WO2021145427A1 - Sealing material sheet for solar cell module, multi-layer sealing material sheet for solar cell module, sealing material composition for solar cell module, solar cell module, and method for manufacturing sealing material sheet for solar cell module - Google Patents

Sealing material sheet for solar cell module, multi-layer sealing material sheet for solar cell module, sealing material composition for solar cell module, solar cell module, and method for manufacturing sealing material sheet for solar cell module Download PDF

Info

Publication number
WO2021145427A1
WO2021145427A1 PCT/JP2021/001244 JP2021001244W WO2021145427A1 WO 2021145427 A1 WO2021145427 A1 WO 2021145427A1 JP 2021001244 W JP2021001244 W JP 2021001244W WO 2021145427 A1 WO2021145427 A1 WO 2021145427A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
mass
cell module
cross
sealing material
Prior art date
Application number
PCT/JP2021/001244
Other languages
French (fr)
Japanese (ja)
Inventor
慶太 在原
康佑 佐伯
伸也 米田
滋弘 上野
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2021549092A priority Critical patent/JPWO2021145427A1/ja
Publication of WO2021145427A1 publication Critical patent/WO2021145427A1/en
Priority to JP2022077043A priority patent/JP2022110047A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present disclosure relates to a sealing material sheet for a solar cell module, a multi-layer sealing material sheet for a solar cell module, a sealing material composition for a solar cell module, and a solar cell module using these.
  • Patent Document 1 a resin based on EVA (ethylene-vinyl acetate copolymer) having excellent transparency, adhesion, etc. is widely used.
  • EVA ethylene-vinyl acetate copolymer
  • Patent Document 1 a resin based on EVA (ethylene-vinyl acetate copolymer) having excellent transparency, adhesion, etc.
  • Patent Document 1 a sealing material sheet for a solar cell module based on a polyethylene-based resin having transparency equivalent to that of EVA and superior in hydrolysis resistance and the like as compared with EVA has been progressing.
  • thermosetting encapsulant sheet containing such a polyethylene-based resin as a base resin and containing a cross-linking agent may cause bleed-out of additives to the sheet surface or outgas during manufacturing of a solar cell module. there were.
  • the present disclosure is an invention made in view of the above circumstances, and an object of the present disclosure is to provide a sealing material sheet for a solar cell module capable of manufacturing a highly reliable solar cell module.
  • the present inventors used a polyethylene-based resin as a base resin, and set the content of a specific cross-linking agent, a specific cross-linking aid, and a silane coupling agent within a specific range.
  • a highly reliable solar power module can be manufactured if it is a sealing material sheet, and have completed the present invention.
  • the present disclosure is a sealing material sheet for a solar cell module, which uses a polyethylene resin as a base resin, and polymerizes two or more in one molecule which is a cross-linking agent and an organic peroxide which is a cross-linking agent.
  • the content of the cross-linking agent in the encapsulant sheet is 0.33% by mass or more and 0.53% by mass or less, and the cross-linking is contained, and contains a nurate ring-containing compound having a sex reactive group and a silane coupling agent.
  • the content of auxiliary agent is 0.30% by mass or more and 0.90% by mass or less, and the content of the above-mentioned silane coupling agent is 0.15% by mass or more and 0.40% by mass or less.
  • the present disclosure is a multilayer encapsulant sheet for a solar cell module having a core layer and skin layers arranged on both sides of the core layer, and the core layer is thicker than the skin layer.
  • the skin layer is silane coupling with an organic peroxide which is a cross-linking agent and a nurate ring-containing compound having two or more polymerizable reactive groups in one molecule which is a cross-linking aid, using a polyethylene resin as a base resin.
  • the content of the cross-linking agent in the skin layer is 0.33% by mass or more and 0.53% by mass or less, and the content of the cross-linking aid is 0.30% by mass or more and 0.90% by mass. % Or less, and the content of the silane coupling agent is 0.15% by mass or more and 0.40% by mass or less, providing a multilayer encapsulant sheet for a solar cell module.
  • the present disclosure is a sealing material composition for a solar cell module, which uses a polyethylene resin as a base resin, an organic peroxide as a cross-linking agent, and two or more in one molecule as a cross-linking aid.
  • a nurate ring-containing compound having a polymerizable reactive group and a silane coupling agent are contained, and the content of the cross-linking agent in the encapsulant composition is 0.33% by mass or more and 0.53% by mass or less.
  • Seal for solar cell module the content of the cross-linking aid is 0.30% by mass or more and 0.90% by mass or less, and the content of the silane coupling agent is 0.15% by mass or more and 0.40% by mass or less.
  • a stop material composition is provided.
  • the present disclosure discloses a solar cell element, a front surface side protective member, a back surface side protective member, the above-mentioned sealing material sheet for a solar cell module, the above-mentioned multi-layer sealing material sheet for a solar cell module, and the above-mentioned solar cell module.
  • a sealing material containing a sealing material layer which is a crosslinked product of any of the sealing material compositions for use, and the solar cell element is arranged between the front surface side protective member and the back surface side protective member.
  • a solar cell module sealed by a layer is provided.
  • the present disclosure is a method for producing a sealing material sheet for a solar cell module, which comprises a polyethylene-based resin and a nurate ring-containing compound having two or more polymerizable reactive groups in one molecule as a cross-linking aid.
  • a step of mixing the above mixture, an organic peroxide as a cross-linking agent, and a silane coupling agent to obtain a sealing material composition, and the above-mentioned sealing material composition It has a step of melting and forming a film into a sheet to obtain an uncrosslinked encapsulant sheet, and the content of the crosslinking agent in the encapsulant sheet is 0.33% by mass or more.
  • the content of the cross-linking aid is 0.30% by mass or more and 0.90% by mass or less
  • the content of the silane coupling agent is 0.15% by mass or more and 0.40% by mass or less.
  • the encapsulant sheet for a solar cell module disclosed in the present disclosure has an effect that a highly reliable solar cell module can be manufactured.
  • sheet is used to include a member that is also called a film or a plate.
  • the encapsulant sheet for a solar cell module is also simply referred to as an encapsulant sheet
  • the encapsulant composition for a solar cell module is also simply referred to as an encapsulant composition.
  • thermosetting encapsulant sheet using a polyethylene resin having excellent hydrolysis resistance as a base resin As described above, the development of a thermosetting encapsulant sheet using a polyethylene resin having excellent hydrolysis resistance as a base resin is in progress.
  • polyethylene is less likely to undergo a cross-linking reaction than EVA, and it is necessary to allow the cross-linking reaction to proceed to a extent sufficient to secure the required heat resistance.
  • EVA polyethylene
  • it has been required to increase the elastic modulus of the encapsulant layer of the solar cell module. Therefore, a large amount of a cross-linking agent and a cross-linking aid for increasing the gel fraction are usually added to the thermosetting encapsulant sheet using the polyethylene resin as the base resin.
  • the present inventors generated outgas due to the cross-linking agent during the integration process as the solar cell module, the durability test, etc., and the generated gas was sufficiently generated. It was found that by staying inside the solar cell module without being degassed, it remains as bubbles and hinders power generation.
  • the specific cross-linking aid has the effect of improving the gel fraction
  • the present inventors especially when a polyethylene-based resin is used as the base resin, bleed-out occurs when the content of the cross-linking aid is large. It has been found that there is a possibility that problems such as deterioration of workability and hindering adhesion with other members may occur, and the reliability of the solar cell module is lowered.
  • the present inventors use a polyethylene-based resin as the base resin, and use a sealing material sheet containing a specific cross-linking agent, a specific cross-linking aid, and a silane coupling agent within a specific range. If there is, it is possible to suppress the bleeding of additives and the generation of outgas during the manufacture of solar cell modules, and the highly reliable sun that satisfies the required characteristics such as high adhesion to glass and high gel fraction. We have found that it is a sealing material sheet that can be used to manufacture electric modules.
  • a method for manufacturing a sealing material sheet for a solar cell module, a multilayer sealing material sheet for a solar cell module, a sealing material composition for a solar cell module, a solar cell module, and a sealing material sheet for a solar cell module of the present disclosure is described. The details of.
  • A. Encapsulant sheet for solar cell module uses a polyethylene resin as a base resin, and contains two or more organic peroxides as a cross-linking agent and one molecule as a cross-linking aid.
  • the content of the cross-linking agent in the encapsulant sheet is 0.33% by mass or more and 0.53% by mass or less.
  • the content of the cross-linking aid is 0.30% by mass or more and 0.90% by mass or less, and the content of the silane coupling agent is 0.15% by mass or more and 0.40% by mass or less.
  • the encapsulant sheet of the present disclosure can generate outgas due to the cross-linking agent during the integration process as a solar cell module, the durability test, and the like. It can be suppressed and bubbles are less likely to be generated inside the solar cell module. Further, by setting the content of the above-mentioned cross-linking aid within the above range, bleeding of the above-mentioned cross-linking aid can be suppressed, and problems such as hindering adhesion to other members are less likely to occur. ..
  • the content of the silane coupling agent within the above range, it is possible to suppress a decrease in the crosslink density without causing a problem in adhesion to other members such as a glass substrate. Become. Therefore, the bleeding of the cross-linking aid and the generation of outgas during the manufacture of the solar cell module can be suppressed, and the highly reliable sun that satisfies the required characteristics such as high adhesion to glass and high gel fraction. It is a sealing material sheet that can manufacture electric modules.
  • the encapsulant sheet of the present disclosure uses a polyethylene resin as a base resin, and the content of organic peroxide as a cross-linking agent in the encapsulant sheet is 0.33% by mass or more. 53% by mass or less, the content of the nurate ring-containing compound having 2 or more polymerizable reactive groups in one molecule of the cross-linking aid is 0.30% by mass or more and 0.90% by mass or less, and the content of the silane coupling agent is contained. The amount is 0.15% by mass or more and 0.40% by mass or less. Each content can be determined by the method described in "2. Method for measuring the content of each component in the encapsulant sheet" described later.
  • the sealing material sheet for a solar cell module of the present disclosure contains a polyethylene-based resin as a base resin.
  • a "base resin” means a resin having the largest content ratio in the resin composition in the resin composition containing the base resin.
  • EVA resin ethylene-vinyl acetate copolymer resin
  • a resin sheet made of ethylene-vinyl acetate copolymer resin (EVA) is generally used.
  • EVA resin tends to be gradually decomposed with long-term use, and deteriorates inside the solar cell module to reduce its strength or generate acetic acid gas that affects the solar cell element.
  • a polyethylene-based resin is used as the base resin, such a problem does not occur.
  • the polyethylene-based resin used in the present disclosure includes not only ordinary polyethylene obtained by polymerizing ethylene, but also a copolymer of ethylene and ⁇ -olefin.
  • the ⁇ -olefin is preferably an ⁇ -olefin having 3 to 12 carbon atoms.
  • the first prize can be mentioned.
  • the ethylene / ⁇ -olefin copolymer examples include an ethylene / propylene copolymer, an ethylene / 1-butene copolymer, an ethylene / 1-hexene copolymer, an ethylene / 1-octene copolymer, and an ethylene / ⁇ -olefin copolymer. Examples thereof include 4-methyl-pentene-1 copolymer. In the present disclosure, an ethylene / propylene copolymer is particularly preferable. Further, the ⁇ -olefin may be one kind or a combination of two or more kinds.
  • low-density polyethylene-based resin LDPE
  • LLDPE linear low-density polyethylene-based resin
  • 0.870 g / cm 3 or more 0.920 g / cm 3 or less, especially, 0.880 g / cm 3 or more 0.890 g / cm 3 or less of low density polyethylene, among others, linear low density polyethylene (LLDPE ) Is preferably used.
  • LLDPE linear low density polyethylene
  • the polyethylene-based resin in the present disclosure has an MFR value at 190 ° C. and a load of 2.16 kg measured in accordance with JIS K7210 from the viewpoint of maintaining good film-forming property (“MFR” in the present specification is referred to as “MFR”.
  • MFR MFR
  • the value measured under these conditions is preferably 3.0 g / 10 min or more and 30.0 g / 10 min or less, and more preferably 10 g / 10 min or more and 25 g / 10 min or less.
  • a polyethylene resin that is easily crosslinked by a crosslinking agent and a crosslinking aid described later is preferable.
  • a polyethylene-based resin include a polyethylene-based resin having a reactive functional group in the side chain or the end.
  • the reactive functional group include unsaturated bond-containing groups, and examples thereof include vinyl, vinylidene, cis-vinylene, trans-vinylene, and trisubstituted-vinylene.
  • the total amount of vinyl, vinylidene, cis-vinylene, trans-vinylene, and trisubstituted-vinylene is 0.22 (pieces / total 1000C).
  • the number of vinyl, vinylidene, cis-vinylene, trans-vinylene, and trisubstituted-vinylene is the number per 1000 carbon atoms in total of the main chain and the side chain measured by NMR.
  • the total amount of vinyl, vinylidene, cis-vinylene, trans-vinylene, and trisubstituted-vinylene in the ethylene / ⁇ -olefin copolymer is more preferably 0.25 or more, particularly preferably 0.30 or more, and 0.40. The above is more preferable, and 0.50 or more is particularly preferable.
  • the polyethylene-based resin described in JP-A-2014-168901 can be used.
  • the content of the polyethylene-based resin with respect to the total resin components of the encapsulant sheet is preferably 90% by mass or more, more preferably 95% by mass or more, when the mass of the encapsulant sheet is 100% by mass.
  • the sealing material has an excellent balance of transparency, adhesiveness, heat resistance, flexibility, appearance, cross-linking characteristics, electrical characteristics, and the like.
  • the sealing material sheet of the present disclosure contains an organic peroxide as a cross-linking agent.
  • Organic peroxides are compounds that have at least an OO bond with a carbon atom.
  • the content of the organic peroxide in the present disclosure is 0.33% by mass or more and 0.53% by mass or less, preferably 0.38% by mass, when the whole encapsulant sheet is 100% by mass. % Or more and 0.50% by mass or less, more preferably 0.42% by mass or more and 0.48% by mass or less.
  • the content of the cross-linking agent is less than the above lower limit, the cross-linking density is lowered and the gel fraction is lowered.
  • outgas which is a decomposition product of organic peroxide, is generated during the integration process as a solar cell module or during the durability test, which causes bubbles and is reliable. Unable to manufacture expensive solar cell modules.
  • the organic peroxide as the cross-linking agent preferably has a molecular weight of 200 or more and 350 or less, and more preferably 220 or more and 300 or less. With the organic peroxide having the above molecular weight, it is possible to generate an amount of radicals that sufficiently secures a cross-linking point, and it is possible to reliably suppress outgas, which is a decomposition product of the organic peroxide. Is preferable.
  • the organic peroxides within the above molecular weight range those having a one-hour half-life temperature of 110 ° C. or higher and 145 ° C. or lower are preferable.
  • the half-life of the organic peroxide is the time until the organic peroxide is decomposed by heat and the amount of active oxygen thereof is halved from the amount before decomposition.
  • the 1-hour half-life temperature is at least the above lower limit value, it is preferable because it is possible to prevent cross-linking from occurring during film formation. Further, if it is equal to or less than the above upper limit value, radicals can be reliably generated during the module integration step, which is preferable.
  • the amount of active oxygen of the organic peroxide is in the range of about 5.0% to about 10.0%.
  • the amount of active oxygen is equal to or higher than the above lower limit, a sufficient amount of radicals required for cross-linking the polyethylene resin and the cross-linking aid can be sufficiently generated, and the encapsulant is surely cross-linked during the module integration process. It is preferable to do so.
  • examples of the organic peroxide as a cross-linking agent include peroxycarbonates such as t-amyl-peroxy-2-ethylhexyl carbonate and t-butylperoxy2-ethylhexyl carbonate, and n-butyl.
  • Peroxyketals such as 4,4-di (t-butylperoxy) valerate, ethyl 3,3-di (t-butylperoxy) butane, 2,2-di (t-butylperoxy) butane, di -T-Butyl peroxide, t-Butyl cumyl peroxide, Dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butyl peroxy) hexane, 2,5-dimethyl-2,5-di Dialkyl peroxides such as (t-peroxy) hexin-3 can be mentioned as a cross-linking agent that can be used by adding it to the encapsulant composition.
  • the above-mentioned cross-linking agent may be used alone or in combination of two or more.
  • the cross-linking agent is t-butylperoxy2-ethylhexyl carbonate (product name "Luperox TBEC”) from the viewpoint of having good reactivity with the polyethylene resin as the base resin. Alchema Yoshitomi Co., Ltd.) is preferable.
  • the encapsulant of the present disclosure contains a nurate ring-containing compound having two or more polymerizable reactive groups in one molecule as a crosslinking aid.
  • the content of the nurate ring-containing compound in the present disclosure is 0.30% by mass or more and 0.90% by mass or less, preferably 0.45% by mass, when the whole encapsulant sheet is 100% by mass. % Or more and 0.78% by mass or less, more preferably 0.50% by mass or more and 0.70% by mass or less.
  • the cross-linking aid used in the present disclosure is preferably a nurate ring-containing compound from the viewpoint of improving reactivity, but the nurate ring-containing compound has poor compatibility with the polyethylene resin and is prone to bleed-out. Become. Therefore, the above upper limit value is set to prevent a problem due to bleeding out. On the other hand, if the content of the cross-linking aid is less than the above lower limit, the gel fraction after the cross-linking treatment of the encapsulant sheet decreases, which is not preferable.
  • the cross-linking aid in the present disclosure may be a nulate ring-containing compound having two or more polymerizable reactive groups in one molecule, and the preferred number of polymerization reactive groups is 2 to 6 in one molecule. It is preferable, and particularly preferably 2 to 3 pieces. This is because if it is smaller than the above range, the crosslink density may not be sufficiently increased. On the other hand, if it is larger than the above range, the physical properties of the sealing layer may be adversely affected, such as the sealing layer after the cross-linking treatment becoming brittle.
  • the polymerizable reactive group contained in the cross-linking agent in the present disclosure is not particularly limited as long as it can react with the polyethylene-based resin which is the base resin and impart a cross-linked structure.
  • a group having a carbon-carbon double bond such as a vinyl group, a (meth) acryloyl group, a (meth) acryloyloxy group, and an allyl group, an epoxy group, and the like are preferable.
  • cross-linking aid in the present disclosure include polyallyl compounds such as triallyl isocyanurate (TAIC), triallyl cyanurate, diallyl phthalate, diallyl fumarate, and diallyl maleate, and trimethylolpropane trimethacrylate (TMPT).
  • TAIC triallyl isocyanurate
  • TMPT trimethylolpropane trimethacrylate
  • TMPTA Trimethylolpropane triacrylate
  • ethylene glycol diacrylate ethylene glycol dimethacrylate
  • 1,4-butanediol diacrylate 1,6-hexanediol diacrylate
  • 1,9-nonanediol diacrylate and other polys Trimethylolpropane triacrylate
  • Meta Acryloxy compounds
  • glycidyl methacrylates containing double bonds and epoxy groups 4-hydroxybutyl acrylate glycidyl ethers and 1,6-hexanediol diglycidyl ethers containing two or more epoxy groups, 1,4-butanediol diglycidyl.
  • Examples thereof include epoxy compounds such as ether, cyclohexanedimethanol diglycidyl ether, and trimethylolpropane polyglycidyl ether. These may be used alone or in combination of two or more.
  • cross-linking aids it also contributes remarkably to the improvement of glass adhesion of the sealing material, has good compatibility with linear low-density polyethylene, lowers crystallinity by cross-linking, maintains transparency, and has a low temperature.
  • TAIC can be preferably used from the viewpoint of imparting flexibility in the above.
  • the encapsulant sheet of the present disclosure contains a silane coupling agent.
  • the content of the silane coupling agent in the present disclosure is 0.15% by mass or more and 0.40% by mass or less, preferably 0.17% by mass, when the total content of the encapsulant sheet is 100% by mass. % Or more and 0.35% by mass or less, more preferably 0.20% by mass or more and 0.30% by mass or less. If the content of the silane coupling agent in the encapsulant sheet is less than the above lower limit value, the adhesion to glass, cells, wiring and the like is lowered.
  • the amount of radicals generated when the cross-linking reaction is carried out on the polyethylene resin by using the above-mentioned cross-linking agent or the like is increased by the above-mentioned silane coupling agent, which is sufficient. This is because it may not be possible to obtain the crosslink density.
  • silane coupling agent in the present disclosure for example, a methacryoxy-based silane coupling agent, an acryloxy-based silane coupling agent, an epoxy-based silane coupling agent, or a mercapto-based silane coupling agent can be preferably used.
  • acryloxy-based or methacryloxy-based silane coupling agents are preferable, and specifically, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxy.
  • Examples thereof include propyltriethoxysilane, 3-acryloxypropylmethyldimethoxysilane, 3-acryloxypropylmethyldiethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, and 3-methacryloxypropylmethyldiethoxysilane.
  • the methacryloxy-based and acryloxy-based silane coupling agents are not particularly limited, and known silane coupling agents can be preferably used.
  • silane coupling agents there are "KBM503" and "KBM-5103" (both manufactured by "Shinetsu Silicone Co., Ltd.”), which are easily available from the market.
  • those having a (meth) acryloyloxy group are preferable, and 3-methacryloxypropyltrimethoxysilane is particularly preferable.
  • the encapsulant sheet of the present disclosure may contain other additives other than the above-mentioned polyethylene resin, cross-linking agent, cross-linking aid and silane coupling agent.
