WO2021143670A1 - 图像传感器、成像装置、电子设备、图像处理***及信号处理方法 - Google Patents

图像传感器、成像装置、电子设备、图像处理***及信号处理方法 Download PDF

Info

Publication number
WO2021143670A1
WO2021143670A1 PCT/CN2021/071247 CN2021071247W WO2021143670A1 WO 2021143670 A1 WO2021143670 A1 WO 2021143670A1 CN 2021071247 W CN2021071247 W CN 2021071247W WO 2021143670 A1 WO2021143670 A1 WO 2021143670A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
color
filters
pixels
color filters
Prior art date
Application number
PCT/CN2021/071247
Other languages
English (en)
French (fr)
Inventor
沼田肇
青山千秋
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP21740813.7A priority Critical patent/EP4093011B1/en
Publication of WO2021143670A1 publication Critical patent/WO2021143670A1/zh
Priority to US17/868,050 priority patent/US11985436B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/46Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by combining or binning pixels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/778Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising amplifiers shared between a plurality of pixels, i.e. at least one part of the amplifier must be on the sensor array itself
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • This application relates to the field of imaging technology, and in particular to an image sensor, imaging device, electronic equipment, image processing system, and signal processing method.
  • the signal generated by the photosensitive element in the image sensor after receiving light is an analog pixel signal
  • the analog pixel signal needs to be converted into a digital signal by an analog-to-digital conversion circuit and then output to the processor.
  • the embodiments of the present application provide an image sensor, an imaging device, an electronic device, an image processing system, and a signal processing method.
  • the image sensor of the embodiment of the present application includes a filter array, a pixel array, and a plurality of analog-to-digital conversion circuits.
  • the filter array includes a plurality of first color filters, a plurality of second color filters, and a plurality of third color filters.
  • the pixel array includes a plurality of pixels, each of the pixels corresponds to a filter of the filter array, and the pixel is used to receive light passing through the corresponding filter to generate an electrical signal to obtain a simulation Pixel signal.
  • the analog-to-digital conversion circuit converts the analog pixel signal obtained by the pixel corresponding to the first color filter into a digital pixel signal with a first digit precision, and the analog-to-digital conversion circuit is smaller than the first digit
  • the second digit precision of the number precision converts the analog pixel signals obtained by the pixels corresponding to the second color filter and the third color filter into digital pixel signals.
  • the imaging device of the embodiment of the present application includes an image sensor.
  • the image sensor includes a filter array, a pixel array, and a plurality of analog-to-digital conversion circuits.
  • the filter array includes a plurality of first color filters, a plurality of second color filters, and a plurality of third color filters.
  • the pixel array includes a plurality of pixels, each of the pixels corresponds to a filter of the filter array, and the pixel is used to receive light passing through the corresponding filter to generate an electrical signal to obtain a simulation Pixel signal.
  • the analog-to-digital conversion circuit converts the analog pixel signal obtained by the pixel corresponding to the first color filter into a digital pixel signal with a first digit precision, and the analog-to-digital conversion circuit is smaller than the first digit
  • the second digit precision of the number precision converts the analog pixel signals obtained by the pixels corresponding to the second color filter and the third color filter into digital pixel signals.
  • the electronic device of the embodiment of the present application includes an imaging device.
  • the imaging device includes an image sensor.
  • the image sensor includes a filter array, a pixel array, and a plurality of analog-to-digital conversion circuits.
  • the filter array includes a plurality of first color filters, a plurality of second color filters, and a plurality of third color filters.
  • the pixel array includes a plurality of pixels, each of the pixels corresponds to a filter of the filter array, and the pixel is used to receive light passing through the corresponding filter to generate an electrical signal to obtain a simulation Pixel signal.
  • the analog-to-digital conversion circuit converts the analog pixel signal obtained by the pixel corresponding to the first color filter into a digital pixel signal with a first digit precision, and the analog-to-digital conversion circuit is smaller than the first digit
  • the second digit precision of the number precision converts the analog pixel signals obtained by the pixels corresponding to the second color filter and the third color filter into digital pixel signals.
  • the image processing system of the embodiment of the present application includes electronic equipment.
  • the electronic equipment includes an imaging device.
  • the imaging device includes an image sensor.
  • the image sensor includes a filter array, a pixel array, and a plurality of analog-to-digital conversion circuits.
  • the filter array includes a plurality of first color filters, a plurality of second color filters, and a plurality of third color filters.
  • the pixel array includes a plurality of pixels, each of the pixels corresponds to a filter of the filter array, and the pixel is used to receive light passing through the corresponding filter to generate an electrical signal to obtain a simulation Pixel signal.
  • the analog-to-digital conversion circuit converts the analog pixel signal obtained by the pixel corresponding to the first color filter into a digital pixel signal with a first digit precision, and the analog-to-digital conversion circuit is smaller than the first digit
  • the second digit precision of the number precision converts the analog pixel signals obtained by the pixels corresponding to the second color filter and the third color filter into digital pixel signals.
  • the signal processing method of the embodiment of the present application is used in an image sensor.
  • the image sensor includes a filter array, a pixel array, and a plurality of analog-to-digital conversion circuits.
  • the filter array includes a plurality of first color filters, a plurality of second color filters, and a plurality of third color filters.
  • the pixel array includes a plurality of pixels, each of the pixels corresponds to a filter of the filter array, and the pixel is used to receive light passing through the corresponding filter to generate an electrical signal to obtain a simulation Pixel signal.
  • the signal processing method includes: controlling the analog-to-digital conversion circuit to convert analog pixel signals obtained by the pixels corresponding to the first color filter into digital pixel signals with a first digit precision, and controlling the analog-to-digital The conversion circuit converts the analog pixel signals obtained by the pixels corresponding to the second color filter and the third color filter into digital pixel signals with a second digit precision less than the first digit precision .
  • FIGS. 1 and 2 are schematic diagrams of partial structures of image sensors in some embodiments of the present application.
  • FIG. 3 to 6 are schematic diagrams of the arrangement of some filters in the image sensor shown in FIG. 1 or FIG. 2;
  • FIG. 7 is a schematic diagram of the circuit connection of the image sensor according to some embodiments of the present application.
  • FIGS. 8A and 8B are schematic diagrams of the working principle of the image sensor in some embodiments of the present application.
  • FIG. 9 is a schematic diagram of circuit connection of an image sensor according to some embodiments of the present application.
  • FIGS. 10A and 10B are schematic diagrams of the working principle of the image sensor in some embodiments of the present application.
  • 11 is a schematic diagram of the principle of analog-to-digital conversion performed by an analog-to-digital conversion circuit in the related art
  • FIG. 12 is a schematic diagram of the principle of analog-to-digital conversion performed by an analog-to-digital conversion circuit in an image sensor in some embodiments of the present application;
  • FIG. 13 is a schematic diagram of an analog-to-digital conversion circuit in an image sensor in some embodiments of the present application.
  • 14A is a schematic diagram of the time required for the analog-to-digital conversion circuit in the related art to perform analog-to-digital conversion
  • FIG. 14B is a schematic diagram of the time required for the analog-to-digital conversion circuit to perform the analog-to-digital conversion in some embodiments of the present application;
  • 15 and 16 are schematic diagrams of the working principle of the image sensor according to some embodiments of the present application.
  • FIG. 17 is a schematic diagram of an imaging device according to some embodiments of the present application.
  • FIG. 18 is a schematic diagram of an electronic device according to some embodiments of the present application.
  • FIG. 19 is a schematic diagram of an image processing system according to some embodiments of the present application.
  • FIG. 20 is a schematic diagram of an image processing circuit in a computer device according to some embodiments of the present application.
  • the image sensor of the embodiment of the present application includes a filter array, a pixel array, and a plurality of analog-to-digital conversion circuits.
  • the filter array includes a plurality of first color filters, a plurality of second color filters, and a plurality of third color filters.
  • the pixel array includes a plurality of pixels, each pixel corresponds to a filter of the filter array, and the pixel is used to receive light passing through the corresponding filter to generate an electrical signal to obtain an analog pixel signal.
  • the analog-digital conversion circuit converts the analog pixel signal obtained by the pixel corresponding to the first color filter into a digital pixel signal with the first digit accuracy, and the analog-digital conversion circuit converts the first digit accuracy with the second digit accuracy less than the first digit accuracy.
  • the analog pixel signals obtained by the pixels corresponding to the two-color filter and the third-color filter are converted into digital pixel signals.
  • the filter array includes a plurality of filter groups, each filter group includes at least two different color filters, and each color filter in each filter group The number is multiple; the pixel array also includes multiple floating diffusion nodes. The pixels corresponding to the filters of the same color in the same filter group share a floating diffusion node, so that the same color filters in the same filter group The electrical signals generated by the pixels corresponding to the slices can be combined at the corresponding floating diffusion nodes.
  • the plurality of filter groups include a plurality of first filter groups and a plurality of second filter groups, and the first filter group includes a plurality of first color filters of the same number And a plurality of second color filters, the second filter group includes a plurality of first color filters and a plurality of third color filters of the same number; each first filter group has a plurality of first color filters
  • the electrical signals generated by multiple pixels corresponding to one color filter are combined at the floating diffusion node shared by multiple pixels corresponding to the multiple first color filters to generate a first analog pixel signal, and each first filter
  • the electrical signals generated by the multiple pixels corresponding to the multiple second color filters in the film group are combined at the floating diffusion node shared by the multiple pixels corresponding to the multiple second color filters to generate a third analog pixel signal;
  • the electrical signals generated by the multiple pixels corresponding to the multiple first color filters in each second filter group are combined at the floating diffusion node shared by the multiple pixels corresponding to the multiple first color filters to generate The second analog pixel signal.
  • each pixel includes an exposure control circuit; in the same filter group, the same color
  • the control terminals of the exposure control circuits of the multiple pixels corresponding to the multiple filters are turned on at the same time to transfer the charges generated by the multiple pixels corresponding to the multiple filters of the same color in the same filter group after receiving light to the A floating diffusion node shared by multiple pixels corresponding to the filter group; in the same filter group, the control terminals of the exposure control circuits of the pixels corresponding to the filters of different colors are turned on in a time-sharing manner.
  • the filter array includes multiple regions, and each region includes at least one filter group; in all regions, multiple pixels corresponding to all the first color filters in each region share one mode.
  • Digital conversion circuit each analog-to-digital conversion circuit is used to convert the first analog pixel signal and/or the second analog pixel signal of a plurality of pixels corresponding to all the first color filters in each corresponding area into the first digital Pixel signal; in all areas, multiple pixels corresponding to all the second color filters in each area share an analog-to-digital conversion circuit, and each analog-to-digital conversion circuit is used to filter all the second colors in each corresponding area
  • the third analog pixel signals of multiple pixels corresponding to the light sheet are converted into second digital pixel signals, and/or, multiple pixels corresponding to all the third color filters in each area share an analog-to-digital conversion circuit, each The analog-to-digital conversion circuit is used to convert the fourth analog pixel signals of the multiple pixels corresponding to all the third color filters in each corresponding area into third digital pixel signals.
  • each area includes at least one first filter group and at least one second filter group; in all areas, all first color filters and all second color filters in each area
  • the light sheet and multiple pixels corresponding to all the third color filters share an analog-to-digital conversion circuit
  • the pixel array also includes a selection circuit, one selection circuit is connected to a floating diffusion node, and is connected to a common analog-to-digital conversion circuit ;
  • the control terminals of the selection circuits corresponding to multiple pixels corresponding to different filter groups are time-sharing open; in the same filter group, the control terminals of the selection circuits of the pixels corresponding to the filters of different colors are time-sharing Turn on.
  • the first color filter is a green filter
  • the second color filter is a red filter
  • the third color filter is a blue filter
  • the image sensor further includes a microlens array, and the microlens array, the filter array, and the pixel array are arranged in sequence along the light-receiving direction of the image sensor.
  • the imaging device of the embodiment of the present application includes the image sensor of any of the above embodiments.
  • the imaging device further includes a processor for processing a first digital pixel signal that characterizes the value of the first color channel of the light acting on the pixels corresponding to the plurality of first color filters, and characterizes the effect on the
  • the second digital pixel signal representing the value of the second color channel of the light of the pixels corresponding to the plurality of second color filters, and the value of the third color channel representing the light acting on the pixels corresponding to the plurality of third color filters
  • the third digital pixel signal is used to generate a color image.
  • the electronic device of the embodiment of the present application includes an imaging device.
  • the imaging device includes the image sensor of any one of the above-mentioned embodiments.
  • the image processing system of the embodiment of the present application includes electronic equipment.
  • the electronic equipment includes an imaging device.
  • the imaging device includes the image sensor of any one of the above-mentioned embodiments.
  • the signal processing method of the embodiment of the present application is used in an image sensor.
  • the image sensor includes a filter array, a pixel array, and multiple analog-to-digital conversion circuits.
  • the filter array includes a plurality of first color filters, a plurality of second color filters, and a plurality of third color filters.
  • the pixel array includes a plurality of pixels, each pixel corresponds to a filter of the filter array, and the pixel is used to receive light passing through the corresponding filter to generate an electrical signal to obtain an analog pixel signal.
  • the signal processing method includes: controlling the analog-digital conversion circuit to convert the analog pixel signal obtained by the pixel corresponding to the first color filter into a digital pixel signal with the first digit accuracy, and controlling the analog-digital conversion circuit to be less than the first digit accuracy
  • the second digit precision converts the analog pixel signals obtained by the pixels corresponding to the second color filter and the third color filter into digital pixel signals.
  • the filter array includes a plurality of filter groups, each filter group includes at least two different color filters, and each color filter in each filter group The number is multiple; the pixel array also includes multiple floating diffusion nodes, and pixels corresponding to filters of the same color in the same filter group share one floating diffusion node; the signal processing method also includes: controlling the same filter group The electrical signals generated by the pixels corresponding to the filters of the same color are combined at the corresponding floating diffusion nodes.
  • the plurality of filter groups include a plurality of first filter groups and a plurality of second filter groups, and the first filter group includes a plurality of first color filters of the same number And multiple second color filters, the second filter group includes the same number of multiple first color filters and multiple third color filters; controlling the same color filters in the same filter group
  • the electrical signals generated by the pixels corresponding to the slices are combined at the corresponding floating diffusion nodes, including:
  • the floating diffusion node is combined to generate a fourth analog pixel signal.
  • each pixel includes an exposure control circuit; in the same filter group, the same color
  • the control terminals of the exposure control circuits of the multiple pixels corresponding to the multiple filters are turned on at the same time to transfer the charges generated by the multiple pixels corresponding to the multiple filters of the same color in the same filter group after receiving light to the A floating diffusion node shared by multiple pixels corresponding to the filter group; in the same filter group, the control terminals of the exposure control circuits of the pixels corresponding to the filters of different colors are turned on in a time-sharing manner.
  • the filter array includes multiple regions, and each region includes at least one filter group; in all regions, multiple pixels corresponding to all the first color filters in each region share one mode.
  • Digital conversion circuit in all regions, multiple pixels corresponding to all second color filters in each region share one analog-to-digital conversion circuit, and/or, multiple corresponding to all third color filters in each region
  • the pixels share an analog-to-digital conversion circuit; the signal processing method also includes:
  • each area includes at least one first filter group and at least one second filter group; in all areas, all first color filters and all second color filters in each area
  • the light sheet and multiple pixels corresponding to all the third color filters share an analog-to-digital conversion circuit
  • the pixel array also includes a selection circuit, one selection circuit is connected to a floating diffusion node, and is connected to a common analog-to-digital conversion circuit ;
  • the control terminals of the selection circuits corresponding to multiple pixels corresponding to different filter groups are time-sharing open; in the same filter group, the control terminals of the selection circuits of the pixels corresponding to the filters of different colors are time-sharing Turn on.
  • the first color filter is a green filter
  • the second color filter is a red filter
  • the third color filter is a blue filter
  • the signal processing method further includes: processing the first digital pixel signal representing the value of the first color channel of the light acting on the pixels corresponding to the multiple first color filters, and representing the first digital pixel signal acting on the multiple second color filters.
  • the second digital pixel signal representing the value of the second color channel of the light of the pixel corresponding to the color filter, and the third digital pixel representing the value of the third color channel of the light acting on the pixels corresponding to the plurality of third color filters Signal to generate a color image.
  • the present application provides an image sensor 10.
  • the image sensor 10 includes a filter array 11, a pixel array 12 and a plurality of analog-to-digital conversion circuits 14.
  • the filter array 11 includes a plurality of first color filters A, a plurality of second color filters B, and a plurality of third color filters C.
  • the pixel array 12 includes a plurality of pixels 120. Each pixel 120 corresponds to one filter 111 of the filter array 11. The pixel 120 is used to receive light passing through the corresponding filter 110 to generate an electrical signal to obtain an analog pixel signal.
  • the analog-to-digital conversion circuit 14 converts the analog pixel signal obtained by the pixel 120 corresponding to the first color filter A into a digital pixel signal with the first digit precision.
  • the analog-to-digital conversion circuit 14 converts the analog pixel signals obtained by the pixels 120 corresponding to the second color filter B and the third color filter C into digital pixel signals with a second digit precision less than the first digit precision.
  • the image sensor 10 includes a microlens array 13, a filter array 11, and a pixel array 12.
  • the microlens array 13, the filter array 11, and the pixel array 12 are arranged in sequence.
  • the filter array 11 includes a plurality of filter groups 113.
  • Each filter group 113 includes at least two filters 110 of different colors.
  • the number of filters 110 of each color in each filter group 113 is multiple.
  • the plurality of filter groups 113 may include a first filter group 111 and a plurality of second filter groups 112.
  • the first filter group 111 includes a plurality of first color filters A and a plurality of second color filters B in the same number.
  • the second filter group 112 includes a plurality of first color filters A and a plurality of third color filters C in the same number.
  • the pixel array 12 includes a plurality of pixels 120 and a plurality of floating diffusion nodes FD (as shown in FIG. 7). Each pixel 120 corresponds to one filter 110 of the filter array 11. The pixel 120 is used to receive light passing through the corresponding filter 110 to generate an electrical signal. The pixels 120 corresponding to the filters 110 of the same color in the same filter group 113 share a floating diffusion node FD, so that the electrical signals generated by the pixels 120 corresponding to the filters 110 of the same color in the same filter group 113 can be Merge at the corresponding floating diffusion node FD.
  • the microlens array 13 includes a plurality of microlens groups 131.
  • One microlens group 131 in the microlens array 13 corresponds to one filter group 113 (the first filter group 111 or the second filter group 112), and a plurality of pixels corresponding to the one filter group 113 120 corresponds.
  • each microlens group 131 includes a plurality of microlenses 130, and each microlens 130 corresponds to a filter 110 and a pixel 120.
  • each microlens group 131 includes a microlens 130, and each microlens 130 corresponds to a filter group 113, and a plurality of filters corresponding to the one filter group 113 120 pixels correspond to each other.
  • each filter array 11 includes a plurality of first filter groups 111 and a plurality of second filter groups 112.
  • Each first filter group 111 includes a plurality of first color filters A and a plurality of second color filters B in the same number.
  • Each second filter group 112 includes a plurality of first color filters A and a plurality of third color filters C in the same number.
  • the color composition modes of the first color filter A, the second color filter B, and the third color filter C can be multiple.
  • the first color filter A can be a green filter G
  • the second color filter B may be a red filter R
  • the third color filter C may be a blue filter Bu
  • the first color filter A may be a yellow filter Y
  • the two-color filter B may be a red filter R
  • the third-color filter C may be a blue filter Bu.
  • the color composition of the first color filter A, the second color filter B, and the third color filter C is not limited to the composition shown in the above two examples.
  • a plurality of first filter groups 111 may be arranged in a first diagonal direction D1, and a plurality of second filter groups 112 may be arranged in a second diagonal direction D2, and the first diagonal direction D1 may be aligned with The second diagonal direction D2 is different.
  • the first filter The group 111 and the second filter group 112 may be arranged adjacently in the vertical direction and the horizontal direction of the image sensor 10.
  • the number of filters 110 in the first filter group 111 are all N*N
  • the number of filters 110 in the second filter group 112 are all N*N, where N is greater than or An integer equal to 2.
  • the value of N may be 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, etc., which are not limited here.
  • the arrangement of the multiple filters 110 in each first filter group 111 may be: (1) Please refer to FIG. 3, multiple first color filters A and multiple second color filters The light sheet B is arranged adjacently in the vertical and horizontal directions of the image sensor 10 (shown in FIG. 1); (2) Please refer to FIG. 4, a plurality of filters 110 are arranged row by row, and multiple filters in the same row The colors of the sheets 110 are the same; (3) Please refer to FIG. 5, a plurality of filters 110 are arranged in a row, and the colors of the plurality of filters 110 in the same row are the same.
  • the arrangement of the multiple filters 110 in each first filter group 111 is not limited to this.
  • the arrangement of the multiple filters 110 in each second filter group 112 may be: (1) Please refer to FIG. 3, multiple first color filters A and multiple third color filters The light sheet C is arranged adjacently in the vertical and horizontal directions of the image sensor 10 (shown in FIG. 1); (2) Please refer to FIG. 4, a plurality of filters 110 are arranged row by row, and multiple filters in the same row The colors of the sheets 110 are the same; (3) Please refer to FIG. 5, a plurality of filters 110 are arranged in a row, and the colors of the plurality of filters 110 in the same row are the same.
  • the arrangement of the multiple filters 110 in each second filter group 112 is not limited to this.
  • FIG. 3 is a schematic diagram of the arrangement of some filters 110 in the filter array 11 according to an embodiment of the present application. Please refer to Figure 3, the arrangement of some filters 110 is: A B A C
  • the plurality of first filter groups 111 are arranged in the first diagonal direction D1 (for example, the direction where the upper left corner and the lower right corner of the filter array 11 in FIG. 3 are connected), and the plurality of second filters
  • the light sheet group 112 is arranged in the second diagonal direction D2 (for example, the direction where the lower left corner and the upper right corner of the filter array 11 in FIG. 3 are connected), and the first diagonal direction D1 is different from the second diagonal direction D2
  • the first diagonal direction D1 is perpendicular to the second diagonal direction D2.
  • first diagonal direction D1 and the second diagonal direction D2 are not limited to the diagonal, but also include directions parallel to the diagonal.
  • the "direction" here is not a single direction, but can be understood as the concept of a "straight line” indicating the arrangement, and there can be two-way directions at both ends of the straight line.
  • the first diagonal direction D1 may also be the direction connecting the lower left corner and the upper right corner of the filter array 11
  • the second diagonal direction D2 may also be the upper left corner of the filter array 11. The direction in which the corner is connected to the lower right corner. At this time, the positions of the first filter group 111 and the second filter group 112 are transformed corresponding to the diagonal direction.
  • the first filter group 111 and the second filter group 112 are arranged adjacently in the vertical direction V of the image sensor 10 (shown in FIG. 1), and also arranged adjacently in the horizontal direction H . That is, the plurality of filter groups 113 are periodically arranged in the vertical direction V in the order of the first filter group 111 and the second filter group 112, and the plurality of filter groups 113 are arranged in the horizontal direction H.
  • the first filter group 111 and the second filter group 112 are periodically arranged in the order.
  • first filter group 111 and the second filter group 112 are arranged adjacently in the vertical direction V, and also arranged adjacently in the horizontal direction H. It is not limited to the way shown in FIG. 3, and may also be : A plurality of filter groups 113 are arranged in the order of the first filter group 111 and the second filter group 112 or the order of the second filter group 112 and the first filter group 111 in the vertical direction V Periodically arranged (from left to right, from top to bottom, the same below), a plurality of filter groups 113 are arranged in the horizontal direction H in the order of the first filter group 111 and the second filter group 112 or The order of the second filter group 112 and the first filter group 111 is periodically arranged (from left to right, from top to bottom, the same below).
  • a plurality of first color filters A and a plurality of second color filters B are arranged adjacently in the vertical direction V and the horizontal direction H. That is, in the vertical direction V, the first color filter A and the second color filter B are alternately arranged, and in the horizontal direction H, the first color filter A and the second color filter B are alternately arranged arrangement.
  • a plurality of first color filters A and a plurality of third color filters C are arranged adjacently in the vertical direction V and the horizontal direction H. That is, in the vertical direction V, the first color filter A and the third color filter C are alternately arranged, and in the horizontal direction H, the first color filter A and the third color filter C are alternately arranged arrangement.
  • the arrangement of some filters 110 in the filter array 11 can also be:
  • A is the first color filter
  • B is the second color filter
  • C is the third color filter.
  • the number of filters 110 in each first filter group 111 is 3*3
  • the number of filters 110 in each second filter group 112 is 3*3.
  • the plurality of first filter groups 111 are arranged in the first diagonal direction D1 (for example, the direction where the upper left corner and the lower right corner of the filter array 11 are connected), and the plurality of second filter groups 111
  • the group 112 is arranged in the second diagonal direction D2 (for example, the direction connecting the lower left corner and the upper right corner of the filter array 11), the first diagonal direction D1 is different from the second diagonal direction D2, for example, the first The diagonal direction D1 is perpendicular to the second diagonal direction D2.
  • the first filter group 111 and the second filter group 112 are arranged adjacently in the vertical direction V of the image sensor 10 (shown in FIG. 1), and are also adjacently arranged in the horizontal direction H Layout. That is, the plurality of filter groups 113 in the vertical direction V follow the order of the first filter group 111 and the second filter group 112 or the order of the second filter group 112 and the first filter group 111 The order is arranged periodically, and the plurality of filter groups 113 are arranged in the order of the first filter group 111 and the second filter group 112 or the second filter group 112 and the first filter in the horizontal direction H The order of the group 111 is arranged periodically.
  • a plurality of first color filters A and a plurality of second color filters B are arranged adjacently in the vertical direction V and the horizontal direction H. That is, in the vertical direction V, the first color filter A and the second color filter B are alternately arranged, and in the horizontal direction H, the first color filter A and the second color filter B are alternately arranged arrangement.
  • a plurality of first color filters A and a plurality of third color filters C are arranged adjacently in the vertical direction V and the horizontal direction H. That is, in the vertical direction V, the first color filter A and the third color filter C are alternately arranged, and in the horizontal direction H, the first color filter A and the third color filter C are alternately arranged arrangement.
  • the arrangement of some filters 110 in the filter array 11 can also be:
  • A is the first color filter
  • B is the second color filter
  • C is the third color filter.
  • the number of filters 110 in each first filter group 111 is 4*4
  • the number of filters 110 in each second filter group 112 is 4*4.
  • the plurality of first filter groups 111 are arranged in the first diagonal direction D1 (for example, the direction where the upper left corner and the lower right corner of the filter array 11 are connected), and the plurality of second filter groups 111
  • the group 112 is arranged in the second diagonal direction D2 (for example, the direction connecting the lower left corner and the upper right corner of the filter array 11), the first diagonal direction D1 is different from the second diagonal direction D2, for example, the first The diagonal direction D1 is perpendicular to the second diagonal direction D2.
  • the first filter group 111 and the second filter group 112 are arranged adjacently in the vertical direction V of the image sensor 10 (shown in FIG. 1), and are also adjacently arranged in the horizontal direction H Layout. That is, the plurality of filter groups 113 in the vertical direction V follow the order of the first filter group 111 and the second filter group 112 or the order of the second filter group 112 and the first filter group 111 The order is arranged periodically, and the plurality of filter groups 113 are arranged in the order of the first filter group 111 and the second filter group 112 or the second filter group 112 and the first filter in the horizontal direction H The order of the group 111 is arranged periodically.
  • a plurality of first color filters A and a plurality of second color filters B are arranged adjacently in the vertical direction V and the horizontal direction H. That is, in the vertical direction V, the first color filter A and the second color filter B are alternately arranged, and in the horizontal direction H, the first color filter A and the second color filter B are alternately arranged arrangement.
  • a plurality of first color filters A and a plurality of third color filters C are arranged adjacently in the vertical direction V and the horizontal direction H. That is, in the vertical direction V, the first color filter A and the third color filter C are alternately arranged, and in the horizontal direction H, the first color filter A and the third color filter C are alternately arranged arrangement.
