WO2021142812A1 - 一种电池***及电池***的灭火方法 - Google Patents

一种电池***及电池***的灭火方法 Download PDF

Info

Publication number
WO2021142812A1
WO2021142812A1 PCT/CN2020/072883 CN2020072883W WO2021142812A1 WO 2021142812 A1 WO2021142812 A1 WO 2021142812A1 CN 2020072883 W CN2020072883 W CN 2020072883W WO 2021142812 A1 WO2021142812 A1 WO 2021142812A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery module
fire extinguishing
management system
system bms
Prior art date
Application number
PCT/CN2020/072883
Other languages
English (en)
French (fr)
Inventor
周岿
乐斌
陈诚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080083135.2A priority Critical patent/CN114761091A/zh
Priority to PCT/CN2020/072883 priority patent/WO2021142812A1/zh
Priority to EP20913294.3A priority patent/EP4074384A4/en
Publication of WO2021142812A1 publication Critical patent/WO2021142812A1/zh
Priority to US17/858,324 priority patent/US20220336921A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C37/00Control of fire-fighting equipment
    • A62C37/36Control of fire-fighting equipment an actuating signal being generated by a sensor separate from an outlet device
    • A62C37/44Control of fire-fighting equipment an actuating signal being generated by a sensor separate from an outlet device only the sensor being in the danger zone
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/383Flame arresting or ignition-preventing means

