WO2021142621A1 - 成像镜头、取像装置、电子装置及驾驶装置 - Google Patents

成像镜头、取像装置、电子装置及驾驶装置 Download PDF

Info

Publication number
WO2021142621A1
WO2021142621A1 PCT/CN2020/072029 CN2020072029W WO2021142621A1 WO 2021142621 A1 WO2021142621 A1 WO 2021142621A1 CN 2020072029 W CN2020072029 W CN 2020072029W WO 2021142621 A1 WO2021142621 A1 WO 2021142621A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
imaging lens
object side
image side
Prior art date
Application number
PCT/CN2020/072029
Other languages
English (en)
French (fr)
Inventor
蔡雄宇
兰宾利
周芮
Original Assignee
天津欧菲光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津欧菲光电有限公司 filed Critical 天津欧菲光电有限公司
Priority to PCT/CN2020/072029 priority Critical patent/WO2021142621A1/zh
Publication of WO2021142621A1 publication Critical patent/WO2021142621A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Definitions

  • This application relates to the field of optical imaging technology, in particular to an imaging lens, an imaging device, an electronic device, and a driving device.
  • ADAS Advanced Driving Assistant System
  • DMS Driver Monitor System
  • driving recorders driving recorders
  • reversing images have gradually matured. All of the above technologies need to obtain clear road information images or clear driver driving images in order to judge the road conditions or the driving state of the driver more accurately, so as to provide protection for driving safety.
  • an imaging lens is provided.
  • An imaging lens the imaging lens includes in order from the object side to the image side along the optical axis:
  • the first lens with negative refractive power
  • a fourth lens with refractive power, the object side and the image side of the fourth lens are both convex;
  • a fifth lens with refractive power, the object side and the image side of the fifth lens are both concave;
  • the sixth lens with positive refractive power
  • a seventh lens having refractive power wherein the image side surface of the seventh lens is convex;
  • the diaphragm is provided on the object side of the fourth lens.
  • An image capturing device comprising the imaging lens described in the above embodiment; and a photosensitive element, the photosensitive element being arranged on the image side of the imaging lens.
  • An electronic device includes a housing and the imaging device described in the above embodiments, and the imaging device is installed on the housing.
  • a driving device includes a vehicle body and the image capturing device described in the above-mentioned embodiments, and the image capturing device is provided on the vehicle body to obtain environmental information around the vehicle body.
  • FIG. 1 shows a schematic structural diagram of an imaging lens according to Embodiment 1 of the present application
  • FIG. 2 respectively shows a longitudinal spherical aberration curve diagram, an astigmatism curve diagram, and a distortion curve diagram of the imaging lens of Embodiment 1;
  • FIG. 3 shows a schematic structural diagram of an imaging lens according to Embodiment 2 of the present application.
  • FIG. 5 shows a schematic structural diagram of an imaging lens according to Embodiment 3 of the present application.
  • FIG. 6 respectively shows a longitudinal spherical aberration curve diagram, an astigmatism curve diagram, and a distortion curve diagram of the imaging lens of Embodiment 3;
  • FIG. 7 shows a schematic structural diagram of an imaging lens according to Embodiment 4 of the present application.
  • FIG. 8 respectively shows a longitudinal spherical aberration curve, an astigmatism curve, and a distortion curve of the imaging lens of Embodiment 4;
  • FIG. 9 shows a schematic structural diagram of an imaging lens according to Embodiment 5 of the present application.
  • FIG. 10 respectively shows a longitudinal spherical aberration curve, an astigmatism curve, and a distortion curve of the imaging lens of Embodiment 5;
  • FIG. 11 shows a schematic structural diagram of an imaging lens according to Embodiment 6 of the present application.
  • FIG. 12 respectively shows a longitudinal spherical aberration curve diagram, an astigmatism curve diagram, and a distortion curve diagram of the imaging lens of Embodiment 6;
  • FIG. 13 shows a schematic diagram of an image capturing device according to an embodiment of the present application.
  • FIG. 14 shows a schematic diagram of a driving device using an image capturing device according to an embodiment of the present application
  • FIG. 15 shows a schematic diagram of an electronic device using an image capturing device according to an embodiment of the present application.
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not represent any restriction on the feature. Therefore, without departing from the teachings of the present application, the first lens discussed below may also be referred to as a second lens or a third lens.
  • the shape of the spherical or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspheric surface is not limited to the shape of the spherical surface or the aspheric surface shown in the drawings.
  • the drawings are only examples and are not drawn strictly to scale.
  • the high-pixel imaging lens can clearly present the captured scene information on the photosensitive surface of the photosensitive element and transmit it to the corresponding system for identification processing. It plays a very important role in the reversing system, the automatic driving system and the monitoring system. However, it is difficult for the traditional vehicle-mounted lens to be designed with both miniaturization and high resolution capability, which makes the lens preparation cost high and difficult to mass-produce.
  • the imaging lens includes seven lenses with refractive power, namely, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a seventh lens.
  • the seven lenses are arranged in order from the object side to the image side along the optical axis, and the imaging surface of the imaging lens is located on the image side of the seventh lens.
  • the first lens has a negative refractive power, which is conducive to focusing light incident at a large angle to the imaging surface of the imaging lens, thereby achieving stable imaging.
  • the second lens has a positive refractive power, which enables light to smoothly transition or converge to the third lens, and it is also beneficial to correct part of the aberrations generated by the first lens, so that the lens has a higher resolution.
  • the third lens has a negative refractive power, which is beneficial to prevent the second lens from over-correction and further focus the incident light to the imaging surface of the imaging lens.
  • the fourth lens has refractive power, and both the object side and the image side can be convex, so as to help reduce the distortion of the off-axis field of view, avoid imaging distortion, and also help correct aberrations.
  • the fifth lens has refractive power, and both the object side and the image side can be concave, which can make the fifth lens have strong negative refractive power, so as to cooperate with the sixth lens with positive refractive power to correct lens chromatic aberration and reduce
  • the eccentric sensitivity of the small lens is further corrected for aberrations to improve the imaging resolution capability of the lens; at the same time, it is also conducive to adapting to the surface shape of the fourth lens, further reducing the total length of the lens.
