WO2021147226A1 - 呼气阀的控制方法、装置、计算机设备和存储介质 - Google Patents

呼气阀的控制方法、装置、计算机设备和存储介质 Download PDF

Info

Publication number
WO2021147226A1
WO2021147226A1 PCT/CN2020/095137 CN2020095137W WO2021147226A1 WO 2021147226 A1 WO2021147226 A1 WO 2021147226A1 CN 2020095137 W CN2020095137 W CN 2020095137W WO 2021147226 A1 WO2021147226 A1 WO 2021147226A1
Authority
WO
WIPO (PCT)
Prior art keywords
error
pressure
increment
update
preset
Prior art date
Application number
PCT/CN2020/095137
Other languages
English (en)
French (fr)
Inventor
范医鲁
罗小锁
李秋华
彭强
罗忠杰
Original Assignee
深圳市科曼医疗设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市科曼医疗设备有限公司 filed Critical 深圳市科曼医疗设备有限公司
Publication of WO2021147226A1 publication Critical patent/WO2021147226A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor

Definitions

  • This application relates to the technical field of exhalation valve control, and in particular to an exhalation valve control method, device, computer equipment and storage medium.
  • the ventilator As an effective means to artificially replace the autonomous ventilation function, has been commonly used in various causes of respiratory failure, anesthesia breathing management during major operations, respiratory support treatment and emergency recovery. It occupies a very important position in the field of modern medicine.
  • the control of the ventilator it is necessary to perform pressure-controlled ventilation for some special patients.
  • the air-oxygen mixed gas 1 enters the patient's lungs 3 through the exhalation valve 2 of the ventilator, and then the exhalation valve 4 of the ventilator discharges the exhaust gas 5 after the gas exchange through the lungs 3 out of the body.
  • one method is to open the exhalation valve to the maximum after the start of exhalation, and then set the valve closing condition, which will cause the pressure to overshoot (as shown in Figure 2) or the pressure to reach The positive end-expiratory pressure takes too long (as shown in Figure 3), that is, it takes a long time from the breathing transition phase to the breathing maintenance phase.
  • Another method is to use the inhalation valve and the exhalation valve to work together to complete the pressure establishment and pressure balance under the pressure control of the ventilator. This method can well control the required pressure in terms of improving patient comfort.
  • An embodiment of the present application provides a method for controlling an exhalation valve.
  • the method includes: obtaining a current airway pressure and a preset airway pressure; and calculating the pressure based on the current airway pressure and the preset airway pressure Error; update the pressure error to obtain an update error, the update error is greater than the pressure error; obtain a preset ventilator model; determine the breath according to the update error and the preset ventilator model The target control increment of the gas valve, so that the exhalation valve controls gas discharge according to the target control increment.
  • a control device for an exhalation valve comprising: an acquisition module for acquiring current airway pressure and preset airway pressure; a differential pressure module for acquiring current airway pressure and preset airway pressure Tract pressure, calculate the pressure error; update module, used to update the pressure error to obtain an update error, the update error is greater than the pressure error; acquisition model module, used to acquire a preset ventilator model; determination module , Used for determining the target control increment of the exhalation valve according to the update error and the preset ventilator model, so that the exhalation valve controls the gas discharge according to the target control increment.
  • a computer device includes a memory and a processor, the memory stores a computer program, and when the computer program is executed by the processor, the processor executes the following steps: acquiring current airway pressure and preset airway pressure Pressure; calculate the pressure error according to the current airway pressure and the preset airway pressure; update the pressure error to obtain an update error, the update error is greater than the pressure error; obtain a preset ventilator Model; determining the target control increment of the exhalation valve according to the update error and the preset ventilator model, so that the exhalation valve controls gas discharge according to the target control increment.
  • a computer-readable storage medium storing a computer program.
  • the processor executes the following steps: obtaining current airway pressure and preset airway pressure; Pressure and the preset airway pressure, calculate the pressure error; update the pressure error to obtain an update error, the update error is greater than the pressure error; obtain a preset ventilator model; according to the update error sum
  • the preset ventilator model determines a target control increment of the exhalation valve, so that the exhalation valve controls gas discharge according to the target control increment.
  • the target control increment of the exhalation valve can be determined, and the exhalation valve gas can be controlled according to the target control increment.
  • the amount of discharge so that the pressure between the current airway pressure and the preset airway pressure is gradually reduced. It can be seen that the update error amplifies the pressure error and increases the control intensity of the ventilator system during the excessive phases. Not only can the performance of the transition section be more superior, and the breathing maintenance phase can be quickly entered, but also the slight steady state or The static pressure error makes the performance of the breathing maintenance section more stable.
  • Figure 1 is a schematic diagram of the structure of a ventilator system
  • Figure 2 is an effect diagram of the pressure overshoot of a ventilator system during the breathing transition phase
  • Figure 3 is a diagram showing the effect of a long time for a ventilator system to enter the breathing maintenance phase from the breathing transition phase;
  • Figure 4 is a flowchart of a method for controlling the exhalation valve in an embodiment
  • Figure 5 is an effect diagram of the ventilator system in an embodiment in the hyperpnea phase
  • FIG. 6 is a flowchart of updating the pressure error to obtain the updated error in an embodiment
  • FIG. 7 is a flowchart of obtaining the update error according to the integral error and the pressure error in an embodiment
  • FIG. 8 is a flowchart of obtaining a preset ventilator model in an embodiment
  • FIG. 9 is a flowchart of determining the target control increment of the exhalation valve according to the update error and the preset ventilator model in an embodiment
  • FIG. 10 is a flowchart of determining the target feedback increment and the target robust increment according to the update error in an embodiment
  • FIG. 11 is a flowchart of determining the target feedforward increment according to the update error and the preset ventilator model in an embodiment
  • Figure 12 is a structural block diagram of an exhalation valve control device in an embodiment
  • Fig. 13 is a structural block diagram of a computer device in an embodiment.
  • a method for controlling the exhalation valve is provided.
  • This method can be applied to a ventilator, and can also be applied to the device of the exhalation valve control method described in the embodiments of this application.
  • the method can also be applied to terminals, servers, and other devices that can implement the methods described in the embodiments of this application.
  • the device of the control method of the exhalation valve such as a device that simulates the lung respiratory system for teaching, is used to show the breathing process of the lungs to the students.
  • the method for controlling the exhalation valve described in the embodiment of the present application specifically includes:
  • Step 402 Obtain the current airway pressure and the preset airway pressure.
  • the current airway pressure refers to the pressure value of the patient's lung airway under the current exhalation state.
  • a pressure sensor is provided in the ventilator system, and the current airway pressure can be read through the pressure sensor.
  • the preset airway pressure refers to the preset pressure value of the lung airway when the patient has a higher degree of comfort in the exhalation state.
  • the preset airway pressure can be a positive end-expiratory pressure.
  • Positive end-expiratory pressure refers to the pressure value that maintains a certain positive pressure in the airway at the end of the breath when controlling breathing or assisting breathing.
  • Respiratory maintenance phase stability means that the patient maintains the same or similar pressure in the airway pressure at the end of the breath and the positive end-expiratory pressure.
  • Step 404 Calculate a pressure error according to the current airway pressure and the preset airway pressure.
  • the pressure error refers to the difference between the current airway pressure and the preset airway pressure. Since the ventilator is affected by various factors during work, such as the influence of airway gas supply, the influence of the patient's own exhaust, etc., the current airway pressure is unstable, so in order to make the patient have a higher comfort It is necessary to maintain stable airway pressure to ensure that the airway pressure at the end of respiration is the preset airway pressure and can remain unchanged. Maintaining the stable airway pressure depends on the calculated pressure error.
  • the pressure error is zero, it means that in the current state, the patient’s current airway pressure is the same as the preset airway pressure, and the patient’s comfort level is high, and there is no need to adjust the control volume of the exhalation valve; if the pressure is The error is not zero, indicating that in the current state, the patient's current airway pressure is different from the preset airway pressure, and the patient's comfort level is low.
  • Step 406 Update the pressure error to obtain an update error, and the update error is greater than the pressure error.
  • the update error refers to the error obtained after amplifying the pressure error.
  • the adjustment of the control amount of the exhalation valve based on the update error is greater than the control of the control amount of the exhalation valve directly based on the pressure error. Therefore, the establishment can be accelerated Positive end-expiratory pressure quickly reaches the stable stage of breathing. When the positive end-expiratory pressure is established, it enters the breathing maintenance stage.
  • the small pressure error caused by various factors can be amplified to get the update error, which can also be well monitored, and then the exhalation valve can be adjusted in time according to the update error.
  • the control volume is adjusted so that the patient's airway pressure is equal to the preset airway pressure.
  • the pressure error can only be monitored when the pressure error reaches a certain size.
  • the control volume of the exhalation valve is adjusted according to the pressure error, and the update error is used to adjust the exhalation.
  • the control of the valve can be adjusted to improve the performance of maintaining stable airway pressure during the breathing maintenance phase.
