WO2021145184A1 - Tire - Google Patents

Tire Download PDF

Info

Publication number
WO2021145184A1
WO2021145184A1 PCT/JP2020/048348 JP2020048348W WO2021145184A1 WO 2021145184 A1 WO2021145184 A1 WO 2021145184A1 JP 2020048348 W JP2020048348 W JP 2020048348W WO 2021145184 A1 WO2021145184 A1 WO 2021145184A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance
tire
resistance portion
sensor
base material
Prior art date
Application number
PCT/JP2020/048348
Other languages
French (fr)
Japanese (ja)
Inventor
厚 北村
重之 足立
寿昭 浅川
Original Assignee
ミネベアミツミ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミネベアミツミ株式会社 filed Critical ミネベアミツミ株式会社
Publication of WO2021145184A1 publication Critical patent/WO2021145184A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes

Definitions

  • the present invention relates to a tire provided with a sensor.
  • Valves with an air pressure sensor that can check the air pressure even while driving are also known, but it is difficult to grasp the pressure distribution applied to the entire tire because it only detects the pressure at the specific location where the valve is placed.
  • Tires of automobiles, etc. are worn out when the speed is too high in a corner or when there is an abnormality such as poor air pressure. If you drive with the tires worn out, the tires may burst (burst) or the steering wheel may be taken off, causing an accident, which is extremely dangerous.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a tire equipped with a sensor capable of measuring a pressure distribution.
  • This tire is a tire for a moving body, and a sensor is provided inside the tire, and the sensor is juxtaposed on one side of the insulating layer and the insulating layer with the longitudinal direction facing the first direction.
  • the resistance value between the pair of electrodes of the 1 resistance portion and / or the 2nd resistance portion changes continuously according to the magnitude of the applied pressure.
  • FIG. 1 is a cross-sectional view (No. 1) illustrating the tire according to the first embodiment, and shows a cross section of the tire cut in the width direction.
  • FIG. 2 is a cross-sectional view (No. 2) illustrating the tire according to the first embodiment, and shows a cross section of the tire cut at the center in the width direction in the direction perpendicular to the width direction. Note that FIG. 2 has a different scale from that of FIG. 1, and some of the components shown in FIG. 1 are omitted.
  • the tire 100 has a tread portion 110, left and right sidewall portions 120, and left and right bead portions 130.
  • the tread portion 110 is a portion of the tire 100 in contact with the road surface.
  • the sidewall portion 120 is a portion that becomes a side surface of the tire 100.
  • the bead portion 130 is a portion for fixing the tire 100 to the rim of the wheel.
  • An inner liner 140 is provided inside the tire 100.
  • the inner liner 140 is, for example, a layer made of rubber.
  • a carcass 150 extending between the left and right bead portions 130 through the tread portion 110 and the left and right sidewall portions 120 is provided.
  • the carcass 150 is, for example, a layer in which fibers or steel is coated with rubber. Both ends of the carcass 150 are folded back so as to sandwich the bead core 160 and the bead filler 170.
  • a plurality of belts 180 are provided on the outer peripheral side of the carcass 150 of the tread portion 110.
  • the sensor 1 is attached to the inner peripheral side of the inner liner 140 (the side closer to the center of the tire 100). It is preferable that the sensor 1 is attached to the entire inner peripheral side of the inner liner 140 in the width direction and the entire circumferential direction. Instead of attaching the sensor 1 to the inner peripheral side of the inner liner 140, the sensor 1 may be embedded in any portion located inside the outermost circumference (the surface in contact with the road surface) of the tire 100. For example, the sensor 1 may be embedded in the inner liner 140.
  • the sensor 1 is provided to detect the pressure distribution applied to the tire 100 when the tire 100 is mounted on a moving body such as an automobile.
  • the pressure applied to the tire 100 includes the pressure from the outside of the tire 100 (pressure from the road surface) and the pressure from the inside of the tire 100 (pneumatic pressure), and the sensor 1 can detect the combined pressure distribution. ..
  • the moving body refers to an object that can be moved by mounting the tire 100, such as an automobile, a motorcycle, or a robot.
  • FIG. 3 is a plan view illustrating the sensor according to the first embodiment.
  • FIG. 4 is a cross-sectional view illustrating the sensor according to the first embodiment, and shows a cross-sectional view taken along the line AA of FIG.
  • the X direction corresponds to the width direction of the tire 100
  • the Y direction corresponds to the circumferential direction of the tire 100
  • the Z direction corresponds to the radial direction of the tire 100.
  • the sensor 1 has a base material 10, resistors 30, (a plurality of resistance portions 31 and 32), and a plurality of terminal portions 41 and 42.
  • the sensor 1 is arranged on the tire 100 with the longitudinal direction (Y direction) of the plurality of juxtaposed resistance portions 31 and 32 facing the circumferential direction of the tire 100.
  • the resistance portion 31 side of the sensor 1 is arranged so as to face the inner liner 140 side.
  • the side of the base material 10 provided with the resistance portion 31 is referred to as the upper side or one side, and the side provided with the resistance portion 32 is referred to as the lower side or the other side. do.
  • the surface on the side where the resistance portion 31 is provided is one surface or the upper surface, and the surface on the side where the resistance portion 32 is provided is the other surface or the lower surface.
  • the sensor 1 can be used in an upside-down state, or can be arranged at an arbitrary angle.
  • the plan view means that the object is viewed from the normal direction of the upper surface 10a of the base material 10, and the planar shape refers to the shape of the object viewed from the normal direction of the upper surface 10a of the base material 10. And.
  • the base material 10 is an insulating member that serves as a base layer for forming the resistor 30 and the like, and has flexibility.
  • the thickness of the base material 10 is not particularly limited and may be appropriately selected depending on the intended purpose, but may be, for example, about 5 ⁇ m to 500 ⁇ m. In particular, when the thickness of the base material 10 is 5 ⁇ m to 200 ⁇ m, the strain sensitivity error of the resistance portions 31 and 32 can be reduced, which is preferable.
  • the base material 10 includes, for example, PI (polyetherketone) resin, epoxy resin, PEEK (polyetheretherketone) resin, PEN (polyetheretherketone) resin, PET (polyethylene terephthalate) resin, PPS (polyphenylene sulfide) resin, polyolefin resin and the like. It can be formed from the insulating resin film of.
  • the film refers to a member having a thickness of about 500 ⁇ m or less and having flexibility.
  • the base material 10 may be formed of, for example, an insulating resin film containing a filler such as silica or alumina.
  • Examples of materials other than the resin of the base material 10 include SiO 2 , ZrO 2 (including YSZ), Si, Si 2 N 3 , Al 2 O 3 (including sapphire), ZnO, and perovskite ceramics (CaTIO 3 ,). Crystalline materials such as BaTIO 3 ) can be mentioned, and amorphous glass and the like can also be mentioned. Further, as the material of the base material 10, a metal such as aluminum, an aluminum alloy (duralumin), or titanium may be used. In this case, for example, an insulating film is formed on the metal base material 10.
  • the resistor 30 is a sensitive portion formed on the base material 10 and whose resistance value continuously changes according to the applied pressure.
  • the resistor 30 may be formed directly on the upper surface 10a and the lower surface 10b of the base material 10, or may be formed on the upper surface 10a and the lower surface 10b of the base material 10 via another layer.
  • the resistor 30 includes a plurality of resistance portions 31 and 32 laminated via the base material 10. That is, the resistor 30 is a general term for a plurality of resistance portions 31 and 32, and is referred to as a resistor 30 when it is not necessary to particularly distinguish the resistance portions 31 and 32. In FIG. 3, for convenience, the resistance portions 31 and 32 are shown in a satin pattern.
  • the plurality of resistance portions 31 are thin films juxtaposed in the Y direction at predetermined intervals with the longitudinal direction facing the X direction on the upper surface 10a of the base material 10.
  • the plurality of resistance portions 32 are thin films juxtaposed in the X direction at predetermined intervals with the longitudinal direction facing the Y direction on the lower surface 10b of the base material 10.
  • the plurality of resistance portions 31 and the plurality of resistance portions 32 are orthogonal to each other in a plan view, but the present invention is not limited to this. That is, the plurality of resistance portions 31 and the plurality of resistance portions 32 do not have to be orthogonal to each other in a plan view, and may intersect with each other.
  • the resistor 30 can be formed from, for example, a material containing Cr (chromium), a material containing Ni (nickel), or a material containing both Cr and Ni. That is, the resistor 30 can be formed from a material containing at least one of Cr and Ni. Examples of the material containing Cr include a Cr mixed phase film. Examples of the material containing Ni include Cu—Ni (copper nickel). Examples of the material containing both Cr and Ni include Ni—Cr (nickel chromium).
  • the Cr multiphase film, Cr, CrN, Cr 2 N or the like is film multiphase.
  • the Cr mixed phase film may contain unavoidable impurities such as chromium oxide.
  • the thickness of the resistor 30 is not particularly limited and can be appropriately selected depending on the intended purpose, but can be, for example, about 0.05 ⁇ m to 2 ⁇ m.
  • the thickness of the resistor 30 is 0.1 ⁇ m or more, the crystallinity of the crystals constituting the resistor 30 (for example, the crystallinity of ⁇ -Cr) is improved, which is preferable.
  • the thickness of the resistor 30 is 1 ⁇ m or less, it is more preferable that the crack of the film and the warp from the base material 10 due to the internal stress of the film constituting the resistor 30 can be reduced.
  • the width of the resistor 30 is not particularly limited and can be appropriately selected depending on the intended purpose, but can be, for example, about 0.1 ⁇ m to 1000 ⁇ m (1 mm).
  • the pitch of the adjacent resistors 30 is not particularly limited and may be appropriately selected depending on the intended purpose, but may be, for example, about 1 mm to 100 mm. In addition, about several hundred to several 10,000 resistance portions 31 and 32 are actually provided.
  • the resistor 30 when the resistor 30 is a Cr mixed phase film, by using ⁇ -Cr (alpha chromium), which is a stable crystal phase, as the main component, the temperature coefficient of the resistor 30 can be stabilized and the resistor against the applied pressure can be used.
  • the main component means that the target substance occupies 50% by mass or more of all the substances constituting the resistor, but the temperature coefficient of the resistor 30 is stabilized and the sensitivity of the resistor 30 to the applied pressure is high.
  • the resistor 30 preferably contains 80% by mass or more of ⁇ -Cr, and more preferably 90% by mass or more, from the viewpoint of realizing the improvement of the above.
  • ⁇ -Cr is Cr of a bcc structure (body-centered cubic lattice structure).
  • the Cr N and Cr 2 N contained in the Cr mixed-phase film are preferably 20% by weight or less.
  • Cr N and Cr 2 N contained in the Cr mixed phase film are 20% by weight or less, a decrease in the gauge ratio can be suppressed.
  • the proportion of Cr 2 N in CrN and Cr 2 N is less than 80 wt% to 90 wt%, more preferably less than 90 wt% to 95 wt%.
  • the ratio of Cr 2 N in Cr N and Cr 2 N is 90% by weight or more and less than 95% by weight, the decrease in TCR (negative TCR) becomes more remarkable due to Cr 2 N having semiconducting properties. .. Further, by reducing the ceramicization, brittle fracture is reduced.
  • the terminal portion 41 extends from both ends of each resistance portion 31 on the upper surface 10a of the base material 10, and is wider than the resistance portion 31 and formed in a substantially rectangular shape in a plan view.
  • the terminal portion 41 is a pair of electrodes for outputting a change in the resistance value of the resistance portion 31 caused by the applied pressure to the outside, and for example, a flexible substrate for external connection, a lead wire, or the like is joined.
  • the upper surface of the terminal portion 41 may be coated with a metal having better solderability than the terminal portion 41.
  • the resistance portion 31 and the terminal portion 41 have different reference numerals for convenience, they can be integrally formed of the same material in the same process.
  • the terminal portion 42 extends from both ends of each resistance portion 32 on the lower surface 10b of the base material 10, and is wider than the resistance portion 32 and formed in a substantially rectangular shape in a plan view.
  • the terminal portion 42 is a pair of electrodes for outputting a change in the resistance value of the resistance portion 32 caused by the applied pressure to the outside, and for example, a flexible substrate for external connection, a lead wire, or the like is joined.
  • the upper surface of the terminal portion 42 may be coated with a metal having better solderability than the terminal portion 42.
  • the resistance portion 32 and the terminal portion 42 have different reference numerals for convenience, they can be integrally formed of the same material in the same process.
  • a through wiring (through hole) penetrating the base material 10 may be provided, and the terminal portions 41 and 42 may be concentrated on the upper surface 10a side or the lower surface 10b side of the base material 10.
  • a cover layer may be provided on the upper surface 10a of the base material 10 so as to cover the resistance portion 31 and expose the terminal portion 41. Further, a cover layer (insulating resin layer) may be provided on the lower surface 10b of the base material 10 so as to cover the resistance portion 32 and expose the terminal portion 42.
  • the cover layer may be provided so as to cover the entire portion excluding the terminal portions 41 and 42.
  • the cover layer can be formed of, for example, an insulating resin such as PI resin, epoxy resin, PEEK resin, PEN resin, PET resin, PPS resin, and composite resin (for example, silicone resin and polyolefin resin).
  • the cover layer may contain a filler or a pigment.
  • the thickness of the cover layer is not particularly limited and may be appropriately selected depending on the intended purpose, but can be, for example, about 2 ⁇ m to 30 ⁇ m.
  • the base material 10 is prepared, and the planar resistance portion 31 and the terminal portion 41 shown in FIG. 3 are formed on the upper surface 10a of the base material 10.
  • the materials and thicknesses of the resistance portion 31 and the terminal portion 41 are as described above.
  • the resistance portion 31 and the terminal portion 41 can be integrally formed of the same material.
  • the resistance portion 31 and the terminal portion 41 can be formed, for example, by forming a film by a magnetron sputtering method targeting a raw material capable of forming the resistance portion 31 and the terminal portion 41 and patterning the resistance portion 31 and the terminal portion 41 by photolithography.
  • the resistance portion 31 and the terminal portion 41 may be formed by a reactive sputtering method, a vapor deposition method, an arc ion plating method, a pulse laser deposition method, or the like, instead of the magnetron sputtering method.
  • the function of a predetermined film thickness as the base layer before forming the resistance portion 31 and the terminal portion 41 is performed. It is preferable to form the layer in a vacuum.
  • the functional layer can be formed by, for example, a conventional sputtering method. After forming the resistance portion 31 and the terminal portion 41 on the entire upper surface of the functional layer, the functional layer is patterned together with the resistance portion 31 and the terminal portion 41 in the planar shape shown in FIG. 3 by photolithography.
  • the functional layer refers to a layer having a function of promoting crystal growth of at least an upper resistance portion. It is preferable that the functional layer further has a function of preventing oxidation of the resistance portion by oxygen and moisture contained in the base material 10 and a function of improving the adhesion between the base material 10 and the resistance portion.
  • the functional layer may further have other functions.
  • the insulating resin film constituting the base material 10 contains oxygen and water, especially when the resistance portion contains Cr, Cr forms a self-oxidizing film, so that the functional layer has a function of preventing oxidation of the resistance portion. Is valid.
  • the material of the functional layer is not particularly limited as long as it has a function of promoting crystal growth of at least the upper resistance portion, and can be appropriately selected depending on the intended purpose.
  • Cr chromium
  • Ti tungsten
  • V vanadium
  • Nb niobium
  • Ta tantalum
  • Ni nickel
  • Y ittrium
  • Zr zirconium
  • Hf hafnium
  • Si silicon
  • C carbon
  • Zn (zinc) Cu (copper), Bi (bismuth), Fe (iron), Mo (molybdenum), W (tungsten), Ru (ruthenium), Rh (rodium), Re (renium), Os (osmium), Ir (iridium) ), Pt (platinum), Pd (palladium), Ag (silver), Au (gold), Co (cobalt), Mn (manganese), Al (aluminum).
  • Examples of the above alloy include FeCr, TiAl, FeNi, NiCr, CrCu and the like.
  • Examples of the above-mentioned compounds include TiN, TaN, Si 3 N 4 , TiO 2 , Ta 2 O 5 , SiO 2, and the like.
  • the film thickness of the functional layer is preferably 1/20 or less of the film thickness of the resistance portion. Within such a range, the crystal growth of ⁇ —Cr can be promoted, and a part of the current flowing through the resistance portion can be prevented from flowing to the functional layer to reduce the strain detection sensitivity.
  • the film thickness of the functional layer is more preferably 1/50 or less of the film thickness of the resistance portion.
  • the crystal growth of ⁇ -Cr can be promoted, and a part of the current flowing through the resistance portion can be prevented from flowing to the functional layer to further prevent the strain detection sensitivity from being lowered.
  • the film thickness of the functional layer is more preferably 1/100 or less of the film thickness of the resistance portion. Within such a range, it is possible to further prevent a part of the current flowing in the resistance part from flowing to the functional layer and a part of the current flowing through the resistance part from flowing to the functional layer to further reduce the strain detection sensitivity. ..
  • the film thickness of the functional layer is preferably 1 nm to 1 ⁇ m. Within such a range, the crystal growth of ⁇ —Cr can be promoted, and a film can be easily formed without cracking in the functional layer.
  • the film thickness of the functional layer is preferably 1 nm to 0.8 ⁇ m. Within such a range, the crystal growth of ⁇ -Cr can be promoted, and the functional layer can be more easily formed without cracks.
  • the film thickness of the functional layer is more preferably 1 nm to 0.5 ⁇ m. Within such a range, the crystal growth of ⁇ —Cr can be promoted, and the film can be formed more easily without cracking the functional layer.
  • the planar shape of the functional layer is patterned substantially the same as the planar shape of the resistance portion shown in FIG. 3, for example.
  • the planar shape of the functional layer is not limited to the case where it is substantially the same as the planar shape of the resistance portion.
  • the functional layer may be formed in a solid shape at least in the region where the resistance portion is formed.
  • the functional layer may be formed in a solid shape on the entire upper surface of the base material 10.
  • the thickness and surface area of the functional layer can be increased by forming the functional layer relatively thick so as to be 50 nm or more and 1 ⁇ m or less and forming the functional layer in a solid shape. Since it increases, the heat generated when the resistance portion generates heat can be dissipated to the base material 10 side. As a result, in the sensor 1, it is possible to suppress a decrease in measurement accuracy due to self-heating of the resistance portion.
  • the functional layer can be vacuum-deposited by a conventional sputtering method in which Ar (argon) gas is introduced into the chamber, targeting a raw material capable of forming the functional layer.
  • Ar argon
  • the functional layer is formed while etching the upper surface 10a of the base material 10 with Ar, so that the film forming amount of the functional layer can be minimized and the adhesion improving effect can be obtained.