  • FIG. 4 is a schematic diagram of the arrangement of some filters 110 in the filter array 11 according to another embodiment of the present application. Please refer to FIG. 4, the arrangement of some filters 110 is as follows:
  • A is the first color filter
  • B is the second color filter
  • C is the third color filter.
  • the number of filters 110 in each first filter group 111 is 2*2
  • the number of filters 110 in each second filter group 112 is 2*2.
  • the plurality of first filter groups 111 are arranged in the first diagonal direction D1 (for example, the direction where the upper left corner and the lower right corner of the filter array 11 in FIG. 4 are connected), and the plurality of second filters
  • the light sheet group 112 is arranged in the second diagonal direction D2 (for example, the direction where the lower left corner and the upper right corner of the filter array 11 in FIG. 4 are connected), and the first diagonal direction D1 is different from the second diagonal direction D2
  • the first diagonal direction D1 is perpendicular to the second diagonal direction D2.
  • the first filter group 111 and the second filter group 112 are arranged adjacently in the vertical direction V of the image sensor 10 (shown in FIG. 1), and also arranged adjacently in the horizontal direction H . That is, the plurality of filter groups 113 in the vertical direction V follow the order of the first filter group 111 and the second filter group 112 or the order of the second filter group 112 and the first filter group 111 The order is arranged periodically, and the plurality of filter groups 113 are arranged in the order of the first filter group 111 and the second filter group 112 or the second filter group 112 and the first filter in the horizontal direction H The order of the group 111 is arranged periodically.
  • the multiple filters 110 are arranged row by row, and the multiple filters 110 in the same row have the same color, for example, the multiple filters 110 in the first row
  • the light sheets 110 are all first color filters A
  • the plurality of light filters 110 in the second row are all second color filters B.
  • the multiple filters 110 are arranged row by row, and the multiple filters 110 in the same row have the same color.
  • the multiple filters 110 in the first row are all One color filter A
  • the multiple filters 110 in the second row are all third color filters C.
  • the arrangement of some filters 110 in the filter array 11 can also be:
  • A is the first color filter
  • B is the second color filter
  • C is the third color filter.
  • the number of filters 110 in each first filter group 111 is 3*3
  • the number of filters 110 in each second filter group 112 is 3*3.
  • the plurality of first filter groups 111 are arranged in the first diagonal direction D1 (for example, the direction where the upper left corner and the lower right corner of the filter array 11 are connected), and the plurality of second filter groups 111
  • the group 112 is arranged in the second diagonal direction D2 (for example, the direction connecting the lower left corner and the upper right corner of the filter array 11), the first diagonal direction D1 is different from the second diagonal direction D2, for example, the first The diagonal direction D1 is perpendicular to the second diagonal direction D2.
  • the first filter group 111 and the second filter group 112 are arranged adjacently in the vertical direction V of the image sensor 10 (shown in FIG. 1), and are also adjacently arranged in the horizontal direction H Layout. That is, the plurality of filter groups 113 in the vertical direction V follow the order of the first filter group 111 and the second filter group 112 or the order of the second filter group 112 and the first filter group 111 The order is arranged periodically, and the plurality of filter groups 113 are arranged in the order of the first filter group 111 and the second filter group 112 or the second filter group 112 and the first filter in the horizontal direction H The order of the group 111 is arranged periodically.
  • the multiple filters 110 are arranged row by row, and the multiple filters 110 in the same row have the same color, for example, the multiple filters 110 in the first row
  • the filters 110 are all first color filters A
  • the multiple filters 110 in the second row are all second color filters B
  • the multiple filters 110 in the third row are all first color filters.
  • the multiple filters 110 are arranged row by row, and the multiple filters 110 in the same row have the same color.
  • the multiple filters 110 in the first row are all One color filter A
  • the multiple filters 110 in the second row are all third color filters C
  • the multiple filters 110 in the third row are all first color filters A.
  • the arrangement of some filters 110 in the filter array 11 can also be:
  • A is the first color filter
  • B is the second color filter
  • C is the third color filter.
  • the number of filters 110 in each first filter group 111 is 4*4
  • the number of filters 110 in each second filter group 112 is 4*4.
  • the plurality of first filter groups 111 are arranged in the first diagonal direction D1 (for example, the direction where the upper left corner and the lower right corner of the filter array 11 are connected), and the plurality of second filter groups 111
  • the group 112 is arranged in the second diagonal direction D2 (for example, the direction connecting the lower left corner and the upper right corner of the filter array 11), the first diagonal direction D1 is different from the second diagonal direction D2, for example, the first The diagonal direction D1 is perpendicular to the second diagonal direction D2.
  • the first filter group 111 and the second filter group 112 are arranged adjacently in the vertical direction V of the image sensor 10 (shown in FIG. 1), and are also adjacently arranged in the horizontal direction H Layout. That is, the plurality of filter groups 113 in the vertical direction V follow the order of the first filter group 111 and the second filter group 112 or the order of the second filter group 112 and the first filter group 111 The order is arranged periodically, and the plurality of filter groups 113 are arranged in the order of the first filter group 111 and the second filter group 112 or the second filter group 112 and the first filter in the horizontal direction H The order of the group 111 is arranged periodically.
  • the multiple filters 110 are arranged row by row, and the multiple filters 110 in the same row have the same color, for example, the multiple filters 110 in the first row
  • the filters 110 are all first color filters A
  • the multiple filters 110 in the second row are all second color filters B
  • the multiple filters 110 in the third row are all first color filters.
  • the multiple filters 110 in the fourth row are all the second color filters B.
  • the multiple filters 110 are arranged row by row, and the multiple filters 110 in the same row have the same color.
  • the multiple filters 110 in the first row are all One color filter A
  • the multiple filters 110 in the second row are all third color filters C
  • the multiple filters 110 in the third row are all first color filters A
  • the fourth row The plurality of filters 110 are all third color filters C.
  • FIG. 5 is a schematic diagram of the arrangement of some filters 110 in the filter array 11 according to another embodiment of the present application. Please refer to FIG. 5, the arrangement of some filters 110 is:
  • A is the first color filter
  • B is the second color filter
  • C is the third color filter.
  • the number of filters 110 in each first filter group 111 is 2*2
  • the number of filters 110 in each second filter group 112 is 2*2.
  • the plurality of first filter groups 111 are arranged in the first diagonal direction D1 (for example, the direction where the upper left corner and the lower right corner of the filter array 11 in FIG. 5 are connected), and the plurality of second filters
  • the light sheet group 112 is arranged in the second diagonal direction D2 (for example, the direction where the lower left corner and the upper right corner of the filter array 11 in FIG. 5 are connected), and the first diagonal direction D1 is different from the second diagonal direction D2
  • the first diagonal direction D1 is perpendicular to the second diagonal direction D2.
  • the first filter group 111 and the second filter group 112 are arranged adjacently in the vertical direction V of the image sensor 10 (shown in FIG. 1), and also arranged adjacently in the horizontal direction H . That is, the plurality of filter groups 113 in the vertical direction V follow the order of the first filter group 111 and the second filter group 112 or the order of the second filter group 112 and the first filter group 111 The order is arranged periodically, and the plurality of filter groups 113 are arranged in the order of the first filter group 111 and the second filter group 112 or the second filter group 112 and the first filter in the horizontal direction H The order of the group 111 is arranged periodically.
  • a plurality of filters 110 are arranged one by one, and the colors of the plurality of filters 110 in the same column are the same, for example, the plurality of filters 110 in the first column
  • the light sheets 110 are all the first color filters A
  • the multiple filters 110 in the second row are all the second color filters B.
  • the multiple filters 110 are arranged in a row, and the multiple filters 110 in the same row have the same color.
  • the multiple filters 110 in the first row are all arranged in the first row.
  • One color filter A, and the plurality of filters 110 in the second row are all third color filters C.
  • the arrangement of some filters 110 in the filter array 11 can also be:
  • A is the first color filter
  • B is the second color filter
  • C is the third color filter.
  • the number of filters 110 in each first filter group 111 is 3*3
  • the number of filters 110 in each second filter group 112 is 3*3.
  • the multiple first filter groups 111 are arranged in the first diagonal direction D1 (for example, the direction where the upper left corner and the lower right corner of the middle filter array 11 are connected), and the multiple second filters
  • the slice group 112 is arranged in the second diagonal direction D2 (for example, the direction connecting the lower left corner and the upper right corner of the filter array 11), the first diagonal direction D1 is different from the second diagonal direction D2, for example, the first diagonal direction D1 is different from the second diagonal direction D2.
  • the diagonal direction D1 is perpendicular to the second diagonal direction D2.
  • the first filter group 111 and the second filter group 112 are arranged adjacently in the vertical direction V of the image sensor 10 (shown in FIG. 1), and are also adjacently arranged in the horizontal direction H Layout. That is, the plurality of filter groups 113 in the vertical direction V follow the order of the first filter group 111 and the second filter group 112 or the order of the second filter group 112 and the first filter group 111 The order is arranged periodically, and the plurality of filter groups 113 are arranged in the order of the first filter group 111 and the second filter group 112 or the second filter group 112 and the first filter in the horizontal direction H The order of the group 111 is arranged periodically.
  • the multiple filters 110 are arranged one by one, and the multiple filters 110 in the same column have the same color, for example, the multiple filters 110 in the first column have the same color.
  • the filters 110 are all first color filters A
  • the multiple filters 110 in the second row are all second color filters B
  • the multiple filters 110 in the third row are all first color filters.
  • the multiple filters 110 are arranged in a row, and the multiple filters 110 in the same row have the same color.
  • the multiple filters 110 in the first row are all arranged in the first row.
  • One color filter A, the multiple filters 110 in the second row are all third color filters C, and the multiple filters 110 in the third row are all first color filters A.
  • the arrangement of some filters 110 in the filter array 11 can also be:
  • A is the first color filter
  • B is the second color filter
  • C is the third color filter.
  • the number of filters 110 in each first filter group 111 is 4*4
  • the number of filters 110 in each second filter group 112 is 4*4.
  • the plurality of first filter groups 111 are arranged in the first diagonal direction D1 (for example, the direction where the upper left corner and the lower right corner of the filter array 11 are connected), and the plurality of second filter groups 111
  • the group 112 is arranged in the second diagonal direction D2 (for example, the direction connecting the lower left corner and the upper right corner of the filter array 11), the first diagonal direction D1 is different from the second diagonal direction D2, for example, the first The diagonal direction D1 is perpendicular to the second diagonal direction D2.
  • the first filter group 111 and the second filter group 112 are arranged adjacently in the vertical direction V of the image sensor 10 (shown in FIG. 1), and are also adjacently arranged in the horizontal direction H Layout. That is, the plurality of filter groups 113 in the vertical direction V follow the order of the first filter group 111 and the second filter group 112 or the order of the second filter group 112 and the first filter group 111 The order is arranged periodically, and the plurality of filter groups 113 are arranged in the order of the first filter group 111 and the second filter group 112 or the second filter group 112 and the first filter in the horizontal direction H The order of the group 111 is arranged periodically.
  • the multiple filters 110 are arranged one by one, and the multiple filters 110 in the same column have the same color, for example, the multiple filters 110 in the first column have the same color.
  • the filters 110 are all first color filters A
  • the multiple filters 110 in the second row are all second color filters B
  • the multiple filters 110 in the third row are all first color filters.
  • the multiple filters 110 in the fourth row are all the second color filters B.
  • the multiple filters 110 are arranged in a row, and the multiple filters 110 in the same row have the same color.
  • the multiple filters 110 in the first row are all arranged in the first row.
  • One color filter A, the multiple filters 110 in the second row are all third color filters C
  • the multiple filters 110 in the third row are all first color filters A
  • the fourth row The plurality of filters 110 are all third color filters C.
  • FIG. 6 is a schematic diagram of the arrangement of some filters 110 in the filter array 11 according to another embodiment of the present application. Please refer to FIG. 6, the arrangement of some filters 110 is:
  • A is the first color filter
  • B is the second color filter
  • C is the third color filter.
  • the number of filters 110 in each first filter group 111 is 2*2
  • the number of filters 110 in each second filter group 112 is 2*2.
  • the plurality of first filter groups 111 are arranged in the first diagonal direction D1 (for example, the direction where the upper left corner and the lower right corner of the filter array 11 in FIG. 6 are connected), and the plurality of second filters
  • the light sheet group 112 is arranged in the second diagonal direction D2 (for example, the direction where the lower left corner and the upper right corner of the filter array 11 in FIG. 6 are connected), and the first diagonal direction D1 is different from the second diagonal direction D2
  • the first diagonal direction D1 is perpendicular to the second diagonal direction D2.
  • the first filter group 111 and the second filter group 112 are arranged adjacently in the vertical direction V of the image sensor 10 (shown in FIG. 1), and also arranged adjacently in the horizontal direction H . That is, the plurality of filter groups 113 in the vertical direction V follow the order of the first filter group 111 and the second filter group 112 or the order of the second filter group 112 and the first filter group 111 The order is arranged periodically, and the plurality of filter groups 113 are arranged in the order of the first filter group 111 and the second filter group 112 or the second filter group 112 and the first filter in the horizontal direction H The order of the group 111 is arranged periodically.
  • a plurality of filters 110 are arranged one by one, and the colors of the plurality of filters 110 in the same column are the same, for example, the plurality of filters 110 in the first column
  • the light sheets 110 are all the first color filters A
  • the multiple filters 110 in the second row are all the second color filters B.
  • the multiple filters 110 are arranged row by row, and the multiple filters 110 in the same row have the same color.
  • the multiple filters 110 in the first row are all One color filter A
  • the multiple filters 110 in the second row are all third color filters C.
  • the arrangement of some filters 110 in the filter array 11 can also be:
  • A is the first color filter
  • B is the second color filter
  • C is the third color filter.
  • the number of filters 110 in each first filter group 111 is 3*3
  • the number of filters 110 in each second filter group 112 is 3*3.
  • the multiple first filter groups 111 are arranged in the first diagonal direction D1 (for example, the direction where the upper left corner and the lower right corner of the middle filter array 11 are connected), and the multiple second filters
  • the slice group 112 is arranged in the second diagonal direction D2 (for example, the direction where the lower left corner and the upper right corner of the middle filter array 11 are connected), and the first diagonal direction D1 is different from the second diagonal direction D2, for example,
  • the first diagonal direction D1 is perpendicular to the second diagonal direction D2.
  • the first filter group 111 and the second filter group 112 are arranged adjacently in the vertical direction V of the image sensor 10 (shown in FIG. 1), and are also adjacently arranged in the horizontal direction H Layout. That is, the plurality of filter groups 113 in the vertical direction V follow the order of the first filter group 111 and the second filter group 112 or the order of the second filter group 112 and the first filter group 111 The order is arranged periodically, and the plurality of filter groups 113 are arranged in the order of the first filter group 111 and the second filter group 112 or the second filter group 112 and the first filter in the horizontal direction H The order of the group 111 is arranged periodically.
  • the multiple filters 110 are arranged row by row, and the multiple filters 110 in the same row have the same color, for example, the multiple filters 110 in the first row
  • the filters 110 are all first color filters A
  • the multiple filters 110 in the second row are all second color filters B
  • the multiple filters 110 in the third row are all first color filters.
  • the multiple filters 110 are arranged in a row, and the multiple filters 110 in the same row have the same color.
  • the multiple filters 110 in the first row are all arranged in the first row.
  • One color filter A, the multiple filters 110 in the second row are all third color filters C, and the multiple filters 110 in the third row are all first color filters A.
  • the arrangement of some filters 110 in the filter array 11 can also be:
  • A is the first color filter
  • B is the second color filter
  • C is the third color filter.
  • the number of filters 110 in each first filter group 111 is 4*4
  • the number of filters 110 in each second filter group 112 is 4*4.
  • the plurality of first filter groups 111 are arranged in the first diagonal direction D1 (for example, the direction where the upper left corner and the lower right corner of the filter array 11 are connected), and the plurality of second filter groups 111
  • the group 112 is arranged in the second diagonal direction D2 (for example, the direction connecting the lower left corner and the upper right corner of the filter array 11), the first diagonal direction D1 is different from the second diagonal direction D2, for example, the first The diagonal direction D1 is perpendicular to the second diagonal direction D2.
  • the first filter group 111 and the second filter group 112 are arranged adjacently in the vertical direction V of the image sensor 10 (shown in FIG. 1), and are also adjacently arranged in the horizontal direction H Layout. That is, the plurality of filter groups 113 in the vertical direction V follow the order of the first filter group 111 and the second filter group 112 or the order of the second filter group 112 and the first filter group 111 The order is arranged periodically, and the plurality of filter groups 113 are arranged in the order of the first filter group 111 and the second filter group 112 or the second filter group 112 and the first filter in the horizontal direction H The order of the group 111 is arranged periodically.
  • the multiple filters 110 are arranged one by one, and the multiple filters 110 in the same column have the same color, for example, the multiple filters 110 in the first column have the same color.
  • the filters 110 are all first color filters A
  • the multiple filters 110 in the second row are all second color filters B
  • the multiple filters 110 in the third row are all first color filters.
  • the multiple filters 110 in the fourth row are all the second color filters B.
  • the multiple filters 110 are arranged row by row, and the multiple filters 110 in the same row have the same color.
  • the multiple filters 110 in the first row are all One color filter A
  • the multiple filters 110 in the second row are all third color filters C
  • the multiple filters 110 in the third row are all first color filters A
  • the fourth row The plurality of filters 110 are all third color filters C.
  • the electrical signals generated by the multiple pixels 120 corresponding to each first filter set 111 can be combined to generate the first analog pixel signal and the third analog pixel signal. Pixel signal.
  • the electrical signals generated by the multiple pixels 120 corresponding to each second filter group 112 can be combined to generate a second analog pixel signal and a fourth analog pixel signal.
  • the electrical signals generated by the multiple pixels 120 corresponding to the multiple first color filters A in each first filter group 111 are in the multiple first color filters A in the first filter group 111
  • the corresponding floating diffusion node FD shared by a plurality of pixels 120 is merged to generate the first analog pixel signal.
  • the electrical signals generated by the multiple pixels 120 corresponding to the multiple second color filters B in each first filter group 111 correspond to the multiple second color filters B in the first filter group 111 A floating diffusion node shared by a plurality of pixels 120 is combined to generate a third analog pixel signal.
  • the electrical signals generated by the multiple pixels 120 corresponding to the multiple first color filters A in each second filter group 112 correspond to the multiple first color filters A in the second filter group 112 A floating diffusion node shared by a plurality of pixels 120 is combined to generate a second analog pixel signal.
  • the electrical signals generated by the plurality of pixels 120 corresponding to the plurality of third color filters C in each second filter group 112 correspond to the plurality of third color filters C in the second filter group 112
  • a floating diffusion node shared by a plurality of pixels 120 is combined to generate a fourth analog pixel signal.
  • each pixel 120 includes a photoelectric element (for example, PD11/PD12/PD13/PD14/PD21/PD22/PD23/PD24) and an exposure control circuit TRF.
  • the pixel array 12 also includes a readout circuit 121.
  • Each set of readout circuits 121 includes a reset circuit RST, a floating diffusion node FD, an amplifier circuit SF and a selection circuit SEL, a floating diffusion node FD and a reset circuit RST.
  • a selection circuit SEL is connected to an amplifier circuit SF.
  • two pixels 120 pixels including PD11 and pixels including PD22
  • a selection circuit SEL is connected to an amplifier circuit SF.
  • two pixels 120 pixels including PD11 and pixels including PD22
  • the readout circuit 121, the two pixels 120 corresponding to the two second color filters B also share one set of readout circuit 121, and the two second color filters B
  • the readout circuit 121 shared by the corresponding two pixels 120 and the readout circuit 121 shared by the two pixels 120 corresponding to the two first color filters A are different readout circuits 121.
  • the exposure control circuits TRF in the two pixels 120 corresponding to the two first color filters A are both connected to the floating diffusion node FD of the corresponding readout circuit 121, and the two second colors
  • the exposure control circuits TRF in the two pixels 120 corresponding to the filter B are both connected to the floating diffusion node FD of the corresponding readout circuit 121.
  • two pixels 120 pixels including PD13 and pixels including PD24
  • two pixels 120 corresponding to two first color filters A share one group
  • the readout circuit 121, the two pixels 120 corresponding to the two third color filters C also share one set of readout circuit 121, and the two second color filters B
  • the readout circuit 121 shared by the corresponding two pixels 120 and the readout circuit 121 shared by the two pixels 120 corresponding to the two first color filters A are different readout circuits 121.
  • the exposure control circuits TRF in the two pixels 120 corresponding to the two first color filters A are both connected to the floating diffusion node FD of the corresponding readout circuit 121, and the two third colors
  • the exposure control circuits TRF in the two pixels 120 corresponding to the filter C are both connected to the floating diffusion node FD of the corresponding readout circuit 121.
  • the control terminal TX of the exposure control circuit TRF of the pixel 120 corresponding to the filter 110 of the same color in the same filter group 113 is turned on at the same time, so that the filters of the same color in the same filter group 113 are turned on at the same time.
  • the charges generated by the plurality of pixels 120 corresponding to the sheet 110 after receiving light are transferred to the floating diffusion node FD shared by the plurality of pixels 120 corresponding to the filter 110 of the same color in the same filter group 113.
  • the control terminals TX of the exposure control circuit TRF of the pixels 120 corresponding to the filters 110 of different colors are turned on simultaneously or time-sharing. Specifically, as shown in FIGS.
  • the reset circuit RST performs the two pixels 120 corresponding to the two first color filters A (
  • the floating diffusion node FD shared by the pixel including PD11 and the pixel including PD22 is reset.
  • the control terminal T1 of the selection circuit SEL shared by the two pixels 120 corresponding to the two first color filters A is turned on to output the reset level at the corresponding floating diffusion node FD.
  • the control terminal TX1 of the exposure control circuit TRF of a pixel 120 (including the pixel of PD11) corresponding to a first color filter A and a pixel 120 (including the pixel of PD22) corresponding to another first color filter A )
  • the control terminal TX2 of the exposure control circuit TRF is turned on at the same time, then the charge generated by one pixel 120 corresponding to a first color filter A after receiving light will be transferred to the two corresponding two first color filters A At the floating diffusion node FD shared by the pixels 120, the charge generated by a pixel 120 corresponding to the other first color filter A after receiving light is also transferred to the two pixels 120 corresponding to the two first color filters A At the shared floating diffusion node FD.
  • the charges generated by the two pixels 120 corresponding to the two first color filters A after receiving light will be merged at the floating diffusion node FD shared by the two pixels 120, and the amplifying circuit SF will treat this floating diffusion node FD
  • the electrical signal corresponding to the charge at the position is amplified to obtain the first analog pixel signal.
  • the control terminal T1 of the selection circuit SEL shared by the two pixels 120 corresponding to the two first color filters A is turned on again, the first analog pixel signal is output to the corresponding analog-to-digital conversion circuit (Analog-to- Digital Converter, ADC) 14.
  • ADC Analog-to- Digital Converter
  • the reset circuit RST resets the floating diffusion node FD shared by the two pixels 120 (pixels including PD12 and pixels including PD21) corresponding to the two second color filters B . Subsequently, the control terminal T2 of the selection circuit SEL shared by the two pixels 120 corresponding to the two second color filters B is turned on to output the reset level at the corresponding floating diffusion node FD.
  • the control terminal TX4 of the exposure control circuit TRF is turned on at the same time, then the charge generated by one pixel 120 corresponding to a second color filter B after receiving light will be transferred to the two corresponding two second color filters B At the floating diffusion node FD shared by the pixels 120, the charge generated by a pixel 120 corresponding to another second color filter B after receiving light is also transferred to the two pixels 120 corresponding to the two second color filters B At the shared floating diffusion node FD.
  • the charges generated by the two pixels 120 corresponding to the two second color filters B after receiving light will be merged at the floating diffusion node FD shared by the two pixels 120, and the amplifying circuit SF will control the floating diffusion node FD.
  • the electrical signal corresponding to the charge at the position is amplified to obtain the third analog pixel signal.
  • the control terminal T2 of the selection circuit SEL shared by the two pixels 120 corresponding to the two second color filters B is turned on again, the third analog pixel signal is output to the corresponding analog-to-digital conversion circuit 14.
  • the combination of electrical signals generated by the two pixels 120 (pixels including PD13 and pixels including PD24) corresponding to the two first color filters A in the second filter group 112 and two third color filters
  • the combination of the electrical signals generated by the two pixels 120 (the pixel including the PD14 and the pixel including the PD23) corresponding to C is the same as this, and will not be repeated here.
  • the control terminal TX of the exposure control circuit TRF of the pixel 120 corresponding to the light sheet 110 may be turned on at the same time or time-sharing.
  • the control terminals TX1 and TX2 of the exposure control circuits TRF of the two pixels 120 corresponding to the two first color filters A are turned on at time t1
  • the two second color filters The control terminals TX3 and TX4 of the exposure control circuit TRF of the two pixels 120 corresponding to slice B are turned on at time t2, where t1 may be equal to t2 (as shown in FIG. 8A) or not equal to t2 (as shown in FIG. 8B) .
  • t1 may be equal to t2 (as shown in FIG. 8A) or not equal to t2 (as shown in FIG. 8B) .
  • control terminals TX3 and TX4 of the exposure control circuits TRF of the two pixels 120 corresponding to the two second color filters B are turned on at the same time, that is, at time t2, so that the two second color filters B
  • the electrical signals generated by the corresponding two pixels 120 are transferred to the floating diffusion node FD shared by the two pixels 120.
  • control terminals TX3 and TX4 of the exposure control circuit TRF of the two pixels 120 corresponding to the two second color filters B may be turned on at the same time first, and then, the two first color filters B
  • the control terminals TX1 and TX2 of the exposure control circuits TRF of the two pixels 120 corresponding to the filter A are turned on at the same time, which is not limited here.
  • each pixel 120 includes an exposure control circuit TRF.
  • each pixel 120 includes photoelectric elements (for example, PD11/PD12/PD13/PD14/PD21/PD22/PD23/PD24/PD31/PD32/PD33/PD34/PD41/PD42/PD43/PD44) And exposure control circuit TRF.
  • the pixel array 12 also includes a readout circuit 121.
  • Each set of readout circuits 121 includes a reset circuit RST, a floating diffusion node FD, an amplifier circuit SF and a selection circuit SEL, a floating diffusion node FD and a reset circuit RST and An amplifier circuit SF is connected, and a selection circuit SEL is connected with an amplifier circuit SF.
  • a reset circuit RST reset circuit
  • a floating diffusion node FD floating diffusion node FD
  • a selection circuit SEL is connected with an amplifier circuit SF.
  • the exposure control circuit TRF in the two pixels 120 corresponding to the two first color filters A and the exposure control in the two pixels 120 corresponding to the two second color filters B The circuits TRF are all connected to the floating diffusion node FD of one sensing circuit 121. As shown in FIGS. 1, 3, and 9, in each second filter set 112, two pixels 120 corresponding to two first color filters A and two third color filters C correspond to Two pixels 120 share a set of readout circuits 121.
  • the exposure control circuit TRF and the two third color filters in the two pixels 120 are both connected to the floating diffusion node FD of one readout circuit 121.
  • the control terminals TX of the exposure control circuits TRF of the plurality of pixels 120 corresponding to the filter 110 of the same color are turned on at the same time, so that the same color in the same filter group 13
  • the charge generated by the pixels 120 corresponding to the plurality of filters 110 after receiving light is transferred to the floating diffusion node FD shared by the plurality of pixels 120 corresponding to the filter set 113.
  • the control terminals of the exposure control circuit TRF of the pixels 120 corresponding to the filters 10 of different colors are turned on in a time sharing manner. Specifically, as shown in FIG. 1, FIG. 3, FIG. 9 and FIG.
  • the reset circuit RST responds to four of the four filters 110 in the first filter group 111.
  • the floating diffusion node FD shared by each pixel 120 is reset.
  • the control terminal T1 of the selection circuit SEL corresponding to the two pixels 120 (the pixel including PD11 and the pixel including PD22) corresponding to the two first color filters A is turned on to output the reset voltage at the corresponding floating diffusion node FD. flat.
  • the control terminal TX1 of the exposure control circuit TRF of a pixel 120 (including pixels of PD11) corresponding to a first color filter A and a pixel 120 corresponding to another first color filter A
  • the control terminal TX2 of the exposure control circuit TRF (including the pixels of PD22) is turned on at the same time, and the charge generated after receiving the light of a pixel 120 (including the pixels of PD11) corresponding to a first color filter A will be transferred to the first filter.
  • the other first color filter A corresponds to The charge generated by one pixel 120 (including the pixel of PD22) after receiving light is also transferred to the floating diffusion node FD shared by the four pixels 120 corresponding to the first filter group 111. In this way, the charges generated by the two pixels 120 corresponding to the two first color filters A after receiving light will be merged at the floating diffusion node FD shared by the four pixels 120, and the amplifying circuit SF will control this floating diffusion node FD.
  • the electrical signal corresponding to the charge at the position is amplified to obtain the first analog pixel signal.
  • the control terminals T1 of the selection circuits SEL corresponding to the two pixels 120 corresponding to the two first color filters A are turned on again, the first analog pixel signal is output to the corresponding analog-to-digital conversion circuit 14.
  • the reset circuit RST resets the floating diffusion node FD shared by the four pixels 120 corresponding to the four filters 110 in the first filter group 111 again.
  • control terminal T1 of the selection circuit SEL corresponding to the two pixels 120 (the pixel including PD12 and the pixel including PD21) corresponding to the two second color filters B is turned on to output the reset voltage at the corresponding floating diffusion node FD. flat.