  • Step 408 Obtain a preset ventilator model.
  • the preset ventilator model refers to a preset ventilator model
  • the ventilator model is a mechanical model of the respiratory system established according to the mechanical relationship in the respiratory system.
  • Ve k ⁇ u
  • k is the proportional coefficient when the exhalation valve controls the exhaust, generally speaking
  • k is a known constant
  • u the control amount of the exhalation valve in the exhalation phase.
  • Step 410 Determine a target control increment of the exhalation valve according to the update error and the preset ventilator model, so that the exhalation valve controls gas discharge according to the target control increment.
  • the target control increment refers to the increase of the control amount of the exhalation valve during the current exhalation relative to the control amount of the previous exhalation.
  • the update error and the preset ventilator model after derivation, calculation and design, the relationship between the target control increment and the update error can be determined, and the value of the update error can be substituted into the relationship. Determine the value of the target control increment.
  • the control amount of the exhalation valve increases the target control increment on the original basis and is updated. At this time, the exhalation valve controls the gas discharge according to the updated control amount, which is beneficial to accelerate the reduction of the pressure error, Establish positive end-expiratory pressure and improve patient comfort.
  • the gray line in Figure 3 is a smooth curve in the first 1.25 seconds, and there is no pressure overshoot, which can improve the comfort of the patient and can well control the required pressure.
  • the gray line in Figure 5 is The first 1 second part is a smooth curve, and the control amount of the exhalation valve can also be adjusted under the premise of ensuring the comfort of the patient. Therefore, the method for controlling the exhalation valve provided by the embodiments of the present application can not only make the performance of the transition section more superior, but also can quickly enter the breathing maintenance phase.
  • the gray line in Figure 2 and Figure 3 is not a straight line after 1.25 seconds. As time goes by, there is a more obvious decline.
  • the gray line in Figure 5 follows the part after 1 second.
  • the exhalation valve control method provided by the embodiments of the present application can eliminate the slight steady-state or static pressure error in the breathing maintenance phase, and make the airway pressure stable during the breathing maintenance phase.
  • the performance is more superior.
  • the target control increment of the exhalation valve determined according to the update error and the preset ventilator model at time t is u'(t), for example, Among them, s is the update error, The size of ⁇ T is determined by the update error s and the preset ventilator model, k m and k n are non-zero constants, and sign(s) is a sign function with the update error s as a variable.
  • the control amount of the exhalation valve controlled gas discharge at time (t-1) is u(t-1)
  • the control amount of the exhalation valve controlled gas discharge at time t u(t) u (t-1)+u'(t).
  • the pressure error between the current airway pressure and the preset airway pressure obtained by calculation is updated, and the pressure error is updated to obtain an update error greater than the pressure error.
  • the updated error and the preset ventilator model can determine the target control increment of the exhalation valve, and control the amount of air discharged from the exhalation valve according to the target control increment, so that the current airway pressure is the same as the preset airway pressure The pressure between them gradually decreases. It can be seen that the update error amplifies the pressure error and increases the control intensity of the ventilator system during the excessive phases. Not only can the performance of the transition section be more superior, and the breathing maintenance phase can be quickly entered, but also the slight steady state or The static pressure error makes the performance of the breathing maintenance section more stable.
  • updating the pressure error in step 406 to obtain the updated error includes:
  • Step 406A Obtain the integration interval.
  • the integration interval refers to the time interval during which the pressure error is integrated.
  • Step 406B Obtain an integral error according to the integral interval and the pressure error.
  • the integral error is the error obtained by integrating the pressure error.
  • the function of the integral is actually the process of numerical accumulation of the pressure error over time, and the integral error is used to amplify the pressure error. Except for the case where the pressure error is always 0, generally speaking, the integral error is greater than the pressure error. For example, if the integration interval is [0, t] and the pressure error is e, the integration error is When the patient is in the breathing transition phase, through the integral error, a greater drive output can be formed, which can increase the control of the control amount of the exhalation valve, and then can quickly establish a positive end-expiratory pressure, so that the patient can enter Respiratory maintenance phase.
  • Step 406C Obtain the update error according to the integral error and the pressure error.
  • the integral error and the pressure error are calculated as the update error.
  • the pressure error is e
  • the integral error is Then the update error s is
  • obtaining the update error according to the integral error and the pressure error in step 406C includes:
  • Step 406C1 Obtain the pressure coefficient and the integral coefficient.
  • the pressure coefficient refers to the weight of the pressure error when calculating the update error.
  • the integral coefficient refers to the weight of the integral error when calculating the update error.
  • the pressure coefficient and the integral coefficient can be determined artificially based on relevant theories and experience, or they can be learned through machine learning and other methods.
  • Step 406C2 Obtain an updated pressure according to the pressure coefficient and the pressure error.
  • the updated pressure is the pressure obtained by adjusting the pressure error through the pressure coefficient
  • the updated pressure can be obtained by calculating the product of the pressure coefficient and the pressure error. For example, if the pressure coefficient is 1, and the pressure error is e, the updated pressure is still e.
  • Step 406C3 Obtain an updated integral according to the integral coefficient and the integral error.
  • the updated integral is the pressure obtained by adjusting the integral error through the integral coefficient
  • the updated integral can be obtained by calculating the product of the integral coefficient and the integral error.
  • the integral coefficient is k 1
  • the integral error is Then the update points are
  • Step 406C4 Use the sum of the update pressure and the update integral as the update error.
  • the update pressure and update integral are calculated as the update error. For example, if the update pressure is e, the update integral is Update error
  • obtaining a preset ventilator model in step 408 includes:
  • Step 408A Obtain the original ventilator model.
  • the original ventilator model refers to the mechanical model of the respiratory system.
  • Step 408B Generate the preset ventilator model according to the original ventilator model and the respiratory muscle pressure, the positive end-expiratory pressure, the initial gas volume and the compliance parameters in the original ventilator model.
  • the respiratory muscle pressure refers to the elastic pressure generated by the respiratory muscles through contraction and relaxation during the breathing process.
  • the initial air volume refers to the initial air volume of the patient's lungs.
  • the compliance parameter refers to the capacity change parameter under the action of unit pressure.
  • the ventilator system can be based on the above-mentioned original ventilator model
  • the difference between the ratio of the respiratory muscle pressure and the initial gas volume to the compliance parameter in the original ventilator model can be replaced by the pressure formed by the respiratory muscle acting on the ventilator system, and Replace the positive end-expiratory pressure in the original ventilator model with the preset airway pressure to generate a preset ventilator model.
  • the preset ventilator model is constructed based on the original ventilator model.
  • the method is simple and has a certain theoretical basis, which ensures the accuracy of the preset ventilator model.
  • P m is the pressure formed by the respiratory muscles acting on the ventilator system
  • P n is the pressure of the respiratory muscles
  • V 0 is the initial gas volume
  • C is the compliance parameter.
  • the target control increment includes a target feedforward increment, a target feedback increment, and a target robust increment; in step 410, according to the update error and the preset
  • the ventilator model for determining the target control increment of the exhalation valve includes:
  • Step 410A Determine the target feedforward increment according to the update error and the preset ventilator model.
  • the target feedforward increment refers to the feedforward control increment determined according to the update error and the preset ventilator model, and its function is to quickly eliminate the error.
  • Feedforward control refers to the correct prediction of possible future problems by observing the situation, collecting and sorting information, mastering the laws, and predicting trends, and taking measures in advance to eliminate possible deviations in the budding state, in order to avoid possible future development stages Measures taken in advance for problems that arise.
  • the control part issues an instruction to make the controlled part perform a certain activity, and at the same time sends a feedforward signal to the controlled part through another shortcut, and the controlled part receives the feedforward signal in time when receiving the instruction of the control part for activity. Regulation, so the activity can be more accurate.
  • the update error is
  • Step 410B Determine the target feedback increment and the target robust increment according to the update error.
  • the target feedback increment refers to the feedback control increment determined according to the update error, and its function is to ensure the dynamic performance and steady-state performance of the system.
  • Feedback control refers to comparing the actual results after the completion of a certain action and task, so as to have an impact on the next action and play a control role. Its characteristics are: to respond to the objective effects of each step of the planning decision in the implementation process in a timely manner, and adjust and modify the next implementation plan accordingly, so that the implementation of the plan decision is dynamic with the original plan itself.