  • additives weather resistant agents, UV absorbers, antioxidants, heat stabilizers, nucleating agents, dispersants, leveling agents, plasticizers, defoamers, flame retardants, and various other fillers are appropriately added. be able to.
  • the weather resistant agent examples include hindered amine-based light stabilizers (HALS).
  • HALS hindered amine-based light stabilizers
  • Hindered amine-based photostabilizers are roughly classified according to the bond partner of the nitrogen atom in the piperidine skeleton, and are classified into NH type (hydrogen is bonded to the nitrogen atom), NR type (alkyl group (R) is bonded to the nitrogen atom), and There are three types of N-OR type (an alkoxy group (OR) is bonded to a nitrogen atom), and among these, an N-OR type hindered amine-based light-resistant stabilizer can be particularly preferably used.
  • HALS hindered amine-based light stabilizers
  • N-OR type hindered amine-based light-resistant stabilizer examples include Tinuvin NOR 371 and Tinuvin XT850 (manufactured by BASF Japan Ltd.).
  • the N-OR type has a faster rate of capturing radicals than the NH type and the N-R type.
  • low-molecular HALS of N-OR type having transferred to the faster surface than polymeric HALS is short term supplemented radicals than N-H-type or N-CH 3 type HALS, suppress the deterioration of the sealing sheet In that respect, it is preferable.
  • ultraviolet absorber antioxidant, heat stabilizer, nucleating agent, dispersant, leveling agent, plasticizer, defoaming agent, flame retardant, and various other fillers
  • nucleating agent nucleating agent
  • dispersant leveling agent
  • plasticizer plasticizer
  • defoaming agent flame retardant
  • various other fillers conventionally known ones can be used.
  • the above-mentioned weather resistant agent, ultraviolet absorber, antioxidant and the like are added to the sealing material composition as a weather resistant masterbatch in which a resin such as polyethylene is dispersed, thereby forming a sealing material sheet. Good light resistance can be imparted.
  • the weather-resistant masterbatch may be appropriately prepared and used, or a commercially available product may be used.
  • the resin used in the weatherproof masterbatch may be polyethylene in the present disclosure or other resin.
  • the encapsulant sheet of the present disclosure keeps the contents of the above-mentioned cross-linking agent, the above-mentioned cross-linking aid, and the silane coupling agent within the above range. It is characterized by doing.
  • the method for measuring these contents is not particularly limited, but can be determined by, for example, infrared spectroscopy, gas chromatography-mass spectrometry, or the like.
  • the encapsulant sheet is measured with an infrared spectrophotometer to obtain an infrared absorption spectrum, and cross-linking is performed on the absorbance peak derived from the methylene group of the polyethylene resin as the base resin. It can be obtained by calculating the ratio of the absorbance peaks (IR peak ratio) of each functional group in the agent, the cross-linking aid and the silane coupling agent. The relationship between the contents of the cross-linking agent, the cross-linking aid and the silane coupling agent and the absorbance can be obtained in advance by the calibration curve method.
  • Examples of the method of mixing each component include a method of impregnating each component with a polyethylene resin as a base resin by dry blending.
  • a cross-linking agent or a cross-linking aid may be added to the polyethylene-based resin as the base resin in a liquid state.
  • a cross-linking aid may be kneaded in advance with a polyethylene-based resin as a base resin and master-batched as a mixture.
  • a masterbatch is used, the dispersibility of the cross-linking aid is improved, so that the variation in the content of the cross-linking aid in the encapsulant sheet can be suppressed.
  • the encapsulant sheet of the present disclosure is a film formed by forming the encapsulant composition without substantially cross-linking, and the content range of each component in the encapsulant sheet is the encapsulant composition. It is the same as the content range of each component in the product.
  • the melt molding can be performed by various conventionally known film forming methods such as film forming with a T-die.
  • the film formation temperature can be 80 ° C. to 100 ° C.
  • the encapsulant composition will be described in detail in "C. Encapsulant composition for solar cell module" described later.
  • the cross-linking treatment is completed by, for example, a high-temperature heat treatment at the time of manufacturing the solar cell module.
  • the encapsulant sheet of the present disclosure is an encapsulant sheet at the stage of uncrosslinking after film formation, and the crosslinking may proceed during any process until after integration as a solar cell module. It is a so-called thermosetting resin film that is supposed to be used.
  • the encapsulant sheet of the present disclosure is an uncrosslinked encapsulant sheet in this way, and its gel fraction is usually 5% or less.
  • the gel fraction of the encapsulant sheet after the completion of crosslinking after integration as a solar cell module that is, the gel fraction of the encapsulant layer may be 50% or more and 90% or less, and 60% or more and 80%. More preferably:
  • the “gel fraction (%)” in the present specification refers to 1.0 g of a sealing material in a resin mesh, extracted with xylene at 110 ° C. for 24 hours, then taken out together with the resin mesh, dried and weighed. , The mass before and after extraction was compared, the mass% of the residual insoluble matter was measured, and this was used as the gel fraction.
  • the gel fraction of 0% means that the residual insoluble matter is substantially 0 and the cross-linking reaction of the encapsulant composition or the encapsulant sheet has not substantially started. More specifically, "gel fraction 0%" means that the residual insoluble matter is not present at all, and the mass% of the residual insoluble matter measured by a precision balance is less than 0.05% by mass. Suppose to say.
  • the residual insoluble matter does not include pigment components other than the resin component.
  • a mixture other than these resin components is mixed in the residual insoluble matter by the above test, for example, by separately measuring the content of these mixture in the resin component in advance, these It is possible to calculate the gel fraction that should be originally obtained for the residual insoluble matter derived from the resin component excluding the mixture.
  • the film thickness of the sealing material sheet of the present disclosure is not particularly limited, but is preferably 200 ⁇ m or more and 1000 ⁇ m or less.
  • the film thickness is at least the above lower limit value, the strength of the encapsulant sheet can be made better.
  • the film thickness is not more than the above upper limit value, damage to other members such as a transparent substrate can be suppressed in the laminating step. Further, a sufficient light transmittance can be secured, and the solar cell module including this can have a high amount of photovoltaic power generation.
  • the encapsulant sheet of the present disclosure is preferably used alone as an encapsulant sheet, but may be included as a part of a multi-layer encapsulant sheet having a multi-layer structure.
  • As the multi-layer structure 2 types 2 layers, 2 types 3 layers and the like are preferably used, and among them, a 2 types 3 layer structure in which a skin layer, a core layer and a skin layer are laminated in this order is preferable.
  • FIG. 2 shows an outline of a multilayer sealing material sheet 20 having a two-kind three-layer structure in which a skin layer 6, a core layer 7, and a skin layer 6 are laminated in this order using the sealing material sheet 100 of the present disclosure. A cross-sectional view is shown.
  • skin layers are arranged on both outermost surfaces with a predetermined layer thickness according to the encapsulant compositions for the core layer and the skin layer, and the side that comes into close contact with the solar cell element.
  • a skin layer is placed in.
  • the encapsulant sheet of the present disclosure is preferably included as a skin layer of the multilayer encapsulant sheet.
  • the layer thickness ratio between the skin layer and the core layer is preferably 1: 1.2 to 1:10, more preferably 1: 2 to 1: 7, and particularly preferably 1: 3 to 1: 5. These can be formed by a conventionally known multi-layer coextrusion method or the like.
  • the core layer is not limited as long as it has a function of imparting desired performance such as heat resistance and appropriate rigidity to the multilayer encapsulant sheet, and for example, a polyethylene resin is used as a base resin and any component is used. Can be contained.
  • the base resin of the encapsulant composition for the core layer is a low density polyethylene resin (LDPE), a linear low density polyethylene resin (LLDPE), or a metallocene linear low density polyethylene resin (M-LLDPE).
  • LDPE low density polyethylene resin
  • LLDPE linear low density polyethylene resin
  • M-LLDPE metallocene linear low density polyethylene resin
  • LDPE low-density polyethylene-based resin
  • the multi-layer encapsulant sheet for a solar cell module having a core layer and skin layers arranged on both sides of the core layer, and the core layer is
  • the skin layer is thicker than the skin layer, and the skin layer uses a polyethylene resin as a base resin, an organic peroxide as a cross-linking agent, and a nurate ring having two or more polymerizable reactive groups in one molecule as a cross-linking aid.
  • the content of the cross-linking agent in the skin layer is 0.33% by mass or more and 0.53% by mass or less, and the content of the cross-linking aid is 0.30.
  • a multilayer encapsulant sheet for a solar cell module which has a mass% or more and 0.90 mass% or less and a content of the silane coupling agent of 0.15 mass% or more and 0.40 mass% or less.
  • the multi-layer encapsulant sheet 20 for a solar cell module of the present disclosure has a two-kind three-layer structure in which a skin layer 6, a core layer 7, and a skin layer 6 are laminated in this order.
  • the core layer is thicker than the skin layer.
  • the layer thickness ratio can be the same as that described in detail in the section "A. Encapsulant sheet for solar cell module 4. Others", and thus the description thereof is omitted here. Since the core layer can be the same as the content described in detail in the section "A. Encapsulant sheet for solar cell module 4. Others", the description thereof is omitted here.
  • the encapsulant composition for a solar cell module is a polyethylene-based resin as a base resin, an organic peroxide as a cross-linking agent, and a cross-linking aid.
  • a nurate ring-containing compound having two or more polymerizable reactive groups in one molecule and a silane coupling agent are contained, and the content of the cross-linking agent in the encapsulant composition is 0.33% by mass or more. 0.53% by mass or less, the content of the cross-linking aid is 0.30% by mass or more and 0.90% by mass or less, and the content of the silane coupling agent is 0.15% by mass or more and 0.40% by mass or less.
  • a sealing material composition for a solar cell module which is characterized by being present.
  • the encapsulant composition of the present disclosure uses a polyethylene resin as a base resin and contains a specific content of the above-mentioned cross-linking agent, the above-mentioned cross-linking aid, and the above-mentioned silane coupling agent as essential components. .. In addition, other additives may be included.
  • the encapsulant composition of the present disclosure is a composition used for producing an encapsulant sheet constituting a encapsulant member of a solar cell module, and is molded into a sheet by a conventionally known method. As a result, a single-layer encapsulant sheet can be obtained. Further, the encapsulant composition of the present disclosure can be used for forming a layer of a multi-layer encapsulant sheet having a multi-layer structure such as 2 types 2 layers or 2 types 3 layers.
  • the encapsulant composition for the core layer and the encapsulant composition of the present disclosure for the skin layer are extruded into a sheet by a conventionally known multi-layer coextrusion method or the like to obtain a multi-layer encapsulant sheet.
  • composition of the core layer and the layer thickness ratio between the skin layer and the core layer can be the same as those described in detail in the above section "A. Encapsulant sheet for solar cell module”. The description is omitted.
  • the solar cell element In the present disclosure, the solar cell element, the front surface side protective member, the back surface side protective member, the above-mentioned sealing material sheet for the solar cell module, the above-mentioned multi-layer sealing material sheet for the solar cell module, and the above-mentioned
  • the solar cell element is arranged between the front surface side protective member and the back surface side protective member, including a sealing material layer which is a crosslinked body of any of the sealing material compositions for a solar cell module.
  • a solar cell module sealed with the sealing material layer.
  • FIG. 1 shows a schematic cross-sectional view illustrating the solar cell module of the present disclosure.
  • the solar cell module 10 includes a plurality of solar cell elements 1, a pair of front surface side solar cell encapsulant layer 2 and back surface side solar cell encapsulant layer 3 that sandwich and seal the solar cell element 1, and front surface protection.
  • a member 4 and a back surface side protective member 5 are provided.
  • Encapsulant layer is a crosslinked product obtained by heat-treating the above-mentioned encapsulant sheet, multi-layer encapsulant sheet or the above-mentioned encapsulant composition (sealing shown by 100C in FIG. 1).
  • Material layer which is a layer for sealing the solar cell element. Since the encapsulant sheet can be the same as the content described in detail in the above section "A. Encapsulant sheet for solar cell module", the description thereof is omitted here. Since the multi-layer encapsulant sheet can be the same as the content described in detail in the above section "B. Multi-layer encapsulant sheet for solar cell module", the description thereof is omitted here.
  • the crosslinked body of the multilayer encapsulant sheet has a crosslinked skin layer, a core layer, and a crosslinked skin layer. Since the encapsulant composition can be the same as the content described in detail in the above section "C. Encapsulant composition for solar cell module", the description thereof is omitted here.
  • the encapsulant layer typically comprises a front side encapsulant layer and a back surface encapsulant layer, as shown in FIG. 1, the encapsulant sheet, multilayer encapsulant sheet or encapsulation of the present disclosure.
  • the material composition is used to form one or both of the front surface side encapsulant layer and the back surface side encapsulant layer, and these encapsulant layers are the encapsulant sheet, the multilayer of the present disclosure. It can be formed by cross-linking a sealing material sheet or a sealing material composition.
  • the encapsulant layer in the present disclosure typically seals the solar cell element by sandwiching it between a pair of encapsulant sheets arranged on both sides thereof, as shown in FIG. It is a layer, but it is not limited to this.
  • the cell glass is formed on the cell glass.
  • the encapsulant layer covering the thin film element can be regarded as the encapsulant layer of the solar cell module.
  • Solar cell elements include silicon-based devices such as single crystal silicon, polycrystalline silicon, and amorphous silicon, group III-V such as gallium-arsenide, copper-indium-selenium, and cadmium-tellu, and II-VI.
  • group III-V such as gallium-arsenide, copper-indium-selenium, and cadmium-tellu
  • II-VI Various solar cell elements such as group compound semiconductors can be used.
  • a plurality of solar cell elements are electrically connected in series via an interconnector having a conducting wire and a solder joint.
  • the surface-side protective member examples include a glass plate; a transparent substrate such as a resin plate formed of an acrylic resin, polycarbonate, polyester, a fluorine-containing resin, or the like.
  • the solar cell encapsulant sheet of the present disclosure exhibits good adhesiveness to the transparent surface side protective member.
  • back surface side protective member examples include a single sheet such as a metal or various thermoplastic resin films, or a multi-layer sheet. Examples thereof include metals such as tin, aluminum and stainless steel; inorganic materials such as glass; various thermoplastic resin films formed of polyester, inorganic vapor-deposited polyester, fluorine-containing resin, polyolefin and the like.
  • the back surface side protective member may be a single layer or a plurality of layers.
  • the solar cell encapsulant sheet of the present disclosure exhibits good adhesiveness to the back surface side protective member.
  • a sealing material sheet is manufactured using the above-mentioned sealing material composition (sealing material sheet manufacturing process), and then the above-mentioned surface side protective member is manufactured.
  • Encapsulant sheet, solar cell element, encapsulant sheet, and backside protective member are sequentially laminated and then integrated by vacuum suction or the like, and then the above member is formed by a molding method such as a lamination method. It can be manufactured by heat-pressing molding as an integrally molded body (module integration process).
  • Encapsulant sheet manufacturing process The encapsulant sheet is manufactured in the same manner as described in detail in the above section "A. Encapsulant sheet for solar cell module 3. Manufacturing method of encapsulant sheet”. Therefore, the description here is omitted.
  • each member including the uncrosslinked encapsulant sheet obtained in the encapsulant sheet manufacturing process is heat-press-molded as an integrally molded body by a molding method such as vacuum heating lamination. do.
  • the cross-linking is advanced so that the gel fraction of the uncross-linked encapsulant sheet is within the above-mentioned range. If necessary according to the lamination conditions, a separate thermal cross-linking treatment may be further performed after modularization.
  • D. Method for manufacturing encapsulant sheet for solar cell module is a method for producing an encapsulant sheet for a solar cell module, which is polymerizable of two or more in one molecule which is a polyethylene resin and a cross-linking aid.
  • a step of mixing a nurate ring-containing compound having a reactive group to obtain a mixture and a step of mixing the above mixture, an organic peroxide as a cross-linking agent, and a silane coupling agent to obtain a sealing material composition.
  • the step of melting the encapsulant composition and forming a film into a sheet to obtain an uncrosslinked encapsulant sheet and the content of the crosslinking agent in the encapsulant sheet is , 0.33% by mass or more and 0.53% by mass or less, the content of the cross-linking aid is 0.30% by mass or more and 0.90% by mass or less, and the content of the silane coupling agent is 0.15% by mass or more.
  • a method for producing a sealing material sheet for a solar cell module which is 0.40% by mass or less.
  • the method for manufacturing the encapsulant sheet can be the same as that described in detail in the above section "A.
  • Examples 1 to 6, Comparative Examples 1 to 6) [Formation of encapsulant sheet]
  • the following polyethylene resin as a base resin, the following TBEC as a cross-linking agent, the following TAIC as a cross-linking aid, the following silane coupling agent, and the following additives were mixed to obtain a sealing material composition.
  • the encapsulant composition was melted and formed into a film having a thickness of 450 ⁇ m by the T-die method to obtain an uncrosslinked single-layer encapsulant sheet for a solar cell module.
  • the film formation temperature was 90 ° C to 100 ° C.
  • -Polyethylene resin Product name KS650 (manufactured by Japan Polyethylene Corporation, density 0.886 g / cm 3 , MFR20)
  • -Crosslinking agent Product name TBEC (boiling point 310 ° C, density 0.927 g / ml, 1-hour half-life temperature 121 ° C, manufactured by Alchema Yoshitomi Co., Ltd.)
  • -Crosslinking aid Product name TAIC (boiling point 151 ° C, density 1.159 g / ml, manufactured by Mitsubishi Chemical Corporation)
  • -Silane coupling agent Product name KBM-503 (3-methacryloxypropyltrimethoxysilane, manufactured by Shinetsu Silicone Co., Ltd.)
  • -Ultraviolet absorber 1 Product name kemisorb12 (benzophenone-based ultraviolet absorber, molecular weight 326, melting point 47 °, specific gravity (25 ° C) 1.16, manufactured
  • the height from the baseline of the peak top near the wave number 2021 cm -1 was determined as the absorbance derived from the methylene group of the polyethylene resin.
  • the height from the baseline of the peak top near the wave number of 1793 cm -1 was determined as the absorbance derived from the carbonyl group of the cross-linking agent.
  • the height from the baseline of the peak top near the wave number of 990 cm -1 was determined as the absorbance derived from the vinyl group of the cross-linking aid.
  • the height from the baseline of the peak top near the wave number of 1722 cm -1 was determined as the absorbance derived from the carbonyl group of the silane coupling agent.
  • Peak ratio (crosslinking agent) peak height (crosslinking agent) / peak height (polyethylene)
  • Peak ratio (crosslinking aid) peak height (crosslinking aid) / peak height (polyethylene)
  • Peak ratio (silane coupling agent) peak height (silane coupling agent) / peak height (polyethylene)
  • Glass adhesion evaluation A sealing material sheet cut in the MD direction of 100 mm x TD direction of 75 mm is placed on a 50 mm x 75 mm white plate tempered glass, and laminated at a temperature of 155 ° C., vacuuming for 6 minutes, and pressure holding for 11 minutes (70 kPa) to achieve glass adhesion. An evaluation sample was prepared. This sample was cut with a width of 15 mm in the flow direction, and the cut portion was measured with a TENSILON universal testing machine RTE-1210 (manufactured by ORIENTEC) at a peeling angle of 180 ° and a peeling speed of 50 mm / min.
  • the amount of the cross-linking aid has almost no effect on the amount of outgas, but bleeding occurs when the amount of the cross-linking aid added is large (Comparative Example 3), and the gel fraction decreases when the amount of the cross-linking aid added is small. It was found (Comparative Example 4). Further, it was found that the amount of the silane coupling agent added had almost no effect on the amount of outgas, but the gel fraction decreased when the amount added was large (Comparative Example 5), and the glass adhesion decreased when the amount added was small. (Comparative Example 6).
  • the encapsulant sheets of Examples 1 to 6 in which the contents of the cross-linking agent, the cross-linking aid, and the silane coupling agent are within the range of the present disclosure can be used for bleeding of additives and when manufacturing a solar cell module. It was possible to manufacture a highly reliable solar cell module that satisfies the required characteristics such as adhesion to glass and high gel fraction while suppressing the generation of outgas.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided are sealing material sheets for a solar cell module (2, 3), the sealing material sheets for a solar cell module (2, 3) characterized by using a polyethylene-based resin as the base resin, by containing an organic peroxide that is a crosslinking agent, a nurate-ring-containing compound that is a crosslinking aid and that has two or more polymerizable reactive groups in one molecule, and a silane coupling agent, and by being uncrosslinked sealing material sheets (2, 3) in which the content of the crosslinking agent in the sealing material sheets (2, 3) is 0.33-0.53 mass% inclusive, the content of the crosslinking aid is 0.30-0.90 mass% inclusive, and the content of the silane coupling agent is 0.15-0.40 mass% inclusive.