Definitions

  • This application relates to the field of energy storage systems, and in particular to a battery system and a fire extinguishing method for the battery system.
  • Battery cells for example, lithium-ion batteries
  • a battery system also called battery energy storage system, or energy storage system
  • battery energy storage system also called battery energy storage system, or energy storage system
  • Battery cells are connected in series and in parallel to form a battery system (also called battery energy storage system, or energy storage system), which is widely used in various scenarios that require battery energy storage systems to provide electricity.
  • a battery system also called battery energy storage system, or energy storage system
  • battery energy storage system also called battery energy storage system, or energy storage system
  • thermal runaway may occur, that is, combustion occurs.
  • the burning of the battery cell will release a large amount of heat. If it is not handled in time or handled improperly, it will It can cause the entire battery system to catch fire and even explode, which can easily cause loss of life and property.
  • the present application provides a battery system and a fire extinguishing method for the battery system, which can well suppress the battery fire and reduce the probability of the battery system burning, thereby improving the safety of the battery system.
  • an embodiment of the present application provides a battery system, the battery system includes a battery management system BMS, and at least one battery module; wherein the battery management system BMS includes a first detection device; the battery management system The BMS is used to obtain the risk status of the battery module through the first detection device; the battery management system BMS is also used to extinguish fires according to the risk status.
  • the battery management system BMS uses the detection data obtained by the first detection device (for example, the first detection device may include a temperature sensor, a gas sensor, a smoke sensor, etc.) to determine the risk status of the battery module, which can be achieved
  • the monitoring of the battery module can better suppress the battery fire, reduce the probability of the battery system burning, and improve the safety of the battery system.
  • the battery system further includes at least one first fire extinguishing device; the first fire extinguishing device establishes a communication connection with the battery management system BMS; the battery management system BMS is used for When the battery module is in a thermal runaway state, it sends control information to the first fire extinguishing device; the first fire extinguishing device is used for spraying and extinguishing the battery module according to the control information sent by the battery management system BMS Medicament.
  • the first fire extinguishing device sprays fire extinguishing agent on the battery module under the control of the battery management system BMS.
  • both the battery management system BMS and the fire extinguishing device include a detection device, and the detection device is used to detect the working state of the battery module.
  • the first fire extinguishing device is no longer provided with a detection device, and the detection device is integrated into the battery management system BMS, and a communication connection is established between the first fire extinguishing device and the battery management system BMS.
  • This implementation method It can reduce the complexity of the battery system and reduce the total cost of the system.
  • the battery system further includes at least one second fire extinguishing device; the second fire extinguishing device is used for spraying and extinguishing the battery module when the battery module is in a burning state. Medicament.
  • at least two fire extinguishing devices are provided in the battery system. When the battery module is in a thermal runaway state, the first fire extinguishing device sprays fire extinguishing agents on the battery module; when the battery module is in a burning state, The second fire extinguishing device sprays fire extinguishing agent to the battery module.
  • This implementation method can well suppress the battery fire and reduce the probability of the battery system burning, thereby improving the safety of the battery system.
  • the battery management system BMS is specifically configured to interrupt the charging and discharging process of the battery module when the safety valve of the battery module is in an open state.
  • the implementation of the embodiments of the present application can provide early warning and fire extinguishing in the early stage of thermal runaway of the battery. The best time for fire extinguishing can be grasped well, the probability of burning of the battery system can be reduced, and the safety of the battery system can be improved.
  • the battery management system BMS is specifically configured to: when the battery management system BMS detects through the first detection device that the concentration value of the flammable gas released by the battery module is greater than The first concentration value, when the smoke value released by the battery module is greater than the first smoke value, it is determined that the safety valve of the battery module is in an open state.
  • the battery management system BMS is further specifically configured to: when the battery management system BMS detects the concentration value of the combustible gas released by the battery module through the first detection device When it is greater than the second concentration value and the smoke value released by the battery module is greater than the second smoke value, and the temperature of the battery module is greater than the first temperature value, it is determined that the battery module is in a thermal runaway state.
  • the second fire extinguishing device includes a second detection device; the second fire extinguishing device is specifically configured to: when the second detection device detects that the temperature of the battery module is greater than the first At the second temperature value, spray fire extinguishing agent to the battery module.
  • the second fire extinguishing device detects that the temperature of the battery module is greater than the second temperature value through the second detection device (for example, the second detection device may be a temperature detection device) contained in itself, and sprays and extinguishes the battery module.
  • the medicine can prevent the burning phenomenon of the battery from spreading continuously, thereby improving the safety of the battery system.
  • the battery management system BMS includes a sending device; the sending device is configured to send control information to the first fire extinguishing device when the battery module is in a thermal runaway state.
  • an embodiment of the present application provides a fire extinguishing method for a battery system.
  • the battery system includes a battery management system BMS and at least one battery module; wherein, the battery management system BMS includes a first detection device;
  • the method includes: the battery management system BMS obtains the risk status of the battery module through the first detection device; the battery management system BMS performs fire suppression according to the risk status.
  • the battery management system BMS uses the detection data obtained by the first detection device (for example, the first detection device may include a temperature sensor, a gas sensor, a smoke sensor, etc.) to determine the risk status of the battery module, which can be achieved
  • the monitoring of the battery module can better suppress the battery fire, reduce the probability of the battery system burning, and improve the safety of the battery system.
  • the battery system further includes a first fire extinguishing device; the method further includes: when the battery module is in a thermal runaway state, sending control information to the first fire extinguishing device; wherein The control information is used to control the first fire extinguishing device to spray fire extinguishing agents on the battery module.
  • the battery system further includes a second fire extinguishing device; the method further includes: when the battery module is in a burning state, spraying a fire extinguishing agent to the battery module.
  • the battery management system BMS performing fire extinguishing according to the risk state includes: interrupting the charging and discharging process of the battery module when the safety valve of the battery module is in an open state.
  • the battery management system BMS obtains the risk status of the battery module through the first detection device, including: when the battery management system BMS detects the risk status of the battery module through the first detection device When the concentration value of the combustible gas released by the battery module is greater than the first concentration value, and the smoke value released by the battery module is greater than the first smoke value, it is determined that the safety valve of the battery module is in an open state.
  • the battery management system BMS obtains the risk status of the battery module through the first detection device, and further includes: when the battery management system BMS detects the risk status of the battery module through the first detection device When the concentration value of the flammable gas released by the battery module is greater than the second concentration value, the smoke value released by the battery module is greater than the second smoke value, and the temperature of the battery module is greater than the first temperature value, it is determined The battery module is in a thermal runaway state.
  • the second fire extinguishing device includes a second detection device; when the battery module is in a burning state, spraying a fire extinguishing agent on the battery module includes: When the second detecting device detects that the temperature of the battery module is greater than the second temperature value, it sprays fire extinguishing agent to the battery module.
  • the battery management system BMS includes a sending device, and when the battery module is in a thermal runaway state, sending control information to the first fire extinguishing device includes:
  • the battery management system BMS When the battery module is in a thermal runaway state, the battery management system BMS sends control information to the first fire extinguishing device through the sending device.
  • an embodiment of the present application provides a cabinet, wherein the cabinet includes the battery system according to any one of the first aspects.
  • an embodiment of the present application provides an electronic device, which includes the battery system according to any one of the foregoing first aspects.
  • FIG. 1 is a schematic diagram of a scene of thermal runaway combustion of a battery cell according to an embodiment of the application
  • FIG. 2a is a schematic structural diagram of a battery system provided by an embodiment of this application.
  • 2b is a schematic structural diagram of another battery system provided by an embodiment of the application.
  • 2c is a schematic structural diagram of another battery system provided by an embodiment of the application.
  • FIG. 3 is a schematic structural diagram of another battery system provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of another battery system provided by an embodiment of the application.
  • Figure 5a is a schematic flow chart of a fire extinguishing method for a battery system provided by an embodiment of the application;
  • FIG. 5b is a schematic flowchart of another fire extinguishing method for a battery system provided by an embodiment of the application;
  • FIG. 5c is a schematic flowchart of another fire extinguishing method for a battery system provided by an embodiment of the application.
  • Figure 5d is a schematic flow chart of another fire extinguishing method for a battery system provided by an embodiment of the application.
  • FIG. 6 is a schematic block diagram of a battery management system BMS provided by this application.
  • FIG. 7 is a schematic diagram of a cabinet provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of an electronic device provided by an embodiment of the application.
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed among two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component can be based on, for example, a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • Battery thermal runaway heat accumulation ⁇ battery heating reaction produces gas ⁇ battery heat accumulation intensifies, battery safety valve rupture ⁇ flammable and explosive gas in the battery leaks out ⁇ battery heat accumulation and spraying sparks ⁇ battery heat accumulation and spraying flame outside The flammable and explosive gas explodes ⁇ the battery continues to burn and emit smoke. It should be noted that, due to the rapid spread of thermal runaway, the battery burns. The multiple stages in the entire process of thermal runaway involved here last for a short time.
  • a battery system includes multiple cells (ie, single cells). Among them, the battery cell 6 is in a thermal runaway state, releasing flammable gas, smoke, etc. The flammable gas fills the entire battery system shell and mixes with air. If it is not processed in time, the entire battery system may catch fire or even explode. It should be noted that the number of battery cells included in the battery system shown in FIG. 1 is only an example and should not be a limitation.
  • the battery module when the safety valve of the battery is in an open state, or the battery is in a thermal runaway state, the battery module will release gas, which usually contains hydrogen, methane, ethane, acetylene, ethylene, carbon dioxide, Carbon monoxide and so on.
  • the flammable gas is a flammable or explosive gas released by the battery, for example, one or more of hydrogen, methane, ethane, acetylene, ethylene, and carbon monoxide.
  • the gas sensor may be a single sensor or a group of gas sensors.
  • the gas sensor group adopts one or more of a hydrogen sensor, a methane sensor, an ethane sensor, an acetylene sensor, an ethylene sensor, and a carbon monoxide sensor to form an inflammable and explosive gas sensor group.
  • Gas sensor to detect flammable and explosive gases is a gas sensor group.
  • the flammable and explosive gas released by the battery can be monitored by a gas sensor.
  • This implementation method can make the fire warning time earlier and have more sufficient processing time.
  • the steps for battery thermal runaway may include: 1 battery thermal runaway heat accumulation ⁇ 2 battery heating reaction generates gas ⁇ 3 battery heat accumulation intensifies, battery safety valve rupture ⁇ 4 inside the battery
  • the flammable and explosive gas leaks out ⁇ 5 the heat accumulation in the battery is sprayed with sparks ⁇ 6 the heat accumulation in the battery is sprayed with flames, and the external flammable and explosive gas explodes ⁇ 7 the battery continues to burn and spray out smoke.
  • flammable and explosive gas sensors can advance the warning time from step 7 to step 4, so that the fire warning time can be earlier.
  • This realization method can extend the warning time, and can seize the best time to extinguish the fire in the early stage of combustion, and greatly reduce the probability of system fire.
  • the fire extinguishing mechanism of fire extinguishing agents can be divided into four categories: isolation, suffocation, cooling and chemical suppression.
  • the fire extinguishing device may adopt an electronic control method to control the eruption time of the fire extinguishing agent in the fire extinguishing device.
  • the device When the device is activated, a large amount of fire extinguishing agent can be sprayed instantaneously to inhibit the burning of the battery module.
  • the fire extinguishing agent may be one or more of perfluorohexanone, heptafluoropropane, aerosol, nitrogen, and carbon dioxide.
  • the fire extinguishing mechanism of the fire extinguishing agent is chemical suppression.
  • the fire extinguishing device can heat the aerosol.
  • the vaporized metal ions decomposed in the aerosol such as Sr, K, Mg or electron-losing cations, exist in the form of steam. Due to their strong activity, they can interact with the active groups H, OH and O undergo multiple chain reactions, eventually forming non-combustible SrO and other solids. Repeatedly, the active groups in the combustion are consumed in a large amount, the concentration is continuously reduced, and the combustion is suppressed.
  • the fire extinguishing mechanism of the fire extinguishing agent is cooling.
  • the fire extinguishing agent is perfluorohexanone
  • the fire extinguishing device can process the liquid perfluorohexanone into a mist state and spray it under pressure to the ignition point.
  • the perfluorohexanone mainly relies on heat absorption to achieve the fire extinguishing effect.
  • the first fire extinguishing device may include a fire extinguishing agent and a communication device.
  • the communication device is used to establish a communication connection with the battery management system BMS.
  • the communication device may communicate with the battery management system BMS through a bus.
  • the communication device may communicate with the battery management system BMS through wireless Bluetooth.
  • the communication device may include a microprocessor and a communication interface.
  • the battery management system BMS can send control information to the communication device, and the communication device releases the fire extinguishing agent according to the control information to extinguish the battery module.
