.
  • the touch sensor panel may be a member in which a touch sensor pattern is formed on a base film.
  • the example of the base film may be the same as the example in the description of the thermoplastic resin film described above. Further, the touch sensor panel may be transferred from the base film to the adherend via the pressure-sensitive adhesive layer.
  • the thickness of the touch sensor pattern may be, for example, 1 ⁇ m or more and 20 ⁇ m or less.
  • the method for manufacturing the optical laminate includes a step of preparing an optical laminate film including a front plate 101, a first pressure-sensitive adhesive layer 102, a polarizing plate 103, and a second pressure-sensitive adhesive layer 104 in this order, and the optical lamination. It has a step of cutting a film with a laser beam to form the target side surface.
  • the obtained optical laminate is the same optical laminate as the above-mentioned optical laminate 100.
  • the optical laminated film has the same layer structure as the optical laminated body 100.
  • Each layer constituting the optical laminated film can be bonded by a bonding layer such as an adhesive layer.
  • a bonding layer such as an adhesive layer.
  • the laser beam is irradiated from the front plate 101 side or the opposite side of the optical laminated film to cut the optical laminated film to obtain the optical laminated body 100.
  • the target side surface 100a is formed at the same time.
  • the laser light irradiation conditions can be the conditions described in the above-mentioned ⁇ optical laminate>.
  • the optical laminate 100 can be used as a display device.
  • the display device is not particularly limited, and examples thereof include an image display device such as an organic EL display device, an inorganic EL display device, a liquid crystal display device, and an electroluminescent display device.
  • the display device including the optical laminate 100 exhibits excellent bending durability and can be used as a flexible display capable of bending or winding.
  • the optical laminate 100 can be used by being bonded to the visual side of the display panel, for example, via a second adhesive layer 104.
  • Example 1> (Preparation of front plate with adhesive layer) A window film having a thickness of 50 ⁇ m (base film 40 ⁇ m, hard coat layer 10 ⁇ m, length 179 mm ⁇ width 106 mm) having a hard coat layer formed on one surface of the base film was prepared as the front plate 101, and used as the first adhesive layer 102. A (meth) acrylic pressure-sensitive adhesive layer (thickness 25 ⁇ m, length 179 mm ⁇ width 106 mm) was prepared.
  • the base film of the window film is a polyimide resin film
  • the hard coat layer is a layer formed from a composition containing a dendrimer compound having a polyfunctional acrylic group at the end.
  • a front plate with an adhesive layer (a laminate composed of the front plate 101 and the first adhesive layer 102) was obtained.
  • the corona treatment was performed under the conditions of frequency: 20 kHz, voltage: 8.6 kV, power: 2.5 kW, and speed: 6 m / min.
  • a retardation laminate including a retardation layer obtained by polymerizing and curing a polymerizable liquid crystal compound
  • a retardation laminate including a retardation layer obtained by polymerizing and curing a polymerizable liquid crystal compound
  • a ⁇ / 4 plate composed of a retardation layer and an alignment film / an adhesive layer (thickness 5 ⁇ m) / a positive C layer (thickness 3 ⁇ m) composed of a retardation layer and an alignment film obtained by curing a liquid crystal compound] are attached.
  • a circular polarizing plate (layer structure of "TAC / linear polarizer layer / retardation laminate", thickness 44.5 ⁇ m, length 179 mm ⁇ width 106 mm) produced in this manner was obtained.
  • the surface on the retardation laminate side and the surface to be bonded to the circular polarizing plate of the second pressure-sensitive adhesive layer 104 (the same as the first pressure-sensitive adhesive layer 102) prepared in advance are subjected to corona treatment, and then the circular polarizing plate is formed.
  • the pressure-sensitive adhesive layer was bonded to obtain a circular polarizing plate with a pressure-sensitive adhesive layer (a laminate composed of the polarizing plate 103 and the second pressure-sensitive adhesive layer 104).
  • the release film 105 was left attached to the surface.
  • the surface of the pressure-sensitive adhesive layer (first pressure-sensitive adhesive layer 102) of the front plate with the pressure-sensitive adhesive layer and the TAC surface of the circularly polarizing plate with the pressure-sensitive adhesive layer are subjected to corona treatment so that the surface treated with corona is on the inside.
  • a front plate with an adhesive layer and a circularly polarizing plate with an adhesive layer were laminated and bonded using a roll bonding machine to obtain an optical laminated film.
  • the obtained optical laminated film is irradiated with CO 2 laser light (LPTECH, LPTSLC-M, continuous wave oscillation) from the front plate 101 side, cut into a size of 20 mm ⁇ 100 mm, and the optical laminated body 100.
  • the plan view shape of the optical laminate is a square shape, and the cut surface formed by the laser beam constitutes the side surface over the entire circumference.
  • the laser beam was focused by a lens and focused on the surface of the optical laminate on the front plate 101 side.
  • the laser beam irradiation was performed under the moving speed conditions and output conditions shown in Table 1. With respect to the optical laminates of each Example and each Comparative Example thus obtained, the surface roughness Ra of the first pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer on the target side surface was measured by the method described later.
  • a resin molded body was formed from the polyimide-based resin composition, and this was prepared as a simulated molded body (instead of an organic EL panel) of the display laminate.
  • This simulated molded product had a thickness of 113 ⁇ m.
  • the obtained simulated molded product was irradiated with CO 2 laser light (LPTECH, LPTSLC-M, continuous wave oscillation) and cut into a size of 22 mm ⁇ 112 mm.
  • the laser beam irradiation was performed under the conditions of a moving speed of 240 mm / sec and an output of 24 W.
  • the arithmetic mean roughness Ra of the side surface 102a) was calculated and used as the surface roughness Ra.
  • the bending test was performed at a temperature of 25 ° C.
  • the bending test piece is installed in a bending tester (F1-2SV, manufactured by Forehu) in a flat state (not bent), and the distance between the facing front plates is 3 so that the front plate side is on the inside.
  • the bending test piece was bent 180 ° so as to be 0.0 mm (bending radius 1.5 mm). After that, it returned to the original flat state.
  • the bending speed was 1 time / 1 second. The number of bends when cracks or floating of the adhesive layer occurred in the region bent by the bending operation was recorded as the limit number of bends.
  • the limit number of bends was evaluated according to the following criteria.
  • Table 1 shows the results of subjecting the optical laminates 100 of Examples 1 to 3 and Comparative Examples 1 to 4 to a bending test.
  • 100 optical laminate 100a target side surface, 101 front plate, 102 first adhesive layer, 102a first adhesive layer side surface, 103 polarizing plate, 104 second adhesive layer, 105 release film.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)
  • Glass Compositions (AREA)

Abstract

The objective of the present invention is to provide an optical stack such that, even when bent, the occurrence of a crack in a liquid crystal layer is suppressed. The present invention provides an optical stack comprising a front surface plate, a first adhesive layer, a polarization plate, and a second adhesive layer, in this order. The polarization plate includes a liquid crystal layer comprising a cured product from a polymerizable liquid crystal compound. When a side surface, which is part of the entire periphery of the optical stack and extends in the layering direction, is defined as a target side surface, the surface roughness Ra [μm] of the first adhesive layer on the target side surface satisfies the relationship of the following formula (1a). (1a) Ra ≤ 10μm