  • the control terminal TX3 of the exposure control circuit TRF of a pixel 120 (including the pixel of PD12) corresponding to a second color filter B in the first filter group 111 and
  • the control terminal TX4 of the exposure control circuit TRF of a pixel 120 (including PD21 pixels) corresponding to another second color filter B is turned on at the same time, then a second color filter B corresponds to a pixel 120 (including PD12 pixels) Pixel)
  • the charge generated after receiving light is transferred to the floating diffusion node shared by the four pixels 120 corresponding to the first filter group 111 (including PD11 pixels, PD12 pixels, PD21 pixels, and PD22 pixels).
  • the charge generated by a pixel 120 (including the pixel of PD21) corresponding to the second color filter B after receiving light will also be transferred to the floating diffusion shared by the four pixels 120 corresponding to the first filter group 111 At node FD.
  • the charges generated by the two pixels 120 corresponding to the two second color filters B after receiving light will be merged at the floating diffusion node FD shared by the four pixels 120, and the amplifying circuit SF will control the floating diffusion node FD.
  • the electrical signal corresponding to the charge at the position is amplified to obtain the third analog pixel signal.
  • the third analog pixel signal is output to the corresponding analog-to-digital conversion circuit 14.
  • the combination of electrical signals generated by the two pixels 120 pixels including PD13 and pixels including PD24) corresponding to the two first color filters A in the second filter group 112 and two third color filters
  • the combination of the electrical signals generated by the two pixels 120 is the same as this, and will not be repeated here.
  • control terminals TX1 and TX2 of the exposure control circuits TRF of the two pixels 120 corresponding to the two first color filters A are first to be turned on at the same time.
  • control terminals TX3 and TX4 of the exposure control circuits TRF of the two pixels 120 corresponding to the two second color filters B are turned on at the same time first, which is not limited here.
  • the image sensor usually also includes an analog-to-digital conversion circuit.
  • the pixel array includes N*M pixels
  • the number of analog-to-digital conversion circuits is M, that is, each pixel column corresponds to one analog-to-digital conversion circuit.
  • the analog-to-digital conversion circuit performs analog-to-digital conversion
  • the M analog-to-digital conversion circuits simultaneously perform analog-to-digital conversion on the analog pixel signals output by the M pixels corresponding to the column in the first row, and then perform the analog-to-digital conversion on the M corresponding to the column in the second row.
  • the analog pixel signal output by each pixel is converted from analog to digital, and then the analog pixel signal output from the M pixels corresponding to the column in the 3rd row is converted from analog to digital, and so on. Finally, the M pixels corresponding to the column in the Nth row are converted from analog to digital.
  • the output analog pixel signal undergoes analog-to-digital conversion. Assuming that it takes t0 time to convert the analog pixel signals output by the M pixels of each row into digital pixel signals, it takes a total time for the M analog-to-digital conversion circuits to convert the analog pixel signals output by the N rows of pixels into digital pixel signals. Only N*t0 can complete the analog-to-digital conversion of N*M analog pixel signals.
  • the image sensor 10 combines the electrical signals output by the pixels 120 by sharing the floating diffusion node FD to obtain the combined analog pixel signal.
  • the pixel array 12 includes N*M pixels
  • the number of analog-to-digital conversion circuits 14 may be M/S, because the electrical signals of the pixels 120 corresponding to the same color filter 110 in the same filter group 113 are combined As a result, the number of analog pixel signals is reduced to N*M/S (S as shown in FIG.
  • the frame rate of the image corresponding to the image signal output by the image sensor 10 is related to the bandwidth of the I/F interface between the image sensor 10 and the processor, and also related to the time consumption of analog-to-digital conversion.
  • the image sensor 10 in the embodiment of the present application uses a shared floating diffusion node FD to reduce the amount of data to be output, and reduces the time consumption of analog-to-digital conversion, which is beneficial to increase the frame rate.
  • the image sensor 10 of the embodiment of the present application will have great advantages when applied to application scenarios that require high frame rates such as video chat and motion capture.
  • the analog-to-digital conversion circuit 14 of the embodiment of the present application converts the analog pixel signal obtained by the pixel 120 corresponding to the first color filter A into a digital pixel signal with the first digit precision.
  • the analog-to-digital conversion circuit 14 converts the analog pixel signals obtained by the pixels 120 corresponding to the second color filter B and the third color filter C into digital pixel signals with a second digit precision less than the first digit precision.
  • the analog pixel signals obtained by the pixels 120 corresponding to the first color filter A, the second color filter B, and the third color filter C are converted into
  • the speed of analog-to-digital conversion can be increased, the time-consuming of analog-to-digital conversion can be reduced, and the frame rate can be improved.
  • the analog-to-digital conversion circuit 14 includes a digital-to-analog converter 141, a counter control section 142, a comparator 143, and a counter 144.
  • the digital-to-analog converter 141 includes a first comparison signal generator 1411 and a second comparison signal generator 1412.
  • the counter control unit 142 includes a first bit number signal generating unit 1421 and a second bit number signal generating unit 1422.
  • the switch of the digital-to-analog converter 141 is connected to the first comparison signal generator 1411 ,
  • the switch of the counter control unit 142 is connected to the first digit signal generating unit 1421.
  • the reference voltage Vramp1 that changes in a ramp manner generated by the first comparison signal generator 1411 is supplied to the comparator 143, and the control signal is supplied to the counter 144 from the first digit signal generation part 1421 of the counter control part 142, and instructs the counter 144 to increase by 10%. Bit precision for analog-to-digital conversion.
  • the comparator 143 compares the reference voltage Vramp1 with the voltage signal Vinput input from the analog-to-digital conversion circuit 14. When the reference voltage Vramp1 is greater than the voltage signal Vinput, the comparator 143 outputs "1" as an output signal, and the counter 144 starts counting. When the reference voltage Vramp1 drops below the voltage signal Vinput, the comparator 143 outputs "0" as an output signal, and the counter 144 stops the counting operation.
  • the switch of the digital-to-analog converter 141 is connected To the second comparison signal generator 1412, the switch of the counter control section 142 is connected to the second digit signal generation section 1422.
  • the reference voltage Vramp2 that changes in a ramp manner generated by the second comparison signal generator 1412 is supplied to the comparator 143, and the control signal is supplied to the counter 144 from the second digit signal generation part 1422 of the counter control part 142, and instructs the counter 144 to change to 8. Bit precision for analog-to-digital conversion.
  • the comparator 143 compares the reference voltage Vramp2 with the voltage signal Vinput input from the analog-to-digital conversion circuit 14. When the reference voltage Vramp2 is greater than the voltage signal Vinput, the comparator 143 outputs "1" as an output signal, and the counter 144 starts counting. When the reference voltage Vramp2 drops below the voltage signal Vinput, the comparator 143 outputs "0" as an output signal, and the counter 144 stops the counting operation.
  • the reference voltage Vramp1 changes 2 10 , that is, 1024 times; when the analog-to-digital conversion circuit 14 operates at 8-bit precision, the reference voltage Vramp1 changes 2 8 , that is, 256 times. Since each cycle time is limited by the circuit design, the minimum cycle time is fixed. Therefore, the analog-to-digital conversion time when the analog-to-digital conversion circuit 14 operates at 10-bit precision is longer than the analog-to-digital conversion time when the analog-to-digital conversion circuit 14 operates at 8-bit precision.
  • the analog-to-digital conversion circuit 14 converts the analog pixel signals obtained by the pixels corresponding to the second color filter and the third color filter into digital pixel signals with 10-bit precision (as shown in FIG. 14B), Compared with the analog-to-digital conversion circuit 14, the analog pixel signals obtained by the pixels 120 corresponding to the first color filter A, the second color filter B, and the third color filter C are converted into For digital pixel signals (as shown in FIG. 14A), the speed of analog-to-digital conversion can be increased, the time-consuming of analog-to-digital conversion can be reduced, and the frame rate can be improved.
  • the filter array 11 (shown in FIG. 1) is divided into a plurality of regions, each region includes at least one filter set 113 (shown in FIG. 3), and the filter in each region
  • the number of groups 113 may be determined by the target frame rate of the image corresponding to the image signal output by the image sensor 10. The larger the target frame rate, the smaller the number of filter groups 113 in each area.
  • the image sensor 10 can adaptively adjust the number of filter groups 113 in each area for different target frame rates.
  • a plurality of pixels 120 corresponding to all the first color filters A in each region share an analog-to-digital conversion circuit 14, and each analog-to-digital conversion circuit 14 is used to The first analog pixel signal and/or the second analog pixel signal of all the pixels 120 corresponding to the first color filter A in each corresponding area are converted into the first digital pixel signal.
  • a plurality of pixels 120 corresponding to all the second color filters B in each region share an analog-to-digital conversion circuit 14.
  • Each analog-to-digital conversion circuit 14 is used to convert all the second colors in each corresponding region.
  • the third analog pixel signals of the plurality of pixels 120 corresponding to the filter B are converted into second digital pixel signals; and/or, the plurality of pixels 120 corresponding to all the third color filters C in each area share one modulus
  • the conversion circuit 14, each analog-to-digital conversion circuit 14 is used to convert the fourth analog pixel signal corresponding to all the pixels 120 of the third color filter C in each corresponding area into a third digital pixel signal.
  • each area includes a filter set 113, that is, the filter set 113 in each area is the first filter The sheet group 111 or the second filter group 112.
  • the first filter group 111 two pixels 120 (pixels including PD11 and pixels including PD22) corresponding to two first color filters A in the first filter group 111 share an analog-to-digital conversion In the circuit 14, the two pixels 120 corresponding to the two second color filters B (the pixel including the PD12 and the pixel including the PD21) share another analog-to-digital conversion circuit 14.
  • control terminals TX1 and TX2 of the exposure control circuit TRF of the two pixels 120 corresponding to the two first color filters A and the exposure control circuits TRF of the two pixels 120 corresponding to the two second color filters B are When the control terminals TX3 and TX4 are turned on at the same time, the control terminal T1 of the selection circuit SEL shared by the two pixels 120 corresponding to the two first color filters A is shared with the two pixels 120 corresponding to the two second color filters B
  • the control terminal T2 of the selection circuit SEL can be turned on at the same time (as shown in FIG. 8A) or time-sharing (not shown).
  • control terminals TX1 and TX2 of the exposure control circuits TRF of the two pixels 120 corresponding to the two first color filters A and the exposure control circuits TRF of the two pixels 120 corresponding to the two second color filters B are controlled
  • the terminals TX3 and TX4 are turned on in a time-sharing manner
  • the control terminal T1 of the selection circuit SEL shared by the two pixels 120 corresponding to the two first color filters A is shared with the two pixels 120 corresponding to the two second color filters B
  • the control terminal T2 of the selection circuit SEL can be turned on in a time-sharing manner (as shown in FIG. 8B).
  • the electrical signals of the two pixels 120 corresponding to the two first color filters A in the first filter group 111 are combined at the floating diffusion node FD, and then the two pixels 120 share the selection
  • the control terminal T1 of the circuit SEL is turned on, and the combined first analog pixel signal is transmitted to the analog-to-digital conversion circuit 14 shared by the two pixels 120 for analog-to-digital conversion to obtain a first digital pixel signal (the lower left image of FIG.
  • a minimum A square corresponds to a first digital pixel signal
  • the first digital pixel signal is used to characterize the effect on multiple first color filters A ( Figure 15 shows two of the filter set 113 The value of the first color channel of the light of the plurality of pixels 120 corresponding to the first color filter A).
  • the electrical signals of the two pixels 120 corresponding to the two second color filters B in the first filter group 111 are combined at the floating diffusion node FD, and then the control terminal T2 of the selection circuit SEL shared by the two pixels 120 Turn on, the combined third analog pixel signal is transmitted to the analog-to-digital conversion circuit 14 shared by the two pixels 120 for analog-to-digital conversion to obtain a second digital pixel signal (a minimum B square The grid corresponds to a second digital pixel signal), and the second digital pixel signal is used to characterize the effect on multiple second color filters B ( Figure 15 shows two second color filters in a filter set 113 Panel B) The value of the second color channel of the light of the plurality of pixels 120 corresponding to it.
  • the two pixels 120 corresponding to the two first color filters A in the second filter group 112 share an analog-to-digital conversion circuit 14 to convert the second analog pixel signal into the first digital pixel signal in the same manner. I won't repeat it here.
  • the two pixels 120 corresponding to the two third color filters C in the second filter group 112 share an analog-to-digital conversion circuit 14 to convert the fourth analog pixel signal into the third digital pixel signal. This is the same, so I won’t repeat it here.
  • the third digital pixel signal is used to represent the value of the third color channel of the light acting on the pixels 120 corresponding to the plurality of third color filters C.
  • the image sensor 10 can output two digital image signals, one digital image signal is composed of a plurality of first digital pixel signals, and the other digital image signal is composed of a plurality of second digital pixel signals and a plurality of The third digital pixel signal composition.
  • the achievable target frame rate of the image corresponding to the digital image signal output by the image sensor 10 is FP1.
  • each area includes at least one first filter group 111 and at least one second filter group 112.
  • all pixels 120 corresponding to all first color filters A, all second color filters B, and all third color filters C in each region share an analog-to-digital conversion circuit 14.
  • One selection circuit SEL is connected to one floating diffusion node FD, and is connected to a common analog-to-digital conversion circuit 14.
  • the control terminals of the selection circuits SEL corresponding to multiple pixels 120 corresponding to different filter groups 113 are turned on in a time-division manner.
  • each region includes a first filter group 111 and a second filter group 112 corresponding to two columns of pixels 120, that is, two first filter groups 111 and two second filter groups 112.
  • the four first color filters A (including PD11 pixels, PD22 pixels, PD51 pixels, and PD62 pixels) corresponding to four pixels 120, two first color filters A Four pixels 120 corresponding to the four first color filters A in the second filter group 112 (pixels including PD31, pixels including PD42, pixels including PD71, and pixels including PD82) share one analog-to-digital conversion circuit 14 ,
  • the four second color filters B (including PD12 pixels, pixels including PD21, pixels including PD52, pixels including PD61) in the two first filter groups 111 correspond to four pixels 120, two The four pixels 120 (including PD32 pixels, PD41 pixels, PD72 pixels, and PD81 pixels) corresponding to the four third color filters C in the second filter group 112 share one analog-to-digital conversion circuit 14.
  • the selection circuit SEL shared by the two pixels 120 corresponding to the two first color filters A in one first filter group 111 The control terminal T1, the control terminal T3 of the selection circuit SEL shared by the two pixels 120 corresponding to the two first color filters A in the other first filter group 111, and the control terminal T3 of the second filter group 112
  • the control terminal T3 of the selection circuit SEL shared by the pixels 120 is turned on in a time-division manner, and the combined two first analog pixel signals and the combined two second analog pixel signals (the left figure at the bottom of FIG.
  • the grid corresponds to a first analog pixel signal or a second analog pixel signal) time-sharing transmission to these eight pixels 120 (including PD11 pixels, including PD22 pixels, including PD51 pixels, including PD62 pixels, including PD31 pixels) , Pixels including PD42, pixels including PD71, and pixels including PD82) common analog-to-digital conversion circuit 14 performs time-sharing analog-to-digital conversion to obtain four first digital pixel signals (as shown in the left picture at the bottom of Figure 16) , A minimum A square in the figure corresponds to a first digital pixel signal). Subsequently, as shown in the uppermost diagrams in FIG. 9, FIG. 10A and FIG.
  • the selection circuit SEL shared by the two pixels 120 corresponding to the two second color filters B in one first filter group 111 The control terminal T1 of the control terminal T1 of the second color filter B in the other first filter group 111 and the control terminal T1 of the selection circuit SEL shared by the two pixels 120 corresponding to the two second color filters B are turned on in a time-division manner.
  • Three analog pixel signals (in the right figure at the bottom of FIG. 16, a minimum B square corresponds to a third analog pixel signal) are transmitted to the analog-to-digital conversion circuit 14 shared by the four pixels 120 in time-sharing for analog-to-digital conversion In order to obtain two second digital pixel signals (as shown in the right figure at the bottom position in FIG.
  • a minimum B square in this figure corresponds to one second digital pixel signal).
  • the four pixels 120 corresponding to the four third color filters C in the two second filter groups 112 share one analog-to-digital conversion circuit 14 to convert two fourth analog pixel signals into two third digital pixel signals.
  • the four pixels 120 corresponding to the four second color filters B in the two first filter groups 111 share an analog-to-digital conversion circuit 14 to convert the two third analog pixel signals into two second color filters B.
  • the mode of the digital pixel signal is the same, so I won't repeat it here.
  • the image sensor 10 can output two digital image signals, one digital image signal is composed of a plurality of first digital pixel signals, and the other digital image signal is composed of a plurality of second digital pixel signals and a plurality of The third digital pixel signal composition.
  • the achievable target frame rate of the image corresponding to the digital image signal output by the image sensor 10 is FP2. Comparing FIG. 15 with FIG. 16, it can be seen that since each region includes more filter groups 113 in the embodiment shown in FIG. 16, that is, there are more filter groups 113 sharing one analog-to-digital conversion circuit 14, while the mode The digital conversion circuit 14 needs to time-sharing to convert the analog pixel signals of the pixels 120 corresponding to the different filter groups 113 into digital pixel signals.
  • the target frame of the embodiment shown in FIG. 16 The rate FP2 will be smaller than the target frame rate FP1 in the embodiment shown in FIG. 15.
  • the image sensor 10 of the embodiment of the present application can adjust the number of filter groups 110 in the area according to the target frame rate, so that the image sensor 10 can be applied to various scenes with different requirements on the frame rate of the image, and The scene adaptability of the image sensor 10.
  • the imaging device 100 includes the image sensor 10 of any one of the above-mentioned embodiments.
  • the imaging device 100 further includes a processor 20.
  • the processor 20 may be used to process the first digital pixel signal representing the value of the first color channel of the light corresponding to the pixel 120 acting on the multiple first color filters A, and the first digital pixel signal representing the value acting on the multiple second color filters B.
  • the second digital pixel signal corresponding to the value of the second color channel of the light of the pixel 120, and the third digital pixel signal representing the value of the third color channel of the light of the light corresponding to the pixel 120 acting on the plurality of third color filters C To generate a color image.
  • the processor 20 first performs interpolation processing on the second digital image signal, so that each digital image signal in the second digital image signal corresponds to an image
  • the pixels both have a second digital pixel signal for characterizing the value of the second color channel and a third digital pixel signal for characterizing the value of the third color channel.
  • the processor 20 performs fusion processing on the first digital image signal and the interpolated second digital image signal to generate a color image.
  • the digital pixel signal corresponding to each image pixel in the color image is determined by the value of the first color channel. , The value of the second color channel and the value of the third color channel.
  • the present application also provides an electronic device 1000.
  • the electronic device 1000 may be a mobile phone, a tablet computer, a notebook computer, a smart watch, a smart bracelet, a smart helmet, a smart glasses, an unmanned device (such as a drone, an unmanned vehicle, and an unmanned boat), etc., which are not limited here.
  • the electronic device 1000 includes an imaging device 100.
  • the imaging device 100 includes the image sensor 10 of any one of the above-mentioned embodiments.
  • the electronic device 1000 further includes a processor 20.
  • the processor 20 of the electronic device 1000 can perform the same functions as the functions performed by the processor 20 in the imaging apparatus 100 shown in FIG. 17, which will not be repeated here.
  • the image processing system 10000 includes an electronic device 1000.
  • the electronic device 1000 includes an imaging device 100.
  • the imaging device 100 includes the image sensor 10 of any one of the above-mentioned embodiments.
  • the image processing system 10000 also includes a processor 20.
  • the processor 20 of the image processing system 10000 can perform the same functions as those of the processor 20 in the imaging device 100 shown in FIG. 17, which will not be repeated here.
  • the processor 20 may be located in a server responsible for cloud computing, or may be located in a server responsible for edge computing. In this way, the subsequent processing of the pixel signal output by the image sensor 10 (shown in FIG. 1) can be downloaded to the server for execution, which can save the power consumption of the imaging device 100 or the electronic device 1000.
  • the image sensor 10 includes a filter array 11, a pixel array 12 and a plurality of analog-to-digital conversion circuits 14.
  • the filter array 11 includes a plurality of first color filters A, a plurality of second color filters B, and a plurality of third color filters C.
  • the pixel array 12 includes a plurality of pixels 120. Each pixel 120 corresponds to one filter 111 of the filter array 11. The pixel 120 is used to receive light passing through the corresponding filter 110 to generate an electrical signal to obtain an analog pixel signal.
  • Signal processing methods include:
  • the analog-digital conversion circuit 14 converts the analog pixel signal obtained by the pixel 120 corresponding to the first color filter A into a digital pixel signal with the first digit precision, and the analog-digital conversion circuit 14 uses the second digit precision less than the first digit precision.
  • the digital precision converts the analog pixel signals obtained by the pixels 120 corresponding to the second color filter B and the third color filter C into digital pixel signals.
  • the filter array 11 includes a plurality of filter groups 113.
  • Each filter group 113 includes at least two filters 110 of different colors.
  • the number of filters 110 of each color in each filter group 113 is multiple.
  • the pixel array 12 also includes a plurality of floating diffusion nodes FD.
  • the pixels 120 corresponding to the filters 110 of the same color in the same filter group 113 share a floating diffusion node FD.
  • the signal processing method also includes:
  • the electrical signals generated by the pixels 120 corresponding to the filters 110 of the same color in the same filter group 113 are controlled to merge at the corresponding floating diffusion node FD.
  • the plurality of filters 113 includes a plurality of first filter groups 111 and a plurality of second filter groups 112.
  • the first filter group 111 includes a plurality of first color filters A and a plurality of second color filters B in the same number.
  • the second filter group 112 includes a plurality of first color filters A and a plurality of third color filters C in the same number.
  • the step of controlling the electrical signals generated by the pixels 120 corresponding to the filters 110 of the same color in the same filter group 113 to merge at the corresponding floating diffusion node FD includes:
  • the diffusion node FD is combined to generate the first analog pixel signal, and the electrical signals generated by the plurality of pixels 120 corresponding to the plurality of second color filters B in each first filter group 111 are controlled in the plurality of second colors.
  • the plurality of pixels 120 corresponding to the filter B are combined at the floating diffusion node FD shared by the plurality of pixels 120 to generate a third analog pixel signal;
  • the diffusion node FD is combined to generate the second analog pixel signal, and the electrical signals generated by the plurality of pixels 120 corresponding to the plurality of third color filters C in each second filter group 112 are controlled in the plurality of third colors.
  • the plurality of pixels 120 corresponding to the filter C are combined at the floating diffusion node FD shared by the plurality of pixels 120 to generate the fourth analog pixel signal.
  • multiple pixels 120 corresponding to the filters 110 of all colors share a floating diffusion node FD.
  • Each pixel 120 includes an exposure control circuit TRF.
  • the control terminals TX of the exposure control circuits TRF of the multiple pixels 120 corresponding to the multiple filters 110 of the same color are turned on at the same time, so as to remove the multiple filters of the same color in the same filter group 113.
  • the charges generated by the plurality of pixels 120 corresponding to the light sheet 110 after receiving light are transferred to the floating diffusion node shared by the plurality of pixels 120 corresponding to the filter set 113.
  • the control terminal TX of the exposure control circuit TRF of the pixel 120 corresponding to the filter 110 of different colors is turned on in a time sharing manner.
  • the filter array 11 includes a plurality of regions, and each region includes at least one filter group 113.
  • a plurality of pixels 120 corresponding to all the first color filters A in each region share an analog-to-digital conversion circuit 14.
  • multiple pixels 120 corresponding to all second color filters B in each region share one analog-to-digital conversion circuit 14, and/or, multiple pixels corresponding to all third color filters C in each region
  • the pixels 120 share an analog-to-digital conversion circuit 14.
  • the signal processing method also includes:
  • each area includes at least one first filter group 111 and at least one second filter group 112.
  • all pixels 120 corresponding to all first color filters A, all second color filters B, and all third color filters C in each region share an analog-to-digital conversion circuit 14.
  • the pixel array 12 also includes a selection circuit SEL, and a selection circuit SEL is connected to a floating diffusion node FD, and is connected to a common analog-to-digital conversion circuit 14.
  • the control terminals T of the selection circuits SEL corresponding to multiple pixels 120 corresponding to different filter groups 113 are turned on in a time-division manner.
  • the control terminal T of the selection circuit SEL of the pixel 120 corresponding to the filter 110 of different colors is turned on in a time division.
  • the first color filter A is a green filter G
  • the second color filter B is a red filter R
  • the third color filter C is a blue filter Bu.
  • the signal processing method further includes: processing a first digital pixel signal that characterizes the value of the first color channel of the light that acts on the pixels 120 corresponding to the plurality of first color filters A, and characterizes the effect on the plurality of first color filters A.
  • the second color filter B corresponds to the second digital pixel signal of the value of the second color channel of the light of the pixel 120, and the second digital pixel signal representing the third color channel of the light acting on the plurality of third color filters C corresponding to the pixel 120 Value of the third digital pixel signal to generate a color image.
  • the embodiment of the present application also provides a computer device.
  • the computer device may be the electronic device 1000 (shown in FIG. 18) according to any one of the above embodiments.
  • the foregoing computer equipment includes an image processing circuit, which can be implemented by hardware and/or software components, and can include various processing units that define an ISP (Image Signal Processing, image signal processing) pipeline.
  • Fig. 20 is a schematic diagram of an image processing circuit in an embodiment. As shown in FIG. 20, for ease of description, only various aspects of the image processing technology related to the embodiments of the present application are shown.
  • the image processing circuit includes an ISP processor 940 and a control logic 950.
  • the ISP processor 940 may be used as a processor in the electronic device 1000.
  • the image data captured by the imaging device 910 is first processed by the ISP processor 940, and the ISP processor 940 analyzes the image data to capture image statistics that can be used to determine and/or one or more control parameters of the imaging device 910.
  • the imaging device 910 may include a camera having one or more lenses 912 and an image sensor 914.
  • the image sensor 914 may be the image sensor 10 (shown in FIG. 1).
  • the image sensor 914 may include a filter array, and the image sensor 914 may obtain the light intensity and wavelength information captured by each pixel of the image sensor 914, and provide a set of raw image data that can be processed by the ISP processor 940, such as multiple first images.
  • Original image data composed of a digital pixel signal, a plurality of second digital pixel signals, and a plurality of third digital pixel signals.
  • the sensor 920 (such as a gyroscope) can provide the collected image processing parameters (such as anti-shake parameters) to the ISP processor 940 based on the sensor 920 interface type.
  • the sensor 920 interface may use SMIA (Standard Mobile Imaging Architecture) interface, other serial or parallel camera interfaces, or a combination of the above interfaces.
  • SMIA Standard Mobile Imaging Architecture
  • the image sensor 914 may also send raw image data to the sensor 920, the sensor 920 may provide the raw image data to the ISP processor 940 based on the sensor 920 interface type, or the sensor 920 may store the raw image data in the image memory 930.
  • the ISP processor 940 processes the original image data pixel by pixel in a variety of formats.
  • each image pixel may have a bit depth of 8, 10, 12, or 14 bits, and the ISP processor 940 may perform one or more image processing operations on the original image data, and collect statistical information about the image data. Among them, the image processing operations can be performed with the same or different bit depth accuracy.
  • the ISP processor 940 may also receive image data from the image memory 930.
  • the sensor 920 interface sends the original image data to the image memory 930, and the original image data in the image memory 930 is then provided to the ISP processor 940 for processing.
  • the image memory 930 may be a part of a memory device, a storage device, or an independent dedicated memory in an electronic device, and may include DMA (Direct Memory Access) features.
  • the ISP processor 940 may perform one or more image processing operations, such as temporal filtering; for another example, processing the first digital Pixel signals, second digital pixel signals, third digital pixel signals to obtain color images, etc.
  • the processed image data (for example, a color image) can be sent to the image memory 930 for additional processing before being displayed.
  • the ISP processor 940 receives the processed data from the image memory 930, and performs image data processing in the original domain and in the RGB and YCbCr color spaces on the processed data.
  • the image data processed by the ISP processor 940 may be output to the display 970 for viewing by the user and/or further processed by a graphics engine or a GPU (Graphics Processing Unit, graphics processor).
  • the output of the ISP processor 940 can also be sent to the image memory 930, and the display 970 can read image data from the image memory 930.
  • the image memory 930 may be configured to implement one or more frame buffers.
  • the output of the ISP processor 940 may be sent to the encoder/decoder 960 in order to encode/decode image data.
  • the encoded image data can be saved and decompressed before being displayed on the display 970 device.
  • the encoder/decoder 960 may be implemented by a CPU or GPU or a co-processor.
  • the statistical data determined by the ISP processor 940 may be sent to the control logic 950.
  • the statistical data may include image sensor 914 statistical information such as automatic exposure, automatic white balance, automatic focus, flicker detection, black level compensation, and lens 912 shading correction.
  • the control logic 950 may include a processor and/or a microcontroller that executes one or more routines (such as firmware). The one or more routines can determine the control parameters and ISP processing of the imaging device 910 based on the received statistical data. 940 control parameters.
  • the control parameters of the imaging device 910 may include sensor 920 control parameters (such as gain, integration time for exposure control, anti-shake parameters, etc.), camera flash control parameters, lens 912 control parameters (such as focus or zoom focal length), or these The combination of parameters.
  • the control parameters of the ISP processor 940 may include gain levels and color correction matrices for automatic white balance and color adjustment (for example, during RGB processing), and lens 912 shading correction parameters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