  • the functional layer may be formed by another method.
  • the effect of improving adhesion is obtained by activating the upper surface 10a of the base material 10 by plasma treatment using Ar or the like before the film formation of the functional layer, and then the functional layer is vacuum-deposited by the magnetron sputtering method. You may use the method of
  • the combination of the material of the functional layer and the material of the resistance portion 31 and the terminal portion 41 is not particularly limited and can be appropriately selected according to the purpose.
  • Ti can be used as the functional layer, and a Cr mixed phase film containing ⁇ -Cr (alpha chromium) as a main component can be formed as the resistance portion 31 and the terminal portion 41.
  • the resistance portion 31 and the terminal portion 41 can be formed by a magnetron sputtering method in which Ar gas is introduced into the chamber by targeting a raw material capable of forming a Cr mixed phase film.
  • Ar gas is introduced into the chamber by targeting a raw material capable of forming a Cr mixed phase film.
  • pure Cr may be targeted, an appropriate amount of nitrogen gas may be introduced into the chamber together with Ar gas, and the resistance portion 31 and the terminal portion 41 may be formed by a reactive sputtering method.
  • the heating temperature provided that and heating step of changing the introduction amount and pressure of nitrogen gas (nitrogen partial pressure)
  • the proportion of CrN and Cr 2 N contained in Cr multiphase film, and CrN and Cr Cr 2 N ratio of in 2 N can be adjusted.
  • the growth surface of the Cr mixed-phase film is defined by the functional layer made of Ti, and a Cr mixed-phase film containing ⁇ -Cr as a main component, which has a stable crystal structure, can be formed. Further, by diffusing Ti constituting the functional layer in the Cr mixed phase film, it is possible to stabilize the temperature coefficient of the resistance portion 31 and improve the sensitivity of the resistance portion 31 to the applied pressure.
  • the Cr mixed phase film may contain Ti or TiN (titanium nitride).
  • the functional layer made of Ti has a function of promoting crystal growth of the resistance portion 31 and a function of preventing oxidation of the resistance portion 31 by oxygen and moisture contained in the base material 10. , And all the functions of improving the adhesion between the base material 10 and the resistance portion 31.
  • Ta, Si, Al, or Fe is used as the functional layer instead of Ti.
  • the functional layer under the resistance portion 31 By providing the functional layer under the resistance portion 31 in this way, the crystal growth of the resistance portion 31 can be promoted, and the resistance portion 31 composed of a stable crystal phase can be produced. As a result, in the sensor 1, the temperature coefficient of the resistance portion 31 can be stabilized and the sensitivity of the resistance portion 31 to the applied pressure can be improved. Further, by diffusing the material constituting the functional layer into the resistance portion 31, it is possible to stabilize the temperature coefficient of the resistance portion 31 and improve the sensitivity of the resistance portion 31 to the applied pressure in the sensor 1.
  • the planar resistance portion 32 and the terminal portion 42 shown in FIG. 3 are formed on the lower surface 10b of the base material 10.
  • the resistance portion 32 and the terminal portion 42 can be formed in the same manner as the resistance portion 31 and the terminal portion 41.
  • a cover layer for covering the upper surface 10a of the base material 10 with the resistance portion 31 and exposing the terminal portion 41 is provided on the base material 10.
  • a cover layer may be provided on the lower surface 10b to cover the resistance portion 32 and expose the terminal portion 42.
  • the cover layer can be produced, for example, by coating the upper surface 10a of the base material 10 with the resistance portion 31 and laminating a thermosetting insulating resin film in a semi-cured state so as to expose the terminal portion 41, and heating and curing the cover layer. .. Further, the cover layer is, for example, laminated with a thermosetting insulating resin film in a semi-cured state so as to cover the lower surface 10b of the base material 10 with the resistance portion 32 and expose the terminal portion 42, and heat and cure the cover layer. Can be made.
  • the cover layer may be produced by applying a liquid or paste-like thermosetting insulating resin instead of laminating the insulating resin film, and heating and curing the cover layer.
  • the sensor 1 has the cross-sectional shape shown in FIG.
  • the layers indicated by reference numerals 20a and 20b are functional layers.
  • the planar shape of the sensor 1 when the functional layers 20a and 20b are provided is the same as that in FIG.
  • the pressure distribution detection device 3 can be realized by the sensor 1 and the control device 2.
  • the pressure distribution detection device 3 is a device that detects the pressure distribution applied to the tire 100 from the road surface.
  • each of the terminal portions 41 and 42 of the sensor 1 is connected to the control device 2 by using, for example, a flexible substrate or a lead wire.
  • the control device 2 can detect the pressure distribution applied to the tire 100 from the road surface based on the information obtained via the terminal portions 41 and 42 of the sensor 1. That is, since the resistance unit 31 of the sensor 1 can be used to detect the X coordinate and the resistance unit 32 can be used to detect the Y coordinate, the XY coordinate of the position where the pressure is applied and the magnitude of the applied pressure can be determined. Can be detected.
  • control device 2 can be configured to include, for example, an analog front end unit 21 and a signal processing unit 22.
  • the analog front end unit 21 includes, for example, an input signal selection switch, a bridge circuit, an amplifier, an analog / digital conversion circuit (A / D conversion circuit), and the like.
  • the analog front end portion 21 may include a temperature compensation circuit.
  • all the terminal units 41 and 42 of the sensor 1 are connected to the input signal selection switch, and a pair of electrodes is selected by the input signal selection switch.
  • the pair of electrodes selected by the input signal selection switch is connected to the bridge circuit.
  • one side of the bridge circuit is composed of a resistance portion between a pair of electrodes selected by the input signal selection switch, and the other three sides are composed of a fixed resistor.
  • a voltage (analog signal) corresponding to the resistance value of the resistance portion between the pair of electrodes selected by the input signal selection switch can be obtained.
  • the input signal selection switch is configured to be controllable from the signal processing unit 22.
  • the voltage output from the bridge circuit is amplified by the amplifier, converted into a digital signal by the A / D conversion circuit, and sent to the signal processing unit 22.
  • the analog front end unit 21 includes a temperature compensation circuit, a temperature-compensated digital signal is sent to the signal processing unit 22.
  • the signal processing unit 22 can detect the pressure distribution applied to the tire 100 from the road surface based on the information sent from the analog front end unit 21.
  • pressure may be applied to only one of the resistance portion 31 and the resistance portion 32.
  • the resistance value between the pair of electrodes of one of the resistance portions changes continuously according to the magnitude of the applied pressure, but in this case as well, the signal processing unit 22 is the resistance portion of the resistance portion.
  • the magnitude of the applied pressure can be detected based on the magnitude of the change in resistance value.
  • the resistance value between the pair of electrodes of the pressurized resistance portion (resistance portion 31 and / or the resistance portion 32) is added to the magnitude of the pressure. It changes continuously accordingly. Then, the signal processing unit 22 is added based on the magnitude of the change in the resistance value of the pressurized resistance unit regardless of whether one of the resistance unit 31 and the resistance unit 32 is pressurized or both are pressurized. The magnitude of pressure can be detected.
  • the signal processing unit 22 can be configured to include, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a main memory, and the like.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • various functions of the signal processing unit 22 can be realized by reading the program recorded in the ROM or the like into the main memory and executing it by the CPU.
  • a part or all of the signal processing unit 22 may be realized only by hardware.
  • the signal processing unit 22 may be physically composed of a plurality of devices or the like.
  • the sensor 1 can obtain three-dimensional information (coordinates of the position where the pressure is applied and the magnitude of the applied pressure).
  • the three-dimensional information obtained by the sensor 1 is sent to the control device 2, and the control device 2 can detect the pressure distribution applied to the tire 100 based on the three-dimensional information obtained by the sensor 1. ..
  • the pressure distribution in the initial state (for example, the state where the tire 100 is not worn out and the air pressure is normal) is stored, and the output of the sensor 1 is monitored while the moving body is running to compare with the initial state. Therefore, it is possible to monitor the wear state of the ground contact surface of the tire 100 and the change in air pressure in real time. As a result, it is possible to detect a one-sided reduction of the tire 100. Further, it is possible to detect whether or not the air pressure of the tire 100 is appropriate. In addition, the adjustment angle of the tire 100 and the replacement time of the tire 100 can be grasped.
  • the abnormal pressure distribution applied to the tire 100 can be detected in real time, and by transmitting the abnormal pressure distribution to the driver wirelessly or the like, more accurate state management of the tire 100 can be performed.
  • the resistance portions 31 and 32 are formed of a Cr mixed-phase film
  • the sensitivity of the resistance value to the applied pressure is significantly improved.
  • the resistance portions 31 and 32 are formed of a Cr mixed-phase film
  • the sensitivity of the resistance value to the applied pressure is approximately 5 to 5 to that when the resistance portions 31 and 32 are formed of Cu—Ni or Ni—Cr. It will be about 10 times. Therefore, by forming the resistance portions 31 and 32 from the Cr mixed-phase film, the detection accuracy of the coordinates of the position where the pressure is applied can be improved, and the applied pressure can be detected with high sensitivity.
  • the sensitivity of the resistance value to the applied pressure is high, when it is detected that the applied pressure is small, a predetermined operation is performed, and when it is detected that the applied pressure is medium, another operation is performed. When it is detected that the applied pressure is large, it is possible to realize the control to perform other operations. Alternatively, it is possible to realize a control in which no operation is performed when it is detected that the applied pressure is small or medium, and a predetermined operation is performed only when it is detected that the applied pressure is large.
  • the sensitivity of the resistance value to the applied pressure is high, a signal with a high S / N can be obtained. Therefore, the signal can be detected with high accuracy even if the number of times of averaging in the A / D conversion circuit of the analog front end portion 21 is reduced.
  • the time required for one A / D conversion can be shortened, so that the input signal selection switch can be switched at a higher speed. As a result, the sensor 1 can detect a relatively fast pressure distribution.
  • Modification 1 of the first embodiment shows an example of a sensor having an electronic component mounted on one surface side or the other surface side of the base material.
  • the description of the same components as those of the above-described embodiment may be omitted.
  • FIG. 8 is a cross-sectional view illustrating the sensor according to the modified example 1 of the first embodiment, and shows a cross section corresponding to FIG.
  • the sensor 1A differs from the sensor 1 (see FIGS. 3 and 4) in that the electronic component 200 is mounted on the lower surface 10b of the base material 10.
  • Electronic component 200 is, for example, those which gave the external communication function into an IC analog front end unit 21 shown in FIG. 7 (e.g., a serial communication function such I 2 C). That is, the electronic component 200 is, for example, an IC having an input signal selection switch, a bridge circuit, an amplifier, an A / D conversion circuit, an external communication function, and the like, and has a resistance value between a pair of electrodes of the resistance portions 31 and 32. Can be converted to voltage and output as a digital signal.
  • the electronic component 200 may include a temperature compensation circuit.
  • the electronic component 200 can send and receive information to and from the signal processing unit 22 of the control device 2 by an external communication function.
  • the electronic component 200 can be flip-chip mounted on a pad formed on the lower surface 10b of the base material 10, for example.
  • the electronic component 200 may be mounted on the lower surface 10b of the base material 10 via an adhesive layer such as a die attach film, and may be wire-bonded to a pad formed on the lower surface 10b of the base material 10.
  • a passive component such as a capacitor may be mounted together with the electronic component 200.
  • the electronic component 200 is connected to all the terminal portions 41 and 42 via a wiring pattern (not shown) or a through wiring (through hole). Further, the electronic component 200 is configured so that power can be supplied from the outside of the sensor 1A.
  • a cover layer may be provided on the upper surface 10a of the base material 10 so as to cover the resistance portion 31 and the terminal portion 41. Further, a cover layer (insulating resin layer) may be provided on the lower surface 10b of the base material 10 so as to cover the resistance portion 32, the terminal portion 42, and the electronic component 200.
  • the cover layer By providing the cover layer, it is possible to prevent mechanical damage or the like from occurring in the resistance portions 31 and 32, the terminal portions 41 and 42, and the electronic component 200. Further, by providing the cover layer, the resistance portions 31 and 32, the terminal portions 41 and 42, and the electronic component 200 can be protected from moisture and the like.
  • the terminal portions 41 and 42 and the electronic component 200 are connected in a short distance via a wiring pattern or through wiring (through hole). It is possible. Therefore, a small sensor 1A can be realized.
  • This structure is particularly effective for a small sensor in which it is difficult to connect a resistor and an electronic component with solder or the like using a lead wire.
  • noise immunity can be improved by shortening the distance from the terminal portions 41 and 42 to the electronic component 200.
  • the electronic component 200 is not limited to an IC having the functions of the analog front end unit 21, and may be, for example, an IC having the functions of the analog front end unit 21 and the signal processing unit 22.
  • a part or all of the control device 2 may be integrated with the sensor 1A.
  • to integrate with the sensor 1A means that a part or all of the base material and electronic parts used in the control device 2 and a part or all of the base material and electronic parts used in the sensor 1A are used in combination. Including that.
  • control device 2 may be provided with an integrated circuit or the like that wirelessly transmits the detection result by the signal processing unit 22.
  • the detection result by the signal processing unit 22 may be wirelessly transmitted to, for example, an ECU (Electronic Control Unit) mounted on an automobile.
  • the ECU that wirelessly obtains information on the pressure distribution of the tire 100 from the control device 2 can notify the driver of the abnormality by displaying a warning, a buzzer, or the like, for example, when the pressure distribution is abnormal. As a result, the automobile can be safely driven and an accident can be prevented.
  • Modification 2 of the first embodiment shows an example of a sensor having a power supply mounted on one surface side or the other surface side of the base material.
  • the description of the same component as that of the above-described embodiment may be omitted.
  • FIG. 9 is a cross-sectional view illustrating the sensor according to the modified example 2 of the first embodiment, and shows a cross section corresponding to FIG.
  • the sensor 1B differs from the sensor 1A (see FIG. 8) in that the power supply 300 is mounted.
  • the power supply 300 is, for example, a small battery such as a lithium ion battery.
  • the power supply 300 is mounted on the lower surface 10b side of the base material 10, for example, and is electrically connected to the electronic component 200.
  • the power supply 300 may be mounted on the upper surface 10a side of the base material 10.
  • the senor 1B is equipped with the power supply 300 that supplies power to the electronic component 200. As a result, it is possible to realize a small sensor 1B that does not require power supply from the outside.
  • the sensor 1B by thinning the resistor 30, the sensor 1B can be made particularly low in power consumption and miniaturized.
  • the resistance value of the resistor 30 is about 1 k ⁇ , but a thin Cr mixed-phase film is used as the material of the resistor 30.
  • the resistance value of the resistor 30 can be 5 k ⁇ or more. Therefore, when a Cr mixed-phase film is used as the material of the resistor 30, the current flowing through the resistor 30 is reduced, and the power consumption can be reduced. Further, since the current supplied from the power supply 300 can be reduced due to the low power consumption, a small power supply 300 can be used, and the entire sensor 1B can be miniaturized.
  • FIG. 10 is a plan view illustrating the sensor according to the modified example 3 of the first embodiment, and shows the plane corresponding to FIG. Referring to FIG. 10, the sensor 1C differs from the sensor 1 (see FIGS. 3 and 4) in that the resistor 30 is replaced with the resistor 30C.
  • the resistor 30C includes the resistance portions 31C and 32C.
  • the resistance portion 31C is a zigzag pattern formed between a pair of terminal portions 41.
  • the resistance portion 32C is a zigzag pattern formed between a pair of terminal portions 42.
  • the material and thickness of the resistance portions 31C and 32C can be, for example, the same as the material and thickness of the resistance portions 31 and 32.
  • the resistance value between the pair of terminal portions 41 and the resistance value between the pair of terminal portions 42 can be increased as compared with the case where the resistance portions 31C and 32C have a linear pattern.
  • the amount of change in the resistance value between the pair of terminal portions 41 and the amount of change in the resistance value between the pair of terminal portions 42 when pressurized becomes large, so that the detection accuracy of the pressure distribution applied to the tire 100 becomes large. Can be further improved.
  • the resistance value between the pair of terminal portions 41 and the resistance value between the pair of terminal portions 42 can be increased, the power consumption of the sensor 1C can be reduced.
  • the resistance portion 31 is provided on the upper surface 10a of the base material 10 which is the insulating layer and the resistance portion 32 is provided on the lower surface 10b is shown, but the resistance portion 32 is provided on one side of the insulating layer.
  • the structure is not limited to this as long as the resistance portion 32 is provided on the other side.
  • the resistance portion 31 may be provided on the upper surface 10a of the base material 10
  • the insulating layer covering the resistance portion 31 may be provided on the upper surface 10a of the base material 10
  • the resistance portion 32 may be provided on the insulating layer.
  • a first base material provided with the resistance portion 31 and a second base material provided with the resistance portion 32 are produced, and the resistance portion 31 and the resistance portion 32 are directed inward, and the resistance portion 31 is sandwiched between the insulating layers.
  • the first base material provided and the second base material provided with the resistance portion 32 may be bonded together.
  • a first base material provided with the resistance portion 31 and a second base material provided with the resistance portion 32 are prepared, and a first base material provided with the resistance portion 31 and a second base material provided with the resistance portion 32 are formed. It may be laminated in the same direction. The same applies to the sensors 1A, 1B, and 1C.