  • the fifth lens and the sixth lens can be set as a cemented lens, making the overall structure of the imaging lens more compact, reducing the tolerance sensitivity problems such as tilt or decentering of the lens during the assembly process, and improving the assembly quality of the lens. Rate.
  • the discrete lenses at the turning points of light are easily sensitive due to processing errors and/or assembly errors, and the use of cemented lenses can effectively reduce the sensitivity of the lens.
  • the cemented lens used in this application can not only effectively reduce the sensitivity of the lens and shorten the overall length of the lens, but also can share the correction of the overall chromatic aberration and aberration of the lens, and improve the resolution capability of the imaging lens.
  • the cemented lens may include a lens with positive refractive power and a lens with negative refractive power. If the sixth lens has positive refractive power, the fifth lens has negative refractive power.
  • the seventh lens has refractive power, and its image side surface is convex.
  • the seventh lens may have a negative refractive power to diverge the light passing through the sixth lens, so that the light will smoothly transition to the imaging surface, which is beneficial to shorten the total length of the lens; in other embodiments, the seventh lens It can have a positive refractive power, which is beneficial to obtain a smaller chief ray incident angle, so as to further improve the imaging resolution of the lens and make the brightness of the image surface more uniform.
  • a diaphragm is also provided in the imaging lens, and the diaphragm is provided on the object side of the fourth lens to better control the size of the incident light beam.
  • the diaphragm includes an aperture diaphragm and a field diaphragm.
  • the diaphragm is an aperture diaphragm.
  • the aperture stop can be located on the surface of the lens (for example, the object side and the image side) and form an functional relationship with the lens, for example, by coating a light-blocking coating on the surface of the lens to form an aperture stop on the surface; or by clamping
  • the holder fixedly clamps the surface of the lens, and the holder structure on the surface can limit the width of the imaging beam of the object point on the axis, thereby forming an aperture stop on the surface.
  • the light emitted or reflected by the subject enters the imaging lens from the object side, and passes through the first lens, the second lens, the third lens, the fourth lens, the fifth lens, and the first lens in sequence.
  • the sixth lens and the seventh lens finally converge on the imaging surface.
  • the above-mentioned imaging lens can enhance the imaging resolution of the imaging lens and effectively correct aberrations by selecting an appropriate number of lenses and reasonably distributing the refractive power, surface shape and effective focal length of each lens.
  • the distance can effectively shorten the total length of the imaging lens, and realize the miniaturization and light weight of the lens; at the same time, the size of the incident light beam can be effectively limited by setting the diaphragm on the object side of the fourth lens, thereby further improving the imaging quality.
  • the object side surface and/or the image side surface of at least one lens are aspherical.
  • the flexibility of lens design can be improved, aberrations can be corrected effectively, and the imaging quality of the imaging lens can be improved.
  • the object side surface and the image side surface of each lens of the imaging lens may also be spherical surfaces. It should be noted that the above-mentioned embodiments are only examples of some embodiments of the present application.
  • the surface of each lens in the imaging lens may be an aspheric surface or any combination of spherical surfaces.
  • the object side surface or the image side surface of at least one lens is a flat surface.
  • the imaging lens satisfies the following relationship: -10 ⁇ R1/f1 ⁇ -1.5; where R1 represents the radius of curvature of the object side surface of the first lens at the optical axis, and f1 represents the effective focal length of the first lens.
  • R1/f1 can be -9, -8, -6, -4, -3, -2.9, -2.7, -2.5, -2.3, -2.1, -1.8, or -1.6.
  • R1/f1 When R1/f1 is lower than the upper limit, it is beneficial to provide negative refractive power for the imaging lens, so that light incident at a large angle can also enter the lens, thereby increasing the field of view of the imaging lens, and also helping to reduce the sensitivity of the imaging lens , To achieve the miniaturization of the lens; when R1/f1 is higher than the lower limit, the ghost image can be avoided during imaging.
  • R1/f1 When R1/f1 is greater than or equal to the upper limit, the lens cannot provide sufficient negative refractive power so that light incident at a large angle can also enter the lens, which will easily lead to incomplete imaging and low brightness of the picture; and when R1/f1 is less than or equal to When the lower limit is reached, it is more difficult to suppress the formation of stray light, and it is easy to produce ghost images.
  • the imaging lens satisfies the following relationship: 12 ⁇ TTL/D34 ⁇ 20; where TTL represents the distance from the object side of the first lens to the imaging surface of the imaging lens on the optical axis, and D34 represents the image of the third lens.
  • TTL/D34 can be 13, 14, 15, 15.4, 15.8, 16.2, 16.4, 16.6, 16.8, 17.0, 17.2, 17.4, 17.6, 18, or 19. Under the condition that the above relationship is satisfied, it is beneficial to reduce the air gap between the third lens and the fourth lens, and realize the miniaturization of the lens.
  • the total length of the lens will be longer, which is not conducive to miniaturization, or the air gap between the third lens and the fourth lens is smaller, which is not conducive to reducing the assembly sensitivity of the lens;
  • the TTL/D34 is less than or equal to the lower limit, the air gap between the third lens and the fourth lens will be too large, which is not conducive to the miniaturization of the lens.
  • the imaging lens satisfies the following relationship: -2 ⁇ f5/f ⁇ 0; where f5 represents the effective focal length of the fifth lens, and f represents the effective focal length of the imaging lens.
  • f5/f can be -1, -0.8, -0.7, -0.68, -0.66, -0.64, -0.62, -0.6, -0.4, or -0.2.
  • the lens cannot provide negative refractive power to correct lens aberrations; when f5/f is less than or equal to -2, the negative refractive power of the fifth lens is too small, which is not conducive to image correction. Difference.
  • the imaging lens satisfies the following relationship: -25 ⁇ f56/f ⁇ -3; where f56 represents the combined focal length of the fifth lens and the sixth lens, and f represents the effective focal length of the imaging lens.
  • f56/f can be -24, -22, -21, -15, -10, -9, -8, -7, -6.5, -6, -5.5, -5, -4.5, -4, or -3.5.
  • the fifth lens and the sixth lens can provide negative refractive power for the imaging lens to correct the chromatic aberration of the lens, and also help reduce the decentering sensitivity of the lens and correct the aberration of the imaging lens.