  • the target robust increment refers to the robust control increment determined according to the update error, and its function is to strengthen the performance of the ventilator system to maintain stable airway pressure.
  • the size of the target feedback increment has a linear relationship with the size of the update error. If the update error is a positive value, it indicates that the patient’s current airway pressure is greater than the preset airway pressure, and the control amount of the exhalation valve needs to be changed. Decrease, the amount of decrease is related to the update error. At this time, the target feedback increment is obtained. Compared with only the target feedforward increment, the performance of the ventilator system for maintaining stable airway pressure can be further improved.
  • the target robust increment has a linear relationship with the sign function with the size of the update error as a variable, which can further enhance the performance of the ventilator system to maintain stable airway pressure.
  • determining the target feedback increment and the target robust increment according to the update error in step 410B includes:
  • Step 410B1 Obtain the feedback coefficient and the robust coefficient.
  • the feedback coefficient is used to determine the size of the target feedback increment, and the feedback coefficient is a constant.
  • the robustness coefficient is used to determine the size of the target robustness increment, and the robustness coefficient is a constant.
  • the feedback coefficient and robustness coefficient can be determined artificially according to related theories and experience, or they can be learned through machine learning and other methods.
  • Step 410B2 Determine the target feedback increment according to the feedback coefficient and the update error.
  • the product of the feedback coefficient and the update error is used as the target feedback increment.
  • the feedback coefficient is -k 0
  • k 0 is a non-zero constant
  • the update error is s
  • the target feedback increment is -k 0 ⁇ s. If k 0 is a positive number, when the update error s is less than 0, it indicates that the current airway pressure of the patient is less than the preset airway pressure. Determining the control amount according to the target feedforward increment may cause the control amount to decrease too much at one time and cause excessive regulation In the case of, at this time, the target feedback increment is set to a positive value, and the control increment is increased by -k 0 ⁇ s, which can effectively avoid this situation.
  • Step 410B3 Determine the target robustness increment according to the robustness coefficient and the update error.
  • the robustness coefficient is -k 2 , where k 2 is a non-zero constant and the update error is s, then the target feedback increment is -k 2 ⁇ sign(s).
  • the target feedforward increment refers to the feedforward increment calculated to achieve this gas discharge.
  • the machine model determines the target feedforward increment, including:
  • Step 410A1 Obtain an original feedforward increment, where the original feedforward increment refers to the feedforward increment calculated for realizing the last gas discharge.
  • the original feedforward increment refers to the original feedforward increment calculated based on the last update error and the ventilator model in order to achieve the last exhaust discharge.
  • the relational expression for calculating the feedforward increment can be derived, and the parameter size in the relational expression is related to the size of the update error.
  • the relational formula for calculating the feedforward increment can be derived as Hypothesis Is the parameter calculated according to the last update error when calculating the original feedforward increment, then the original feedforward increment is
  • Step 410A2 Obtain the target feedforward increment according to the original feedforward increment and the update error.
  • the parameter for calculating the target feedforward increment can be determined, and according to the determined parameter for calculating the target feedforward increment, the target feedforward increment can be calculated.
  • the corresponding parameters are updated according to the update error and the original feedforward increment, which is beneficial to improve the stability of the ventilator system.
  • the parameter update rate is to minimize the tracking error between the controlled object and the reference model.
  • the feedforward term can use the parameter update rate to identify unknown system parameters, and adjust the feedback gain to adapt to system changes.
  • the design parameter update rate is in, for The derivative value of The update increment of, s is the update error, and ⁇ is the known parameter. If the feedforward term relation is The original feedforward increment is The update parameter is s 1 , then the parameter update rate When calculating the target feedforward increment, the parameters will Substitute Then the target feedforward increment can be obtained.
  • an exhalation valve control device includes: an acquisition module 1202: used to acquire the current airway pressure and the preset airway pressure.
  • the pressure difference module 1204 used to calculate a pressure error according to the current airway pressure and the preset airway pressure.
  • the update module 1206 is used to update the pressure error to obtain an update error, and the update error is greater than the pressure error.
  • Obtaining model module 1208 used to obtain a preset ventilator model.
  • the determining module 1210 is configured to determine the target control increment of the exhalation valve according to the update error and the preset ventilator model, so that the exhalation valve controls the gas discharge according to the target control increment.
  • the update module 1206 is specifically configured to: obtain an integral interval; obtain an integral error according to the integral interval and the pressure error; obtain the update error according to the integral error and the pressure error.
  • the update module 1206 is specifically configured to: obtain the pressure coefficient and the integral coefficient; obtain the updated pressure according to the pressure coefficient and the pressure error; obtain the updated integral according to the integral coefficient and the integral error; The sum of the update pressure and the update integral is used as the update error.
  • the obtaining model module 1208 is specifically used to: obtain an original ventilator model; according to the original ventilator model and the respiratory muscle pressure, positive end expiratory pressure, and initial ventilator model in the original ventilator model.
  • the gas volume and compliance parameters generate the preset ventilator model.
  • the target control increment includes a target feedforward increment, a target feedback increment, and a target robust increment.
  • the determining module 1210 includes: a determining feedforward module for determining the feedforward module according to the update error and the The preset ventilator model determines the target feedforward increment; a determining feedback and robust module is used to determine the target feedback increment and the target robust increment according to the update error.
  • the determining feedback and robustness module is configured to determine the target feedback increment and the target robust increment according to the update error, and is specifically configured to: obtain feedback coefficients and robust coefficients; The feedback coefficient and the update error determine the target feedback increment; the target robust increment is determined according to the robust coefficient and the update error.
  • the target feedforward increment refers to the feedforward increment calculated to achieve this gas discharge
  • the determining feedforward module is used to determine the desired value based on the update error and the preset ventilator model.
  • the target feedforward increment is specifically used to: obtain the original feedforward increment, the original feedforward increment refers to the feedforward increment calculated to achieve the last gas discharge; according to the original feedforward increment and the total The update error obtains the target feedforward increment.
  • Fig. 13 shows an internal structure diagram of a computer device in an embodiment.
  • the computer device may specifically be a ventilator, or a device that can implement the method for controlling the exhalation valve described in the embodiments of the present application.
  • the computer device may be a terminal, a server, or other devices that can implement the methods described in the embodiments of the present application.
  • the device for the control method of the exhalation valve mentioned above is, for example, a device that simulates the lung respiratory system for teaching.
  • the computer device includes a processor, a memory, and a network interface connected through a system bus.
  • the memory includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium of the computer device stores an operating system and may also store a computer program.
  • the processor can realize the control method of the exhalation valve.
  • a computer program can also be stored in the internal memory, and when the computer program is executed by the processor, the processor can execute the method for controlling the exhalation valve.
  • a computer device which includes a memory and a processor, the memory stores a computer program, and when the computer program is executed by the processor, the processor executes the following steps: Airway pressure and preset airway pressure; calculate the pressure error according to the current airway pressure and the preset airway pressure; update the pressure error to obtain an update error, the update error is greater than the pressure Error; obtain a preset ventilator model; determine the target control increment of the exhalation valve according to the update error and the preset ventilator model, so that the exhalation valve is controlled according to the target control increment The gas is discharged.
  • a computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the processor executes the following steps: obtaining current airway pressure and preset airway pressure Pressure; calculate the pressure error according to the current airway pressure and the preset airway pressure; update the pressure error to obtain an update error, the update error is greater than the pressure error; obtain a preset ventilator Model; determining the target control increment of the exhalation valve according to the update error and the preset ventilator model, so that the exhalation valve controls gas discharge according to the target control increment.
  • exhalation valve control method exhalation valve control device, computer equipment, and computer-readable storage medium belong to a general application concept.
  • Exhalation valve control method, exhalation valve control device, computer The contents in the embodiments of the device and the computer-readable storage medium may be mutually applicable.
  • Non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Channel (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDRSDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous chain Channel
  • memory bus Rabus direct RAM
  • RDRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM

Landscapes

  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Feedback Control In General (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种呼气阀(2)的控制方法、装置、计算机设备和存储介质。呼气阀(2)的控制方法,包括:获取当前气道压力和预置气道压力(S402);根据当前气道压力和预置气道压力,计算压力误差(S404);对压力误差进行更新,得到更新误差,更新误差大于压力误差(S406);获取预置的呼吸机模型(S408);根据更新误差和预置的呼吸机模型确定呼气阀(2)的目标控制增量,以便呼气阀(2)根据目标控制增量控制气体排出(S410)。可见,更新误差将压力误差进行放大,增大呼吸机***过多阶段的调控力度,不仅可以使过渡段性能更加优越,快速进入呼吸维持阶段,而且,可以消除微小的稳态或者静态压力误差,使呼吸维持段的性能更加稳定。

Description

呼气阀的控制方法、装置、计算机设备和存储介质 技术领域
本申请涉及呼气阀的控制技术领域,尤其涉及一种呼气阀的控制方法、装置、计算机设备和存储介质。
背景技术
在现代临床医学中,呼吸机作为一项能人工替代自主通气功能的有效手段,已普遍用于各种原因所致的呼吸衰竭、大手术期间的麻醉呼吸管理、呼吸支持治疗和急救复苏中,在现代医学领域内占有十分重要的位置。在呼吸机的控制中需要对某些特殊病人进行压力控制通气。如图1所示,空氧混合气体1通过呼吸机的呼气阀2进入病人的肺部3,然后呼吸机的呼气阀4将通过肺部3气体交换后的废气5排出体外。
目前的呼吸机压力控制方法中,有一种方法是,呼气开始之后先将呼气阀打开到最大,然后再设置关阀条件,这样会导致压力过冲(如图2所示)或压力达到呼气末正压需时太长(如图3所示),即从呼吸过渡阶段到呼吸维持阶段的时间较长。还有一种方法是采用吸气阀和呼气阀协同工作,完成呼吸机压力控制下的压力建立和压力平衡,这种方法在提高患者舒适度方面,能很好的对所需压力进行控制,但在有呼气末正压建立的时候,呼气末正压的建立时间比较长即进入呼吸维持阶段的时间较长,且容易导致控制耦合问题,当控制效果出现不好时难以确定是吸气阀还是呼气阀的问题。
因此,亟需一种只需控制呼气阀即可快速进入呼吸维持阶段并维持呼吸***稳定的方法。
申请内容
基于此,有必要针对上述问题,提出了一种可快速进入呼吸维持阶段并维 持呼吸***稳定的的呼气阀的控制方法、装置、计算机设备和存储介质。
本申请实施例提供了一种呼气阀的控制方法,所述方法包括:获取当前气道压力和预置气道压力;根据所述当前气道压力和所述预置气道压力,计算压力误差;对所述压力误差进行更新,得到更新误差,所述更新误差大于所述压力误差;获取预置的呼吸机模型;根据所述更新误差和所述预置的呼吸机模型确定所述呼气阀的目标控制增量,以便所述呼气阀根据所述目标控制增量控制气体排出。
一种呼气阀的控制装置,所述装置包括:获取模块,用于获取当前气道压力和预置气道压力;压差模块,用于根据所述当前气道压力和所述预置气道压力,计算压力误差;更新模块,用于对所述压力误差进行更新,得到更新误差,所述更新误差大于所述压力误差;获取模型模块,用于获取预置的呼吸机模型;确定模块,用于根据所述更新误差和所述预置的呼吸机模型确定所述呼气阀的目标控制增量,以便所述呼气阀根据所述目标控制增量控制气体排出。
一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行以下步骤:获取当前气道压力和预置气道压力;根据所述当前气道压力和所述预置气道压力,计算压力误差;对所述压力误差进行更新,得到更新误差,所述更新误差大于所述压力误差;获取预置的呼吸机模型;根据所述更新误差和所述预置的呼吸机模型确定所述呼气阀的目标控制增量,以便所述呼气阀根据所述目标控制增量控制气体排出。
一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行以下步骤:获取当前气道压力和预置气道压力;根据所述当前气道压力和所述预置气道压力,计算压力误差;对所述压力误差进行更新,得到更新误差,所述更新误差大于所述压力误差;获取预置的呼吸机模型;根据所述更新误差和所述预置的呼吸机模型确定所述呼气阀的目标控制增量,以便所述呼气阀根据所述目标控制增量控制气体排出。
实施本申请实施例,将具有如下有益效果:
上述呼气阀的控制方法、呼气阀的控制装置、计算机设备和计算机可读存储介质,通过计算获取得到的当前气道压力和预置气道压力之间的压力误差,对所述压力误差进行更新,得到大于所述压力误差的更新误差,根据所述更新误差和预置的呼吸机模型可以确定所述呼气阀的目标控制增量,根据所述目标控制增量控制呼气阀气体排出的量,以使当前气道压力与预置气道压力之间的压力逐渐减小。可见,所述更新误差将所述压力误差进行放大,增大呼吸机***过多阶段的调控力度,不仅可以使过渡段性能更加优越,快速进入呼吸维持阶段,而且,可以消除微小的稳态或者静态压力误差,使呼吸维持段的性能更加稳定。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
其中:
图1为一个呼吸机***的结构示意图;
图2为一个呼吸机***在呼吸过渡阶段压力过冲的效果图;
图3为一个呼吸机***由呼吸过渡阶段进入呼吸维持阶段时间较长的效果图;
图4为一个实施例中呼气阀的控制方法的流程图;
图5为一个实施例中呼吸机***在呼吸过度阶段的效果图;
图6为一个实施例中对所述压力误差进行更新,得到更新误差的流程图;
图7为一个实施例中根据所述积分误差和所述压力误差得到所述更新误差的流程图;
图8为一个实施例中获取预置的呼吸机模型的流程图;
图9为一个实施例中根据所述更新误差和所述预置的呼吸机模型确定所述呼气阀的目标控制增量的流程图;
图10为一个实施例中根据所述更新误差确定所述目标反馈增量和所述目标鲁棒增量的流程图;
图11为一个实施例中根据所述更新误差和所述预置的呼吸机模型确定所述目标前馈增量的流程图;
图12为一个实施例中呼气阀的控制装置的结构框图;
图13为一个实施例中计算机设备的结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图4所示,在一个实施例中,提供了一种呼气阀的控制方法。该方法可以应用于呼吸机,也可以应用于本申请实施例所述的呼气阀的控制方法的设备,示例性的,该方法还可以应用于终端,服务器以及其他能够实现本申请实施例所述的呼气阀的控制方法的装置,如教学用的模拟肺部呼吸***的设备,用于向学生展示肺部的呼吸过程。本申请实施例所述的呼气阀的控制方法,具体包括:
步骤402:获取当前气道压力和预置气道压力。
其中,当前气道压力是指当前呼气状态下病人肺部气道的压力值。在呼吸机***中设置压力传感器,可以通过压力传感器读取所述当前气道压力。其中,预置气道压力是指预先设置的病人在呼气状态下具有较高舒适度时其肺部气道所需的压力值。预置气道压力可以是呼气末正压。呼气末正压是指在控制呼 吸或辅助呼吸时,于呼吸末期在呼吸气道保持一定的正压的压力值。呼吸气道内保持一定的正压可避免肺泡早期闭合,使肺泡扩张,功能残气量增加,改善通气和氧合,进而可以提高病人的舒适度。呼吸维持阶段稳定是指病人呼吸末时保持气道压力大小与呼气末正压的压力大小相同或相近。
步骤404:根据所述当前气道压力和所述预置气道压力,计算压力误差。
其中,压力误差是指所述当前气道压力和所述预置气道压力的差值。由于呼吸机在工作时会受到各方面因素的影响,如供给气道气体的影响,病人自身排气的影响等影响,使得所述当前气道压力不稳定,因此为了使患者具有较高的舒适度,需要维持气道压力稳定即能够保障呼吸末期气道压力为预置气道压力,并能够保持不变,而维持气道压力稳定依赖于计算得到的压力误差。若所述压力误差为零,表明在当前状态下,病人的当前气道压力与预置气道压力相同,病人的舒适度较高,无需对呼气阀的控制量进行调整;若所述压力误差不为零,表明在当前状态下,病人的当前气道压力与预置气道压力不相同,病人的舒适度较低,需要对呼气阀的控制量进行调整以提高病人的舒适度。示例性的,当前气道压力为P aw,预置气道压力为P awset,则压力误差e=P aw-P awset
步骤406:对所述压力误差进行更新,得到更新误差,所述更新误差大于所述压力误差。