Abstract

This tire is for a mobile vehicle and is provided with a sensor on the inside of the tire. The sensor includes: an insulating layer; a plurality of first resistance units arranged on one side of the insulating layer and having a longitudinal direction oriented in a first direction; a plurality of second resistance units arranged on the other side of the insulating layer and having a longitudinal direction oriented in a second direction intersecting the first direction; and a pair of electrodes provided at opposite ends of each of the first resistance units and each of the second resistance units. When any of the first resistance units and/or the second resistance units is pressed, the value of resistance between the pair of electrodes of the pressed first resistance unit and/or the second resistance unit changes continuously depending on the magnitude of the applied pressure.

Description

タイヤtire
 本発明は、センサを備えたタイヤに関する。 The present invention relates to a tire provided with a sensor.
 自動車等のタイヤの空気圧は気温で変化し、タイヤが暖まった状態では膨張して空気圧が高くなり、下がったときには逆に低くなるため、リアルタイムでの空気圧の測定は困難である。又、タイヤの空気圧は一般に空気圧ゲージを使用した測定となるため、時間を要したり手間のかかる作業となり問題となる。 It is difficult to measure the air pressure in real time because the air pressure of tires of automobiles, etc. changes depending on the air temperature, and when the tire is warm, it expands and the air pressure increases, and when it decreases, it decreases. Further, since the tire pressure is generally measured using an air pressure gauge, it becomes a problem because it requires time and labor.
 走行中でも空気圧がチェックできる空気圧センサ付きバルブ等も知られているが、バルブの配置された特定箇所の圧力のみの検出となるため、タイヤ全体にかかる圧力分布を把握することは困難である。 Valves with an air pressure sensor that can check the air pressure even while driving are also known, but it is difficult to grasp the pressure distribution applied to the entire tire because it only detects the pressure at the specific location where the valve is placed.
 自動車等のタイヤは、コーナーでスピードを出し過ぎた場合や、空気圧不良等の異常がある場合に片減りが発生する。タイヤが片減りを起こしたまま走行すると、タイヤがバースト(破裂)するおそれや、ハンドルがとられて事故を起こすおそれがあり大変危険である。 Tires of automobiles, etc. are worn out when the speed is too high in a corner or when there is an abnormality such as poor air pressure. If you drive with the tires worn out, the tires may burst (burst) or the steering wheel may be taken off, causing an accident, which is extremely dangerous.
 以上のような点から、タイヤにかかる圧力分布を測定することは、自動車等が安全に走行する上で極めて重要である。そのため、例えば、変形検出素子をタイヤの内表面、タイヤの外表面、タイヤの補強層に取り付けることで、タイヤの変形状態を測定する方法が提案されている(例えば、特許文献1参照)。 From the above points, measuring the pressure distribution applied to the tires is extremely important for safe driving of automobiles and the like. Therefore, for example, a method of measuring the deformation state of a tire by attaching a deformation detection element to the inner surface of the tire, the outer surface of the tire, or the reinforcing layer of the tire has been proposed (see, for example, Patent Document 1).
特開2008-249567号公報Japanese Unexamined Patent Publication No. 2008-249567
 しかしながら、従来の測定方法では、タイヤの部分的な変形状態しか検出できず、タイヤにかかる圧力分布を測定することは困難であった。 However, with the conventional measurement method, only the partially deformed state of the tire can be detected, and it is difficult to measure the pressure distribution applied to the tire.
 本発明は、上記の点に鑑みてなされたもので、圧力分布を測定できるセンサを搭載したタイヤを提供することを目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to provide a tire equipped with a sensor capable of measuring a pressure distribution.
 本タイヤは、移動体用のタイヤであって、前記タイヤの内側にセンサが設けられ、前記センサは、絶縁層と、前記絶縁層の一方の側に長手方向を第1方向に向けて並置された複数の第1抵抗部と、前記絶縁層の他方の側に長手方向を前記第1方向と交差する第2方向に向けて並置された複数の第2抵抗部と、各々の前記第1抵抗部及び各々の前記第2抵抗部の両端部に設けられた1対の電極と、を有し、前記第1抵抗部及び/又は前記第2抵抗部が押圧されると、押圧された前記第1抵抗部及び/又は前記第2抵抗部の前記1対の電極間の抵抗値が加わる圧力の大きさに応じて連続的に変化する。 This tire is a tire for a moving body, and a sensor is provided inside the tire, and the sensor is juxtaposed on one side of the insulating layer and the insulating layer with the longitudinal direction facing the first direction. A plurality of first resistance portions, a plurality of second resistance portions juxtaposed on the other side of the insulating layer with the longitudinal direction intersecting the first direction in the second direction, and each of the first resistance portions. It has a portion and a pair of electrodes provided at both ends of each of the second resistance portions, and when the first resistance portion and / or the second resistance portion is pressed, the pressed first. The resistance value between the pair of electrodes of the 1 resistance portion and / or the 2nd resistance portion changes continuously according to the magnitude of the applied pressure.
 開示の技術によれば、圧力分布を測定できるセンサを搭載したタイヤを提供できる。 According to the disclosed technology, it is possible to provide a tire equipped with a sensor capable of measuring the pressure distribution.
第1実施形態に係るタイヤを例示する断面図(その1)である。It is sectional drawing (the 1) which illustrates the tire which concerns on 1st Embodiment. 第1実施形態に係るタイヤを例示する断面図(その2)である。It is sectional drawing (the 2) which illustrates the tire which concerns on 1st Embodiment. 第1実施形態に係るセンサを例示する平面図である。It is a top view which illustrates the sensor which concerns on 1st Embodiment. 第1実施形態に係るセンサを例示する断面図(その1)である。It is sectional drawing (the 1) which illustrates the sensor which concerns on 1st Embodiment. 第1実施形態に係るセンサを例示する断面図(その2)である。It is sectional drawing (the 2) which illustrates the sensor which concerns on 1st Embodiment. 第1実施形態に係る圧力分布検出装置を例示するブロック図である。It is a block diagram which illustrates the pressure distribution detection apparatus which concerns on 1st Embodiment. 第1実施形態に係る圧力分布検出装置の制御装置を例示するブロック図である。It is a block diagram which illustrates the control device of the pressure distribution detection device which concerns on 1st Embodiment. 第1実施形態の変形例1に係るセンサを例示する断面図である。It is sectional drawing which illustrates the sensor which concerns on the modification 1 of 1st Embodiment. 第1実施形態の変形例2に係るセンサを例示する断面図である。It is sectional drawing which illustrates the sensor which concerns on the modification 2 of 1st Embodiment. 第1実施形態の変形例3に係るセンサを例示する平面図である。It is a top view which illustrates the sensor which concerns on the modification 3 of 1st Embodiment.
 以下、図面を参照して発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。 Hereinafter, a mode for carrying out the invention will be described with reference to the drawings. In each drawing, the same components may be designated by the same reference numerals and duplicate description may be omitted.
 〈第1実施形態〉
 図1は、第1実施形態に係るタイヤを例示する断面図(その1)であり、タイヤを幅方向に切断した断面を示している。図2は、第1実施形態に係るタイヤを例示する断面図(その2)であり、タイヤを幅方向の中央で幅方向に垂直な方向に切断した断面を示している。なお、図2は、図1とは縮尺が異なり、又、図1に示した構成要素の一部が省略されている。
<First Embodiment>
FIG. 1 is a cross-sectional view (No. 1) illustrating the tire according to the first embodiment, and shows a cross section of the tire cut in the width direction. FIG. 2 is a cross-sectional view (No. 2) illustrating the tire according to the first embodiment, and shows a cross section of the tire cut at the center in the width direction in the direction perpendicular to the width direction. Note that FIG. 2 has a different scale from that of FIG. 1, and some of the components shown in FIG. 1 are omitted.
 図1及び図2に示すように、タイヤ100は、トレッド部110と、左右のサイドウォール部120と、左右のビード部130とを有している。トレッド部110は、タイヤ100の路面に接する部分である。サイドウォール部120は、タイヤ100の側面となる部分である。ビード部130は、タイヤ100をホイールのリムに固定する部分である。 As shown in FIGS. 1 and 2, the tire 100 has a tread portion 110, left and right sidewall portions 120, and left and right bead portions 130. The tread portion 110 is a portion of the tire 100 in contact with the road surface. The sidewall portion 120 is a portion that becomes a side surface of the tire 100. The bead portion 130 is a portion for fixing the tire 100 to the rim of the wheel.
 タイヤ100の内側には、インナーライナー140が設けられている。インナーライナー140は、例えば、ゴムで形成された層である。インナーライナー140の外側には、トレッド部110と左右のサイドウォール部120とを通って左右のビード部130間に伸びるカーカス150が設けられている。カーカス150は、例えば、繊維やスチールをゴムで被覆した層である。カーカス150の両端部は、ビードコア160及びビードフィラー170を挟み込むようにして折り返されている。トレッド部110のカーカス150の外周側には、複数のベルト180が設けられている。 An inner liner 140 is provided inside the tire 100. The inner liner 140 is, for example, a layer made of rubber. On the outside of the inner liner 140, a carcass 150 extending between the left and right bead portions 130 through the tread portion 110 and the left and right sidewall portions 120 is provided. The carcass 150 is, for example, a layer in which fibers or steel is coated with rubber. Both ends of the carcass 150 are folded back so as to sandwich the bead core 160 and the bead filler 170. A plurality of belts 180 are provided on the outer peripheral side of the carcass 150 of the tread portion 110.
 インナーライナー140の内周側(タイヤ100の中心に近い側)には、センサ1が貼り付けられている。センサ1は、インナーライナー140の内周側の幅方向の全体及び周方向の全体に貼り付けられていることが好ましい。なお、センサ1をインナーライナー140の内周側に貼り付けることに代えて、タイヤ100の最外周(路面に接する面)よりも内側に位置する何れかの部分に埋め込んでもよい。例えば、センサ1をインナーライナー140に埋め込んでもよい。 The sensor 1 is attached to the inner peripheral side of the inner liner 140 (the side closer to the center of the tire 100). It is preferable that the sensor 1 is attached to the entire inner peripheral side of the inner liner 140 in the width direction and the entire circumferential direction. Instead of attaching the sensor 1 to the inner peripheral side of the inner liner 140, the sensor 1 may be embedded in any portion located inside the outermost circumference (the surface in contact with the road surface) of the tire 100. For example, the sensor 1 may be embedded in the inner liner 140.
 センサ1は、タイヤ100が自動車等の移動体に装着されているときに、タイヤ100にかかる圧力分布を検出するために設けられている。タイヤ100にかかる圧力には、タイヤ100の外部からの圧力(路面からの圧力)やタイヤ100の内部からの圧力(空気圧)があるが、センサ1は、これらを合成した圧力の分布を検出できる。なお、移動体とは、例えば、自動車、自動二輪車、ロボット等のタイヤ100を装着して移動可能な物体を指す。 The sensor 1 is provided to detect the pressure distribution applied to the tire 100 when the tire 100 is mounted on a moving body such as an automobile. The pressure applied to the tire 100 includes the pressure from the outside of the tire 100 (pressure from the road surface) and the pressure from the inside of the tire 100 (pneumatic pressure), and the sensor 1 can detect the combined pressure distribution. .. The moving body refers to an object that can be moved by mounting the tire 100, such as an automobile, a motorcycle, or a robot.
 図3は、第1実施形態に係るセンサを例示する平面図である。図4は、第1実施形態に係るセンサを例示する断面図であり、図3のA-A線に沿う断面を示している。 FIG. 3 is a plan view illustrating the sensor according to the first embodiment. FIG. 4 is a cross-sectional view illustrating the sensor according to the first embodiment, and shows a cross-sectional view taken along the line AA of FIG.
 図3及び図4は、センサ1がタイヤ100に配置される前の状態を示している。又、X方向はタイヤ100の幅方向に相当し、Y方向はタイヤ100の周方向に相当し、Z方向はタイヤ100の半径方向に相当する。 3 and 4 show the state before the sensor 1 is arranged on the tire 100. Further, the X direction corresponds to the width direction of the tire 100, the Y direction corresponds to the circumferential direction of the tire 100, and the Z direction corresponds to the radial direction of the tire 100.
 図3及び図4を参照すると、センサ1は、基材10と、抵抗体30(複数の抵抗部31及び32)と、複数の端子部41及び42とを有している。センサ1は、並置された複数の抵抗部31及び32の長手方向(Y方向)をタイヤ100の周方向に向けてタイヤ100に配置される。ここでは、センサ1の抵抗部31側がインナーライナー140側を向くように配置されるものとする。 With reference to FIGS. 3 and 4, the sensor 1 has a base material 10, resistors 30, (a plurality of resistance portions 31 and 32), and a plurality of terminal portions 41 and 42. The sensor 1 is arranged on the tire 100 with the longitudinal direction (Y direction) of the plurality of juxtaposed resistance portions 31 and 32 facing the circumferential direction of the tire 100. Here, it is assumed that the resistance portion 31 side of the sensor 1 is arranged so as to face the inner liner 140 side.
 なお、本実施形態では、便宜上、センサ1において、基材10の抵抗部31が設けられている側を上側又は一方の側、抵抗部32が設けられている側を下側又は他方の側とする。又、各部位の抵抗部31が設けられている側の面を一方の面又は上面、抵抗部32が設けられている側の面を他方の面又は下面とする。但し、センサ1は天地逆の状態で用いることができ、又は任意の角度で配置することができる。又、平面視とは対象物を基材10の上面10aの法線方向から視ることを指し、平面形状とは対象物を基材10の上面10aの法線方向から視た形状を指すものとする。 In the present embodiment, for convenience, in the sensor 1, the side of the base material 10 provided with the resistance portion 31 is referred to as the upper side or one side, and the side provided with the resistance portion 32 is referred to as the lower side or the other side. do. Further, the surface on the side where the resistance portion 31 is provided is one surface or the upper surface, and the surface on the side where the resistance portion 32 is provided is the other surface or the lower surface. However, the sensor 1 can be used in an upside-down state, or can be arranged at an arbitrary angle. Further, the plan view means that the object is viewed from the normal direction of the upper surface 10a of the base material 10, and the planar shape refers to the shape of the object viewed from the normal direction of the upper surface 10a of the base material 10. And.
 基材10は、抵抗体30等を形成するためのベース層となる絶縁性の部材であり、可撓性を有する。基材10の厚さは、特に制限はなく、目的に応じて適宜選択できるが、例えば、5μm~500μm程度とすることができる。特に、基材10の厚さが5μm~200μmであると、抵抗部31及び32のひずみ感度誤差を少なくできる点で好ましい。 The base material 10 is an insulating member that serves as a base layer for forming the resistor 30 and the like, and has flexibility. The thickness of the base material 10 is not particularly limited and may be appropriately selected depending on the intended purpose, but may be, for example, about 5 μm to 500 μm. In particular, when the thickness of the base material 10 is 5 μm to 200 μm, the strain sensitivity error of the resistance portions 31 and 32 can be reduced, which is preferable.
 基材10は、例えば、PI(ポリイミド)樹脂、エポキシ樹脂、PEEK(ポリエーテルエーテルケトン)樹脂、PEN(ポリエチレンナフタレート)樹脂、PET(ポリエチレンテレフタレート)樹脂、PPS(ポリフェニレンサルファイド)樹脂、ポリオレフィン樹脂等の絶縁樹脂フィルムから形成できる。なお、フィルムとは、厚さが500μm以下程度であり、可撓性を有する部材を指す。 The base material 10 includes, for example, PI (polyetherketone) resin, epoxy resin, PEEK (polyetheretherketone) resin, PEN (polyetheretherketone) resin, PET (polyethylene terephthalate) resin, PPS (polyphenylene sulfide) resin, polyolefin resin and the like. It can be formed from the insulating resin film of. The film refers to a member having a thickness of about 500 μm or less and having flexibility.
 ここで、『絶縁樹脂フィルムから形成する』とは、基材10が絶縁樹脂フィルム中にフィラーや不純物等を含有することを妨げるものではない。基材10は、例えば、シリカやアルミナ等のフィラーを含有する絶縁樹脂フィルムから形成しても構わない。 Here, "forming from an insulating resin film" does not prevent the base material 10 from containing a filler, impurities, or the like in the insulating resin film. The base material 10 may be formed of, for example, an insulating resin film containing a filler such as silica or alumina.
 基材10の樹脂以外の材料としては、例えば、SiO、ZrO(YSZも含む)、Si、Si、Al(サファイヤも含む)、ZnO、ペロブスカイト系セラミックス(CaTiO、BaTiO)等の結晶性材料が挙げられ、更に、それ以外に非晶質のガラス等が挙げられる。又、基材10の材料として、アルミニウム、アルミニウム合金(ジュラルミン)、チタン等の金属を用いてもよい。この場合、金属製の基材10上に、例えば、絶縁膜が形成される。 Examples of materials other than the resin of the base material 10 include SiO 2 , ZrO 2 (including YSZ), Si, Si 2 N 3 , Al 2 O 3 (including sapphire), ZnO, and perovskite ceramics (CaTIO 3 ,). Crystalline materials such as BaTIO 3 ) can be mentioned, and amorphous glass and the like can also be mentioned. Further, as the material of the base material 10, a metal such as aluminum, an aluminum alloy (duralumin), or titanium may be used. In this case, for example, an insulating film is formed on the metal base material 10.
 抵抗体30は、基材10上に形成されており、加わる圧力に応じて連続的に抵抗値が変化する受感部である。抵抗体30は、基材10の上面10a及び下面10bに直接形成されてもよいし、基材10の上面10a及び下面10bに他の層を介して形成されてもよい。 The resistor 30 is a sensitive portion formed on the base material 10 and whose resistance value continuously changes according to the applied pressure. The resistor 30 may be formed directly on the upper surface 10a and the lower surface 10b of the base material 10, or may be formed on the upper surface 10a and the lower surface 10b of the base material 10 via another layer.
 抵抗体30は、基材10を介して積層された複数の抵抗部31及び32を含んでいる。すなわち、抵抗体30は、複数の抵抗部31及び32の総称であり、抵抗部31及び32を特に区別する必要がない場合には抵抗体30と称する。なお、図3では、便宜上、抵抗部31及び32を梨地模様で示している。 The resistor 30 includes a plurality of resistance portions 31 and 32 laminated via the base material 10. That is, the resistor 30 is a general term for a plurality of resistance portions 31 and 32, and is referred to as a resistor 30 when it is not necessary to particularly distinguish the resistance portions 31 and 32. In FIG. 3, for convenience, the resistance portions 31 and 32 are shown in a satin pattern.
 複数の抵抗部31は、基材10の上面10aに、長手方向をX方向に向けて所定間隔でY方向に並置された薄膜である。複数の抵抗部32は、基材10の下面10bに、長手方向をY方向に向けて所定間隔でX方向に並置された薄膜である。 The plurality of resistance portions 31 are thin films juxtaposed in the Y direction at predetermined intervals with the longitudinal direction facing the X direction on the upper surface 10a of the base material 10. The plurality of resistance portions 32 are thin films juxtaposed in the X direction at predetermined intervals with the longitudinal direction facing the Y direction on the lower surface 10b of the base material 10.
 なお、本実施形態では、複数の抵抗部31と複数の抵抗部32とは平面視で直交しているが、これには限定されない。すなわち、複数の抵抗部31と複数の抵抗部32とは平面視で直交している必要はなく、交差していればよい。 In the present embodiment, the plurality of resistance portions 31 and the plurality of resistance portions 32 are orthogonal to each other in a plan view, but the present invention is not limited to this. That is, the plurality of resistance portions 31 and the plurality of resistance portions 32 do not have to be orthogonal to each other in a plan view, and may intersect with each other.
 抵抗体30は、例えば、Cr(クロム)を含む材料、Ni(ニッケル)を含む材料、又はCrとNiの両方を含む材料から形成できる。すなわち、抵抗体30は、CrとNiの少なくとも一方を含む材料から形成できる。Crを含む材料としては、例えば、Cr混相膜が挙げられる。Niを含む材料としては、例えば、Cu-Ni(銅ニッケル)が挙げられる。CrとNiの両方を含む材料としては、例えば、Ni-Cr(ニッケルクロム)が挙げられる。 The resistor 30 can be formed from, for example, a material containing Cr (chromium), a material containing Ni (nickel), or a material containing both Cr and Ni. That is, the resistor 30 can be formed from a material containing at least one of Cr and Ni. Examples of the material containing Cr include a Cr mixed phase film. Examples of the material containing Ni include Cu—Ni (copper nickel). Examples of the material containing both Cr and Ni include Ni—Cr (nickel chromium).