  • the fifth lens and the sixth lens can be cemented to simultaneously solve the lens manufacturing process and lens assembly problems, thereby reducing the assembly sensitivity of the lens and improving the assembly yield.
  • f56/f is greater than or equal to the upper limit or less than or equal to the lower limit, it will be difficult to provide the imaging lens with a suitable negative refractive power to correct the chromatic aberration and aberration of the lens.
  • the imaging lens satisfies the following relationship:
  • CT6-CT5/CT4-CT5 can be 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.05, 1.1, 1.15, 1.2 or 1.3. Under the condition of satisfying the above relationship, it is beneficial to correct the aberration of the imaging lens, reduce the curvature of the lens field, avoid the problem of uneven coating, and at the same time, it is also beneficial to realize the miniaturization of the lens.
  • the imaging lens satisfies the following relationship:
  • R5r ⁇ R5f 0.7 ⁇ (R5r ⁇ R5f)/(R6f ⁇ R4r) ⁇ 1.3; where R4r represents the radius of curvature of the image side surface of the fourth lens at the optical axis, R5f represents the radius of curvature of the object side surface of the fifth lens at the optical axis, and R5r represents The radius of curvature of the image side surface of the fifth lens at the optical axis, R6f represents the radius of curvature of the object side surface of the sixth lens at the optical axis. (R5r ⁇ R5f)/(R6f ⁇ R4r) may be 0.8, 0.84, 0.88, 0.92, 0.96, 1.0, 1.04, 1.08, 1.12, 1.16, 1.2, 1.24, or 1.28.
  • the imaging lens satisfies the following relationship: f7/f>3.5; where f7 represents the effective focal length of the seventh lens, and f represents the effective focal length of the imaging lens.
  • f7/f can be 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.6, 4.8, 5.0, 5.2, or 5.4.
  • f7/f is less than or equal to 3.5, the imaging lens cannot provide proper positive refractive power, which is not conducive to the aberration correction of the lens.
  • the imaging lens satisfies the following relationship:
  • R7f represents the radius of curvature of the seventh lens object side surface at the optical axis
  • R7r represents the curvature radius of the seventh lens image side surface at the optical axis.
  • (R7r+R7f)/(R7f-R7r) can be 0.6, 0.8, 1.0, 1.2, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.4, 2.6, or 2.8.
  • the incident angle of the chief ray of the edge viewing angle can be prevented from being excessively increased, so that the lens can better match the photosensitive element of the traditional specification; in addition, it is also beneficial to suppress the generation of astigmatism. So as to ensure the imaging quality of the lens.
  • the imaging lens satisfies the following relational expression: 1 ⁇ CT/ ⁇ D ⁇ 5; where ⁇ CT represents the sum of the thickness of each of the first lens to the seventh lens on the optical axis, ⁇ D It represents the sum of the distances on the optical axis from the image side surface of the previous lens to the object side surface of the next lens among the adjacent lenses of the first lens to the seventh lens.
  • ⁇ CT/ ⁇ D can be 1.5, 2, 2.5, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 4.0, 4.2, 4.4, 4.6, or 4.8. Under the condition of satisfying the above relationship, it is beneficial to make the structure of the lens more compact, and further realize the miniaturization of the lens.
  • ⁇ CT/ ⁇ D When ⁇ CT/ ⁇ D is greater than or equal to the upper limit, the thickness of the lens is likely to be too large, resulting in an increase in the total weight of the lens, which is not conducive to the realization of lightweight and low-cost production of the lens; and when ⁇ CT/ ⁇ D is less than or equal to the lower limit , The air gap between adjacent lenses is too large, which is not conducive to the miniaturization of the lens.
  • the imaging lens satisfies the following relationship:
  • tan(FOV)/ImgH can be 0.15, 0.2, 0.25, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35, 0.38, 0.42, 0.46, or 0.48.
  • the imaging lens can be made to have a higher imaging resolution, and at the same time, the shooting focal length of the lens and the distortion of the lens can be set within a reasonable range, so as to obtain a better wide-angle shooting effect.
  • tan(FOV)/ImgH is greater than or equal to the upper limit, the field of view will be too large, which is not conducive to suppressing the chief ray angle of incidence and easily reduces the imaging resolution of the lens; and when tan(FOV)/ImgH is less than or equal to the lower limit, It will make the image height on the imaging surface too large, which is not conducive to the control of distortion.
  • the imaging lens satisfies the following relationship: nd2>1.95; where nd2 represents the refractive index of the d light of the second lens, the d light is yellow light, and its wavelength is 587.56 nm. nd2 can be 1.96, 1.97, 1.98, 1.99, 2.0, 2.01, 2.02, 2.05, or 2.1.
  • nd2 can be 1.96, 1.97, 1.98, 1.99, 2.0, 2.01, 2.02, 2.05, or 2.1.
  • the imaging lens satisfies the following relationship:
  • ⁇ 100 can be 1, 1.1, 1.2, 1.6, 2.0, 2.4, 2.8, 3.0, 3.1, 3.5, 3.9, 4.3, 4.7, or 4.9. Under the condition of satisfying the above relationship, it is beneficial to reduce the probability of ghost images on the cemented surface when the fifth lens and the sixth lens are cemented, thereby improving the imaging quality of the lens.
  • the material of each lens in the imaging lens may be glass or plastic.
  • the plastic lens can reduce the weight and production cost of the imaging lens, while the glass lens can make the imaging lens have better performance.
  • the temperature tolerance characteristics and excellent optical performance can also be any combination of glass and plastic, and it does not have to be all glass or all plastic.
  • the imaging lens further includes an infrared filter.
  • the infrared filter is set on the image side of the seventh lens to filter incident light, specifically to isolate infrared light and prevent infrared light from being absorbed by the photosensitive element, thereby preventing infrared light from affecting the color and clarity of normal images, and improving The imaging quality of the imaging lens.
  • the imaging lens further includes a protective glass.
  • the protective glass is arranged on the image side of the infrared filter, so that it can be close to the photosensitive element when the module is subsequently assembled into a module to protect the photosensitive element.
  • the photosensitive element is located on the imaging surface of the imaging lens. Further, the imaging surface may be the photosensitive surface of the photosensitive element.