其中,更新误差,指将压力误差放大后得到的误差。在呼吸过渡段,由于更新误差大于压力误差,所以根据更新误差对呼气阀的控制量的调控力度相对于直接根据压力误差对呼气阀的控制量的调控力度要大,因此,可以加速建立呼气末正压,快速到达呼吸稳定阶段。当建立好呼气末正压后,进入呼吸维持阶段,由于各种因素造成的微小压力误差,经放大得到更新误差,也能够很好被监控到,进而可以及时根据更新误差对呼气阀的控制量进行调整,以使病人的气道压力等于预置气道压力。相对于直接使用压力误差对呼气阀的控制量进行调控,当压力误差达到一定大小才能够被监控到,此时再根据压力误差对呼气阀的控制量进行调控,采用更新误差对呼气阀的控制量进行调控,可以提高 呼吸维持阶段的维持气道压力稳定的性能。
示例性的,所述压力误差为e,则所述更新误差为s=a×e,其中a为大于1的常数。
步骤408:获取预置的呼吸机模型。
其中,预置的呼吸机模型是指预先设置的呼吸机模型,呼吸机模型是根据呼吸***中的力学关系建立的呼吸***力学模型。其中,预置的呼吸机模型为
Figure PCTCN2020095137-appb-000001
其中V l=V i-V e,V i为呼吸机经吸气阀吸入气体的流量,V e为呼吸机经呼气阀排出气体的流量,V l为呼吸机提供的实际气体流量,R rs为呼吸***的气阻,C rs为呼吸***顺应性参数,P m为呼吸肌作用于呼吸机***形成的压力,P aw为当前气道压力,
Figure PCTCN2020095137-appb-000002
为积分符号。其中,V e=k×u,k为呼气阀的控制排气时的比例系数,一般而言,k为已知常数,u为呼气阶段呼气阀的控制量。
步骤410:根据所述更新误差和所述预置的呼吸机模型确定所述呼气阀的目标控制增量,以便所述呼气阀根据所述目标控制增量控制气体排出。
其中,目标控制增量是指所述呼气阀本次呼气时的控制量相对于前一次呼气时的控制量的增加量。根据所述更新误差和所述预置的呼吸机模型,经过推导、计算和设计,可以确定目标控制增量和更新误差之间的关系式,将所述更新误差的数值代入该关系式,可以确定目标控制增量的数值。所述呼气阀的控制量在原有基础上增加目标控制增量,并进行更新,此时,所述呼气阀根据更新后的控制量控制气体排出,有利于加速减小所述压力误差,建立呼气末正压,提高病人的舒适度。对比图2、图3和图5可知,观察三幅图中的灰色线条可知,图2和图3中均在1.25秒以后灰色线条才开始趋于一条直线,即进入呼吸维持阶段需要至少1.25秒;图5中在1秒后,灰色线条就开始趋于一条直线,即进入呼吸维持阶段只需要1秒钟。图2中的灰色线条在前1.25秒部分 变化剧烈,且灰色线条存在低于呼吸维持阶段的部分,表明呼吸过冲会造成存在一些时刻病人的气道压力低于呼气末正压,不仅剧烈变化使病人舒适度低,而且存在肺泡粘结等潜在危险。图3中的灰色线条在前1.25秒部分为平滑曲线,且不存在压力过冲的现象,可以在提高病人的舒适度,能很好的对所需压力进行控制,图5中的灰色线条在前1秒部分为平滑曲线,也可以在保障病人舒适度的前提下对呼气阀的控制量进行调整。因此本申请实施例提供的呼气阀的控制方法,不仅可以使过渡段性能更加优越,而且可以快速进入呼吸维持阶段。此外,观察可知,图2和图3中的灰色线条在1.25秒后并不为一条直线,随着时间的推移,出现较为明显的下降,图5中的灰色线条在1秒后的部分随着时间的推移,仍然可以保持为一条直线,表明本申请实施例提供的呼气阀的控制方法,可以消除呼吸维持阶段的微小的稳态或静态压力误差,使呼吸维持阶段的维持气道压力稳定的性能更加优越。
示例性的,假设在t时刻根据更新误差和预置的呼吸机模型确定的呼气阀的目标控制增量为u'(t),例如,
Figure PCTCN2020095137-appb-000003
其中,s为更新误差,
Figure PCTCN2020095137-appb-000004
θ T的大小由更新误差s和预置的呼吸机模型确定,k m、k n为非零常数,sign(s)为以更新误差s为变量的符号函数。上一时刻,即(t-1)时刻所述呼气阀控制气体排出的控制量为u(t-1),则t时刻所述呼气阀控制气体排出的控制量u(t)=u(t-1)+u'(t)。
上述呼气阀的控制方法,通过计算获取得到的当前气道压力和预置气道压力之间的压力误差,对所述压力误差进行更新,得到大于所述压力误差的更新误差,根据所述更新误差和预置的呼吸机模型可以确定所述呼气阀的目标控制增量,根据所述目标控制增量控制呼气阀气体排出的量,以使当前气道压力与预置气道压力之间的压力逐渐减小。可见,所述更新误差将所述压力误差进行放大,增大呼吸机***过多阶段的调控力度,不仅可以使过渡段性能更加优越,快速进入呼吸维持阶段,而且,可以消除微小的稳态或者静态压力误差,使呼吸维持段的性能更加稳定。
如图6所示,在一个实施例中,步骤406所述对所述压力误差进行更新,得到更新误差,包括:
步骤406A:获取积分区间。
其中,积分区间是指对所述压力误差进行积分的时间区间。
步骤406B:根据所述积分区间和所述压力误差得到积分误差。
其中,积分误差,为对压力误差积分得到的误差,积分的作用实际上就是压力误差随着时间所进行的数值积累的过程,积分误差用于放大所述压力误差。除所述压力误差一直为0的情况外,一般而言,所述积分误差大于所述压力误差。例如,积分区间为[0,t],压力误差为e,则积分误差为
Figure PCTCN2020095137-appb-000005
病人处于呼吸过渡阶段时,通过积分误差,可以形成更大的驱动输出,从而可以增大对所述呼气阀的控制量的调控力度,进而可以快速建立呼气末正压,从而使病人进入呼吸维持阶段。在病人处于呼吸维持阶段时,通过积分误差,一些很小的压力误差就会被放大,从而形成足够的驱动输出,来消除呼吸维持阶段微小的压力误差,从而保障呼吸维持阶段的气道压力的稳定,进而保障病人一直具有较好的舒适度。
步骤406C:根据所述积分误差和所述压力误差得到所述更新误差。
将积分误差和压力误差通过计算的和作为更新误差。例如,压力误差为e,积分误差为
Figure PCTCN2020095137-appb-000006
则更新误差s为
Figure PCTCN2020095137-appb-000007
如图7所示,在一个实施例中,步骤406C所述根据所述积分误差和所述压力误差得到所述更新误差,包括:
步骤406C1:获取压力系数和积分系数。
其中,压力系数是指计算更新误差时,压力误差的权重。其中,积分系数是指计算更新误差时,积分误差的权重。压力系数和积分系数可以根据相关理论和经验进行人为确定,也可以通过机器学习等方式学习得到。
步骤406C2:根据所述压力系数和所述压力误差得到更新压力。
其中,更新压力,为通过压力系数对压力误差进行调整后得到的压力,更 新压力可以通过计算压力系数与压力误差的乘积得到。例如,压力系数为1,压力误差为e,则更新压力仍为e。
步骤406C3:根据所述积分系数和所述积分误差得到更新积分。
其中,更新积分,为通过积分系数对积分误差进行调整得到的压力,更新积分可以通过计算积分系数和积分误差的乘积得到。例如,积分系数为k 1,积分误差为
Figure PCTCN2020095137-appb-000008
则更新积分为
Figure PCTCN2020095137-appb-000009
步骤406C4:将所述更新压力和所述更新积分的和作为所述更新误差。
将更新压力和更新积分通过计算得到的结果作为更新误差,例如,更新压力为e,更新积分为
Figure PCTCN2020095137-appb-000010
则更新误差
Figure PCTCN2020095137-appb-000011
如图8所示,在一个实施例中,步骤408所述获取预置的呼吸机模型,包括:
步骤408A:获取原始的呼吸机模型。
其中,原始的呼吸机模型是指呼吸***力学模型。
示例性的,原始的呼吸机模型为:
Figure PCTCN2020095137-appb-000012
其中,P n为呼吸肌压力,P aw为气道压力,PEEP为呼气末正压,V=∫fdτ+V 0,f=f 1-f 2,f 1=k×u,C为顺应性参数,f为硬质肺气体流量,R为气阻,k为控制量系数,u为控制量。
步骤408B:根据所述原始的呼吸机模型和所述原始的呼吸机模型中的呼吸肌压力、呼气末正压、初始气体容积和顺应性参数生成所述预置的呼吸机模型。
其中,呼吸肌压力是指呼吸肌在呼吸过程中通过收缩与舒张产生的弹性压力。其中,初始气体容积是指病人肺部初始气体的容积。其中,顺应性参数是指单位压力的作用下容量变化的参数。