Description

光学積層体およびその製造方法Optical laminate and its manufacturing method
 本発明は、光学積層体およびその製造方法に関する。 The present invention relates to an optical laminate and a method for producing the same.
 液晶表示装置や有機エレクトロルミネッセンス(EL)表示装置等に用いられる偏光板として、耐クラック性に優れた偏光板が知られている(特許文献1)。 A polarizing plate having excellent crack resistance is known as a polarizing plate used in a liquid crystal display device, an organic electroluminescence (EL) display device, or the like (Patent Document 1).
特開2012-173588号公報Japanese Unexamined Patent Publication No. 2012-173588
 重合性液晶化合物の硬化物からなる液晶層を含む偏光板は、屈曲すると液晶層でクラックが生じやすいという問題があった。 A polarizing plate containing a liquid crystal layer made of a cured product of a polymerizable liquid crystal compound has a problem that cracks are likely to occur in the liquid crystal layer when bent.
 本発明は、屈曲しても、液晶層においてクラックの発生が抑制された光学積層体およびその製造方法を提供することを目的とする。 An object of the present invention is to provide an optical laminate in which cracks are suppressed in the liquid crystal layer even when bent, and a method for producing the same.
 本発明は、以下に例示する光学積層体およびその製造方法を提供する。
〔1〕 前面板と、第1粘着剤層と、偏光板と、第2粘着剤層と、をこの順に備える光学積層体であって、
 前記偏光板は、重合性液晶化合物の硬化物からなる液晶層を含み、
 前記光学積層体の全周のうちの一部であって、積層方向に亘る側面を対象側面としたときに、前記対象側面における前記第1粘着剤層の表面粗さをRa[μm]とすると、次の式(1a)の関係を満たす、光学積層体。
 Ra≦10μm   (1a)
〔2〕 前記偏光板は、前記第1粘着剤層の側から前記第2粘着剤層の側に向かって順に、直線偏光子層と、位相差層と、を含み、
 前記位相差層は前記液晶層を含む、〔1〕に記載の光学積層体。
〔3〕 前記位相差層は前記液晶層であるポジティブC層を含む、〔2〕に記載の光学積層体。
〔4〕 前記光学積層体は、屈曲軸に沿って屈曲可能であり、
 前記対象側面は、前記屈曲軸と交差する側面を含む、〔1〕~〔3〕のいずれか1項に記載の光学積層体。
〔5〕 〔1〕~〔4〕のいずれか1項に記載の光学積層体の製造方法であって、
 前面板と、第1粘着剤層と、偏光板と、第2粘着剤層と、をこの順に備える光学積層フィルムを準備する工程と、
 前記光学積層フィルムをレーザー光により切断し、前記対象側面を形成する工程と、を有する、光学積層体の製造方法。
The present invention provides an optical laminate illustrated below and a method for producing the same.
[1] An optical laminate including a front plate, a first pressure-sensitive adhesive layer, a polarizing plate, and a second pressure-sensitive adhesive layer in this order.
The polarizing plate includes a liquid crystal layer made of a cured product of a polymerizable liquid crystal compound.
Let Ra [μm] be the surface roughness of the first pressure-sensitive adhesive layer on the target side surface, which is a part of the entire circumference of the optical laminate and the side surface extending in the stacking direction is the target side surface. , An optical laminate satisfying the relationship of the following formula (1a).
Ra ≤ 10 μm (1a)
[2] The polarizing plate includes a linear polarizer layer and a retardation layer in this order from the side of the first pressure-sensitive adhesive layer toward the side of the second pressure-sensitive adhesive layer.
The optical laminate according to [1], wherein the retardation layer includes the liquid crystal layer.
[3] The optical laminate according to [2], wherein the retardation layer includes a positive C layer which is a liquid crystal layer.
[4] The optical laminate can be bent along a bending axis and can be bent.
The optical laminate according to any one of [1] to [3], wherein the target side surface includes a side surface that intersects the bending axis.
[5] The method for producing an optical laminate according to any one of [1] to [4].
A step of preparing an optical laminated film including a front plate, a first pressure-sensitive adhesive layer, a polarizing plate, and a second pressure-sensitive adhesive layer in this order.
A method for producing an optical laminate, comprising a step of cutting the optical laminate film with a laser beam to form the target side surface.
 本発明によれば、屈曲しても、クラックの発生が抑制された光学積層体およびその製造方法を提供することができる。 According to the present invention, it is possible to provide an optical laminate in which the occurrence of cracks is suppressed even when bent, and a method for producing the same.
本発明の光学積層体の一例を示す概略断面図である。It is the schematic sectional drawing which shows an example of the optical laminated body of this invention.
 以下、図面を参照しつつ本発明の実施形態を説明するが、本発明は以下の実施形態に限定されるものではない。以下の全ての図面においては、各構成要素を理解し易くするために縮尺を適宜調整して示しており、図面に示される各構成要素の縮尺と実際の構成要素の縮尺とは必ずしも一致しない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments. In all the drawings below, the scale is appropriately adjusted to make it easier to understand each component, and the scale of each component shown in the drawings does not necessarily match the scale of the actual component.
 <光学積層体>
 図1は、本発明の光学積層体の一例を示す概略断面図である。図1に示す光学積層体100は、前面板101と、第1粘着剤層102と、偏光板103と、第2粘着剤層104と、をこの順に備える。偏光板103は、重合性液晶化合物の硬化物からなる液晶層を含む。なお本明細書において、液晶層とは、重合性液晶化合物の硬化物を含む層を意味するのであって、液晶性を示す必要はない。光学積層体100は、第2粘着剤層104の表面に貼合されている剥離フィルム105を有していてもよい。光学積層体100は、第2粘着剤層104の表面に貼合されている背面板を有していてもよい。
<Optical laminate>
FIG. 1 is a schematic cross-sectional view showing an example of the optical laminate of the present invention. The optical laminate 100 shown in FIG. 1 includes a front plate 101, a first pressure-sensitive adhesive layer 102, a polarizing plate 103, and a second pressure-sensitive adhesive layer 104 in this order. The polarizing plate 103 includes a liquid crystal layer made of a cured product of a polymerizable liquid crystal compound. In the present specification, the liquid crystal layer means a layer containing a cured product of a polymerizable liquid crystal compound, and it is not necessary to exhibit liquid crystal property. The optical laminate 100 may have a release film 105 bonded to the surface of the second pressure-sensitive adhesive layer 104. The optical laminate 100 may have a back plate that is bonded to the surface of the second pressure-sensitive adhesive layer 104.
 光学積層体100の全周のうちの一部であって、積層方向に亘る側面を対象側面100aとする。対象側面100aにおいて、第1粘着剤層102の側面102aの表面粗さをRa[μm]とすると、第1粘着剤層102の側面102aは、次の式(1a)の関係を満たし、好ましくは次の式(1b)の関係を満たす。表面粗さRaは、実施例に記載の方法にしたがって測定した値とする。
 Ra≦10μm   (1a)
 Ra≦6μm   (1b)
A side surface that is a part of the entire circumference of the optical laminated body 100 and extends in the stacking direction is defined as the target side surface 100a. Assuming that the surface roughness of the side surface 102a of the first pressure-sensitive adhesive layer 102 is Ra [μm] on the target side surface 100a, the side surface 102a of the first pressure-sensitive adhesive layer 102 satisfies the relationship of the following formula (1a), and is preferable. The relationship of the following equation (1b) is satisfied. The surface roughness Ra is a value measured according to the method described in Examples.
Ra ≤ 10 μm (1a)
Ra ≤ 6 μm (1b)
 対象側面100aにおいて、第1粘着剤層102の側面102aは、好ましくは次の式(2a)の関係を満たし、さらに好ましくは次の式(2b)の関係を満たす。
 Ra≧1μm   (2a)
 Ra≧2μm   (2b)
On the target side surface 100a, the side surface 102a of the first pressure-sensitive adhesive layer 102 preferably satisfies the relationship of the following formula (2a), and more preferably satisfies the relationship of the following formula (2b).
Ra ≧ 1 μm (2a)
Ra ≧ 2 μm (2b)
 対象側面100aは、光学積層体100の全周のうちの少なくとも一部であればよく、第1粘着剤層102の側面102aを含むものであれば任意の箇所における任意の大きさであってよい。対象側面100aは、光学積層体100の全周であってもよい。光学積層体100は、光学積層体の主面方向に屈曲軸を有してもよく、光学積層体100は、屈曲軸に沿って屈曲可能である。対象側面は、好ましくは屈曲軸と交差する側面を含む。光学積層体の主面とは、光学積層体の厚み方向に垂直な面をいう。 The target side surface 100a may be at least a part of the entire circumference of the optical laminate 100, and may have an arbitrary size at any location as long as it includes the side surface 102a of the first pressure-sensitive adhesive layer 102. .. The target side surface 100a may be the entire circumference of the optical laminate 100. The optical laminated body 100 may have a bending axis in the main surface direction of the optical laminated body, and the optical laminated body 100 can be bent along the bending axis. The target side surface preferably includes a side surface that intersects the bending axis. The main surface of the optical laminate means a surface perpendicular to the thickness direction of the optical laminate.
 対象側面100aにおける第1粘着剤層102の側面102aは、第1粘着剤層102を積層する前に第1粘着剤層102に形成されていてもよいし、第1粘着剤層102を積層した光学積層フィルムの切断時または切断後に形成されてもよい。 The side surface 102a of the first pressure-sensitive adhesive layer 102 on the target side surface 100a may be formed on the first pressure-sensitive adhesive layer 102 before the first pressure-sensitive adhesive layer 102 is laminated, or the first pressure-sensitive adhesive layer 102 may be laminated. It may be formed at the time of cutting or after cutting the optical laminated film.
 第1粘着剤層102の側面102aは、好ましくは光学積層フィルムにレーザー光を照射することにより形成される。レーザー光の照射により、第1粘着剤層102の溶融が開始し、完全に第1粘着剤層102が溶融する前に切断等の力がかかり、式(1a)及び式(2a)の関係を満たす側面102aが形成され得る。レーザー光は、光学積層フィルムを構成する層の材質および厚さ等により適切なレーザー光を選択することができ、例えば200nm~11μmの範囲の波長を放射するレーザーが用いられる。レーザーは、連続波(CW)レーザーであってもよいし、パルスレーザーであってもよい。レーザー光の種類は、COレーザー等の気体レーザー、YAGレーザー等の固体レーザー、半導体レーザーが挙げられる。光学積層フィルムへの吸収域に適合した切断性、および低費用の観点から、用いられるレーザーは、好ましくはCOレーザーである。第1粘着剤層102の側面102aの表面粗さRaは、切断方法、切断条件によって調整し得る。COレーザー光を用いた場合、第1粘着剤層102の側面102aの表面粗さRaは、レーザー光の入射方向、焦点深度、出力条件、移動速度、焦点位置によって調整され得る。 The side surface 102a of the first pressure-sensitive adhesive layer 102 is preferably formed by irradiating the optical laminated film with laser light. By irradiating the laser beam, the first pressure-sensitive adhesive layer 102 starts to melt, and before the first pressure-sensitive adhesive layer 102 is completely melted, a force such as cutting is applied, and the relationship between the formulas (1a) and (2a) is established. A filling side surface 102a can be formed. As the laser light, an appropriate laser light can be selected depending on the material and thickness of the layer constituting the optical laminated film, and for example, a laser radiating a wavelength in the range of 200 nm to 11 μm is used. The laser may be a continuous wave (CW) laser or a pulsed laser. Examples of the type of laser light include a gas laser such as a CO 2 laser, a solid-state laser such as a YAG laser, and a semiconductor laser. From the viewpoint of cutability suitable for the absorption region to the optical laminated film and low cost, the laser used is preferably a CO 2 laser. The surface roughness Ra of the side surface 102a of the first pressure-sensitive adhesive layer 102 can be adjusted according to the cutting method and cutting conditions. When CO 2 laser light is used, the surface roughness Ra of the side surface 102a of the first pressure-sensitive adhesive layer 102 can be adjusted by the incident direction, the depth of focus, the output condition, the moving speed, and the focal position of the laser light.
 レーザー光は、光学積層フィルムの前面板101側から入射してもよいし、第2粘着剤層104側から入射してもよい。好ましくは、レーザー光は前面板101側から入射させる。 The laser light may be incident from the front plate 101 side of the optical laminated film, or may be incident from the second adhesive layer 104 side. Preferably, the laser beam is incident from the front plate 101 side.
 レーザー光の照射条件(出力条件、移動速度)は、用いるレーザーに応じて任意の適切な条件を採用し得る。出力条件は、COレーザーを用いる場合、好ましくは1W以上100W以下、より好ましくは2W以上60W以下であり、さらに好ましくは4W以上10W以下である。移動速度は、好ましくは30mm/秒以上1000mm/秒以下、より好ましくは100mm/秒以上500mm/秒以下であり、さらに好ましくは250mm/秒以上400mm/秒以下である。レーザー光をレンズにより集光する場合、レーザー光の焦点は、光学積層フィルムの前面板101側の表面に合わせてもよいし、第1粘着剤層102の内部に合わせてもよい。上記レーザー光の照射条件を採用すると、第1粘着剤層102の側面102aの表面粗さRaは、所定の範囲に調整されやすい。 As the laser light irradiation conditions (output conditions, moving speed), any appropriate conditions can be adopted depending on the laser to be used. When a CO 2 laser is used, the output conditions are preferably 1 W or more and 100 W or less, more preferably 2 W or more and 60 W or less, and further preferably 4 W or more and 10 W or less. The moving speed is preferably 30 mm / sec or more and 1000 mm / sec or less, more preferably 100 mm / sec or more and 500 mm / sec or less, and further preferably 250 mm / sec or more and 400 mm / sec or less. When the laser light is focused by the lens, the focus of the laser light may be aligned with the surface of the optical laminated film on the front plate 101 side, or may be aligned with the inside of the first pressure-sensitive adhesive layer 102. When the above laser light irradiation conditions are adopted, the surface roughness Ra of the side surface 102a of the first pressure-sensitive adhesive layer 102 can be easily adjusted to a predetermined range.
 光学積層体100は、光学積層フィルムをカッター、切り抜き刃等を用いて所定の形状に切断したあと切断面にレーザー光を照射して第1粘着剤層102の側面102aを形成してもよいが、好ましくは光学積層フィルムにレーザー光を照射し、切断と側面102aの形成とを同じ工程により行う。このとき、光学積層体100の対象側面100aはレーザー光による切断面となる。 The optical laminate 100 may form the side surface 102a of the first pressure-sensitive adhesive layer 102 by cutting the optical laminate film into a predetermined shape using a cutter, a cutting blade, or the like, and then irradiating the cut surface with a laser beam. , Preferably, the optical laminated film is irradiated with a laser beam, and cutting and formation of the side surface 102a are performed by the same step. At this time, the target side surface 100a of the optical laminate 100 becomes a cut surface by laser light.
 光学積層体100について、偏光板103が液晶層を含むと、かかる液晶層は屈曲軸に沿ってクラックを生じやすい。しかしながら、本発明では対象側面100aにおける第1粘着剤層102の側面102aが式(1a)の関係を満たすので、かかる対象側面100aと屈曲軸とが交差するように光学積層体100を屈曲してもクラックの発生を抑制することができる。第1粘着剤層102の側面102aが式(1a)の関係を満たす場合、対象側面100aと屈曲軸とが交差するように光学積層体100を屈曲しても、重合性液晶化合物の硬化物からなる液晶層(特に液晶層である位相差層)の側面への応力集中を避けることができ、クラックの発生を抑制することができるものと考察される。 Regarding the optical laminate 100, when the polarizing plate 103 includes a liquid crystal layer, the liquid crystal layer tends to crack along the bending axis. However, in the present invention, since the side surface 102a of the first pressure-sensitive adhesive layer 102 on the target side surface 100a satisfies the relationship of the formula (1a), the optical laminate 100 is bent so that the target side surface 100a and the bending axis intersect. Can also suppress the occurrence of cracks. When the side surface 102a of the first pressure-sensitive adhesive layer 102 satisfies the relationship of the formula (1a), even if the optical laminate 100 is bent so that the target side surface 100a and the bending axis intersect, the cured product of the polymerizable liquid crystal compound is used. It is considered that stress concentration on the side surface of the liquid crystal layer (particularly the retardation layer which is the liquid crystal layer) can be avoided and the occurrence of cracks can be suppressed.
 クラックとは、光学積層体100の少なくとも一つの層に生じる亀裂をいい、偏光板103に含まれる液晶層に生じやすい。偏光板103が、複数の液晶層を含む場合には、その液晶層の厚みが薄い程、クラックが発生しやすい傾向がある。クラックの発生は、光学顕微鏡での観察によって判別することができる。 The crack means a crack that occurs in at least one layer of the optical laminate 100, and tends to occur in the liquid crystal layer contained in the polarizing plate 103. When the polarizing plate 103 includes a plurality of liquid crystal layers, the thinner the liquid crystal layer, the more likely it is that cracks will occur. The occurrence of cracks can be discriminated by observation with an optical microscope.
 偏光板103に含まれる液晶層としては、直線偏光子層、位相差層等が例示され、位相差層としては、ポジティブC層、λ/4層、λ/2層、またはこれらの組み合わせ等、が例示される。偏光板103は、液晶層を少なくとも一つ含む構成であればよく、複数の液晶層を含む構成であってもよい。偏光板103が、液晶層としてポジティブC層を含む場合は、ポジティブC層においてクラックが発生しやすい傾向がある。ポジティブC層は、通常、厚みが薄く、これがクラックを発生させやすい理由の一つであると考えられる。本発明によると、液晶層としてポジティブC層を含む偏光板103を備える光学積層体100であっても、クラックの発生を抑制することができる。 Examples of the liquid crystal layer contained in the polarizing plate 103 include a linear polarizing element layer and a retardation layer, and examples of the retardation layer include a positive C layer, a λ / 4 layer, a λ / 2 layer, or a combination thereof. Is exemplified. The polarizing plate 103 may be configured to include at least one liquid crystal layer, and may be configured to include a plurality of liquid crystal layers. When the polarizing plate 103 includes a positive C layer as a liquid crystal layer, cracks tend to occur in the positive C layer. The positive C layer is usually thin, which is considered to be one of the reasons why cracks are likely to occur. According to the present invention, even in the optical laminate 100 including the polarizing plate 103 including the positive C layer as the liquid crystal layer, the occurrence of cracks can be suppressed.