  • the imaging lens of the foregoing embodiment of the present application may use multiple lenses, for example, the seven lenses described above.
  • By reasonably distributing the focal length, refractive power, surface shape, thickness of each lens, and the on-axis distance between each lens it is possible to ensure that the above-mentioned imaging lens has a small total length, a lighter weight, and a high imaging resolution.
  • FNO can be 2.0
  • the number of lenses constituting the imaging lens can be changed to obtain the various results and advantages described in this specification.
  • the lens surface is convex and the position of the convex surface is not defined, it means that the lens surface is convex at least in the paraxial region; if the lens surface is concave and the position of the concave surface is not defined, it means the lens surface At least the paraxial area is concave.
  • the paraxial area here refers to the area near the optical axis. The surface of each lens closest to the object is called the object side, and the surface of each lens closest to the imaging surface is called the image side.
  • FIG. 1 shows a schematic diagram of the structure of the imaging lens 100 of the first embodiment.
  • the imaging lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 and the image side surface S2 are both spherical surfaces, wherein the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens L2 has a positive refractive power
  • the object side surface S3 is a spherical surface
  • the image side surface S4 is a flat surface
  • the object side surface S3 is a convex surface.
  • the third lens L3 has a negative refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens L4 has a positive refractive power, and the object side surface S7 and the image side surface S8 are both spherical surfaces, wherein the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens L5 has a negative refractive power, and the object side surface S9 and the image side surface S10 are both spherical surfaces, wherein the object side surface S9 is a concave surface, and the image side surface S10 is a concave surface.
  • the sixth lens L6 has a positive refractive power, and the object side surface S11 and the image side surface S12 are both spherical surfaces, wherein the object side surface S11 is a convex surface, and the image side surface S12 is a convex surface.
  • the seventh lens L7 has a positive refractive power.
  • the object side surface S13 and the image side surface S14 are both aspherical.
  • the object side surface S13 is concave at the optical axis and concave at the circumference.
  • the image side S14 is convex at the optical axis.
  • the circumference is convex.
  • both the object side surface S13 and the image side surface S14 of the seventh lens L7 as aspherical surfaces is beneficial to correct aberrations and solve the problem of image surface distortion. It also enables the lens to be smaller, thinner and flatter.
  • the optical imaging effect of the optical imaging lens which in turn enables the imaging lens 100 to have the characteristics of miniaturization.
  • the materials of the first lens L1 to the sixth lens L6 are all glass, and the use of a glass lens can make the imaging lens 100 have better temperature tolerance characteristics and excellent optical performance.
  • the material of the seventh lens L7 is plastic, which can facilitate the injection molding of the lens surface, thereby helping to reduce production costs. At the same time, the plastic lens can also reduce the weight of the imaging lens 100 and achieve lighter weight.
  • a stop STO is also provided between the third lens L3 and the fourth lens L4 to limit the size of the incident light beam and further improve the imaging quality of the imaging lens 100.
  • the imaging lens 100 further includes a filter 110 having an object side surface S15 and an image side surface S16, and a protective glass 120 provided on the image side of the filter 110 and having an object side surface S17 and an image side surface S18.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S18 and is finally imaged on the imaging surface S19.
  • the filter 110 is an infrared filter, which is used to filter the infrared light in the external light incident to the imaging lens 100 to avoid imaging distortion.
  • the material of the filter 110 is glass.
  • the filter 110 and the protective glass 120 may be part of the imaging lens 100 and assembled with each lens, or may also be installed when the imaging lens 100 is assembled with the photosensitive element.
  • Table 1 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie, dispersion coefficient), and effective focal length of the lens of the imaging lens 100 of Example 1, where the radius of curvature, thickness, lens The effective focal length is in millimeters (mm).
  • the surface of the lens closest to the object is called the object side
  • the surface of the lens closest to the imaging surface is called the image side.
  • the first value in the "thickness" parameter column of lens L1 is the thickness of the lens on the optical axis
  • the second value is the next lens from the image side to the image side of the lens.
  • the distance of the object side on the optical axis; the value of the stop ST0 in the "thickness" parameter column is the distance from the stop ST0 to the apex of the object side of the latter lens (the apex refers to the intersection of the lens and the optical axis) on the optical axis ,
  • the direction from the object side of the first lens L1 to the image side of the last lens is the positive direction of the optical axis.
  • the value is negative, it means that the stop ST0 is set to the right of the apex of the object side of the lens.
  • the thickness of the stop STO is positive, the stop is on the left side of the vertex of the object side of the lens.
  • the "thickness" parameter in the surface number S6 is the distance from the image side surface S6 of the third lens L3 to the stop ST0 on the optical axis.
  • the value corresponding to the surface number S18 in the "thickness" parameter of the protective glass 120 is the distance from the image side surface S18 of the protective glass 120 to the imaging surface S19 on the optical axis.
  • the reference wavelength in Table 1 is 546nm.
  • the aspheric surface type in the lens is defined by the following formula:
  • x is the distance vector height of the aspheric surface from the apex of the aspheric surface when the height is h along the optical axis direction;
  • k is the conic coefficient;
  • Ai is the i-th order coefficient of the aspheric surface.
  • Table 2 below shows the higher order term coefficients A4, A6, A8, A10, A12, A14, A16, A18, and A20 that can be used for the lens aspheric surfaces S13-S14 in Example 1.