Description

太陽電池モジュール用封止材シート、太陽電池モジュール用多層封止材シート、太陽電池モジュール用封止材組成物、太陽電池モジュール、および太陽電池モジュール用封止材シートの製造方法Method for manufacturing encapsulant sheet for solar cell module, multi-layer encapsulant sheet for solar cell module, encapsulant composition for solar cell module, solar cell module, and encapsulant sheet for solar cell module
 本開示は、太陽電池モジュール用封止材シート、太陽電池モジュール用多層封止材シート、太陽電池モジュール用封止材組成物およびこれらを用いた太陽電池モジュールに関する。 The present disclosure relates to a sealing material sheet for a solar cell module, a multi-layer sealing material sheet for a solar cell module, a sealing material composition for a solar cell module, and a solar cell module using these.
 近年、環境問題に対する意識の高まりから、クリーンなエネルギー源としての太陽電池が注目されている。現在、種々の形態からなる太陽電池モジュールが開発され、提案されている。 In recent years, due to growing awareness of environmental issues, solar cells as a clean energy source have been attracting attention. Currently, solar cell modules having various forms have been developed and proposed.
 太陽電池モジュール用の封止材シートとして、透明性、密着性等に優れるEVA(エチレン-酢酸ビニル共重合体)をベース樹脂としたものが広く用いられている(特許文献1)。しかし、近年においては、EVA同等の透明性を有し、EVAに比して耐加水分解性等に優れるポリエチレン系樹脂をベース樹脂とした太陽電池モジュール用封止材シートの開発が進んでいる。 As a sealing material sheet for a solar cell module, a resin based on EVA (ethylene-vinyl acetate copolymer) having excellent transparency, adhesion, etc. is widely used (Patent Document 1). However, in recent years, development of a sealing material sheet for a solar cell module based on a polyethylene-based resin having transparency equivalent to that of EVA and superior in hydrolysis resistance and the like as compared with EVA has been progressing.
特開2009-135200号公報Japanese Unexamined Patent Publication No. 2009-135200
 このようなポリエチレン系樹脂をベース樹脂とし、架橋剤を含有する熱硬化系の封止材シートは、シート表面への添加剤のブリードアウトや、太陽電池モジュールの製造時等においてアウトガスが生じる場合があった。 A thermosetting encapsulant sheet containing such a polyethylene-based resin as a base resin and containing a cross-linking agent may cause bleed-out of additives to the sheet surface or outgas during manufacturing of a solar cell module. there were.
 本開示は上記実情に鑑みてなされた発明であり、信頼性が高い太陽電池モジュールを製造可能な太陽電池モジュール用封止材シートを提供することを主目的とする。 The present disclosure is an invention made in view of the above circumstances, and an object of the present disclosure is to provide a sealing material sheet for a solar cell module capable of manufacturing a highly reliable solar cell module.
 本発明者らは、上記課題を解決するため、ベース樹脂としてポリエチレン系樹脂を使用し、特定の架橋剤、特定の架橋助剤、及びシランカップリング剤をそれぞれ特定の範囲内の含有量とした封止材シートであれば、信頼性の高い太陽電モジュールが製造可能であることを見出し、本発明を完成させるに至ったものである。 In order to solve the above problems, the present inventors used a polyethylene-based resin as a base resin, and set the content of a specific cross-linking agent, a specific cross-linking aid, and a silane coupling agent within a specific range. We have found that a highly reliable solar power module can be manufactured if it is a sealing material sheet, and have completed the present invention.
 すなわち、本開示は、太陽電池モジュール用の封止材シートであって、ポリエチレン系樹脂をベース樹脂とし、架橋剤である有機過酸化物と、架橋助剤である1分子中に2以上の重合性反応基を有するヌレート環含有化合物と、シランカップリング剤と、を含み、上記封止材シート中の上記架橋剤の含有量が、0.33質量%以上0.53質量%以下、上記架橋助剤の含有量が0.30質量%以上0.90質量%以下、上記シランカップリング剤の含有量が0.15質量%以上0.40質量%以下である、太陽電池モジュール用封止材シートを提供する。 That is, the present disclosure is a sealing material sheet for a solar cell module, which uses a polyethylene resin as a base resin, and polymerizes two or more in one molecule which is a cross-linking agent and an organic peroxide which is a cross-linking agent. The content of the cross-linking agent in the encapsulant sheet is 0.33% by mass or more and 0.53% by mass or less, and the cross-linking is contained, and contains a nurate ring-containing compound having a sex reactive group and a silane coupling agent. Encapsulant for solar cell module, the content of auxiliary agent is 0.30% by mass or more and 0.90% by mass or less, and the content of the above-mentioned silane coupling agent is 0.15% by mass or more and 0.40% by mass or less. Provide a sheet.
 また、本開示は、コア層と、上記コア層の両面に配置されたスキン層とを有する太陽電池モジュール用の多層封止材シートであって、上記コア層は、上記スキン層よりも厚く、上記スキン層は、ポリエチレン系樹脂をベース樹脂とし、架橋剤である有機過酸化物と、架橋助剤である1分子中に2以上の重合性反応基を有するヌレート環含有化合物と、シランカップリング剤と、を含み、上記スキン層中の上記架橋剤の含有量が、0.33質量%以上0.53質量%以下、上記架橋助剤の含有量が0.30質量%以上0.90質量%以下、上記シランカップリング剤の含有量が0.15質量%以上0.40質量%以下である、太陽電池モジュール用多層封止材シートを提供する。 Further, the present disclosure is a multilayer encapsulant sheet for a solar cell module having a core layer and skin layers arranged on both sides of the core layer, and the core layer is thicker than the skin layer. The skin layer is silane coupling with an organic peroxide which is a cross-linking agent and a nurate ring-containing compound having two or more polymerizable reactive groups in one molecule which is a cross-linking aid, using a polyethylene resin as a base resin. The content of the cross-linking agent in the skin layer is 0.33% by mass or more and 0.53% by mass or less, and the content of the cross-linking aid is 0.30% by mass or more and 0.90% by mass. % Or less, and the content of the silane coupling agent is 0.15% by mass or more and 0.40% by mass or less, providing a multilayer encapsulant sheet for a solar cell module.
 また、本開示は、太陽電池モジュール用の封止材組成物であって、ポリエチレン系樹脂をベース樹脂とし、架橋剤である有機過酸化物と、架橋助剤である1分子中に2以上の重合性反応基を有するヌレート環含有化合物と、シランカップリング剤と、を含み、前記封止材組成物中の前記架橋剤の含有量が、0.33質量%以上0.53質量%以下、前記架橋助剤の含有量が0.30質量%以上0.90質量%以下、前記シランカップリング剤の含有量が0.15質量%以上0.40質量%以下である、太陽電池モジュール用封止材組成物を提供する。 Further, the present disclosure is a sealing material composition for a solar cell module, which uses a polyethylene resin as a base resin, an organic peroxide as a cross-linking agent, and two or more in one molecule as a cross-linking aid. A nurate ring-containing compound having a polymerizable reactive group and a silane coupling agent are contained, and the content of the cross-linking agent in the encapsulant composition is 0.33% by mass or more and 0.53% by mass or less. Seal for solar cell module, the content of the cross-linking aid is 0.30% by mass or more and 0.90% by mass or less, and the content of the silane coupling agent is 0.15% by mass or more and 0.40% by mass or less. A stop material composition is provided.
 本開示は、太陽電池素子と、表面側保護部材と、裏面側保護部材と、上述の太陽電池モジュール用封止材シート、上述の太陽電池モジュール用多層封止材シート、及び上述の太陽電池モジュール用封止材組成物のいずれかの架橋体である封止材層と、を含み、上記太陽電池素子が、上記表面側保護部材と上記裏面側保護部材との間に配置された封止材層により封止されている、太陽電池モジュールを提供する。 The present disclosure discloses a solar cell element, a front surface side protective member, a back surface side protective member, the above-mentioned sealing material sheet for a solar cell module, the above-mentioned multi-layer sealing material sheet for a solar cell module, and the above-mentioned solar cell module. A sealing material containing a sealing material layer which is a crosslinked product of any of the sealing material compositions for use, and the solar cell element is arranged between the front surface side protective member and the back surface side protective member. Provided is a solar cell module sealed by a layer.
 また、本開示は、太陽電池モジュール用の封止材シートの製造方法であって、ポリエチレン系樹脂と、架橋助剤である1分子中に2以上の重合性反応基を有するヌレート環含有化合物とを混合して混合物を得る工程と、上記混合物と、架橋剤である有機過酸化物と、シランカップリング剤とを混合して封止材組成物を得る工程と、上記封止材組成物を溶融し、シート状に成膜して、未架橋の封止材シートを得る工程と、を有し、上記封止材シート中の上記架橋剤の含有量が、0.33質量%以上0.53質量%以下、上記架橋助剤の含有量が0.30質量%以上0.90質量%以下、上記シランカップリング剤の含有量が0.15質量%以上0.40質量%以下である、太陽電池モジュール用封止材シートの製造方法を提供する。 Further, the present disclosure is a method for producing a sealing material sheet for a solar cell module, which comprises a polyethylene-based resin and a nurate ring-containing compound having two or more polymerizable reactive groups in one molecule as a cross-linking aid. To obtain a mixture, a step of mixing the above mixture, an organic peroxide as a cross-linking agent, and a silane coupling agent to obtain a sealing material composition, and the above-mentioned sealing material composition. It has a step of melting and forming a film into a sheet to obtain an uncrosslinked encapsulant sheet, and the content of the crosslinking agent in the encapsulant sheet is 0.33% by mass or more. 53% by mass or less, the content of the cross-linking aid is 0.30% by mass or more and 0.90% by mass or less, and the content of the silane coupling agent is 0.15% by mass or more and 0.40% by mass or less. Provided is a method for manufacturing a sealing material sheet for a solar cell module.
 本開示の太陽電池モジュール用封止材シートは、信頼性が高い太陽電池モジュールを製造できるといった効果を奏する。 The encapsulant sheet for a solar cell module disclosed in the present disclosure has an effect that a highly reliable solar cell module can be manufactured.
本開示の太陽電池モジュールを例示する概略断面図である。It is the schematic cross-sectional view which illustrates the solar cell module of this disclosure. 本開示の太陽電池モジュール用封止材シートを使用した多層封止材シートを例示する概略断面図である。It is schematic cross-sectional view which illustrates the multilayer sealing material sheet using the sealing material sheet for a solar cell module of this disclosure.
 下記に、図面等を参照しながら本開示の実施の形態を説明する。ただし、本開示は多くの異なる態様で実施することが可能であり、下記に例示する実施の形態の記載内容に限定して解釈されるものではない。また、図面は説明をより明確にするため、実際の形態に比べ、各部の幅、厚さ、形状等について模式的に表わされる場合があるが、あくまで一例であって、本開示の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。 An embodiment of the present disclosure will be described below with reference to drawings and the like. However, the present disclosure can be implemented in many different embodiments and is not construed as limited to the description of the embodiments illustrated below. In addition, in order to clarify the explanation, the drawings may schematically represent the width, thickness, shape, etc. of each part as compared with the actual form, but this is just an example and the interpretation of the present disclosure is limited. It's not something to do. Further, in the present specification and each figure, the same elements as those described above with respect to the above-mentioned figures may be designated by the same reference numerals, and detailed description thereof may be omitted as appropriate.
 「上に」、あるいは「下に」と表記する場合、特に断りの無い限りは、ある部材に接するように、直上、あるいは直下に他の部材を配置する場合と、ある部材の上方、あるいは下方に、さらに別の部材を介して他の部材を配置する場合との両方を含むものとする。 When writing "above" or "below", unless otherwise specified, when another member is placed directly above or directly below a certain member, and above or below a certain member, unless otherwise specified. Including the case where another member is arranged via yet another member.
 また、本明細書において、「シート」、「フィルム」、「板」等の用語は、呼称の違いのみに基づいて、互いから区別されるものではない。例えば、「シート」は、フィルムや板とも呼ばれるような部材も含む意味で用いられる。 Further, in the present specification, terms such as "sheet", "film", and "board" are not distinguished from each other based only on the difference in names. For example, "sheet" is used to include a member that is also called a film or a plate.
 本明細書において、太陽電池モジュール用封止材シートを、単に封止材シートとも称し、太陽電池モジュール用封止材組成物を、単に封止材組成物とも称する。 In the present specification, the encapsulant sheet for a solar cell module is also simply referred to as an encapsulant sheet, and the encapsulant composition for a solar cell module is also simply referred to as an encapsulant composition.
 上述したように、耐加水分解性等に優れるポリエチレン系樹脂をベース樹脂とした熱硬化系の封止材シートの開発が進んでいる。一般に、ポリエチレンはEVAと比べて架橋反応が進行しにくく、必要な耐熱性を確保するに足る程度にまで架橋反応を進行させる必要があった。また、配線の伸縮に伴う接続不良を抑制するために、太陽電池モジュールの封止材層の弾性率を上げることが求められていた。そのため、ポリエチレン系樹脂をベース樹脂とした熱硬化系の封止材シートには、ゲル分率を高くするための架橋剤および架橋助剤は通常多く添加されていた。 As described above, the development of a thermosetting encapsulant sheet using a polyethylene resin having excellent hydrolysis resistance as a base resin is in progress. In general, polyethylene is less likely to undergo a cross-linking reaction than EVA, and it is necessary to allow the cross-linking reaction to proceed to a extent sufficient to secure the required heat resistance. Further, in order to suppress connection failure due to expansion and contraction of wiring, it has been required to increase the elastic modulus of the encapsulant layer of the solar cell module. Therefore, a large amount of a cross-linking agent and a cross-linking aid for increasing the gel fraction are usually added to the thermosetting encapsulant sheet using the polyethylene resin as the base resin.
 しかしながら、本発明者らは、架橋剤が過剰に添加されていたことにより、太陽電池モジュールとしての一体化工程や耐久試験時等に架橋剤に起因したアウトガスが発生し、発生したガスが十分に脱気されることなく太陽電池モジュール内部に留まることにより気泡として残り、発電を阻害することを知見した。また、本発明者らは、特定の架橋助剤が、ゲル分率を向上させる効果を有するものの、特にポリエチレン系樹脂をベース樹脂とした場合、架橋助剤の含有量が多いとブリードアウトが生じ、作業性を悪化させたり、他の部材との密着性を阻害する等の不具合が生じる可能性があり、太陽電池モジュールの信頼性が低下することを知見した。 However, due to the excessive addition of the cross-linking agent, the present inventors generated outgas due to the cross-linking agent during the integration process as the solar cell module, the durability test, etc., and the generated gas was sufficiently generated. It was found that by staying inside the solar cell module without being degassed, it remains as bubbles and hinders power generation. In addition, although the specific cross-linking aid has the effect of improving the gel fraction, the present inventors, especially when a polyethylene-based resin is used as the base resin, bleed-out occurs when the content of the cross-linking aid is large. It has been found that there is a possibility that problems such as deterioration of workability and hindering adhesion with other members may occur, and the reliability of the solar cell module is lowered.
 そこで、封止材シート中の架橋剤及び架橋助剤の含有量を低減させることを試みたが、ガラスやセル、配線等との密着性を確保するために添加するシランカップリング剤の添加量が過剰であると、シランカップリング剤が、ポリエチレン系樹脂を架橋させる際のラジカルを捕捉してしまう量が多くなってしまい、結果的に架橋度が低下してゲル分率を上げることができない場合があることを知見した。 Therefore, we tried to reduce the content of the cross-linking agent and the cross-linking aid in the sealing material sheet, but the amount of the silane coupling agent added to ensure the adhesion to the glass, cells, wiring, etc. If the amount is excessive, the amount of the silane coupling agent that captures the radicals when cross-linking the polyethylene resin becomes large, and as a result, the degree of cross-linking decreases and the gel fraction cannot be increased. It was found that there are cases.
 そこで、本発明者らは、ベース樹脂としてポリエチレン系樹脂を使用し、特定の架橋剤、特定の架橋助剤、及びシランカップリング剤をそれぞれ特定の範囲内の含有量とした封止材シートであれば、添加剤のブリードや、太陽電池モジュールの製造時等におけるアウトガスの発生を抑制でき、かつ、ガラス等との高い密着性および高いゲル分率等の要求特性を満足する信頼性の高い太陽電モジュールを製造できる封止材シートとなることを見出した。 Therefore, the present inventors use a polyethylene-based resin as the base resin, and use a sealing material sheet containing a specific cross-linking agent, a specific cross-linking aid, and a silane coupling agent within a specific range. If there is, it is possible to suppress the bleeding of additives and the generation of outgas during the manufacture of solar cell modules, and the highly reliable sun that satisfies the required characteristics such as high adhesion to glass and high gel fraction. We have found that it is a sealing material sheet that can be used to manufacture electric modules.
 以下、本開示の太陽電池モジュール用封止材シート、太陽電池モジュール用多層封止材シート、太陽電池モジュール用封止材組成物、太陽電池モジュール、および太陽電池モジュール用封止材シートの製造方法の詳細を説明する。 Hereinafter, a method for manufacturing a sealing material sheet for a solar cell module, a multilayer sealing material sheet for a solar cell module, a sealing material composition for a solar cell module, a solar cell module, and a sealing material sheet for a solar cell module of the present disclosure. The details of.
A.太陽電池モジュール用封止材シート
 本開示の太陽電池モジュール用封止材シートは、ポリエチレン系樹脂をベース樹脂とし、架橋剤である有機過酸化物と、架橋助剤である1分子中に2以上の重合性反応基を有するヌレート環含有化合物と、シランカップリング剤と、を含み、上記封止材シート中の上記架橋剤の含有量が、0.33質量%以上0.53質量%以下、上記架橋助剤の含有量が0.30質量%以上0.90質量%以下、上記シランカップリング剤の含有量が0.15質量%以上0.40質量%以下であることを特徴とする。
A. Encapsulant sheet for solar cell module The encapsulant sheet for solar cell module of the present disclosure uses a polyethylene resin as a base resin, and contains two or more organic peroxides as a cross-linking agent and one molecule as a cross-linking aid. The content of the cross-linking agent in the encapsulant sheet is 0.33% by mass or more and 0.53% by mass or less. The content of the cross-linking aid is 0.30% by mass or more and 0.90% by mass or less, and the content of the silane coupling agent is 0.15% by mass or more and 0.40% by mass or less.
 本開示の封止材シートは、上記の架橋剤の含有量を上記範囲内とすることにより、太陽電池モジュールとしての一体化工程の際や耐久試験時等に架橋剤に起因するアウトガスの発生を抑制することができ、太陽電池モジュール内部に気泡が生じにくいものとなる。また、上記の架橋助剤の含有量を上記範囲内とすることにより、架橋助剤のブリードを抑制することができ、他の部材との密着性を阻害する等の不具合が生じにくいものとなる。さらに、シランカップリング剤の含有量を上記範囲内とすることにより、ガラス基板等の他の部材との密着性に問題を生じさせることなく、架橋密度が低下することを抑制することが可能となる。よって、架橋助剤のブリードや、太陽電池モジュールの製造時等におけるアウトガスの発生を抑制でき、かつ、ガラス等との高い密着性および高いゲル分率等の要求特性を満足する信頼性の高い太陽電モジュールを製造できる封止材シートとなる。 By setting the content of the above-mentioned cross-linking agent within the above-mentioned range, the encapsulant sheet of the present disclosure can generate outgas due to the cross-linking agent during the integration process as a solar cell module, the durability test, and the like. It can be suppressed and bubbles are less likely to be generated inside the solar cell module. Further, by setting the content of the above-mentioned cross-linking aid within the above range, bleeding of the above-mentioned cross-linking aid can be suppressed, and problems such as hindering adhesion to other members are less likely to occur. .. Furthermore, by setting the content of the silane coupling agent within the above range, it is possible to suppress a decrease in the crosslink density without causing a problem in adhesion to other members such as a glass substrate. Become. Therefore, the bleeding of the cross-linking aid and the generation of outgas during the manufacture of the solar cell module can be suppressed, and the highly reliable sun that satisfies the required characteristics such as high adhesion to glass and high gel fraction. It is a sealing material sheet that can manufacture electric modules.
1.封止材シートの組成
 本開示の封止材シートは、ポリエチレン系樹脂をベース樹脂とし、封止材シート中の架橋剤である有機過酸化物の含有量が、0.33質量%以上0.53質量%以下、架橋助剤である1分子中に2以上の重合性反応基を有するヌレート環含有化合物の含有量が0.30質量%以上0.90質量%以下、シランカップリング剤の含有量が0.15質量%以上0.40質量%以下である。それぞれの含有量は、後述する「2.封止材シート中の各成分含有量測定方法」に記載の方法で求めることができる。
1. 1. Composition of Encapsulant Sheet The encapsulant sheet of the present disclosure uses a polyethylene resin as a base resin, and the content of organic peroxide as a cross-linking agent in the encapsulant sheet is 0.33% by mass or more. 53% by mass or less, the content of the nurate ring-containing compound having 2 or more polymerizable reactive groups in one molecule of the cross-linking aid is 0.30% by mass or more and 0.90% by mass or less, and the content of the silane coupling agent is contained. The amount is 0.15% by mass or more and 0.40% by mass or less. Each content can be determined by the method described in "2. Method for measuring the content of each component in the encapsulant sheet" described later.
(1)ポリエチレン系樹脂
 本開示の太陽電池モジュール用封止材シートは、ポリエチレン系樹脂をベース樹脂として含む。尚、本明細書において「ベース樹脂」とは、当該ベース樹脂を含有してなる樹脂組成物において、当該樹脂組成物中で含有量比の最も大きい樹脂を言うものとする。
(1) Polyethylene-based resin The sealing material sheet for a solar cell module of the present disclosure contains a polyethylene-based resin as a base resin. In addition, in this specification, a "base resin" means a resin having the largest content ratio in the resin composition in the resin composition containing the base resin.
 太陽電池モジュールに使用される封止材シートとしては、エチレン-酢酸ビニル共重合体樹脂(EVA)からなる樹脂シートが一般的に使用されている。しかしながら、EVA樹脂は、長期間の使用に伴って徐々に分解する傾向があり、太陽電池モジュールの内部で劣化して強度が低下したり、太陽電池素子に影響を与える酢酸ガスを発生させたりする可能性がある。本開示においては、ベース樹脂としてポリエチレン系樹脂を使用するため、このような問題が生じない。 As the encapsulant sheet used for the solar cell module, a resin sheet made of ethylene-vinyl acetate copolymer resin (EVA) is generally used. However, EVA resin tends to be gradually decomposed with long-term use, and deteriorates inside the solar cell module to reduce its strength or generate acetic acid gas that affects the solar cell element. there is a possibility. In the present disclosure, since a polyethylene-based resin is used as the base resin, such a problem does not occur.
 本開示に用いられるポリエチレン系樹脂には、エチレンを重合して得られる通常のポリエチレンのみならず、エチレンとα-オレフィンとの共重合体が含まれる。α-オレフィンとしては、好ましくは炭素数3~12のα-オレフィンである。具体的には、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-ヘプテン、4-メチル-ペンテン-1、4-メチル-ヘキセン-1、4,4-ジメチルペンテン-1等を挙げることができる。エチレン・α-オレフィン共重合体の具体例としては、エチレン・プロピレン共重合体、エチレン・1-ブテン共重合体、エチレン・1-ヘキセン共重合体、エチレン・1-オクテン共重合体、エチレン・4-メチル-ペンテン-1共重合体等が挙げられる。本開示においては、中でもエチレン・プロピレン共重合体が好ましい。また、α-オレフィンは1種または2種以上の組み合わせでもよい。 The polyethylene-based resin used in the present disclosure includes not only ordinary polyethylene obtained by polymerizing ethylene, but also a copolymer of ethylene and α-olefin. The α-olefin is preferably an α-olefin having 3 to 12 carbon atoms. Specifically, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-hepten, 4-methyl-pentene-1, 4-methyl-hexene-1, 4,4-dimethylpentene- The first prize can be mentioned. Specific examples of the ethylene / α-olefin copolymer include an ethylene / propylene copolymer, an ethylene / 1-butene copolymer, an ethylene / 1-hexene copolymer, an ethylene / 1-octene copolymer, and an ethylene / α-olefin copolymer. Examples thereof include 4-methyl-pentene-1 copolymer. In the present disclosure, an ethylene / propylene copolymer is particularly preferable. Further, the α-olefin may be one kind or a combination of two or more kinds.