 本明細書において、屈曲には、曲げ部分に曲面が形成される折り曲げの形態が含まれ、折り曲げた内面の屈曲半径は特に限定されない。また、屈曲には、内面の屈折角が0度より大きく180度未満である屈折、及び、内面の屈曲半径がゼロに近似、又は内面の屈折角が0度である折り畳みも含む。 In the present specification, bending includes a form of bending in which a curved surface is formed in a bent portion, and the bending radius of the bent inner surface is not particularly limited. Bending also includes refraction with an inner surface refraction angle greater than 0 degrees and less than 180 degrees, and folding with an inner surface bending radius close to zero or an inner surface refraction angle of 0 degrees.
 光学積層体100の厚みは、光学積層体に求められる機能及び光学積層体の用途等に応じて異なるため特に限定されないが、例えば20μm以上2000μm以下であり、好ましくは50μm以上1000μm以下であり、より好ましく100μm以上500μm以下である。 The thickness of the optical laminate 100 is not particularly limited because it varies depending on the function required for the optical laminate, the application of the optical laminate, etc., but is, for example, 20 μm or more and 2000 μm or less, preferably 50 μm or more and 1000 μm or less, and more. It is preferably 100 μm or more and 500 μm or less.
 光学積層体100の平面視形状は、例えば方形形状であってよく、好ましくは長辺と短辺とを有する方形形状であり、より好ましくは長方形である。光学積層体100の面方向の形状が長方形である場合、長辺の長さは、例えば10mm以上1400mm以下であってよく、好ましくは50mm以上600mm以下である。短辺の長さは、例えば5mm以上800mm以下であり、好ましくは30mm以上500mm以下であり、より好ましくは50mm以上300mm以下である。光学積層体100を構成する各層は、角部がR加工されたり、端部が切り欠き加工されたり、穴あき加工されたりしていてもよい。 The plan view shape of the optical laminate 100 may be, for example, a square shape, preferably a square shape having a long side and a short side, and more preferably a rectangle. When the shape of the optical laminate 100 in the plane direction is rectangular, the length of the long side may be, for example, 10 mm or more and 1400 mm or less, preferably 50 mm or more and 600 mm or less. The length of the short side is, for example, 5 mm or more and 800 mm or less, preferably 30 mm or more and 500 mm or less, and more preferably 50 mm or more and 300 mm or less. Each layer constituting the optical laminate 100 may have corners R-processed, end portions notched, or perforated.
 光学積層体100は、例えば表示装置等に用いることができる。表示装置は特に限定されず、例えば有機エレクトロルミネッセンス(有機EL)表示装置、無機エレクトロルミネッセンス(無機EL)表示装置、液晶表示装置、電界発光表示装置等が挙げられる。光学積層体100は、屈曲が可能な可撓性を有する表示装置に好適である。 The optical laminate 100 can be used, for example, in a display device or the like. The display device is not particularly limited, and examples thereof include an organic electroluminescence (organic EL) display device, an inorganic electroluminescence (inorganic EL) display device, a liquid crystal display device, and an electroluminescent display device. The optical laminate 100 is suitable for a display device having flexibility that allows bending.
 以下、光学積層体100を構成する各層について詳述する。 Hereinafter, each layer constituting the optical laminate 100 will be described in detail.
 [前面板]
 前面板101は、光を透過可能な板状体であれば、材料及び厚みは限定されることはない。前面板は、1層のみから構成されてよく、2層以上から構成されてもよい。前面板101としては、樹脂製の板状体(例えば樹脂板、樹脂シート、樹脂フィルム等)、ガラス製の板状体(例えばガラス板、ガラスフィルム等)、樹脂製の板状体とガラス製の板状体との積層体が挙げられる。前面板101は、表示装置の最表面を構成することができる。
[Front plate]
The material and thickness of the front plate 101 are not limited as long as it is a plate-like body capable of transmitting light. The front plate may be composed of only one layer, or may be composed of two or more layers. The front plate 101 includes a resin plate (for example, a resin plate, a resin sheet, a resin film, etc.), a glass plate (for example, a glass plate, a glass film, etc.), a resin plate, and a glass. A laminated body with a plate-like body of the above can be mentioned. The front plate 101 can form the outermost surface of the display device.
 前面板101の厚みは、例えば30μm以上500μm以下であってよく、好ましくは40μm以上200μm以下であり、より好ましくは50μm以上100μm以下である。本発明において、光学積層体100を構成する各層の厚みは、後述する実施例において説明する厚み測定方法に従って測定することができる。 The thickness of the front plate 101 may be, for example, 30 μm or more and 500 μm or less, preferably 40 μm or more and 200 μm or less, and more preferably 50 μm or more and 100 μm or less. In the present invention, the thickness of each layer constituting the optical laminate 100 can be measured according to the thickness measuring method described in Examples described later.
 前面板101が樹脂製の板状体である場合、樹脂製の板状体は、光を透過可能なものであれば限定されることはない。樹脂製の板状体を構成する樹脂としては、例えばトリアセチルセルロース、アセチルセルロースブチレート、エチレン-酢酸ビニル共重合体、プロピオニルセルロース、ブチリルセルロース、アセチルプロピオニルセルロース、ポリエステル、ポリスチレン、ポリアミド、ポリエーテルイミド、ポリ(メタ)アクリル、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリビニルアセタール、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリメチルメタアクリレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリアミドイミドなどの高分子が挙げられる。これらの高分子は、単独で又は2種以上混合して用いることができる。強度及び透明性向上の観点から、樹脂製の板状体は、好ましくはポリイミド、ポリアミド、ポリアミドイミド等の高分子で形成される樹脂フィルムである。 When the front plate 101 is a resin plate-like body, the resin plate-like body is not limited as long as it can transmit light. Examples of the resin constituting the resin plate-like body include triacetyl cellulose, acetyl cellulose butyrate, ethylene-vinyl acetate copolymer, propionyl cellulose, butyryl cellulose, acetyl propionyl cellulose, polyester, polystyrene, polyamide, and polyether. Iimide, poly (meth) acrylic, polyimide, polyethersulfone, polysulfone, polyethylene, polypropylene, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyvinyl acetal, polyetherketone, polyetheretherketone, polyethersulfone , Polymethylmethacrylate, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyamideimide and other polymers. These polymers can be used alone or in combination of two or more. From the viewpoint of improving strength and transparency, the resin plate-like body is preferably a resin film formed of a polymer such as polyimide, polyamide, or polyamideimide.
 硬度の観点から、前面板101は、ハードコート層を備えた樹脂フィルムであってもよい。ハードコート層は、樹脂フィルムの一方の面に形成されていてもよいし、両面に形成されていてもよい。ハードコート層を設けることにより、硬度及び耐スクラッチ性を向上させることができる。ハードコート層は、例えば紫外線硬化型樹脂の硬化層である。紫外線硬化型樹脂としては、例えばアクリル系樹脂、シリコーン系樹脂、ポリエステル系樹脂、ウレタン系樹脂、アミド系樹脂、エポキシ系樹脂等が挙げられる。ハードコート層は、強度を向上させるために、添加剤を含んでいてもよい。添加剤は特に限定されることはなく、無機系微粒子、有機系微粒子、又はこれらの混合物が挙げられる。樹脂フィルムの両面にハードコート層を有する場合、各ハードコート層の組成や厚みは、互いに同じであってもよく、互いに異なっていてもよい。 From the viewpoint of hardness, the front plate 101 may be a resin film provided with a hard coat layer. The hard coat layer may be formed on one surface of the resin film or may be formed on both sides. By providing the hard coat layer, hardness and scratch resistance can be improved. The hard coat layer is, for example, a cured layer of an ultraviolet curable resin. Examples of the ultraviolet curable resin include acrylic resin, silicone resin, polyester resin, urethane resin, amide resin, epoxy resin and the like. The hard coat layer may contain additives to improve strength. The additive is not particularly limited, and examples thereof include inorganic fine particles, organic fine particles, or a mixture thereof. When the hard coat layers are provided on both sides of the resin film, the composition and thickness of the hard coat layers may be the same as each other or different from each other.
 前面板101がガラス板である場合、ガラス板は、ディスプレイ用強化ガラスが好ましく用いられる。ガラス板の厚みは、例えば20μm以上1000μm以下であってよい。ガラス板を用いることにより、優れた機械的強度及び表面硬度を有する前面板101を構成することができる。 When the front plate 101 is a glass plate, tempered glass for a display is preferably used as the glass plate. The thickness of the glass plate may be, for example, 20 μm or more and 1000 μm or less. By using the glass plate, the front plate 101 having excellent mechanical strength and surface hardness can be constructed.
 光学積層体100が表示装置に用いられる場合、前面板101は、表示装置の前面(画面)を保護する機能(ウィンドウフィルムとしての機能)を有するのみではなく、タッチセンサとしての機能、ブルーライトカット機能、視野角調整機能等を有するものであってもよい。 When the optical laminate 100 is used in a display device, the front plate 101 not only has a function of protecting the front surface (screen) of the display device (function as a window film), but also functions as a touch sensor and blue light cut. It may have a function, a viewing angle adjusting function, and the like.
 [第1粘着剤層]
 第1粘着剤層102は、前面板101と偏光板103の間に介在して、これらを貼合する。第1粘着剤層102は、1層からなるものであってもよく、2層以上からなるものであってもよいが、好ましくは1層からなる。
[First adhesive layer]
The first pressure-sensitive adhesive layer 102 is interposed between the front plate 101 and the polarizing plate 103, and these are bonded together. The first pressure-sensitive adhesive layer 102 may be composed of one layer or two or more layers, but is preferably composed of one layer.
 第1粘着剤層102は、(メタ)アクリル系樹脂、ゴム系樹脂、ウレタン系樹脂、エステル系樹脂、シリコーン系樹脂、ポリビニルエーテル系樹脂を主成分(ベースポリマー)とする粘着剤組成物から構成することができる。第1粘着剤層102を構成する粘着剤組成物としては、透明性、耐候性、耐熱性等に優れる(メタ)アクリル系樹脂をベースポリマーとする粘着剤組成物が好適である。粘着剤組成物は、活性エネルギー線硬化型又は熱硬化型であってもよい。 The first pressure-sensitive adhesive layer 102 is composed of a pressure-sensitive adhesive composition containing (meth) acrylic resin, rubber-based resin, urethane-based resin, ester-based resin, silicone-based resin, and polyvinyl ether-based resin as main components (base polymer). can do. As the pressure-sensitive adhesive composition constituting the first pressure-sensitive adhesive layer 102, a pressure-sensitive adhesive composition using a (meth) acrylic resin having excellent transparency, weather resistance, heat resistance and the like as a base polymer is suitable. The pressure-sensitive adhesive composition may be an active energy ray-curable type or a thermosetting type.
 粘着剤組成物に用いられる(メタ)アクリル系樹脂としては、(メタ)アクリル酸ブチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシル等の(メタ)アクリル酸エステルの1種又は2種以上をモノマーとする重合体又は共重合体が好適に用いられる。ベースポリマーには、極性モノマーを共重合させることが好ましい。極性モノマーとしては、(メタ)アクリル酸化合物、(メタ)アクリル酸2-ヒドロキシプロピル化合物、(メタ)アクリル酸ヒドロキシエチル化合物、(メタ)アクリルアミド化合物、N,N-ジメチルアミノエチル(メタ)アクリレート化合物、グリシジル(メタ)アクリレート化合物等の、カルボキシル基、水酸基、アミド基、アミノ基、エポキシ基等を有するモノマーを挙げることができる。 Examples of the (meth) acrylic resin used in the pressure-sensitive adhesive composition include (meth) butyl (meth) acrylate, ethyl (meth) acrylate, isooctyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate. A polymer or copolymer containing one or more acrylates as a monomer is preferably used. It is preferable that the base polymer is copolymerized with a polar monomer. Examples of the polar monomer include (meth) acrylic acid compound, (meth) acrylic acid 2-hydroxypropyl compound, (meth) acrylic acid hydroxyethyl compound, (meth) acrylamide compound, and N, N-dimethylaminoethyl (meth) acrylate compound. , A monomer having a carboxyl group, a hydroxyl group, an amide group, an amino group, an epoxy group, etc., such as a glycidyl (meth) acrylate compound.
 粘着剤組成物は、上記ベースポリマーのみを含むものであってもよいが、通常は架橋剤をさらに含有する。架橋剤としては、2価以上の金属イオンであって、カルボキシル基との間でカルボン酸金属塩を形成する金属イオン、カルボキシル基との間でアミド結合を形成するポリアミン化合物、カルボキシル基との間でエステル結合を形成するポリエポキシ化合物又はポリオール、カルボキシル基との間でアミド結合を形成するポリイソシアネート化合物が例示される。架橋剤は、好ましくはポリイソシアネート化合物である。 The pressure-sensitive adhesive composition may contain only the above-mentioned base polymer, but usually further contains a cross-linking agent. The cross-linking agent is a metal ion having a divalent value or higher and forming a carboxylic acid metal salt with the carboxyl group, a polyamine compound forming an amide bond with the carboxyl group, and a carboxyl group. Examples thereof include polyepoxy compounds or polyols that form an ester bond with, and polyisocyanate compounds that form an amide bond with a carboxyl group. The cross-linking agent is preferably a polyisocyanate compound.
 活性エネルギー線硬化型粘着剤組成物は、紫外線や電子線のような活性エネルギー線の照射を受けて硬化する性質を有しており、活性エネルギー線照射前においても粘着性を有してフィルム等の被着体に密着させることができ、活性エネルギー線の照射によって硬化して密着力の調整ができる性質を有する。活性エネルギー線硬化型粘着剤組成物は、紫外線硬化型であることが好ましい。活性エネルギー線硬化型粘着剤組成物は、ベースポリマー、架橋剤に加えて、活性エネルギー線重合性化合物をさらに含有する。必要に応じて、光重合開始剤、光増感剤等を含有させてもよい。 The active energy ray-curable pressure-sensitive adhesive composition has a property of being cured by being irradiated with active energy rays such as ultraviolet rays and electron beams, and has adhesiveness even before irradiation with active energy rays, such as a film. It has the property that it can be brought into close contact with the adherend of the above, and can be cured by irradiation with active energy rays to adjust the adhesion. The active energy ray-curable pressure-sensitive adhesive composition is preferably an ultraviolet-curable type. The active energy ray-curable pressure-sensitive adhesive composition further contains an active energy ray-polymerizable compound in addition to the base polymer and the cross-linking agent. If necessary, a photopolymerization initiator, a photosensitizer, or the like may be contained.
 活性エネルギー線重合性化合物としては、例えば分子内に少なくとも1個の(メタ)アクリロイルオキシ基を有する(メタ)アクリレートモノマー;官能基含有化合物を2種以上反応させて得られ、分子内に少なくとも2個の(メタ)アクリロイルオキシ基を有する(メタ)アクリレートオリゴマー等の(メタ)アクリロイルオキシ基含有化合物等の(メタ)アクリル系化合物、分子内に少なくとも2個のベンゾイルフェニルメタアクリロイル基を有する化合物が挙げられる。粘着剤組成物は、活性エネルギー線重合性化合物を、粘着剤組成物の固形分100質量部に対して0.1質量部以上含むことができ、10質量部以下、5質量部以下又は2質量部以下含むことができる。 The active energy ray-polymerizable compound is, for example, a (meth) acrylate monomer having at least one (meth) acryloyloxy group in the molecule; obtained by reacting two or more kinds of functional group-containing compounds, and at least 2 in the molecule. (Meta) acrylic compounds such as (meth) acryloyloxy group-containing compounds such as (meth) acrylate oligomers having one (meth) acryloyloxy group, and compounds having at least two benzoylphenylmethacryloyl groups in the molecule. Can be mentioned. The pressure-sensitive adhesive composition can contain 0.1 part by mass or more of the active energy ray-polymerizable compound with respect to 100 parts by mass of the solid content of the pressure-sensitive adhesive composition, and is 10 parts by mass or less, 5 parts by mass or less, or 2 parts by mass. Can include less than one copy.
 ベンゾイルフェニルメタアクリロイル基は、以下の構造で表される基を意味する。*は結合手を表す。活性エネルギー線重合性化合物が分子内に有するベンゾイルフェニルメタアクリロイル基の数は、5以下であることができ、4以下であることができる。 Benzoylphenylmethacryloyl group means a group represented by the following structure. * Represents a bond. The number of benzoylphenylmethacryloyl groups contained in the molecule of the active energy ray-polymerizable compound can be 5 or less, and can be 4 or less.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 分子内に少なくとも2個のベンゾイルフェニルメタアクリロイル基を有する化合物としては、例えば次の化合物が挙げられる。 Examples of the compound having at least two benzoylphenyl metaacryloyl groups in the molecule include the following compounds.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 光重合開始剤としては、例えばベンゾフェノン、ベンジルジメチルケタール、1-ヒドロキシシクロヘキシルケトン等が挙げられる。光重合開始剤は、1種又は2種以上を含むことができる。粘着剤組成物が光重合開始剤を含むとき、その全含有量は、例えば粘着剤組成物の固形分100質量部に対し0.01質量部以上3.0質量部以下であってよい。 Examples of the photopolymerization initiator include benzophenone, benzyl dimethyl ketal, 1-hydroxycyclohexyl ketone and the like. The photopolymerization initiator may contain one kind or two or more kinds. When the pressure-sensitive adhesive composition contains a photopolymerization initiator, the total content thereof may be, for example, 0.01 part by mass or more and 3.0 parts by mass or less with respect to 100 parts by mass of the solid content of the pressure-sensitive adhesive composition.
 粘着剤組成物は、光散乱性を付与するための微粒子、ビーズ(樹脂ビーズ、ガラスビーズ等)、ガラス繊維、ベースポリマー以外の樹脂、粘着性付与剤、充填剤(金属粉やその他の無機粉末等)、酸化防止剤、紫外線吸収剤、染料、顔料、着色剤、消泡剤、腐食防止剤、光重合開始剤等の添加剤を含むことができる。 The pressure-sensitive adhesive composition includes fine particles for imparting light scattering properties, beads (resin beads, glass beads, etc.), glass fibers, resins other than the base polymer, pressure-sensitive imparting agents, and fillers (metal powders and other inorganic powders). Etc.), antioxidants, UV absorbers, dyes, pigments, colorants, antifoaming agents, corrosion inhibitors, photopolymerization initiators and other additives can be included.