  • the diagonal length ImgH of the effective pixel area on the imaging surface S19 of the imaging lens 100 of this embodiment is 10.29mm. Therefore, combining the data in Table 1 and Table 2 shows that the imaging lens 100 in Embodiment 1 satisfies:
  • R1/f1 -1.83, where R1 represents the radius of curvature of the object side surface S1 of the first lens L1 at the optical axis, and f1 represents the effective focal length of the first lens L1;
  • TTL/D34 15.49, where TTL represents the distance on the optical axis from the object side S1 of the first lens L1 to the imaging surface S19 of the imaging lens 100, and D34 represents the distance between the image side S6 of the third lens L3 and the object side S7 of the fourth lens L4 The distance on the optical axis;
  • f5/f -0.65, where f5 represents the effective focal length of the fifth lens L5, and f represents the effective focal length of the imaging lens 100;
  • f56/f -5.40, where f56 represents the combined focal length of the fifth lens L5 and the sixth lens L6, and f represents the effective focal length of the imaging lens 100;
  • CT6-CT5/(CT4-CT5) 0.69, where CT4 represents the thickness of the fourth lens L4 on the optical axis, CT5 represents the thickness of the fifth lens L5 on the optical axis, and CT6 represents the sixth lens L6 The thickness on the optical axis;
  • R4r represents the radius of curvature of the image side surface S8 of the fourth lens L4 at the optical axis
  • R5f represents the radius of curvature of the fifth lens L5 object side S9 at the optical axis
  • R5r represents the radius of curvature of the image side surface S10 of the fifth lens L5 at the optical axis
  • R6f represents the radius of curvature of the sixth lens L6 object side S11 at the optical axis
  • R4r represents the radius of curvature of the image side surface S8 of the fourth lens L4 at the optical axis
  • R5f represents the radius of curvature of the fifth lens L5 object side S9 at the optical axis
  • R5r represents the radius of curvature of the image side surface S10 of the fifth lens L5 at the optical axis
  • R6f represents the radius of curvature of the sixth lens L6 object side S11 at the optical axi
  • f7/f 3.63, where f7 represents the effective focal length of the seventh lens L7, and f represents the effective focal length of the imaging lens 100;
  • R7r+R7f represents the radius of curvature of the seventh lens L7's object side surface S13 at the optical axis
  • R7r represents the seventh lens L7's radius of curvature of the image side surface S14 at the optical axis
  • ⁇ CT/ ⁇ D 3.305
  • ⁇ CT represents the sum of the thickness of each of the first lens L1 to the seventh lens L7 on the optical axis
  • ⁇ D represents each adjacent lens of the first lens L1 to the seventh lens L7 The sum of the distances from the image side of the front lens to the object side of the rear lens on the optical axis
  • FOV the maximum field of view of the imaging lens 100
  • FOV the diagonal field of view of the effective pixel area on the imaging surface S19 of the imaging lens 100
  • ImgH the imaging The diagonal length of the effective pixel area on the imaging surface S19 of the lens 100
  • nd2 2.001, where nd2 represents the d-ray refractive index of the second lens L2;
  • FIG. 2 shows the longitudinal spherical aberration curve, the astigmatism curve, and the distortion curve of the imaging lens 100 of Embodiment 1 respectively.
  • the longitudinal spherical aberration graph shows the deviation of the focal point of light with wavelengths of 450nm, 479.99nm, 546.07nm, 587.56nm and 656.27nm after passing through the imaging lens 100;
  • the astigmatism curve diagram shows the meridional image plane of the imaging lens 100 Curved and sagittal field curvature;
  • the distortion curve diagram shows the distortion rate of the imaging lens 100 under different image heights. According to FIG. 2, it can be seen that the imaging lens 100 provided in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 shows a schematic structural diagram of an imaging lens 100 according to Embodiment 2 of the present application.
  • the imaging lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 and the image side surface S2 are both spherical surfaces, wherein the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens L2 has a positive refractive power
  • the object side surface S3 is a spherical surface
  • the image side surface S4 is a flat surface
  • the object side surface S3 is a convex surface.
  • the third lens L3 has a negative refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens L4 has a positive refractive power, and the object side surface S7 and the image side surface S8 are both spherical surfaces, wherein the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens L5 has a negative refractive power, and the object side surface S9 and the image side surface S10 are both spherical surfaces, wherein the object side surface S9 is a concave surface, and the image side surface S10 is a concave surface.
  • the sixth lens L6 has a positive refractive power, and the object side surface S11 and the image side surface S12 are both spherical surfaces, wherein the object side surface S11 is a convex surface, and the image side surface S12 is a convex surface.
  • the seventh lens L7 has a positive refractive power.
  • the object side surface S13 and the image side surface S14 are both aspherical.
  • the object side surface S13 is concave at the optical axis and concave at the circumference.
  • the image side S14 is convex at the optical axis.
  • the circumference is convex.
  • the material of the first lens L1 to the sixth lens L6 is glass, the material of the seventh lens L7 is plastic, and a stop STO is also provided between the third lens L3 and the fourth lens L4.
  • the imaging lens 100 further includes a filter 110 having an object side surface S15 and an image side surface S16, and a protective glass 120 provided on the image side of the filter 110 and having an object side surface S17 and an image side surface S18.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S18 and is finally imaged on the imaging surface S19.
  • the filter 110 is an infrared filter, which is used to filter the infrared light in the external light incident to the imaging lens 100 to avoid imaging distortion.
  • Table 3 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient), and effective focal length of each lens of the imaging lens 100 of Example 2, where the radius of curvature and thickness The unit of effective focal length of each lens is millimeter (mm).
  • the reference wavelength in Table 3 is 546 nm.
  • Table 4 shows the coefficients of the higher order terms that can be used for the lens aspheric surfaces S13-S14 in Example 2, where the aspheric surface type can be defined by the formula (1) given in Example 1;
  • Table 5 shows Example 2 The relevant parameter values of the imaging lens 100 are given in.
  • FIG. 4 shows the longitudinal spherical aberration curve, the astigmatism curve and the distortion curve of the imaging lens 100 of Embodiment 2 respectively.
  • the longitudinal spherical aberration graph shows the deviation of the focal point of light with wavelengths of 450nm, 479.99nm, 546.07nm, 587.56nm and 656.27nm after passing through the imaging lens 100;
  • the astigmatism curve diagram shows the meridional image plane of the imaging lens 100 Curved and sagittal field curvature;
  • the distortion curve diagram shows the distortion rate of the imaging lens 100 under different image heights. It can be seen from FIG. 4 that the imaging lens 100 provided in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 shows a schematic structural diagram of an imaging lens 100 according to Embodiment 3 of the present application.
  • the imaging lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 and the image side surface S2 are both spherical surfaces, wherein the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens L2 has a positive refractive power
  • the object side surface S3 is a spherical surface
  • the image side surface S4 is a flat surface
  • the object side surface S3 is a convex surface.
  • the third lens L3 has a negative refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens L4 has a positive refractive power, and the object side surface S7 and the image side surface S8 are both spherical surfaces, wherein the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens L5 has a negative refractive power, and the object side surface S9 and the image side surface S10 are both spherical surfaces, wherein the object side surface S9 is a concave surface, and the image side surface S10 is a concave surface.