 中でも、低密度ポリエチレン系樹脂(LDPE)、直鎖低密度ポリエチレン系樹脂(LLDPE)を好ましく用いることができる。 Among them, low-density polyethylene-based resin (LDPE) and linear low-density polyethylene-based resin (LLDPE) can be preferably used.
 本開示では、0.870g/cm以上0.920g/cm以下、特には、0.880g/cm以上0.890g/cm以下の低密度ポリエチレン、中でも、直鎖低密度ポリエチレン(LLDPE)を用いることが好ましい。上記のような低密度のポリエチレンをベース樹脂とすることにより、封止材シートの透明性を向上させることができ、また、柔軟性を向上させることができラミネート処理における各部材の圧着時におけるセル割れのリスクを低減させることもできる。 In this disclosure, 0.870 g / cm 3 or more 0.920 g / cm 3 or less, especially, 0.880 g / cm 3 or more 0.890 g / cm 3 or less of low density polyethylene, among others, linear low density polyethylene (LLDPE ) Is preferably used. By using low-density polyethylene as the base resin as described above, the transparency of the encapsulant sheet can be improved, and the flexibility can be improved. The risk of cracking can also be reduced.
 また、本開示におけるポリエチレン系樹脂は、成膜性を良好に保つ観点から、JIS K7210に準拠して測定した190℃、荷重2.16kgにおけるMFRの値(本明細書における「MFR」とは、この条件で測定した値とする。)が、3.0g/10min以上30.0g/10min以下であることが好ましく、10g/10min以上25g/10min以下であることがより好ましい。 Further, the polyethylene-based resin in the present disclosure has an MFR value at 190 ° C. and a load of 2.16 kg measured in accordance with JIS K7210 from the viewpoint of maintaining good film-forming property (“MFR” in the present specification is referred to as “MFR”. The value measured under these conditions is preferably 3.0 g / 10 min or more and 30.0 g / 10 min or less, and more preferably 10 g / 10 min or more and 25 g / 10 min or less.
 特に、本開示においては、後述する架橋剤及び架橋助剤により架橋しやすいポリエチレン系樹脂が好ましい。このようなポリエチレン系樹脂としては、反応性官能基を側鎖又は末端に有するポリエチレン系樹脂が挙げられる。反応性官能基としては不飽和結合含有基が挙げられ、例えば、ビニル、ビニリデン、シス-ビニレン、トランス-ビニレン、三置換-ビニレンが挙げられる。さらに、本開示におけるポリエチレン系樹脂(エチレン・α-オレフィン共重合)としては、ビニル、ビニリデン、シス-ビ ニレン、トランス-ビニレン、三置換-ビニレンの合計量が0.22(個 /total 1000C)以上であることが好ましい。ここで、ビニル、ビニリデン、シス-ビニレン、トランス-ビニレン、三置換-ビニレンの個数は、NMRで測定した主鎖、側鎖の合計1000個の炭素数あたりの数である。エチレン・α-オレフィン共重合体中のビニル、ビニリデン、シス-ビニレン、トランス-ビニレン、三置換-ビニレンの合計量は、0.25以上がより好ましく、中でも0.30以上が好ましく、0.40以上がさらに好ましく、0.50以上が特に好ましい。具体的には、特開2014-168091に記載のポリエチレン系樹脂を使用することができる。 In particular, in the present disclosure, a polyethylene resin that is easily crosslinked by a crosslinking agent and a crosslinking aid described later is preferable. Examples of such a polyethylene-based resin include a polyethylene-based resin having a reactive functional group in the side chain or the end. Examples of the reactive functional group include unsaturated bond-containing groups, and examples thereof include vinyl, vinylidene, cis-vinylene, trans-vinylene, and trisubstituted-vinylene. Further, as the polyethylene-based resin (ethylene / α-olefin copolymer) in the present disclosure, the total amount of vinyl, vinylidene, cis-vinylene, trans-vinylene, and trisubstituted-vinylene is 0.22 (pieces / total 1000C). The above is preferable. Here, the number of vinyl, vinylidene, cis-vinylene, trans-vinylene, and trisubstituted-vinylene is the number per 1000 carbon atoms in total of the main chain and the side chain measured by NMR. The total amount of vinyl, vinylidene, cis-vinylene, trans-vinylene, and trisubstituted-vinylene in the ethylene / α-olefin copolymer is more preferably 0.25 or more, particularly preferably 0.30 or more, and 0.40. The above is more preferable, and 0.50 or more is particularly preferable. Specifically, the polyethylene-based resin described in JP-A-2014-168901 can be used.
 封止材シートの全樹脂成分に対するポリエチレン系樹脂の含有量は、封止材シートの質量を100質量%としたとき、好ましくは、90質量%以上、より好ましくは95質量%以上である。これにより、透明性、接着性、耐熱性、柔軟性、外観、架橋特性、電気特性等のバランスにより優れた封止材となる。 The content of the polyethylene-based resin with respect to the total resin components of the encapsulant sheet is preferably 90% by mass or more, more preferably 95% by mass or more, when the mass of the encapsulant sheet is 100% by mass. As a result, the sealing material has an excellent balance of transparency, adhesiveness, heat resistance, flexibility, appearance, cross-linking characteristics, electrical characteristics, and the like.
(2)架橋剤
 本開示の封止材シートは、架橋剤として有機過酸化物を含む。有機過酸化物は、少なくとも炭素原子と-O-O-結合を有する化合物である。本開示における有機過酸化物は、その含有量が、封止材シートの全体を100質量%としたとき、0.33質量%以上0.53質量%以下であり、好ましくは、0.38質量%以上0.50質量%以下、より好ましくは、0.42質量%以上0.48質量%以下である。架橋剤の含有量が上記の下限値より少ないと、架橋密度が低下し、ゲル分率が低くなる。また、上記の上限値より多いと、太陽電池モジュールとしての一体化工程の際や耐久試験時等に、有機過酸化物の分解生成物であるアウトガスが発生し、気泡の原因となり、信頼性の高い太陽電池モジュールを製造することができない。
(2) Cross-linking agent The sealing material sheet of the present disclosure contains an organic peroxide as a cross-linking agent. Organic peroxides are compounds that have at least an OO bond with a carbon atom. The content of the organic peroxide in the present disclosure is 0.33% by mass or more and 0.53% by mass or less, preferably 0.38% by mass, when the whole encapsulant sheet is 100% by mass. % Or more and 0.50% by mass or less, more preferably 0.42% by mass or more and 0.48% by mass or less. When the content of the cross-linking agent is less than the above lower limit, the cross-linking density is lowered and the gel fraction is lowered. On the other hand, if it exceeds the above upper limit value, outgas, which is a decomposition product of organic peroxide, is generated during the integration process as a solar cell module or during the durability test, which causes bubbles and is reliable. Unable to manufacture expensive solar cell modules.
 本開示において、上記架橋剤である有機過酸化物は、分子量200以上350以下、中でも、分子量220以上300以下の範囲内のものが好ましい。上記分子量の有機過酸化物であれば、架橋点を十分に確保する量のラジカルを発生することができ、また、有機過酸化物の分解生成物であるアウトガスを確実に抑制することができるために好ましい。 In the present disclosure, the organic peroxide as the cross-linking agent preferably has a molecular weight of 200 or more and 350 or less, and more preferably 220 or more and 300 or less. With the organic peroxide having the above molecular weight, it is possible to generate an amount of radicals that sufficiently secures a cross-linking point, and it is possible to reliably suppress outgas, which is a decomposition product of the organic peroxide. Is preferable.
 さらに、上記分子量の範囲内の有機過酸化物のうち、1時間半減期温度が110℃以上145℃以下のものが好ましい。ここで、有機過酸化物の半減期とは、有機過酸化物が熱によって分解してその活性酸素量が分解前の量の半分になるまでの時間である。1時間半減期温度が上記の下限値以上であれば、成膜時に架橋が生じることを防止することができるために好ましい。また、上記の上限値以下であれば、モジュール一体化工程時にラジカルを確実に発生することができるため好ましい。 Further, among the organic peroxides within the above molecular weight range, those having a one-hour half-life temperature of 110 ° C. or higher and 145 ° C. or lower are preferable. Here, the half-life of the organic peroxide is the time until the organic peroxide is decomposed by heat and the amount of active oxygen thereof is halved from the amount before decomposition. When the 1-hour half-life temperature is at least the above lower limit value, it is preferable because it is possible to prevent cross-linking from occurring during film formation. Further, if it is equal to or less than the above upper limit value, radicals can be reliably generated during the module integration step, which is preferable.
 また、上記有機過酸化物の活性酸素量が、5.0%程度~10.0%程度の範囲内であることが好ましい。活性酸素量が上記下限値以上であれば、ポリエチレン系樹脂と架橋助剤とが架橋するために必要なラジカル量を十分に発生することができ、モジュール一体化工程時に封止材が確実に架橋するために好ましい。 Further, it is preferable that the amount of active oxygen of the organic peroxide is in the range of about 5.0% to about 10.0%. When the amount of active oxygen is equal to or higher than the above lower limit, a sufficient amount of radicals required for cross-linking the polyethylene resin and the cross-linking aid can be sufficiently generated, and the encapsulant is surely cross-linked during the module integration process. It is preferable to do so.
 本開示において、架橋剤である有機過酸化物としては、具体的には、t-アミル-パーオキシ-2-エチルヘキシルカーボネート、t-ブチルパーオキシ2-エチルヘキシルカーボネート等のパーオキシカーボネート類、n-ブチル4,4-ジ(t-ブチルパーオキシ)バレレート、エチル3,3-ジ(t-ブチルパーオキシ)ブチレート、2,2-ジ(t-ブチルパーオキシ)ブタン等のパーオキシケタール類、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t‐ブチルパーオキシ)ヘキサン、2,5‐ジメチル-2,5-ジ(t‐パーオキシ)ヘキシン-3等のジアルキルパーオキサイド類を、封止材組成物に添加して用いることができる架橋剤として挙げることができる。本開示においては、上記架橋剤を1種単独で用いてもよく、2種以上を混合して用いてもよい。 In the present disclosure, examples of the organic peroxide as a cross-linking agent include peroxycarbonates such as t-amyl-peroxy-2-ethylhexyl carbonate and t-butylperoxy2-ethylhexyl carbonate, and n-butyl. Peroxyketals such as 4,4-di (t-butylperoxy) valerate, ethyl 3,3-di (t-butylperoxy) butane, 2,2-di (t-butylperoxy) butane, di -T-Butyl peroxide, t-Butyl cumyl peroxide, Dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butyl peroxy) hexane, 2,5-dimethyl-2,5-di Dialkyl peroxides such as (t-peroxy) hexin-3 can be mentioned as a cross-linking agent that can be used by adding it to the encapsulant composition. In the present disclosure, the above-mentioned cross-linking agent may be used alone or in combination of two or more.
 特に、本開示において、授記架橋剤は、ベース樹脂であるポリエチレン系樹脂に対して良好な反応性を有する等の観点から、t-ブチルパーオキシ2-エチルヘキシルカーボネート(製品名「ルぺロックスTBEC」 アルケマ吉富株式会社製)が好ましい。 In particular, in the present disclosure, the cross-linking agent is t-butylperoxy2-ethylhexyl carbonate (product name "Luperox TBEC") from the viewpoint of having good reactivity with the polyethylene resin as the base resin. Alchema Yoshitomi Co., Ltd.) is preferable.
(3)架橋助剤
 本開示の封止材は、架橋助剤として、1分子中に2以上の重合性反応基を有するヌレート環含有化合物を含む。本開示におけるヌレート環含有化合物は、その含有量が、封止材シートの全体を100質量%としたとき、0.30質量%以上0.90質量%以下であり、好ましくは、0.45質量%以上0.78質量%以下、より好ましくは、0.50質量%以上0.70質量%以下である。
(3) Crosslinking Aid The encapsulant of the present disclosure contains a nurate ring-containing compound having two or more polymerizable reactive groups in one molecule as a crosslinking aid. The content of the nurate ring-containing compound in the present disclosure is 0.30% by mass or more and 0.90% by mass or less, preferably 0.45% by mass, when the whole encapsulant sheet is 100% by mass. % Or more and 0.78% by mass or less, more preferably 0.50% by mass or more and 0.70% by mass or less.
 本開示に用いられる架橋助剤は、反応性を向上させる観点からヌレート環含有化合物であることが好ましいが、ヌレート環含有化合物は、ポリエチレン系樹脂と相溶性が悪く、ブリードアウトが生じやすいものとなる。このため、上記上限値を定めてブリードアウトによる不具合を防止するものである。一方、架橋助剤の含有量が上記の下限値より少ないと、封止材シートの架橋処理後のゲル分率が低下するため好ましくない。 The cross-linking aid used in the present disclosure is preferably a nurate ring-containing compound from the viewpoint of improving reactivity, but the nurate ring-containing compound has poor compatibility with the polyethylene resin and is prone to bleed-out. Become. Therefore, the above upper limit value is set to prevent a problem due to bleeding out. On the other hand, if the content of the cross-linking aid is less than the above lower limit, the gel fraction after the cross-linking treatment of the encapsulant sheet decreases, which is not preferable.
 本開示における架橋助剤は、1分子中に2以上の重合性反応基を有するヌレート環含有化合物であればよいが、好ましい重合反応基の数としては、1分子中に2~6個であることが好ましく、特に2~3個であることが好ましい。上記範囲より小さい場合は、架橋密度を十分に上げることができない可能性があるからである。一方、上記範囲より大きい場合は、架橋処理後の封止層が脆くなる等の封止層の物性に悪影響を及ぼす可能性があるからである。 The cross-linking aid in the present disclosure may be a nulate ring-containing compound having two or more polymerizable reactive groups in one molecule, and the preferred number of polymerization reactive groups is 2 to 6 in one molecule. It is preferable, and particularly preferably 2 to 3 pieces. This is because if it is smaller than the above range, the crosslink density may not be sufficiently increased. On the other hand, if it is larger than the above range, the physical properties of the sealing layer may be adversely affected, such as the sealing layer after the cross-linking treatment becoming brittle.
 本開示における架橋剤が含有する重合性反応基としては、ベース樹脂であるポリエチレン系樹脂と反応し、架橋構造を付与することができるものであれば特に限定されない。本開示においては、中でもビニル基、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、アリル基等の炭素-炭素二重結合を有する基や、エポキシ基等が好ましい。 The polymerizable reactive group contained in the cross-linking agent in the present disclosure is not particularly limited as long as it can react with the polyethylene-based resin which is the base resin and impart a cross-linked structure. In the present disclosure, a group having a carbon-carbon double bond such as a vinyl group, a (meth) acryloyl group, a (meth) acryloyloxy group, and an allyl group, an epoxy group, and the like are preferable.
 本開示における架橋助剤としては、具体的には、トリアリルイソシアヌレート(TAIC)、トリアリルシアヌレート、ジアリルフタレート、ジアリルフマレート、ジアリルマレエート等のポリアリル化合物、トリメチロールプロパントリメタクリレート(TMPT)、トリメチロールプロパントリアクリレート(TMPTA)、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、1,4-ブタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、1,9-ノナンジオールジアクリレート等のポリ(メタ)アクリロキシ化合物、二重結合とエポキシ基を含むグリシジルメタクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル及びエポキシ基を2つ以上含有する1,6-ヘキサンジオールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル等のエポキシ系化合物等を挙げることができる。これらは単独でもよく、2種以上を組合せてもよい。また、上記架橋助剤の中でも、封止材のガラス密着性向上にも顕著に寄与し、直鎖低密度ポリエチレンに対する相溶性が良好で、架橋によって結晶性を低下させ透明性を維持し、低温での柔軟性を付与する観点からTAICを好ましく使用することができる。 Specific examples of the cross-linking aid in the present disclosure include polyallyl compounds such as triallyl isocyanurate (TAIC), triallyl cyanurate, diallyl phthalate, diallyl fumarate, and diallyl maleate, and trimethylolpropane trimethacrylate (TMPT). , Trimethylolpropane triacrylate (TMPTA), ethylene glycol diacrylate, ethylene glycol dimethacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol diacrylate and other polys ( Meta) Acryloxy compounds, glycidyl methacrylates containing double bonds and epoxy groups, 4-hydroxybutyl acrylate glycidyl ethers and 1,6-hexanediol diglycidyl ethers containing two or more epoxy groups, 1,4-butanediol diglycidyl. Examples thereof include epoxy compounds such as ether, cyclohexanedimethanol diglycidyl ether, and trimethylolpropane polyglycidyl ether. These may be used alone or in combination of two or more. In addition, among the above-mentioned cross-linking aids, it also contributes remarkably to the improvement of glass adhesion of the sealing material, has good compatibility with linear low-density polyethylene, lowers crystallinity by cross-linking, maintains transparency, and has a low temperature. TAIC can be preferably used from the viewpoint of imparting flexibility in the above.
(4)シランカップリング剤
 本開示の封止材シートは、シランカップリング剤を含む。本開示におけるシランカップリング剤は、その含有量が、封止材シートの全体を100質量%としたとき、0.15質量%以上0.40質量%以下であり、好ましくは、0.17質量%以上0.35質量%以下、より好ましくは、0.20質量%以上0.30質量%以下である。封止材シートにおけるシランカップリング剤の含有量が上記の下限値より少ないと、ガラスやセル、配線等との密着性が低下する。一方、上記の上限値より多いと、ポリエチレン系樹脂に上記架橋剤等を用いて架橋反応を行う際に生じるラジカルを、上記シランカップリング剤が捕捉してしまう量が多くなってしまい、充分な架橋密度を得ることができない可能性があるからである。
(4) Silane Coupling Agent The encapsulant sheet of the present disclosure contains a silane coupling agent. The content of the silane coupling agent in the present disclosure is 0.15% by mass or more and 0.40% by mass or less, preferably 0.17% by mass, when the total content of the encapsulant sheet is 100% by mass. % Or more and 0.35% by mass or less, more preferably 0.20% by mass or more and 0.30% by mass or less. If the content of the silane coupling agent in the encapsulant sheet is less than the above lower limit value, the adhesion to glass, cells, wiring and the like is lowered. On the other hand, if it is more than the above upper limit value, the amount of radicals generated when the cross-linking reaction is carried out on the polyethylene resin by using the above-mentioned cross-linking agent or the like is increased by the above-mentioned silane coupling agent, which is sufficient. This is because it may not be possible to obtain the crosslink density.
 本開示におけるシランカップリング剤としては、例えば、メタクリロキシ系シランカップリング剤、アクリロキシ系シランカップリング剤、エポキシ系シランカップリング剤又はメルカプト系シランカップリング剤を好ましく用いることができる。なかでもアクリロキシ系又はメタクリロキシ系シランカップリング剤が好ましく、具体的には、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルメチルジメトキシシラン、3-アクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン等があげられる。なお、メタクリロキシ系、アクリロキシ系のシランカップリング剤は特に限定されず、公知のシランカップリング剤を好適に用いることができる。例えば、「KBM503」、「KBM-5103」(いずれも「信越シリコーン株式会社」製)があり、市場から容易に入手できる。本開示においては、(メタ)アクリロイルオキシ基を有するものが好ましく、特には、3-メタクリロキシプロピルトリメトキシシランが好ましい。 As the silane coupling agent in the present disclosure, for example, a methacryoxy-based silane coupling agent, an acryloxy-based silane coupling agent, an epoxy-based silane coupling agent, or a mercapto-based silane coupling agent can be preferably used. Of these, acryloxy-based or methacryloxy-based silane coupling agents are preferable, and specifically, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxy. Examples thereof include propyltriethoxysilane, 3-acryloxypropylmethyldimethoxysilane, 3-acryloxypropylmethyldiethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, and 3-methacryloxypropylmethyldiethoxysilane. The methacryloxy-based and acryloxy-based silane coupling agents are not particularly limited, and known silane coupling agents can be preferably used. For example, there are "KBM503" and "KBM-5103" (both manufactured by "Shinetsu Silicone Co., Ltd."), which are easily available from the market. In the present disclosure, those having a (meth) acryloyloxy group are preferable, and 3-methacryloxypropyltrimethoxysilane is particularly preferable.
(5)その他の添加剤
 本開示の封止材シートは、上述したポリエチレン系樹脂、架橋剤、架橋助剤およびシランカップリング剤以外のその他の添加剤を含有してもよい。その他の添加剤としては、耐候剤、紫外線吸収剤、酸化防止剤、熱安定剤、核剤、分散剤、レベリング剤、可塑剤、消泡剤、難燃剤、及びその他の各種フィラーを適宜添加することができる。
(5) Other Additives The encapsulant sheet of the present disclosure may contain other additives other than the above-mentioned polyethylene resin, cross-linking agent, cross-linking aid and silane coupling agent. As other additives, weather resistant agents, UV absorbers, antioxidants, heat stabilizers, nucleating agents, dispersants, leveling agents, plasticizers, defoamers, flame retardants, and various other fillers are appropriately added. be able to.
 耐候剤としては、ヒンダードアミン系光安定剤(HALS)が挙げられる。ヒンダードアミン系光安定剤はピペリジン骨格中の窒素原子の結合相手により大きく分けて、N-H型(窒素原子に水素が結合)、N-R型(窒素原子にアルキル基(R)が結合)、N-OR型(窒素原子にアルコキシ基(OR)が結合)の3タイプがあるが、これらのうち、N-OR型のヒンダードアミン系耐光安定剤を特に好ましく用いることができる。N-OR型のヒンダードアミン系耐光安定剤としては、Tinuvin NOR 371、Tinuvin XT850(BASFジャパン株式会社製)等が挙げられる。N-OR型は、ラジカルを補足する速さがN-H型やN-R型よりも速い。さらに高分子HALSよりも速く表面へ移行したN-OR型の低分子HALSは、N-H型やN-CH型のHALSよりも短期的にラジカルを補足し、封止シートの劣化を抑制する点おいて、好ましい。 Examples of the weather resistant agent include hindered amine-based light stabilizers (HALS). Hindered amine-based photostabilizers are roughly classified according to the bond partner of the nitrogen atom in the piperidine skeleton, and are classified into NH type (hydrogen is bonded to the nitrogen atom), NR type (alkyl group (R) is bonded to the nitrogen atom), and There are three types of N-OR type (an alkoxy group (OR) is bonded to a nitrogen atom), and among these, an N-OR type hindered amine-based light-resistant stabilizer can be particularly preferably used. Examples of the N-OR type hindered amine-based light-resistant stabilizer include Tinuvin NOR 371 and Tinuvin XT850 (manufactured by BASF Japan Ltd.). The N-OR type has a faster rate of capturing radicals than the NH type and the N-R type. Furthermore low-molecular HALS of N-OR type having transferred to the faster surface than polymeric HALS is short term supplemented radicals than N-H-type or N-CH 3 type HALS, suppress the deterioration of the sealing sheet In that respect, it is preferable.
 紫外線吸収剤、酸化防止剤、熱安定剤、核剤、分散剤、レベリング剤、可塑剤、消泡剤、難燃剤、及びその他の各種フィラーとしては、従来公知のものを使用することができる。 As the ultraviolet absorber, antioxidant, heat stabilizer, nucleating agent, dispersant, leveling agent, plasticizer, defoaming agent, flame retardant, and various other fillers, conventionally known ones can be used.
 本開示においては、上記耐候剤、紫外線吸収剤、及び酸化防止剤等を、ポリエチレン等の樹脂に分散させた耐候性マスターバッチとして、封止材組成物に添加することにより、封止材シートに良好な耐光性を付与することができる。耐候性マスターバッチは、適宜作製して使用してもよいし、市販品を使用してもよい。耐候性マスターバッチに使用される樹脂としては、本開示におけるポリエチレンでもよく、その他の樹脂であってもよい。 In the present disclosure, the above-mentioned weather resistant agent, ultraviolet absorber, antioxidant and the like are added to the sealing material composition as a weather resistant masterbatch in which a resin such as polyethylene is dispersed, thereby forming a sealing material sheet. Good light resistance can be imparted. The weather-resistant masterbatch may be appropriately prepared and used, or a commercially available product may be used. The resin used in the weatherproof masterbatch may be polyethylene in the present disclosure or other resin.
2.封止材シート中の各成分含有量測定方法
 本開示の封止材シートは、上述したように、上述の架橋剤、上述の架橋助剤、およびシランカップリング剤の含有量を上記範囲内とすることを特徴とする。これらの含有量の測定方法は特に限定されないが、例えば、赤外分光法、ガスクロマトグラフィー質量分析法等により求めることができる。
2. Method for Measuring the Content of Each Component in the Encapsulant Sheet As described above, the encapsulant sheet of the present disclosure keeps the contents of the above-mentioned cross-linking agent, the above-mentioned cross-linking aid, and the silane coupling agent within the above range. It is characterized by doing. The method for measuring these contents is not particularly limited, but can be determined by, for example, infrared spectroscopy, gas chromatography-mass spectrometry, or the like.