 第1粘着剤層102は、上記粘着剤組成物の有機溶剤希釈液を基材上に塗布し、乾燥させることにより形成することができる。第1粘着剤層102は、粘着剤組成物を用いて形成された粘着シートを用いて形成することもできる。第1粘着剤層102は、粘着剤組成物を、前面板101または偏光板103の表面に塗布し、乾燥させることにより形成することもできる。粘着剤組成物の塗布方法としては、例えばバーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法等を利用することができる。活性エネルギー線硬化型粘着剤組成物を用いた場合は、形成された粘着剤層に、活性エネルギー線を照射することにより所望の硬化度を有する粘着剤層とすることができる。 The first pressure-sensitive adhesive layer 102 can be formed by applying an organic solvent diluent of the pressure-sensitive adhesive composition on a substrate and drying it. The first pressure-sensitive adhesive layer 102 can also be formed by using a pressure-sensitive adhesive sheet formed by using the pressure-sensitive adhesive composition. The first pressure-sensitive adhesive layer 102 can also be formed by applying the pressure-sensitive adhesive composition to the surface of the front plate 101 or the polarizing plate 103 and drying it. As a method for applying the pressure-sensitive adhesive composition, for example, a bar coating method, a knife coating method, a roll coating method, a blade coating method, a die coating method, a gravure coating method and the like can be used. When the active energy ray-curable pressure-sensitive adhesive composition is used, the formed pressure-sensitive adhesive layer can be irradiated with active energy rays to obtain a pressure-sensitive adhesive layer having a desired degree of curing.
 第1粘着剤層102の厚みは、特に限定されないが、例えば1μm以上100μm以下であることが好ましく、3μm以上50μm以下であることがより好ましく、10μm以上であってもよいし、20μm以上であってもよい。 The thickness of the first pressure-sensitive adhesive layer 102 is not particularly limited, but is preferably 1 μm or more and 100 μm or less, more preferably 3 μm or more and 50 μm or less, 10 μm or more, or 20 μm or more. You may.
 [偏光板]
 偏光板103は、直線偏光子層を含む。直線偏光子層は液晶層であってもよく、その場合、偏光板103は、直線偏光子層以外の他の液晶層を含む構成であっても、含まない構成であってもよい。他の液晶層は、例えば、位相差層である。偏光板103は、例えば、直線偏光板、円偏光板、楕円偏光板等であってもよい。円偏光板は、直線偏光子層と、位相差層とを含み、画像表示装置中で反射された外光を吸収することができるため、光学積層体100に反射防止フィルムとしての機能を付与することができる。
[Polarizer]
The polarizing plate 103 includes a linear polarizing element layer. The linear polarizing element layer may be a liquid crystal layer, and in that case, the polarizing plate 103 may or may not include a liquid crystal layer other than the linear polarizing element layer. The other liquid crystal layer is, for example, a retardation layer. The polarizing plate 103 may be, for example, a linear polarizing plate, a circular polarizing plate, an elliptical polarizing plate, or the like. Since the circularly polarizing plate includes a linear polarizing element layer and a retardation layer and can absorb external light reflected in the image display device, it imparts a function as an antireflection film to the optical laminate 100. be able to.
 偏光板103の厚みは、通常5μm以上であり、20μm以上であってもよく、25μm以上であってもよく、30μm以上であってもよい。また、偏光板103の厚みは、80μm以下であることが好ましく、60μm以下であることがより好ましい。 The thickness of the polarizing plate 103 is usually 5 μm or more, may be 20 μm or more, 25 μm or more, or 30 μm or more. The thickness of the polarizing plate 103 is preferably 80 μm or less, and more preferably 60 μm or less.
 (直線偏光子層)
 直線偏光子層は、自然光等の非偏光な光線からなる一方向の直線偏光を選択的に透過させる機能を有する。以下、直線偏光子層を単に偏光子層ともいう。偏光子層は、二色性色素を吸着させた延伸フィルム又は延伸層であってもよく、重合性液晶化合物の硬化物及び二色性色素を含み、二色性色素が重合性液晶化合物の硬化物中に分散し、配向している液晶層であってもよい。二色性色素は、分子の長軸方向における吸光度と短軸方向における吸光度とが異なる性質を有する色素をいう。偏光子層は、液晶層である場合、二色性色素を吸着させた延伸フィルム又は延伸層である場合に比べて、屈曲方向に制限がないため好ましい。
(Linear polarizer layer)
The linearly polarized light element layer has a function of selectively transmitting unidirectional linearly polarized light composed of unpolarized light rays such as natural light. Hereinafter, the linear polarizer layer is also simply referred to as a polarizer layer. The polarizer layer may be a stretched film or a stretched layer on which a dichroic dye is adsorbed, and contains a cured product of a polymerizable liquid crystal compound and a dichroic dye, and the dichroic dye is a curing of the polymerizable liquid crystal compound. It may be a liquid crystal layer dispersed in an object and oriented. The dichroic dye refers to a dye having a property in which the absorbance in the major axis direction and the absorbance in the minor axis direction of the molecule are different. When the polarizing layer is a liquid crystal layer, it is preferable because there is no limitation in the bending direction as compared with the case where the stretched film or the stretched layer has the dichroic dye adsorbed.
 (二色性色素を吸着させた延伸フィルム又は延伸層である偏光子層)
 二色性色素を吸着させた延伸フィルムである偏光子層は、通常、ポリビニルアルコール系樹脂フィルムを一軸延伸する工程、ポリビニルアルコール系樹脂フィルムをヨウ素等の二色性色素で染色することにより、その二色性色素を吸着させる工程、二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理する工程、及びホウ酸水溶液による処理後に水洗する工程を経て製造することができる。
(Stretched film on which a dichroic dye is adsorbed or a polarizer layer which is a stretched layer)
The polarizer layer, which is a stretched film on which a bicolor dye is adsorbed, is usually obtained by dyeing the polyvinyl alcohol-based resin film with a bicolor dye such as iodine in a step of uniaxially stretching the polyvinyl alcohol-based resin film. It can be produced through a step of adsorbing a bicolor dye, a step of treating a polyvinyl alcohol-based resin film on which the bicolor dye is adsorbed with an aqueous boric acid solution, and a step of washing with water after the treatment with the aqueous boric acid solution.
 偏光子層の厚みは、通常30μm以下であり、好ましくは18μm以下、より好ましくは15μm以下である。偏光子層の厚みを薄くすることは、偏光板103の薄膜化に有利である。偏光子層の厚みは、通常1μm以上であり、例えば5μm以上であってよい。 The thickness of the polarizer layer is usually 30 μm or less, preferably 18 μm or less, and more preferably 15 μm or less. Reducing the thickness of the polarizer layer is advantageous for thinning the polarizing plate 103. The thickness of the polarizer layer is usually 1 μm or more, and may be, for example, 5 μm or more.
 ポリビニルアルコール系樹脂は、ポリ酢酸ビニル系樹脂をケン化することによって得られる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルとそれに共重合可能な他の単量体との共重合体が用いられる。酢酸ビニルに共重合可能な他の単量体としては、例えば不飽和カルボン酸系化合物、オレフィン系化合物、ビニルエーテル系化合物、不飽和スルホン系化合物、アンモニウム基を有する(メタ)アクリルアミド系化合物が挙げられる。 The polyvinyl alcohol-based resin is obtained by saponifying the polyvinyl acetate-based resin. As the polyvinyl acetate-based resin, in addition to polyvinyl acetate which is a homopolymer of vinyl acetate, a copolymer of vinyl acetate and another monomer copolymerizable therewith is used. Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acid compounds, olefin compounds, vinyl ether compounds, unsaturated sulfone compounds, and (meth) acrylamide compounds having an ammonium group. ..
 ポリビニルアルコール系樹脂のケン化度は、通常85モル%以上100モル%以下程度であり、好ましくは98モル%以上である。ポリビニルアルコール系樹脂は変性されていてもよく、アルデヒド類で変性されたポリビニルホルマール、ポリビニルアセタール等も使用することができる。ポリビニルアルコール系樹脂の重合度は、通常1000以上10000以下であり、好ましくは1500以上5000以下である。 The saponification degree of the polyvinyl alcohol-based resin is usually about 85 mol% or more and 100 mol% or less, preferably 98 mol% or more. The polyvinyl alcohol-based resin may be modified, and polyvinyl formal, polyvinyl acetal, and the like modified with aldehydes can also be used. The degree of polymerization of the polyvinyl alcohol-based resin is usually 1000 or more and 10000 or less, preferably 1500 or more and 5000 or less.
 二色性色素を吸着させた延伸層である偏光子層は、通常、上記ポリビニルアルコール系樹脂を含む塗布液を基材フィルム上に塗布する工程、得られた積層フィルムを一軸延伸する工程、一軸延伸された積層フィルムのポリビニルアルコール系樹脂層を二色性色素で染色することにより、その二色性色素を吸着させて偏光子層とする工程、二色性色素が吸着されたフィルムをホウ酸水溶液で処理する工程、及びホウ酸水溶液による処理後に水洗する工程を経て製造することができる。偏光子層を形成するために用いる基材フィルムは、偏光子層の保護層として用いてもよい。必要に応じて、基材フィルムを偏光子層から剥離除去してもよい。基材フィルムの材料及び厚みは、後述する熱可塑性樹脂フィルムの材料及び厚みと同様であってよい。 The polarizer layer, which is a stretched layer on which a dichroic dye is adsorbed, is usually a step of applying a coating liquid containing the above-mentioned polyvinyl alcohol-based resin on a base film, a step of uniaxially stretching the obtained laminated film, and uniaxial. A step of dyeing the polyvinyl alcohol-based resin layer of the stretched laminated film with a dichroic dye to adsorb the dichroic dye to form a polarizer layer, and boric acid on the film on which the dichroic dye is adsorbed. It can be produced through a step of treating with an aqueous solution and a step of washing with water after treatment with an aqueous boric acid solution. The base film used for forming the polarizer layer may be used as a protective layer for the polarizer layer. If necessary, the base film may be peeled off from the polarizer layer. The material and thickness of the base film may be the same as the material and thickness of the thermoplastic resin film described later.
 二色性色素を吸着させた延伸フィルム又は延伸層である偏光子層は、そのまま偏光板の構成要素として用いてよく、その片面又は両面に保護層を形成して偏光板の構成要素として用いてもよい。保護層としては、後述する熱可塑性樹脂フィルムを用いることができる。 The stretched film on which the dichroic dye is adsorbed or the polarizing layer, which is a stretched layer, may be used as it is as a component of the polarizing plate, and a protective layer may be formed on one or both sides thereof and used as a component of the polarizing plate. May be good. As the protective layer, a thermoplastic resin film described later can be used.
 熱可塑性樹脂フィルムは、例えばシクロポリオレフィン系樹脂フィルム;トリアセチルセルロース、ジアセチルセルロース等の樹脂からなる酢酸セルロース系樹脂フィルム;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート等の樹脂からなるポリエステル系樹脂フィルム;ポリカーボネート系樹脂フィルム;(メタ)アクリル系樹脂フィルム;ポリプロピレン系樹脂フィルム等、当分野において公知のフィルムを挙げることができる。偏光子層と保護層とは、後述する貼合層を介して積層することができる。 The thermoplastic resin film is, for example, a cyclopolyolefin resin film; a cellulose acetate resin film made of a resin such as triacetyl cellulose or diacetyl cellulose; a polyester resin film made of a resin such as polyethylene terephthalate, polyethylene naphthalate, or polybutylene terephthalate; Examples of films known in the art such as polycarbonate-based resin films; (meth) acrylic-based resin films; polypropylene-based resin films and the like can be mentioned. The polarizer layer and the protective layer can be laminated via a bonding layer described later.
 熱可塑性樹脂フィルムの厚みは、薄型化の観点から、通常100μm以下であり、好ましくは80μm以下であり、より好ましくは60μm以下であり、さらに好ましくは40μm以下であり、なおさらに好ましくは30μm以下であり、また、通常5μm以上であり、好ましくは10μm以上である。 From the viewpoint of thinning, the thickness of the thermoplastic resin film is usually 100 μm or less, preferably 80 μm or less, more preferably 60 μm or less, still more preferably 40 μm or less, still more preferably 30 μm or less. Yes, it is usually 5 μm or more, preferably 10 μm or more.
 熱可塑性樹脂フィルム上にハードコート層が形成されていてもよい。ハードコート層は、熱可塑性樹脂フィルムの一方の面に形成されていてもよいし、両面に形成されていてもよい。ハードコート層を設けることにより、硬度及びスクラッチ性を向上させた熱可塑性樹脂フィルムとすることができる。ハードコート層は、上述の樹脂フィルムに形成されるハードコート層と同様にして形成することができる。 A hard coat layer may be formed on the thermoplastic resin film. The hard coat layer may be formed on one side of the thermoplastic resin film, or may be formed on both sides. By providing the hard coat layer, a thermoplastic resin film having improved hardness and scratchability can be obtained. The hard coat layer can be formed in the same manner as the hard coat layer formed on the resin film described above.
 (液晶層である偏光子層)
 液晶層を形成するために用いる重合性液晶化合物は、重合性反応基を有し、かつ、液晶性を示す化合物である。重合性反応基は、重合反応に関与する基であり、光重合性反応基であることが好ましい。光重合性反応基は、光重合開始剤から発生した活性ラジカルや酸等によって重合反応に関与し得る基をいう。光重合性官能基としては、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、オキセタニル基等が挙げられる。中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基及びオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。重合性液晶化合物の種類は特に限定されず、棒状液晶化合物、円盤状液晶化合物、及びこれらの混合物を用いることができる。重合性液晶化合物の液晶性は、サーモトロピック性液晶でもリオトロピック性液晶でもよく、相秩序構造としてはネマチック液晶でもよいし、スメクチック液晶でもよい。
(Polarizer layer, which is a liquid crystal layer)
The polymerizable liquid crystal compound used for forming the liquid crystal layer is a compound having a polymerizable reactive group and exhibiting liquid crystallinity. The polymerizable reactive group is a group involved in the polymerization reaction, and is preferably a photopolymerizable reactive group. The photopolymerizable reactive group refers to a group that can participate in the polymerization reaction by an active radical, an acid, or the like generated from the photopolymerization initiator. Examples of the photopolymerizable functional group include a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, an acryloyloxy group, a methacryloyloxy group, an oxylanyl group, an oxetanyl group and the like. Of these, an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxylanyl group and an oxetanyl group are preferable, and an acryloyloxy group is more preferable. The type of the polymerizable liquid crystal compound is not particularly limited, and a rod-shaped liquid crystal compound, a disk-shaped liquid crystal compound, and a mixture thereof can be used. The liquid crystal property of the polymerizable liquid crystal compound may be a thermotropic liquid crystal or a lyotropic liquid crystal, and the phase-ordered structure may be a nematic liquid crystal or a smectic liquid crystal.
 液晶層である偏光子層に用いられる二色性色素としては、300~700nmの範囲に吸収極大波長(λMAX)を有するものが好ましい。このような二色性色素としては、例えば、アクリジン色素、オキサジン色素、シアニン色素、ナフタレン色素、アゾ色素、及びアントラキノン色素等が挙げられるが、中でもアゾ色素が好ましい。アゾ色素としては、モノアゾ色素、ビスアゾ色素、トリスアゾ色素、テトラキスアゾ色素、及びスチルベンアゾ色素等が挙げられ、好ましくはビスアゾ色素、及びトリスアゾ色素である。二色性色素は単独でも、2種以上を組み合わせてもよいが、3種以上を組み合わせることが好ましい。特に、3種以上のアゾ化合物を組み合わせることがより好ましい。二色性色素の一部が反応性基を有していてもよく、また液晶性を有していてもよい。 The dichroic dye used for the polarizer layer, which is a liquid crystal layer, preferably has an absorption maximum wavelength (λMAX) in the range of 300 to 700 nm. Examples of such a bicolor dye include an acridine dye, an oxazine dye, a cyanine dye, a naphthalene dye, an azo dye, an anthraquinone dye and the like, and among them, the azo dye is preferable. Examples of the azo dye include a monoazo dye, a bisazo dye, a trisazo dye, a tetrakisazo dye, a stilbene azo dye, and the like, and a bisazo dye and a trisazo dye are preferable. The dichroic dye may be used alone or in combination of two or more, but it is preferable to combine three or more. In particular, it is more preferable to combine three or more kinds of azo compounds. A part of the dichroic dye may have a reactive group or may have a liquid crystallinity.
 液晶層である偏光子層は、例えば基材フィルム上に形成した配向膜上に、重合性液晶化合物及び二色性色素を含む偏光子層形成用組成物を塗布し、重合性液晶化合物を重合して硬化させることによって形成することができる。基材フィルム上に、偏光子層形成用組成物を塗布して塗膜を形成し、この塗膜を基材フィルムとともに延伸することによって、偏光子層を形成してもよい。偏光子層を形成するために用いる基材フィルムは、偏光子層の保護層として用いてもよい。基材フィルムの材料及び厚みは、上述した熱可塑性樹脂フィルムの材料及び厚みと同様であってよい。 In the polarizing layer, which is a liquid crystal layer, for example, a composition for forming a polarizing layer containing a polymerizable liquid crystal compound and a dichroic dye is applied onto an alignment film formed on a base film, and the polymerizable liquid crystal compound is polymerized. It can be formed by curing it. A polarizer layer may be formed by applying a composition for forming a polarizer layer on a substrate film to form a coating film, and then stretching the coating film together with the substrate film. The base film used for forming the polarizer layer may be used as a protective layer for the polarizer layer. The material and thickness of the base film may be the same as the material and thickness of the thermoplastic resin film described above.
 重合性液晶化合物及び二色性色素を含む偏光子層形成用組成物、及びこの組成物を用いた偏光子層の製造方法としては、特開2013-37353号公報、特開2013-33249号公報、特開2017-83843号公報等に記載のものを例示することができる。偏光子層形成用組成物は、重合性液晶化合物及び二色性色素に加えて、溶媒、重合開始剤、架橋剤、レベリング剤、酸化防止剤、可塑剤、増感剤等の添加剤をさらに含んでいてもよい。これらの成分は、それぞれ1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of a composition for forming a polarizer layer containing a polymerizable liquid crystal compound and a dichroic dye, and a method for producing a polarizer layer using this composition are JP-A-2013-373353 and JP-A-2013-33249. , JP-A-2017-83843, etc. can be exemplified. In the composition for forming a polarizer layer, in addition to the polymerizable liquid crystal compound and the dichroic dye, additives such as a solvent, a polymerization initiator, a cross-linking agent, a leveling agent, an antioxidant, a plasticizer, and a sensitizer are further added. It may be included. Only one of these components may be used, or two or more of these components may be used in combination.