一种图像传感器(10)、成像装置(100)、电子设备(1000)、图像处理***(10000)和信号处理方法。包括滤光片阵列(11)、像素阵列(12)及多个模数转换电路(14)。模数转换电路(14)以第一位数精度和小于第一位数精度的第二位数精度分别将第一颜色滤光片(A)对应的信号转换为数字像素信号,将第二颜色滤光片(B)和第三颜色滤光片(C)对应的信号转换为数字像素信号。

Description

图像传感器、成像装置、电子设备、图像处理***及信号处理方法
优先权信息
本申请请求2020年1月19日向中国国家知识产权局提交的、专利申请号为202010060642.6的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及影像技术领域,特别涉及一种图像传感器、成像装置、电子设备、图像处理***及信号处理方法。
背景技术
相关技术中,图像传感器中感光元件接收光线后生成的信号是模拟像素信号,该模拟像素信号需要通过模数转换电路转换为数字信号后再输出给处理器。
发明内容
本申请实施方式提供了一种图像传感器、成像装置、电子设备、图像处理***及信号处理方法。
本申请实施方式的图像传感器包括滤光片阵列、像素阵列及多个模数转换电路。所述滤光片阵列包括多个第一颜色滤光片、多个第二颜色滤光片、及多个第三颜色滤光片。所述像素阵列包括多个像素,每个所述像素对应所述滤光片阵列的一个滤光片,所述像素用于接收穿过对应的所述滤光片的光线以生成电信号得到模拟像素信号。所述模数转换电路以第一位数精度将所述第一颜色滤光片对应的所述像素得到的模拟像素信号转换为数字像素信号,所述模数转换电路以小于所述第一位数精度的第二位数精度将所述第二颜色滤光片和所述第三颜色滤光片对应的所述像素得到的模拟像素信号转换为数字像素信号。
本申请实施方式的成像装置包括图像传感器。所述图像传感器包括滤光片阵列、像素阵列及多个模数转换电路。所述滤光片阵列包括多个第一颜色滤光片、多个第二颜色滤光片、及多个第三颜色滤光片。所述像素阵列包括多个像素,每个所述像素对应所述滤光片阵列的一个滤光片,所述像素用于接收穿过对应的所述滤光片的光线以生成电信号得到模拟像素信号。所述模数转换电路以第一位数精度将所述第一颜色滤光片对应的所述像素得到的模拟像素信号转换为数字像素信号,所述模数转换电路以小于所述第一位数精度的第二位数精度将所述第二颜色滤光片和所述第三颜色滤光片对应的所述像素得到的模拟像素信号转换为数字像素信号。
本申请实施方式的电子设备包括成像装置。所述成像装置包括图像传感器。所述图像传感器包括滤光片阵列、像素阵列及多个模数转换电路。所述滤光片阵列包括多个第一颜色滤光片、多个第二颜色滤光片、及多个第三颜色滤光片。所述像素阵列包括多个像素,每个所述像素对应所述滤光片阵列的一个滤光片,所述像素用于接收穿过对应的所述滤光片的光线以生成电信号得到模拟像素信号。所述模数转换电路以第一位数精度将所述第一颜色滤光片对应的所述像素得到的模拟像素信号转换为数字像素信号,所述模数转换电路以小于所述第一位数精度的第二位数精度将所述第二颜色滤光片和所述第三颜色滤光片对应的所述像素得到的模拟像素信号转换为数字像素信号。
本申请实施方式的图像处理***包括电子设备。所述电子设备包括成像装置。所述成像装置包括图像传感器。所述图像传感器包括滤光片阵列、像素阵列及多个模数转换电路。所述滤光片阵列包括多个第一颜色滤光片、多个第二颜色滤光片、及多个第三颜色滤光片。所述像素阵列包括多个像素,每个所述像素对应所述滤光片阵列的一个滤光片,所述像素用于接收穿过对应的所述滤光片的光线以生成电信号得到模拟像素信号。所述模数转换电路以第一位数精度将所述第一颜色滤光片对应的所述像素得到的模拟像素信号转换为数字像素信号,所述模数转换电路以小于所述第一位数精度的第二位数精度将所述第二颜色滤光片和所述第三颜色滤光片对应的所述像素得到的模拟像素信号转换为数字像素信号。
本申请实施方式的信号处理方法用于图像传感器。所述图像传感器包括滤光片阵列、像素阵列及多个模数转换电路。所述滤光片阵列包括多个第一颜色滤光片、多个第二颜色滤光片、及多个第三颜色滤光片。所述像素阵列包括多个像素,每个所述像素对应所述滤光片阵列的一个滤光片,所述像素用于接收穿过对应的所述滤光片的光线以生成电信号得到模拟像素信号。所述信号处理方法包括:控制所述模数转换电路以第一位数精度将所述第一颜色滤光片对应的所述像素得到的模拟像素信号转换为数字像素信号,控制所述模数转换电路以小于所述第一位数精度的第二位数精度将所述第二颜色滤光片和所述第三颜色滤光片对应的所述像素得到的模拟像素信号转换为数字像素信号。
本申请实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点可以从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1和图2是本申请某些实施方式的图像传感器的部分结构示意图;
图3至图6是图1或图2所示图像传感器中部分滤光片的排布示意图;
图7是本申请某些实施方式的图像传感器的电路连接示意图;
图8A和图8B是本申请某些实施方式中的图像传感器的工作原理示意图;
图9是本申请某些实施方式的图像传感器的电路连接示意图;
图10A和图10B是本申请某些实施方式中的图像传感器的工作原理示意图;
图11是相关技术中模数转换电路执行模数转换的原理示意图;
图12是本申请某些实施方式中图像传感器中的模数转换电路执行模数转换的原理示意图;
图13是本申请某些实施方式中图像传感器中的模数转换电路的示意图;
图14A是相关技术中模数转换电路执行模数转换所需的时间示意图;
图14B是本申请某些实施方式中模数转换电路执行模数转换所需的时间示意图;
图15和图16是本申请某些实施方式的图像传感器的工作原理示意图;
图17是本申请某些实施方式的成像装置的示意图;
图18是本申请某些实施方式的电子设备的示意图;
图19是本申请某些实施方式的图像处理***的示意图;
图20是本申请某些实施方式的计算机设备中的图像处理电路的示意图。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中,相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请的实施方式,而不能理解为对本申请的实施方式的限制。
本申请实施方式的图像传感器包括滤光片阵列、像素阵列及多个模数转换电路。滤光片阵列包括多个第一颜色滤光片、多个第二颜色滤光片、及多个第三颜色滤光片。像素阵列包括多个像素,每个像素对应滤光片阵列的一个滤光片,像素用于接收穿过对应的滤光片的光线以生成电信号得到模拟像素信号。模数转换电路以第一位数精度将第一颜色滤光片对应的像素得到的模拟像素信号转换为数字像素信号,模数转换电路以小于第一位数精度的第二位数精度将第二颜色滤光片和第三颜色滤光片对应的像素得到的模拟像素信号转换为数字像素信号。
在某些实施方式中,滤光片阵列包括多个滤光片组,每个滤光片组包括至少两种不同颜色的滤光片,每个滤光片组中每种颜色的滤光片的数量为多个;像素阵列还包括多个浮动扩散节点,同一滤光片组中同一颜色的滤光片对应的像素共用一个浮动扩散节点,以使同一滤光片组中同一颜色的滤光片对应的像素生成的电信号能够在对应的浮动扩散节点处合并。
在某些实施方式中,多个滤光片组包括多个第一滤光片组及多个第二滤光片组,第一滤光片组包括数量相同的多个第一颜色滤光片和多个第二颜色滤光片,第二滤光片组包括数量相同的多个第一颜色滤光片和多个第三颜色滤光片;每个第一滤光片组中多个第一颜色滤光片对应的多个像素产生的电信号在该多个第一颜色滤光片对应的多个像素共用的浮动扩散节点处合并以生成第一模拟像素信号,每个第一滤光片组中多个第二颜色滤光片对应的多个像素产生的电信号在该多个第二颜色滤光片对应的多个像素共用的浮动扩散节点处合并以生成第三模拟像素信号;每个第二滤光片组中多个第一颜色滤光片对应的多个像素产生的电信号在该多个第一颜色滤光片对应的多个像素共用的浮动扩散节点处合并以生成第二模拟像素信号,每个第二滤光片组中多个第三颜色滤光片对应的多个像素产生的电信号在该多个第三颜色滤光片对应的多个像素共用的浮动扩散节点处合并以生成第四模拟像素信号。
在某些实施方式中,同一滤光片组中,所有颜色的滤光片对应的多个像素共用一个浮动扩散节点,每个像素均包括曝光控制电路;同一滤光片组中,同一颜色的多个滤光片对应的多个像素的曝光控制电路的控制端同时开启,以将同一滤光片组中同一颜色的多个滤光片对应的多个像素接收光线后产生的电荷转移到该滤光片组对应的多个像素共用的浮动扩散节点;同一滤光片组中,不同颜色的滤光片对应的像素的曝光控制电路的控制端分时开启。
在某些实施方式中,滤光片阵列包括多个区域,每个区域包括至少一个滤光片组;所有区域中,每个区域内所有第一颜色滤光片对应的多个像素共用一个模数转换电路,每个模数转换电路用于将对应的每个区域内所有第一颜色滤光片对应的多个像素的第一模拟像素信号和/或第二模拟像素信号转换为第一数字像素信号;所有区域中,每个区域内所有第二颜色滤光片对应的多个像素共用一个模数转换电路,每个模数转换电路用于将对应的每个区域内所有第二颜色滤光片对应的多个像素的第三模拟像素信号转换为第二数字像素信号,和/或,每个区域内所有第三颜色滤光片对应的多个像素共用一个模数转换电路,每个模数转换电路用于将对应的每个区域内所有第三颜色滤光片对应的多个像素的第四模拟像素信号转换为第三数字像素信号。
在某些实施方式中,每个区域包括至少一个第一滤光片组和至少一个第二滤光片组;所有区域中,每个区域内所有第一颜色滤光片、所有第二颜色滤光片、及所有第三颜色滤光片对应的多个像素共用一个模数转换电路;像素阵列还包括选择电路,一个选择电路与一个浮动扩散节点连接,且与共用的一个模数转换电路连接;同一区域内,不同滤光片组对应的多个像素对应的选择电路的控制端分时开启;同一滤光片组中,不同颜色的滤光片对应的像素的选择电路的控制端分时开启。
在某些实施方式中,第一颜色滤光片为绿色滤光片,第二颜色滤光片为红色滤光片,第三颜色滤光片为蓝色滤光片。
在某些实施方式中,图像传感器还包括微透镜阵列,沿图像传感器的收光方向,微透镜阵列、滤光片阵列、及像素阵列依次设置。
本申请实施方式的成像装置包括上述任一实施方式的图像传感器。
在某些实施方式中,成像装置还包括处理器,处理器用于处理表征作用于多个第一颜色滤光片对应像素的光线的第一颜色通道的值的第一数字像素信号、表征作用于多个第二颜色滤光片对应像素的光线的第二颜色通道的值的第二数字像素信号、及表征作用于多个第三颜色滤光片对应像素的光线的第三颜色通道的值的第三数字像素信号以生成彩色图像。
本申请实施方式的电子设备包括成像装置。成像装置包括上述任一实施方式的图像传感器。
本申请实施方式的图像处理***包括电子设备。电子设备包括成像装置。成像装置包括上述任一实施方式的图像传感器。
本申请实施方式的信号处理方法用于图像传感器。图像传感器包括滤光片阵列、像素阵列及多个模数转换电路。滤光片阵列包括多个第一颜色滤光片、多个第二颜色滤光片、及多个第三颜色滤光片。像素阵列包括多个像素,每个像素对应滤光片阵列的一个滤光片,像素用于接收穿过对应的滤光片的光线以生成电信号得到模拟像素信号。信号处理方法 包括:控制模数转换电路以第一位数精度将第一颜色滤光片对应的像素得到的模拟像素信号转换为数字像素信号,控制模数转换电路以小于第一位数精度的第二位数精度将第二颜色滤光片和第三颜色滤光片对应的像素得到的模拟像素信号转换为数字像素信号。
在某些实施方式中,滤光片阵列包括多个滤光片组,每个滤光片组包括至少两种不同颜色的滤光片,每个滤光片组中每种颜色的滤光片的数量为多个;像素阵列还包括多个浮动扩散节点,同一滤光片组中同一颜色的滤光片对应的像素共用一个浮动扩散节点;信号处理方法还包括:控制同一滤光片组中同一颜色的滤光片对应的像素生成的电信号在对应的浮动扩散节点处合并。
在某些实施方式中,多个滤光片组包括多个第一滤光片组及多个第二滤光片组,第一滤光片组包括数量相同的多个第一颜色滤光片和多个第二颜色滤光片,第二滤光片组包括数量相同的多个第一颜色滤光片和多个第三颜色滤光片;控制同一滤光片组中同一颜色的滤光片对应的像素生成的电信号在对应的浮动扩散节点处合并,包括:
控制每个第一滤光片组中多个第一颜色滤光片对应的多个像素产生的电信号在该多个第一颜色滤光片对应的多个像素共用的浮动扩散节点处合并以生成第一模拟像素信号,每个第一滤光片组中多个第二颜色滤光片对应的多个像素产生的电信号在该多个第二颜色滤光片对应的多个像素共用的浮动扩散节点处合并以生成第三模拟像素信号;
控制每个第二滤光片组中多个第一颜色滤光片对应的多个像素产生的电信号在该多个第一颜色滤光片对应的多个像素共用的浮动扩散节点处合并以生成第二模拟像素信号,每个第二滤光片组中多个第三颜色滤光片对应的多个像素产生的电信号在该多个第三颜色滤光片对应的多个像素共用的浮动扩散节点处合并以生成第四模拟像素信号。
在某些实施方式中,同一滤光片组中,所有颜色的滤光片对应的多个像素共用一个浮动扩散节点,每个像素均包括曝光控制电路;同一滤光片组中,同一颜色的多个滤光片对应的多个像素的曝光控制电路的控制端同时开启,以将同一滤光片组中同一颜色的多个滤光片对应的多个像素接收光线后产生的电荷转移到该滤光片组对应的多个像素共用的浮动扩散节点;同一滤光片组中,不同颜色的滤光片对应的像素的曝光控制电路的控制端分时开启。
在某些实施方式中,滤光片阵列包括多个区域,每个区域包括至少一个滤光片组;所有区域中,每个区域内所有第一颜色滤光片对应的多个像素共用一个模数转换电路;所有区域中,每个区域内所有第二颜色滤光片对应的多个像素共用一个模数转换电路,和/或,每个区域内所有第三颜色滤光片对应的多个像素共用一个模数转换电路;信号处理方法还包括:
将所有区域中,每个区域内所有第一颜色滤光片对应的多个像素的第一模拟像素信号和/或第二模拟像素信号转换为第一数字像素信号;
将所有区域中,每个区域内所有第二颜色滤光片对应的多个像素的第三模拟像素信号转换为第二数字像素信号,和/或,将所有区域中,每个区域内所有第三颜色滤光片对应的多个像素的第四模拟像素信号转换为第三数字像素信号。
在某些实施方式中,每个区域包括至少一个第一滤光片组和至少一个第二滤光片组;所有区域中,每个区域内所有第一颜色滤光片、所有第二颜色滤光片、及所有第三颜色滤光片对应的多个像素共用一个模数转换电路;像素阵列还包括选择电路,一个选择电路与一个浮动扩散节点连接,且与共用的一个模数转换电路连接;同一区域内,不同滤光片组对应的多个像素对应的选择电路的控制端分时开启;同一滤光片组中,不同颜色的滤光片对应的像素的选择电路的控制端分时开启。
在某些实施方式中,第一颜色滤光片为绿色滤光片,第二颜色滤光片为红色滤光片,第三颜色滤光片为蓝色滤光片。
在某些实施方式中,信号处理方法还包括:处理表征作用于多个第一颜色滤光片对应像素的光线的第一颜色通道的值的第一数字像素信号、表征作用于多个第二颜色滤光片对应像素的光线的第二颜色通道的值的第二数字像素信号、及表征作用于多个第三颜色滤光片对应像素的光线的第三颜色通道的值的第三数字像素信号以生成彩色图像。
请参阅图1、图3及图7,本申请提供一种图像传感器10。图像传感器10包括滤光片阵列11、像素阵列12及多个模数转换电路14。滤光片阵列11包括多个第一颜色滤光片A、多个第二颜色滤光片B、及多个第三颜色滤光片C。像素阵列12包括多个像素120。每个像素120对应滤光片阵列11的一个滤光片111。像素120用于接收穿过对应的滤光片110的光线以生成电信号得到模拟像素信号。模数转换电路14以第一位数精度将第一颜色滤光片A对应的像素120得到的模拟像素信号转换为数字像素信号。模数转换电路14以小于第一位数精度的第二位数精度将第二颜色滤光片B和第三颜色滤光片C对应的像素120得到的模拟像素信号转换为数字像素信号。
下面结合附图对本申请实施方式的图像传感器10作进一步说明。
请参阅图1和图2,本申请实施方式的图像传感器10包括微透镜阵列13、滤光片阵列11、及像素阵列12。沿图像传感器10的收光方向,微透镜阵列13、滤光片阵列11、及像素阵列12依次设置。
滤光片阵列11包括多个滤光片组113。每个滤光片组113包括至少两种不同颜色的滤光片110。每个滤光片组113中每种颜色的滤光片110的数量为多个。具体地,多个滤光片组113可包括第一滤光片组111和多个第二滤光片组112。第一滤光片组111包括数量相同的多个第一颜色滤光片A和多个第二颜色滤光片B。第二滤光片组112包括数量相同的多个第一颜色滤光片A和多个第三颜色滤光片C。
像素阵列12包括多个像素120及多个浮动扩散节点FD(如图7所示)。每个像素120对应滤光片阵列11的一个滤光片110。像素120用于接收穿过对应的滤光片110的光线以生成电信号。同一滤光片组113中同一颜色的滤光片110对应的像素120共用一个浮动扩散节点FD,以使同一滤光片组113中同一颜色的滤光片110对应的像素120生成的电信号能够在对应的浮动扩散节点FD处合并。
微透镜阵列13包括多个微透镜组131。微透镜阵列13中的一个微透镜组131对应一个滤光片组113(第一滤光片组111或第二滤光片组112),并与该一个滤光片组113对应的多个像素120对应。在一个例子中,如图1所示,每个微透镜组131均包括多个微透镜130,每个微透镜130对应一个滤光片110及一个像素120。在另一个例子中,如图2所示,每个微透镜组131均包括一个微透镜130,每个微透镜130对应一个滤光片组113,并与该一个滤光片组113对应的多个像素120对应。
图3至图6是本申请多个实施例的滤光片阵列11中部分滤光片110的排布示意图。图3至图6所示的滤光片阵列11中,每个滤光片阵列11均包括多个第一滤光片组111和多个第二滤光片组112。每个第一滤光片组111包括数量相同的多个第一颜色滤光片A和多个第二颜色滤光片B。每个第二滤光片组112包括数量相同的多个第一颜色滤光片A和多个第三颜色滤光片C。
其中,第一颜色滤光片A、第二颜色滤光片B、第三颜色滤光片C的颜色组成方式可以有多种,例如第一颜色滤光片A可以为绿色滤光片G,第二颜色滤光片B可以为红色滤光片R,第三颜色滤光片C可以为蓝色滤光片Bu;再例如,第一颜色滤光片A可以为黄色滤光片Y,第二颜色滤光片B可以为红色滤光片R,第三颜色滤光片C可以为蓝色滤光片Bu。第一颜色滤光片A、第二颜色滤光片B、第三颜色滤光片C的颜色组成方式不限于上述两个示例所示的组成方式。
其中,多个第一滤光片组111可以设置在第一对角线方向D1,多个第二滤光片组112可以设置在第二对角线方向D2,第一对角线方向D1与第二对角线方向D2不同。在一个例子中,当多个第一滤光片组111设置在第一对角线方向D1,多个第二滤光片组112设置在第二对角线方向D2时,第一滤光片组111与第二滤光片组112可以在图像传感器10的垂直方向和水平方向相邻布置。
其中,第一滤光片组111中的滤光片110的数量均为N*N,第二滤光片组112中的滤光片110的数量均为N*N,其中,N为大于或等于2的整数。示例地,N的取值可以为2、3、4、5、6、7、8、9、10、15、20等等,在此不作限制。
其中,每个第一滤光片组111中的多个滤光片110的排布方式可以是:(1)请参阅图3,多个第一颜色滤光片A及多个第二颜色滤光片B在图像传感器10(图1所示)的垂直方向和水平方向相邻布置;(2)请参阅图4,多个滤光片110逐行排列,且同一行中的多个滤光片110的颜色相同;(3)请参阅图5,多个滤光片110逐列排列,且同一列中的多个滤光片110的颜色相同。当然,每个第一滤光片组111中多个滤光片110的排布方式并不限于此。
其中,每个第二滤光片组112中的多个滤光片110的排布方式可以是:(1)请参阅图3,多个第一颜色滤光片A及多个第三颜色滤光片C在图像传感器10(图1所示)的垂直方向和水平方向相邻布置;(2)请参阅图4,多个滤光片110逐行排列,且同一行中的多个滤光片110的颜色相同;(3)请参阅图5,多个滤光片110逐列排列,且同一列中的多个滤光片110的颜色相同。当然,每个第二滤光片组112中多个滤光片110的排布方式并不限于此。
图3是本申请一个实施例的滤光片阵列11中部分滤光片110的排布示意图。请参阅图3,部分滤光片110的排布方式为:A B A C
B A C A
A C A B
C A B A;其中,A为第一颜色滤光片,B为第二颜色滤光片,C为第三颜色滤光片。每个第一滤光片组111中的滤光片110的数量均为2*2,每个第二滤光片组112中的滤光片110的数量均为2*2。
如图3所示,多个第一滤光片组111设置在第一对角线方向D1(例如图3中滤光片阵列11的左上角与右下角连接的方向),多个第二滤光片组112设置在第二对角线方向D2(例如图3中滤光片阵列11的左下角与右上角连接的方向),第一对角线方向D1与第二对角线方向D2不同,例如,第一对角线方向D1与第二对角线方向D2垂直。
需要说明的是,第一对角线方向D1和第二对角线方向D2并不局限于对角线,还包括平行于对角线的方向。这里的“方向”并非单一指向,可以理解为指示排布的“直线”的概念,可以有直线两端的双向指向。此外,在其他实施例中,第一对角线方向D1也可以是滤光片阵列11的左下角与右上角连接的方向,第二对角线方向D2也可以是滤光片阵列11的左上角与右下角连接的方向,此时,第一滤光片组111及第二滤光片组112的位置对应对角线方向的变换做变换。
如图3所示,第一滤光片组111与第二滤光片组112在图像传感器10(图1所示)的垂直方向V上相邻布置,且在水平方向H上也相邻布置。也即,多个滤光片组113在垂直方向V上按照第一滤光片组111、第二滤光片组112的顺序呈周期性排列,多个滤光片组113在水平方向H上按照第一滤光片组111、第二滤光片组112的顺序呈周期性排列。