 赤外分光法で求める場合、例えば、封止材シートを赤外分光光度計で測定して赤外吸収スペクトルを得て、ベース樹脂であるポリエチレン系樹脂のメチレン基に由来する吸光度ピークに対する、架橋剤、架橋助剤およびシランカップリング剤中の各官能基の吸光度ピークの比率(IRピーク比)を算出することによって求めることができる。架橋剤、架橋助剤、シランカップリング剤の含有量と吸光度の関係は予め検量線法により求めておくことが可能である。 When determined by infrared spectroscopy, for example, the encapsulant sheet is measured with an infrared spectrophotometer to obtain an infrared absorption spectrum, and cross-linking is performed on the absorbance peak derived from the methylene group of the polyethylene resin as the base resin. It can be obtained by calculating the ratio of the absorbance peaks (IR peak ratio) of each functional group in the agent, the cross-linking aid and the silane coupling agent. The relationship between the contents of the cross-linking agent, the cross-linking aid and the silane coupling agent and the absorbance can be obtained in advance by the calibration curve method.
3.封止材シートの製造方法
 以下、封止材シートの製造方法の一例について説明する。まず、上記の各成分を混合することにより封止材組成物とし、上記封止材組成物を溶融し、シート状に成膜して、未架橋の封止材シートを得る工程により得られる。
3. 3. Manufacturing Method of Encapsulant Sheet An example of the manufacturing method of the encapsulant sheet will be described below. First, it is obtained by a step of mixing each of the above components to obtain a sealing material composition, melting the sealing material composition, forming a film into a sheet, and obtaining an uncrosslinked sealing material sheet.
 各成分を混合する方法としては、例えば、各成分をドライブレンドでベース樹脂となるポリエチレン系樹脂に含浸させる方法が挙げられる。また、押し出し成型により封止材シートを得る場合には、架橋剤や架橋助剤を液体の状態でベース樹脂となるポリエチレン系樹脂に添加してもよい。また、架橋助剤をベース樹脂となるポリエチレン系樹脂に予め練り混ぜ、混合物としてマスターバッチ化したものを用いてもよい。マスターバッチ化したものを用いた場合、架橋助剤の分散性が良くなるため、封止材シート中の架橋助剤の含有量のバラツキを抑えることができる。 Examples of the method of mixing each component include a method of impregnating each component with a polyethylene resin as a base resin by dry blending. Further, when a sealing material sheet is obtained by extrusion molding, a cross-linking agent or a cross-linking aid may be added to the polyethylene-based resin as the base resin in a liquid state. Alternatively, a cross-linking aid may be kneaded in advance with a polyethylene-based resin as a base resin and master-batched as a mixture. When a masterbatch is used, the dispersibility of the cross-linking aid is improved, so that the variation in the content of the cross-linking aid in the encapsulant sheet can be suppressed.
 本開示の封止材シートは、上記封止材組成物を実質的な架橋を生じさせずに成膜したものであり、封止材シート中の各成分の含有量範囲は、封止材組成物中の各成分の含有量範囲と同様となる。溶融成形は、Tダイによる成膜等、従来公知の各種成膜方法によることができる。成膜温度は、80℃~100℃とすることができる。上記封止材組成物については、後述する「C.太陽電池モジュール用封止材組成物」において詳述する。 The encapsulant sheet of the present disclosure is a film formed by forming the encapsulant composition without substantially cross-linking, and the content range of each component in the encapsulant sheet is the encapsulant composition. It is the same as the content range of each component in the product. The melt molding can be performed by various conventionally known film forming methods such as film forming with a T-die. The film formation temperature can be 80 ° C. to 100 ° C. The encapsulant composition will be described in detail in "C. Encapsulant composition for solar cell module" described later.
 なお、架橋処理は、例えば、太陽電池モジュールの製造時の高温加熱処理によって完了させる。 The cross-linking treatment is completed by, for example, a high-temperature heat treatment at the time of manufacturing the solar cell module.
4.その他
 本開示の封止材シートは、成膜後未架橋の段階における封止材シートであり、太陽電池モジュールとしての一体化後までの間におけるいずれかのプロセス中において、架橋が進行することが想定されている、いわゆる、熱硬化系の樹脂フィルムである。
4. Others The encapsulant sheet of the present disclosure is an encapsulant sheet at the stage of uncrosslinking after film formation, and the crosslinking may proceed during any process until after integration as a solar cell module. It is a so-called thermosetting resin film that is supposed to be used.
 本開示の封止材シートは、このように未架橋の封止材シートであり、そのゲル分率は、通常、5%以下である。一方、太陽電池モジュールとして一体化後の架橋完了後における封止材シートのゲル分率、即ち封止材層のゲル分率は、50%以上90%以下であればよく、60%以上80%以下であることがより好ましい。 The encapsulant sheet of the present disclosure is an uncrosslinked encapsulant sheet in this way, and its gel fraction is usually 5% or less. On the other hand, the gel fraction of the encapsulant sheet after the completion of crosslinking after integration as a solar cell module, that is, the gel fraction of the encapsulant layer may be 50% or more and 90% or less, and 60% or more and 80%. More preferably:
 ここで、本明細書における「ゲル分率(%)」とは、封止材1.0gを樹脂メッシュに入れ、110℃キシレンにて24時間抽出したのち、樹脂メッシュごと取出し乾燥処理後秤量し、抽出前後の質量比較を行い残留不溶分の質量%を測定しこれをゲル分率としたものである。 Here, the “gel fraction (%)” in the present specification refers to 1.0 g of a sealing material in a resin mesh, extracted with xylene at 110 ° C. for 24 hours, then taken out together with the resin mesh, dried and weighed. , The mass before and after extraction was compared, the mass% of the residual insoluble matter was measured, and this was used as the gel fraction.
 なお、ゲル分率0%とは、上記残留不溶分が実質的に0であり、封止材組成物或いは封止材シートの架橋反応が実質的に開始していない状態であることを言う。より具体的には、「ゲル分率0%」とは、上記残留不溶分が全く存在しない場合、及び、精密天秤によって測定した上記残留不溶分の質量%が0.05質量%未満である場合を言うものとする。 The gel fraction of 0% means that the residual insoluble matter is substantially 0 and the cross-linking reaction of the encapsulant composition or the encapsulant sheet has not substantially started. More specifically, "gel fraction 0%" means that the residual insoluble matter is not present at all, and the mass% of the residual insoluble matter measured by a precision balance is less than 0.05% by mass. Suppose to say.
 また、上記残留不溶分には、樹脂成分以外の顔料成分等は含まないものとする。これらの樹脂成分以外の混在物が、上記試験により残留不溶分に混在している場合には、例えば、予めこれらの混在物の樹脂成分中における含有量を別途測定しておくことで、これらの混在物を除く樹脂成分由来の残留不溶分について本来得られるべきゲル分率を算出することができる。 In addition, the residual insoluble matter does not include pigment components other than the resin component. When a mixture other than these resin components is mixed in the residual insoluble matter by the above test, for example, by separately measuring the content of these mixture in the resin component in advance, these It is possible to calculate the gel fraction that should be originally obtained for the residual insoluble matter derived from the resin component excluding the mixture.
 本開示の封止材シートの膜厚は特に限定されないが、好ましくは、200μm以上1000μm以下である。膜厚が上記の下限値以上であれば、封止材シートの強度をより良好なものとすることができる。膜厚が上記の上限値以下であれば、ラミネート工程において、透明基板等の他の部材の破損を抑制することができる。また、十分な光透過率を確保することができ、これを含む太陽電池モジュールは、高い光発電量を有するものとなる。 The film thickness of the sealing material sheet of the present disclosure is not particularly limited, but is preferably 200 μm or more and 1000 μm or less. When the film thickness is at least the above lower limit value, the strength of the encapsulant sheet can be made better. When the film thickness is not more than the above upper limit value, damage to other members such as a transparent substrate can be suppressed in the laminating step. Further, a sufficient light transmittance can be secured, and the solar cell module including this can have a high amount of photovoltaic power generation.
 本開示の封止材シートは、単独で封止材シートとして使用されることが好ましいが、多層構造を有する多層封止材シートの一部として含まれ得る。多層構造としては、2種2層や2種3層等が好ましく用いられ、なかでも、スキン層、コア層、およびスキン層がこの順で積層される2種3層構成が好ましい。図2に、本開示の封止材シート100を使用した、スキン層6、コア層7、およびスキン層6がこの順で積層された2種3層構成を有する多層封止材シート20の概略断面図を示す。このような多層封止材シートは、コア層用、スキン層用の各封止材組成物により、所定の層厚さで、両最表面にスキン層が配置され、太陽電池素子と密着する側にスキン層が配置される。本開示の封止材シートは、多層封止材シートのスキン層として含まれることが好ましい。 The encapsulant sheet of the present disclosure is preferably used alone as an encapsulant sheet, but may be included as a part of a multi-layer encapsulant sheet having a multi-layer structure. As the multi-layer structure, 2 types 2 layers, 2 types 3 layers and the like are preferably used, and among them, a 2 types 3 layer structure in which a skin layer, a core layer and a skin layer are laminated in this order is preferable. FIG. 2 shows an outline of a multilayer sealing material sheet 20 having a two-kind three-layer structure in which a skin layer 6, a core layer 7, and a skin layer 6 are laminated in this order using the sealing material sheet 100 of the present disclosure. A cross-sectional view is shown. In such a multilayer encapsulant sheet, skin layers are arranged on both outermost surfaces with a predetermined layer thickness according to the encapsulant compositions for the core layer and the skin layer, and the side that comes into close contact with the solar cell element. A skin layer is placed in. The encapsulant sheet of the present disclosure is preferably included as a skin layer of the multilayer encapsulant sheet.
 スキン層とコア層との層厚比は1:1.2~1:10が好ましく、より好ましくは1:2~1:7であり、特に好ましくは1:3~1:5である。これらは、従来公知の多層共押し出し法等により成膜可能である。 The layer thickness ratio between the skin layer and the core layer is preferably 1: 1.2 to 1:10, more preferably 1: 2 to 1: 7, and particularly preferably 1: 3 to 1: 5. These can be formed by a conventionally known multi-layer coextrusion method or the like.
 コア層は、多層封止材シートに、主として耐熱性や適度な剛性等の所望の性能を付与する機能を有するものであれば限定されず、例えば、ポリエチレン系樹脂をベース樹脂とし、任意の成分を含有するものとすることができる。 The core layer is not limited as long as it has a function of imparting desired performance such as heat resistance and appropriate rigidity to the multilayer encapsulant sheet, and for example, a polyethylene resin is used as a base resin and any component is used. Can be contained.
 コア層用の封止材組成物のベース樹脂としては、低密度ポリエチレン系樹脂(LDPE)、直鎖低密度ポリエチレン系樹脂(LLDPE)、又はメタロセン系直鎖低密度ポリエチレン系樹脂(M-LLDPE)を好ましく用いることができる。中でも、太陽電池モジュールの長期信頼性の観点から、低密度ポリエチレン系樹脂(LDPE)をコア層用の組成物として特に好ましく用いることができる。 The base resin of the encapsulant composition for the core layer is a low density polyethylene resin (LDPE), a linear low density polyethylene resin (LLDPE), or a metallocene linear low density polyethylene resin (M-LLDPE). Can be preferably used. Above all, from the viewpoint of long-term reliability of the solar cell module, low-density polyethylene-based resin (LDPE) can be particularly preferably used as the composition for the core layer.
B.太陽電池モジュール用多層封止材シート
 本開示では、コア層と、上記コア層の両面に配置されたスキン層とを有する太陽電池モジュール用の多層封止材シートであって、上記コア層は、上記スキン層よりも厚く、上記スキン層は、ポリエチレン系樹脂をベース樹脂とし、架橋剤である有機過酸化物と、架橋助剤である1分子中に2以上の重合性反応基を有するヌレート環含有化合物と、シランカップリング剤と、を含み、上記スキン層中の上記架橋剤の含有量が、0.33質量%以上0.53質量%以下、上記架橋助剤の含有量が0.30質量%以上0.90質量%以下、上記シランカップリング剤の含有量が0.15質量%以上0.40質量%以下である、太陽電池モジュール用多層封止材シートを提供する。
B. Multi-layer encapsulant sheet for solar cell module In the present disclosure, the multi-layer encapsulant sheet for a solar cell module having a core layer and skin layers arranged on both sides of the core layer, and the core layer is The skin layer is thicker than the skin layer, and the skin layer uses a polyethylene resin as a base resin, an organic peroxide as a cross-linking agent, and a nurate ring having two or more polymerizable reactive groups in one molecule as a cross-linking aid. The content of the cross-linking agent in the skin layer is 0.33% by mass or more and 0.53% by mass or less, and the content of the cross-linking aid is 0.30. Provided is a multilayer encapsulant sheet for a solar cell module, which has a mass% or more and 0.90 mass% or less and a content of the silane coupling agent of 0.15 mass% or more and 0.40 mass% or less.
 図2に示すように、本開示の太陽電池モジュール用多層封止材シート20は、スキン層6、コア層7、およびスキン層6がこの順で積層された2種3層構成を有する。 As shown in FIG. 2, the multi-layer encapsulant sheet 20 for a solar cell module of the present disclosure has a two-kind three-layer structure in which a skin layer 6, a core layer 7, and a skin layer 6 are laminated in this order.
 スキン層中のポリエチレン系樹脂、架橋剤、架橋助剤、シランカップリング剤、及びその他の添加剤、並びにこれらの含有量は、上記「A.太陽電池モジュール用封止材シート」の項で詳述した内容と同様とすることができるため、ここでの説明は省略する。 The polyethylene resin, cross-linking agent, cross-linking aid, silane coupling agent, and other additives in the skin layer, and their contents are described in detail in the above section "A. Encapsulant sheet for solar cell module". Since the contents can be the same as those described above, the description here will be omitted.
 また、本開示の多層封止材シートにおいてコア層は、スキン層よりも厚い。その層厚比については、「A.太陽電池モジュール用封止材シート 4.その他」の項で詳述した内容と同様とすることができるため、ここでの説明は省略する。コア層については、「A.太陽電池モジュール用封止材シート 4.その他」の項で詳述した内容と同様とすることができるため、ここでの説明は省略する。 Further, in the multilayer encapsulant sheet of the present disclosure, the core layer is thicker than the skin layer. The layer thickness ratio can be the same as that described in detail in the section "A. Encapsulant sheet for solar cell module 4. Others", and thus the description thereof is omitted here. Since the core layer can be the same as the content described in detail in the section "A. Encapsulant sheet for solar cell module 4. Others", the description thereof is omitted here.
C.太陽電池モジュール用封止材組成物
 本開示では、太陽電池モジュール用の封止材組成物であって、ポリエチレン系樹脂をベース樹脂とし、架橋剤である有機過酸化物と、架橋助剤である1分子中に2以上の重合性反応基を有するヌレート環含有化合物と、シランカップリング剤と、を含み、前記封止材組成物中の前記架橋剤の含有量が、0.33質量%以上0.53質量%以下、前記架橋助剤の含有量が0.30質量%以上0.90質量%以下、前記シランカップリング剤の含有量が0.15質量%以上0.40質量%以下であることを特徴とする太陽電池モジュール用封止材組成物を提供する。
C. Encapsulant composition for solar cell module In the present disclosure, the encapsulant composition for a solar cell module is a polyethylene-based resin as a base resin, an organic peroxide as a cross-linking agent, and a cross-linking aid. A nurate ring-containing compound having two or more polymerizable reactive groups in one molecule and a silane coupling agent are contained, and the content of the cross-linking agent in the encapsulant composition is 0.33% by mass or more. 0.53% by mass or less, the content of the cross-linking aid is 0.30% by mass or more and 0.90% by mass or less, and the content of the silane coupling agent is 0.15% by mass or more and 0.40% by mass or less. Provided is a sealing material composition for a solar cell module, which is characterized by being present.
1.封止材組成物の組成
 本開示の封止材組成物は、ポリエチレン系樹脂をベース樹脂とし、特定の含有量の上記架橋剤、上記架橋助剤、および上記シランカップリング剤を必須成分とする。さらに、その他の添加剤を含んでいてもよい。
1. 1. Composition of Encapsulant Composition The encapsulant composition of the present disclosure uses a polyethylene resin as a base resin and contains a specific content of the above-mentioned cross-linking agent, the above-mentioned cross-linking aid, and the above-mentioned silane coupling agent as essential components. .. In addition, other additives may be included.
 ポリエチレン系樹脂、架橋剤、架橋助剤、シランカップリング剤、及びその他の添加剤、並びにこれらの含有量は、上記「A.太陽電池モジュール用封止材シート」の項で詳述した内容と同様とすることができるため、ここでの説明は省略する。 The polyethylene-based resin, cross-linking agent, cross-linking aid, silane coupling agent, and other additives, and their contents are described in detail in the section "A. Encapsulant sheet for solar cell module" above. Since the same can be applied, the description here is omitted.
2.封止材組成物の用途
 本開示の封止材組成物は、太陽電池モジュールの封止部材を構成する封止材シートの製造に用いる組成物であり、従来公知の方法でシート状に成型することで単層の封止材シートが得られる。また、本開示の封止材組成物は、2種2層や2種3層等の多層構造を有する多層封止材シートの層を成膜するために使用することができる。中でも、図2に示されるようなスキン層6、コア層7、およびスキン層6をこの順で積層した2種3層構成を有する多層封止材シート20のスキン層形成用の組成物として好ましく使用される。この場合、コア層用の封止材組成物、及びスキン層用の本開示の封止材組成物を、従来公知の多層共押し出し法等によりシート状に押出して多層封止材シートを得る。
2. Uses of Encapsulant Composition The encapsulant composition of the present disclosure is a composition used for producing an encapsulant sheet constituting a encapsulant member of a solar cell module, and is molded into a sheet by a conventionally known method. As a result, a single-layer encapsulant sheet can be obtained. Further, the encapsulant composition of the present disclosure can be used for forming a layer of a multi-layer encapsulant sheet having a multi-layer structure such as 2 types 2 layers or 2 types 3 layers. Above all, it is preferable as a composition for forming a skin layer of a multilayer sealing material sheet 20 having a two-kind three-layer structure in which a skin layer 6, a core layer 7, and a skin layer 6 are laminated in this order as shown in FIG. used. In this case, the encapsulant composition for the core layer and the encapsulant composition of the present disclosure for the skin layer are extruded into a sheet by a conventionally known multi-layer coextrusion method or the like to obtain a multi-layer encapsulant sheet.
 コア層の組成やスキン層とコア層との層厚比については、上記「A.太陽電池モジュール用封止材シート」の項で詳述した内容と同様とすることができるため、ここでの説明は省略する。 The composition of the core layer and the layer thickness ratio between the skin layer and the core layer can be the same as those described in detail in the above section "A. Encapsulant sheet for solar cell module". The description is omitted.
D.太陽電池モジュール
 本開示では、太陽電池素子と、表面側保護部材と、裏面側保護部材と、上述の太陽電池モジュール用封止材シート、上述の太陽電池モジュール用多層封止材シート、及び上述の太陽電池モジュール用封止材組成物のいずれかの架橋体である封止材層と、を含み、前記太陽電池素子が、前記表面側保護部材と前記裏面側保護部材との間に配置された前記封止材層で封止されている、太陽電池モジュールを提供する。
D. Solar cell module In the present disclosure, the solar cell element, the front surface side protective member, the back surface side protective member, the above-mentioned sealing material sheet for the solar cell module, the above-mentioned multi-layer sealing material sheet for the solar cell module, and the above-mentioned The solar cell element is arranged between the front surface side protective member and the back surface side protective member, including a sealing material layer which is a crosslinked body of any of the sealing material compositions for a solar cell module. Provided is a solar cell module sealed with the sealing material layer.
1.太陽電池モジュールの構成
 太陽電池モジュールは、太陽電池素子を封止材層で挟み積層し、さらに、表裏両面を保護部材でカバーした太陽電池モジュールが挙げられる。すなわち、典型的な太陽電池モジュールは、表面側保護部材、表面側封止材層、太陽電池素子、裏面側封止材層、および裏面側保護部材をこの順で積層した構成になっている。図1に、本開示の太陽電池モジュールを例示する概略断面図を示す。太陽電池モジュール10は、複数の太陽電池素子1と、太陽電池素子1を挟んで封止する一対の表面側太陽電池封止材層2と裏面側太陽電池封止材層3、および表面側保護部材4および裏面側保護部材5とを備える。
1. 1. Configuration of Solar Cell Modules Examples of solar cell modules include solar cell modules in which solar cell elements are sandwiched between sealing material layers and laminated, and both front and back surfaces are covered with protective members. That is, a typical solar cell module has a configuration in which a front surface side protective member, a front surface side encapsulant layer, a solar cell element, a back surface side encapsulant layer, and a back surface side protective member are laminated in this order. FIG. 1 shows a schematic cross-sectional view illustrating the solar cell module of the present disclosure. The solar cell module 10 includes a plurality of solar cell elements 1, a pair of front surface side solar cell encapsulant layer 2 and back surface side solar cell encapsulant layer 3 that sandwich and seal the solar cell element 1, and front surface protection. A member 4 and a back surface side protective member 5 are provided.
(1)封止材層
 封止材層は、上述した封止材シート、多層封止材シートまたは上述した封止材組成物が加熱処理された架橋体(図1中100Cで示される封止材層)であり、太陽電池素子を封止するための層である。封止材シートは、上記「A.太陽電池モジュール用封止材シート」の項で詳述した内容と同様とすることができるため、ここでの説明は省略する。多層封止材シートは、上記「B.太陽電池モジュール用多層封止材シート」の項で詳述した内容と同様とすることができるため、ここでの説明は省略する。多層封止材シートの架橋体は、架橋したスキン層、コア層、および架橋したスキン層を有する。封止材組成物は、上記「C.太陽電池モジュール用封止材組成物」の項で詳述した内容と同様とすることができるため、ここでの説明は省略する。
(1) Encapsulant layer The encapsulant layer is a crosslinked product obtained by heat-treating the above-mentioned encapsulant sheet, multi-layer encapsulant sheet or the above-mentioned encapsulant composition (sealing shown by 100C in FIG. 1). Material layer), which is a layer for sealing the solar cell element. Since the encapsulant sheet can be the same as the content described in detail in the above section "A. Encapsulant sheet for solar cell module", the description thereof is omitted here. Since the multi-layer encapsulant sheet can be the same as the content described in detail in the above section "B. Multi-layer encapsulant sheet for solar cell module", the description thereof is omitted here. The crosslinked body of the multilayer encapsulant sheet has a crosslinked skin layer, a core layer, and a crosslinked skin layer. Since the encapsulant composition can be the same as the content described in detail in the above section "C. Encapsulant composition for solar cell module", the description thereof is omitted here.
 封止材層は、典型的には、図1に示されるように表面側封止材層及び裏面側封止材層からなり、本開示の封止材シート、多層封止材シートまたは封止材組成物は、上記表面側封止材層および裏面側封止材層のいずれか一方、あるいは両方を形成するために用いられ、これらの封止材層は本開示の封止材シート、多層封止材シート、または封止材組成物を架橋させることにより形成することができる。 The encapsulant layer typically comprises a front side encapsulant layer and a back surface encapsulant layer, as shown in FIG. 1, the encapsulant sheet, multilayer encapsulant sheet or encapsulation of the present disclosure. The material composition is used to form one or both of the front surface side encapsulant layer and the back surface side encapsulant layer, and these encapsulant layers are the encapsulant sheet, the multilayer of the present disclosure. It can be formed by cross-linking a sealing material sheet or a sealing material composition.