  • the second fire extinguishing device may include a fire extinguishing agent and a second detection device.
  • the second detection device may be a temperature detection device.
  • the temperature detection device may include one of a heat sensitive wire and a temperature sensitive wire.
  • the temperature detection device may be a thermal wire.
  • the thermal wire detects that the temperature of the battery module is greater than the second temperature value, for example, the second temperature value is 170° C.
  • the second fire extinguishing device is triggered to release the fire extinguishing agent.
  • the temperature detection device may be a detection device composed of temperature sensing wires. In a normal temperature state, the temperature sensing wire is in an open circuit state; in a high temperature state, the temperature sensing wire is in a short circuit state, triggering the second fire extinguishing device to release the fire extinguishing agent.
  • the application scenarios to which the technical solution described in this application can be applied are: when the battery system is in use, the safety valve of the battery cell is in an open state, the battery cell is in a thermal runaway state, or the battery cell is not in a thermal runaway phenomenon. In the case of effective control, it will cause combustion.
  • These application scenarios can cover electric vehicles.
  • Energy storage containers, communication base station energy storage modules, data center energy storage modules, lithium-ion battery uninterruptible power systems (UPS) and other product scenarios and can cover the use status of all battery cells, including charging status
  • the battery cell as an industrial product generally has a certain probability of fire due to the manufacturing process and quality management.
  • the safety valve of the battery cell is opened in the battery pack, the battery cell is thermally out of control, or even the battery cell is burned, if it cannot be detected and controlled in time, when the battery cell ignites and spreads to the entire battery pack, It will cause the entire battery pack to catch fire and explode.
  • the driver may not have enough time to escape, resulting in casualties.
  • the technical solutions described in the embodiments of the present application can quickly detect the risk state of a battery cell (or battery module), and execute different fire extinguishing strategies according to different risk states. For example, when the safety valve of the battery module is in an open state, the charging and discharging process of the battery module is interrupted. This implementation can effectively avoid the possibility of thermal runaway of the battery module. For another example, when the battery module is in a thermal runaway state, the first fire extinguishing device is used to extinguish the fire. This implementation can prevent the flammable and explosive substances released by the battery module from being ignited. For another example, when the battery module is in a burning state, the second fire extinguishing device is used to extinguish the fire. This implementation method can prevent the fire from spreading to the entire battery system and reduce the probability of fire in the battery system.
  • Scenario 2 Energy storage scenario of communication base station.
  • communication base stations may be set up in various complex natural environments, and short circuits caused by water leakage and rodent infestation occur from time to time.
  • the battery cell When the battery cell is short-circuited, it is extremely likely to cause the battery cell to experience thermal runaway. In the case that the thermal runaway phenomenon is not effectively controlled, it will often further cause the battery cell to ignite.
  • the importance of communication base stations is self-evident. If there is a serious fire in the communication base station, it is easy to bring about tens or even millions of economic losses.
  • the technical solutions described in the embodiments of the present application can quickly detect the risk state of a battery cell (or battery module), and execute different fire extinguishing strategies according to different risk states. For example, when the safety valve of the battery module is in an open state, the charging and discharging process of the battery module is interrupted. This implementation can effectively avoid the possibility of thermal runaway of the battery module. For another example, when the battery module is in a thermal runaway state, the first fire extinguishing device is used to extinguish the fire. This implementation can prevent the flammable and explosive substances released by the battery module from being ignited. For another example, when the battery module is in a burning state, the second fire extinguishing device is used to extinguish the fire. This implementation can prevent the fire from spreading to the entire battery system and reduce the probability of fire in the battery system.
  • the battery system includes multiple battery cells (ie, battery cells, batteries), and a battery module is composed of multiple battery cells, and multiple battery modules can form a battery pack (pack) , Multiple battery packs form a battery system.
  • a battery module has a battery module shell, each battery pack has a battery pack shell, and the battery system has a battery system shell.
  • the battery modules in the battery system may not form a battery pack, and the battery system may include one or more battery modules.
  • the output voltage of the battery system is within the range of 4-1000V, and is not limited to this voltage range.
  • FIG. 2a is a schematic structural diagram of a battery system provided by an embodiment of the application.
  • the battery management system includes at least one battery module 201 and a battery management system BMS 202.
  • the battery module 201 may include multiple battery cells 2011;
  • the battery management system BMS 202 may include the first detection device 2021.
  • the battery management system BMS 202 may further include a control device 2022.
  • one or more first detection devices 2021 may be provided inside the battery management system BMS; in an example, as shown in FIG. 2c, one or more first detection devices 2021 It can also be arranged above multiple battery cells 2011, which is not specifically limited in the embodiment of the present application.
  • the first detection device 2021 is used to detect the data of the battery module, for example, the data may include voltage, current, operating temperature information, the concentration of released flammable gas, the released smoke, etc.; the control device 2022 , For processing according to the data of the battery module acquired by the first detection device 2021, and to give the next strategy and instructions.
  • the first detection device 2021 may include at least one of a temperature sensor, a gas sensor, and a smoke sensor.
  • the temperature sensor is used to detect the temperature of the battery module.
  • the temperature sensor can detect the temperature of the battery module in real time.
  • the gas sensor is used to detect the concentration of flammable and explosive gas released by the battery module.
  • Smoke sensor used to detect the value of smoke released by the battery module.
  • the process of obtaining the risk status of the battery module by the battery management system BMS 202 may include: when the battery management system BMS detects through the first detection device that the concentration value of the flammable gas released by the battery module is greater than the first detection device A concentration value. When the smoke value released by the battery module is greater than the first smoke value, it is determined that the safety valve of the battery module is in an open state.
  • the battery management system BMS determines that the safety valve of the battery module is in an open state.
  • the battery management system BMS 202 can be used to interrupt the charging and discharging process of the battery module when the safety valve of the battery module is in an open state. Specifically, the battery management system BMS 202 can selectively cut off the relay, and control the on-off of the dangerous battery module or battery pack through the control relay.
  • This implementation method can provide early warning and fire extinguishing in the early stage of thermal runaway of the battery, and can seize the best time to extinguish the fire, reduce the probability of burning of the battery system, and thereby improve the safety of the battery system.
  • FIG. 3 is a schematic structural diagram of another battery system provided by an embodiment of the application.
  • the battery system includes at least one battery module 301, a battery management system BMS302 and a first fire extinguishing device 303.
  • a communication connection is established between the first fire extinguishing device 303 and the battery management system 302.
  • the first fire extinguishing device 303 can communicate with the battery management system BMS 302 through a bus; for another example, the first fire extinguishing device 303 can communicate with the battery management system.
  • the system BMS 302 communicates through wireless Bluetooth.
  • the battery management system 303 can also supply power to the first fire extinguishing device 303.
  • the battery module 301 may include multiple battery cells 3011; the battery management system BMS 302 may include a first detection device 3021 and a control device 3022; the first fire extinguishing device 303 may include a fire extinguishing agent and a communication device, among which,
  • the communication device is used to communicate with the battery management system BMS 302.
  • the communication device may include a microprocessor and a communication interface.
  • the first detection device 3021 may be arranged inside the battery management system BMS, or may be arranged above the multiple battery cells 3011.
  • the embodiments of this application do not make specific limitations.
  • the battery management system BMS302 can be used to determine the risk status of the battery module.
  • the risk status of the battery module can include the safety valve of the battery module being in the open state and the battery module being in the open state. At least one of the thermal runaway states; and fire extinguishing according to the risk state of the battery module.
  • the process of obtaining the risk status of the battery module by the battery management system BMS302 may include: when the battery management system BMS detects through the first detection device that the concentration value of the flammable gas released by the battery module is greater than the first Concentration value, when the smoke value released by the battery module is greater than the first smoke value, it is determined that the safety valve of the battery module is in an open state.
  • the battery management system BMS detects through the first detection device that the concentration value of the combustible gas released by the battery module is greater than the second concentration value, and the smoke value released by the battery module is greater than the second smoke value
  • the temperature of the battery module is greater than the first temperature value, it is determined that the battery module is in a thermal runaway state.
  • the battery management system BMS determines that the safety valve of the battery module is open; if the battery management system BMS detects the flammable gas released by the battery module through the gas sensor The concentration value is greater than the second concentration value (for example, the second concentration value is 4%), and the smoke sensor detects that the smoke value released by the battery module is greater than the second smoke value (for example, the second smoke value is 2%). , The battery management system BMS determines that the battery module is in a thermal runaway state.
  • the first concentration value for example, the first concentration value is 2%
  • the smoke sensor detects the smoke released by the battery module The value is greater than the first smoke value (for example, 1%).
  • the battery management system BMS determines that the safety valve of the battery module is open; if the battery management system BMS detects the flammable gas released by the battery module through the gas sensor The concentration value is greater than the second concentration value (for example, the second concentration value is 4%), and the smoke sensor detects that the smoke value released by the battery module is greater than the
  • the implementation process of executing the fire suppression strategy according to the risk state of the battery module may include the following situations:
  • the battery management system BMS 302 interrupts the charging and discharging process of the battery module.
  • the battery management system BMS302 can selectively cut off the relay, and control the on-off of the external power supply line of the dangerous battery module or battery pack by controlling the relay.
  • This implementation method can provide early warning and fire extinguishing in the early stage of battery heat out of control, and can seize the best time to extinguish the fire, reduce the probability of battery system burning, and improve the safety of the battery system.
  • the battery management system BMS 302 sends control information to the first fire extinguishing device, and the control information is used to instruct the first fire extinguishing device 303 to spray fire extinguishing agent on the battery module, so that the first fire extinguishing
  • the device 303 can release the fire extinguishing agent according to the control information to prevent the thermal runaway phenomenon from spreading further.
  • the battery management system BMS 302 detects that the battery cell 6 is in a thermal runaway state through the first detection device 3021. At this time, the battery management system BMS 302 reports to the first fire extinguishing device 303 sends control information.
  • the control information includes "006, start fire extinguishing", so that the first fire extinguishing device 303 can fire the battery cell 6 according to the control information.
  • the first fire extinguishing device may be provided outside the battery system, or may be provided inside the battery system, and the embodiment of the present application does not specifically limit it.
  • the battery system includes a battery system housing.
  • the first fire extinguishing device may be provided in the battery system housing.
  • FIG. 4 is a schematic structural diagram of another battery system provided by an embodiment of the application.
  • the battery system includes at least one battery module 401, a battery management system BMS 402, at least one first fire extinguishing device 403, and at least one second fire extinguishing device 404.
  • a communication connection is established between the first fire extinguishing device 403 and the battery management system 402.
  • the first fire extinguishing device 403 can communicate with the battery management system BMS 402 via a bus; for another example, the first fire extinguishing device 403 can communicate with the battery management system.
  • the system BMS 402 communicates through wireless Bluetooth.
  • the battery management system 403 can also supply power to the first fire extinguishing device 403.
  • the battery module 401 may include multiple battery cells 4011; the battery management system BMS 402 may include a first detection device 4021 and a control device 4022; the first fire extinguishing device 403 may include a fire extinguishing agent and a communication device, among which, The communication device is used to communicate with the battery management system BMS 402; the second fire extinguishing device 404 may include a fire extinguishing agent and a second detection device.
  • the first detection device 4021 may be arranged inside the battery management system BMS, or may be arranged above the multiple battery cells 4011,
  • the embodiments of this application do not make specific limitations.
  • the first detection device 4021 is used to detect the data of the battery module.
  • the data may include voltage, current, operating temperature information, the concentration of the released flammable gas, the released smoke, etc.; the control device 4022 , Used for processing according to the data of the battery module acquired by the first detection device 4021 to obtain control information and/or instructions.
  • the control information may include: controlling the first fire extinguishing device to spray fire extinguishing agent on the battery module.
  • the instruction may include: interrupting the charging and discharging process of the battery module.
  • the first detection device 4021 may include at least one of a temperature sensor, a gas sensor, and a smoke sensor.
  • the temperature sensor is used to detect the temperature of the battery module.
  • the temperature sensor can detect the temperature of the battery module in real time.
  • the gas sensor is used to detect the concentration of flammable and explosive gas released by the battery module.
  • Smoke sensor used to detect the value of smoke released by the battery module.
  • the battery management system BMS402 can be used to determine the risk status of the battery module, and execute the fire suppression strategy according to the risk status of the battery module.