因为呼吸机***可以基于上述原始的呼吸机模型,将原始的呼吸机模型中的呼吸肌压力和初始气体容积与顺应性参数的比值之差替换为呼吸肌作用于 呼吸机***形成的压力,并将原始的呼吸机模型中呼气末正压替换为预置气道压力,生成预置的呼吸机模型。本实施例中,基于原始的呼吸机模型构建预置的呼吸机模型,方式简单,且具有一定的理论基础,保证了预置的呼吸机模型的准确性。例如,
Figure PCTCN2020095137-appb-000013
其中,P m为呼吸肌作用于呼吸机***形成的压力,P n为呼吸肌有压力,V 0为初始气体容积,C为顺应性参数。
如图9所示,在一个实施例中,所述目标控制增量包括目标前馈增量、目标反馈增量和目标鲁棒增量;步骤410所述根据所述更新误差和所述预置的呼吸机模型确定所述呼气阀的目标控制增量,包括:
步骤410A:根据所述更新误差和所述预置的呼吸机模型确定所述目标前馈增量。
其中,目标前馈增量,是指根据更新误差和预置的呼吸机模型确定的前馈控制增量,其作用为可以快速的消除误差。前馈控制是指通过观察情况、收集整理信息、掌握规律、预测趋势,正确预计未来可能出现的问题,提前采取措施,将可能发生的偏差消除在萌芽状态中,为避免在未来不同发展阶段可能出现的问题而事先采取的措施。控制部分发出指令使受控部分进行某种活动,同时又通过另一快捷途径向受控部分发出前馈信号,受控部分在接受控制部分的指令进行活动时,又及时地受到前馈信号的调控,因此活动可以更加准确。
示例性的,更新误差为
Figure PCTCN2020095137-appb-000014
预置的呼吸机模型为
Figure PCTCN2020095137-appb-000015
压力误差e=P aw-P awset,则对更新误差求导可以得到s'=e'+k 1×e,其中,e'为压力误差e的导数,将预置的呼吸机模型代入s'=e'+k 1×e可以得到
Figure PCTCN2020095137-appb-000016
其中u'为控制量u的导数,即控制增量。通过推导和计算,令
Figure PCTCN2020095137-appb-000017
Figure PCTCN2020095137-appb-000018
则可以确定前馈项为
Figure PCTCN2020095137-appb-000019
将相应的参数数值代入,即可得到所述目标前馈增量。
步骤410B:根据所述更新误差确定所述目标反馈增量和所述目标鲁棒增量。
其中,目标反馈增量是指根据更新误差确定的反馈控制增量,其作用是为了保证***的动态性能和稳态性能。反馈控制是指在某一行动和任务完成之后,将实际结果进行比较,从而对下一步行动的进行产生影响,起到控制的作用。其特点是:对计划决策在实施过程中的每一步骤所引起的客观效果,能够及时做出反应,并据此调整、修改下一步的实施方案,使计划决策的实施与原计划本身在动态中达到协调。其中,目标鲁棒增量是指根据更新误差确定的鲁棒控制增量,其作用是为了加强呼吸机***维持气道压力稳定的性能。鲁棒控制是指控制***在一定(结构,大小)的参数摄动下,维持某些性能的特性,使具有不确定性的对象满足控制品质。示例性的,目标反馈增量的大小与更新误差的大小成线性关系,若更新误差为正值,则表明病人当前气道压力大于所述预置气道压力,需要将呼气阀的控制量减小,减小量与所述更新误差的相关,此时获取目标反馈增量,相对于只有目标前馈增量,可以进一步提高呼吸机***的维持气道压力稳定的性能。目标鲁棒增量与以更新误差的大小为变量的符号函数成线性关系,可以进一步强化所述呼吸机***的维持气道压力稳定的性能。
如图10所示,在一个实施例中,步骤410B所述根据所述更新误差确定所述目标反馈增量和所述目标鲁棒增量,包括:
步骤410B1:获取反馈系数和鲁棒系数。
其中,反馈系数用于确定目标反馈增量的大小,反馈系数为一个常数。其 中,鲁棒系数用于确定目标鲁棒增量的大小,鲁棒系数为一个常数。反馈系数和鲁棒系数可以根据相关理论和经验进行人为确定,也可以通过机器学习等方式学习得到。
步骤410B2:根据所述反馈系数和所述更新误差确定所述目标反馈增量。
将所述反馈系数和所述更新误差的乘积作为所述目标反馈增量。示例性的,反馈系数为-k 0,k 0为非零常数,更新误差为s,则目标反馈增量为-k 0×s。若k 0为正数,当更新误差s小于0,表明该病人的当前气道压力小于预置气道压力,根据目标前馈增量确定控制量可能会造成控制量一下减少过多造成调控过度的情况,此时将目标反馈增量为正值,使控制增量增加-k 0×s,可以有效避免出现这种状况。
步骤410B3:根据所述鲁棒系数和所述更新误差确定所述目标鲁棒增量。
根据更新误差确定鲁棒项,将鲁棒系数和鲁棒项的乘积作为目标鲁棒增量,其中,鲁棒项为关于更新误差的函数,鲁棒项可以是以更新误差的大小作为变量的符号函数。示例性的,鲁棒系数为-k 2,其中,k 2为非零常数,更新误差为s,则目标反馈增量为-k 2×sign(s)。若k 2为大于零的常数,当s大于0时,sign(s)=1,则目标鲁棒增量为-k 2,使控制增量减小k 2,用于防止出现根据目标前馈增量确定控制量可能会造成控制量一下减少过多造成调控过度的情况,进一步加强呼吸机***的稳定性;当s等于0时,sign(s)=0,则目标鲁棒增量为0,该目标鲁棒增量对控制增量的大小无影响;当s小于0时,sign(s)=-1,则目标鲁棒增量为k 2,使控制增量增大k 2,用于防止出现根据目标前馈增量确定目标前馈增量确定控制量可能造成控制量一下增多过多造成调控过度的情况,进一步加强呼吸机***的稳定性。
如图11所示,在一个实施例中,所述目标前馈增量指为实现本次气体排出计算得到的前馈增量,步骤410A所述根据所述更新误差和所述预置的呼吸机模型确定所述目标前馈增量,包括:
步骤410A1:获取原始前馈增量,所述原始前馈增量指为实现上一次气体 排出计算得到的前馈增量。
其中,原始前馈增量是指为实现上一次排气排出,根据上一次的更新误差和呼吸机模型计算得到的前馈增量即为所述原始前馈增量。根据更新误差和呼吸机模型可以推导出计算前馈增量的关系式,关系式中的参数大小与更新误差的大小相关。示例性的,根据更新误差和呼吸机模型可以推导出计算前馈增量的关系式为
Figure PCTCN2020095137-appb-000020
假设
Figure PCTCN2020095137-appb-000021
是计算原始前馈增量时根据上一次的更新误差计算得到的参数,则所述原始前馈增量为
Figure PCTCN2020095137-appb-000022
步骤410A2:根据所述原始前馈增量和所述更新误差得到所述目标前馈增量。
根据原始前馈增量和更新误差,可以确定计算目标前馈增量的参数,根据确定的计算目标前馈增量的参数,可以计算所述目标前馈增量。每次计算目标前馈增量时,根据所述更新误差和所述原始前馈增量对相应的参数进行更新,有益于提高呼吸机***的稳定性。
示例性的,参数更新率是为了使得被控对象和参考模型之间的跟踪误差达到最小,前馈项可采用参数更新率以识别未知的***参数,并通过调节反馈增益来适应***变化。在本申请实施例中,设计参数更新率为
Figure PCTCN2020095137-appb-000023
其中,
Figure PCTCN2020095137-appb-000024
Figure PCTCN2020095137-appb-000025
的导数值,即
Figure PCTCN2020095137-appb-000026
的更新增量,s为更新误差,γ为已知参数。若前馈项关系式为
Figure PCTCN2020095137-appb-000027
原始前馈增量为
Figure PCTCN2020095137-appb-000028
更新参数为s 1,则参数更新率
Figure PCTCN2020095137-appb-000029
计算目标前馈增量时,参数
Figure PCTCN2020095137-appb-000030
Figure PCTCN2020095137-appb-000031
代入
Figure PCTCN2020095137-appb-000032
即可得到所述目标前馈增量。