 本開示における封止材層は、典型的には、図1に示すように、太陽電池素子を、その両面に配置される一対の封止材シートで挟持する態様によってこれを封止している層であるが、これに限定されない。例えば、ガラス基板に薄膜系の太陽電池素子が形成されてなるセルガラスを封止材層で被覆してなる構成を有する薄膜系の太陽電池モジュールにおいては、上記のセルガラス上に形成されている薄膜系の素子を被覆している封止材層を、太陽電池モジュールの封止材層とみなすことができる。 The encapsulant layer in the present disclosure typically seals the solar cell element by sandwiching it between a pair of encapsulant sheets arranged on both sides thereof, as shown in FIG. It is a layer, but it is not limited to this. For example, in a thin-film solar cell module having a structure in which a cell glass having a thin-film solar cell element formed on a glass substrate is coated with a sealing material layer, the cell glass is formed on the cell glass. The encapsulant layer covering the thin film element can be regarded as the encapsulant layer of the solar cell module.
(2)太陽電池素子
 太陽電池素子としては、単結晶シリコン、多結晶シリコン、アモルファスシリコン等のシリコン系、ガリウム-砒素、銅-インジウム-セレン、カドミウム-テルル等のIII-V族やII-VI族化合物半導体系等の各種太陽電池素子を用いることができる。太陽電池モジュールにおいては、複数の太陽電池素子は、導線および半田接合部を備えたインターコネクタを介して電気的に直列に接続されている。
(2) Solar cell elements Solar cell elements include silicon-based devices such as single crystal silicon, polycrystalline silicon, and amorphous silicon, group III-V such as gallium-arsenide, copper-indium-selenium, and cadmium-tellu, and II-VI. Various solar cell elements such as group compound semiconductors can be used. In the solar cell module, a plurality of solar cell elements are electrically connected in series via an interconnector having a conducting wire and a solder joint.
(3)表面側保護部材
 表面側保護部材としては、ガラス板;アクリル樹脂、ポリカーボネート、ポリエステル、フッ素含有樹脂等により形成された樹脂板等の透明基板が挙げられる。本開示の太陽電池封止材シートは、透明表面側保護部材に対して良好な接着性を示す。
(3) Surface-side protective member Examples of the surface-side protective member include a glass plate; a transparent substrate such as a resin plate formed of an acrylic resin, polycarbonate, polyester, a fluorine-containing resin, or the like. The solar cell encapsulant sheet of the present disclosure exhibits good adhesiveness to the transparent surface side protective member.
(4)裏面側保護部材
 裏面側保護部材(バックシート)としては、金属や各種熱可塑性樹脂フィルム等の単体もしくは多層のシートが挙げられる。例えば、錫、アルミ、ステンレススチール等の金属;ガラス等の無機材料;ポリエステル、無機物蒸着ポリエステル、フッ素含有樹脂、ポリオレフィン等により形成された各種熱可塑性樹脂フィルム等が挙げられる。裏面側保護部材は、単層であってもよく、複層であってもよい。本開示の太陽電池封止材シートは、裏面側保護部材に対して良好な接着性を示す。
(4) Back surface side protective member Examples of the back surface side protective member (back sheet) include a single sheet such as a metal or various thermoplastic resin films, or a multi-layer sheet. Examples thereof include metals such as tin, aluminum and stainless steel; inorganic materials such as glass; various thermoplastic resin films formed of polyester, inorganic vapor-deposited polyester, fluorine-containing resin, polyolefin and the like. The back surface side protective member may be a single layer or a plurality of layers. The solar cell encapsulant sheet of the present disclosure exhibits good adhesiveness to the back surface side protective member.
2.太陽電池モジュールの製造方法
 本開示の太陽電池モジュールは、例えば、上述した封止材組成物を用いて封止材シートを製造し(封止材シート製造工程)、次いで、上記の表面側保護部材、封止材シート、太陽電池素子、封止材シート、および裏面側保護部材からなる部材を順次積層してから真空吸引等により一体化し、その後、ラミネーション法等の成形法により、上記の部材を一体成形体として加熱圧着成形して製造することができる(モジュール一体化工程)。
2. Manufacturing Method of Solar Battery Module In the solar cell module of the present disclosure, for example, a sealing material sheet is manufactured using the above-mentioned sealing material composition (sealing material sheet manufacturing process), and then the above-mentioned surface side protective member is manufactured. , Encapsulant sheet, solar cell element, encapsulant sheet, and backside protective member are sequentially laminated and then integrated by vacuum suction or the like, and then the above member is formed by a molding method such as a lamination method. It can be manufactured by heat-pressing molding as an integrally molded body (module integration process).
(1)封止材シート製造工程
 封止材シートの製造は、上記「A.太陽電池モジュール用封止材シート 3.封止材シートの製造方法」の項で詳述した内容と同様とすることができるため、ここでの説明は省略する。
(1) Encapsulant sheet manufacturing process The encapsulant sheet is manufactured in the same manner as described in detail in the above section "A. Encapsulant sheet for solar cell module 3. Manufacturing method of encapsulant sheet". Therefore, the description here is omitted.
(2)モジュール一体化工程
 上記封止材シート製造工程で得た未架橋の封止材シートを含む各部材を、上述の通り、真空加熱ラミネーション等の成形方法により、一体成形体として加熱圧着成形する。この一体化工程内で、未架橋の封止材シートのゲル分率が上述した範囲となるように架橋を進行させる。なお、ラミネーション条件に応じて必要であれば、別途の熱架橋処理をさらにモジュール化後に行ってもよい。
(2) Module integration process As described above, each member including the uncrosslinked encapsulant sheet obtained in the encapsulant sheet manufacturing process is heat-press-molded as an integrally molded body by a molding method such as vacuum heating lamination. do. In this integration step, the cross-linking is advanced so that the gel fraction of the uncross-linked encapsulant sheet is within the above-mentioned range. If necessary according to the lamination conditions, a separate thermal cross-linking treatment may be further performed after modularization.
D.太陽電池モジュール用封止材シートの製造方法
 本開示では、太陽電池モジュール用の封止材シートの製造方法であって、ポリエチレン系樹脂と、架橋助剤である1分子中に2以上の重合性反応基を有するヌレート環含有化合物とを混合して混合物を得る工程と、上記混合物と、架橋剤である有機過酸化物と、シランカップリング剤とを混合して封止材組成物を得る工程と、上記封止材組成物を溶融し、シート状に成膜して、未架橋の封止材シートを得る工程と、を有し、上記封止材シート中の上記架橋剤の含有量が、0.33質量%以上0.53質量%以下、上記架橋助剤の含有量が0.30質量%以上0.90質量%以下、上記シランカップリング剤の含有量が0.15質量%以上0.40質量%以下である、太陽電池モジュール用封止材シートの製造方法を提供する。
D. Method for manufacturing encapsulant sheet for solar cell module In the present disclosure, it is a method for producing an encapsulant sheet for a solar cell module, which is polymerizable of two or more in one molecule which is a polyethylene resin and a cross-linking aid. A step of mixing a nurate ring-containing compound having a reactive group to obtain a mixture, and a step of mixing the above mixture, an organic peroxide as a cross-linking agent, and a silane coupling agent to obtain a sealing material composition. And the step of melting the encapsulant composition and forming a film into a sheet to obtain an uncrosslinked encapsulant sheet, and the content of the crosslinking agent in the encapsulant sheet is , 0.33% by mass or more and 0.53% by mass or less, the content of the cross-linking aid is 0.30% by mass or more and 0.90% by mass or less, and the content of the silane coupling agent is 0.15% by mass or more. Provided is a method for producing a sealing material sheet for a solar cell module, which is 0.40% by mass or less.
 封止材シートの製造方法については、上記「A.太陽電池モジュール用封止材シート 3.封止材シートの製造方法」の項で詳述した内容と同様とすることができるため、ここでの説明は省略する。 The method for manufacturing the encapsulant sheet can be the same as that described in detail in the above section "A. Encapsulant sheet for solar cell module 3. Manufacturing method for encapsulant sheet". The description of is omitted.
 なお、本開示は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本開示の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本開示の技術的範囲に包含される。 Note that the present disclosure is not limited to the above embodiment. The above embodiment is an example, and any object having substantially the same structure as the technical idea described in the claims of the present disclosure and exhibiting the same effect and effect is the present invention. Included in the technical scope of the disclosure.
 以下に実施例および比較例を示して、本開示をさらに具体的に説明する。 The present disclosure will be described in more detail with reference to Examples and Comparative Examples below.
(実施例1~6、比較例1~6)
[封止材シートの形成]
 ベース樹脂として下記のポリエチレン系樹脂、架橋剤として下記のTBEC、架橋助剤として下記のTAIC、下記シランカップリング剤、下記添加剤を混合し、封止材組成物を得た。該封止材組成物を、溶融し、Tダイ法により厚さ450μmとなるように成膜して、太陽電池モジュール用の未架橋の単層の封止材シートを得た。成膜温度は90℃~100℃とした。
(Examples 1 to 6, Comparative Examples 1 to 6)
[Formation of encapsulant sheet]
The following polyethylene resin as a base resin, the following TBEC as a cross-linking agent, the following TAIC as a cross-linking aid, the following silane coupling agent, and the following additives were mixed to obtain a sealing material composition. The encapsulant composition was melted and formed into a film having a thickness of 450 μm by the T-die method to obtain an uncrosslinked single-layer encapsulant sheet for a solar cell module. The film formation temperature was 90 ° C to 100 ° C.
・ポリエチレン系樹脂:製品名KS650(日本ポリエチレン株式会社製 密度0.886g/cm、MFR20)
・架橋剤:製品名TBEC(沸点310℃、密度0.927g/ml、1時間半減期温度121℃、アルケマ吉富株式会社製)
・架橋助剤:製品名TAIC(沸点151℃、密度1.159g/ml、三菱ケミカル株式会社製)
・シランカップリング剤:製品名KBM-503(3-メタクリロキシプロピルトリメトキシシラン、信越シリコーン株式会社社製)
・紫外線吸収剤1:製品名kemisorb12(ベンゾフェノン系紫外線吸収剤、分子量326、融点47°、比重(25℃)1.16、ケミプロ化成社製)
・紫外線吸収剤2:製品名kemisorb79(融点≧103~105℃、比重(20℃)1.18/cm、ケミプロ化成社製)
・耐候剤HALS:XT850(NOR型ヒンダードアミン系、BASFジャパン株式会社製)
-Polyethylene resin: Product name KS650 (manufactured by Japan Polyethylene Corporation, density 0.886 g / cm 3 , MFR20)
-Crosslinking agent: Product name TBEC (boiling point 310 ° C, density 0.927 g / ml, 1-hour half-life temperature 121 ° C, manufactured by Alchema Yoshitomi Co., Ltd.)
-Crosslinking aid: Product name TAIC (boiling point 151 ° C, density 1.159 g / ml, manufactured by Mitsubishi Chemical Corporation)
-Silane coupling agent: Product name KBM-503 (3-methacryloxypropyltrimethoxysilane, manufactured by Shinetsu Silicone Co., Ltd.)
-Ultraviolet absorber 1: Product name kemisorb12 (benzophenone-based ultraviolet absorber, molecular weight 326, melting point 47 °, specific gravity (25 ° C) 1.16, manufactured by Chemipro Kasei Co., Ltd.)
-Ultraviolet absorber 2: Product name kemisorb79 (melting point ≥ 103-105 ° C, specific gravity (20 ° C) 1.18 / cm 3 , manufactured by Chemipro Kasei Co., Ltd.)
-Weather resistant HALS: XT850 (NOR type hindered amine type, manufactured by BASF Japan Ltd.)
[赤外分光法による封止材シートの組成特定]
(測定前処理)
 封止材シート中の各成分の含有量(質量%)を、赤外分光法により赤外吸収スペクトルの吸光度比から算出した。まず、封止材シート表面にエンボス等の形状が付いている場合があるため封止材シート表面の平坦化処理を行った。平坦化処理は、上記封止材シートを離型フィルムに挟み、台ガラス/離型フィルム/封止材シート/離型フィルムの状態で、温度85℃、真空引き1.5分、圧力保持1.5分(40kPa)で真空ラミネートを行い、シート表面を平滑化した。
[Specification of encapsulant sheet composition by infrared spectroscopy]
(Measurement pretreatment)
The content (mass%) of each component in the encapsulant sheet was calculated from the absorbance ratio of the infrared absorption spectrum by infrared spectroscopy. First, since the surface of the encapsulant sheet may have a shape such as embossing, the surface of the encapsulant sheet was flattened. In the flattening treatment, the encapsulant sheet is sandwiched between release films, and the temperature is 85 ° C., evacuation for 1.5 minutes, and pressure is held in the state of base glass / release film / encapsulant sheet / release film. Vacuum laminating was performed in 5 minutes (40 kPa) to smooth the sheet surface.
(赤外分光法による測定)
 次いで、フーリエ変換赤外分光光度計(FT/IR-610、日本分光社製)を使用し、サンプルが無い状態でバックグラウンド測定を実施した後に、実施例1~5、比較例1~6の封止材シートのサンプルをセットし、測定モード:透過測定、検出器:TGC、分解能:4cm-1、積算回数:64の測定条件で赤外分光法による測定を行った。
(Measurement by infrared spectroscopy)
Next, after performing background measurement using a Fourier transform infrared spectrophotometer (FT / IR-610, manufactured by JASCO Corporation) in the absence of a sample, Examples 1 to 5 and Comparative Examples 1 to 6 A sample of the encapsulant sheet was set, and measurement was performed by infrared spectroscopy under the measurement conditions of measurement mode: transmission measurement, detector: TGC, resolution: 4 cm -1, and number of integrations: 64.
 上記測定により、下記ピークを有する赤外吸収スペクトルを得た。
ポリエチレン系樹脂のメチレン基:2021cm-1(ベースライン2091-1987cm-1
架橋剤TBECのカルボニル基:1793cm-1(ベースライン1815-1777cm-1
架橋助剤TAICのビニル基:990cm-1(ベースライン1007-872cm-1
シランカップリング剤のカルボニル基:1722cm-1(ベースライン1815-1658cm-1
By the above measurement, an infrared absorption spectrum having the following peak was obtained.
Methylene group of polyethylene resin: 2021 cm -1 (baseline 2091-1987 cm -1 )
Carbonyl group of cross-linking agent TBEC: 1793 cm -1 (baseline 1815-1777 cm -1 )
Vinyl group of cross-linking aid TAIC: 990 cm -1 (baseline 1007-872 cm -1 )
Carbonyl group of silane coupling agent: 1722 cm -1 (baseline 1815-1658 cm -1 )
 ポリエチレン系樹脂のメチレン基に由来する吸光度として波数2021cm-1付近のピークトップのベースラインからの高さを求めた。同様に、架橋剤のカルボニル基に由来する吸光度として波数1793cm-1付近のピークトップのベースラインからの高さを求めた。架橋助剤のビニル基に由来する吸光度として波数990cm-1付近のピークトップのベースラインからの高さを求めた。シランカップリング剤のカルボニル基に由来する吸光度として波数1722cm-1付近のピークトップのベースラインからの高さを求めた。 The height from the baseline of the peak top near the wave number 2021 cm -1 was determined as the absorbance derived from the methylene group of the polyethylene resin. Similarly, the height from the baseline of the peak top near the wave number of 1793 cm -1 was determined as the absorbance derived from the carbonyl group of the cross-linking agent. The height from the baseline of the peak top near the wave number of 990 cm -1 was determined as the absorbance derived from the vinyl group of the cross-linking aid. The height from the baseline of the peak top near the wave number of 1722 cm -1 was determined as the absorbance derived from the carbonyl group of the silane coupling agent.
 架橋剤、架橋助剤、シランカップリング剤それぞれのピークトップの高さを、ポリエチレンのピークトップの高さで割った値(ピーク比)を算出した。
ピーク比(架橋剤)=ピーク高さ(架橋剤)/ピーク高さ(ポリエチレン)
ピーク比(架橋助剤)=ピーク高さ(架橋助剤)/ピーク高さ(ポリエチレン)
ピーク比(シランカップリング剤)=ピーク高さ(シランカップリング剤)/ピーク高さ(ポリエチレン)
The value (peak ratio) obtained by dividing the height of the peak top of each of the cross-linking agent, the cross-linking aid, and the silane coupling agent by the height of the peak top of polyethylene was calculated.
Peak ratio (crosslinking agent) = peak height (crosslinking agent) / peak height (polyethylene)
Peak ratio (crosslinking aid) = peak height (crosslinking aid) / peak height (polyethylene)
Peak ratio (silane coupling agent) = peak height (silane coupling agent) / peak height (polyethylene)
(検量線作成)
 各添加剤の添加量が既知の、添加量が異なる標準試料を3点以上準備し、標準試料をIR測定し、ピーク解析を行った。標準試料の成分濃度を横軸に、ピーク比を縦軸にプロットし、近似線を作成した。架橋剤の近似式の一例として、y(架橋剤のピーク比)=8.8263x(架橋剤の含有量(質量%))+0.4787が得られた。
(Calibration curve creation)
Three or more standard samples with known addition amounts of each additive and different addition amounts were prepared, IR measurements were performed on the standard samples, and peak analysis was performed. The component concentration of the standard sample was plotted on the horizontal axis and the peak ratio was plotted on the vertical axis to create an approximate line. As an example of the approximate expression of the cross-linking agent, y (peak ratio of the cross-linking agent) = 8.8263x (content of the cross-linking agent (% by mass)) + 0.4787 was obtained.
 上記で作成した検量線及び上記封止材シートのピーク比値に基づいて、架橋剤、架橋助剤、およびシランカップリング剤の含有量を算出し、組成物のその他の添加剤の含有量も踏まえて、封止材シート中の各成分の含有量を算出した。結果を表1に示す。 Based on the calibration curve prepared above and the peak ratio value of the encapsulant sheet, the contents of the cross-linking agent, the cross-linking aid, and the silane coupling agent are calculated, and the contents of other additives in the composition are also calculated. Based on this, the content of each component in the encapsulant sheet was calculated. The results are shown in Table 1.
(評価方法)
 各実施例、比較例の封止材シートについて、架橋処理後のゲル分率、ガラス密着性、アウトガス量、気泡の有無(バブルテスト)、およびブリードの有無について評価を行った。結果を表1に示す。
(Evaluation method)
The encapsulant sheets of each Example and Comparative Example were evaluated for the gel fraction, glass adhesion, outgas amount, presence / absence of bubbles (bubble test), and presence / absence of bleeding after the cross-linking treatment. The results are shown in Table 1.
[ゲル分率算出]
 太陽電池モジュールとして一体化された状態での封止材層の架橋度を評価するため、上記各封止材シートを、離型フィルムに挟みこんで、温度155℃、真空引き6分、圧力保持11分(70kPa)でラミネート処理を行った。この封止材を約1gはかり(W1)、樹脂メッシュでつつみ重さを量った(W2)。次いで、110℃のキシレンに上記封止材を入れ、24時間攪拌し、110℃のオーブンで4時間乾燥させた。乾燥処理後、質量を量り(W3)、下記計算式にてゲル分率を算出した。
ゲル分率=(1-(W2-W3)/W1)×100
[Gel fraction calculation]
In order to evaluate the degree of cross-linking of the encapsulant layer in the state of being integrated as a solar cell module, each of the encapsulant sheets is sandwiched between release films, and the temperature is 155 ° C., evacuation is 6 minutes, and pressure is maintained. The laminating treatment was performed in 11 minutes (70 kPa). About 1 g of this sealing material was weighed (W1), wrapped with a resin mesh, and weighed (W2). Next, the encapsulant was placed in xylene at 110 ° C., stirred for 24 hours, and dried in an oven at 110 ° C. for 4 hours. After the drying treatment, the mass was weighed (W3), and the gel fraction was calculated by the following formula.
Gel fraction = (1- (W2-W3) / W1) x 100
[ガラス密着性評価]
 50mm×75mmの白板強化ガラス上にMD方向100mm×TD方向75mmにカットした封止材シートを置き、温度155℃、真空引き6分、圧力保持11分(70kPa)でラミネート処理し、ガラス密着性評価試料を作製した。この試料を、流れ方向に15mm幅でカットし、カット部をTENSILON万能試験機 RTE-1210(ORIENTEC社製)にて、剥離角度180°、剥離速度50mm/minとして剥離強度を測定した。
[Glass adhesion evaluation]
A sealing material sheet cut in the MD direction of 100 mm x TD direction of 75 mm is placed on a 50 mm x 75 mm white plate tempered glass, and laminated at a temperature of 155 ° C., vacuuming for 6 minutes, and pressure holding for 11 minutes (70 kPa) to achieve glass adhesion. An evaluation sample was prepared. This sample was cut with a width of 15 mm in the flow direction, and the cut portion was measured with a TENSILON universal testing machine RTE-1210 (manufactured by ORIENTEC) at a peeling angle of 180 ° and a peeling speed of 50 mm / min.
[アウトガス量測定]
 ヘッドスペースガスクロマトグラフィー(HS-GC/MS)を用いて太陽電池モジュール製造の際に発生するアウトガス量を測定した。封止材シート200mgを165℃ 30分で処理し、発生したガスを上記GC/MSに導入した。カラム温度を40℃から320℃に昇温し、水素炎検出器(FID)にて検出した。全域のピーク面積をアウトガス量(単位:pA・sec)とした。
[Measurement of outgassing amount]
The amount of outgas generated during the manufacture of the solar cell module was measured using headspace gas chromatography (HS-GC / MS). 200 mg of the encapsulant sheet was treated at 165 ° C. for 30 minutes, and the generated gas was introduced into the above GC / MS. The column temperature was raised from 40 ° C. to 320 ° C. and detected by a hydrogen flame detector (FID). The peak area of the entire area was defined as the outgas amount (unit: pA · sec).
[添加剤ブリード評価]
 室温にて封止材シートを保管しておき、1週間後に明らかなべたつき(ウェスで表面をふき取るとウェスが濡れるレベル)がある場合は「×」、べたつきがない場合は「〇」と評価した。
[Excipient bleed evaluation]
The encapsulant sheet was stored at room temperature, and after 1 week, it was evaluated as "x" if there was obvious stickiness (the level at which the waste was wet when the surface was wiped with a waste cloth), and "○" if there was no stickiness. ..
[気泡評価(バブルテスト)]
 5cm角のガラスで封止材シートを挟み、端部にはブチルゴムを設置した。温度155℃、真空引き6分、圧力保持11分(70kPa)でラミネート処理したサンプルを、190℃のオーブンへ投入し、1時間後の状態を観察し、気泡が発生した場合を「×」とし、気泡が発生しなかった場合を「〇」とした。
[Bubble evaluation (bubble test)]
A sealing material sheet was sandwiched between 5 cm square glass, and butyl rubber was placed at the end. A sample laminated at a temperature of 155 ° C., evacuation for 6 minutes, and pressure holding for 11 minutes (70 kPa) was put into an oven at 190 ° C., and the state after 1 hour was observed. , The case where no bubbles were generated was set as "○".
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、架橋剤の量が多くなるほど、アウトガスが多く発生し、架橋剤の添加量が過剰であると気泡が発生することが判った(比較例1)。一方で、架橋剤の添加量が少ないと、ゲル分率が低下することが判った(比較例2)。 From the results in Table 1, it was found that as the amount of the cross-linking agent increased, more outgas was generated, and when the amount of the cross-linking agent added was excessive, bubbles were generated (Comparative Example 1). On the other hand, it was found that the gel fraction decreased when the amount of the cross-linking agent added was small (Comparative Example 2).
 また、架橋助剤の量はアウトガス量にほぼ影響しないが、架橋助剤の添加量が多いとブリードが発生し(比較例3)、架橋助剤の添加量が少ないとゲル分率が低下することが判った(比較例4)。さらに、シランカップリング剤の添加量もアウトガス量にほぼ影響しないが、添加量が多いとゲル分率が低下し(比較例5)、添加量が少ないとガラス密着性が低下することが判った(比較例6)。 The amount of the cross-linking aid has almost no effect on the amount of outgas, but bleeding occurs when the amount of the cross-linking aid added is large (Comparative Example 3), and the gel fraction decreases when the amount of the cross-linking aid added is small. It was found (Comparative Example 4). Further, it was found that the amount of the silane coupling agent added had almost no effect on the amount of outgas, but the gel fraction decreased when the amount added was large (Comparative Example 5), and the glass adhesion decreased when the amount added was small. (Comparative Example 6).
 一方で、架橋剤、架橋助剤、シランカップリング剤の各含有量が本開示の範囲内の実施例1~6の封止材シートは、添加剤のブリードや、太陽電池モジュールの製造時のアウトガスの発生が抑制されつつ、ガラス等との密着性や高いゲル分率等の要求特性を満たす信頼性の高い太陽電池モジュールを製造可能なものであった。 On the other hand, the encapsulant sheets of Examples 1 to 6 in which the contents of the cross-linking agent, the cross-linking aid, and the silane coupling agent are within the range of the present disclosure can be used for bleeding of additives and when manufacturing a solar cell module. It was possible to manufacture a highly reliable solar cell module that satisfies the required characteristics such as adhesion to glass and high gel fraction while suppressing the generation of outgas.
  1 … 太陽電池素子
  2 … 表面側太陽電池封止材層
  3 … 裏面側太陽電池封止材層
  4 … 表面側保護部材
  5 … 裏面側保護部材
  6 … スキン層
  7 … コア層
 10 … 太陽電池モジュール
 20 … 多層封止材シート
100 … 封止材シート
1 ... Solar cell element 2 ... Front side solar cell encapsulant layer 3 ... Back side solar cell encapsulant layer 4 ... Front side protective member 5 ... Back side protective member 6 ... Back side protective member 6 ... Skin layer 7 ... Core layer 10 ... Solar cell module 20 ... Multi-layer encapsulant sheet 100 ... Encapsulant sheet