  • the process of obtaining the risk status of the battery module by the battery management system BMS may include: If the battery management system BMS detects through the first detection device that the concentration value of the flammable gas released by the battery module is greater than the first The concentration value, the smoke value released by the battery module is greater than the first smoke value, and it is determined that the safety valve of the battery module is in the open state; if the battery management system BMS detects the release of the battery module through the first detection device The concentration value of the flammable gas is greater than the second concentration value, the smoke value released by the battery module is greater than the second smoke value, and the temperature of the battery module is greater than the first temperature value, it is determined that the battery module is in a thermal runaway state .
  • the battery management system BMS determines that the safety valve of the battery module is open; if the battery management system BMS detects the flammable gas released by the battery module through the gas sensor The concentration value is greater than the second concentration value (for example, the second concentration value is 4%), and the smoke sensor detects that the smoke value released by the battery module is greater than the second smoke value (for example, the second smoke value is 2%). , The battery management system BMS determines that the battery module is in a thermal runaway state.
  • the first concentration value for example, the first concentration value is 2%
  • the smoke sensor detects the smoke released by the battery module The value is greater than the first smoke value (for example, 1%).
  • the battery management system BMS determines that the safety valve of the battery module is open; if the battery management system BMS detects the flammable gas released by the battery module through the gas sensor The concentration value is greater than the second concentration value (for example, the second concentration value is 4%), and the smoke sensor detects that the smoke value released by the battery module is greater than the
  • the implementation process of executing the fire suppression strategy according to the risk state of the battery module may include the following situations: for example, when the safety valve of the battery module is in an open state, the battery management system BMS 402 interrupts the charging of the battery module.
  • the battery management system BMS 402 can selectively cut off the relay, and control the on-off of the external power supply line of the dangerous battery module or battery pack by controlling the relay.
  • This implementation method can provide early warning and fire extinguishing in the early stage of thermal runaway of the battery, and can seize the best time to extinguish the fire, reduce the probability of burning of the battery system, and thereby improve the safety of the battery system.
  • the battery management system BMS 402 sends control information to the first fire extinguishing device, and the control information is used to instruct the first fire extinguishing device 403 to spray fire extinguishing agent on the battery module, so that the first fire extinguishing device
  • the device 403 can release the fire extinguishing agent according to the control information to prevent the thermal runaway phenomenon from spreading further.
  • the fire can also be controlled by the second fire extinguishing device 404 . That is, the second fire extinguishing device 404 is used for spraying fire extinguishing agent to the battery module when the battery module is in a burning state.
  • the second fire extinguishing device 404 includes a fire extinguishing agent and a second detection device.
  • the second detection device may be a temperature detection device.
  • the temperature detection device may include one of a heat sensitive wire and a temperature sensitive wire.
  • the temperature detection device may be a thermal wire.
  • the thermal wire detects that the temperature of the battery module is greater than the second temperature value, for example, the second temperature value is 170° C.
  • the second fire extinguishing device 404 is triggered to release the fire extinguishing agent. This implementation method can prevent the fire from spreading to the entire battery system and reduce the probability of fire in the battery system.
  • the temperature detection device may also be a detection device composed of temperature sensing wires.
  • the detection device may include a battery, an electric ignition head, and a temperature sensing wire.
  • the battery, the electric ignition head, and the temperature sensing wire are connected in series.
  • the temperature sensing wire In the normal temperature state, the temperature sensing wire is in an open circuit state; in the high temperature state, the temperature sensing wire is in a short circuit state, and the battery supplies power to the electric ignition head, triggering the second fire extinguishing device 404 to release the fire extinguishing agent.
  • This implementation method can prevent the fire from spreading to the entire battery system and reduce the probability of fire in the battery system.
  • At least two fire extinguishing devices may be provided outside the battery system or inside the battery system, which is not specifically limited in the embodiment of the present application.
  • the battery system includes a battery system housing.
  • at least two fire extinguishing devices may be provided in the battery system housing.
  • the first fire extinguishing device when the battery module is in a thermal runaway state, the first fire extinguishing device is used to spray fire extinguishing agents on the battery module; when the battery module is in a burning state At this time, the second fire extinguishing device is used to spray fire extinguishing agent to the battery module.
  • This implementation mode can well suppress the battery fire and reduce the probability of the battery system burning, thereby improving the safety of the battery system.
  • the battery system includes a battery management system BMS and at least two fire extinguishing devices.
  • the at least two fire extinguishing devices include at least one first fire extinguishing device and at least one second fire extinguishing device, which are combined below Figures 5a-5d show a schematic flow diagram of a fire extinguishing method for a battery system provided by an embodiment of the present application, specifically explaining how to achieve fire extinguishing in the embodiment of the present application.
  • the method steps shown in Figure 5a should be understood as multiple fire extinguishing strategies included in the actual use of the battery system. Specifically, when the battery modules are in different risk states, the corresponding fire extinguishing strategies are different. For example, when the safety valve of the battery module is in an open state, the battery management system BMS interrupts the charging and discharging process of the battery module. For another example, when the battery module is in a thermal runaway state, the battery management system BMS sends control information to the first fire extinguishing device; wherein the control information is used to control the first fire extinguishing device to spray fire extinguishing agent on the battery module. For another example, when the battery module is in a burning state, the second fire extinguishing device sprays fire extinguishing agent to the battery module. Let's elaborate on it in detail:
  • the safety valve of the battery module is in an open state, as shown in Fig. 5b, the method is applied to the battery management system BMS, and the method may include but is not limited to the following steps:
  • Step S500a the battery management system BMS obtains the risk status of the battery module
  • Step S502a When the safety valve of the battery module is in an open state, the charging and discharging process of the battery module is interrupted.
  • the battery management system BMS includes a first detection device and a control device. Specifically, the battery management system BMS sends the collected risk state data of the battery module to the control device through the first detection device, and then the control device receives the risk state data, and obtains the risk state of the battery module according to the risk state data; When the safety valve of the battery module is in an open state, the charging and discharging process of the battery module is interrupted.
  • step S500a-step S502a please refer to the foregoing description, which will not be repeated here. It is understandable that this method can be applied to the battery system as shown in Fig. 2a, Fig. 3, and Fig. 4.
  • the implementation of the embodiments of the present application can provide early warning and fire extinguishing in the early stage of thermal runaway of the battery, and can seize the best time to extinguish the fire, reduce the probability of burning of the battery system, and improve the safety of the battery system.
  • the method may include but is not limited to the following steps:
  • step S500b the battery management system BMS obtains the risk status of the battery module.
  • Step S502b When the battery module is in a thermal runaway state, the battery management system BMS sends control information to the first fire extinguishing device.
  • Step S504b The first fire extinguishing device receives the control information sent by the battery management system BMS.
  • Step S506b The first fire extinguishing device sprays fire extinguishing agent to the battery module according to the control information.
  • step S500b-step S506b please refer to the foregoing description, which will not be repeated here. It is understandable that this method can be applied to the battery system as shown in FIG. 3 and FIG. 4.
  • the first fire extinguishing device sprays fire extinguishing agents to the battery module under the control of the battery management system BMS.
  • This implementation method can well suppress the continuous spread of the thermal runaway phenomenon of the battery module, and can improve the safety of the battery system.
  • the existing battery management system BMS and fire extinguishing device both include a detection device, which is used to detect the working state of the battery module.
  • the first fire extinguishing device is no longer provided with a detection device, and the detection device is integrated into the battery management system BMS, and the first fire extinguishing device and the battery management system BMS are communicated through a bus.
  • the implementation method can reduce the complexity of the battery system and reduce the total cost of the system.
  • the method may include but is not limited to the following steps:
  • Step S500c When the battery module is in a burning state, the second fire extinguishing device sprays fire extinguishing agent to the battery module.
  • the second fire extinguishing device may include a second detection device and a fire extinguishing agent.
  • the second detection device detects that the temperature of the battery module is greater than the second temperature value, at this time, it can be determined that the battery module is in a burning state, and the second fire extinguishing device is triggered to release the fire extinguishing agent.
  • This implementation mode can well suppress the battery fire and reduce the probability of the battery system burning, thereby improving the safety of the battery system. It is understandable that this method can be applied to the battery system shown in FIG. 4.
  • the method provided by the embodiments of the present application can well suppress the battery fire, reduce the probability of the battery system burning, thereby improving the safety of the battery system.
  • FIG. 6 a schematic structural diagram of a battery management system BMS provided by an embodiment of this application.
  • the battery management system BMS shown in FIG. 6 may include a memory 601, a processor 602, a communication interface 603, and a bus 604.
  • the memory 601, the processor 602, and the communication interface 603 implement communication connections between each other through the bus 604.
  • the memory 601 may be a read only memory (Read Only Memory, ROM), a static storage device, a dynamic storage device, or a random access memory (Random Access Memory, RAM).
  • the memory 601 may store a program.
  • the processor 602 and the communication interface 603 are used to execute various steps executed by the battery management system BMS in the embodiment of the present application. For example, obtain the risk status of the battery module through the battery management system BMS.
  • control information is sent to the first fire extinguishing device; wherein the control information is used to control the first fire extinguishing device to spray fire extinguishing agent to the battery module.
  • the battery management system BMS interrupts the charging and discharging process of the battery module.
  • the processor 602 may adopt a general-purpose central processing unit (Central Processing Unit, CPU), microprocessor, application specific integrated circuit (Application Specific Integrated Circuit, ASIC), graphics processing unit (graphics processing unit, GPU), or one or more
  • the integrated circuit is used to execute related programs to realize the functions required by the battery management system BMS in the embodiment of the present application, or to execute the fire extinguishing method provided in the method embodiment of the present application.
  • the processor 602 may also be an integrated circuit chip with signal processing capability. In the implementation process, each step of the neural network training method of the present application can be completed by an integrated logic circuit of hardware in the processor 602 or instructions in the form of software.
  • the aforementioned processor 602 may also be a general-purpose processor, a digital signal processor (Digital Signal Processing, DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices , Discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processing
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • FPGA Field Programmable Gate Array
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 601, and the processor 602 reads the information in the memory 601, and combines its hardware to complete the functions required by the units included in the battery management system of the embodiment of the present application, or perform the fire extinguishing provided by the method embodiment of the present application. method.
  • the communication interface 603 uses a transceiving device such as but not limited to a transceiver to implement communication between the device 60 and other devices or a communication network.
  • a transceiving device such as but not limited to a transceiver to implement communication between the device 60 and other devices or a communication network.
  • training data (such as battery module data involved in the method embodiment of the present application) can be obtained through the communication interface 603.
  • the bus 604 may include a path for transferring information between various components of the device 600 (for example, the memory 601, the processor 602, and the communication interface 603).
  • Fig. 7 is a schematic block diagram of a cabinet provided by an embodiment of the present application. As shown in FIG. 7, the cabinet 70 may include multiple battery systems 701. For the specific manifestation of the battery system 70, please refer to the foregoing description, which will not be repeated here.
  • the battery system can execute different fire extinguishing strategies when the battery modules are in different risk states, which can improve the safety of the battery system.
  • Fig. 8 is a schematic block diagram of an electronic device provided by an embodiment of the present application. As shown in FIG. 8, the electronic device includes a battery system 800. Here, please refer to the foregoing description for the specific manifestation of the battery system 800, and it will not be repeated here.
  • the electronic device may be a charging device in an electric vehicle, a communication base station energy storage device, or a lithium battery device, which is not specifically limited in the embodiment of the present application.
  • the embodiments of the present application also provide a computer-readable storage medium, wherein the computer-readable storage medium is used to implement the computer program of the fire extinguishing method of the battery system described above, and the computer program causes the electronic device to execute the method embodiment as described above. Part or all of the steps of any battery system fire extinguishing method described in.
  • the embodiments of the present application also provide a computer program product.
  • the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause an electronic device to execute the method described in the foregoing method embodiment. Part or all of the steps of any convolution operation method.
  • the computer-readable medium may include a computer-readable storage medium, which corresponds to a tangible medium, such as a data storage medium, or a communication medium that includes any medium that facilitates the transfer of a computer program from one place to another (for example, according to a communication protocol) .
  • a computer-readable medium may generally correspond to (1) a non-transitory tangible computer-readable storage medium, or (2) a communication medium, such as a signal or carrier wave.
  • Data storage media may be any available media that can be accessed by one or more computers or one or more processors to retrieve instructions, codes, and/or data structures for implementing the techniques described in this application.
  • the computer program product may include a computer-readable medium.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Fire Alarms (AREA)