 偏光子層形成用組成物が含有していてもよい重合開始剤は、重合性液晶化合物の重合反応を開始し得る化合物であり、より低温条件下で、重合反応を開始できる点で、光重合性開始剤が好ましい。具体的には、光の作用により活性ラジカル又は酸を発生できる光重合開始剤が挙げられ、中でも、光の作用によりラジカルを発生する光重合開始剤が好ましい。重合開始剤の含有量は、重合性液晶化合物の総量100重量部に対して、好ましくは1質量部以上10質量部以下であり、より好ましくは3質量部以上8質量部以下である。この範囲内であると、重合性基の反応が十分に進行し、かつ、液晶化合物の配向状態を安定化させやすい。 The polymerization initiator that may be contained in the composition for forming a polarizer layer is a compound that can initiate a polymerization reaction of a polymerizable liquid crystal compound, and is photopolymerized in that the polymerization reaction can be initiated under lower temperature conditions. Sex initiators are preferred. Specific examples thereof include photopolymerization initiators capable of generating active radicals or acids by the action of light, and among them, photopolymerization initiators that generate radicals by the action of light are preferable. The content of the polymerization initiator is preferably 1 part by mass or more and 10 parts by mass or less, and more preferably 3 parts by mass or more and 8 parts by mass or less, based on 100 parts by mass of the total amount of the polymerizable liquid crystal compound. Within this range, the reaction of the polymerizable group proceeds sufficiently, and the orientation state of the liquid crystal compound is likely to be stabilized.
 液晶層である偏光子層の厚みは、通常10μm以下であり、好ましくは0.5μm以上8μm以下であり、より好ましくは1μm以上5μm以下である。 The thickness of the polarizer layer, which is a liquid crystal layer, is usually 10 μm or less, preferably 0.5 μm or more and 8 μm or less, and more preferably 1 μm or more and 5 μm or less.
 液晶層である偏光子層は、基材フィルムを剥離除去せずに直線偏光板として用いてもよく、基材フィルムを偏光子層から剥離除去して直線偏光板としてもよい。液晶層である偏光子層は、その片面又は両面に保護層を形成して直線偏光板として用いてもよい。保護層としては、上述する熱可塑性樹脂フィルムを用いることができる。 The polarizer layer, which is a liquid crystal layer, may be used as a linear polarizing plate without peeling and removing the base film, or may be used as a linear polarizing plate by peeling and removing the base film from the polarizer layer. The polarizing element layer, which is a liquid crystal layer, may be used as a linear polarizing plate by forming a protective layer on one side or both sides thereof. As the protective layer, the above-mentioned thermoplastic resin film can be used.
 液晶層である偏光子層は、偏光子層の保護等を目的として、偏光子層の片面又は両面にオーバーコート層を有していてもよい。オーバーコート層は、例えば偏光子層上にオーバーコート層を形成するための材料(組成物)を塗布することによって形成することができる。オーバーコート層を構成する材料としては、例えば光硬化性樹脂、水溶性ポリマー等が挙げられる。オーバーコート層を構成する材料としては、(メタ)アクリル系樹脂、ポリビニルアルコール系樹脂等を用いることができる。 The polarizer layer, which is a liquid crystal layer, may have an overcoat layer on one side or both sides of the polarizer layer for the purpose of protecting the polarizer layer. The overcoat layer can be formed, for example, by applying a material (composition) for forming the overcoat layer on the polarizer layer. Examples of the material constituting the overcoat layer include a photocurable resin and a water-soluble polymer. As a material constituting the overcoat layer, a (meth) acrylic resin, a polyvinyl alcohol-based resin, or the like can be used.
 偏光板103は、それが位相差層を有する場合には、通常、第1粘着剤層102の側から第2粘着剤層104の側に向かって順に、直線偏光子層と、位相差層とを有する構成である。偏光板103を構成し、第1粘着剤層102に接する最外層は、好ましくは偏光子層の形成に用いた基材フィルムまたは保護層である。 When the polarizing plate 103 has a retardation layer, the polarizing plate 103 usually includes a linear polarizing element layer and a retardation layer in this order from the side of the first pressure-sensitive adhesive layer 102 toward the side of the second pressure-sensitive adhesive layer 104. It is a configuration having. The outermost layer that constitutes the polarizing plate 103 and is in contact with the first pressure-sensitive adhesive layer 102 is preferably a base film or a protective layer used for forming the polarizer layer.
 (位相差層)
 位相差層は、1層であってもよく2層以上であってもよい。位相差層は、その表面を保護するオーバーコート層、位相差層を支持する基材フィルム等が積層されている位相差積層体として構成されていてもよい。偏光板が円偏光板である場合、位相差層は、λ/4層を含み、さらにλ/2層又はポジティブC層の少なくともいずれかを含む構成が挙げられる。位相差層がλ/2層を含む場合、直線偏光子層側から順にλ/2層及びλ/4層が積層されている。位相差層がポジティブC層を含む場合、直線偏光子層側から順にλ/4層及びポジティブC層が積層されていてもよく、直線偏光子層側から順にポジティブC層及びλ/4層が積層されていてもよい。位相差層の厚みは、例えば0.1μm以上10μm以下であり、好ましくは0.5μm以上8μm以下であり、より好ましくは1μm以上6μm以下である。
(Phase difference layer)
The retardation layer may be one layer or two or more layers. The retardation layer may be configured as a retardation laminate in which an overcoat layer that protects the surface thereof, a base film that supports the retardation layer, and the like are laminated. When the polarizing plate is a circular polarizing plate, the retardation layer includes a λ / 4 layer, and further includes at least one of a λ / 2 layer and a positive C layer. When the retardation layer includes the λ / 2 layer, the λ / 2 layer and the λ / 4 layer are laminated in order from the linear polarizer layer side. When the retardation layer includes the positive C layer, the λ / 4 layer and the positive C layer may be laminated in order from the linear polarizer layer side, and the positive C layer and the λ / 4 layer may be stacked in order from the linear polarizer layer side. It may be laminated. The thickness of the retardation layer is, for example, 0.1 μm or more and 10 μm or less, preferably 0.5 μm or more and 8 μm or less, and more preferably 1 μm or more and 6 μm or less.
 位相差層は、偏光板の保護層の材料として例示した樹脂フィルムから形成してもよいし、重合性液晶化合物の硬化物からなる液晶層であってもよい。位相差層は、λ/4層と、λ/2層又はポジティブC層とを貼合するための貼合層を有していてもよい。 The retardation layer may be formed from the resin film exemplified as the material of the protective layer of the polarizing plate, or may be a liquid crystal layer made of a cured product of a polymerizable liquid crystal compound. The retardation layer may have a bonding layer for bonding the λ / 4 layer and the λ / 2 layer or the positive C layer.
 重合性液晶化合物を硬化して位相差層を形成する場合、位相差層は、重合性液晶化合物を含む組成物を基材フィルムに塗布し硬化させることにより形成することができる。基材フィルムと塗布層との間に配向層を形成してもよい。基材フィルムの材料及び厚みは、上記熱可塑性樹脂フィルムの材料及び厚みと同じであってよい。重合性液晶化合物を硬化してなる層から位相差層を形成する場合、位相差層は、配向層及び基材フィルムを有する位相差積層体の形態で光学積層体に組み込まれてもよいし、配向膜を有する位相差積層体の形態で光学積層体に組み込まれてもよい。位相差層は、貼合層を介して直線偏光板と貼合することができる。 When the polymerizable liquid crystal compound is cured to form a retardation layer, the retardation layer can be formed by applying a composition containing the polymerizable liquid crystal compound to a base film and curing it. An orientation layer may be formed between the base film and the coating layer. The material and thickness of the base film may be the same as the material and thickness of the thermoplastic resin film. When the retardation layer is formed from a layer obtained by curing a polymerizable liquid crystal compound, the retardation layer may be incorporated into the optical laminate in the form of a retardation laminate having an alignment layer and a base film. It may be incorporated into the optical laminate in the form of a retardation laminate having an alignment film. The retardation layer can be bonded to the linear polarizing plate via the bonding layer.
 [第2粘着剤層]
 第2粘着剤層104は、偏光板103の第1粘着剤層102が貼合されている表面とは反対側の表面に貼合されている。第2粘着剤層104は、1層からなるものであってもよく、2層以上からなるものであってもよいが、好ましくは1層からなる。
[Second adhesive layer]
The second pressure-sensitive adhesive layer 104 is bonded to the surface of the polarizing plate 103 opposite to the surface to which the first pressure-sensitive adhesive layer 102 is bonded. The second pressure-sensitive adhesive layer 104 may be composed of one layer or two or more layers, but is preferably composed of one layer.
 第2粘着剤層104を構成する粘着剤組成物の組成及び配合成分、粘着剤組成物のタイプ(活性エネルギー線硬化型や熱硬化型であるか否か等)、粘着剤組成物に配合され得る添加剤、第2粘着剤層の作製方法、第2粘着剤層の厚み等については、上述の第1粘着剤層102の説明において示したものと同じである。第2粘着剤層104は、粘着剤組成物の組成及び配合成分、厚み等において、第1粘着剤層102と同じであってもよいし、異なっていてもよい。第2粘着剤層104の表面には、剥離フィルム105が貼合されていてもよい。 The composition and compounding components of the pressure-sensitive adhesive composition constituting the second pressure-sensitive adhesive layer 104, the type of the pressure-sensitive adhesive composition (whether it is an active energy ray-curable type or a thermosetting type, etc.), and blended in the pressure-sensitive adhesive composition. The additives to be obtained, the method for producing the second pressure-sensitive adhesive layer, the thickness of the second pressure-sensitive adhesive layer, and the like are the same as those shown in the above description of the first pressure-sensitive adhesive layer 102. The second pressure-sensitive adhesive layer 104 may be the same as or different from the first pressure-sensitive adhesive layer 102 in terms of the composition, composition, thickness, and the like of the pressure-sensitive adhesive composition. A release film 105 may be attached to the surface of the second pressure-sensitive adhesive layer 104.
 対象側面100aにおいて、第2粘着剤層104の側面の表面粗さRaは、クラックの発生をより抑制することができる観点から、7μm以下、さらには4μm以下であることが好ましく、1μm以上、さらには2μm以上であることが好ましい。表面粗さRaは、実施例に記載の方法にしたがって測定した値とする。 On the target side surface 100a, the surface roughness Ra of the side surface of the second pressure-sensitive adhesive layer 104 is preferably 7 μm or less, more preferably 4 μm or less, and further 1 μm or more, from the viewpoint of being able to further suppress the occurrence of cracks. Is preferably 2 μm or more. The surface roughness Ra is a value measured according to the method described in Examples.
 [貼合層]
 光学積層体100は、2つの層を接合するための貼合層を含むことができる。貼合層は、粘着剤又は接着剤から構成される層である。貼合層の材料となる粘着剤は、上述の第1粘着剤層102を構成する粘着剤組成物と同一の粘着剤組成物を用いることができる。貼合層は、他の粘着剤、例えば第1粘着剤層102を構成する粘着剤とは異なる(メタ)アクリル系粘着剤、スチレン系粘着剤、シリコーン系粘着剤、ゴム系粘着剤、ウレタン系粘着剤、ポリエステル系粘着剤、エポキシ系共重合体粘着剤等を用いることもできる。
[Lated layer]
The optical laminate 100 can include a laminating layer for joining the two layers. The bonding layer is a layer composed of a pressure-sensitive adhesive or an adhesive. As the pressure-sensitive adhesive used as the material of the bonding layer, the same pressure-sensitive adhesive composition as the pressure-sensitive adhesive composition constituting the first pressure-sensitive adhesive layer 102 can be used. The bonding layer is different from other adhesives, for example, the adhesives constituting the first adhesive layer 102 (meth) acrylic adhesive, styrene adhesive, silicone adhesive, rubber adhesive, urethane adhesive. Adhesives, polyester adhesives, epoxy copolymer adhesives and the like can also be used.
 貼合層の材料となる接着剤としては、例えば水系接着剤、活性エネルギー線硬化型接着剤等のうち1種又は2種以上を組み合わせて形成することができる。水系接着剤としては、例えばポリビニルアルコール系樹脂水溶液、水系二液型ウレタン系エマルジョン接着剤等を挙げることができる。活性エネルギー線硬化型接着剤は、紫外線等の活性エネルギー線を照射することによって硬化する接着剤であり、例えば重合性化合物及び光重合性開始剤を含む接着剤、光反応性樹脂を含む接着剤、バインダー樹脂及び光反応性架橋剤を含む接着剤等を挙げることができる。上記重合性化合物としては、光硬化性エポキシ系モノマー、光硬化性アクリル系モノマー、光硬化性ウレタン系モノマー等の光重合性モノマー、及びこれらモノマーに由来するオリゴマー等を挙げることができる。上記光重合開始剤としては、紫外線等の活性エネルギー線を照射して中性ラジカル、アニオンラジカル、カチオンラジカルといった活性種を発生する物質を含む化合物を挙げることができる。 The adhesive used as the material of the bonding layer can be formed by combining one or more of, for example, a water-based adhesive, an active energy ray-curable adhesive, and the like. Examples of the water-based adhesive include a polyvinyl alcohol-based resin aqueous solution, a water-based two-component urethane-based emulsion adhesive, and the like. The active energy ray-curable adhesive is an adhesive that cures by irradiating with active energy rays such as ultraviolet rays, and is, for example, an adhesive containing a polymerizable compound and a photopolymerizable initiator, and an adhesive containing a photoreactive resin. , Adhesives containing a binder resin and a photoreactive cross-linking agent, and the like. Examples of the polymerizable compound include photopolymerizable monomers such as a photocurable epoxy monomer, a photocurable acrylic monomer, and a photocurable urethane monomer, and oligomers derived from these monomers. Examples of the photopolymerization initiator include compounds containing substances that generate active species such as neutral radicals, anion radicals, and cationic radicals by irradiating them with active energy rays such as ultraviolet rays.
 貼合層の厚みは、例えば1μm以上であってよく、好ましくは1μm以上25μm以下、より好ましくは2μm以上15μm以下、さらに好ましくは2.5μm以上5μm以下である。 The thickness of the bonded layer may be, for example, 1 μm or more, preferably 1 μm or more and 25 μm or less, more preferably 2 μm or more and 15 μm or less, and further preferably 2.5 μm or more and 5 μm or less.
 貼合層を介して貼合される対向する二つの表面は、予めコロナ処理、プラズマ処理、火炎処理等を行ってもよく、プライマー層等を有していてもよい。 The two opposing surfaces that are bonded via the bonding layer may be subjected to corona treatment, plasma treatment, flame treatment, etc. in advance, or may have a primer layer or the like.
 [背面板]
 背面板としては、光を透過可能な板状体や通常の表示装置に用いられる構成要素等を用いることができる。
[Back plate]
As the back plate, a plate-like body capable of transmitting light, a component used in a normal display device, or the like can be used.
 背面板の厚みは、例えば5μm以上2000μm以下であってよく、好ましくは10μm以上1000μm以下であり、より好ましくは15μm以上500μm以下である。 The thickness of the back plate may be, for example, 5 μm or more and 2000 μm or less, preferably 10 μm or more and 1000 μm or less, and more preferably 15 μm or more and 500 μm or less.
 背面板に用いられる板状体としては、1層のみから構成されてよく、2層以上から構成されたものであってよく、前面板101において述べた板状体について例示したものを用いることができる。 The plate-like body used for the back plate may be composed of only one layer, may be composed of two or more layers, and an example of the plate-like body described in the front plate 101 may be used. can.
 背面板に用いる通常の表示装置に用いられる構成要素としては、例えばタッチセンサパネル、有機EL表示素子等が挙げられる。 Examples of components used in a normal display device used for a back plate include a touch sensor panel, an organic EL display element, and the like.
 (タッチセンサパネル)
 タッチセンサパネルは、タッチされた位置を検出可能なセンサ(すなわちタッチセンサ)を有するパネルであれば、限定されない。タッチセンサの検出方式は限定されることはなく、抵抗膜方式、静電容量結合方式、光センサ方式、超音波方式、電磁誘導結合方式、表面弾性波方式等のタッチセンサパネルが例示される。低コストであることから、抵抗膜方式、静電容量結合方式のタッチセンサパネルが好適に用いられる。
(Touch sensor panel)
The touch sensor panel is not limited as long as it is a panel having a sensor (that is, a touch sensor) capable of detecting the touched position. The detection method of the touch sensor is not limited, and touch sensor panels such as a resistive film method, a capacitance coupling method, an optical sensor method, an ultrasonic method, an electromagnetic induction coupling method, and a surface acoustic wave method are exemplified. Since the cost is low, a touch sensor panel of a resistance film type or a capacitance coupling type is preferably used.
 抵抗膜方式のタッチセンサの一例として、互いに対向配置された一対の基板と、それら一対の基板の間に挟持された絶縁性スペーサーと、各基板の内側の前面に抵抗膜として設けられた透明導電膜と、タッチ位置検知回路とにより構成されている部材が挙げられる。抵抗膜方式のタッチセンサを設けた画像表示装置においては、前面板の表面がタッチされると、対向する抵抗膜が短絡して、抵抗膜に電流が流れる。タッチ位置検知回路が、このときの電圧の変化を検知し、タッチされた位置が検出される。 As an example of a resistance film type touch sensor, a pair of substrates arranged opposite to each other, an insulating spacer sandwiched between the pair of substrates, and a transparent conductive film provided as a resistance film on the inner front surface of each substrate. Examples thereof include a member composed of a film and a touch position detection circuit. In an image display device provided with a resistance film type touch sensor, when the surface of the front plate is touched, the opposing resistance films are short-circuited and a current flows through the resistance film. The touch position detection circuit detects the change in voltage at this time, and the touched position is detected.