Claims (6)

  1.  太陽電池モジュール用の封止材シートであって、
     ポリエチレン系樹脂をベース樹脂とし、
     架橋剤である有機過酸化物と、架橋助剤である1分子中に2以上の重合性反応基を有するヌレート環含有化合物と、シランカップリング剤と、を含み、
     前記封止材シート中の前記架橋剤の含有量が、0.33質量%以上0.53質量%以下、
     前記架橋助剤の含有量が0.30質量%以上0.90質量%以下、
     前記シランカップリング剤の含有量が0.15質量%以上0.40質量%以下である、太陽電池モジュール用封止材シート。
    A sealing material sheet for solar cell modules
    Using polyethylene resin as the base resin
    It contains an organic peroxide as a cross-linking agent, a nulate ring-containing compound having two or more polymerizable reactive groups in one molecule as a cross-linking aid, and a silane coupling agent.
    The content of the cross-linking agent in the encapsulant sheet is 0.33% by mass or more and 0.53% by mass or less.
    The content of the cross-linking aid is 0.30% by mass or more and 0.90% by mass or less,
    A sealing material sheet for a solar cell module having a content of the silane coupling agent of 0.15% by mass or more and 0.40% by mass or less.
  2.  前記太陽電池モジュール用封止材シートの厚さが300μm以上900μm以下であり、単層構造である、請求項1に記載の太陽電池モジュール用の封止材シート。 The encapsulant sheet for a solar cell module according to claim 1, wherein the encapsulant sheet for the solar cell module has a thickness of 300 μm or more and 900 μm or less and has a single-layer structure.
  3.  コア層と、前記コア層の両面に配置されたスキン層とを有する太陽電池モジュール用の多層封止材シートであって、
     前記コア層は、前記スキン層よりも厚く、
     前記スキン層は、ポリエチレン系樹脂をベース樹脂とし、
     架橋剤である有機過酸化物と、架橋助剤である1分子中に2以上の重合性反応基を有するヌレート環含有化合物と、シランカップリング剤と、を含み、
     前記スキン層中の前記架橋剤の含有量が、0.33質量%以上0.53質量%以下、
     前記架橋助剤の含有量が0.30質量%以上0.90質量%以下、
     前記シランカップリング剤の含有量が0.15質量%以上0.40質量%以下である、太陽電池モジュール用多層封止材シート。
    A multi-layer encapsulant sheet for a solar cell module having a core layer and skin layers arranged on both sides of the core layer.
    The core layer is thicker than the skin layer
    The skin layer is made of a polyethylene resin as a base resin.
    It contains an organic peroxide as a cross-linking agent, a nulate ring-containing compound having two or more polymerizable reactive groups in one molecule as a cross-linking aid, and a silane coupling agent.
    The content of the cross-linking agent in the skin layer is 0.33% by mass or more and 0.53% by mass or less.
    The content of the cross-linking aid is 0.30% by mass or more and 0.90% by mass or less,
    A multilayer encapsulant sheet for a solar cell module having a content of the silane coupling agent of 0.15% by mass or more and 0.40% by mass or less.
  4.  太陽電池モジュール用の封止材組成物であって、
     ポリエチレン系樹脂をベース樹脂とし、
     架橋剤である有機過酸化物と、架橋助剤である1分子中に2以上の重合性反応基を有するヌレート環含有化合物と、シランカップリング剤と、を含み、
     前記封止材組成物中の前記架橋剤の含有量が、0.33質量%以上0.53質量%以下、
     前記架橋助剤の含有量が0.30質量%以上0.90質量%以下、
     前記シランカップリング剤の含有量が0.15質量%以上0.40質量%以下である、太陽電池モジュール用封止材組成物。
    Encapsulant composition for solar cell modules
    Using polyethylene resin as the base resin
    It contains an organic peroxide as a cross-linking agent, a nulate ring-containing compound having two or more polymerizable reactive groups in one molecule as a cross-linking aid, and a silane coupling agent.
    The content of the cross-linking agent in the encapsulant composition is 0.33% by mass or more and 0.53% by mass or less.
    The content of the cross-linking aid is 0.30% by mass or more and 0.90% by mass or less,
    A sealing material composition for a solar cell module, wherein the content of the silane coupling agent is 0.15% by mass or more and 0.40% by mass or less.
  5.  太陽電池素子と、表面側保護部材と、裏面側保護部材と、請求項1又は請求項2に記載の太陽電池モジュール用封止材シート、請求項3に記載の太陽電池モジュール用多層封止材シート、及び請求項4に記載の太陽電池モジュール用封止材組成物のいずれかの架橋体である封止材層と、を含み、
     前記太陽電池素子が、前記表面側保護部材と前記裏面側保護部材との間に配置された前記封止材層により封止されている、太陽電池モジュール。
    The solar cell element, the front surface side protective member, the back surface side protective member, the encapsulant sheet for the solar cell module according to claim 1 or 2, and the multilayer encapsulant for the solar cell module according to claim 3. A sheet and a sealing material layer which is a crosslinked product of any of the sealing material compositions for a solar cell module according to claim 4 are included.
    A solar cell module in which the solar cell element is sealed by the sealing material layer arranged between the front surface side protective member and the back surface side protective member.
  6.  太陽電池モジュール用の封止材シートの製造方法であって、
     ポリエチレン系樹脂と、架橋助剤である1分子中に2以上の重合性反応基を有するヌレート環含有化合物とを混合して混合物を得る工程と、
     前記混合物と、架橋剤である有機過酸化物と、シランカップリング剤とを混合して封止材組成物を得る工程と、
     前記封止材組成物を溶融し、シート状に成膜して、未架橋の封止材シートを得る工程と、を有し、
     前記封止材シート中の前記架橋剤の含有量が、0.33質量%以上0.53質量%以下、
     前記架橋助剤の含有量が0.30質量%以上0.90質量%以下、
     前記シランカップリング剤の含有量が0.15質量%以上0.40質量%以下である、太陽電池モジュール用封止材シートの製造方法。
    A method for manufacturing a sealing material sheet for a solar cell module.
    A step of mixing a polyethylene-based resin and a nurate ring-containing compound having two or more polymerizable reactive groups in one molecule of a cross-linking aid to obtain a mixture, and a step of obtaining a mixture.
    A step of mixing the mixture, an organic peroxide as a cross-linking agent, and a silane coupling agent to obtain a sealing material composition.
    It comprises a step of melting the encapsulant composition and forming a film into a sheet to obtain an uncrosslinked encapsulant sheet.
    The content of the cross-linking agent in the encapsulant sheet is 0.33% by mass or more and 0.53% by mass or less.
    The content of the cross-linking aid is 0.30% by mass or more and 0.90% by mass or less,
    A method for producing a sealing material sheet for a solar cell module, wherein the content of the silane coupling agent is 0.15% by mass or more and 0.40% by mass or less.
PCT/JP2021/001244 2020-01-15 2021-01-15 Sealing material sheet for solar cell module, multi-layer sealing material sheet for solar cell module, sealing material composition for solar cell module, solar cell module, and method for manufacturing sealing material sheet for solar cell module WO2021145427A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021549092A JPWO2021145427A1 (en) 2020-01-15 2021-01-15
JP2022077043A JP2022110047A (en) 2020-01-15 2022-05-09 Sealing-material sheet for solar battery modules, multilayer sealant sheet for solar battery modules, sealing-material composition for solar battery modules, solar battery module, and production method of sealing-material sheet for solar battery modules