Abstract

本申请提供了一种电池***及电池***的灭火方法,电池***包括电池管理***BMS、至少一个电池模组;其中,电池管理***BMS包括第一检测装置;电池管理***BMS,用于通过第一检测装置获取电池模组的风险状态;电池管理***BMS,还用于根据风险状态进行灭火。实施本申请,可以提高电池***的安全性。

Description

一种电池***及电池***的灭火方法 技术领域
本申请涉及储能***领域,尤其涉及一种电池***及电池***的灭火方法。
背景技术
电芯单体(例如,锂离子电池)通过串联和并联的方式构成电池***(也称为电池储能***,或储能***)被广泛应用于各种需要电池储能***提供电的场景中,例如,电动汽车、基站储能、数据中心备电等多个场景中。电芯单体在过充电、过高温、内短路等情况下,可能会发生热失控,即发生燃烧,此时,电芯单体燃烧会释放大量的热量,如果不及时处理或处理不当,会引起整个电池***起火燃烧,甚至可能引发***,从而容易造成生命和财产的损失。
发明人在研究中发现,现有的灭火方式不能很好的抑制电池起火的问题,导致电池***的安全性较差。
发明内容
本申请提供了一种电池***及电池***的灭火方法,可以很好的抑制电池起火,降低电池***燃烧的概率,从而可以提高电池***的安全性。
第一方面,本申请实施例提供了一种电池***,所述电池***包括电池管理***BMS、至少一个电池模组;其中,所述电池管理***BMS包括第一检测装置;所述电池管理***BMS,用于通过所述第一检测装置获取所述电池模组的风险状态;所述电池管理***BMS,还用于根据所述风险状态进行灭火。
实施本申请实施例,电池管理***BMS通过第一检测装置(例如,第一检测装置可以包括温度传感器、气体传感器、烟雾传感器等)获取到的检测数据来确定电池模组的风险状态,可以实现对电池模组的监控,以便更好的抑制电池起火,降低电池***燃烧的概率,可以提高电池***的安全性。
在一种可能的实现方式中,所述电池***还包括至少一个第一灭火装置;所述第一灭火装置与所述电池管理***BMS建立有通信连接;所述电池管理***BMS,用于当所述电池模组处于热失控状态时,向所述第一灭火装置发送控制信息;所述第一灭火装置,用于根据所述电池管理***BMS发送的控制信息对所述电池模组喷射灭火药剂。实施本申请实施例,当电池模组处于热失控的状态时,第一灭火装置在电池管理***BMS的控制下,对电池模组喷射灭火药剂。现有中,电池管理***BMS和灭火装置中均包含有检测装置,该检测装置用于检测电池模组的工作状态。而本申请中,第一灭火装置不再设置有检测装置,将该检测装置集成到电池管理***BMS中,且第一灭火装置和电池管理***BMS之间建立有通信连接,这一实现方式,可以减少电池***的复杂度,降低***总成本。
在一种可能的实现方式中,所述电池***还包括至少一个第二灭火装置;所述第二灭火装置,用于当所述电池模组处于燃烧状态时,对所述电池模组喷射灭火药剂。实施本申 请实施例,电池***内设置有至少两个灭火装置,当电池模组处于热失控状态时,通过第一灭火装置对电池模组喷射灭火药剂;当电池模组处于燃烧状态时,通过第二灭火装置对电池模组喷射灭火药剂,这一实现方式,可以很好的抑制电池起火,降低电池***燃烧的概率,从而可以提高电池***的安全性。
在一种可能的实现方式中,所述电池管理***BMS,具体用于:当所述电池模组的安全阀处于开启状态时,中断所述电池模组的充放电过程。实施本申请实施例,能够在电池发生热失控的初期进行预警及灭火,可以很好的抓住最佳灭火时机,降低电池***燃烧的概率,从而可以提高电池***的安全性。
在一种可能的实现方式中,所述电池管理***BMS,具体用于:当所述电池管理***BMS通过所述第一检测装置检测到所述电池模组释放的可燃性气体的浓度值大于第一浓度值,所述电池模组释放的烟雾值大于第一烟雾值时,确定所述电池模组的安全阀处于开启状态。
在一种可能的实现方式中,所述电池管理***BMS,还具体用于:当所述电池管理***BMS通过所述第一检测装置检测到所述电池模组释放的可燃性气体的浓度值大于第二浓度值,所述电池模组释放的烟雾值大于第二烟雾值时,所述电池模组的温度大于第一温度值,确定所述电池模组处于热失控状态。
在一种可能的实现方式中,所述第二灭火装置包括第二检测装置;所述第二灭火装置,具体用于:当所述第二检测装置检测到所述电池模组的温度大于第二温度值时,对所述电池模组喷射灭火药剂。实施本申请实施例,第二灭火装置通过自身包含的第二检测装置(例如,第二检测装置可以为温度检测装置)检测到电池模组的温度大于第二温度值,对电池模组喷射灭火药剂,可以阻止电池的燃烧现象持续蔓延,从而可以提高电池***的安全性。
在一种可能的实现方式中,所述电池管理***BMS包括发送装置;所述发送装置,用于当所述电池模组处于热失控状态时,向所述第一灭火装置发送控制信息。
第二方面,本申请实施例提供了一种电池***的灭火方法,所述电池***包括电池管理***BMS、至少一个电池模组;其中,所述电池管理***BMS包括第一检测装置;所述方法包括:所述电池管理***BMS通过所述第一检测装置获取所述电池模组的风险状态;所述电池管理***BMS根据所述风险状态进行灭火。
实施本申请实施例,电池管理***BMS通过第一检测装置(例如,第一检测装置可以包括温度传感器、气体传感器、烟雾传感器等)获取到的检测数据来确定电池模组的风险状态,可以实现对电池模组的监控,以便更好的抑制电池起火,降低电池***燃烧的概率,可以提高电池***的安全性。
在一种可能的实现方式中,所述电池***还包括第一灭火装置;所述方法还包括:当所述电池模组处于热失控状态时,向所述第一灭火装置发送控制信息;其中,所述控制信息用于控制所述第一灭火装置对所述电池模组喷射灭火药剂。
在一种可能的实现方式中,所述电池***还包括第二灭火装置;所述方法还包括:当所述电池模组处于燃烧状态时,对所述电池模组喷射灭火药剂。
在一种可能的实现方式中,所述电池管理***BMS根据所述风险状态进行灭火,包括: 当所述电池模组的安全阀处于开启状态时,中断所述电池模组的充放电过程。
在一种可能的实现方式中,所述电池管理***BMS通过所述第一检测装置获取所述电池模组的风险状态,包括:当所述电池管理***BMS通过所述第一检测装置检测到所述电池模组释放的可燃性气体的浓度值大于第一浓度值,所述电池模组释放的烟雾值大于第一烟雾值时,确定所述电池模组的安全阀处于开启状态。
在一种可能的实现方式中,所述电池管理***BMS通过所述第一检测装置获取所述电池模组的风险状态,还包括:当所述电池管理***BMS通过所述第一检测装置检测到所述电池模组释放的可燃性气体的浓度值大于第二浓度值,所述电池模组释放的烟雾值大于第二烟雾值,所述电池模组的温度大于第一温度值时,确定所述电池模组处于热失控状态。
在一种可能的实现方式中,所述第二灭火装置包括第二检测装置;所述当所述电池模组处于燃烧状态时,对所述电池模组喷射灭火药剂,包括:当所述第二检测装置检测到所述电池模组的温度大于第二温度值时,对所述电池模组喷射灭火药剂。
在一种可能的实现方式中,所述电池管理***BMS包括发送装置,所述当所述电池模组处于热失控状态时,向所述第一灭火装置发送控制信息,包括:
当所述电池模组处于热失控状态时,所述电池管理***BMS通过所述发送装置向所述第一灭火装置发送控制信息。
第三方面,本申请实施例提供了一种机柜,其特征在于,所述机柜包括上述第一方面任一项所述的电池***。
第四方面,本申请实施例提供了一种电子设备,该电子设备包括上述第一方面任一项所述的电池***。
附图说明
图1为本申请实施例提供的一种电芯单体热失控燃烧的场景示意图;
图2a为本申请实施例提供的一种电池***的结构示意图;
图2b为本申请实施例提供的另一种电池***的结构示意图;
图2c为本申请实施例提供的另一种电池***的结构示意图;
图3为本申请实施例提供的另一种电池***的结构示意图;
图4为本申请实施例提供的另一种电池***的结构示意图;
图5a为本申请实施例提供的一种电池***的灭火方法的流程示意图;
图5b为本申请实施例提供的另一种电池***的灭火方法的流程示意图;
图5c为本申请实施例提供的另一种电池***的灭火方法的流程示意图;
图5d为本申请实施例提供的另一种电池***的灭火方法的流程示意图;
图6为本申请提供的一种电池管理***BMS的示意性框图;
图7为本申请实施例提供的一种机柜的示意图;
图8为本申请实施例提供的一种电子设备的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例进行描述。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本说明书中使用的术语“部件”、“模块”、“***”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地***、分布式***和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它***交互的互联网)的信号通过本地和/或远程进程来通信。
为了便于更好的理解本申请所描述的技术方案,下面先解释本申请实施例所涉及的技术术语:
(1)热失控
在本申请实施例中,热失控的整个过程可以分为如下过程:
电池热失控热量累积→电池受热反应产生气体→电池热累积加剧,电池安全阀破裂→电池内的易燃易爆气体外泄→电池内热量累积外喷火星→电池内热量累积外喷火焰,外部易燃易爆气体***→电池持续燃烧喷出烟雾。需要说明的是,由于热失控现象可以迅速蔓延,以至于电池出现燃烧现象。这里所涉及的热失控的整个过程中的多个阶段持续的时间很短。
电池***内,电芯单体热失控燃烧场景可以如图1所示。图1中,在一个电池***中包括了多个电芯(也即:电芯单体)。其中,电芯6处于热失控状态,释放可燃性气体、烟雾等,该可燃性气体充满整个电池***外壳,并与空气混合,若不及时处理,会发生整个电池***的起火燃烧甚至***。需要说明的是,图1所示电池***中包含的电芯单体的数量只是作为一种示例,不应构成限定。
(2)气体传感器
在本申请实施例中,当电池的安全阀处于开启状态,或,电池处于热失控状态时,电池模组将释放出气体,该气体通常包含氢气、甲烷、乙烷、乙炔、乙烯、二氧化碳、一氧化碳等。
在本申请实施例中,可燃性气体为电池释放出的易于燃烧或易***的气体,例如,氢 气、甲烷、乙烷、乙炔、乙烯和一氧化碳中的一种或多种。
在本申请实施例中,气体传感器可以是单个的传感器,也可以是气体传感器组。在一个示例中,当气体传感器为气体传感器组时,该气体传感器组采用氢气传感器、甲烷传感器、乙烷传感器、乙炔传感器、乙烯传感器、一氧化碳传感器中的一种或多种传感器构成易燃易爆气体传感器,以对易燃易爆气体进行检测。
在本申请实施例中,可以通过气体传感器监控电池释放出的易燃易爆气体,这一实现方式,可以能使火情的预警时间更早,能有更充裕的处理时间。现有技术中,以电池发生热失控为例,电池发生热失控的步骤可以包括:1电池热失控热量累积→2电池受热反应产生气体→3电池热累积加剧,电池安全阀破裂→4电池内的易燃易爆气体外泄→5电池内热量累积外喷火星→6电池内热量累积外喷火焰,外部易燃易爆气体***→7电池持续燃烧喷出烟雾。采用易燃易爆气体传感器,能将预警时间从第7步提前至第4步,从而能够使火情的预警时间更早。这一实现方式,可以延长预警时间,并可以抓住燃烧初期的最佳灭火时机,大幅度降低***起火的概率。
(3)灭火装置
现有中,燃烧的发生和发展需要四个必要条件(也称:燃烧四要素),即可燃物、助燃物、点火源和游离基(链式反应)。不同的灭火药剂具有不同的灭火机理,通过将燃烧四个必要条件中的一个或几个消除,使燃烧中的一个或某几个阶段的速度被加以抑制,即截断某一阶段来源或中断链式反应,停止游离基的产生,从而达到灭火的目的。
一般来说,根据燃烧四要素可以将灭火药剂的灭火机理分为四类:隔离、窒息、冷却和化学抑制。
在本申请实施例中,灭火装置可以采用电控方式,控制灭火装置内的灭火药剂喷发时间。当装置启动时,可以瞬时喷发大量灭火药剂,抑制电池模组的燃烧。
在本申请实施例中,灭火药剂可以是全氟己酮、七氟丙烷、气溶胶、氮气和二氧化碳中的一种或多种。
在一个示例中,灭火药剂的灭火机理为化学抑制。例如,当灭火药剂为气溶胶时,灭火装置可以给气溶胶加热。在热的作用下,气溶胶中分解的气化金属离子,如Sr、K、Mg或失去电子的阳离子以蒸汽的形式存在,由于其极强的活性,可与燃烧中的活性基团H、OH和O发生多次链反应,最终形成不可燃烧的SrO等固体。如此反复,燃烧中的活性基团被大量消耗,浓度不断降低,燃烧得以抑制。
在一个示例中,灭火药剂的灭火机理为冷却。例如,当灭火药剂为全氟己酮时,灭火装置可以将液态的全氟己酮处理成雾态,并且加压喷射到着火点,全氟己酮主要依靠吸热达到灭火效果。
在本申请实施例中,第一灭火装置可以包括灭火药剂和通信装置。其中,通信装置,用于与电池管理***BMS建立通信连接。在一个示例中,通信装置可以与电池管理***BMS通过总线进行通信。在一个示例中,通信装置可以与电池管理***BMS通过无线蓝牙的方式进行通信。具体来说,该通信装置可以包括微处理器和通信接口。在本申请实施例中,当电池模组处于热失控时,电池管理***BMS可以向该通信装置发送控制信息,该通信装置根据控制信息释放灭火药剂,以对电池模组进行灭火。
在本申请实施例中,第二灭火装置可以包括灭火药剂和第二检测装置。例如,第二检测装置可以为温度检测装置。示例性地,温度检测装置可以包括热敏线、感温线中的一种。
在一个示例中,温度检测装置可以为热敏线。当热敏线检测到电池模组的温度大于第二温度值,例如,第二温度值为170℃,触发第二灭火装置释放灭火药剂。
在一个示例中,温度检测装置可以为感温线组成的检测装置。在常温状态下,感温线处于开路状态;在高温状态下,感温线处于短路状态,触发第二灭火装置释放灭火药剂。
本申请所描述的技术方案可以适用的应用场景为:电池***在使用时,电芯单体的安全阀处于开启状态、电芯单体处于热失控状态,乃至电芯单体因热失控现象没有得到有效控制的情况下,引发燃烧。这些应用场景可以覆盖电动汽车。储能集装箱、通信基站储能模块、数据中心储能模块、锂离子电池不间断电源(Uninterruptible Power System,UPS)等多个产品场景,而且能够覆盖所有电芯单体的使用状态,包括充电状态、放电状态、备电状态以及休眠状态这4种典型工作状态场景,下面对其中的场景进行介绍:
场景一:电动汽车。
电动汽车厂家中,电芯单体作为一种工业产品,由于制造流程、品质管理等原因,一般都具有一定的失火概率。当电池包内出现电芯单体的安全阀打开、电芯单体发生热失控,乃至电芯单体发生燃烧,如果不能及时检测、控制,当电芯单体起火蔓延至整个电池包时,会导致整个电池包起火、***。此时,由于没有及时预警,驾驶员可能没有足够的时间逃离,导致人员伤亡。