需要说明的是,第一滤光片组111与第二滤光片组112在垂直方向V上相邻布置,且在水平方向H上也相邻布置并不限于图3的方式,还可以是:多个滤光片组113在垂直方向V上按照第一滤光片组111及第二滤光片组112的顺序或第二滤光片组112及第一滤光片组111的顺序呈周期性排列(从左至右,从上至下来看,下同),多个滤光片组113在水平方向H上按照第一滤光片组111及第二滤光片组112的顺序或第二滤光片组112及第一滤光片组111的顺序呈周期性排列(从左至右,从上至下来看,下同)。
如图3所示,在第一滤光片组111中,多个第一颜色滤光片A及多个第二颜色滤光片B在垂直方向V和水平方向H上相邻布置。也即,在垂直方向V上,第一颜色滤光片A和第二颜色滤光片B交替排列,且在水平方向H上,第一颜色滤光片A和第二颜色滤光片B交替排列。在第二滤光片组112中,多个第一颜色滤光片A及多个第三颜色滤光片C在垂直方向V和水平方向H上相邻布置。也即,在垂直方向V上,第一颜色滤光片A和第三颜色滤光片C交替排列,且在水平方向H上,第一颜色滤光片A和第三颜色滤光片C交替排列。
在某些实施方式中,滤光片阵列11中部分滤光片110的排布方式还可以为:
Figure PCTCN2021071247-appb-000001
其中,A为第一颜色滤光片,B为第二颜色滤光片,C为第三颜色滤光片。每个第一滤光片组111中的滤光片110的数量均为3*3,每个第二滤光片组112中的滤光片110的数量均为3*3。
在此排布方式下,多个第一滤光片组111设置在第一对角线方向D1(例如滤光片阵列11的左上角与右下角连接的 方向),多个第二滤光片组112设置在第二对角线方向D2(例如滤光片阵列11的左下角与右上角连接的方向),第一对角线方向D1与第二对角线方向D2不同,例如,第一对角线方向D1与第二对角线方向D2垂直。
在此排布方式下,第一滤光片组111与第二滤光片组112在图像传感器10(图1所示)的垂直方向V上相邻布置,且在水平方向H上也相邻布置。也即,多个滤光片组113在垂直方向V上按照第一滤光片组111及第二滤光片组112的顺序或第二滤光片组112及第一滤光片组111的顺序呈周期性排列,多个滤光片组113在水平方向H上按照第一滤光片组111及第二滤光片组112的顺序或第二滤光片组112及第一滤光片组111的顺序呈周期性排列。
在此排布方式下,在第一滤光片组111中,多个第一颜色滤光片A及多个第二颜色滤光片B在垂直方向V和水平方向H上相邻布置。也即,在垂直方向V上,第一颜色滤光片A和第二颜色滤光片B交替排列,且在水平方向H上,第一颜色滤光片A和第二颜色滤光片B交替排列。在第二滤光片组112中,多个第一颜色滤光片A及多个第三颜色滤光片C在垂直方向V和水平方向H上相邻布置。也即,在垂直方向V上,第一颜色滤光片A和第三颜色滤光片C交替排列,且在水平方向H上,第一颜色滤光片A和第三颜色滤光片C交替排列。
在某些实施方式中,滤光片阵列11中部分滤光片110的排布方式还可以为:
Figure PCTCN2021071247-appb-000002
其中,A为第一颜色滤光片,B为第二颜色滤光片,C为第三颜色滤光片。每个第一滤光片组111中的滤光片110的数量均为4*4,每个第二滤光片组112中的滤光片110的数量均为4*4。
在此排布方式下,多个第一滤光片组111设置在第一对角线方向D1(例如滤光片阵列11的左上角与右下角连接的方向),多个第二滤光片组112设置在第二对角线方向D2(例如滤光片阵列11的左下角与右上角连接的方向),第一对角线方向D1与第二对角线方向D2不同,例如,第一对角线方向D1与第二对角线方向D2垂直。
在此排布方式下,第一滤光片组111与第二滤光片组112在图像传感器10(图1所示)的垂直方向V上相邻布置,且在水平方向H上也相邻布置。也即,多个滤光片组113在垂直方向V上按照第一滤光片组111及第二滤光片组112的顺序或第二滤光片组112及第一滤光片组111的顺序呈周期性排列,多个滤光片组113在水平方向H上按照第一滤光片组111及第二滤光片组112的顺序或第二滤光片组112及第一滤光片组111的顺序呈周期性排列。
在此排布方式下,在第一滤光片组111中,多个第一颜色滤光片A及多个第二颜色滤光片B在垂直方向V和水平方向H上相邻布置。也即,在垂直方向V上,第一颜色滤光片A和第二颜色滤光片B交替排列,且在水平方向H上,第一颜色滤光片A和第二颜色滤光片B交替排列。在第二滤光片组112中,多个第一颜色滤光片A及多个第三颜色滤光片C在垂直方向V和水平方向H上相邻布置。也即,在垂直方向V上,第一颜色滤光片A和第三颜色滤光片C交替排列,且在水平方向H上,第一颜色滤光片A和第三颜色滤光片C交替排列。
图4是本申请又一个实施例的滤光片阵列11中部分滤光片110的排布示意图。请参阅图4,部分滤光片110的排布方式为:
Figure PCTCN2021071247-appb-000003
其中,A为第一颜色滤光片,B为第二颜色滤光片,C为第三颜色滤光片。每个第一滤光片组111中的滤光片110的数量均为2*2,每个第二滤光片组112中的滤光片110的数量均为2*2。
如图4所示,多个第一滤光片组111设置在第一对角线方向D1(例如图4中滤光片阵列11的左上角与右下角连接的方向),多个第二滤光片组112设置在第二对角线方向D2(例如图4中滤光片阵列11的左下角与右上角连接的方向),第一对角线方向D1与第二对角线方向D2不同,例如,第一对角线方向D1与第二对角线方向D2垂直。
如图4所示,第一滤光片组111与第二滤光片组112在图像传感器10(图1所示)的垂直方向V上相邻布置,且在水平方向H上也相邻布置。也即,多个滤光片组113在垂直方向V上按照第一滤光片组111及第二滤光片组112的顺序或第二滤光片组112及第一滤光片组111的顺序呈周期性排列,多个滤光片组113在水平方向H上按照第一滤光片组111及第二滤光片组112的顺序或第二滤光片组112及第一滤光片组111的顺序呈周期性排列。
如图4所示,在第一滤光片组111中,多个滤光片110逐行排列,且同一行中的多个滤光片110的颜色相同,例如,第一行的多个滤光片110均为第一颜色滤光片A,第二行的多个滤光片110均为第二颜色滤光片B。在第二滤光片组112中,多个滤光片110逐行排列,且同一行中的多个滤光片110的颜色相同,例如,第一行的多个滤光片110均为第一颜色滤光片A,第二行的多个滤光片110均为第三颜色滤光片C。
在某些实施方式中,滤光片阵列11中部分滤光片110的排布方式还可以为:
Figure PCTCN2021071247-appb-000004
其中,A为第一颜色滤光片,B为第二颜色滤光片,C为第三颜色滤光片。每个第一滤光片组111中的滤光片110的数量均为3*3,每个第二滤光片组112中的滤光片110的数量均为3*3。
在此排布方式下,多个第一滤光片组111设置在第一对角线方向D1(例如滤光片阵列11的左上角与右下角连接的方向),多个第二滤光片组112设置在第二对角线方向D2(例如滤光片阵列11的左下角与右上角连接的方向),第一对角线方向D1与第二对角线方向D2不同,例如,第一对角线方向D1与第二对角线方向D2垂直。
在此排布方式下,第一滤光片组111与第二滤光片组112在图像传感器10(图1所示)的垂直方向V上相邻布置,且在水平方向H上也相邻布置。也即,多个滤光片组113在垂直方向V上按照第一滤光片组111及第二滤光片组112的顺序或第二滤光片组112及第一滤光片组111的顺序呈周期性排列,多个滤光片组113在水平方向H上按照第一滤光片组111及第二滤光片组112的顺序或第二滤光片组112及第一滤光片组111的顺序呈周期性排列。
在此排布方式下,在第一滤光片组111中,多个滤光片110逐行排列,且同一行中的多个滤光片110的颜色相同,例如,第一行的多个滤光片110均为第一颜色滤光片A,第二行的多个滤光片110均为第二颜色滤光片B,第三行的多个滤光片110均为第一颜色滤光片A。在第二滤光片组112中,多个滤光片110逐行排列,且同一行中的多个滤光片110的颜色相同,例如,第一行的多个滤光片110均为第一颜色滤光片A,第二行的多个滤光片110均为第三颜色滤光片C,第三行的多个滤光片110均为第一颜色滤光片A。
在某些实施方式中,滤光片阵列11中部分滤光片110的排布方式还可以为:
Figure PCTCN2021071247-appb-000005
其中,A为第一颜色滤光片,B为第二颜色滤光片,C为第三颜色滤光片。每个第一滤光片组111中的滤光片110的数量均为4*4,每个第二滤光片组112中的滤光片110的数量均为4*4。
在此排布方式下,多个第一滤光片组111设置在第一对角线方向D1(例如滤光片阵列11的左上角与右下角连接的方向),多个第二滤光片组112设置在第二对角线方向D2(例如滤光片阵列11的左下角与右上角连接的方向),第一对角线方向D1与第二对角线方向D2不同,例如,第一对角线方向D1与第二对角线方向D2垂直。
在此排布方式下,第一滤光片组111与第二滤光片组112在图像传感器10(图1所示)的垂直方向V上相邻布置,且在水平方向H上也相邻布置。也即,多个滤光片组113在垂直方向V上按照第一滤光片组111及第二滤光片组112的顺序或第二滤光片组112及第一滤光片组111的顺序呈周期性排列,多个滤光片组113在水平方向H上按照第一滤光片组111及第二滤光片组112的顺序或第二滤光片组112及第一滤光片组111的顺序呈周期性排列。
在此排布方式下,在第一滤光片组111中,多个滤光片110逐行排列,且同一行中的多个滤光片110的颜色相同,例如,第一行的多个滤光片110均为第一颜色滤光片A,第二行的多个滤光片110均为第二颜色滤光片B,第三行的多个滤光片110均为第一颜色滤光片A,第四行的多个滤光片110均为第二颜色滤光片B。在第二滤光片组112中,多个滤光片110逐行排列,且同一行中的多个滤光片110的颜色相同,例如,第一行的多个滤光片110均为第一颜色滤光片A,第二行的多个滤光片110均为第三颜色滤光片C,第三行的多个滤光片110均为第一颜色滤光片A,第四行的多个滤光片110均为第三颜色滤光片C。
图5是本申请又一个实施例的滤光片阵列11中部分滤光片110的排布示意图。请参阅图5,部分滤光片110的排布方式为:
Figure PCTCN2021071247-appb-000006
其中,A为第一颜色滤光片,B为第二颜色滤光片,C为第三颜色滤光片。每个第一滤光片组111中的滤光片110的数量均为2*2,每个第二滤光片组112中的滤光片110的数量均为2*2。
如图5所示,多个第一滤光片组111设置在第一对角线方向D1(例如图5中滤光片阵列11的左上角与右下角连接的方向),多个第二滤光片组112设置在第二对角线方向D2(例如图5中滤光片阵列11的左下角与右上角连接的方向),第一对角线方向D1与第二对角线方向D2不同,例如,第一对角线方向D1与第二对角线方向D2垂直。
如图5所示,第一滤光片组111与第二滤光片组112在图像传感器10(图1所示)的垂直方向V上相邻布置,且在水平方向H上也相邻布置。也即,多个滤光片组113在垂直方向V上按照第一滤光片组111及第二滤光片组112的顺序或第二滤光片组112及第一滤光片组111的顺序呈周期性排列,多个滤光片组113在水平方向H上按照第一滤光片组111及第二滤光片组112的顺序或第二滤光片组112及第一滤光片组111的顺序呈周期性排列。
如图5所示,在第一滤光片组111中,多个滤光片110逐列排列,且同一列中的多个滤光片110的颜色相同,例如,第一列的多个滤光片110均为第一颜色滤光片A,第二列的多个滤光片110均为第二颜色滤光片B。在第二滤光片组112中,多个滤光片110逐列排列,且同一列中的多个滤光片110的颜色相同,例如,第一列的多个滤光片110均为第一颜色滤光片A,第二列的多个滤光片110均为第三颜色滤光片C。
在某些实施方式中,滤光片阵列11中部分滤光片110的排布方式还可以为:
Figure PCTCN2021071247-appb-000007
Figure PCTCN2021071247-appb-000008
其中,A为第一颜色滤光片,B为第二颜色滤光片,C为第三颜色滤光片。每个第一滤光片组111中的滤光片110的数量均为3*3,每个第二滤光片组112中的滤光片110的数量均为3*3。
在此排布方式下,多个第一滤光片组111设置在第一对角线方向D1(例如中滤光片阵列11的左上角与右下角连接的方向),多个第二滤光片组112设置在第二对角线方向D2(例如滤光片阵列11的左下角与右上角连接的方向),第一对角线方向D1与第二对角线方向D2不同,例如,第一对角线方向D1与第二对角线方向D2垂直。
在此排布方式下,第一滤光片组111与第二滤光片组112在图像传感器10(图1所示)的垂直方向V上相邻布置,且在水平方向H上也相邻布置。也即,多个滤光片组113在垂直方向V上按照第一滤光片组111及第二滤光片组112的顺序或第二滤光片组112及第一滤光片组111的顺序呈周期性排列,多个滤光片组113在水平方向H上按照第一滤光片组111及第二滤光片组112的顺序或第二滤光片组112及第一滤光片组111的顺序呈周期性排列。
在此排布方式下,在第一滤光片组111中,多个滤光片110逐列排列,且同一列中的多个滤光片110的颜色相同,例如,第一列的多个滤光片110均为第一颜色滤光片A,第二列的多个滤光片110均为第二颜色滤光片B,第三列的多个滤光片110均为第一颜色滤光片A。在第二滤光片组112中,多个滤光片110逐列排列,且同一列中的多个滤光片110的颜色相同,例如,第一列的多个滤光片110均为第一颜色滤光片A,第二列的多个滤光片110均为第三颜色滤光片C,第三列的多个滤光片110均为第一颜色滤光片A。
在某些实施方式中,滤光片阵列11中部分滤光片110的排布方式还可以为:
Figure PCTCN2021071247-appb-000009
其中,A为第一颜色滤光片,B为第二颜色滤光片,C为第三颜色滤光片。每个第一滤光片组111中的滤光片110的数量均为4*4,每个第二滤光片组112中的滤光片110的数量均为4*4。
在此排布方式下,多个第一滤光片组111设置在第一对角线方向D1(例如滤光片阵列11的左上角与右下角连接的方向),多个第二滤光片组112设置在第二对角线方向D2(例如滤光片阵列11的左下角与右上角连接的方向),第一对角线方向D1与第二对角线方向D2不同,例如,第一对角线方向D1与第二对角线方向D2垂直。
在此排布方式下,第一滤光片组111与第二滤光片组112在图像传感器10(图1所示)的垂直方向V上相邻布置,且在水平方向H上也相邻布置。也即,多个滤光片组113在垂直方向V上按照第一滤光片组111及第二滤光片组112的顺序或第二滤光片组112及第一滤光片组111的顺序呈周期性排列,多个滤光片组113在水平方向H上按照第一滤光片组111及第二滤光片组112的顺序或第二滤光片组112及第一滤光片组111的顺序呈周期性排列。
在此排布方式下,在第一滤光片组111中,多个滤光片110逐列排列,且同一列中的多个滤光片110的颜色相同,例如,第一列的多个滤光片110均为第一颜色滤光片A,第二列的多个滤光片110均为第二颜色滤光片B,第三列的多个滤光片110均为第一颜色滤光片A,第四列的多个滤光片110均为第二颜色滤光片B。在第二滤光片组112中,多个滤光片110逐列排列,且同一列中的多个滤光片110的颜色相同,例如,第一列的多个滤光片110均为第一颜色滤光片A,第二列的多个滤光片110均为第三颜色滤光片C,第三列的多个滤光片110均为第一颜色滤光片A,第四列的多个滤光片110均为第三颜色滤光片C。
图6是本申请又一个实施例的滤光片阵列11中部分滤光片110的排布示意图。请参阅图6,部分滤光片110的排布方式为:
Figure PCTCN2021071247-appb-000010
其中,A为第一颜色滤光片,B为第二颜色滤光片,C为第三颜色滤光片。每个第一滤光片组111中的滤光片110的数量均为2*2,每个第二滤光片组112中的滤光片110的数量均为2*2。
如图6所示,多个第一滤光片组111设置在第一对角线方向D1(例如图6中滤光片阵列11的左上角与右下角连接的方向),多个第二滤光片组112设置在第二对角线方向D2(例如图6中滤光片阵列11的左下角与右上角连接的方向),第一对角线方向D1与第二对角线方向D2不同,例如,第一对角线方向D1与第二对角线方向D2垂直。
如图6所示,第一滤光片组111与第二滤光片组112在图像传感器10(图1所示)的垂直方向V上相邻布置,且在水平方向H上也相邻布置。也即,多个滤光片组113在垂直方向V上按照第一滤光片组111及第二滤光片组112的顺序或第二滤光片组112及第一滤光片组111的顺序呈周期性排列,多个滤光片组113在水平方向H上按照第一滤光片组111及第二滤光片组112的顺序或第二滤光片组112及第一滤光片组111的顺序呈周期性排列。
如图6所示,在第一滤光片组111中,多个滤光片110逐列排列,且同一列中的多个滤光片110的颜色相同,例如,第一列的多个滤光片110均为第一颜色滤光片A,第二列的多个滤光片110均为第二颜色滤光片B。在第二滤光片组112中,多个滤光片110逐行排列,且同一行中的多个滤光片110的颜色相同,例如,第一行的多个滤光片110均为第一颜色滤光片A,第二行的多个滤光片110均为第三颜色滤光片C。
在某些实施方式中,滤光片阵列11中部分滤光片110的排布方式还可以为:
Figure PCTCN2021071247-appb-000011
Figure PCTCN2021071247-appb-000012
其中,A为第一颜色滤光片,B为第二颜色滤光片,C为第三颜色滤光片。每个第一滤光片组111中的滤光片110的数量均为3*3,每个第二滤光片组112中的滤光片110的数量均为3*3。
在此排布方式下,多个第一滤光片组111设置在第一对角线方向D1(例如中滤光片阵列11的左上角与右下角连接的方向),多个第二滤光片组112设置在第二对角线方向D2(例如中滤光片阵列11的左下角与右上角连接的方向),第一对角线方向D1与第二对角线方向D2不同,例如,第一对角线方向D1与第二对角线方向D2垂直。
在此排布方式下,第一滤光片组111与第二滤光片组112在图像传感器10(图1所示)的垂直方向V上相邻布置,且在水平方向H上也相邻布置。也即,多个滤光片组113在垂直方向V上按照第一滤光片组111及第二滤光片组112的顺序或第二滤光片组112及第一滤光片组111的顺序呈周期性排列,多个滤光片组113在水平方向H上按照第一滤光片组111及第二滤光片组112的顺序或第二滤光片组112及第一滤光片组111的顺序呈周期性排列。
在此排布方式下,在第一滤光片组111中,多个滤光片110逐行排列,且同一行中的多个滤光片110的颜色相同,例如,第一行的多个滤光片110均为第一颜色滤光片A,第二行的多个滤光片110均为第二颜色滤光片B,第三行的多个滤光片110均为第一颜色滤光片A。在第二滤光片组112中,多个滤光片110逐列排列,且同一列中的多个滤光片110的颜色相同,例如,第一列的多个滤光片110均为第一颜色滤光片A,第二列的多个滤光片110均为第三颜色滤光片C,第三列的多个滤光片110均为第一颜色滤光片A。
在某些实施方式中,滤光片阵列11中部分滤光片110的排布方式还可以为:
Figure PCTCN2021071247-appb-000013
其中,A为第一颜色滤光片,B为第二颜色滤光片,C为第三颜色滤光片。每个第一滤光片组111中的滤光片110的数量均为4*4,每个第二滤光片组112中的滤光片110的数量均为4*4。
在此排布方式下,多个第一滤光片组111设置在第一对角线方向D1(例如滤光片阵列11的左上角与右下角连接的方向),多个第二滤光片组112设置在第二对角线方向D2(例如滤光片阵列11的左下角与右上角连接的方向),第一对角线方向D1与第二对角线方向D2不同,例如,第一对角线方向D1与第二对角线方向D2垂直。
在此排布方式下,第一滤光片组111与第二滤光片组112在图像传感器10(图1所示)的垂直方向V上相邻布置,且在水平方向H上也相邻布置。也即,多个滤光片组113在垂直方向V上按照第一滤光片组111及第二滤光片组112的顺序或第二滤光片组112及第一滤光片组111的顺序呈周期性排列,多个滤光片组113在水平方向H上按照第一滤光片组111及第二滤光片组112的顺序或第二滤光片组112及第一滤光片组111的顺序呈周期性排列。
在此排布方式下,在第一滤光片组111中,多个滤光片110逐列排列,且同一列中的多个滤光片110的颜色相同,例如,第一列的多个滤光片110均为第一颜色滤光片A,第二列的多个滤光片110均为第二颜色滤光片B,第三列的多个滤光片110均为第一颜色滤光片A,第四列的多个滤光片110均为第二颜色滤光片B。在第二滤光片组112中,多个滤光片110逐行排列,且同一行中的多个滤光片110的颜色相同,例如,第一行的多个滤光片110均为第一颜色滤光片A,第二行的多个滤光片110均为第三颜色滤光片C,第三行的多个滤光片110均为第一颜色滤光片A,第四行的多个滤光片110均为第三颜色滤光片C。