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-004449 2020-01-15
JP2020004449 2020-01-15

Publications (1)

Publication Number Publication Date
WO2021145427A1 true WO2021145427A1 (en) 2021-07-22

Family

ID=76863783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001244 WO2021145427A1 (en) 2020-01-15 2021-01-15 Sealing material sheet for solar cell module, multi-layer sealing material sheet for solar cell module, sealing material composition for solar cell module, solar cell module, and method for manufacturing sealing material sheet for solar cell module

Country Status (2)

Country Link
JP (2) JPWO2021145427A1 (en)
WO (1) WO2021145427A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016025333A (en) * 2014-07-24 2016-02-08 大日本印刷株式会社 Sealing material sheet for solar cell module
JP2018073845A (en) * 2015-03-05 2018-05-10 株式会社ブリヂストン Sealing film for solar battery and solar battery using the same
CN108611025A (en) * 2018-04-10 2018-10-02 浙江祥邦科技股份有限公司 A kind of super fast curing solar energy packaging adhesive film and preparation method thereof
JP2019179916A (en) * 2018-03-30 2019-10-17 大日本印刷株式会社 Sealing material sheet for electronic device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5777292B2 (en) * 2010-04-19 2015-09-09 三井化学東セロ株式会社 Solar cell sealing film, solar cell module, and manufacturing method thereof
JP5800053B2 (en) * 2014-04-28 2015-10-28 日本ポリエチレン株式会社 Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same
JP6446868B2 (en) * 2014-07-11 2019-01-09 大日本印刷株式会社 SEALING MATERIAL SHEET FOR SOLAR CELL MODULE AND METHOD FOR PRODUCING THE SAME
JP2017037923A (en) * 2015-08-07 2017-02-16 大日本印刷株式会社 Shock absorbing type glass substrate for solar cell module, and solar cell module using the same
CN106479428A (en) * 2015-08-27 2017-03-08 比亚迪股份有限公司 Resin combination and packaging adhesive film for solar cell
JP2018060843A (en) * 2016-09-30 2018-04-12 大日本印刷株式会社 Seal-material sheet for solar battery module
JP7056021B2 (en) * 2017-07-13 2022-04-19 大日本印刷株式会社 Solar cell module and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016025333A (en) * 2014-07-24 2016-02-08 大日本印刷株式会社 Sealing material sheet for solar cell module
JP2018073845A (en) * 2015-03-05 2018-05-10 株式会社ブリヂストン Sealing film for solar battery and solar battery using the same
JP2019179916A (en) * 2018-03-30 2019-10-17 大日本印刷株式会社 Sealing material sheet for electronic device
CN108611025A (en) * 2018-04-10 2018-10-02 浙江祥邦科技股份有限公司 A kind of super fast curing solar energy packaging adhesive film and preparation method thereof

Also Published As

Publication number Publication date
JP2022110047A (en) 2022-07-28
JPWO2021145427A1 (en) 2021-07-22

Similar Documents

Publication Publication Date Title
EP2613361A1 (en) Solar cell sealing material and solar cell module produced by using same
JP5866857B2 (en) Solar cell module sealing material composition, solar cell module sealing material sheet
US9293616B2 (en) Solar cell sealing film and solar cell using the same
JP5417534B2 (en) Solar cell encapsulant and solar cell module using the same
WO2013084849A1 (en) Solar cell module
JP2014022473A (en) Solar cell module
JP5891745B2 (en) Solar cell module sealing material sheet and solar cell module using the same
JP2022089891A (en) Sealing material sheet for solar cell module
JP2015162498A (en) Laminate for solar cell sealing material, solar cell sealing material, and solar battery module
JP2022089829A (en) Seal-material sheet for solar battery module
JP2013115212A (en) Method for manufacturing sealing material sheet for solar cell module and solar cell module using the same
JP6028472B2 (en) Manufacturing method of sealing material sheet for solar cell module
WO2021145427A1 (en) Sealing material sheet for solar cell module, multi-layer sealing material sheet for solar cell module, sealing material composition for solar cell module, solar cell module, and method for manufacturing sealing material sheet for solar cell module
JP6155680B2 (en) Manufacturing method of solar cell module and solar cell module manufactured by the manufacturing method
JP5971076B2 (en) Solar cell module
JP6035707B2 (en) Manufacturing method of solar cell module
JP2012009691A (en) Resin composition for solar cell sealing material and solar cell sealing material using the same, and solar cell module
JP6886529B2 (en) Non-polar ethylene-based composition containing triallyl phosphate for encapsulant film
JP6287006B2 (en) Manufacturing method of sealing material sheet for solar cell module
WO2023286859A1 (en) Solar-cell-module sealant sheet, solar-cell-module sealant composition, and solar cell module
JP2014053427A (en) Method for producing sealing material sheet for solar cell module
JP2015070071A (en) Method of producing encapsulant sheet for solar cell module
JP7111131B2 (en) Encapsulant sheet for solar cell module
JP2018050027A (en) Solar cell module
JP6965504B2 (en) Encapsulant sheet for solar cell modules

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021549092

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21740851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21740851

Country of ref document: EP

Kind code of ref document: A1