 ここで、Cr混相膜とは、Cr、CrN、CrN等が混相した膜である。Cr混相膜は、酸化クロム等の不可避不純物を含んでもよい。 Here, the Cr multiphase film, Cr, CrN, Cr 2 N or the like is film multiphase. The Cr mixed phase film may contain unavoidable impurities such as chromium oxide.
 抵抗体30の厚さは、特に制限はなく、目的に応じて適宜選択できるが、例えば、0.05μm~2μm程度とすることができる。特に、抵抗体30の厚さが0.1μm以上であると、抵抗体30を構成する結晶の結晶性(例えば、α-Crの結晶性)が向上する点で好ましい。又、抵抗体30の厚さが1μm以下であると、抵抗体30を構成する膜の内部応力に起因する膜のクラックや基材10からの反りを低減できる点で更に好ましい。 The thickness of the resistor 30 is not particularly limited and can be appropriately selected depending on the intended purpose, but can be, for example, about 0.05 μm to 2 μm. In particular, when the thickness of the resistor 30 is 0.1 μm or more, the crystallinity of the crystals constituting the resistor 30 (for example, the crystallinity of α-Cr) is improved, which is preferable. Further, when the thickness of the resistor 30 is 1 μm or less, it is more preferable that the crack of the film and the warp from the base material 10 due to the internal stress of the film constituting the resistor 30 can be reduced.
 抵抗体30の幅は、特に制限はなく、目的に応じて適宜選択できるが、例えば、0.1μm~1000μm(1mm)程度とすることができる。隣接する抵抗体30のピッチは、特に制限はなく、目的に応じて適宜選択できるが、例えば、1mm~100mm程度とすることができる。なお、抵抗部31及び32は、実際には数100~数10000本程度設けられる。 The width of the resistor 30 is not particularly limited and can be appropriately selected depending on the intended purpose, but can be, for example, about 0.1 μm to 1000 μm (1 mm). The pitch of the adjacent resistors 30 is not particularly limited and may be appropriately selected depending on the intended purpose, but may be, for example, about 1 mm to 100 mm. In addition, about several hundred to several 10,000 resistance portions 31 and 32 are actually provided.
 例えば、抵抗体30がCr混相膜である場合、安定な結晶相であるα-Cr(アルファクロム)を主成分とすることで、抵抗体30の温度係数の安定化や、加わる圧力に対する抵抗体30の感度の向上を実現できる。ここで、主成分とは、対象物質が抵抗体を構成する全物質の50質量%以上を占めることを意味するが、抵抗体30の温度係数の安定化や、加わる圧力に対する抵抗体30の感度の向上を実現する観点から、抵抗体30はα-Crを80重量%以上含むことが好ましく、90重量%以上含むことが更に好ましい。なお、α-Crは、bcc構造(体心立方格子構造)のCrである。 For example, when the resistor 30 is a Cr mixed phase film, by using α-Cr (alpha chromium), which is a stable crystal phase, as the main component, the temperature coefficient of the resistor 30 can be stabilized and the resistor against the applied pressure can be used. An improvement in sensitivity of 30 can be realized. Here, the main component means that the target substance occupies 50% by mass or more of all the substances constituting the resistor, but the temperature coefficient of the resistor 30 is stabilized and the sensitivity of the resistor 30 to the applied pressure is high. The resistor 30 preferably contains 80% by mass or more of α-Cr, and more preferably 90% by mass or more, from the viewpoint of realizing the improvement of the above. In addition, α-Cr is Cr of a bcc structure (body-centered cubic lattice structure).
 又、抵抗部31及び32がCr混相膜である場合、Cr混相膜に含まれるCrN及びCrNは20重量%以下であることが好ましい。Cr混相膜に含まれるCrN及びCrNが20重量%以下であることで、ゲージ率の低下を抑制できる。 When the resistance portions 31 and 32 are Cr mixed-phase films, the Cr N and Cr 2 N contained in the Cr mixed-phase film are preferably 20% by weight or less. When Cr N and Cr 2 N contained in the Cr mixed phase film are 20% by weight or less, a decrease in the gauge ratio can be suppressed.
 又、CrN及びCrN中のCrNの割合は80重量%以上90重量%未満であることが好ましく、90重量%以上95重量%未満であることが更に好ましい。CrN及びCrN中のCrNの割合が90重量%以上95重量%未満であることで、半導体的な性質を有するCrNにより、TCRの低下(負のTCR)が一層顕著となる。更に、セラミックス化を低減することで、脆性破壊の低減が成される。 Further, it is preferable that the proportion of Cr 2 N in CrN and Cr 2 N is less than 80 wt% to 90 wt%, more preferably less than 90 wt% to 95 wt%. When the ratio of Cr 2 N in Cr N and Cr 2 N is 90% by weight or more and less than 95% by weight, the decrease in TCR (negative TCR) becomes more remarkable due to Cr 2 N having semiconducting properties. .. Further, by reducing the ceramicization, brittle fracture is reduced.
 一方で、膜中に微量のNもしくは原子状のNが混入、存在した場合、外的環境(例えば高温環境下)によりそれらが膜外へ抜け出ることで、膜応力の変化を生ずる。化学的に安定なCrNの創出により上記不安定なNを発生させることがなく、安定なひずみゲージを得ることができる。 On the other hand, when a small amount of N 2 or atomic N is mixed and present in the film, the film stress changes when they escape to the outside of the film due to an external environment (for example, in a high temperature environment). By creating chemically stable CrN, a stable strain gauge can be obtained without generating the unstable N.
 端子部41は、基材10の上面10aにおいて、各々の抵抗部31の両端部から延在しており、平面視において、抵抗部31よりも拡幅して略矩形状に形成されている。端子部41は、加わる圧力により生じる抵抗部31の抵抗値の変化を外部に出力するための1対の電極であり、例えば、外部接続用のフレキシブル基板やリード線等が接合される。端子部41の上面を、端子部41よりもはんだ付け性が良好な金属で被覆してもよい。なお、抵抗部31と端子部41とは便宜上別符号としているが、両者は同一工程において同一材料により一体に形成できる。 The terminal portion 41 extends from both ends of each resistance portion 31 on the upper surface 10a of the base material 10, and is wider than the resistance portion 31 and formed in a substantially rectangular shape in a plan view. The terminal portion 41 is a pair of electrodes for outputting a change in the resistance value of the resistance portion 31 caused by the applied pressure to the outside, and for example, a flexible substrate for external connection, a lead wire, or the like is joined. The upper surface of the terminal portion 41 may be coated with a metal having better solderability than the terminal portion 41. Although the resistance portion 31 and the terminal portion 41 have different reference numerals for convenience, they can be integrally formed of the same material in the same process.
 端子部42は、基材10の下面10bにおいて、各々の抵抗部32の両端部から延在しており、平面視において、抵抗部32よりも拡幅して略矩形状に形成されている。端子部42は、加わる圧力により生じる抵抗部32の抵抗値の変化を外部に出力するための1対の電極であり、例えば、外部接続用のフレキシブル基板やリード線等が接合される。端子部42の上面を、端子部42よりもはんだ付け性が良好な金属で被覆してもよい。なお、抵抗部32と端子部42とは便宜上別符号としているが、両者は同一工程において同一材料により一体に形成できる。 The terminal portion 42 extends from both ends of each resistance portion 32 on the lower surface 10b of the base material 10, and is wider than the resistance portion 32 and formed in a substantially rectangular shape in a plan view. The terminal portion 42 is a pair of electrodes for outputting a change in the resistance value of the resistance portion 32 caused by the applied pressure to the outside, and for example, a flexible substrate for external connection, a lead wire, or the like is joined. The upper surface of the terminal portion 42 may be coated with a metal having better solderability than the terminal portion 42. Although the resistance portion 32 and the terminal portion 42 have different reference numerals for convenience, they can be integrally formed of the same material in the same process.
 なお、基材10を貫通する貫通配線(スルーホール)を設け、端子部41及び42を基材10の上面10a側又は下面10b側に集約してもよい。 It should be noted that a through wiring (through hole) penetrating the base material 10 may be provided, and the terminal portions 41 and 42 may be concentrated on the upper surface 10a side or the lower surface 10b side of the base material 10.
 抵抗部31を被覆し端子部41を露出するように基材10の上面10aにカバー層(絶縁樹脂層)を設けても構わない。又、抵抗部32を被覆し端子部42を露出するように基材10の下面10bにカバー層(絶縁樹脂層)を設けても構わない。カバー層を設けることで、抵抗部31及び32に機械的な損傷等が生じることを防止できる。又、カバー層を設けることで、抵抗部31及び32を湿気等から保護できる。なお、カバー層は、端子部41及び42を除く部分の全体を覆うように設けてもよい。 A cover layer (insulating resin layer) may be provided on the upper surface 10a of the base material 10 so as to cover the resistance portion 31 and expose the terminal portion 41. Further, a cover layer (insulating resin layer) may be provided on the lower surface 10b of the base material 10 so as to cover the resistance portion 32 and expose the terminal portion 42. By providing the cover layer, it is possible to prevent mechanical damage or the like from occurring in the resistance portions 31 and 32. Further, by providing the cover layer, the resistance portions 31 and 32 can be protected from moisture and the like. The cover layer may be provided so as to cover the entire portion excluding the terminal portions 41 and 42.
 カバー層は、例えば、PI樹脂、エポキシ樹脂、PEEK樹脂、PEN樹脂、PET樹脂、PPS樹脂、複合樹脂(例えば、シリコーン樹脂、ポリオレフィン樹脂)等の絶縁樹脂から形成できる。カバー層は、フィラーや顔料を含有しても構わない。カバー層の厚さは、特に制限はなく、目的に応じて適宜選択できるが、例えば、2μm~30μm程度とすることができる。 The cover layer can be formed of, for example, an insulating resin such as PI resin, epoxy resin, PEEK resin, PEN resin, PET resin, PPS resin, and composite resin (for example, silicone resin and polyolefin resin). The cover layer may contain a filler or a pigment. The thickness of the cover layer is not particularly limited and may be appropriately selected depending on the intended purpose, but can be, for example, about 2 μm to 30 μm.
 センサ1を製造するためには、まず、基材10を準備し、基材10の上面10aに図3に示す平面形状の抵抗部31及び端子部41を形成する。抵抗部31及び端子部41の材料や厚さは、前述の通りである。抵抗部31と端子部41とは、同一材料により一体に形成できる。 In order to manufacture the sensor 1, first, the base material 10 is prepared, and the planar resistance portion 31 and the terminal portion 41 shown in FIG. 3 are formed on the upper surface 10a of the base material 10. The materials and thicknesses of the resistance portion 31 and the terminal portion 41 are as described above. The resistance portion 31 and the terminal portion 41 can be integrally formed of the same material.
 抵抗部31及び端子部41は、例えば、抵抗部31及び端子部41を形成可能な原料をターゲットとしたマグネトロンスパッタ法により成膜し、フォトリソグラフィによってパターニングすることで形成できる。抵抗部31及び端子部41は、マグネトロンスパッタ法に代えて、反応性スパッタ法や蒸着法、アークイオンプレーティング法、パルスレーザー堆積法等を用いて成膜してもよい。 The resistance portion 31 and the terminal portion 41 can be formed, for example, by forming a film by a magnetron sputtering method targeting a raw material capable of forming the resistance portion 31 and the terminal portion 41 and patterning the resistance portion 31 and the terminal portion 41 by photolithography. The resistance portion 31 and the terminal portion 41 may be formed by a reactive sputtering method, a vapor deposition method, an arc ion plating method, a pulse laser deposition method, or the like, instead of the magnetron sputtering method.
 抵抗部31の温度係数の安定化や、加わる圧力に対する抵抗部31の感度の向上を実現する観点から、抵抗部31及び端子部41を成膜する前に、下地層として所定の膜厚の機能層を真空成膜することが好ましい。機能層は、例えば、コンベンショナルスパッタ法により成膜できる。なお、機能層は、機能層の上面全体に抵抗部31及び端子部41を形成後、フォトリソグラフィによって抵抗部31及び端子部41と共に図3に示す平面形状にパターニングされる。 From the viewpoint of stabilizing the temperature coefficient of the resistance portion 31 and improving the sensitivity of the resistance portion 31 to the applied pressure, the function of a predetermined film thickness as the base layer before forming the resistance portion 31 and the terminal portion 41 is performed. It is preferable to form the layer in a vacuum. The functional layer can be formed by, for example, a conventional sputtering method. After forming the resistance portion 31 and the terminal portion 41 on the entire upper surface of the functional layer, the functional layer is patterned together with the resistance portion 31 and the terminal portion 41 in the planar shape shown in FIG. 3 by photolithography.
 本願において、機能層とは、少なくとも上層である抵抗部の結晶成長を促進する機能を有する層を指す。機能層は、更に、基材10に含まれる酸素や水分による抵抗部の酸化を防止する機能や、基材10と抵抗部との密着性を向上する機能を備えていることが好ましい。機能層は、更に、他の機能を備えていてもよい。 In the present application, the functional layer refers to a layer having a function of promoting crystal growth of at least an upper resistance portion. It is preferable that the functional layer further has a function of preventing oxidation of the resistance portion by oxygen and moisture contained in the base material 10 and a function of improving the adhesion between the base material 10 and the resistance portion. The functional layer may further have other functions.
 基材10を構成する絶縁樹脂フィルムは酸素や水分を含むため、特に抵抗部がCrを含む場合、Crは自己酸化膜を形成するため、機能層が抵抗部の酸化を防止する機能を備えることは有効である。 Since the insulating resin film constituting the base material 10 contains oxygen and water, especially when the resistance portion contains Cr, Cr forms a self-oxidizing film, so that the functional layer has a function of preventing oxidation of the resistance portion. Is valid.
 機能層の材料は、少なくとも上層である抵抗部の結晶成長を促進する機能を有する材料であれば、特に制限はなく、目的に応じて適宜選択できるが、例えば、Cr(クロム)、Ti(チタン)、V(バナジウム)、Nb(ニオブ)、Ta(タンタル)、Ni(ニッケル)、Y(イットリウム)、Zr(ジルコニウム)、Hf(ハフニウム)、Si(シリコン)、C(炭素)、Zn(亜鉛)、Cu(銅)、Bi(ビスマス)、Fe(鉄)、Mo(モリブデン)、W(タングステン)、Ru(ルテニウム)、Rh(ロジウム)、Re(レニウム)、Os(オスミウム)、Ir(イリジウム)、Pt(白金)、Pd(パラジウム)、Ag(銀)、Au(金)、Co(コバルト)、Mn(マンガン)、Al(アルミニウム)からなる群から選択される1種又は複数種の金属、この群の何れかの金属の合金、又は、この群の何れかの金属の化合物が挙げられる。 The material of the functional layer is not particularly limited as long as it has a function of promoting crystal growth of at least the upper resistance portion, and can be appropriately selected depending on the intended purpose. For example, Cr (chromium) and Ti (tungsten). ), V (vanadium), Nb (niobium), Ta (tantalum), Ni (nickel), Y (ittrium), Zr (zirconium), Hf (hafnium), Si (silicon), C (carbon), Zn (zinc) ), Cu (copper), Bi (bismuth), Fe (iron), Mo (molybdenum), W (tungsten), Ru (ruthenium), Rh (rodium), Re (renium), Os (osmium), Ir (iridium) ), Pt (platinum), Pd (palladium), Ag (silver), Au (gold), Co (cobalt), Mn (manganese), Al (aluminum). , Alloys of any metal in this group, or compounds of any metal in this group.
 上記の合金としては、例えば、FeCr、TiAl、FeNi、NiCr、CrCu等が挙げられる。又、上記の化合物としては、例えば、TiN、TaN、Si、TiO、Ta、SiO等が挙げられる。 Examples of the above alloy include FeCr, TiAl, FeNi, NiCr, CrCu and the like. Examples of the above-mentioned compounds include TiN, TaN, Si 3 N 4 , TiO 2 , Ta 2 O 5 , SiO 2, and the like.
 機能層が金属又は合金のような導電材料から形成される場合には、機能層の膜厚は抵抗部の膜厚の1/20以下であることが好ましい。このような範囲であると、α-Crの結晶成長を促進できると共に、抵抗部に流れる電流の一部が機能層に流れて、ひずみの検出感度が低下することを防止できる。 When the functional layer is formed of a conductive material such as metal or alloy, the film thickness of the functional layer is preferably 1/20 or less of the film thickness of the resistance portion. Within such a range, the crystal growth of α—Cr can be promoted, and a part of the current flowing through the resistance portion can be prevented from flowing to the functional layer to reduce the strain detection sensitivity.
 機能層が金属又は合金のような導電材料から形成される場合には、機能層の膜厚は抵抗部の膜厚の1/50以下であることがより好ましい。このような範囲であると、α-Crの結晶成長を促進できると共に、抵抗部に流れる電流の一部が機能層に流れて、ひずみの検出感度が低下することを更に防止できる。 When the functional layer is formed of a conductive material such as metal or alloy, the film thickness of the functional layer is more preferably 1/50 or less of the film thickness of the resistance portion. Within such a range, the crystal growth of α-Cr can be promoted, and a part of the current flowing through the resistance portion can be prevented from flowing to the functional layer to further prevent the strain detection sensitivity from being lowered.
 機能層が金属又は合金のような導電材料から形成される場合には、機能層の膜厚は抵抗部の膜厚の1/100以下であることが更に好ましい。このような範囲であると、抵抗部に流れる電流の一部が機能層に流れて、抵抗部に流れる電流の一部が機能層に流れて、ひずみの検出感度が低下することを一層防止できる。 When the functional layer is formed of a conductive material such as metal or alloy, the film thickness of the functional layer is more preferably 1/100 or less of the film thickness of the resistance portion. Within such a range, it is possible to further prevent a part of the current flowing in the resistance part from flowing to the functional layer and a part of the current flowing through the resistance part from flowing to the functional layer to further reduce the strain detection sensitivity. ..
 機能層が酸化物や窒化物のような絶縁材料から形成される場合には、機能層の膜厚は、1nm~1μmとすることが好ましい。このような範囲であると、α-Crの結晶成長を促進できると共に、機能層にクラックが入ることなく容易に成膜できる。 When the functional layer is formed of an insulating material such as an oxide or a nitride, the film thickness of the functional layer is preferably 1 nm to 1 μm. Within such a range, the crystal growth of α—Cr can be promoted, and a film can be easily formed without cracking in the functional layer.
 機能層が酸化物や窒化物のような絶縁材料から形成される場合には、機能層の膜厚は、1nm~0.8μmとすることよりが好ましい。このような範囲であると、α-Crの結晶成長を促進できると共に、機能層にクラックが入ることなく更に容易に成膜できる。 When the functional layer is formed of an insulating material such as an oxide or a nitride, the film thickness of the functional layer is preferably 1 nm to 0.8 μm. Within such a range, the crystal growth of α-Cr can be promoted, and the functional layer can be more easily formed without cracks.
 機能層が酸化物や窒化物のような絶縁材料から形成される場合には、機能層の膜厚は、1nm~0.5μmとすることが更に好ましい。このような範囲であると、α-Crの結晶成長を促進できると共に、機能層クラックが入ることなく一層容易に成膜できる。 When the functional layer is formed of an insulating material such as an oxide or a nitride, the film thickness of the functional layer is more preferably 1 nm to 0.5 μm. Within such a range, the crystal growth of α—Cr can be promoted, and the film can be formed more easily without cracking the functional layer.
 なお、機能層の平面形状は、例えば、図3に示す抵抗部の平面形状と略同一にパターニングされている。しかし、機能層の平面形状は、抵抗部の平面形状と略同一である場合には限定されない。機能層が絶縁材料から形成される場合には、抵抗部の平面形状と同一形状にパターニングしなくてもよい。この場合、機能層は少なくとも抵抗部が形成されている領域にベタ状に形成されてもよい。或いは、機能層は、基材10の上面全体にベタ状に形成されてもよい。 The planar shape of the functional layer is patterned substantially the same as the planar shape of the resistance portion shown in FIG. 3, for example. However, the planar shape of the functional layer is not limited to the case where it is substantially the same as the planar shape of the resistance portion. When the functional layer is formed of an insulating material, it does not have to be patterned in the same shape as the planar shape of the resistance portion. In this case, the functional layer may be formed in a solid shape at least in the region where the resistance portion is formed. Alternatively, the functional layer may be formed in a solid shape on the entire upper surface of the base material 10.
 又、機能層が絶縁材料から形成される場合に、機能層の厚さを50nm以上1μm以下となるように比較的厚く形成し、かつベタ状に形成することで、機能層の厚さと表面積が増加するため、抵抗部が発熱した際の熱を基材10側へ放熱できる。その結果、センサ1において、抵抗部の自己発熱による測定精度の低下を抑制できる。 Further, when the functional layer is formed from an insulating material, the thickness and surface area of the functional layer can be increased by forming the functional layer relatively thick so as to be 50 nm or more and 1 μm or less and forming the functional layer in a solid shape. Since it increases, the heat generated when the resistance portion generates heat can be dissipated to the base material 10 side. As a result, in the sensor 1, it is possible to suppress a decrease in measurement accuracy due to self-heating of the resistance portion.