  • the sixth lens L6 has a positive refractive power, and the object side surface S11 and the image side surface S12 are both spherical surfaces, wherein the object side surface S11 is a convex surface, and the image side surface S12 is a convex surface.
  • the seventh lens L7 has a positive refractive power.
  • the object side surface S13 and the image side surface S14 are both aspherical.
  • the object side surface S13 is concave at the optical axis and concave at the circumference.
  • the image side S14 is convex at the optical axis.
  • the circumference is convex.
  • the material of the first lens L1 to the sixth lens L6 is glass, the material of the seventh lens L7 is plastic, and a stop STO is also provided between the third lens L3 and the fourth lens L4.
  • the imaging lens 100 further includes a filter 110 having an object side surface S15 and an image side surface S16, and a protective glass 120 provided on the image side of the filter 110 and having an object side surface S17 and an image side surface S18.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S18 and is finally imaged on the imaging surface S19.
  • the filter 110 is an infrared filter, which is used to filter the infrared light in the external light incident to the imaging lens 100 to avoid imaging distortion.
  • Table 6 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (that is, dispersion coefficient) of each lens of the imaging lens 100 of Example 3, and the effective focal length of each lens, where the radius of curvature and thickness The unit of effective focal length of each lens is millimeter (mm).
  • the reference wavelength in Table 6 is 546nm.
  • Table 7 shows the coefficients of the higher order term that can be used for the lens aspheric surfaces S13-S14 in Example 3, where the aspheric surface type can be defined by the formula (1) given in Example 1;
  • Table 8 shows Example 3 The relevant parameter values of the imaging lens 100 are given in.
  • FIG. 6 shows the longitudinal spherical aberration curve, astigmatism curve, and distortion curve of the imaging lens 100 of Embodiment 3, respectively.
  • the longitudinal spherical aberration graph shows the deviation of the focal point of light with wavelengths of 450nm, 479.99nm, 546.07nm, 587.56nm and 656.27nm after passing through the imaging lens 100;
  • the astigmatism curve diagram shows the meridional image plane of the imaging lens 100 Curved and sagittal field curvature;
  • the distortion curve diagram shows the distortion rate of the imaging lens 100 under different image heights. It can be seen from FIG. 6 that the imaging lens 100 provided in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 shows a schematic structural diagram of an imaging lens 100 according to Embodiment 4 of the present application.
  • the imaging lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 and the image side surface S2 are both spherical surfaces, wherein the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens L2 has a positive refractive power
  • the object side surface S3 is a spherical surface
  • the image side surface S4 is a flat surface
  • the object side surface S3 is a convex surface.
  • the third lens L3 has a negative refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens L4 has a positive refractive power, and the object side surface S7 and the image side surface S8 are both spherical surfaces, wherein the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens L5 has a negative refractive power, and the object side surface S9 and the image side surface S10 are both spherical surfaces, wherein the object side surface S9 is a concave surface, and the image side surface S10 is a concave surface.
  • the sixth lens L6 has a positive refractive power, and the object side surface S11 and the image side surface S12 are both spherical surfaces, wherein the object side surface S11 is a convex surface, and the image side surface S12 is a convex surface.
  • the seventh lens L7 has a positive refractive power.
  • the object side surface S13 and the image side surface S14 are both aspherical.
  • the object side surface S13 is concave at the optical axis and concave at the circumference.
  • the image side S14 is convex at the optical axis.
  • the circumference is convex.
  • the material of the first lens L1 to the sixth lens L6 is glass, the material of the seventh lens L7 is plastic, and a stop STO is also provided between the third lens L3 and the fourth lens L4.
  • the imaging lens 100 further includes a filter 110 having an object side surface S15 and an image side surface S16, and a protective glass 120 provided on the image side of the filter 110 and having an object side surface S17 and an image side surface S18.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S18 and is finally imaged on the imaging surface S19.
  • the filter 110 is an infrared filter, which is used to filter the infrared light in the external light incident to the imaging lens 100 to avoid imaging distortion.
  • Table 9 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient), and effective focal length of each lens of the imaging lens 100 of Example 4, where the radius of curvature, thickness The unit of effective focal length of each lens is millimeter (mm).
  • the reference wavelength in Table 9 is 546 nm.
  • Table 10 shows the coefficients of the higher order term that can be used for the lens aspheric surfaces S13-S14 in Example 4, where the aspheric surface type can be defined by the formula (1) given in Example 1;
  • Table 11 shows Example 4 The relevant parameter values of the imaging lens 100 are given in.
  • FIG. 8 shows the longitudinal spherical aberration curve, the astigmatism curve, and the distortion curve of the imaging lens 100 of Embodiment 4, respectively.
  • the longitudinal spherical aberration graph shows the deviation of the focal point of light with wavelengths of 450nm, 479.99nm, 546.07nm, 587.56nm and 656.27nm after passing through the imaging lens 100;
  • the astigmatism curve diagram shows the meridional image plane of the imaging lens 100 Curved and sagittal field curvature;
  • the distortion curve diagram shows the distortion rate of the imaging lens 100 under different image heights. According to FIG. 8, it can be seen that the imaging lens 100 provided in Embodiment 4 can achieve good imaging quality.
  • FIG. 9 shows a schematic structural diagram of an imaging lens 100 according to Embodiment 5 of the present application.
  • the imaging lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 and the image side surface S2 are both spherical surfaces, wherein the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens L2 has a positive refractive power
  • the object side surface S3 is a spherical surface
  • the image side surface S4 is a flat surface
  • the object side surface S3 is a convex surface.
  • the third lens L3 has a negative refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens L4 has a positive refractive power, and the object side surface S7 and the image side surface S8 are both spherical surfaces, wherein the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens L5 has a negative refractive power, and the object side surface S9 and the image side surface S10 are both spherical surfaces, wherein the object side surface S9 is a concave surface, and the image side surface S10 is a concave surface.
  • the sixth lens L6 has a positive refractive power, and the object side surface S11 and the image side surface S12 are both spherical surfaces, wherein the object side surface S11 is a convex surface, and the image side surface S12 is a convex surface.