请结合图1至图7,本申请实施方式的图像传感器10中,每一个第一滤光片组111对应的多个像素120产生的电信号均可以合并生成第一模拟像素信号和第三模拟像素信号。每一个第二滤光片组112对应的多个像素120产生的电信号均可以合并生成第二模拟像素信号和第四模拟像素信号。其中,每个第一滤光片组111中多个第一颜色滤光片A对应的多个像素120产生的电信号在该第一滤光片组111中多个第一颜色滤光片A对应的多个像素120共用的浮动扩散节点FD处合并以生成第一模拟像素信号。每个第一滤光片组111中多个第二颜色滤光片B对应的多个像素120产生的电信号在该第一滤光片组111中多个第二颜色滤光片B对应的多个像素120共用的浮动扩散节点处合并以生成第三模拟像素信号。每个第二滤光片组112中多个第一颜色滤光片A对应的多个像素120产生的电信号在该第二滤光片组112中多个第一颜色滤光片A对应的多个像素120共用的浮动扩散节点处合并以生成第二模拟像素信号。每个第二滤光片组112中多个第三颜色滤光片C对应的多个像素120产生的电信号在该第二滤光片组112中多个第三颜色滤光片C对应的多个像素120共用的浮动扩散节点处合并以生成第四模拟像素信号。
具体地,在一个例子中,同一滤光片组113中,同一颜色的滤光片110对应的多个像素120共用一个浮动扩散节点FD,不同颜色的滤光片110对应的像素120对应不同的浮动扩散节点FD。请结合图1、图3和图7,每个像素120均包括光电元件(例如PD11/PD12/PD13/PD14/PD21/PD22/PD23/PD24)及曝光控制电路TRF。像素阵列12还包读出电路121,每一组读出电路121均包括一个复位电路RST、一个浮动扩散节点FD、一个放大电路SF及一个选择电路SEL,一个浮动扩散节点FD与一个复位电路RST及一个放大电路SF连接,一个选择电路SEL与一个放大电路SF连接。如图1、图3和图7所示,第一滤光片组111中,两个第一颜色滤光片A对应的两个像素120(包括PD11的像素与包括PD22的像素)共用一组读出电路121,两个第二颜色滤光片B对应的两个像素120(包括PD12的像素与包括PD21的像素)也共用一组读出电路121,且两个第二颜色滤光片B对应的两个像素120共用的读出电路121与两个第一颜色滤光片A对应的两个像素120共用的读出电路121为不同的读出电路121。第一滤光片组111中,两个第一颜色滤光片A对应的两个像素120中的曝光控制电路TRF均与对应的读出电路121的浮动扩散节点FD连接,两个第二颜色滤光片B 对应的两个像素120中的曝光控制电路TRF均与对应的读出电路121的浮动扩散节点FD连接。如图1、图3和图7所示,第二滤光片组112中,两个第一颜色滤光片A对应的两个像素120(包括PD13的像素与包括PD24的像素)共用一组读出电路121,两个第三颜色滤光片C对应的两个像素120(包括PD14的像素与包括PD23的像素)也共用一组读出电路121,且两个第二颜色滤光片B对应的两个像素120共用的读出电路121与两个第一颜色滤光片A对应的两个像素120共用的读出电路121为不同的读出电路121。第二滤光片组112中,两个第一颜色滤光片A对应的两个像素120中的曝光控制电路TRF均与对应的读出电路121的浮动扩散节点FD连接,两个第三颜色滤光片C对应的像两个素120中的曝光控制电路TRF均与对应的读出电路121的浮动扩散节点FD连接。
像素阵列12工作时,同一滤光片组113中同一颜色的滤光片110对应的像素120的曝光控制电路TRF的控制端TX同时开启,以将同一滤光片组113中同一颜色的滤光片110对应的多个像素120接收光线后产生的电荷转移到同一滤光片组113中同一颜色的滤光片110对应的多个像素120共用的浮动扩散节点FD。同一滤光片组113中,不同颜色的滤光片110对应的像素120的曝光控制电路TRF的控制端TX同时或分时开启。具体地,如图1、图3、图7、图8A及图8B所示,第一滤光片组111中,复位电路RST对两个第一颜色滤光片A对应的两个像素120(包括PD11的像素与包括PD22的像素)共用的浮动扩散节点FD进行复位。随后,两个第一颜色滤光片A对应的两个像素120共用的选择电路SEL的控制端T1开启以输出对应的浮动扩散节点FD处的复位电平。随后,一个第一颜色滤光片A对应的一个像素120(包括PD11的像素)的曝光控制电路TRF的控制端TX1及另一个第一颜色滤光片A对应的一个像素120(包括PD22的像素)的曝光控制电路TRF的控制端TX2同时开启,则一个第一颜色滤光片A对应的一个像素120接收光线后产生的电荷会转移到这两个第一颜色滤光片A对应的两个像素120共用的浮动扩散节点FD处,另一个第一颜色滤光片A对应的一个像素120接收光线后产生的电荷也会转移到这两个第一颜色滤光片A对应的两个像素120共用的浮动扩散节点FD处。如此,两个第一颜色滤光片A对应的两个像素120接收光线后产生的电荷会在这两个像素120共用的浮动扩散节点FD处合并,放大电路SF会对这一浮动扩散节点FD处的电荷对应的电信号进行放大以得到第一模拟像素信号。当两个这两个第一颜色滤光片A对应的两个像素120共用的选择电路SEL的控制端T1再次开启,第一模拟像素信号被输出至对应的模数转换电路(Analog-to-Digital Converter,ADC)14。同样地,第一滤光片组111中,复位电路RST对两个第二颜色滤光片B对应的两个像素120(包括PD12的像素与包括PD21的像素)共用的浮动扩散节点FD进行复位。随后,两个第二颜色滤光片B对应的两个像素120共用的选择电路SEL的控制端T2开启以输出对应的浮动扩散节点FD处的复位电平。随后,一个第二颜色滤光片B对应的一个像素120(包括PD12的像素)的曝光控制电路TRF的控制端TX3及另一个第二颜色滤光片B对应的一个像素120(包括PD21的像素)的曝光控制电路TRF的控制端TX4同时开启,则一个第二颜色滤光片B对应的一个像素120接收光线后产生的电荷会转移到这两个第二颜色滤光片B对应的两个像素120共用的浮动扩散节点FD处,另一个第二颜色滤光片B对应的一个像素120接收光线后产生的电荷也会转移到这两个第二颜色滤光片B对应的两个像素120共用的浮动扩散节点FD处。如此,两个第二颜色滤光片B对应的两个像素120接收光线后产生的电荷会在这两个像素120共用的浮动扩散节点FD处合并,放大电路SF会对这一浮动扩散节点FD处的电荷对应的电信号进行放大以得到第三模拟像素信号。当两个这两个第二颜色滤光片B对应的两个像素120共用的选择电路SEL的控制端T2再次开启,第三模拟像素信号被输出至对应的模数转换电路14。第二滤光片组112中两个第一颜色滤光片A对应的两个像素120(包括PD13的像素与包括PD24的像素)产生的电信号的合并方式以及两个第三颜色滤光片C对应的两个像素120(包括PD14的像素与包括PD23的像素)产生的电信号的合并方式与此相同,在此不再赘述。
由于同一滤光片组113中,不同颜色的滤光片110对应的像素120共用的是不同的浮动扩散节点FD,因此,在进行信号合并时,同一滤光片组113中,不同颜色的滤光片110对应的像素120的曝光控制电路TRF的控制端TX可以同时或分时开启。示例地,第一滤光片组110中,两个第一颜色滤光片A对应的两个像素120的曝光控制电路TRF的控制端TX1和TX2在t1时刻开启,两个第二颜色滤光片B对应的两个像素120的曝光控制电路TRF的控制端TX3和TX4在t2时刻开启,其中,t1可以等于t2(如图8A所示),也可以不等于t2(如图8B所示)。具体地,如图8A所示,当t1=t2时,第一滤光片组111中,四个滤光片110对应的四个像素120的曝光控制电路TRF的控制端TX1、TX2、TX3及TX4同时开启,以使两个第一颜色滤光片A对应的两个像素120产生的电信号转移到这两个像素120共用的浮动扩散节点FD处,两个第二颜色滤光片B对应的两个像素120产生的电信号转移到这两个像素120共用的浮动扩散节点FD处。如图8B所示,当t1≠t2时,第一滤光片组111中,两个第一颜色滤光片A对应的两个像素120的曝光控制电路TRF的控制端TX1和TX2率先同时开启,即在t1时刻同时开启,以使两个第一颜色滤光片A对应的两个像素120产生的电信号转移到这两个像素120共用的浮动扩散节点FD处。随后,两个第二颜色滤光片B对应的两个像素120的曝光控制电路TRF的控制端TX3和TX4再同时开启,即在t2时刻同时开启,以使两个第二颜色滤光片B对应的两个像素120产生的电信号转移到这两个像素120共用的浮动扩散节点FD处。需要说明的是,在其他例子中,也可以是两个第二颜色滤光片B对应的两个像素120的曝光控制电路TRF的控制端TX3和TX4率先同时开启,随后,两个第一颜色滤光片A对应的两个像素120的曝光控制电路TRF的控制端TX1和TX2再同时开启,在此不作限制。
在另一个例子中,同一滤光片组113中,所有颜色的滤光片110对应的多个像素120共用一个浮动扩散节点FD,每个像素120均包括曝光控制电路TRF。请结合图1和图9,每个像素120均包括光电元件(例如PD11/PD12/PD13/PD14/PD21/PD22/PD23/PD24/PD31/PD32/PD33/PD34/PD41/PD42/PD43/PD44)及曝光控制电路TRF。像素阵列12还包括读出电路121,每组读出电路121均包括一个复位电路RST、一个浮动扩散节点FD、一个放大电路SF及一个选择电路SEL,一个浮动扩散节点FD与一个复位电路RST及一个放大电路SF连接,一个选择电路SEL与一个放大电路SF连接。如图1、图3和图9所示,每个第一滤光片组111中,两个第一颜色滤光片A对应的两个像素120(包括PD11的像素与包括PD22的像素)及两个第二颜色滤光片B对应的两个像素120(包括PD12的像素与包括PD21的像素)共用一组读出电路121。第一滤光片组111中,两个第一颜色滤光片A对应的两个像素120中的曝光控制电路TRF及两个第二颜色滤光片B对应的两个像素120中的曝光控制电路TRF均与一个读出电路121的浮动扩散节 点FD连接。如图1、图3和图9所示,每个第二滤光片组112中,两个第一颜色滤光片A对应的两个像素120及两个第三颜色滤光片C对应的两个像素120共用一组读出电路121。第二滤光片组112中,两个第一颜色滤光片A对应的两个像素120(包括PD13的像素与包括PD24的像素)中的曝光控制电路TRF及两个第三颜色滤光片C对应的两个像素120(包括PD14的像素与包括PD23的像素)中的曝光控制电路TRF均与一个读出电路121的浮动扩散节点FD连接。
像素阵列12工作时,同一滤光片组113中,同一颜色的滤光片110对应的多个像素120的曝光控制电路TRF的控制端TX同时开启,以将同一滤光片组13中同一颜色的滤多个光片110对应的像素120接收光线后产生的电荷转移到滤光片组113对应的多个像素120共用的浮动扩散节点FD。同一滤光片组13中,不同颜色的滤光片10对应的像素120的曝光控制电路TRF的控制端分时开启。具体地,如图1、图3、图9及图10A所示,对于每个第一滤光片组111,复位电路RST对第一滤光片组111中四个滤光片110对应的四个像素120共用的浮动扩散节点FD进行复位。随后,两个第一颜色滤光片A对应的两个像素120(包括PD11的像素和包括PD22的像素)对应的选择电路SEL的控制端T1开启以输出对应的浮动扩散节点FD处的复位电平。随后,在t1时刻下,一个第一颜色滤光片A对应的一个像素120(包括PD11的像素)的曝光控制电路TRF的控制端TX1及另一个第一颜色滤光片A对应的一个像素120(包括PD22的像素)的曝光控制电路TRF的控制端TX2同时开启,则一个第一颜色滤光片A对应的一个像素120(包括PD11的像素)接收光线后产生的电荷会转移到第一滤光片组111对应的四个像素120(包括PD11的像素、包括PD12的像素、包括PD21的像素、包括PD22的像素)共用的浮动扩散节点FD处,另一个第一颜色滤光片A对应的一个像素120(包括PD22的像素)接收光线后产生的电荷也会转移到第一滤光片组111对应的四个像素120共用的浮动扩散节点FD处。如此,两个第一颜色滤光片A对应的两个像素120接收光线后产生的电荷会在这四个像素120共用的浮动扩散节点FD处合并,放大电路SF会对这一浮动扩散节点FD处的电荷对应的电信号进行放大以得到第一模拟像素信号。当这两个第一颜色滤光片A对应的两个像素120对应的选择电路SEL的控制端T1再次开启,第一模拟像素信号被输出至对应的模数转换电路14。在第一模拟像素信号被输出至模数转换电路14后,复位电路RST再次对第一滤光片组111中四个滤光片110对应的四个像素120共用的浮动扩散节点FD进行复位。随后,两个第二颜色滤光片B对应的两个像素120(包括PD12的像素和包括PD21的像素)对应的选择电路SEL的控制端T1开启以输出对应的浮动扩散节点FD处的复位电平。随后,在t2时刻(t1小于t2)下,第一滤光片组111中的一个第二颜色滤光片B对应的一个像素120(包括PD12的像素)的曝光控制电路TRF的控制端TX3及另一个第二颜色滤光片B对应的一个像素120(包括PD21的像素)的曝光控制电路TRF的控制端TX4同时开启,则一个第二颜色滤光片B对应的一个像素120(包括PD12的像素)接收光线后产生的电荷会转移到第一滤光片组111对应的四个像素120(包括PD11的像素、包括PD12的像素、包括PD21的像素、包括PD22的像素)共用的浮动扩散节点FD处,另一个第二颜色滤光片B对应的一个像素120(包括PD21的像素)接收光线后产生的电荷也会转移到第一滤光片组111对应的四个像素120共用的浮动扩散节点FD处。如此,两个第二颜色滤光片B对应的两个像素120接收光线后产生的电荷会在这四个像素120共用的浮动扩散节点FD处合并,放大电路SF会对这一浮动扩散节点FD处的电荷对应的电信号进行放大以得到第三模拟像素信号。当这两个第二颜色滤光片B对应的两个像素120对应的选择电路SEL的控制端T1再次开启,第三模拟像素信号被输出至对应的模数转换电路14。第二滤光片组112中两个第一颜色滤光片A对应的两个像素120(包括PD13的像素与包括PD24的像素)产生的电信号的合并方式以及两个第三颜色滤光片C对应的两个像素120(包括PD14的像素与包括PD23的像素)产生的电信号的合并方式与此相同,在此不再赘述。
由于同一滤光片组113中所有颜色的滤光片110对应的多个像素120共用一个浮动扩散节点FD,若所有像素120的曝光控制电路TRF的控制端TX同时开启,则会出现不同颜色的滤光片110对应的像素120生成的电信号合并的情况。因此,为避免这一情况的出现,如图10A所示,同一滤光片组113中,不同颜色的滤光片110对应的像素120的曝光控制电路TRF的控制端TX应该分时开启。需要说明的是,图10A所示为两个第一颜色滤光片A对应的两个像素120的曝光控制电路TRF的控制端TX1和TX2率先同时开启。在其他实施方式中,也可以是两个第二颜色滤光片B对应的两个像素120的曝光控制电路TRF的控制端TX3和TX4率先同时开启,在此不作限制。
请参阅图11,图像传感器通常还包括模数转换电路。假设像素阵列包括N*M个像素,模数转换电路的数量为M个,即每一像素列对应一个模数转换电路。模数转换电路执行模数转换时,M个模数转换电路先同时分别对第1行中列对应的M个像素输出的模拟像素信号进行模数转换,再对第2行中列对应的M个像素输出的模拟像素信号进行模数转换,再对第3行中列对应的M个像素输出的模拟像素信号进行模数转换,依此类推,最后对第N行中列对应的M个像素输出的模拟像素信号进行模数转换。假设每一行的M个像素输出的模拟像素信号转换为数字像素信号均需要耗费t0的时长,则M个模数转换电路要将N行像素输出的模拟像素信号转换为数字像素信号需要耗费总时长N*t0才能完成N*M个模拟像素信号的模数转换。
请参阅图1、图7及图12,本申请实施方式的图像传感器10通过共用浮动扩散节点FD的方式对像素120输出的电信号进行合并以得到合并后的模拟像素信号。当像素阵列12包括N*M个像素时,模数转换电路14的数量可为M/S个时,由于同一滤光片组113中相同颜色滤光片110对应的像素120的电信号进行合并导致模拟像素信号的数量减少为N*M/S(图12所示的S为2,S的取值由同一滤光片组113中相同颜色滤光片110对应的像素120的个数来决定,即S=同一滤光片组113中相同颜色滤光片110对应的像素120的个数)个,则M/S个模数转换电路14只需要耗费总时长N*t0/S即可完成N*M/S个模拟像素信号的模数转换,模数转换的耗时大大减小。图像传感器10输出的图像信号对应的图像的帧率是与图像传感器10和处理器之间的I/F接口的带宽有关的,且与模数转换的耗时也是有关的。一般地,图像传感器10输出的数据量越大,越容易导致I/F接口的带宽瓶颈,图像帧率会越低;模数转换的耗时越多,图像帧率也会越低。本申请实施方式的图像传感器10利用共用浮动扩散节点FD的方式来减少所要输出的数据量,且减少了模数转换的耗时,有利于提升帧率。本申请实施方式的图像传感器10应用于视频聊天、运动捕捉等对帧率要求较高的应用场景中时将具有极大的优势。
模数转换电路将模拟像素信号转换为数字信号是需要一定时间的,目前图像传感器的工作方式在模数转换阶段需要 耗费较多时间,图像传感器能够输出的图像的帧率较低。
请结合图13,本申请实施方式的模数转换电路14以第一位数精度将第一颜色滤光片A对应的像素120得到的模拟像素信号转换为数字像素信号。模数转换电路14以小于第一位数精度的第二位数精度将第二颜色滤光片B和第三颜色滤光片C对应的像素120得到的模拟像素信号转换为数字像素信号。相较于模数转换电路14均以第一位数精度将第一颜色滤光片A、第二颜色滤光片B和第三颜色滤光片C对应的像素120得到的模拟像素信号转换为数字像素信号而言,可以提高模数转换的速度,减少模数转换的耗时,有利于提升帧率。
下面以第一位数精度是10位精度、第二位数精度是8位精度为例进行说明。模数转换电路14包括数字模拟转换器141、计数器控制部142、比较器143和计数器144。数字模拟转换器141包括第一比较信号生成器1411和第二比较信号生成器1412。计数器控制部142包括第一位数信号生成部1421和第二位数信号生成部1422。
在模数转换电路14以10位精度将第一颜色滤光片A对应的像素120得到的模拟像素信号转换为数字像素信号时,数字模拟转换器141的开关连接至第一比较信号生成器1411,计数器控制部142的开关连接至第一位数信号生成部1421。第一比较信号生成器1411生成的以斜坡方式变化的参考电压Vramp1被提供至比较器143,控制信号从计数器控制部142的第一位数信号生成部1421提供至计数器144,指示计数器144以10位精度进行模数转换。比较器143将参考电压Vramp1与模数转换电路14输入的电压信号Vinput相比较,在参考电压Vramp1大于电压信号Vinput的情况下,比较器143输出“1”作为输出信号,计数器144开始计数操作。当参考电压Vramp1降到电压信号Vinput以下时,比较器143输出“0”作为输出信号,计数器144停止计数操作。
在模数转换电路14以8位精度将第二颜色滤光片B和第三颜色滤光片C对应的像素120得到的模拟像素信号转换为数字像素信号时,数字模拟转换器141的开关连接至第二比较信号生成器1412,计数器控制部142的开关连接至第二位数信号生成部1422。第二比较信号生成器1412生成的以斜坡方式变化的参考电压Vramp2被提供至比较器143,控制信号从计数器控制部142的第二位数信号生成部1422提供至计数器144,指示计数器144以8位精度进行模数转换。比较器143将参考电压Vramp2与模数转换电路14输入的电压信号Vinput相比较,在参考电压Vramp2大于电压信号Vinput的情况下,比较器143输出“1”作为输出信号,计数器144开始计数操作。当参考电压Vramp2降到电压信号Vinput以下时,比较器143输出“0”作为输出信号,计数器144停止计数操作。
当模数转换电路14工作在10位精度时,参考电压Vramp1变化2 10,即1024次;当模数转换电路14工作在8位精度时,参考电压Vramp1变化2 8,即256次。由于每次周期时间受电路设计限制,因此最小周期时间是固定的。因此,模数转换电路14工作在10位精度时的模数转换时间大于模数转换电路14工作在8位精度时的模数转换时间。本申请实施方式中,模数转换电路14以10位精度将第二颜色滤光片和第三颜色滤光片对应的像素得到的模拟像素信号转换为数字像素信号(如图14B所示),相较于模数转换电路14均以第一位数精度将第一颜色滤光片A、第二颜色滤光片B和第三颜色滤光片C对应的像素120得到的模拟像素信号转换为数字像素信号(如图14A所示)而言,可以提高模数转换的速度,减少模数转换的耗时,有利于提升帧率。
在某些实施方式中,滤光片阵列11(图1所示)划分为多个区域,每个区域包括至少一个滤光片组113(图3所示),每个区域中的滤光片组113的数量可由图像传感器10输出的图像信号对应的图像的目标帧率决定。目标帧率越大,每个区域中的滤光片组113的数量越少。图像传感器10可以自适应地针对不同的目标帧率来对调整每个区域中滤光片组113的数量。
请参阅图7,在一个例子中,所有区域中,每个区域内所有第一颜色滤光片A对应的多个像素120共用一个模数转换电路14,每个模数转换电路14用于将对应的每个区域内所有第一颜色滤光片A对应的多个像素120的第一模拟像素信号和/或第二模拟像素信号转换为第一数字像素信号。所有区域中,每个区域内所有第二颜色滤光片B对应的多个像素120共用一个模数转换电路14,每个模数转换电路14用于将对应的每个区域内所有第二颜色滤光片B对应的多个像素120的第三模拟像素信号转换为第二数字像素信号;和/或,每个区域内所有第三颜色滤光片C对应的多个像素120共用一个模数转换电路14,每个模数转换电路14用于将对应的每个区域内所有第三颜色滤光片C的多个像素120对应的第四模拟像素信号转换为第三数字像素信号。