 機能層は、例えば、機能層を形成可能な原料をターゲットとし、チャンバ内にAr(アルゴン)ガスを導入したコンベンショナルスパッタ法により真空成膜できる。コンベンショナルスパッタ法を用いることにより、基材10の上面10aをArでエッチングしながら機能層が成膜されるため、機能層の成膜量を最小限にして密着性改善効果を得ることができる。 For example, the functional layer can be vacuum-deposited by a conventional sputtering method in which Ar (argon) gas is introduced into the chamber, targeting a raw material capable of forming the functional layer. By using the conventional sputtering method, the functional layer is formed while etching the upper surface 10a of the base material 10 with Ar, so that the film forming amount of the functional layer can be minimized and the adhesion improving effect can be obtained.
 但し、これは、機能層の成膜方法の一例であり、他の方法により機能層を成膜してもよい。例えば、機能層の成膜の前にAr等を用いたプラズマ処理等により基材10の上面10aを活性化することで密着性改善効果を獲得し、その後マグネトロンスパッタ法により機能層を真空成膜する方法を用いてもよい。 However, this is an example of a method for forming a functional layer, and the functional layer may be formed by another method. For example, the effect of improving adhesion is obtained by activating the upper surface 10a of the base material 10 by plasma treatment using Ar or the like before the film formation of the functional layer, and then the functional layer is vacuum-deposited by the magnetron sputtering method. You may use the method of
 機能層の材料と抵抗部31及び端子部41の材料との組み合わせは、特に制限はなく、目的に応じて適宜選択できる。例えば、機能層としてTiを用い、抵抗部31及び端子部41としてα-Cr(アルファクロム)を主成分とするCr混相膜を成膜可能である。 The combination of the material of the functional layer and the material of the resistance portion 31 and the terminal portion 41 is not particularly limited and can be appropriately selected according to the purpose. For example, Ti can be used as the functional layer, and a Cr mixed phase film containing α-Cr (alpha chromium) as a main component can be formed as the resistance portion 31 and the terminal portion 41.
 この場合、例えば、Cr混相膜を形成可能な原料をターゲットとし、チャンバ内にArガスを導入したマグネトロンスパッタ法により、抵抗部31及び端子部41を成膜できる。或いは、純Crをターゲットとし、チャンバ内にArガスと共に適量の窒素ガスを導入し、反応性スパッタ法により、抵抗部31及び端子部41を成膜してもよい。この際、窒素ガスの導入量や圧力(窒素分圧)を変えることや加熱工程を設けて加熱温度を調整することで、Cr混相膜に含まれるCrN及びCrNの割合、並びにCrN及びCrN中のCrNの割合を調整できる。 In this case, for example, the resistance portion 31 and the terminal portion 41 can be formed by a magnetron sputtering method in which Ar gas is introduced into the chamber by targeting a raw material capable of forming a Cr mixed phase film. Alternatively, pure Cr may be targeted, an appropriate amount of nitrogen gas may be introduced into the chamber together with Ar gas, and the resistance portion 31 and the terminal portion 41 may be formed by a reactive sputtering method. At this time, by adjusting the heating temperature provided that and heating step of changing the introduction amount and pressure of nitrogen gas (nitrogen partial pressure), the proportion of CrN and Cr 2 N contained in Cr multiphase film, and CrN and Cr Cr 2 N ratio of in 2 N can be adjusted.
 これらの方法では、Tiからなる機能層がきっかけでCr混相膜の成長面が規定され、安定な結晶構造であるα-Crを主成分とするCr混相膜を成膜できる。又、機能層を構成するTiがCr混相膜中に拡散することにより、抵抗部31の温度係数の安定化や、加わる圧力に対する抵抗部31の感度の向上を実現できる。なお、機能層がTiから形成されている場合、Cr混相膜にTiやTiN(窒化チタン)が含まれる場合がある。 In these methods, the growth surface of the Cr mixed-phase film is defined by the functional layer made of Ti, and a Cr mixed-phase film containing α-Cr as a main component, which has a stable crystal structure, can be formed. Further, by diffusing Ti constituting the functional layer in the Cr mixed phase film, it is possible to stabilize the temperature coefficient of the resistance portion 31 and improve the sensitivity of the resistance portion 31 to the applied pressure. When the functional layer is made of Ti, the Cr mixed phase film may contain Ti or TiN (titanium nitride).
 なお、抵抗部31がCr混相膜である場合、Tiからなる機能層は、抵抗部31の結晶成長を促進する機能、基材10に含まれる酸素や水分による抵抗部31の酸化を防止する機能、及び基材10と抵抗部31との密着性を向上する機能の全てを備えている。機能層として、Tiに代えてTa、Si、Al、Feを用いた場合も同様である。 When the resistance portion 31 is a Cr mixed film, the functional layer made of Ti has a function of promoting crystal growth of the resistance portion 31 and a function of preventing oxidation of the resistance portion 31 by oxygen and moisture contained in the base material 10. , And all the functions of improving the adhesion between the base material 10 and the resistance portion 31. The same applies when Ta, Si, Al, or Fe is used as the functional layer instead of Ti.
 このように、抵抗部31の下層に機能層を設けることにより、抵抗部31の結晶成長を促進可能となり、安定な結晶相からなる抵抗部31を作製できる。その結果、センサ1において、抵抗部31の温度係数の安定化や、加わる圧力に対する抵抗部31の感度の向上を実現できる。又、機能層を構成する材料が抵抗部31に拡散することにより、センサ1において、抵抗部31の温度係数の安定化や、加わる圧力に対する抵抗部31の感度の向上を実現できる。 By providing the functional layer under the resistance portion 31 in this way, the crystal growth of the resistance portion 31 can be promoted, and the resistance portion 31 composed of a stable crystal phase can be produced. As a result, in the sensor 1, the temperature coefficient of the resistance portion 31 can be stabilized and the sensitivity of the resistance portion 31 to the applied pressure can be improved. Further, by diffusing the material constituting the functional layer into the resistance portion 31, it is possible to stabilize the temperature coefficient of the resistance portion 31 and improve the sensitivity of the resistance portion 31 to the applied pressure in the sensor 1.
 次に、基材10の下面10bに図3に示す平面形状の抵抗部32及び端子部42を形成する。抵抗部32及び端子部42は、抵抗部31及び端子部41と同様の方法で形成できる。抵抗部32及び端子部42を成膜する前に、下地層として、基材10の下面10bに機能層を成膜することが好ましい点も同様である。 Next, the planar resistance portion 32 and the terminal portion 42 shown in FIG. 3 are formed on the lower surface 10b of the base material 10. The resistance portion 32 and the terminal portion 42 can be formed in the same manner as the resistance portion 31 and the terminal portion 41. Similarly, it is preferable to form a functional layer on the lower surface 10b of the base material 10 as a base layer before forming the resistance portion 32 and the terminal portion 42.
 抵抗部31及び端子部41並びに抵抗部32及び端子部42を形成後、必要に応じ、基材10の上面10aに抵抗部31を被覆し端子部41を露出するカバー層を、基材10の下面10bに抵抗部32を被覆し端子部42を露出するカバー層を設けてもよい。これにより、センサ1が完成する。 After forming the resistance portion 31 and the terminal portion 41 and the resistance portion 32 and the terminal portion 42, if necessary, a cover layer for covering the upper surface 10a of the base material 10 with the resistance portion 31 and exposing the terminal portion 41 is provided on the base material 10. A cover layer may be provided on the lower surface 10b to cover the resistance portion 32 and expose the terminal portion 42. As a result, the sensor 1 is completed.
 カバー層は、例えば、基材10の上面10aに抵抗部31を被覆し端子部41を露出するように半硬化状態の熱硬化性の絶縁樹脂フィルムをラミネートし、加熱して硬化させて作製できる。又、カバー層は、例えば、基材10の下面10bに抵抗部32を被覆し端子部42を露出するように半硬化状態の熱硬化性の絶縁樹脂フィルムをラミネートし、加熱して硬化させて作製できる。カバー層は、絶縁樹脂フィルムのラミネートに代えて、液状又はペースト状の熱硬化性の絶縁樹脂を塗布し、加熱して硬化させて作製してもよい。 The cover layer can be produced, for example, by coating the upper surface 10a of the base material 10 with the resistance portion 31 and laminating a thermosetting insulating resin film in a semi-cured state so as to expose the terminal portion 41, and heating and curing the cover layer. .. Further, the cover layer is, for example, laminated with a thermosetting insulating resin film in a semi-cured state so as to cover the lower surface 10b of the base material 10 with the resistance portion 32 and expose the terminal portion 42, and heat and cure the cover layer. Can be made. The cover layer may be produced by applying a liquid or paste-like thermosetting insulating resin instead of laminating the insulating resin film, and heating and curing the cover layer.
 なお、抵抗部31及び端子部41の下地層として基材10の上面10aに機能層を設け、抵抗部32及び端子部42の下地層として基材10の下面10bに機能層を設けた場合には、センサ1は図5に示す断面形状となる。符号20a及び20bで示す層が機能層である。機能層20a及び20bを設けた場合のセンサ1の平面形状は、図3と同様である。 When a functional layer is provided on the upper surface 10a of the base material 10 as a base layer of the resistance portion 31 and the terminal portion 41, and a functional layer is provided on the lower surface 10b of the base material 10 as a base layer of the resistance portion 32 and the terminal portion 42. The sensor 1 has the cross-sectional shape shown in FIG. The layers indicated by reference numerals 20a and 20b are functional layers. The planar shape of the sensor 1 when the functional layers 20a and 20b are provided is the same as that in FIG.
 図6に示すように、センサ1及び制御装置2により圧力分布検出装置3を実現できる。圧力分布検出装置3は、路面からタイヤ100にかかる圧力分布を検出する装置である。圧力分布検出装置3において、センサ1の各々の端子部41及び42は、例えば、フレキシブル基板やリード線等を用いて、制御装置2に接続されている。 As shown in FIG. 6, the pressure distribution detection device 3 can be realized by the sensor 1 and the control device 2. The pressure distribution detection device 3 is a device that detects the pressure distribution applied to the tire 100 from the road surface. In the pressure distribution detection device 3, each of the terminal portions 41 and 42 of the sensor 1 is connected to the control device 2 by using, for example, a flexible substrate or a lead wire.
 制御装置2は、センサ1の端子部41及び42を介して得られた情報に基づいて、路面からタイヤ100にかかる圧力分布を検出できる。すなわち、センサ1の抵抗部31はX座標の検出に用いることができ、抵抗部32はY座標の検出に用いることができるため、圧力が加わった位置のXY座標と、加わる圧力の大きさを検出できる。 The control device 2 can detect the pressure distribution applied to the tire 100 from the road surface based on the information obtained via the terminal portions 41 and 42 of the sensor 1. That is, since the resistance unit 31 of the sensor 1 can be used to detect the X coordinate and the resistance unit 32 can be used to detect the Y coordinate, the XY coordinate of the position where the pressure is applied and the magnitude of the applied pressure can be determined. Can be detected.
 図7に示すように、制御装置2は、例えば、アナログフロントエンド部21と、信号処理部22とを含む構成にできる。 As shown in FIG. 7, the control device 2 can be configured to include, for example, an analog front end unit 21 and a signal processing unit 22.
 アナログフロントエンド部21は、例えば、入力信号選択スイッチ、ブリッジ回路、増幅器、アナログ/デジタル変換回路(A/D変換回路)等を備えている。アナログフロントエンド部21は、温度補償回路を備えていてもよい。 The analog front end unit 21 includes, for example, an input signal selection switch, a bridge circuit, an amplifier, an analog / digital conversion circuit (A / D conversion circuit), and the like. The analog front end portion 21 may include a temperature compensation circuit.
 アナログフロントエンド部21では、例えば、センサ1の全ての端子部41及び42が入力信号選択スイッチに接続され、入力信号選択スイッチにより1対の電極が選択される。入力信号選択スイッチで選択された1対の電極は、ブリッジ回路に接続される。 In the analog front end unit 21, for example, all the terminal units 41 and 42 of the sensor 1 are connected to the input signal selection switch, and a pair of electrodes is selected by the input signal selection switch. The pair of electrodes selected by the input signal selection switch is connected to the bridge circuit.
 すなわち、ブリッジ回路の1辺が入力信号選択スイッチで選択された1対の電極間の抵抗部で構成され、他の3辺が固定抵抗で構成される。これにより、ブリッジ回路の出力として、入力信号選択スイッチで選択された1対の電極間の抵抗部の抵抗値に対応した電圧(アナログ信号)を得ることができる。なお、入力信号選択スイッチは、信号処理部22から制御可能に構成されている。 That is, one side of the bridge circuit is composed of a resistance portion between a pair of electrodes selected by the input signal selection switch, and the other three sides are composed of a fixed resistor. As a result, as the output of the bridge circuit, a voltage (analog signal) corresponding to the resistance value of the resistance portion between the pair of electrodes selected by the input signal selection switch can be obtained. The input signal selection switch is configured to be controllable from the signal processing unit 22.
 ブリッジ回路から出力された電圧は、増幅器で増幅された後、A/D変換回路によりデジタル信号に変換され、信号処理部22に送られる。アナログフロントエンド部21が温度補償回路を備えている場合には、温度補償されたデジタル信号が信号処理部22に送られる。入力信号選択スイッチを高速で切り替えることで、センサ1の全ての端子部41及び42の抵抗値に対応するデジタル信号を極短時間で信号処理部22に送ることができる。 The voltage output from the bridge circuit is amplified by the amplifier, converted into a digital signal by the A / D conversion circuit, and sent to the signal processing unit 22. When the analog front end unit 21 includes a temperature compensation circuit, a temperature-compensated digital signal is sent to the signal processing unit 22. By switching the input signal selection switch at high speed, a digital signal corresponding to the resistance values of all the terminal units 41 and 42 of the sensor 1 can be sent to the signal processing unit 22 in an extremely short time.
 信号処理部22は、アナログフロントエンド部21から送られた情報に基づいて、路面からタイヤ100にかかる圧力分布を検出できる。 The signal processing unit 22 can detect the pressure distribution applied to the tire 100 from the road surface based on the information sent from the analog front end unit 21.
 なお、加わる圧力の大きさによっては、抵抗部31及び抵抗部32のうち、何れか一方のみに圧力がかかる場合がある。この場合には、何れか一方の抵抗部の1対の電極間の抵抗値のみが加わる圧力の大きさに応じて連続的に変化するが、この場合も、信号処理部22は、抵抗部の抵抗値の変化の大小に基づいて、加わる圧力の大きさを検出できる。 Note that, depending on the magnitude of the applied pressure, pressure may be applied to only one of the resistance portion 31 and the resistance portion 32. In this case, only the resistance value between the pair of electrodes of one of the resistance portions changes continuously according to the magnitude of the applied pressure, but in this case as well, the signal processing unit 22 is the resistance portion of the resistance portion. The magnitude of the applied pressure can be detected based on the magnitude of the change in resistance value.
 つまり、抵抗部31及び/又は抵抗部32に圧力がかかると、加圧された抵抗部(抵抗部31及び/又は抵抗部32)の1対の電極間の抵抗値が加わる圧力の大きさに応じて連続的に変化する。そして、信号処理部22は、抵抗部31と抵抗部32の一方が加圧されたか両方が加圧されたかにかかわらず、加圧された抵抗部の抵抗値の変化の大小に基づいて、加わる圧力の大きさを検出できる。 That is, when pressure is applied to the resistance portion 31 and / or the resistance portion 32, the resistance value between the pair of electrodes of the pressurized resistance portion (resistance portion 31 and / or the resistance portion 32) is added to the magnitude of the pressure. It changes continuously accordingly. Then, the signal processing unit 22 is added based on the magnitude of the change in the resistance value of the pressurized resistance unit regardless of whether one of the resistance unit 31 and the resistance unit 32 is pressurized or both are pressurized. The magnitude of pressure can be detected.
 信号処理部22は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、メインメモリ等を含む構成にできる。 The signal processing unit 22 can be configured to include, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a main memory, and the like.
 この場合、信号処理部22の各種機能は、ROM等に記録されたプログラムがメインメモリに読み出されてCPUにより実行されることによって実現できる。但し、信号処理部22の一部又は全部は、ハードウェアのみにより実現されてもよい。又、信号処理部22は、物理的に複数の装置等により構成されてもよい。 In this case, various functions of the signal processing unit 22 can be realized by reading the program recorded in the ROM or the like into the main memory and executing it by the CPU. However, a part or all of the signal processing unit 22 may be realized only by hardware. Further, the signal processing unit 22 may be physically composed of a plurality of devices or the like.
 このように、センサ1の抵抗部31及び32が加圧されると、加圧された抵抗部31及び32が加わる圧力の大きさに応じて撓み、加圧された抵抗部31及び32の1対の電極間の抵抗値が加わる圧力の大きさに応じて連続的に変化する。すなわち、センサ1では、3次元情報(圧力が加わった位置の座標と、加わる圧力の大きさ)を得ることができる。 In this way, when the resistance portions 31 and 32 of the sensor 1 are pressurized, the pressurized resistance portions 31 and 32 bend according to the magnitude of the applied pressure, and the pressurized resistance portions 31 and 32 1 The resistance value between the pair of electrodes changes continuously according to the magnitude of the applied pressure. That is, the sensor 1 can obtain three-dimensional information (coordinates of the position where the pressure is applied and the magnitude of the applied pressure).
 圧力分布検出装置3において、センサ1で得られた3次元情報は制御装置2に送られ、制御装置2はセンサ1で得られた3次元情報に基づいて、タイヤ100にかかる圧力分布を検出できる。 In the pressure distribution detection device 3, the three-dimensional information obtained by the sensor 1 is sent to the control device 2, and the control device 2 can detect the pressure distribution applied to the tire 100 based on the three-dimensional information obtained by the sensor 1. ..
 例えば、初期状態(例えば、タイヤ100に片減りがなく、空気圧が正常な状態)の圧力分布を記憶しておき、移動体の走行中にセンサ1の出力をモニタして初期状態と比較することで、タイヤ100の接地面の摩耗状態や空気圧の変化をリアルタイムで監視できる。その結果、タイヤ100の片減りを検出できる。又、タイヤ100の空気圧が適切か否かを検出できる。又、タイヤ100の調整角度やタイヤ100の交換時期について把握できる。 For example, the pressure distribution in the initial state (for example, the state where the tire 100 is not worn out and the air pressure is normal) is stored, and the output of the sensor 1 is monitored while the moving body is running to compare with the initial state. Therefore, it is possible to monitor the wear state of the ground contact surface of the tire 100 and the change in air pressure in real time. As a result, it is possible to detect a one-sided reduction of the tire 100. Further, it is possible to detect whether or not the air pressure of the tire 100 is appropriate. In addition, the adjustment angle of the tire 100 and the replacement time of the tire 100 can be grasped.
 又、タイヤ100にかかる異常な圧力分布をリアルタイムで検出可能となり、無線等で運転者に伝えることで、タイヤ100について、より正確な状態管理ができる。 In addition, the abnormal pressure distribution applied to the tire 100 can be detected in real time, and by transmitting the abnormal pressure distribution to the driver wirelessly or the like, more accurate state management of the tire 100 can be performed.
 又、タイヤ100の接地面の摩耗状態を常に把握できるようになるので、バースト(破裂)による事故やハンドル操作による事故等が発生するリスクを回避可能となる。 In addition, since the wear state of the ground contact surface of the tire 100 can always be grasped, it is possible to avoid the risk of an accident due to a burst (burst) or an accident due to steering wheel operation.