如图12所示,在一个实施例中提供了一种呼气阀的控制装置,所述控制装置包括:获取模块1202:用于获取当前气道压力和预置气道压力。压差模块1204:用于根据所述当前气道压力和所述预置气道压力,计算压力误差。更新模块1206:用于对所述压力误差进行更新,得到更新误差,所述更新误差大于所述压力误差。获取模型模块1208:用于获取预置的呼吸机模型。确定模块1210:用于根据所述更新误差和所述预置的呼吸机模型确定所述呼气 阀的目标控制增量,以便所述呼气阀根据所述目标控制增量控制气体排出。
在一个实施例中,更新模块1206具体用于:获取积分区间;根据所述积分区间和所述压力误差得到积分误差;根据所述积分误差和所述压力误差得到所述更新误差。
在一个实施例中,更新模块1206具体用于:获取压力系数和积分系数;根据所述压力系数和所述压力误差得到更新压力;根据所述积分系数和所述积分误差得到更新积分;将所述更新压力和所述更新积分的和作为所述更新误差。
在一个实施例中,获取模型模块1208具体用于:获取原始的呼吸机模型;根据所述原始的呼吸机模型和所述原始的呼吸机模型中的呼吸肌压力、呼气末正压、初始气体容积和顺应性参数生成所述预置的呼吸机模型。
在一个实施例中,所述目标控制增量包括目标前馈增量、目标反馈增量和目标鲁棒增量,确定模块1210包括:确定前馈模块,用于根据所述更新误差和所述预置的呼吸机模型确定所述目标前馈增量;确定反馈与鲁棒模块,用于根据所述更新误差确定所述目标反馈增量和所述目标鲁棒增量。
在一个实施例中,确定反馈与鲁棒模块用于根据所述更新误差确定所述目标反馈增量和所述目标鲁棒增量,具体用于:获取反馈系数和鲁棒系数;根据所述反馈系数和所述更新误差确定所述目标反馈增量;根据所述鲁棒系数和所述更新误差确定所述目标鲁棒增量。
在一个实施例中,所述目标前馈增量指为实现本次气体排出计算得到的前馈增量,确定前馈模块用于根据所述更新误差和所述预置的呼吸机模型确定所述目标前馈增量,具体用于:获取原始前馈增量,所述原始前馈增量指为实现上一次气体排出计算得到的前馈增量;根据所述原始前馈增量和所述更新误差得到所述目标前馈增量。
图13示出了一个实施例中计算机设备的内部结构图。该计算机设备具体可以是呼吸机,也可以是能够实现本申请实施例所述的呼气阀的控制方法的设备,示例性的,计算机设备可以是终端,服务器以及其他能够实现本申请实施 例所述的呼气阀的控制方法的装置,如教学用的模拟肺部呼吸***的设备。如图13所示,该计算机设备包括通过***总线连接的处理器、存储器和网络接口。其中,存储器包括非易失性存储介质和内存储器。该计算机设备的非易失性存储介质存储有操作***,还可存储有计算机程序,该计算机程序被处理器执行时,可使得处理器实现呼气阀的控制方法。该内存储器中也可储存有计算机程序,该计算机程序被处理器执行时,可使得处理器执行呼气阀的控制方法。本领域技术人员可以理解,图13中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提出了一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行以下步骤:获取当前气道压力和预置气道压力;根据所述当前气道压力和所述预置气道压力,计算压力误差;对所述压力误差进行更新,得到更新误差,所述更新误差大于所述压力误差;获取预置的呼吸机模型;根据所述更新误差和所述预置的呼吸机模型确定所述呼气阀的目标控制增量,以便所述呼气阀根据所述目标控制增量控制气体排出。
在一个实施例中,提出了一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行以下步骤:获取当前气道压力和预置气道压力;根据所述当前气道压力和所述预置气道压力,计算压力误差;对所述压力误差进行更新,得到更新误差,所述更新误差大于所述压力误差;获取预置的呼吸机模型;根据所述更新误差和所述预置的呼吸机模型确定所述呼气阀的目标控制增量,以便所述呼气阀根据所述目标控制增量控制气体排出。
需要说明的是,上述呼气阀的控制方法、呼气阀的控制装置、计算机设备及计算机可读存储介质属于一个总的申请构思,呼气阀的控制方法、呼气阀的 控制装置、计算机设备及计算机可读存储介质实施例中的内容可相互适用。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一非易失性计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种呼气阀的控制方法,其特征在于,所述方法包括:
    获取当前气道压力和预置气道压力;
    根据所述当前气道压力和所述预置气道压力,计算压力误差;
    对所述压力误差进行更新,得到更新误差,所述更新误差大于所述压力误差;
    获取预置的呼吸机模型;
    根据所述更新误差和所述预置的呼吸机模型确定所述呼气阀的目标控制增量,以便所述呼气阀根据所述目标控制增量控制气体排出。
  2. 根据权利要求1所述的方法,其特征在于,所述对所述压力误差进行更新,得到更新误差,包括:
    获取积分区间;
    根据所述积分区间和所述压力误差得到积分误差;
    根据所述积分误差和所述压力误差得到所述更新误差。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述积分误差和所述压力误差得到所述更新误差,包括:
    获取压力系数和积分系数;
    根据所述压力系数和所述压力误差得到更新压力;
    根据所述积分系数和所述积分误差得到更新积分;
    将所述更新压力和所述更新积分的和作为所述更新误差。
  4. 根据权利要求1所述的方法,其特征在于,所述获取预置的呼吸机模型,包括:
    获取原始的呼吸机模型;
    根据所述原始的呼吸机模型和所述原始的呼吸机模型中的呼吸肌压力、呼气末正压、初始气体容积和顺应性参数生成所述预置的呼吸机模型。
  5. 根据权利要求1所述的方法,其特征在于,所述目标控制增量包括目标 前馈增量、目标反馈增量和目标鲁棒增量;
    所述根据所述更新误差和所述预置的呼吸机模型确定所述呼气阀的目标控制增量,包括:
    根据所述更新误差和所述预置的呼吸机模型确定所述目标前馈增量;
    根据所述更新误差确定所述目标反馈增量和所述目标鲁棒增量。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述更新误差确定所述目标反馈增量和所述目标鲁棒增量,包括:
    获取反馈系数和鲁棒系数;
    根据所述反馈系数和所述更新误差确定所述目标反馈增量;
    根据所述鲁棒系数和所述更新误差确定所述目标鲁棒增量。
  7. 根据权利要求5所述的方法,其特征在于,所述目标前馈增量指为实现本次气体排出计算得到的前馈增量;
    所述根据所述更新误差和所述预置的呼吸机模型确定所述目标前馈增量,包括:
    获取原始前馈增量,所述原始前馈增量指为实现上一次气体排出计算得到的前馈增量;
    根据所述原始前馈增量和所述更新误差得到所述目标前馈增量。
  8. 一种呼气阀的控制装置,其特征在于,所述装置包括:
    获取模块,用于获取当前气道压力和预置气道压力;
    压差模块,用于根据所述当前气道压力和所述预置气道压力,计算压力误差;
    更新模块,用于对所述压力误差进行更新,得到更新误差,所述更新误差大于所述压力误差;
    获取模型模块,用于获取预置的呼吸机模型;
    确定模块,用于根据所述更新误差和所述预置的呼吸机模型确定所述呼气阀的目标控制增量,以便所述呼气阀根据所述目标控制增量控制气体排出。
  9. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行如权利要求1至7中任一项所述呼气阀的控制方法的步骤。
  10. 一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如权利要求1至7中任一项所述呼气阀的控制方法的步骤。
PCT/CN2020/095137 2020-01-20 2020-06-09 呼气阀的控制方法、装置、计算机设备和存储介质 WO2021147226A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010063427.1 2020-01-20
CN202010063427.1A CN111135411B (zh) 2020-01-20 2020-01-20 呼气阀的控制方法、装置、计算机设备和存储介质