示例地,请结合图1、图3、图7、图8A、图8B及图15,每个区域包括一个滤光片组113,即每个区域中的滤光片组113为第一滤光片组111或第二滤光片组112。以第一滤光片组111为例,第一滤光片组111中两个第一颜色滤光片A对应的两个像素120(包括PD11的像素和包括PD22的像素)共用一个模数转换电路14,两个第二颜色滤光片B对应的两个像素120(包括PD12的像素和包括PD21的像素)共用另一个模数转换电路14。若两个第一颜色滤光片A对应的两个像素120的曝光控制电路电路TRF的控制端TX1、TX2与两个第二颜色滤光片B对应的两个像素120的曝光控制电路TRF的控制端TX3、TX4同时开启,则两个第一颜色滤光片A对应的两个像素120共用的选择电路SEL的控制端T1与两个第二颜色滤光片B对应的两个像素120共用的选择电路SEL的控制端T2可以同时开启(如图8A所示)或分时开启(图未示)。若两个第一颜色滤光片A对应的两个像素120的曝光控制电路TRF的控制端TX1、TX2与两个第二颜色滤光片B对应的两个像素120的曝光控制电路TRF的控制端TX3、TX4分时开启,则两个第一颜色滤光片A对应的两个像素120共用的选择电路SEL的控制端T1与两个第二颜色滤光片B对应的两个像素120共用的选择电路SEL的控制端T2可以分时开启(图8B所示)。图像传感器10工作时,第一滤光片组111中的两个第一颜色滤光片A对应的两个像素120的电信号在浮动扩散节点FD合并,随后,这两个像素120共用的选择电路SEL的控制端T1开启,合并后的第一模拟像素信号传输到这两个像素120共用的模数转换电路14中进行模数转换以得到一个第一数字像素信号(图15下方的左图中,一个最小A方格对应一个第一数字像素信号),第一数字像素信号用于表征作用于多个第一颜色滤光片A(图15所示为一个滤光片组113中的两个第一颜色滤光片A)对应的多个像素120的光线的第一颜色通道的值。第一滤光片组111中的两个第二颜色滤光片B对应的两个像素120的电信号在浮动扩散节点FD合并,随后,这两个像素120共用的选择电路SEL的控制端T2开启,合并后的第三模拟像素信号传输到这两个像素120共用的模数转换电路14中进行模数转换以得到一个第二数字像素信号(图15下方的右图中,一个最小B方格对应一个第 二数字像素信号),第二数字像素信号用于表征作用于多个第二颜色滤光片B(图15所示为一个滤光片组113中的两个第二颜色滤光片B)对应的多个像素120的光线的第二颜色通道的值。第二滤光片组112中两个第一颜色滤光片A对应的两个像素120共用一个模数转换电路14以将第二模拟像素信号转换为第一数字像素信号的方式与此相同,在此不做赘述。同样地,第二滤光片组112中两个第三颜色滤光片C对应的两个像素120共用一个模数转换电路14以将第四模拟像素信号转换为第三数字像素信号的方式与此相同,在此不做赘述。其中,第三数字像素信号用于表征作用于多个第三颜色滤光片C对应的像素120的光线的第三颜色通道的值。
由此,如图15所示,图像传感器10可以输出两个数字图像信号,一个数字图像信号由多个第一数字像素信号组成,另一个数字图像信号由多个第二数字像素信号及多个第三数字像素信号组成。图像传感器10输出的数字图像信号对应的图像可以达到的目标帧率为FP1。
示例地,请结合图1、图3、图9、图10A、图10B及图16所示,每个区域包括至少一个第一滤光片组111及至少一个第二滤光片组112。所有区域中,每个区域内所有第一颜色滤光片A、所有第二颜色滤光片B、及所有第三颜色滤光片C对应的多个像素120共用一个模数转换电路14。一个选择电路SEL与一个浮动扩散节点FD连接,且与共用的一个模数转换电路14连接。同一区域内,不同滤光片组113对应的多个像素120对应的选择电路SEL的控制端分时开启。同一滤光片组113中,不同颜色的滤光片110对应的像素120的选择电路SEL的控制端分时开启。图14所示为每个区域包括两列像素120对应的第一滤光片组111及第二滤光片组112,即两个第一滤光片组111和两个第二滤光片组112。两个第一滤光片组111中四个第一颜色滤光片A(包括PD11的像素、包括PD22的像素、包括PD51的像素、包括PD62的像素)对应的四个像素120、两个第二滤光片组112中四个第一颜色滤光片A对应的四个像素120(包括PD31的像素、包括PD42的像素、包括PD71的像素、包括PD82的像素)共用一个模数转换电路14、两个第一滤光片组111中四个第二颜色滤光片B(包括PD12的像素、包括PD21的像素、包括PD52的像素、包括PD61的像素)对应的四个像素120、两个第二滤光片组112中四个第三颜色滤光片C对应的四个像素120(包括PD32的像素、包括PD41的像素、包括PD72的像素、包括PD81的像素)共用一个模数转换电路14。由于同一第一滤光片组111中,两个第一颜色滤光片A对应的两个像素120及两个第二颜色滤光片B对应的两个像素120共用一个浮动扩散节点FD,因此,图像传感器10工作时,如图9、图10A及图16中上方位置的图所示的,一个第一滤光片组111中的两个第一颜色滤光片A对应的两个像素120(包括PD11的像素和包括PD22的像素)的电信号在一个浮动扩散节点FD合并,另一个第一滤光片组111中的两个第一颜色滤光片A对应的两个像素120(包括PD51的像素、包括PD62的像素)的电信号在另一个浮动扩散节点FD合并,一个第二滤光片组112中的两个第一颜色滤光片A(包括PD31的像素、包括PD42的像素)对应的两个像素120的电信号在一个浮动扩散节点FD合并,另一个第二滤光片组112中的两个第一颜色滤光片A对应的两个像素120(包括PD71的像素、包括PD82的像素)的电信号在另一个浮动扩散节点FD合并。随后,如图9、图10B及图16下方位置的左图所示的,一个第一滤光片组111中的两个第一颜色滤光片A对应的两个像素120共用的选择电路SEL的控制端T1、另一个第一滤光片组111中的两个第一颜色滤光片A对应的两个像素120共用的选择电路SEL的控制端T3、一个第二滤光片组112中的两个第一颜色滤光片A对应的两个像素120共用的选择电路SEL的控制端T1、另一个第二滤光片组112中的两个第一颜色滤光片A对应的两个像素120共用的选择电路SEL的控制端T3分时开启,合并后的两个第一模拟像素信号及合并后的两个第二模拟像素信号(图16下方位置的左图中,一个最小A方格对应一个第一模拟像素信号或一个第二模拟像素信号)分时传输到这八个像素120(包括PD11的像素、包括PD22的像素、包括PD51的像素、包括PD62的像素、包括PD31的像素、包括PD42的像素、包括PD71的像素、包括PD82的像素)共用的模数转换电路14中分时进行模数转换以得到四个第一数字像素信号(如图16下方位置的左图所示,该图中一个最小A方格对应一个第一数字像素信号)。随后,如图9、图10A及图16中最上方的图所示的,一个第一滤光片组111中的两个第二颜色滤光片B对应的两个像素120(包括PD12的像素和包括PD21的像素)的电信号在一个浮动扩散节点FD合并,另一个第一滤光片组111中的两个第二颜色滤光片B对应的两个像素120(包括PD52的像素、包括PD61的像素)的电信号在另一个浮动扩散节点FD合并。随后,如图9、图10B及图16下方位置的右图所示的,一个第一滤光片组111中的两个第二颜色滤光片B对应的两个像素120共用的选择电路SEL的控制端T1、另一个第一滤光片组111中的两个第二颜色滤光片B对应的两个像素120共用的选择电路SEL的控制端T1分时开启,合并后的两个第三模拟像素信号(图16下方位置的右图中,一个最小B方格对应一个第三模拟像素信号)分时传输到这四个像素120共用的模数转换电路14中分时进行模数转换以得到两个第二数字像素信号(如图16下方位置的右图所示,该图中一个最小B方格对应一个第二数字像素信号)。两个第二滤光片组112中四个第三颜色滤光片C对应的四个像素120共用一个模数转换电路14以将两个第四模拟像素信号转换为两个第三数字像素信号的方式与两个第一滤光片组111中四个第二颜色滤光片B对应的四个像素120共用一个模数转换电路14以将两个第三模拟像素信号转换为两个第二数字像素信号的方式相同,在此不做赘述。
由此,如图16所示,图像传感器10可以输出两个数字图像信号,一个数字图像信号由多个第一数字像素信号组成,另一个数字图像信号由多个第二数字像素信号及多个第三数字像素信号组成。图像传感器10输出的数字图像信号对应的图像可以达到的目标帧率为FP2。比较图15与图16可知,由于图16所示实施方式中,每个区域中包括更多个滤光片组113,即共用一个模数转换电路14的滤光片组113更多,而模数转换电路14需要分时将不同滤光片组113对应的像素120的模拟像素信号转换为数字像素信号,因此所需要耗费的模数转换的时间更长,图16所示实施方式的目标帧率FP2会比图15所示实施方式的目标帧率FP1小。如此,本申请实施方式的图像传感器10可以根据目标帧率来调整区域中的滤光片组110的数量,从而可以使得图像传感器10适用于对图像的帧率具有不同要求的各种场景,提升图像传感器10的场景适应性。
请参阅图1和图17,本申请还提供一种成像装置100。成像装置100包括上述任意一个实施方式的图像传感器10。
在某些实施方式中,成像装置100还包括处理器20。处理器20可以用于处理表征作用于多个第一颜色滤光片A对应像素120的光线的第一颜色通道的值的第一数字像素信号、表征作用于多个第二颜色滤光片B对应像素120的光线 的第二颜色通道的值的第二数字像素信号、及表征作用于多个第三颜色滤光片C对应像素120的光线的第三颜色通道的值的第三数字像素信号以生成彩色图像。
具体地,当图像传感器10输出的数字图像信号包括两个,第一个数字图像信号由多个第一数字像素信号组成,第二个数字图像信号由多个第二数字像素信号及多个第三数字像素信号组成时(例如图15及图16所示的输出),处理器20首先对第二个数字图像信号进行插值处理,使得第二数字图像信号中的每一个数字图像信号对应的图像像素均同时具有用于表征第二颜色通道的值的第二数字像素信号及用于表征第三颜色通道的值的第三数字像素信号。随后,处理器20再对第一数字图像信号及插值处理后的第二数字图像信号进行融合处理以生成彩色图像,彩色图像中每一个图像像素对应的数字像素信号均由第一颜色通道的值、第二颜色通道的值及第三颜色通道的值所组成。
请参阅图1、图3和图18,本申请还提供一种电子设备1000。电子设备1000可以是手机、平板电脑、笔记本电脑、智能手表、智能手环、智能头盔、智能眼镜、无人设备(例如无人机、无人车、无人船)等,在此不作限制。电子设备1000包括成像装置100。成像装置100包括上述任意一个实施方式的图像传感器10。电子设备1000还包括处理器20。电子设备1000的处理器20可以执行与图17所示成像装置100中的处理器20所能执行的功能相同的功能,在此不做赘述。
请参阅图1、图3和图19,本申请还提供一种图像处理***10000。图像处理***10000包括电子设备1000。电子设备1000包括成像装置100。成像装置100包括上述任意一个实施方式的图像传感器10。图像处理***10000还包括处理器20。图像处理***10000的处理器20可以执行与图17所示成像装置100中的处理器20所能执行的功能相同的功能,在此不做赘述。
其中,处理器20可以位于负责云计算的服务器中,也可以位于负责边缘计算的服务器中。如此,图像传感器10(图1所示)输出的像素信号的后续处理可以下载到服务器中执行,可以节约成像装置100或电子设备1000的功耗。
请参阅图1、图3、图7和图9,本申请还提供一种信号处理方法。信号处理方法可以应用于图像传感器10中。图像传感器10包括滤光片阵列11、像素阵列12及多个模数转换电路14。滤光片阵列11包括多个第一颜色滤光片A、多个第二颜色滤光片B、及多个第三颜色滤光片C。像素阵列12包括多个像素120。每个像素120对应滤光片阵列11的一个滤光片111。像素120用于接收穿过对应的滤光片110的光线以生成电信号得到模拟像素信号。信号处理方法包括:
模数转换电路14以第一位数精度将第一颜色滤光片A对应的像素120得到的模拟像素信号转换为数字像素信号,模数转换电路14以小于第一位数精度的第二位数精度将第二颜色滤光片B和第三颜色滤光片C对应的像素120得到的模拟像素信号转换为数字像素信号。
在某些实施方式中,滤光片阵列11包括多个滤光片组113。每个滤光片组113包括至少两种不同颜色的滤光片110。每个滤光片组113中每种颜色的滤光片110的数量为多个。像素阵列12还包括多个浮动扩散节点FD。同一滤光片组113中同一颜色的滤光片110对应的像素120共用一个浮动扩散节点FD。信号处理方法还包括:
控制同一滤光片组113中同一颜色的滤光片110对应的像素120生成的电信号在对应的浮动扩散节点FD处合并。
在某些实施方式中,多个滤光片113包括多个第一滤光片组111及多个第二滤光片组112。第一滤光片组111包括数量相同的多个第一颜色滤光片A和多个第二颜色滤光片B。第二滤光片组112包括数量相同的多个第一颜色滤光片A和多个第三颜色滤光片C。控制同一滤光片组113中同一颜色的滤光片110对应的像素120生成的电信号在对应的浮动扩散节点FD处合并的步骤,包括:
控制每个第一滤光片组111中多个第一颜色滤光片A对应的多个像素120产生的电信号在该多个第一颜色滤光片A对应的多个像素120共用的浮动扩散节点FD处合并以生成第一模拟像素信号,控制每个第一滤光片组111中多个第二颜色滤光片B对应的多个像素120产生的电信号在该多个第二颜色滤光片B对应的多个像素120共用的浮动扩散节点FD处合并以生成第三模拟像素信号;
控制每个第二滤光片组112中多个第一颜色滤光片A对应的多个像素120产生的电信号在该多个第一颜色滤光片A对应的多个像素120共用的浮动扩散节点FD处合并以生成第二模拟像素信号,控制每个第二滤光片组112中多个第三颜色滤光片C对应的多个像素120产生的电信号在该多个第三颜色滤光片C对应的多个像素120共用的浮动扩散节点FD处合并以生成第四模拟像素信号。
在某些实施方式中,同一滤光片组113中,所有颜色的滤光片110对应的多个像素120共用一个浮动扩散节点FD。每个像素120均包括曝光控制电路TRF。同一滤光片组113中,同一颜色的多个滤光片110对应的多个像素120的曝光控制电路TRF的控制端TX同时开启,以将同一滤光片组113中同一颜色的多个滤光片110对应的多个像素120接收光线后产生的电荷转移到该滤光片组113对应的多个像素120共用的浮动扩散节点。同一滤光片组113中,不同颜色的滤光片110对应的像素120的曝光控制电路TRF的控制端TX分时开启。
在某些实施方式中,滤光片阵列11包括多个区域,每个区域包括至少一个滤光片组113。所有区域中,每个区域内所有第一颜色滤光片A对应的多个像素120共用一个模数转换电路14。所有区域中,每个区域内所有第二颜色滤光片B对应的多个像素120共用一个模数转换电路14,和/或,每个区域内所有第三颜色滤光片C对应的多个像素120共用一个模数转换电路14。信号处理方法还包括:
将所有区域中,每个区域内所有第一颜色滤光片A对应的多个像素120的第一模拟像素信号和/或第二模拟像素信号转换为第一数字像素信号;
将所有区域中,每个区域内所有第二颜色滤光片B对应的多个像素120的第三模拟像素信号转换为第二数字像素信号;和/或,将所有区域中,每个区域内所有第三颜色滤光片C对应的多个像素120的第四模拟像素信号转换为第三数字像素信号。
在某些实施方式中,每个区域包括至少一个第一滤光片组111和至少一个第二滤光片组112。所有区域中,每个区域内所有第一颜色滤光片A、所有第二颜色滤光片B、及所有第三颜色滤光片C对应的多个像素120共用一个模数转换电路14。像素阵列12还包括选择电路SEL,一个选择电路SEL与一个浮动扩散节点FD连接,且与共用的一个模数转 换电路14连接。同一区域内,不同滤光片组113对应的多个像素120对应的选择电路SEL的控制端T分时开启。同一滤光片组113中,不同颜色的滤光片110对应的像素120的选择电路SEL的控制端T分时开启。
在某些实施方式中,第一颜色滤光片A为绿色滤光片G,第二颜色滤光片B为红色滤光片R,第三颜色滤光片C为蓝色滤光片Bu。
在某些实施方式中,信号处理方法还包括:处理表征作用于多个第一颜色滤光片A对应像素120的光线的第一颜色通道的值的第一数字像素信号、表征作用于多个第二颜色滤光片B对应像素120的光线的第二颜色通道的值的第二数字像素信号、及表征作用于多个第三颜色滤光片C对应像素120的光线的第三颜色通道的值的第三数字像素信号以生成彩色图像。
需要指出的是,前述实施方式中对图像传感器10的解释说明,同样适用于本申请实施方式的信号处理方法,在此不做赘述。
本申请实施方式还提供一种计算机设备。计算机设备可以是上述任意一项实施方式的电子设备1000(图18所示)。
上述计算机设备中包括图像处理电路,图像处理电路可以利用硬件和/或软件组件实现,可包括定义ISP(Image Signal Processing,图像信号处理)管线的各种处理单元。图20为一个实施例中图像处理电路的示意图。如图20所示,为便于说明,仅示出与本申请实施例相关的图像处理技术的各个方面。
如图20所示,图像处理电路包括ISP处理器940和控制逻辑器950。其中,ISP处理器940可以作为电子设备1000中的处理器。成像装置910捕捉的图像数据首先由ISP处理器940处理,ISP处理器940对图像数据进行分析以捕捉可用于确定和/或成像装置910的一个或多个控制参数的图像统计信息。成像装置910可包括具有一个或多个透镜912和图像传感器914的照相机。其中,图像传感器914可以是图像传感器10(图1所示)。图像传感器914可包括滤光片阵列,图像传感器914可获取由图像传感器914的每个像素捕捉的光强度和波长信息,并提供可由ISP处理器940处理的一组原始图像数据,例如多个第一数字像素信号、多个第二数字像素信号、及多个第三数字像素信号组成的原始图像数据。传感器920(如陀螺仪)可基于传感器920接口类型把采集的图像处理的参数(如防抖参数)提供给ISP处理器940。传感器920接口可以利用SMIA(Standard Mobile Imaging Architecture,标准移动成像架构)接口、其它串行或并行照相机接口或上述接口的组合。
此外,图像传感器914也可将原始图像数据发送给传感器920,传感器920可基于传感器920接口类型把原始图像数据提供给ISP处理器940,或者传感器920将原始图像数据存储到图像存储器930中。
ISP处理器940按多种格式逐个像素地处理原始图像数据。例如,每个图像像素可具有8、10、12或14比特的位深度,ISP处理器940可对原始图像数据进行一个或多个图像处理操作、收集关于图像数据的统计信息。其中,图像处理操作可按相同或不同的位深度精度进行。
ISP处理器940还可从图像存储器930接收图像数据。例如,传感器920接口将原始图像数据发送给图像存储器930,图像存储器930中的原始图像数据再提供给ISP处理器940以供处理。图像存储器930可为存储器装置的一部分、存储设备、或电子设备内的独立的专用存储器,并可包括DMA(Direct Memory Access,直接直接存储器存取)特征。
当接收到来自图像传感器914接口或来自传感器920接口或来自图像存储器930的原始图像数据时,ISP处理器940可进行一个或多个图像处理操作,例如时域滤波;再例如,处理第一数字像素信号、第二数字像素信号、第三数字像素信号以获取彩色图像等。处理后的图像数据(例如彩色图像)可发送给图像存储器930,以便在被显示之前进行另外的处理。ISP处理器940从图像存储器930接收处理数据,并对所述处理数据进行原始域中以及RGB和YCbCr颜色空间中的图像数据处理。ISP处理器940处理后的图像数据可输出给显示器970,以供用户观看和/或由图形引擎或GPU(Graphics Processing Unit,图形处理器)进一步处理。此外,ISP处理器940的输出还可发送给图像存储器930,且显示器970可从图像存储器930读取图像数据。在一个实施例中,图像存储器930可被配置为实现一个或多个帧缓冲器。此外,ISP处理器940的输出可发送给编码器/解码器960,以便编码/解码图像数据。编码的图像数据可被保存,并在显示于显示器970设备上之前解压缩。编码器/解码器960可由CPU或GPU或协处理器实现。
ISP处理器940确定的统计数据可发送给控制逻辑器950。例如,统计数据可包括自动曝光、自动白平衡、自动聚焦、闪烁检测、黑电平补偿、透镜912阴影校正等图像传感器914统计信息。控制逻辑器950可包括执行一个或多个例程(如固件)的处理器和/或微控制器,一个或多个例程可根据接收的统计数据,确定成像装置910的控制参数及ISP处理器940的控制参数。例如,成像装置910的控制参数可包括传感器920控制参数(例如增益、曝光控制的积分时间、防抖参数等)、照相机闪光控制参数、透镜912控制参数(例如聚焦或变焦用焦距)、或这些参数的组合。ISP处理器940的控制参数可包括用于自动白平衡和颜色调整(例如,在RGB处理期间)的增益水平和色彩校正矩阵,以及透镜912阴影校正参数。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
尽管上面已经示出和描述了本申请的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施方式进行变化、修改、替换和变型。