 特に、抵抗部31及び32がCr混相膜から形成されている場合は、抵抗部31及び32がCu-NiやNi-Crから形成されている場合と比べ、加わる圧力に対する抵抗値の感度(同一の圧力がかかったときの抵抗部31及び32の抵抗値の変化量)が大幅に向上する。抵抗部31及び32がCr混相膜から形成されている場合、加わる圧力に対する抵抗値の感度は、抵抗部31及び32がCu-NiやNi-Crから形成されている場合と比べ、おおよそ5~10倍程度となる。そのため、抵抗部31及び32をCr混相膜から形成することで、圧力が加わった位置の座標の検出精度を向上できると共に、加わる圧力を高感度で検出できる。 In particular, when the resistance portions 31 and 32 are formed of a Cr mixed-phase film, the sensitivity of the resistance value to the applied pressure (same) as compared with the case where the resistance portions 31 and 32 are formed of Cu—Ni or Ni—Cr. The amount of change in the resistance values of the resistance portions 31 and 32 when the pressure is applied) is significantly improved. When the resistance portions 31 and 32 are formed of a Cr mixed-phase film, the sensitivity of the resistance value to the applied pressure is approximately 5 to 5 to that when the resistance portions 31 and 32 are formed of Cu—Ni or Ni—Cr. It will be about 10 times. Therefore, by forming the resistance portions 31 and 32 from the Cr mixed-phase film, the detection accuracy of the coordinates of the position where the pressure is applied can be improved, and the applied pressure can be detected with high sensitivity.
 又、加わる圧力に対する抵抗値の感度が高いことで、加わる圧力が小であることを検出した場合には所定の動作を行い、加わる圧力が中であることを検出した場合には他の動作を行い、加わる圧力が大であることを検出した場合には更に他の動作を行うような制御の実現が可能となる。或いは、加わる圧力が小又は中であることを検出した場合には動作を行わず、加わる圧力が大であることを検出した場合にのみ所定の動作を行うような制御の実現が可能となる。 Further, since the sensitivity of the resistance value to the applied pressure is high, when it is detected that the applied pressure is small, a predetermined operation is performed, and when it is detected that the applied pressure is medium, another operation is performed. When it is detected that the applied pressure is large, it is possible to realize the control to perform other operations. Alternatively, it is possible to realize a control in which no operation is performed when it is detected that the applied pressure is small or medium, and a predetermined operation is performed only when it is detected that the applied pressure is large.
 又、加わる圧力に対する抵抗値の感度が高いと、S/Nの高い信号を得ることができる。そのため、アナログフロントエンド部21のA/D変換回路において平均化を行う回数を低減しても精度よく信号検出ができる。A/D変換回路において平均化を行う回数を低減することで、1回のA/D変換に必要な時間を短縮できるため、入力信号選択スイッチを更に高速で切り替えることが可能となる。その結果、センサ1では、比較的早い圧力分布も検出できる。 Also, if the sensitivity of the resistance value to the applied pressure is high, a signal with a high S / N can be obtained. Therefore, the signal can be detected with high accuracy even if the number of times of averaging in the A / D conversion circuit of the analog front end portion 21 is reduced. By reducing the number of times of averaging in the A / D conversion circuit, the time required for one A / D conversion can be shortened, so that the input signal selection switch can be switched at a higher speed. As a result, the sensor 1 can detect a relatively fast pressure distribution.
 〈第1実施形態の変形例1〉
 第1実施形態の変形例1では、基材の一方の面側又は他方の面側に実装された電子部品を有するセンサの例を示す。なお、第1実施形態の変形例1において、既に説明した実施形態と同一構成部についての説明は省略する場合がある。
<Modification 1 of the first embodiment>
Modification 1 of the first embodiment shows an example of a sensor having an electronic component mounted on one surface side or the other surface side of the base material. In the first modification of the first embodiment, the description of the same components as those of the above-described embodiment may be omitted.
 図8は、第1実施形態の変形例1に係るセンサを例示する断面図であり、図4に対応する断面を示している。図8を参照すると、センサ1Aは、基材10の下面10bに電子部品200が実装された点が、センサ1(図3及び図4参照)と相違する。 FIG. 8 is a cross-sectional view illustrating the sensor according to the modified example 1 of the first embodiment, and shows a cross section corresponding to FIG. Referring to FIG. 8, the sensor 1A differs from the sensor 1 (see FIGS. 3 and 4) in that the electronic component 200 is mounted on the lower surface 10b of the base material 10.
 電子部品200は、例えば、図7に示すアナログフロントエンド部21をIC化して外部通信機能(例えば、IC等のシリアル通信機能)を持たせたものである。すなわち、電子部品200は、例えば、入力信号選択スイッチ、ブリッジ回路、増幅器、A/D変換回路、外部通信機能等を備えたICであり、抵抗部31及び32の1対の電極間の抵抗値を電圧に変換してデジタル信号として出力できる。電子部品200は、温度補償回路を備えていてもよい。電子部品200は、外部通信機能により制御装置2の信号処理部22と情報の送受信を行うことができる。 Electronic component 200 is, for example, those which gave the external communication function into an IC analog front end unit 21 shown in FIG. 7 (e.g., a serial communication function such I 2 C). That is, the electronic component 200 is, for example, an IC having an input signal selection switch, a bridge circuit, an amplifier, an A / D conversion circuit, an external communication function, and the like, and has a resistance value between a pair of electrodes of the resistance portions 31 and 32. Can be converted to voltage and output as a digital signal. The electronic component 200 may include a temperature compensation circuit. The electronic component 200 can send and receive information to and from the signal processing unit 22 of the control device 2 by an external communication function.
 電子部品200は、例えば、基材10の下面10bに形成されたパッドにフリップチップ実装できる。或いは、電子部品200は、基材10の下面10bにダイアタッチフィルム等の接着層を介して搭載され、基材10の下面10bに形成されたパッドにワイヤボンディングされてもよい。又、電子部品200と共に、コンデンサ等の受動部品が搭載されてもよい。 The electronic component 200 can be flip-chip mounted on a pad formed on the lower surface 10b of the base material 10, for example. Alternatively, the electronic component 200 may be mounted on the lower surface 10b of the base material 10 via an adhesive layer such as a die attach film, and may be wire-bonded to a pad formed on the lower surface 10b of the base material 10. Further, a passive component such as a capacitor may be mounted together with the electronic component 200.
 電子部品200は、図示しない配線パターンや貫通配線(スルーホール)を介して、全ての端子部41及び42と接続されている。又、電子部品200は、センサ1Aの外部から電源を供給可能に構成されている。 The electronic component 200 is connected to all the terminal portions 41 and 42 via a wiring pattern (not shown) or a through wiring (through hole). Further, the electronic component 200 is configured so that power can be supplied from the outside of the sensor 1A.
 抵抗部31及び端子部41を被覆するように基材10の上面10aにカバー層(絶縁樹脂層)を設けても構わない。又、抵抗部32、端子部42、及び電子部品200を被覆するように基材10の下面10bにカバー層(絶縁樹脂層)を設けても構わない。カバー層を設けることで、抵抗部31及び32、端子部41及び42、並びに電子部品200に機械的な損傷等が生じることを防止できる。又、カバー層を設けることで、抵抗部31及び32、端子部41及び42、並びに電子部品200を湿気等から保護できる。 A cover layer (insulating resin layer) may be provided on the upper surface 10a of the base material 10 so as to cover the resistance portion 31 and the terminal portion 41. Further, a cover layer (insulating resin layer) may be provided on the lower surface 10b of the base material 10 so as to cover the resistance portion 32, the terminal portion 42, and the electronic component 200. By providing the cover layer, it is possible to prevent mechanical damage or the like from occurring in the resistance portions 31 and 32, the terminal portions 41 and 42, and the electronic component 200. Further, by providing the cover layer, the resistance portions 31 and 32, the terminal portions 41 and 42, and the electronic component 200 can be protected from moisture and the like.
 このように、センサ1Aでは、基材10に電子部品200が実装されているため、配線パターンや貫通配線(スルーホール)を介して、端子部41及び42と電子部品200とを短距離で接続可能である。そのため、小型のセンサ1Aを実現できる。この構造は、特に、抵抗体と電子部品とをリード線を用いてはんだ等で接続することが困難な小型のセンサに有効である。 In this way, in the sensor 1A, since the electronic component 200 is mounted on the base material 10, the terminal portions 41 and 42 and the electronic component 200 are connected in a short distance via a wiring pattern or through wiring (through hole). It is possible. Therefore, a small sensor 1A can be realized. This structure is particularly effective for a small sensor in which it is difficult to connect a resistor and an electronic component with solder or the like using a lead wire.
 又、端子部41及び42から電子部品200までの距離を短くすることにより、ノイズ耐性を向上できる。 Further, noise immunity can be improved by shortening the distance from the terminal portions 41 and 42 to the electronic component 200.
 なお、電子部品200は、アナログフロントエンド部21の機能を有するICには限定されず、例えば、アナログフロントエンド部21及び信号処理部22の機能を有するICとしてもよい。 The electronic component 200 is not limited to an IC having the functions of the analog front end unit 21, and may be, for example, an IC having the functions of the analog front end unit 21 and the signal processing unit 22.
 すなわち、制御装置2の一部又は全部がセンサ1Aと一体化されてもよい。ここで、センサ1Aと一体化するとは、制御装置2に使用される基材や電子部品の一部又は全部と、センサ1Aに使用される基材や電子部品の一部又は全部とが兼用されることを含む。 That is, a part or all of the control device 2 may be integrated with the sensor 1A. Here, to integrate with the sensor 1A means that a part or all of the base material and electronic parts used in the control device 2 and a part or all of the base material and electronic parts used in the sensor 1A are used in combination. Including that.
 又、制御装置2に、信号処理部22による検出結果を無線により送信する集積回路等を設けてもよい。信号処理部22による検出結果を、無線により、例えば自動車に搭載されたECU(Electronic Control Unit)に送信してもよい。制御装置2から無線によりタイヤ100の圧力分布の情報を得たECUは、例えば、圧力分布が異常である場合に、警告表示やブザー等により運転者に異常を知らせることができる。これにより、自動車を安全に走行させて、事故を未然に防ぐことができる。 Further, the control device 2 may be provided with an integrated circuit or the like that wirelessly transmits the detection result by the signal processing unit 22. The detection result by the signal processing unit 22 may be wirelessly transmitted to, for example, an ECU (Electronic Control Unit) mounted on an automobile. The ECU that wirelessly obtains information on the pressure distribution of the tire 100 from the control device 2 can notify the driver of the abnormality by displaying a warning, a buzzer, or the like, for example, when the pressure distribution is abnormal. As a result, the automobile can be safely driven and an accident can be prevented.
 〈第1実施形態の変形例2〉
 第1実施形態の変形例2では、基材の一方の面側又は他方の面側に実装された電源を有するセンサの例を示す。なお、第1実施形態の変形例2において、既に説明した実施形態と同一構成部についての説明は省略する場合がある。
<Modification 2 of the first embodiment>
Modification 2 of the first embodiment shows an example of a sensor having a power supply mounted on one surface side or the other surface side of the base material. In the second modification of the first embodiment, the description of the same component as that of the above-described embodiment may be omitted.
 図9は、第1実施形態の変形例2に係るセンサを例示する断面図であり、図4に対応する断面を示している。図9を参照すると、センサ1Bは、電源300が実装された点が、センサ1A(図8参照)と相違する。 FIG. 9 is a cross-sectional view illustrating the sensor according to the modified example 2 of the first embodiment, and shows a cross section corresponding to FIG. Referring to FIG. 9, the sensor 1B differs from the sensor 1A (see FIG. 8) in that the power supply 300 is mounted.
 電源300は、例えば、リチウムイオン電池等の小型バッテリーである。電源300は、例えば、基材10の下面10b側に実装され、電子部品200と電気的に接続されている。電源300は、基材10の上面10a側に実装されてもよい。 The power supply 300 is, for example, a small battery such as a lithium ion battery. The power supply 300 is mounted on the lower surface 10b side of the base material 10, for example, and is electrically connected to the electronic component 200. The power supply 300 may be mounted on the upper surface 10a side of the base material 10.
 このように、センサ1Bでは、電子部品200に給電する電源300が実装されている。これにより、外部からの給電を不要とした、小型のセンサ1Bを実現できる。 As described above, the sensor 1B is equipped with the power supply 300 that supplies power to the electronic component 200. As a result, it is possible to realize a small sensor 1B that does not require power supply from the outside.
 センサ1Bにおいて、抵抗体30を薄膜化することで、センサ1Bを特に低消費電力化及び小型化可能である。 In the sensor 1B, by thinning the resistor 30, the sensor 1B can be made particularly low in power consumption and miniaturized.
 すなわち、抵抗体30の材料として例えばCu-NiやNi-Crの箔を用いた場合には抵抗体30の抵抗値が1kΩ程度となるが、抵抗体30の材料として薄膜化したCr混相膜を用いた場合には抵抗体30の抵抗値を5kΩ以上にすることができる。そのため、抵抗体30の材料としてCr混相膜を用いた場合には、抵抗体30に流れる電流が少なくなり、低消費電力化が可能となる。又、低消費電力化により電源300から供給する電流が少なくて済むため、小型の電源300を用いることが可能となり、センサ1B全体を小型化できる。 That is, when a foil of Cu—Ni or Ni—Cr is used as the material of the resistor 30, the resistance value of the resistor 30 is about 1 kΩ, but a thin Cr mixed-phase film is used as the material of the resistor 30. When used, the resistance value of the resistor 30 can be 5 kΩ or more. Therefore, when a Cr mixed-phase film is used as the material of the resistor 30, the current flowing through the resistor 30 is reduced, and the power consumption can be reduced. Further, since the current supplied from the power supply 300 can be reduced due to the low power consumption, a small power supply 300 can be used, and the entire sensor 1B can be miniaturized.
 〈第1実施形態の変形例3〉
 第1実施形態の変形例3では、センサの抵抗部をジグザグパターンにする例を示す。なお、第1実施形態の変形例3において、既に説明した実施形態と同一構成部についての説明は省略する場合がある。
<Modification 3 of the first embodiment>
In the third modification of the first embodiment, an example in which the resistance portion of the sensor has a zigzag pattern is shown. In the third modification of the first embodiment, the description of the same component as that of the above-described embodiment may be omitted.
 図10は、第1実施形態の変形例3に係るセンサを例示する平面図であり、図3に対応する平面を示している。図10を参照すると、センサ1Cは、抵抗体30が抵抗体30Cに置換された点が、センサ1(図3及び図4参照)と相違する。 FIG. 10 is a plan view illustrating the sensor according to the modified example 3 of the first embodiment, and shows the plane corresponding to FIG. Referring to FIG. 10, the sensor 1C differs from the sensor 1 (see FIGS. 3 and 4) in that the resistor 30 is replaced with the resistor 30C.
 抵抗体30Cは、抵抗部31C及び32Cを含んでいる。抵抗部31Cは、1対の端子部41の間に形成されたジグザグのパターンである。又、抵抗部32Cは、1対の端子部42の間に形成されたジグザグのパターンである。抵抗部31C及び32Cの材料や厚さは、例えば、抵抗部31及び32の材料や厚さと同様にできる。 The resistor 30C includes the resistance portions 31C and 32C. The resistance portion 31C is a zigzag pattern formed between a pair of terminal portions 41. Further, the resistance portion 32C is a zigzag pattern formed between a pair of terminal portions 42. The material and thickness of the resistance portions 31C and 32C can be, for example, the same as the material and thickness of the resistance portions 31 and 32.
 このように、抵抗部31C及び32Cをジグザグパターンにすることで、直線状のパターンにした場合と比べて、1対の端子部41間の抵抗値及び1対の端子部42間の抵抗値を高くできる。その結果、加圧された際の1対の端子部41間の抵抗値の変化量及び1対の端子部42間の抵抗値の変化量が大きくなるため、タイヤ100にかかる圧力分布の検出精度を更に向上できる。 By forming the resistance portions 31C and 32C in a zigzag pattern in this way, the resistance value between the pair of terminal portions 41 and the resistance value between the pair of terminal portions 42 can be increased as compared with the case where the resistance portions 31C and 32C have a linear pattern. Can be high. As a result, the amount of change in the resistance value between the pair of terminal portions 41 and the amount of change in the resistance value between the pair of terminal portions 42 when pressurized becomes large, so that the detection accuracy of the pressure distribution applied to the tire 100 becomes large. Can be further improved.
 又、1対の端子部41間の抵抗値及び1対の端子部42間の抵抗値を高くできるため、センサ1Cを低消費電力化可能である。 Further, since the resistance value between the pair of terminal portions 41 and the resistance value between the pair of terminal portions 42 can be increased, the power consumption of the sensor 1C can be reduced.
 以上、好ましい実施形態等について詳説したが、上述した実施形態等に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施形態等に種々の変形及び置換を加えることができる。 Although the preferred embodiments and the like have been described in detail above, they are not limited to the above-described embodiments and the like, and various modifications and substitutions are made to the above-mentioned embodiments and the like without departing from the scope of claims. Can be added.
 例えば、センサ1では、絶縁層である基材10の上面10aに抵抗部31を設け、下面10bに抵抗部32を設ける例を示したが、絶縁層の一方の側に抵抗部32を設け、他方の側に抵抗部32を設ける構造であれば、これには限定されない。例えば、基材10の上面10aに抵抗部31を設け、基材10の上面10aに抵抗部31を被覆する絶縁層を設け、絶縁層上に抵抗部32を設けてもよい。又、抵抗部31を設けた第1基材と、抵抗部32を設けた第2基材を作製し、抵抗部31と抵抗部32を内側に向けて、絶縁層を挟んで抵抗部31を設けた第1基材と抵抗部32を設けた第2基材を貼り合わせてもよい。又、抵抗部31を設けた第1基材と、抵抗部32を設けた第2基材を作製し、抵抗部31を設けた第1基材と抵抗部32を設けた第2基材を同一方向に積層してもよい。センサ1A、1B、及び1Cについても同様である。 For example, in the sensor 1, an example in which the resistance portion 31 is provided on the upper surface 10a of the base material 10 which is the insulating layer and the resistance portion 32 is provided on the lower surface 10b is shown, but the resistance portion 32 is provided on one side of the insulating layer. The structure is not limited to this as long as the resistance portion 32 is provided on the other side. For example, the resistance portion 31 may be provided on the upper surface 10a of the base material 10, the insulating layer covering the resistance portion 31 may be provided on the upper surface 10a of the base material 10, and the resistance portion 32 may be provided on the insulating layer. Further, a first base material provided with the resistance portion 31 and a second base material provided with the resistance portion 32 are produced, and the resistance portion 31 and the resistance portion 32 are directed inward, and the resistance portion 31 is sandwiched between the insulating layers. The first base material provided and the second base material provided with the resistance portion 32 may be bonded together. Further, a first base material provided with the resistance portion 31 and a second base material provided with the resistance portion 32 are prepared, and a first base material provided with the resistance portion 31 and a second base material provided with the resistance portion 32 are formed. It may be laminated in the same direction. The same applies to the sensors 1A, 1B, and 1C.
 本国際出願は2020年1月15日に出願した日本国特許出願2020-004565号に基づく優先権を主張するものであり、日本国特許出願2020-004565号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2020-004565 filed on January 15, 2020, and the entire contents of Japanese Patent Application No. 2020-004565 are incorporated into this international application. ..
1、1A、1B、1C センサ、2 制御装置、3 圧力分布検出装置、10 基材、10a 基材の上面、10b 基材の下面、20a、20b 機能層、21 アナログフロントエンド部、22 信号処理部、30、30C 抵抗体、31、31C、32、32C 抵抗部、41、42 端子部、100 タイヤ、110 トレッド部、120 サイドウォール部、130 ビード部、140 インナーライナー、150 カーカス、160 ビードコア、170 ビードフィラー、180 ベルト、200 電子部品、300 電源 1, 1A, 1B, 1C sensor, 2 control device, 3 pressure distribution detector, 10 base material, 10a base material upper surface, 10b base material lower surface, 20a, 20b functional layer, 21 analog front end part, 22 signal processing Parts, 30, 30C resistors, 31, 31C, 32, 32C resistance parts, 41, 42 terminal parts, 100 tires, 110 tread parts, 120 sidewall parts, 130 bead parts, 140 inner liners, 150 carcass, 160 bead cores, 170 bead filler, 180 belt, 200 electronic parts, 300 power supply