Publications (1)

Publication Number Publication Date
WO2021147226A1 true WO2021147226A1 (zh) 2021-07-29

Family

ID=70526257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095137 WO2021147226A1 (zh) 2020-01-20 2020-06-09 呼气阀的控制方法、装置、计算机设备和存储介质

Country Status (2)

Country Link
CN (1) CN111135411B (zh)
WO (1) WO2021147226A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111135411B (zh) * 2020-01-20 2021-12-10 深圳市科曼医疗设备有限公司 呼气阀的控制方法、装置、计算机设备和存储介质
KR20230013352A (ko) * 2021-07-19 2023-01-26 엘지전자 주식회사 마스크 장치 및 그 제어방법
KR20230013364A (ko) * 2021-07-19 2023-01-26 엘지전자 주식회사 마스크 장치 및 그 제어방법
CN113599645A (zh) * 2021-08-09 2021-11-05 深圳华声医疗技术股份有限公司 用于动态预览各种通气模式的波形的方法、装置、存储介质及呼吸机、麻醉机
CN114588444A (zh) * 2022-03-11 2022-06-07 四川天府焱森检测技术有限公司 呼吸机氧浓度和压力水平控制方法、装置、终端、介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130192599A1 (en) * 2012-01-31 2013-08-01 Nellcor Puritan Bennett Llc Using estimated carinal pressure for feedback control of carinal pressure during ventilation
CN106924851A (zh) * 2015-12-29 2017-07-07 北京谊安医疗***股份有限公司 基于模糊自适应pid控制的麻醉机容量控制方法
CN108348714A (zh) * 2015-09-29 2018-07-31 皇家飞利浦有限公司 针对无创通气的压力和气体混合控制的方法
CN108430559A (zh) * 2015-11-10 2018-08-21 塔斯马尼亚大学 用于自动控制吸入氧输送的方法、设备和***
CN108619597A (zh) * 2017-03-17 2018-10-09 深圳市大雅医疗技术有限公司 一种呼吸机流道的压力补偿方法
CN109507884A (zh) * 2018-11-30 2019-03-22 深圳市科曼医疗设备有限公司 空氧混合器压力控制方法、装置、计算机设备和存储介质
CN111135411A (zh) * 2020-01-20 2020-05-12 深圳市科曼医疗设备有限公司 呼气阀的控制方法、装置、计算机设备和存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7086098B2 (en) * 2002-03-05 2006-08-08 Maquet Critical Care Ab Mechanical breathing aid with adaptive expiration control
US7861716B2 (en) * 2006-03-15 2011-01-04 Carefusion 207, Inc. Closed loop control system for a high frequency oscillation ventilator
US8186344B2 (en) * 2007-11-01 2012-05-29 Intermed-Equipamento Medico Hospitalar Ltda. Method and system to control mechanical lung ventilation
US8844526B2 (en) * 2012-03-30 2014-09-30 Covidien Lp Methods and systems for triggering with unknown base flow
US9144658B2 (en) * 2012-04-30 2015-09-29 Covidien Lp Minimizing imposed expiratory resistance of mechanical ventilator by optimizing exhalation valve control
CN103893864B (zh) * 2012-12-26 2017-05-24 北京谊安医疗***股份有限公司 一种涡轮呼吸机压力控制通气方法
CN104841055B (zh) * 2015-04-21 2017-11-14 深圳市科曼医疗设备有限公司 呼吸机peep阀的控制方法、装置和***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130192599A1 (en) * 2012-01-31 2013-08-01 Nellcor Puritan Bennett Llc Using estimated carinal pressure for feedback control of carinal pressure during ventilation
CN108348714A (zh) * 2015-09-29 2018-07-31 皇家飞利浦有限公司 针对无创通气的压力和气体混合控制的方法
CN108430559A (zh) * 2015-11-10 2018-08-21 塔斯马尼亚大学 用于自动控制吸入氧输送的方法、设备和***
CN106924851A (zh) * 2015-12-29 2017-07-07 北京谊安医疗***股份有限公司 基于模糊自适应pid控制的麻醉机容量控制方法
CN108619597A (zh) * 2017-03-17 2018-10-09 深圳市大雅医疗技术有限公司 一种呼吸机流道的压力补偿方法
CN109507884A (zh) * 2018-11-30 2019-03-22 深圳市科曼医疗设备有限公司 空氧混合器压力控制方法、装置、计算机设备和存储介质
CN111135411A (zh) * 2020-01-20 2020-05-12 深圳市科曼医疗设备有限公司 呼气阀的控制方法、装置、计算机设备和存储介质

Also Published As

Publication number Publication date
CN111135411A (zh) 2020-05-12
CN111135411B (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
WO2021147226A1 (zh) 呼气阀的控制方法、装置、计算机设备和存储介质
US20210085900A1 (en) Methods and systems for exhalation control and trajectory optimization
US11033700B2 (en) Leak determination in a breathing assistance system
US9144658B2 (en) Minimizing imposed expiratory resistance of mechanical ventilator by optimizing exhalation valve control
JP5995942B2 (ja) 人工呼吸器リーク補償
US9468398B2 (en) Method and apparatus for detecting and quantifying intrinsic positive end-expiratory pressure
CN102770070B (zh) 用于实时评估肺力学的***和方法
US6588422B1 (en) Method and apparatus to counterbalance intrinsic positive end expiratory pressure
US10207069B2 (en) System and method for determining ventilator leakage during stable periods within a breath
WO2021147349A1 (zh) 基于呼吸机的呼气压力控制方法、装置、设备及存储介质
EP2588177B1 (en) System for patient-synchronized ventilatory assist with endotracheal through-flow
Reinders et al. Adaptive control for mechanical ventilation for improved pressure support
WO2011145014A1 (en) System and method for estimating upper airway resistance and lung compliance employing induced central apneas
JP2018519123A (ja) 非侵襲的換気のための患者気道流量および漏出流量推定のための方法およびシステム
CN116617511A (zh) 在高水平peep下调节基础流量的方法、控制装置和存储介质
CN111672002B (zh) 一种呼吸机的压力调节方法及装置
US20220096764A1 (en) Synchronized high-flow system
Reinders Smart Mechanical Ventilators: Learning for Monitoring and Control
US20230149658A1 (en) Control method for medical ventilators
US20230270961A1 (en) Lung-protective ventilation
CN109939313A (zh) Peep阀、peep阀的控制方法和含有该peep阀的呼吸机
CN118304528A (zh) 压力控制方法、呼吸通气装置以及存储介质
CN116474233B (zh) 一种医用湿化器输出量高精度控制方法、***及介质
US20220080140A1 (en) Non-invasive estimation of intrapleural pressure
JP2008000372A (ja) ガス供給機構の制御方法および制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20916034

Country of ref document: EP

Kind code of ref document: A1