 静電容量結合方式のタッチセンサの一例としては、基板と、基板の全面に設けられた位置検出用透明電極と、タッチ位置検知回路とにより構成されている部材が挙げられる。静電容量結合方式のタッチセンサを設けた画像表示装置においては、前面板の表面がタッチされると、タッチされた点で人体の静電容量を介して透明電極が接地される。タッチ位置検知回路が、透明電極の接地を検知し、タッチされた位置が検出される。 An example of a capacitance coupling type touch sensor is a member composed of a substrate, a transparent electrode for position detection provided on the entire surface of the substrate, and a touch position detection circuit. In an image display device provided with a capacitance coupling type touch sensor, when the surface of the front plate is touched, the transparent electrode is grounded via the capacitance of the human body at the touched point. The touch position detection circuit detects the grounding of the transparent electrode, and the touched position is detected.
 タッチセンサパネルの厚みは、例えば5μm以上2000μm以下であってよく、好ましくは5μm以上100μm以下、さらに好ましくは5μm以上50μm以下である。 The thickness of the touch sensor panel may be, for example, 5 μm or more and 2000 μm or less, preferably 5 μm or more and 100 μm or less, and more preferably 5 μm or more and 50 μm or less.
 タッチセンサパネルは、基材フィルム上にタッチセンサのパターンが形成された部材であってよい。基材フィルムの例示は、上述の熱可塑性樹脂フィルムの説明における例示と同じであってよい。また、タッチセンサパネルは、基材フィルムから粘着剤層を介して被着体に転写されたものであってもよい。タッチセンサパターンの厚みは、例えば1μm以上20μm以下であってよい。 The touch sensor panel may be a member in which a touch sensor pattern is formed on a base film. The example of the base film may be the same as the example in the description of the thermoplastic resin film described above. Further, the touch sensor panel may be transferred from the base film to the adherend via the pressure-sensitive adhesive layer. The thickness of the touch sensor pattern may be, for example, 1 μm or more and 20 μm or less.
 <光学積層体の製造方法>
 光学積層体の製造方法は、前面板101と、第1粘着剤層102と、偏光板103と、第2粘着剤層104と、をこの順に備える光学積層フィルムを準備する工程と、前記光学積層フィルムをレーザー光により切断し、前記対象側面を形成する工程と、を有する。得られる光学積層体は、上述の光学積層体100と同様の光学積層体である。
<Manufacturing method of optical laminate>
The method for manufacturing the optical laminate includes a step of preparing an optical laminate film including a front plate 101, a first pressure-sensitive adhesive layer 102, a polarizing plate 103, and a second pressure-sensitive adhesive layer 104 in this order, and the optical lamination. It has a step of cutting a film with a laser beam to form the target side surface. The obtained optical laminate is the same optical laminate as the above-mentioned optical laminate 100.
 光学積層フィルムは、光学積層体100と同様の層構造を有する。光学積層フィルムを構成する各層は粘着剤層等の貼合層によって貼合することができる。貼合する際には、密着性を高める目的で貼合面の一方又は両方に対して、コロナ処理等の表面活性化処理を施すことが好ましい。 The optical laminated film has the same layer structure as the optical laminated body 100. Each layer constituting the optical laminated film can be bonded by a bonding layer such as an adhesive layer. At the time of bonding, it is preferable to apply a surface activation treatment such as corona treatment to one or both of the bonded surfaces for the purpose of improving adhesion.
 光学積層フィルムをレーザー光により切断する際には、レーザー光を、光学積層フィルムの前面板101側、または反対側から照射して、光学積層フィルムを切断し、光学積層体100を得る。このとき、同時に、対象側面100aが形成される。レーザー光の照射条件は、上述<光学積層体>に記載の条件とすることができる。 When the optical laminated film is cut by the laser beam, the laser beam is irradiated from the front plate 101 side or the opposite side of the optical laminated film to cut the optical laminated film to obtain the optical laminated body 100. At this time, the target side surface 100a is formed at the same time. The laser light irradiation conditions can be the conditions described in the above-mentioned <optical laminate>.
 <表示装置>
 光学積層体100は、表示装置に用いることができる。表示装置は特に限定されず、例えば有機EL表示装置、無機EL表示装置、液晶表示装置、電界発光表示装置等の画像表示装置が挙げられる。光学積層体100を含む表示装置は、優れた屈曲耐久性を示し、屈曲又は巻回等が可能なフレキシブルディスプレイとして用いることができる。
<Display device>
The optical laminate 100 can be used as a display device. The display device is not particularly limited, and examples thereof include an image display device such as an organic EL display device, an inorganic EL display device, a liquid crystal display device, and an electroluminescent display device. The display device including the optical laminate 100 exhibits excellent bending durability and can be used as a flexible display capable of bending or winding.
 表示装置を構築するにあたって光学積層体100は、表示パネルの視認側に、例えば第2粘着剤層104を介して貼合して用いられ得る。 In constructing the display device, the optical laminate 100 can be used by being bonded to the visual side of the display panel, for example, via a second adhesive layer 104.
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 <実施例1>
 (粘着剤層付前面板の作製)
 前面板101として基材フィルムの一面にハードコート層が形成された厚み50μmのウィンドウフィルム(基材フィルム40μm、ハードコート層10μm、縦179mm×横106mm)を用意し、第1粘着剤層102として(メタ)アクリル系粘着剤層(厚み25μm、縦179mm×横106mm)を用意した。ウィンドウフィルムの基材フィルムはポリイミド系樹脂フィルムであり、ハードコート層は末端に多官能アクリル基を有するデンドリマー化合物を含む組成物から形成された層である。その後、ウィンドウフィルムの基材フィルム面と、第1粘着剤層102のウィンドウフィルムの基材フィルム面に貼合する面にコロナ処理した後、ウィンドウフィルムと第1粘着剤層102とを貼合して粘着剤層付前面板(前面板101と第1粘着剤層102からなる積層体)を得た。コロナ処理は、周波数:20kHz、電圧:8.6kV、パワー:2.5kW、速度:6m/分の条件で行った。
<Example 1>
(Preparation of front plate with adhesive layer)
A window film having a thickness of 50 μm (base film 40 μm, hard coat layer 10 μm, length 179 mm × width 106 mm) having a hard coat layer formed on one surface of the base film was prepared as the front plate 101, and used as the first adhesive layer 102. A (meth) acrylic pressure-sensitive adhesive layer (thickness 25 μm, length 179 mm × width 106 mm) was prepared. The base film of the window film is a polyimide resin film, and the hard coat layer is a layer formed from a composition containing a dendrimer compound having a polyfunctional acrylic group at the end. After that, the surface of the base film of the window film and the surface of the first pressure-sensitive adhesive layer 102 to be bonded to the base film surface of the window film are subjected to corona treatment, and then the window film and the first pressure-sensitive adhesive layer 102 are bonded together. A front plate with an adhesive layer (a laminate composed of the front plate 101 and the first adhesive layer 102) was obtained. The corona treatment was performed under the conditions of frequency: 20 kHz, voltage: 8.6 kV, power: 2.5 kW, and speed: 6 m / min.
 (粘着剤層付円偏光板の作製)
 厚み25μmのトリアセチルセルロース(TAC)フィルムに光配向膜を形成した後、二色性色素と重合性液晶化合物とを含む組成物を光配向膜上に塗布し、配向、硬化させて厚み2.5μmの直線偏光子層を得た。当該直線偏光子層上に、アクリル系樹脂組成物を塗布し、硬化させて厚み1μmのオーバーコート層を得た。当該オーバーコート層上に、重合性液晶化合物が重合して硬化してなる位相差層を含む位相差積層体(厚み16μm、層構成:粘着剤層(厚み5μm)/液晶化合物を硬化してなる位相差層及び配向膜からなるλ/4板(厚み3μm)/粘着剤層(厚み5μm)/液晶化合物を硬化してなる位相差層及び配向膜からなるポジティブC層(厚み3μm)]を貼合した。このようにして作製した円偏光板(「TAC/直線偏光子層/位相差積層体」の層構成、厚み44.5μm、縦179mm×横106mm)を得た。その後、円偏光板の位相差積層体側の表面と、予め準備した第2粘着剤層104(第1粘着剤層102と同じものを使用)の円偏光板に貼合する面にコロナ処理した後、円偏光板と粘着剤層を貼合して粘着剤層付円偏光板(偏光板103と第2粘着剤層104からなる積層体)を得た。第2粘着剤層104の円偏光板とは反対側の表面には剥離フィルム105が貼合されたままの状態とした。
(Preparation of circularly polarizing plate with adhesive layer)
After forming a photoalignment film on a triacetyl cellulose (TAC) film having a thickness of 25 μm, a composition containing a dichroic dye and a polymerizable liquid crystal compound is applied onto the photoalignment film, oriented and cured to achieve a thickness of 2. A linear polarizer layer of 5 μm was obtained. An acrylic resin composition was applied onto the linear polarizer layer and cured to obtain an overcoat layer having a thickness of 1 μm. A retardation laminate (thickness 16 μm, layer structure: pressure-sensitive adhesive layer (thickness 5 μm) / liquid crystal compound) including a retardation layer obtained by polymerizing and curing a polymerizable liquid crystal compound is cured on the overcoat layer. A λ / 4 plate (thickness 3 μm) composed of a retardation layer and an alignment film / an adhesive layer (thickness 5 μm) / a positive C layer (thickness 3 μm) composed of a retardation layer and an alignment film obtained by curing a liquid crystal compound] are attached. A circular polarizing plate (layer structure of "TAC / linear polarizer layer / retardation laminate", thickness 44.5 μm, length 179 mm × width 106 mm) produced in this manner was obtained. The surface on the retardation laminate side and the surface to be bonded to the circular polarizing plate of the second pressure-sensitive adhesive layer 104 (the same as the first pressure-sensitive adhesive layer 102) prepared in advance are subjected to corona treatment, and then the circular polarizing plate is formed. The pressure-sensitive adhesive layer was bonded to obtain a circular polarizing plate with a pressure-sensitive adhesive layer (a laminate composed of the polarizing plate 103 and the second pressure-sensitive adhesive layer 104). The release film 105 was left attached to the surface.
 (光学積層体の作製)
 粘着剤層付前面板の粘着剤層(第1粘着剤層102)の面と、粘着剤層付円偏光板のTAC面とにコロナ処理を施し、コロナ処理を施した面が内側になるように粘着剤層付前面板と粘着剤層付円偏光板とを積層して、ロール貼合機を用いて貼合して、光学積層フィルムを得た。得られた光学積層フィルムに対して、前面板101側からCOレーザー光(LPTECH社製、LPTSLC-M、連続波発振)を照射し、20mm×100mmの大きさに切断して光学積層体100(前面板101/第1粘着剤層102/偏光板103(TAC/直線偏光子層/位相差積層体)/第2粘着剤層104/剥離フィルム105)を得た。光学積層体の平面視形状は、方形形状であり、レーザー光による切断面が全周に亘って側面を構成するようにした。レーザー光はレンズで集光し、光学積層体の前面板101側の表面に焦点を合わせた。レーザー光の照射は、表1に記載の移動速度条件及び出力条件で行った。このようにして得られた各実施例及び各比較例の光学積層体について、後述する方法で、対象側面における第1粘着剤層及び第2粘着剤層の表面粗さRaを測定した。
(Preparation of optical laminate)
The surface of the pressure-sensitive adhesive layer (first pressure-sensitive adhesive layer 102) of the front plate with the pressure-sensitive adhesive layer and the TAC surface of the circularly polarizing plate with the pressure-sensitive adhesive layer are subjected to corona treatment so that the surface treated with corona is on the inside. A front plate with an adhesive layer and a circularly polarizing plate with an adhesive layer were laminated and bonded using a roll bonding machine to obtain an optical laminated film. The obtained optical laminated film is irradiated with CO 2 laser light (LPTECH, LPTSLC-M, continuous wave oscillation) from the front plate 101 side, cut into a size of 20 mm × 100 mm, and the optical laminated body 100. (Front plate 101 / first pressure-sensitive adhesive layer 102 / polarizing plate 103 (TAC / linear polarizer layer / retardation laminate) / second pressure-sensitive adhesive layer 104 / release film 105) were obtained. The plan view shape of the optical laminate is a square shape, and the cut surface formed by the laser beam constitutes the side surface over the entire circumference. The laser beam was focused by a lens and focused on the surface of the optical laminate on the front plate 101 side. The laser beam irradiation was performed under the moving speed conditions and output conditions shown in Table 1. With respect to the optical laminates of each Example and each Comparative Example thus obtained, the surface roughness Ra of the first pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer on the target side surface was measured by the method described later.
 (表示積層体の模擬成形体の準備)
 ポリイミド系樹脂組成物から樹脂成形体を形成し、これを表示積層体の模擬成形体(有機ELパネルのかわり)として準備した。この模擬成形体は厚みが113μmであった。得られた模擬成形体にCOレーザー光(LPTECH社製、LPTSLC-M、連続波発振)を照射して、22mm×112mmの大きさに切断した。レーザー光の照射は、移動速度:240mm/秒、出力:24Wの条件で行った。
(Preparation of simulated molded body of display laminate)
A resin molded body was formed from the polyimide-based resin composition, and this was prepared as a simulated molded body (instead of an organic EL panel) of the display laminate. This simulated molded product had a thickness of 113 μm. The obtained simulated molded product was irradiated with CO 2 laser light (LPTECH, LPTSLC-M, continuous wave oscillation) and cut into a size of 22 mm × 112 mm. The laser beam irradiation was performed under the conditions of a moving speed of 240 mm / sec and an output of 24 W.
 (屈曲試験片の準備)
 光学積層体100の第2粘着剤層104に貼付されている剥離フィルム105を剥離して露出した面と、模擬成形体の貼合する面とにコロナ処理を施し、コロナ処理を施した面が内側になるように光学積層体と模擬成形体とを積層して、ロール貼合機を用いて貼合して、屈曲試験片を得た。このようにして得られた各実施例及び各比較例の光学積層体100を含む屈曲試験片について、後述する屈曲試験を行った。
(Preparation of bending test piece)
The surface where the release film 105 attached to the second pressure-sensitive adhesive layer 104 of the optical laminate 100 is peeled off and exposed and the surface to which the simulated molded body is attached are subjected to corona treatment, and the surface subjected to corona treatment is obtained. The optical laminated body and the simulated molded body were laminated so as to be on the inside, and bonded using a roll bonding machine to obtain a bending test piece. A bending test described later was performed on the bending test pieces containing the optical laminate 100 of each Example and each Comparative Example thus obtained.
 [表面粗さRaの測定]
 各実施例及び各比較例の光学積層体100を、レーザー光の照射により切断した一つの切断面(対象側面)が観察対象となるように治具に装着した。3Dレーザー顕微鏡(VK-9510、KEYENCE社製)で、第1粘着剤層102の断面と第2粘着剤層104の断面とを観察した。第1粘着剤層102及び第2粘着剤層104について、周縁部から1μmの範囲内の領域を含まない積層方向20μm×周方向200μmの大きさの任意の領域(第1粘着剤層102については側面102a)の算術平均粗さRaを算出し、これを表面粗さRaとした。
[Measurement of surface roughness Ra]
The optical laminate 100 of each Example and each Comparative Example was attached to a jig so that one cut surface (target side surface) cut by irradiation with a laser beam could be an observation target. A cross section of the first pressure-sensitive adhesive layer 102 and a cross section of the second pressure-sensitive adhesive layer 104 were observed with a 3D laser microscope (VK-9510, manufactured by KEYENCE). Regarding the first pressure-sensitive adhesive layer 102 and the second pressure-sensitive adhesive layer 104, an arbitrary region having a size of 20 μm in the stacking direction × 200 μm in the circumferential direction, which does not include a region within 1 μm from the peripheral edge portion (for the first pressure-sensitive adhesive layer 102, The arithmetic mean roughness Ra of the side surface 102a) was calculated and used as the surface roughness Ra.
 [屈曲試験]
 屈曲試験は、温度25℃において行った。屈曲試験機(F1-2SV、Forehu社製)に、屈曲試験片を平坦な状態(屈曲していない状態)で設置し、前面板側が内側となるように、対向する前面板間の距離が3.0mmとなるように(屈曲半径1.5mm)、屈曲試験片を180°屈曲させた。その後、元の平坦な状態に戻した。一連の操作を1回行ったときを屈曲回数1回と数え、この屈曲操作を繰返し行った。屈曲速度は1回/1秒とした。
屈曲操作で屈曲した領域においてクラックや粘着剤層の浮きが発生したときの屈曲回数を限界屈曲回数として記録した。限界屈曲回数を、以下の基準に従って評価を行った。
  A:限界屈曲回数が60万回以上、
  B:限界屈曲回数が30万回以上60万回未満、
  C:限界屈曲回数が10万回以上30万回未満、
  D:限界屈曲回数が2万回以上10万回未満、
  E:限界屈曲回数が2万回未満。
[Bending test]
The bending test was performed at a temperature of 25 ° C. The bending test piece is installed in a bending tester (F1-2SV, manufactured by Forehu) in a flat state (not bent), and the distance between the facing front plates is 3 so that the front plate side is on the inside. The bending test piece was bent 180 ° so as to be 0.0 mm (bending radius 1.5 mm). After that, it returned to the original flat state. When a series of operations was performed once, the number of times of bending was counted as one, and this bending operation was repeated. The bending speed was 1 time / 1 second.
The number of bends when cracks or floating of the adhesive layer occurred in the region bent by the bending operation was recorded as the limit number of bends. The limit number of bends was evaluated according to the following criteria.
A: The limit number of bends is 600,000 or more,
B: The limit number of bends is 300,000 or more and less than 600,000,
C: The limit number of bends is 100,000 or more and less than 300,000,
D: The limit number of bends is 20,000 or more and less than 100,000,
E: The limit number of bends is less than 20,000.
 実施例1~3、比較例1~4の光学積層体100を屈曲試験に供した結果を表1に示す。 Table 1 shows the results of subjecting the optical laminates 100 of Examples 1 to 3 and Comparative Examples 1 to 4 to a bending test.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 100 光学積層体、100a 対象側面、101 前面板、102 第1粘着剤層、102a 第1粘着剤層の側面、103 偏光板、104 第2粘着剤層、105 剥離フィルム。 100 optical laminate, 100a target side surface, 101 front plate, 102 first adhesive layer, 102a first adhesive layer side surface, 103 polarizing plate, 104 second adhesive layer, 105 release film.