  • the seventh lens L7 has a positive refractive power.
  • the object side surface S13 and the image side surface S14 are both aspherical.
  • the object side surface S13 is concave at the optical axis and concave at the circumference.
  • the image side S14 is convex at the optical axis.
  • the circumference is convex.
  • the material of the first lens L1 to the sixth lens L6 is glass, the material of the seventh lens L7 is plastic, and a stop STO is also provided between the third lens L3 and the fourth lens L4.
  • the imaging lens 100 further includes a filter 110 having an object side surface S15 and an image side surface S16, and a protective glass 120 provided on the image side of the filter 110 and having an object side surface S17 and an image side surface S18.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S18 and is finally imaged on the imaging surface S19.
  • the filter 110 is an infrared filter, which is used to filter the infrared light in the external light incident to the imaging lens 100 to avoid imaging distortion.
  • Table 12 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient) and effective focal length of each lens of the imaging lens 100 of Example 5, where the radius of curvature and thickness The unit of effective focal length of each lens is millimeter (mm).
  • the reference wavelength in Table 12 is 546 nm.
  • Table 13 shows the coefficients of the higher order term that can be used for the lens aspheric surfaces S13-S14 in Example 5, where the aspheric surface type can be defined by the formula (1) given in Example 1;
  • Table 14 shows Example 5
  • the relevant parameter values of the imaging lens 100 are given in.
  • FIG. 10 shows the longitudinal spherical aberration curve, the astigmatism curve, and the distortion curve of the imaging lens 100 of Embodiment 5, respectively.
  • the longitudinal spherical aberration graph shows the deviation of the focal point of light with wavelengths of 450nm, 479.99nm, 546.07nm, 587.56nm and 656.27nm after passing through the imaging lens 100;
  • the astigmatism curve diagram shows the meridional image plane of the imaging lens 100 Curved and sagittal field curvature;
  • the distortion curve diagram shows the distortion rate of the imaging lens 100 under different image heights. It can be seen from FIG. 10 that the imaging lens 100 provided in Embodiment 5 can achieve good imaging quality.
  • FIG. 11 shows a schematic structural diagram of an imaging lens 100 according to Embodiment 6 of the present application.
  • the imaging lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 and the image side surface S2 are both spherical surfaces, wherein the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens L2 has a positive refractive power
  • the object side surface S3 is a spherical surface
  • the image side surface S4 is a flat surface
  • the object side surface S3 is a convex surface.
  • the third lens L3 has a negative refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens L4 has a positive refractive power, and the object side surface S7 and the image side surface S8 are both spherical surfaces, wherein the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens L5 has a negative refractive power, and the object side surface S9 and the image side surface S10 are both spherical surfaces, wherein the object side surface S9 is a concave surface, and the image side surface S10 is a concave surface.
  • the sixth lens L6 has a positive refractive power, and the object side surface S11 and the image side surface S12 are both spherical surfaces, wherein the object side surface S11 is a convex surface, and the image side surface S12 is a convex surface.
  • the seventh lens L7 has a positive refractive power.
  • the object side surface S13 and the image side surface S14 are both aspherical.
  • the object side surface S13 is convex at the optical axis and convex at the circumference, and the image side S14 is convex at the optical axis.
  • the circumference is convex.
  • the material of the first lens L1 to the sixth lens L6 is glass, the material of the seventh lens L7 is plastic, and a stop STO is also provided between the third lens L3 and the fourth lens L4.
  • the imaging lens 100 further includes a filter 110 having an object side surface S15 and an image side surface S16, and a protective glass 120 provided on the image side of the filter 110 and having an object side surface S17 and an image side surface S18.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S18 and is finally imaged on the imaging surface S19.
  • the filter 110 is an infrared filter, which is used to filter the infrared light from the external light incident on the imaging lens 100 to avoid imaging distortion.
  • Table 15 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient), and effective focal length of each lens of the imaging lens 100 of Example 6, where the radius of curvature and thickness The unit of effective focal length of each lens is millimeter (mm).
  • the reference wavelength in Table 15 is 546 nm.
  • Table 16 shows the coefficients of the higher order term that can be used for the lens aspheric surfaces S13-S14 in Example 6, where the aspheric surface type can be defined by the formula (1) given in Example 1;
  • Table 17 shows Example 6 The relevant parameter values of the imaging lens 100 are given in.
  • FIG. 12 shows the longitudinal spherical aberration curve, the astigmatism curve, and the distortion curve of the imaging lens 100 of the sixth embodiment, respectively.
  • the longitudinal spherical aberration graph shows the deviation of the focal point of light with wavelengths of 450nm, 479.99nm, 546.07nm, 587.56nm and 656.27nm after passing through the imaging lens 100;
  • the astigmatism curve diagram shows the meridional image plane of the imaging lens 100 Curved and sagittal field curvature;
  • the distortion curve diagram shows the distortion rate of the imaging lens 100 under different image heights. It can be seen from FIG. 12 that the imaging lens 100 provided in Embodiment 6 can achieve good imaging quality.
  • the present application also provides an imaging device 200, including the imaging lens 100 as described above; and a photosensitive element 210, the photosensitive element 210 is arranged on the image side of the imaging lens 100, and the photosensitive surface of the photosensitive element 210 It coincides with the imaging surface S19.
  • the photosensitive element 210 may adopt a complementary metal oxide semiconductor (CMOS, Complementary Metal Oxide Semiconductor) image sensor or a charge-coupled device (CCD, Charge-coupled Device) image sensor.
  • CMOS complementary metal oxide semiconductor
  • CCD Charge-coupled Device
  • the aforementioned imaging device 200 can use the aforementioned imaging lens 100 to capture high-definition images with a wide viewing angle. At the same time, the imaging device 200 also has the structural characteristics of miniaturization and light weight.
  • the image capturing device 200 can be applied to fields such as mobile phones, automobiles, monitoring, and medical treatment. Specifically, it can be used as a mobile phone camera, a car camera, a surveillance camera or an endoscope, etc.
  • the above-mentioned imaging device 200 can be used as a vehicle-mounted camera in the driving device 300.
  • the driving device 300 may be an autonomous vehicle or a non-autonomous vehicle.