Claims (20)

  1. 一种图像传感器,其特征在于,包括:
    滤光片阵列,所述滤光片阵列包括多个第一颜色滤光片、多个第二颜色滤光片、及多个第三颜色滤光片;
    像素阵列,所述像素阵列包括多个像素,每个所述像素对应所述滤光片阵列的一个滤光片,所述像素用于接收穿过对应的所述滤光片的光线以生成电信号得到模拟像素信号;及
    多个模数转换电路,所述模数转换电路以第一位数精度将所述第一颜色滤光片对应的所述像素得到的模拟像素信号转换为数字像素信号,所述模数转换电路以小于所述第一位数精度的第二位数精度将所述第二颜色滤光片和所述第三颜色滤光片对应的所述像素得到的模拟像素信号转换为数字像素信号。
  2. 根据权利要求1所述的图像传感器,其特征在于,所述滤光片阵列包括多个滤光片组,每个所述滤光片组包括至少两种不同颜色的滤光片,每个所述滤光片组中每种颜色的所述滤光片的数量为多个;
    所述像素阵列还包括多个浮动扩散节点,同一所述滤光片组中同一颜色的所述滤光片对应的所述像素共用一个所述浮动扩散节点,以使同一所述滤光片组中同一颜色的所述滤光片对应的所述像素生成的所述电信号能够在对应的所述浮动扩散节点处合并。
  3. 根据权利要求2所述的图像传感器,其特征在于,多个所述滤光片组包括多个第一滤光片组及多个第二滤光片组,所述第一滤光片组包括数量相同的多个所述第一颜色滤光片和多个所述第二颜色滤光片,所述第二滤光片组包括数量相同的多个所述第一颜色滤光片和多个所述第三颜色滤光片;
    每个所述第一滤光片组中多个所述第一颜色滤光片对应的多个所述像素产生的电信号在该多个所述第一颜色滤光片对应的多个所述像素共用的所述浮动扩散节点处合并以生成第一模拟像素信号,每个所述第一滤光片组中多个所述第二颜色滤光片对应的多个所述像素产生的电信号在该多个所述第二颜色滤光片对应的多个所述像素共用的所述浮动扩散节点处合并以生成第三模拟像素信号;
    每个所述第二滤光片组中多个所述第一颜色滤光片对应的多个所述像素产生的电信号在该多个所述第一颜色滤光片对应的多个所述像素共用的所述浮动扩散节点处合并以生成第二模拟像素信号,每个所述第二滤光片组中多个所述第三颜色滤光片对应的多个所述像素产生的电信号在该多个所述第三颜色滤光片对应的多个所述像素共用的所述浮动扩散节点处合并以生成第四模拟像素信号。
  4. 根据权利要求3所述的图像传感器,其特征在于,同一所述滤光片组中,所有颜色的所述滤光片对应的多个所述像素共用一个所述浮动扩散节点,每个所述像素均包括曝光控制电路;
    同一所述滤光片组中,同一颜色的多个所述滤光片对应的多个所述像素的所述曝光控制电路的控制端同时开启,以将同一所述滤光片组中同一颜色的多个所述滤光片对应的多个所述像素接收光线后产生的电荷转移到该所述滤光片组对应的多个所述像素共用的所述浮动扩散节点;
    同一所述滤光片组中,不同颜色的所述滤光片对应的所述像素的所述曝光控制电路的控制端分时开启。
  5. 根据权利要求3所述的图像传感器,其特征在于,所述滤光片阵列包括多个区域,每个所述区域包括至少一个所述滤光片组;
    所有所述区域中,每个所述区域内所有所述第一颜色滤光片对应的多个所述像素共用一个所述模数转换电路,每个所述模数转换电路用于将对应的每个所述区域内所有所述第一颜色滤光片对应的多个所述像素的所述第一模拟像素信号和/或所述第二模拟像素信号转换为第一数字像素信号;
    所有所述区域中,每个所述区域内所有所述第二颜色滤光片对应的多个所述像素共用一个所述模数转换电路,每个所述模数转换电路用于将对应的每个所述区域内所有所述第二颜色滤光片对应的多个所述像素的所述第三模拟像素信号转换为第二数字像素信号,和/或,每个所述区域内所有所述第三颜色滤光片对应的多个所述像素共用一个所述模数转换电路,每个所述模数转换电路用于将对应的每个所述区域内所有所述第三颜色滤光片对应的多个所述像素的所述第四模拟像素信号转换为第三数字像素信号。
  6. 根据权利要求5所述的图像传感器,其特征在于,每个所述区域包括至少一个所述第一滤光片组和至少一个所述第二滤光片组;
    所有所述区域中,每个所述区域内所有所述第一颜色滤光片、所有所述第二颜色滤光片、及所有所述第三颜色滤光片对应的多个所述像素共用一个所述模数转换电路;
    所述像素阵列还包括选择电路,一个选择电路与一个所述浮动扩散节点连接,且与共用的一个所述模数转换电路连接;
    同一所述区域内,不同所述滤光片组对应的多个所述像素对应的所述选择电路的控制端分时开启;
    同一所述滤光片组中,不同颜色的所述滤光片对应的所述像素的所述选择电路的控制端分时开启。
  7. 根据权利要求1所述的图像传感器,其特征在于,所述第一颜色滤光片为绿色滤光片,所述第二颜色滤光片为红色滤光片,所述第三颜色滤光片为蓝色滤光片。
  8. 根据权利要求1所述的图像传感器,其特征在于,所述图像传感器还包括微透镜阵列,沿所述图像传感器的收光方向,所述微透镜阵列、所述滤光片阵列、及所述像素阵列依次设置。
  9. 一种成像装置,其特征在于,包括权利要求1-8任意一项所述的图像传感器。
  10. 根据权利要求9所述的成像装置,其特征在于,所述成像装置还包括处理器,所述处理器用于处理表征作用于多个所述第一颜色滤光片对应像素的光线的第一颜色通道的值的第一数字像素信号、表征作用于多个所述第二颜色滤光片对应像素的光线的第二颜色通道的值的第二数字像素信号、及表征作用于多个所述第三颜色滤光片对应像素的光线的第三颜色通道的值的第三数字像素信号以生成彩色图像。
  11. 一种电子设备,其特征在于,包括成像装置,所述成像装置包括权利要求1-8任意一项所述的图像传感器。
  12. 一种图像处理***,其特征在于,包括电子设备,所述电子设备包括成像装置,所述成像装置包括权利要求1-8 任意一项所述的图像传感器。
  13. 一种信号处理方法,用于图像传感器,其特征在于,所述图像传感器包括滤光片阵列、像素阵列及多个模数转换电路,所述滤光片阵列包括多个第一颜色滤光片、多个第二颜色滤光片、及多个第三颜色滤光片;所述像素阵列包括多个像素,每个所述像素对应所述滤光片阵列的一个滤光片,所述像素用于接收穿过对应的所述滤光片的光线以生成电信号得到模拟像素信号;所述信号处理方法包括:
    控制所述模数转换电路以第一位数精度将所述第一颜色滤光片对应的所述像素得到的模拟像素信号转换为数字像素信号,控制所述模数转换电路以小于所述第一位数精度的第二位数精度将所述第二颜色滤光片和所述第三颜色滤光片对应的所述像素得到的模拟像素信号转换为数字像素信号。
  14. 根据权利要求13所述的信号处理方法,其特征在于,所述滤光片阵列包括多个滤光片组,每个所述滤光片组包括至少两种不同颜色的滤光片,每个所述滤光片组中每种颜色的所述滤光片的数量为多个;所述像素阵列还包括多个浮动扩散节点,同一所述滤光片组中同一颜色的所述滤光片对应的所述像素共用一个所述浮动扩散节点;所述信号处理方法还包括:
    控制同一所述滤光片组中同一颜色的所述滤光片对应的所述像素生成的所述电信号在对应的所述浮动扩散节点处合并。
  15. 根据权利要求14所述的信号处理方法,其特征在于,多个所述滤光片组包括多个第一滤光片组及多个第二滤光片组,所述第一滤光片组包括数量相同的多个所述第一颜色滤光片和多个所述第二颜色滤光片,所述第二滤光片组包括数量相同的多个所述第一颜色滤光片和多个所述第三颜色滤光片;所述控制同一所述滤光片组中同一颜色的所述滤光片对应的所述像素生成的所述电信号在对应的所述浮动扩散节点处合并,包括:
    控制每个所述第一滤光片组中多个所述第一颜色滤光片对应的多个所述像素产生的电信号在该多个所述第一颜色滤光片对应的多个所述像素共用的所述浮动扩散节点处合并以生成第一模拟像素信号,每个所述第一滤光片组中多个所述第二颜色滤光片对应的多个所述像素产生的电信号在该多个所述第二颜色滤光片对应的多个所述像素共用的所述浮动扩散节点处合并以生成第三模拟像素信号;
    控制每个所述第二滤光片组中多个所述第一颜色滤光片对应的多个所述像素产生的电信号在该多个所述第一颜色滤光片对应的多个所述像素共用的所述浮动扩散节点处合并以生成第二模拟像素信号,每个所述第二滤光片组中多个所述第三颜色滤光片对应的多个所述像素产生的电信号在该多个所述第三颜色滤光片对应的多个所述像素共用的所述浮动扩散节点处合并以生成第四模拟像素信号。
  16. 根据权利要求15所述的信号处理方法,其特征在于,同一所述滤光片组中,所有颜色的所述滤光片对应的多个所述像素共用一个所述浮动扩散节点,每个所述像素均包括曝光控制电路;
    同一所述滤光片组中,同一颜色的多个所述滤光片对应的多个所述像素的所述曝光控制电路的控制端同时开启,以将同一所述滤光片组中同一颜色的多个所述滤光片对应的多个所述像素接收光线后产生的电荷转移到该所述滤光片组对应的多个所述像素共用的所述浮动扩散节点;
    同一所述滤光片组中,不同颜色的所述滤光片对应的所述像素的所述曝光控制电路的控制端分时开启。
  17. 根据权利要求15所述的信号处理方法,其特征在于,所述滤光片阵列包括多个区域,每个所述区域包括至少一个所述滤光片组;所有所述区域中,每个所述区域内所有所述第一颜色滤光片对应的多个所述像素共用一个所述模数转换电路;所有所述区域中,每个所述区域内所有所述第二颜色滤光片对应的多个所述像素共用一个所述模数转换电路,和/或,每个所述区域内所有所述第三颜色滤光片对应的多个所述像素共用一个所述模数转换电路;所述信号处理方法还包括:
    将所有所述区域中,每个所述区域内所有所述第一颜色滤光片对应的多个所述像素的所述第一模拟像素信号和/或所述第二模拟像素信号转换为第一数字像素信号;
    将所有所述区域中,每个所述区域内所有所述第二颜色滤光片对应的多个所述像素的所述第三模拟像素信号转换为第二数字像素信号,和/或,将所有所述区域中,每个所述区域内所有所述第三颜色滤光片对应的多个所述像素的所述第四模拟像素信号转换为第三数字像素信号。
  18. 根据权利要求17所述的信号处理方法,其特征在于,每个所述区域包括至少一个所述第一滤光片组和至少一个所述第二滤光片组;
    所有所述区域中,每个所述区域内所有所述第一颜色滤光片、所有所述第二颜色滤光片、及所有所述第三颜色滤光片对应的多个所述像素共用一个所述模数转换电路;
    所述像素阵列还包括选择电路,一个选择电路与一个所述浮动扩散节点连接,且与共用的一个所述模数转换电路连接;
    同一所述区域内,不同所述滤光片组对应的多个所述像素对应的所述选择电路的控制端分时开启;
    同一所述滤光片组中,不同颜色的所述滤光片对应的所述像素的所述选择电路的控制端分时开启。
  19. 根据权利要求13所述的信号处理方法,其特征在于,所述第一颜色滤光片为绿色滤光片,所述第二颜色滤光片为红色滤光片,所述第三颜色滤光片为蓝色滤光片。
  20. 根据权利要求13所述的信号处理方法,其特征在于,所述信号处理方法还包括:
    处理表征作用于多个所述第一颜色滤光片对应像素的光线的第一颜色通道的值的第一数字像素信号、表征作用于多个所述第二颜色滤光片对应像素的光线的第二颜色通道的值的第二数字像素信号、及表征作用于多个所述第三颜色滤光片对应像素的光线的第三颜色通道的值的第三数字像素信号以生成彩色图像。
PCT/CN2021/071247 2020-01-19 2021-01-12 图像传感器、成像装置、电子设备、图像处理***及信号处理方法 WO2021143670A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21740813.7A EP4093011B1 (en) 2020-01-19 2021-01-12 Image sensor, imaging apparatus, electronic device, image processing system, and signal processing method
US17/868,050 US11985436B2 (en) 2020-01-19 2022-07-19 Image sensor for converting analog pixel signal based on different bit precisions, imaging device, electronic device, image processing system and signal processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010060642.6 2020-01-19
CN202010060642.6A CN113141444B (zh) 2020-01-19 2020-01-19 图像传感器、成像装置、电子设备、图像处理***及信号处理方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/868,050 Continuation US11985436B2 (en) 2020-01-19 2022-07-19 Image sensor for converting analog pixel signal based on different bit precisions, imaging device, electronic device, image processing system and signal processing method

Publications (1)

Publication Number Publication Date
WO2021143670A1 true WO2021143670A1 (zh) 2021-07-22

Family

ID=76809601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071247 WO2021143670A1 (zh) 2020-01-19 2021-01-12 图像传感器、成像装置、电子设备、图像处理***及信号处理方法

Country Status (4)

Country Link
US (1) US11985436B2 (zh)
EP (1) EP4093011B1 (zh)
CN (1) CN113141444B (zh)
WO (1) WO2021143670A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101079969A (zh) * 2006-03-06 2007-11-28 索尼株式会社 固态成像装置及其驱动方法和相机
CN101296304A (zh) * 2007-04-23 2008-10-29 索尼株式会社 固态成像装置、其信号处理方法和成像设备
US20130207825A1 (en) * 2012-02-09 2013-08-15 Canon Kabushiki Kaisha Solid-state image sensing device
CN105578074A (zh) * 2015-12-18 2016-05-11 广东欧珀移动通信有限公司 图像传感器及具有其的终端

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6838651B1 (en) * 2002-03-28 2005-01-04 Ess Technology, Inc. High sensitivity snap shot CMOS image sensor
JP2009038263A (ja) * 2007-08-02 2009-02-19 Sharp Corp 固体撮像素子および電子情報機器
JP5026951B2 (ja) * 2007-12-26 2012-09-19 オリンパスイメージング株式会社 撮像素子の駆動装置、撮像素子の駆動方法、撮像装置、及び撮像素子
JP4661912B2 (ja) * 2008-07-18 2011-03-30 ソニー株式会社 固体撮像素子およびカメラシステム
TWI422020B (zh) 2008-12-08 2014-01-01 Sony Corp 固態成像裝置
US8350940B2 (en) * 2009-06-08 2013-01-08 Aptina Imaging Corporation Image sensors and color filter arrays for charge summing and interlaced readout modes
US8130304B2 (en) * 2009-07-24 2012-03-06 Aptina Imaging Corporation Image sensors with pixel charge summing
JP5645505B2 (ja) * 2010-06-29 2014-12-24 キヤノン株式会社 撮像装置及びその制御方法
JP6003316B2 (ja) 2012-07-12 2016-10-05 ソニー株式会社 固体撮像装置、電子機器
US9672789B2 (en) * 2012-09-27 2017-06-06 Konica Minolta, Inc. Color conversion device, image forming device, and color conversion method
WO2014087808A1 (ja) * 2012-12-07 2014-06-12 富士フイルム株式会社 画像処理装置、画像処理方法及びプログラム、並びに記録媒体
US9686486B2 (en) * 2015-05-27 2017-06-20 Semiconductor Components Industries, Llc Multi-resolution pixel architecture with shared floating diffusion nodes
CN109922286A (zh) * 2019-03-21 2019-06-21 思特威(上海)电子科技有限公司 Cmos图像传感器及其成像方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101079969A (zh) * 2006-03-06 2007-11-28 索尼株式会社 固态成像装置及其驱动方法和相机
CN101296304A (zh) * 2007-04-23 2008-10-29 索尼株式会社 固态成像装置、其信号处理方法和成像设备
US20130207825A1 (en) * 2012-02-09 2013-08-15 Canon Kabushiki Kaisha Solid-state image sensing device
CN105578074A (zh) * 2015-12-18 2016-05-11 广东欧珀移动通信有限公司 图像传感器及具有其的终端

Also Published As

Publication number Publication date
US20220360749A1 (en) 2022-11-10
EP4093011A4 (en) 2023-05-10
CN113141444A (zh) 2021-07-20
EP4093011B1 (en) 2024-06-26
US11985436B2 (en) 2024-05-14
EP4093011A1 (en) 2022-11-23
CN113141444B (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
CN212785522U (zh) 图像传感器和电子设备
WO2021179806A1 (zh) 图像获取方法、成像装置、电子设备及可读存储介质
EP3902242B1 (en) Image sensor and signal processing method
US9781366B2 (en) Image sensing system and method of driving the same
US20230007191A1 (en) Image sensor, imaging apparatus, electronic device, image processing system, and signal processing method
KR102632474B1 (ko) 이미지 센서의 픽셀 어레이 및 이를 포함하는 이미지 센서
JP2006157600A (ja) デジタルカメラ
US11889240B2 (en) Image device and operation method of image device
KR20150000072A (ko) 이미지 생성 장치 및 이미지 생성 방법
WO2023098282A1 (zh) 图像传感器、摄像模组、电子设备、图像生成方法和装置
WO2023124607A1 (zh) 图像生成方法、装置、电子设备和计算机可读存储介质
JP2024079754A (ja) 撮像素子、撮像装置、撮像方法及びプログラム
WO2021143670A1 (zh) 图像传感器、成像装置、电子设备、图像处理***及信号处理方法
US20220150450A1 (en) Image capturing method, camera assembly, and mobile terminal
CN113132692B (zh) 图像传感器、成像装置、电子设备、图像处理***及信号处理方法
CN113382214A (zh) 图像感测装置及其图像合并方法
US20130038772A1 (en) Image processing apparatus and image processing method
US12047691B2 (en) Image sensor, image processing apparatus, and image processing method
US20230023853A1 (en) Image sensor, image processing apparatus, and image processing method
KR20230067491A (ko) 이미지 센서, 어플리케이션 프로세서 및 이미지 센싱 장치
CN116095525A (zh) 图像传感器、应用处理器和图像感测装置
JP2007189556A (ja) 固体撮像装置およびその駆動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21740813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021740813

Country of ref document: EP

Effective date: 20220817