Claims (5)

  1. 前面板と、第1粘着剤層と、偏光板と、第2粘着剤層と、をこの順に備える光学積層体であって、
    前記偏光板は、重合性液晶化合物の硬化物からなる液晶層を含み、
    前記光学積層体の全周のうちの一部であって、積層方向に亘る側面を対象側面としたときに、前記対象側面における前記第1粘着剤層の表面粗さをRa[μm]とすると、次の式(1a)の関係を満たす、光学積層体。
     Ra≦10μm   (1a)
    An optical laminate including a front plate, a first pressure-sensitive adhesive layer, a polarizing plate, and a second pressure-sensitive adhesive layer in this order.
    The polarizing plate includes a liquid crystal layer made of a cured product of a polymerizable liquid crystal compound.
    Let Ra [μm] be the surface roughness of the first pressure-sensitive adhesive layer on the target side surface, which is a part of the entire circumference of the optical laminate and the side surface extending in the stacking direction is the target side surface. , An optical laminate satisfying the relationship of the following formula (1a).
    Ra ≤ 10 μm (1a)
  2. 前記偏光板は、前記第1粘着剤層の側から前記第2粘着剤層の側に向かって順に、直線偏光子層と、位相差層と、を含み、
    前記位相差層は前記液晶層を含む、請求項1に記載の光学積層体。
    The polarizing plate includes a linear polarizing element layer and a retardation layer in this order from the side of the first pressure-sensitive adhesive layer toward the side of the second pressure-sensitive adhesive layer.
    The optical laminate according to claim 1, wherein the retardation layer includes the liquid crystal layer.
  3. 前記位相差層は前記液晶層であるポジティブC層を含む、請求項2に記載の光学積層体。 The optical laminate according to claim 2, wherein the retardation layer includes a positive C layer which is a liquid crystal layer.
  4. 前記光学積層体は、屈曲軸に沿って屈曲可能であり、
    前記対象側面は、前記屈曲軸と交差する側面を含む、請求項1~3のいずれか1項に記載の光学積層体。
    The optical laminate can be bent along the bending axis and can be bent.
    The optical laminate according to any one of claims 1 to 3, wherein the target side surface includes a side surface that intersects the bending axis.
  5. 請求項1~4のいずれか1項に記載の光学積層体の製造方法であって、
    前面板と、第1粘着剤層と、偏光板と、第2粘着剤層と、をこの順に備える光学積層フィルムを準備する工程と、
    前記光学積層フィルムをレーザー光により切断し、前記対象側面を形成する工程と、を有する、光学積層体の製造方法。
    The method for manufacturing an optical laminate according to any one of claims 1 to 4.
    A step of preparing an optical laminated film including a front plate, a first pressure-sensitive adhesive layer, a polarizing plate, and a second pressure-sensitive adhesive layer in this order.
    A method for producing an optical laminate, comprising a step of cutting the optical laminate film with a laser beam to form the target side surface.
PCT/JP2020/044456 2020-01-24 2020-11-30 Optical stack and production method therefor WO2021149358A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080094320.1A CN115038999A (en) 2020-01-24 2020-11-30 Optical laminate and method for producing same
KR1020227015111A KR20220126710A (en) 2020-01-24 2020-11-30 Optical laminate and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020009967A JP2021117321A (en) 2020-01-24 2020-01-24 Optical stack and production method therefor
JP2020-009967 2020-01-24