本申请实施例所描述的技术方案,可以迅速检测出电芯单体(亦或者电池模组)的风险状态,并根据不同的风险状态执行不同的灭火策略。例如,当电池模组的安全阀处于开启状态时,中断电池模组的充放电过程。这一实现方式,可以有效的避免电池模组出现热失控的概率。又例如,当电池模组处于热失控状态时,通过第一灭火装置进行灭火。这一实现方式,可以抑制电池模组释放的易燃易爆物质被点燃。又例如,当电池模组处于燃烧状态时,通过第二灭火装置进行灭火。这一实现方式,可以抑制火情蔓延至整个电池***,降低电池***起火的概率。
场景二:通信基站储能场景。
现有中,通信基站可能架设在各种复杂的自然环境中,由于漏水、鼠患引发的短路现象时有发生。当电芯单体出现短路现象时,极大的可能性会导致电芯单体出现热失控现象。在热失控现象没有得到有效控制的情况下,往往会进一步导致电芯单体出现起火现象。随着网络时代的蓬勃发展,通信基站的重要性不言而喻。如果通信基站出现严重的火灾,很容易带来几十甚至上百万的经济损失。
本申请实施例所描述的技术方案,可以迅速检测出电芯单体(亦或者电池模组)的风险状态,并根据不同的风险状态执行不同的灭火策略。例如,当电池模组的安全阀处于开启状态时,中断电池模组的充放电过程。这一实现方式,可以有效的避免电池模组出现热失控的概率。又例如,当电池模组处于热失控状态时,通过第一灭火装置进行灭火。这一实现方式,可以抑制电池模组释放的易燃易爆物质被点燃。又例如,当电池模组处于燃烧状态时,通过第二灭火装置进行灭火。这一实现方式,可以抑制火情蔓延至整个电池***, 降低电池***起火的概率。
需要说明的是,上述所描述的几种应用场景只是作为一种示例,本申请所描述的电池***并不限定于以上几种应用场景。
接下来,介绍下本申请实施例所涉及的电池***的结构。
在本申请实施例中,电池***包括多个电芯单体(即电芯、电池),由多个电芯单体组成一个电池模组,多个电池模组可以组成一个电池包(pack),多个电池包组成电池***。每个电池模组有电池模组外壳,每个电池包有电池包外壳,电池***有电池***外壳。
需要说明的是,在一些实现方式中,电池***中的电池模组可以不组成电池包,电池***中可以包含一个或多个电池模组。
在本申请实施例中,考虑到电池***内电池的方便安装替换,以及保证输出电压能够满足用电设备的需要,一般是将多个电芯单体进行串联或并联,联接构成电池模组,之后,再讲电池模组串联或并联,联接成电池包。通过这一实现方式,可以保证电池***的输出电压介于4-1000V范围之内,且不限于这个电压范围。
图2a为本申请实施例提供的一种电池***的结构示意图。如图2a所示,该电池管理***包括至少一个电池模组201、电池管理***BMS 202。其中,电池模组201中可以包括多个电芯单体2011;电池管理***BMS 202中可以包括第一检测装置2021。
在一个示例中,如图2b所示,电池管理***BMS 202中还可以包括控制装置2022。
在一个示例中,如图2a所示,一个或多个第一检测装置2021可以设置在电池管理***BMS的内部;在一个示例中,如图2c所示,一个或多个第一检测装置2021也可以设置在多个电芯单体2011的上方,本申请实施例不作具体限定。
具体来说,第一检测装置2021,用于检测电池模组的数据,例如,该数据可以包括电压、电流、工作温度信息、释放的可燃性气体的浓度、释放的烟雾等等;控制装置2022,用于根据第一检测装置2021获取到的电池模组的数据进行处理,并给出下一步的策略和指令。
在本申请实施例中,第一检测装置2021可以包括温度传感器、气体传感器、烟雾传感器中的至少一种。其中,温度传感器,用于检测电池模组的温度。例如,温度传感器可以实时检测电池模组的温度。气体传感器,用于检测电池模组释放的易燃易爆气体的浓度。烟雾传感器,用于检测电池模组释放的烟雾值。
在本申请实施例中,电池管理***BMS 202获取电池模组的风险状态的实现过程可以包括:当电池管理***BMS通过第一检测装置检测到电池模组释放的可燃性气体的浓度值大于第一浓度值,电池模组释放的烟雾值大于第一烟雾值时,确定电池模组的安全阀处于开启状态。例如,若电池管理***BMS通过气体传感器检测到电池模组释放的可燃性气体的浓度大于第一浓度值(例如,第一浓度值为2%),通过烟雾传感器检测到电池模组释放的烟雾值大于第一烟雾值(例如,1%),此时,电池管理***BMS确定电池模组的安全阀处于开启状态。
在本申请实施例中,电池管理***BMS 202,可以用于当所述电池模组的安全阀处于开启状态时,中断所述电池模组的充放电过程。具体来说,电池管理***BMS 202可以选 择性切断继电器,通过控制继电器来控制存在危险的电池模组或电池包对外供电线路的通断。这一实现方式,能够在电池发生热失控的初期进行预警及灭火,可以很好的抓住最佳灭火时机,降低电池***燃烧的概率,从而可以提高电池***的安全性。
图3为本申请实施例提供的另一种电池***的结构示意图。如图3所示,该电池***包括至少一个电池模组301、电池管理***BMS302和第一灭火装置303。其中,第一灭火装置303与电池管理***302之间建立有通信连接,例如,第一灭火装置303可以与电池管理***BMS 302通过总线进行通信;又例如,第一灭火装置303可以与电池管理***BMS 302通过无线蓝牙的方式进行通信。具体地,电池管理***303还可以对第一灭火装置303进行供电。
其中,电池模组301中可以包括多个电芯单体3011;电池管理***BMS 302中可以包括第一检测装置3021和控制装置3022;第一灭火装置303可以包括灭火药剂和通信装置,其中,通信装置,用于与电池管理***BMS 302进行通信。例如,该通信装置可以包括微处理器和通信接口。
如图2a和图2c所示的结构,类似地,在本申请实施例中,第一检测装置3021可以设置在电池管理***BMS的内部,也可以设置在多个电芯单体3011的上方,本申请实施例不作具体限定。
在本申请实施例中,电池管理***BMS 302,可以用于对电池模组的风险状态的判定,这里,电池模组的风险状态可以包括电池模组的安全阀处于开启状态、电池模组处于热失控状态中的至少一种;并根据电池模组的风险状态进行灭火。
在本申请实施例中,电池管理***BMS302获取电池模组的风险状态的实现过程可以包括:当电池管理***BMS通过第一检测装置检测到电池模组释放的可燃性气体的浓度值大于第一浓度值,电池模组释放的烟雾值大于第一烟雾值时,确定电池模组的安全阀处于开启状态。当所述电池管理***BMS通过所述第一检测装置检测到所述电池模组释放的可燃性气体的浓度值大于第二浓度值,所述电池模组释放的烟雾值大于第二烟雾值,所述电池模组的温度大于第一温度值时,确定所述电池模组处于热失控状态。
例如,若电池管理***BMS通过气体传感器检测到电池模组释放的可燃性气体的浓度大于第一浓度值(例如,第一浓度值为2%),通过烟雾传感器检测到电池模组释放的烟雾值大于第一烟雾值(例如,1%),此时,电池管理***BMS确定电池模组的安全阀处于开启状态;若电池管理***BMS通过气体传感器检测到电池模组释放的可燃性气体的浓度值大于第二浓度值(例如,第二浓度值为4%),通过烟雾传感器检测到电池模组释放的烟雾值大于第二烟雾值(例如,第二烟雾值为2%),此时,电池管理***BMS确定电池模组处于热失控状态。
在本申请实施例中,根据电池模组的风险状态执行灭火策略的实现过程可以包括如下情形:
例如,当电池模组的安全阀处于开启状态时,电池管理***BMS 302中断电池模组的充放电过程。具体来说,电池管理***BMS302可以选择性切断继电器,通过控制继电器来控制存在危险的电池模组或电池包对外供电线路的通断。这一实现方式,能够在电池发 生热失控的初期进行预警及灭火,可以很好的抓住最佳灭火时机,降低电池***燃烧的概率,从而可以提高电池***的安全性。
又例如,当电池模组处于热失控状态时,电池管理***BMS 302向第一灭火装置发送控制信息,该控制信息用于指示第一灭火装置303对电池模组喷射灭火药剂,从而第一灭火装置303可以根据控制信息释放灭火药剂,以抑制热失控现象进一步蔓延。
在一个示例中,如图3所示的电池***,电池管理***BMS 302通过第一检测装置3021检测到电芯单体6处于热失控状态,此时,电池管理***BMS 302向第一灭火装置303发送控制信息,例如,控制信息包括“006,启动灭火”,从而第一灭火装置303可以根据该控制信息对电芯单体6进行灭火。
需要说明的是,在本申请实施例中,第一灭火装置可以设置在电池***的外部,也可以设置在电池***的内部,本申请实施例不作具体限定。例如,电池***包括电池***外壳。在一个示例中,第一灭火装置可以设置在电池***外壳内。
图4为本申请实施例提供的另一种电池***的结构示意图。如图4所示,该电池***包括至少一个电池模组401、电池管理***BMS 402、至少一个第一灭火装置403和至少一个第二灭火装置404。其中,第一灭火装置403与电池管理***402之间建立有通信连接,例如,第一灭火装置403可以与电池管理***BMS 402通过总线进行通信;又例如,第一灭火装置403可以与电池管理***BMS 402通过无线蓝牙的方式进行通信。具体地,电池管理***403还可以对第一灭火装置403进行供电。
其中,电池模组401中可以包括多个电芯单体4011;电池管理***BMS 402中可以包括第一检测装置4021和控制装置4022;第一灭火装置403可以包括灭火药剂和通信装置,其中,通信装置,用于与电池管理***BMS 402进行通信;第二灭火装置404可以包括灭火药剂和第二检测装置。
如图2a和图2c所示的结构,类似地,在本申请实施例中,第一检测装置4021可以设置在电池管理***BMS的内部,也可以设置在多个电芯单体4011的上方,本申请实施例不作具体限定。
具体来说,第一检测装置4021,用于检测电池模组的数据,例如,该数据可以包括电压、电流、工作温度信息、释放的可燃性气体的浓度、释放的烟雾等等;控制装置4022,用于根据第一检测装置4021获取到的电池模组的数据进行处理,得到控制信息和/或指令。例如,该控制信息可以包括:控制第一灭火装置对电池模组喷射灭火药剂。又例如,该指令可以包括:中断电池模组的充放电过程。
在本申请实施例中,第一检测装置4021可以包括温度传感器、气体传感器、烟雾传感器中的至少一种。其中,温度传感器,用于检测电池模组的温度。例如,温度传感器可以实时检测电池模组的温度。气体传感器,用于检测电池模组释放的易燃易爆气体的浓度。烟雾传感器,用于检测电池模组释放的烟雾值。
在本申请实施例中,电池管理***BMS 402,可以用于对电池模组的风险状态的判定,并根据电池模组的风险状态执行灭火策略。
在本申请实施例中,电池管理***BMS获取电池模组的风险状态的实现过程可以包括: 若电池管理***BMS通过第一检测装置检测到电池模组释放的可燃性气体的浓度值大于第一浓度值,电池模组释放的烟雾值大于第一烟雾值,确定电池模组的安全阀处于开启状态;若所述电池管理***BMS通过所述第一检测装置检测到所述电池模组释放的可燃性气体的浓度值大于第二浓度值,所述电池模组释放的烟雾值大于第二烟雾值,所述电池模组的温度大于第一温度值,确定所述电池模组处于热失控状态。
例如,若电池管理***BMS通过气体传感器检测到电池模组释放的可燃性气体的浓度大于第一浓度值(例如,第一浓度值为2%),通过烟雾传感器检测到电池模组释放的烟雾值大于第一烟雾值(例如,1%),此时,电池管理***BMS确定电池模组的安全阀处于开启状态;若电池管理***BMS通过气体传感器检测到电池模组释放的可燃性气体的浓度值大于第二浓度值(例如,第二浓度值为4%),通过烟雾传感器检测到电池模组释放的烟雾值大于第二烟雾值(例如,第二烟雾值为2%),此时,电池管理***BMS确定电池模组处于热失控状态。
在本申请实施例中,根据电池模组的风险状态执行灭火策略的实现过程可以包括如下情形:例如,当电池模组的安全阀处于开启状态时,电池管理***BMS 402中断电池模组的充放电过程。具体来说,电池管理***BMS 402可以选择性切断继电器,通过控制继电器来控制存在危险的电池模组或电池包对外供电线路的通断。这一实现方式,能够在电池发生热失控的初期进行预警及灭火,可以很好的抓住最佳灭火时机,降低电池***燃烧的概率,从而可以提高电池***的安全性。
又例如,当电池模组处于热失控状态时,电池管理***BMS 402向第一灭火装置发送控制信息,该控制信息用于指示第一灭火装置403对电池模组喷射灭火药剂,从而第一灭火装置403可以根据控制信息释放灭火药剂,以抑制热失控现象进一步蔓延。
在一些实现方式中,当通过第一灭火装置403没有很好的抑制电池模组释放的易燃易爆性物质被点燃时,此时,还可以通过第二灭火装置404对该火情进行控制。也即:第二灭火装置404,用于当所述电池模组处于燃烧状态时,对所述电池模组喷射灭火药剂。
如前所述,第二灭火装置404包括灭火药剂和第二检测装置。例如,第二检测装置可以为温度检测装置。示例性地,温度检测装置可以包括热敏线、感温线中的一种。
在一个示例中,温度检测装置可以为热敏线。当热敏线检测到电池模组的温度大于第二温度值,例如,第二温度值为170℃,触发第二灭火装置404释放灭火药剂。这一实现方式,可以抑制火情蔓延至整个电池***,降低电池***起火的概率。
在一个示例中,温度检测装置也可以为感温线组成的检测装置。例如,该检测装置可以包括电池、电点火头、感温线。其中,电池、电点火头、感温线之间通过串联的方式进行连接。在常温状态下,感温线处于开路状态;在高温状态下,感温线处于短路状态,电池给电点火头供电,触发第二灭火装置404释放灭火药剂。这一实现方式,可以抑制火情蔓延至整个电池***,降低电池***起火的概率。
需要说明的是,在本申请实施例中,至少两个灭火装置可以设置在电池***的外部,也可以设置在电池***的内部,本申请实施例不作具体限定。例如,电池***包括电池***外壳。在一个示例中,至少两个灭火装置可以设置在电池***外壳内。
从上述描述可以知道的是,由于电池***内设置有至少两个灭火装置,当电池模组处 于热失控状态时,通过第一灭火装置对电池模组喷射灭火药剂;当电池模组处于燃烧状态时,通过第二灭火装置对电池模组喷射灭火药剂,这一实现方式,可以很好的抑制电池起火,降低电池***燃烧的概率,从而可以提高电池***的安全性。
以图4所示的电池***为例,该电池***包括电池管理***BMS和至少两个灭火装置,其中,至少两个灭火装置包括至少一个第一灭火装置和至少一个第二灭火装置,下面结合图5a-图5d所示的本申请实施例提供的一种电池***的灭火方法的流程示意图,具体说明在本申请实施例中是如何实现灭火的。
图5a所示的方法步骤,应该理解为电池***在实际使用时包含的多种灭火策略,具体来说,在电池模组处于不同的风险状态时,其对应的灭火策略不同。例如,当电池模组的安全阀处于开启状态时,电池管理***BMS中断电池模组的充放电过程。又例如,当电池模组处于热失控状态时,电池管理***BMS向第一灭火装置发送控制信息;其中,控制信息用于控制第一灭火装置对电池模组喷射灭火药剂。又例如,当电池模组处于燃烧状态时,第二灭火装置对电池模组喷射灭火药剂。下面对其进行具体阐述:
在一种情形下,电池模组的安全阀处于开启状态,如图5b所示,该方法应用于电池管理***BMS,该方法可以包括但不限于如下步骤:
步骤S500a、电池管理***BMS获取电池模组的风险状态;
步骤S502a、当电池模组的安全阀处于开启状态时,中断电池模组的充放电过程。
在本申请实施例中,电池管理***BMS包括第一检测装置和控制装置。具体来说,电池管理***BMS通过第一检测装置将采集到电池模组的风险状态数据发送给控制装置,之后,控制装置接收风险状态数据,并根据风险状态数据获取电池模组的风险状态;当电池模组的安全阀处于开启状态时,中断电池模组的充放电过程。
关于步骤S500a-步骤S502a的具体实现,请参考前述描述,此处不多加赘述。可以理解的是,这一方法可以应用于如图2a、图3、图4所示的电池***中。
实施本申请实施例,能够在电池发生热失控的初期进行预警及灭火,可以很好的抓住最佳灭火时机,降低电池***燃烧的概率,从而可以提高电池***的安全性。
在一种情形下,电池模组处于热失控状态,如图5c所示,该方法可以包括但不限于如下步骤:
步骤S500b、电池管理***BMS获取电池模组的风险状态。
步骤S502b、电池管理***BMS当所述电池模组处于热失控状态时,向所述第一灭火装置发送控制信息。
步骤S504b、第一灭火装置接收电池管理***BMS发送的控制信息。
步骤S506b、第一灭火装置根据控制信息对电池模组喷射灭火药剂。
关于步骤S500b-步骤S506b的具体实现,请参考前述描述,此处不多加赘述。可以理解的是,这一方法可以应用于如图3、图4所示的电池***中。
实施本申请实施例,在电池模组处于热失控的状态下,第一灭火装置在电池管理***BMS的控制下,对电池模组喷射灭火药剂。这一实现方式,可以很好的抑制电池模组的热 失控现象持续蔓延,可以提高电池***的安全性。此外,现有的电池管理***BMS和灭火装置中均包含有检测装置,该检测装置用于检测电池模组的工作状态。而本申请中,第一灭火装置不再设置有检测装置,将该检测装置集成到电池管理***BMS中,且第一灭火装置和电池管理***BMS之间通过总线的方式进行通信连接,这一实现方式,可以减少电池***的复杂度,降低***总成本。
在一种情形下,电池模组处于燃烧状态,如图5d所示,该方法可以包括但不限于如下步骤:
步骤S500c、当电池模组处于燃烧状态,第二灭火装置对电池模组喷射灭火药剂。
在本申请实施例中,第二灭火装置可以包括第二检测装置和灭火药剂。在实际应用中,当通过第二检测装置检测到电池模组的温度大于第二温度值时,此时,可以确定电池模组处于燃烧状态,触发第二灭火装置释放灭火药剂。这一实现方式,可以很好的抑制电池起火,降低电池***燃烧的概率,从而可以提高电池***的安全性。可以理解的是,这一方法可以应用于图4所示的电池***中。
总的来说,本申请实施例提供的方法,可以很好的抑制电池起火,降低电池***燃烧的概率,从而可以提高电池***的安全性。
如图6所示,为本申请实施例提供的一种电池管理***BMS的结构示意图。图6所示的电池管理***BMS可以包括存储器601、处理器602、通信接口603以及总线604。其中,存储器601、处理器602、通信接口603通过总线604实现彼此之间的通信连接。
存储器601可以是只读存储器(Read Only Memory,ROM),静态存储设备,动态存储设备或者随机存取存储器(Random Access Memory,RAM)。存储器601可以存储程序,当存储器601中存储的程序被处理器602执行时,处理器602和通信接口603用于执行本申请实施例中通过电池管理***BMS执行的各个步骤。例如,通过电池管理***BMS获取电池模组的风险状态。当电池模组处于热失控状态时,向第一灭火装置发送控制信息;其中,所述控制信息用于控制所述第一灭火装置对所述电池模组喷射灭火药剂。又例如,当电池模组的安全阀处于开启状态时,电池管理***BMS中断电池模组的充放电过程。
处理器602可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路(Application Specific Integrated Circuit,ASIC),图形处理器(graphics processing unit,GPU)或者一个或多个集成电路,用于执行相关程序,以实现本申请实施例中通过电池管理***BMS所需执行的功能,或者执行本申请方法实施例提供的灭火方法。
处理器602还可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,本申请的神经网络的训练方法的各个步骤可以通过处理器602中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器602还可以是通用处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以 直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器601,处理器602读取存储器601中的信息,结合其硬件完成本申请实施例的电池管理***中包括的单元所需执行的功能,或者执行本申请方法实施例提供的灭火方法。
通信接口603使用例如但不限于收发器一类的收发装置,来实现装置60与其他设备或通信网络之间的通信。例如,可以通过通信接口603获取训练数据(如本申请方法实施例中涉及的电池模组的数据)。
总线604可包括在装置600各个部件(例如,存储器601、处理器602、通信接口603)之间传送信息的通路。
上述各个功能器件的具体实现可以参见上述实施例中相关描述,本申请实施例不再赘述。
图7是本申请实施例提供的一种机柜的示意性框图。如图7所示,该机柜70可以包括多个电池***701。关于电池***70的具体表现形态请参考前述描述,此处不多加赘述。
可以理解的是,实施本申请实施例,电池***可以在电池模组处于不同的风险状态下,执行不同的灭火策略,可以提高电池***的安全性。
图8是本申请实施例提供的一种电子设备的示意图框图。如图8所示,该电子设备包括电池***800。这里,关于电池***800的具体表现形态请参考前述描述,此处不多加赘述。
在本申请实施例中,电子设备可以为电动汽车中的充电装置,也可以为通信基站储能装置,还可以为锂电装置,本申请实施例不作具体限定。
本申请实施例还提供了一种计算机可读存储介质,其中,该计算机可读存储介质用于实现上述描述的电池***的灭火方法的计算机程序,该计算机程序使得电子设备执行如上述方法实施例中记载的任何一种电池***的灭火方法的部分或者全部步骤。
本申请实施例还提供一种计算机程序产品,该计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使电子设备执行如上述方法实施例中记载的任何一种卷积运算方法的部分或者全部步骤。
可以理解,本领域普通技术人员可以意识到,结合本申请各个实施例中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本领域技术人员能够领会,结合本申请各个实施例中公开描述的各种说明性逻辑框、模块和算法步骤所描述的功能可以硬件、软件、固件或其任何组合来实施。如果以软件来实施,那么各种说明性逻辑框、模块、和步骤描述的功能可作为一或多个指令或代码在计算机可读媒体上存储或传输,且由基于硬件的处理单元执行。计算机可读媒体可包含计算 机可读存储媒体,其对应于有形媒体,例如数据存储媒体,或包括任何促进将计算机程序从一处传送到另一处的媒体(例如,根据通信协议)的通信媒体。以此方式,计算机可读媒体大体上可对应于(1)非暂时性的有形计算机可读存储媒体,或(2)通信媒体,例如信号或载波。数据存储媒体可为可由一或多个计算机或一或多个处理器存取以检索用于实施本申请中描述的技术的指令、代码和/或数据结构的任何可用媒体。计算机程序产品可包含计算机可读媒体。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种电池***,其特征在于,所述电池***包括电池管理***BMS、至少一个电池模组;其中,所述电池管理***BMS包括第一检测装置;
    所述电池管理***BMS,用于通过所述第一检测装置获取所述电池模组的风险状态;
    所述电池管理***BMS,还用于根据所述风险状态进行灭火。
  2. 根据权利要求1所述的电池***,其特征在于,所述电池***还包括至少一个第一灭火装置;所述第一灭火装置与所述电池管理***BMS建立有通信连接;
    所述电池管理***BMS,用于当所述电池模组处于热失控状态时,向所述第一灭火装置发送控制信息;
    所述第一灭火装置,用于根据所述电池管理***BMS发送的控制信息对所述电池模组喷射灭火药剂。
  3. 根据权利要求1或2所述的电池***,其特征在于,所述电池***还包括至少一个第二灭火装置;
    所述第二灭火装置,用于当所述电池模组处于燃烧状态时,对所述电池模组喷射灭火药剂。
  4. 根据权利要求1-3任一项所述的电池***,其特征在于,所述电池管理***BMS,具体用于:
    当所述电池模组的安全阀处于开启状态时,中断所述电池模组的充放电过程。
  5. 根据权利要求4所述的电池***,其特征在于,所述电池管理***BMS,具体用于:
    当所述电池管理***BMS通过所述第一检测装置检测到所述电池模组释放的可燃性气体的浓度值大于第一浓度值,所述电池模组释放的烟雾值大于第一烟雾值时,确定所述电池模组的安全阀处于开启状态。
  6. 根据权利要求1-5任一项所述的电池***,其特征在于,所述电池管理***BMS,还具体用于:
    当所述电池管理***BMS通过所述第一检测装置检测到所述电池模组释放的可燃性气体的浓度值大于第二浓度值,所述电池模组释放的烟雾值大于第二烟雾值时,所述电池模组的温度大于第一温度值,确定所述电池模组处于热失控状态。
  7. 根据权利要求3所述的电池***,其特征在于,所述第二灭火装置包括第二检测装置;所述第二灭火装置,具体用于:
    当所述第二检测装置检测到所述电池模组的温度大于第二温度值时,对所述电池模组喷射灭火药剂。
  8. 根据权利要求1所述的电池***,其特征在于,所述电池管理***BMS包括发送装置;
    所述发送装置,用于当所述电池模组处于热失控状态时,向所述第一灭火装置发送控制信息。
  9. 一种电池***的灭火方法,其特征在于,所述电池***包括电池管理***BMS、至少一个电池模组;其中,所述电池管理***BMS包括第一检测装置;所述方法包括:
    所述电池管理***BMS通过所述第一检测装置获取所述电池模组的风险状态;
    所述电池管理***BMS根据所述风险状态进行灭火。
  10. 根据权利要求9所述的方法,其特征在于,所述电池***还包括第一灭火装置;所述方法还包括:
    当所述电池模组处于热失控状态时,向所述第一灭火装置发送控制信息;其中,所述控制信息用于控制所述第一灭火装置对所述电池模组喷射灭火药剂。
  11. 根据权利要求9或10所述的方法,其特征在于,所述电池***还包括第二灭火装置;所述方法还包括:
    当所述电池模组处于燃烧状态时,对所述电池模组喷射灭火药剂。
  12. 根据权利要求9-11任一项所述的方法,其特征在于,所述电池管理***BMS根据所述风险状态进行灭火,包括:
    当所述电池模组的安全阀处于开启状态时,中断所述电池模组的充放电过程。
  13. 根据权利要求12所述的方法,其特征在于,所述电池管理***BMS通过所述第一检测装置获取所述电池模组的风险状态,包括:
    当所述电池管理***BMS通过所述第一检测装置检测到所述电池模组释放的可燃性气体的浓度值大于第一浓度值,所述电池模组释放的烟雾值大于第一烟雾值时,确定所述电池模组的安全阀处于开启状态。
  14. 根据权利要求9-13任一项所述的方法,其特征在于,所述电池管理***BMS通过所述第一检测装置获取所述电池模组的风险状态,还包括:
    当所述电池管理***BMS通过所述第一检测装置检测到所述电池模组释放的可燃性气体的浓度值大于第二浓度值,所述电池模组释放的烟雾值大于第二烟雾值,所述电池模组的温度大于第一温度值时,确定所述电池模组处于热失控状态。
  15. 根据权利要求11所述的方法,其特征在于,所述第二灭火装置包括第二检测装置;所述当所述电池模组处于燃烧状态时,对所述电池模组喷射灭火药剂,包括:
    当所述第二检测装置检测到所述电池模组的温度大于第二温度值时,对所述电池模组喷射灭火药剂。
  16. 根据权利要求11所述的方法,其特征在于,所述电池管理***BMS包括发送装置,所述当所述电池模组处于热失控状态时,向所述第一灭火装置发送控制信息,包括:
    当所述电池模组处于热失控状态时,所述电池管理***BMS通过所述发送装置向所述第一灭火装置发送控制信息。
  17. 一种机柜,其特征在于,所述机柜包括如权利要求1-8任一项所述的电池***。
  18. 一种电子设备,其特征在于,所述电子设备包括如权利要求1-8任一项所述的电池***。
PCT/CN2020/072883 2020-01-17 2020-01-17 一种电池***及电池***的灭火方法 WO2021142812A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080083135.2A CN114761091A (zh) 2020-01-17 2020-01-17 一种电池***及电池***的灭火方法
PCT/CN2020/072883 WO2021142812A1 (zh) 2020-01-17 2020-01-17 一种电池***及电池***的灭火方法
EP20913294.3A EP4074384A4 (en) 2020-01-17 2020-01-17 BATTERY SYSTEM AND FIRE EXTINGUISHING METHOD FOR BATTERY SYSTEM
US17/858,324 US20220336921A1 (en) 2020-01-17 2022-07-06 Battery system and fire extinguishing method for battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072883 WO2021142812A1 (zh) 2020-01-17 2020-01-17 一种电池***及电池***的灭火方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/858,324 Continuation US20220336921A1 (en) 2020-01-17 2022-07-06 Battery system and fire extinguishing method for battery system