Claims (10)

  1.  移動体用のタイヤであって、
     前記タイヤの内側にセンサが設けられ、
     前記センサは、
     絶縁層と、
     前記絶縁層の一方の側に長手方向を第1方向に向けて並置された複数の第1抵抗部と、
     前記絶縁層の他方の側に長手方向を前記第1方向と交差する第2方向に向けて並置された複数の第2抵抗部と、
     各々の前記第1抵抗部及び各々の前記第2抵抗部の両端部に設けられた1対の電極と、を有し、
     前記第1抵抗部及び/又は前記第2抵抗部が押圧されると、押圧された前記第1抵抗部及び/又は前記第2抵抗部の前記1対の電極間の抵抗値が加わる圧力の大きさに応じて連続的に変化するタイヤ。
    Tires for mobiles
    A sensor is provided inside the tire.
    The sensor is
    Insulation layer and
    A plurality of first resistance portions juxtaposed on one side of the insulating layer with the longitudinal direction facing the first direction,
    A plurality of second resistance portions juxtaposed on the other side of the insulating layer so that the longitudinal direction intersects the first direction in the second direction.
    It has a pair of electrodes provided at both ends of each of the first resistance portions and each of the second resistance portions.
    When the first resistance portion and / or the second resistance portion is pressed, the magnitude of the pressure to which the resistance value between the pair of electrodes of the pressed first resistance portion and / or the second resistance portion is applied. Tires that change continuously according to the situation.
  2.  前記センサは、前記タイヤの内周側の幅方向の全体及び周方向の全体に貼り付けられているか、又は埋め込まれている請求項1に記載のタイヤ。 The tire according to claim 1, wherein the sensor is attached or embedded in the entire width direction and the entire circumferential direction of the inner peripheral side of the tire.
  3.  各々の前記第1抵抗部及び各々の前記第2抵抗部は、前記1対の電極の間に形成されたジグザグのパターンである請求項1又は2に記載のタイヤ。 The tire according to claim 1 or 2, wherein each of the first resistance portions and each of the second resistance portions is a zigzag pattern formed between the pair of electrodes.
  4.  前記第1抵抗部の抵抗値の変化及び前記第2抵抗部の抵抗値の変化に基づいて、前記タイヤの圧力分布の検出が可能である請求項1乃至3の何れか一項に記載のタイヤ。 The tire according to any one of claims 1 to 3, wherein the pressure distribution of the tire can be detected based on the change in the resistance value of the first resistance portion and the change in the resistance value of the second resistance portion. ..
  5.  前記第1抵抗部及び前記第2抵抗部は、α-Crを主成分とするCr、CrN、及びCrNを含む膜から形成されている請求項1乃至4の何れか一項に記載のタイヤ。 Wherein the first resistor portion and the second resistor portion, Cr mainly composed of alpha-Cr, CrN, and Cr according to any one of claims 1 to 4 is formed of a film containing 2 N tire.
  6.  前記膜の下層に、金属、合金、又は、金属の化合物から形成された機能層を有し、
     前記機能層は、前記α-Crの結晶成長を促進させ、前記α-Crを主成分とする膜を形成する機能を有する請求項5に記載のタイヤ。
    A functional layer formed of a metal, an alloy, or a compound of a metal is provided under the film.
    The tire according to claim 5, wherein the functional layer has a function of promoting crystal growth of the α-Cr and forming a film containing the α-Cr as a main component.
  7.  前記膜は、前記α-Crを80重量%以上含む請求項5又は6に記載のタイヤ。 The tire according to claim 5 or 6, wherein the film contains 80% by weight or more of the α-Cr.
  8.  前記絶縁層の一方の面側又は他方の面側に実装された電子部品を有する請求項1乃至7の何れか一項に記載のタイヤ。 The tire according to any one of claims 1 to 7, which has an electronic component mounted on one surface side or the other surface side of the insulating layer.
  9.  前記電子部品は、前記第1抵抗部及び前記第2抵抗部の前記1対の電極間の抵抗値を電圧に変換してデジタル信号として出力する請求項8に記載のタイヤ。 The tire according to claim 8, wherein the electronic component converts a resistance value between the pair of electrodes of the first resistance portion and the second resistance portion into a voltage and outputs the digital signal.
  10.  前記絶縁層の一方の面側又は他方の面側に実装され、前記電子部品と電気的に接続されて前記電子部品に給電する電源を有する請求項8又は9に記載のタイヤ。 The tire according to claim 8 or 9, which is mounted on one surface side or the other surface side of the insulating layer and has a power source that is electrically connected to the electronic component to supply power to the electronic component.
PCT/JP2020/048348 2020-01-15 2020-12-24 Tire WO2021145184A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-004565 2020-01-15
JP2020004565A JP7402060B2 (en) 2020-01-15 2020-01-15 tire