Publications (1)

Publication Number Publication Date
WO2021149358A1 true WO2021149358A1 (en) 2021-07-29

Family

ID=76993312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044456 WO2021149358A1 (en) 2020-01-24 2020-11-30 Optical stack and production method therefor

Country Status (5)

Country Link
JP (1) JP2021117321A (en)
KR (1) KR20220126710A (en)
CN (1) CN115038999A (en)
TW (1) TW202128420A (en)
WO (1) WO2021149358A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113936558B (en) * 2021-10-26 2023-06-27 武汉华星光电半导体显示技术有限公司 Display module, preparation method thereof and display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009037228A (en) * 2007-07-06 2009-02-19 Nitto Denko Corp Polarization plate
US20140009429A1 (en) * 2012-07-03 2014-01-09 Chimei Innolux Corporation Method of producing capacitive coplanar touch panel devices with laser ablation
JP2019185007A (en) * 2018-04-11 2019-10-24 住友化学株式会社 Polarizing plate and display device
JP2019200413A (en) * 2018-05-11 2019-11-21 住友化学株式会社 Polarizing plate and display device
JP2020003520A (en) * 2018-06-25 2020-01-09 住友化学株式会社 Laminate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003107221A (en) * 2001-09-26 2003-04-09 Nitto Denko Corp Translucent reflecting plate, translucent polarizing plate, and liquid crystal display device using the same
TW200532259A (en) * 2003-12-25 2005-10-01 Nitto Denko Corp Method of manufacturing laminated polarizing plate, laminated polarizing plate obtained by the method, and image display including the same
JP2006272616A (en) * 2005-03-28 2006-10-12 Konica Minolta Opto Inc Optical film and its manufacturing device
JP5588893B2 (en) 2011-02-23 2014-09-10 日東電工株式会社 Polarizing plate and manufacturing method thereof
JP2018194606A (en) * 2017-05-15 2018-12-06 日東電工株式会社 Circularly polarizing plate and organic el panel
JP6420511B1 (en) * 2017-12-18 2018-11-07 住友化学株式会社 Sheet-fed film manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009037228A (en) * 2007-07-06 2009-02-19 Nitto Denko Corp Polarization plate
US20140009429A1 (en) * 2012-07-03 2014-01-09 Chimei Innolux Corporation Method of producing capacitive coplanar touch panel devices with laser ablation
JP2019185007A (en) * 2018-04-11 2019-10-24 住友化学株式会社 Polarizing plate and display device
JP2019200413A (en) * 2018-05-11 2019-11-21 住友化学株式会社 Polarizing plate and display device
JP2020003520A (en) * 2018-06-25 2020-01-09 住友化学株式会社 Laminate

Also Published As

Publication number Publication date
CN115038999A (en) 2022-09-09
KR20220126710A (en) 2022-09-16
JP2021117321A (en) 2021-08-10
TW202128420A (en) 2021-08-01

Similar Documents

Publication Publication Date Title
WO2021153098A1 (en) Optical laminate and method for manufacturing display device
WO2021187099A1 (en) Circular polarizing sheet and optical laminate
WO2021010114A1 (en) Optical laminate and manufacturing method therefor
WO2021149358A1 (en) Optical stack and production method therefor
JP2021144208A (en) Laminated sheet and manufacturing method therefor
WO2021182005A1 (en) Laminate sheet and method for manufacturing same
WO2021177040A1 (en) Optical laminate
WO2021176989A1 (en) Optical laminate and display device
WO2021193348A1 (en) Laminate
JP2021152641A (en) Circularly polarizing plate and optical laminate
JP2021144209A (en) Optical laminate
WO2021186986A1 (en) Laminate sheet and method for manufacturing same
WO2021166434A1 (en) Optical laminate and display device having same
WO2021187098A1 (en) Circular polarizing sheet and optical laminate
JP2020144168A (en) Optical laminate and manufacturing method therefor
WO2021149359A1 (en) Optical stack and display device
KR102345851B1 (en) Optical laminate and display device
WO2022255155A1 (en) Laminate
WO2021182030A1 (en) Optical multilayer body
WO2022255154A1 (en) Laminate
JP2021149087A (en) Laminated sheet and manufacturing method therefor
WO2021182056A1 (en) Optical laminate
JP2021152640A (en) Circularly polarizing plate and optical laminate
JP2021140136A (en) Optical laminate and display device
JP2021152649A (en) Laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915283

Country of ref document: EP

Kind code of ref document: A1