Publications (1)

Publication Number Publication Date
WO2021142812A1 true WO2021142812A1 (zh) 2021-07-22

Family

ID=76863295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072883 WO2021142812A1 (zh) 2020-01-17 2020-01-17 一种电池***及电池***的灭火方法

Country Status (4)

Country Link
US (1) US20220336921A1 (zh)
EP (1) EP4074384A4 (zh)
CN (1) CN114761091A (zh)
WO (1) WO2021142812A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114768144A (zh) * 2022-04-24 2022-07-22 阳光电源股份有限公司 一种储能***及其消防控制方法、装置
CN114824537A (zh) * 2022-06-30 2022-07-29 深圳市明泰源科技有限公司 一种基于信息融合的磷酸铁锂电池热失控监测***
CN115487445A (zh) * 2022-08-05 2022-12-20 南方电网调峰调频发电有限公司储能科研院 高压级联电池***的消防预警方法和***
CN115621578A (zh) * 2022-11-15 2023-01-17 深圳海润新能源科技有限公司 一种电池簇的联动控制***及方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115105772B (zh) * 2022-06-21 2022-12-27 中国电力科学研究院有限公司 一种用于储能***的自动灭火方法及***
CN115337577B (zh) * 2022-08-19 2023-10-13 江苏天合储能有限公司 一种液冷柜消防方法、***及液冷柜
CN115364405B (zh) * 2022-08-24 2024-03-22 中国第一汽车股份有限公司 一种动力电池***、动力电池灭火***、方法及车辆
CN115483474B (zh) * 2022-10-24 2023-06-30 深圳市柏特瑞电子有限公司 一种电池充电监控***
CN115634402A (zh) * 2022-10-25 2023-01-24 楚能新能源股份有限公司 一种电池消防管理***与一种电池
CN116808477A (zh) * 2023-06-29 2023-09-29 宁夏宝丰昱能科技有限公司 电池舱灭火方法、***和设备
CN116706296B (zh) * 2023-08-04 2023-10-27 江苏舒茨测控设备股份有限公司 一种电池***热失控监测方法及装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013006758A1 (de) * 2013-04-19 2014-10-23 Daimler Ag Batterieanordnung und Verfahren zum Betreiben einer Batterieanordnung
CN105904992A (zh) * 2016-06-07 2016-08-31 烟台创为新能源科技有限公司 一种电动汽车的电池监控管理***及其监控方法
CN106066457A (zh) * 2016-05-25 2016-11-02 烟台创为新能源科技有限公司 一种电池热失控检测***及其检测方法
CN106345085A (zh) * 2016-09-30 2017-01-25 江苏鸿鹄电子科技有限公司 一种新能源汽车动力电池安全***
CN106571503A (zh) * 2016-11-11 2017-04-19 华中科技大学 一种电动汽车电池模组热失控安全消防***及方法
CN106581896A (zh) * 2017-01-19 2017-04-26 安徽中涣防务装备技术股份有限公司 一种新能源动力电池箱灭火***及其灭火方法
WO2018139737A1 (ko) * 2017-01-26 2018-08-02 삼성에스디아이주식회사 소화시스템을 포함하는 배터리 팩
US20180289996A1 (en) * 2017-04-07 2018-10-11 Hyundai Motor Company System and controlling method for extinguishing fire in battery of vehicle
CN109316687A (zh) * 2017-07-31 2019-02-12 华为技术有限公司 一种电池***的灭火方法及电池***
EP3466494A1 (de) * 2017-10-05 2019-04-10 aentron GmbH Akkumodul mit einer brandschutzeinrichtung
CN109786867A (zh) * 2018-12-07 2019-05-21 安徽理工大学 锂离子电池包液氮保护技术
CN109985335A (zh) * 2019-04-01 2019-07-09 北京工业大学 一种新能源汽车用锂离子电池的分离式自动灭火***

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107768749B (zh) * 2017-09-22 2020-02-14 北京精密机电控制设备研究所 一种具备自动灭火功能的电池箱
CN109432634B (zh) * 2018-10-08 2020-08-28 中国科学技术大学 一种集装箱式锂离子电池储能***的消防方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013006758A1 (de) * 2013-04-19 2014-10-23 Daimler Ag Batterieanordnung und Verfahren zum Betreiben einer Batterieanordnung
CN106066457A (zh) * 2016-05-25 2016-11-02 烟台创为新能源科技有限公司 一种电池热失控检测***及其检测方法
CN105904992A (zh) * 2016-06-07 2016-08-31 烟台创为新能源科技有限公司 一种电动汽车的电池监控管理***及其监控方法
CN106345085A (zh) * 2016-09-30 2017-01-25 江苏鸿鹄电子科技有限公司 一种新能源汽车动力电池安全***
CN106571503A (zh) * 2016-11-11 2017-04-19 华中科技大学 一种电动汽车电池模组热失控安全消防***及方法
CN106581896A (zh) * 2017-01-19 2017-04-26 安徽中涣防务装备技术股份有限公司 一种新能源动力电池箱灭火***及其灭火方法
WO2018139737A1 (ko) * 2017-01-26 2018-08-02 삼성에스디아이주식회사 소화시스템을 포함하는 배터리 팩
US20180289996A1 (en) * 2017-04-07 2018-10-11 Hyundai Motor Company System and controlling method for extinguishing fire in battery of vehicle
CN109316687A (zh) * 2017-07-31 2019-02-12 华为技术有限公司 一种电池***的灭火方法及电池***
EP3466494A1 (de) * 2017-10-05 2019-04-10 aentron GmbH Akkumodul mit einer brandschutzeinrichtung
CN109786867A (zh) * 2018-12-07 2019-05-21 安徽理工大学 锂离子电池包液氮保护技术
CN109985335A (zh) * 2019-04-01 2019-07-09 北京工业大学 一种新能源汽车用锂离子电池的分离式自动灭火***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4074384A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114768144A (zh) * 2022-04-24 2022-07-22 阳光电源股份有限公司 一种储能***及其消防控制方法、装置
CN114824537A (zh) * 2022-06-30 2022-07-29 深圳市明泰源科技有限公司 一种基于信息融合的磷酸铁锂电池热失控监测***
CN115487445A (zh) * 2022-08-05 2022-12-20 南方电网调峰调频发电有限公司储能科研院 高压级联电池***的消防预警方法和***
CN115621578A (zh) * 2022-11-15 2023-01-17 深圳海润新能源科技有限公司 一种电池簇的联动控制***及方法
CN115621578B (zh) * 2022-11-15 2023-03-31 深圳海润新能源科技有限公司 一种电池簇的联动控制***及方法

Also Published As

Publication number Publication date
US20220336921A1 (en) 2022-10-20
EP4074384A4 (en) 2023-02-22
CN114761091A (zh) 2022-07-15
EP4074384A1 (en) 2022-10-19

Similar Documents

Publication Publication Date Title
WO2021142812A1 (zh) 一种电池***及电池***的灭火方法
CN110828935B (zh) 一种锂离子电池电动汽车安全防护方法
Sun et al. Experimental study on suppressing thermal runaway propagation of lithium-ion batteries in confined space by various fire extinguishing agents
CN114949678B (zh) 一种储能电站氮气保护和多区域逐级探测防控方法及***
CN107331818B (zh) 一种设有置换装置的三元电池组安全结构
CN106823198A (zh) 一种锂电池箱灭火方法
CN105609684B (zh) 一种锂电池组件阻燃防爆装置
CN111388915B (zh) 抑制锂离子电池热失控火灾方法、装置、设备及存储介质
JP2016192261A (ja) 蓄電システム、制御装置、二次電池の消火方法およびプログラム
CN110559576A (zh) 一种锂离子电池箱火灾抑制方法及***
KR20200087956A (ko) 화재확산 방지기능이 강화된 외장 컨테이너형 에너지저장장치시스템
CN112768819A (zh) 一种高消防安全的储能电池包与储能电池集装箱
CN115025422A (zh) 一种应用于规模化储能***的集中排风方法及设备
CN213941926U (zh) 一种三元锂离子动力电池箱专用防灭火智能管控***
CN209859996U (zh) 一种具有消防结构的储能电池机柜
CN115253122B (zh) 储能电站火灾预防方法
CN114614119B (zh) 电池储能***、一体化安全管理方法、装置、设备和介质
CN114768142B (zh) 一种储能***的控制方法及储能***
CN115548480B (zh) 电池***及电池***的控制方法
CN114699676A (zh) 储能***及其控制方法
CN207038593U (zh) 一种设有置换装置的三元电池组安全结构
CN114028747B (zh) 热失控抑制方法、装置、***及存储介质
CN220984629U (zh) 一种锂电池保护装置
CN212593633U (zh) 灭火贴
Yuan et al. Experimental Study on Suppression of Lithium Iron Phosphate Battery Fires

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020913294

Country of ref document: EP

Effective date: 20220714

NENP Non-entry into the national phase

Ref country code: DE