Publications (1)

Publication Number Publication Date
WO2021145184A1 true WO2021145184A1 (en) 2021-07-22

Family

ID=76863698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048348 WO2021145184A1 (en) 2020-01-15 2020-12-24 Tire

Country Status (2)

Country Link
JP (2) JP7402060B2 (en)
WO (1) WO2021145184A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02157625A (en) * 1988-12-12 1990-06-18 Agency Of Ind Science & Technol Distribution type contact force sensor unit
JPH06300649A (en) * 1993-04-12 1994-10-28 Sumitomo Electric Ind Ltd Thin film strain resistance material, fabrication thereof and thin film strain sensor
US20140035603A1 (en) * 2012-08-03 2014-02-06 Xerox Corporation Printed Stretch Sensor
US20160318356A1 (en) * 2015-04-30 2016-11-03 Bebop Sensors, Inc. Sensor systems integrated with vehicle tires
US20180172527A1 (en) * 2015-08-07 2018-06-21 Korea Electronics Technology Institute Flexible tactile sensor and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02157625A (en) * 1988-12-12 1990-06-18 Agency Of Ind Science & Technol Distribution type contact force sensor unit
JPH06300649A (en) * 1993-04-12 1994-10-28 Sumitomo Electric Ind Ltd Thin film strain resistance material, fabrication thereof and thin film strain sensor
US20140035603A1 (en) * 2012-08-03 2014-02-06 Xerox Corporation Printed Stretch Sensor
US20160318356A1 (en) * 2015-04-30 2016-11-03 Bebop Sensors, Inc. Sensor systems integrated with vehicle tires
US20180172527A1 (en) * 2015-08-07 2018-06-21 Korea Electronics Technology Institute Flexible tactile sensor and method for manufacturing the same

Also Published As

Publication number Publication date
JP7402060B2 (en) 2023-12-20
JP2024016104A (en) 2024-02-06
JP2021110704A (en) 2021-08-02

Similar Documents

Publication Publication Date Title
US11499877B2 (en) Strain gauge
WO2020017323A1 (en) Posture control device
US11499876B2 (en) Strain gauge and sensor module
JP2023126666A (en) strain gauge
CN111758012B (en) Strain gauge and sensor module
US11454488B2 (en) Strain gauge with improved stability
US20210055095A1 (en) Sensor module
US11300398B2 (en) Strain gauge with improved distortion of measured object
JP2023144039A (en) strain gauge
JP2023138686A (en) sensor module
US10921110B2 (en) Strain gauge
WO2021200693A1 (en) Strain gauge
WO2021145184A1 (en) Tire
US20220341790A1 (en) Sensor module and strain detecting device
JP7008618B2 (en) Battery pack
US20210131886A1 (en) Strain gauge
WO2021153210A1 (en) Tire
US20230313838A1 (en) Rolling bearing holder unit
JP7393890B2 (en) sensor module
JP7110255B2 (en) Attitude control device
JP7296338B2 (en) strain gauge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913853

Country of ref document: EP

Kind code of ref document: A1