  • the image capturing device 200 can be used as a front-view camera, a rear-view camera or a side-view camera of the driving device 300.
  • the driving device 300 includes a vehicle body 310, and the imaging device 200 is installed at any position of the left rearview mirror, right rearview mirror, rear trunk, headlights, and rear headlights of 310 of the vehicle body to obtain the vehicle.
  • the driving device 300 is also provided with a display screen 320, the display screen 320 is installed in the vehicle body 310, and the imaging device 200 is communicatively connected with the display screen 320, and the image information obtained by the imaging device 200 can be transmitted to the display screen 320 In the display, so that the driver can obtain more complete surrounding image information, improve safety while driving.
  • the imaging device 200 may be applied to an autonomous vehicle.
  • the image capturing device 200 is installed at any position on the body of the autonomous vehicle.
  • the image capturing device 200 can also be installed on the top of the car body.
  • the environmental information obtained by the imaging device 200 will be transmitted to the analysis and processing unit of the self-driving car for comparison.
  • the road conditions around the vehicle body 310 are analyzed in real time.
  • the present application also provides an electronic device 400, which includes a housing 410 and the image capturing device 200 as described above, and the image capturing device 200 is installed on the housing 410.
  • the imaging device 200 is disposed in the housing 410 and exposed from the housing 410 to acquire images.
  • the housing 410 can provide the imaging device 200 with protection from dust, water, and drop.
  • the corresponding hole of the imaging device 200 allows light to penetrate into or out of the housing from the hole.
  • the aforementioned electronic device 400 can capture images with higher resolution by using the aforementioned imaging device 200.
  • the above-mentioned electronic device 400 is further provided with a corresponding processing system, and the electronic device 400 can transmit the image to the corresponding processing system in time after taking an image of the object, so that the system can make accurate analysis and judgment.
  • the "electronic device” used may also include, but is not limited to, a device configured to be connected via a wired line and/or receive or send a communication signal via a wireless interface.
  • An electronic device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to satellite or cellular phones; personal communication system (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, and the Internet/ Personal digital assistant (PDA) with intranet access, web browser, memo pad, calendar, and/or global positioning system (GPS) receiver; and conventional laptop and/or palmtop Receiver or other electronic device including a radio telephone transceiver.
  • PCS personal communication system
  • PDA Internet/ Personal digital assistant
  • GPS global positioning system

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种成像镜头(100)、取像装置(200)、电子装置(400)及驾驶装置(300),成像镜头(100)沿着光轴由物侧至像侧依序包括具有负屈折力的第一透镜(L1);具有正屈折力的第二透镜(L2);具有负屈折力的第三透镜(L3);具有屈折力的第四透镜(L4),第四透镜(L4)的物侧面(S7)和像侧面(S8)均为凸面;具有屈折力的第五透镜(L5),第五透镜(L5)的物侧面(S9)和像侧面(S10)均为凹面;具有正屈折力的第六透镜(L6);具有屈折力的第七透镜(L7),第七透镜(L7)的像侧面(S14)为凸面;以及光阑(STO),设于第四透镜(L4)的物侧。成像镜头(100)能够在具备高解像能力的同时兼顾小型化,成本较低,适于批量生产。

Description

成像镜头、取像装置、电子装置及驾驶装置 技术领域
本申请涉及光学成像技术领域,特别是涉及一种成像镜头、取像装置、电子装置及驾驶装置。
背景技术
随着科学技术的发展,高级驾驶辅助***(Advanced Driving Assistant System,ADAS)、驾驶员监控***(Driver Monitor System,DMS)、行车记录仪以及倒车影像等车载用摄像头的技术逐渐成熟。上述各项技术均需要获取清晰的路面信息图像或是清晰的驾驶员驾驶图像,才能更准确地判断路面状况或是驾驶员的驾驶状态,以为驾驶安全提供保障。
传统的车载镜头通常采用六片以上的透镜来获得较高的解像能力。但是,增加透镜数量会影响镜头的小型化,不利于镜头的安装使用,同时还会增加镜头的成本。另外,常规技术中通常采用非球面透镜来校正像差,当采用塑料非球面透镜时,由于塑料具有较大的热膨胀系数,会存在温度变化引起的像面模糊问题;当采用玻璃非球面透镜时,又会使得镜头的成本过高。
发明内容
根据本申请的各种实施例,提供一种成像镜头。
一种成像镜头,所述成像镜头沿着光轴由物侧至像侧依序包括:
具有负屈折力的第一透镜;
具有正屈折力的第二透镜;
具有负屈折力的第三透镜;
具有屈折力的第四透镜,所述第四透镜的物侧面和像侧面均为凸面;
具有屈折力的第五透镜,所述第五透镜的物侧面和像侧面均为凹面;
具有正屈折力的第六透镜;
具有屈折力的第七透镜,所述第七透镜的像侧面为凸面;以及,
光阑,所述光阑设于所述第四透镜的物侧。
一种取像装置,包括上述实施例所述的成像镜头;以及感光元件,所述感光元件设于所述成像镜头的像侧。
一种电子装置,包括壳体以及上述实施例所述的取像装置,所述取像装置安装在所述壳体上。
一种驾驶装置,包括车体以及上述实施例所述的取像装置,所述取像装置设于所述车体以获取所述车体周围的环境信息。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1示出了本申请实施例1的成像镜头的结构示意图;
图2分别示出了实施例1的成像镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图3示出了本申请实施例2的成像镜头的结构示意图;
图4分别示出了实施例2的成像镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图5示出了本申请实施例3的成像镜头的结构示意图;
图6分别示出了实施例3的成像镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图7示出了本申请实施例4的成像镜头的结构示意图;
图8分别示出了实施例4的成像镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图9示出了本申请实施例5的成像镜头的结构示意图;
图10分别示出了实施例5的成像镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图11示出了本申请实施例6的成像镜头的结构示意图;
图12分别示出了实施例6的成像镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图13示出了本申请一实施例的取像装置的示意图;
图14示出了本申请一实施例的应用取像装置的驾驶装置示意图;
图15示出了本申请一实施例的应用取像装置的电子装置示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在 另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
为了便于说明,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
高像素成像镜头能将捕捉的景物信息清晰地呈现在感光元件的感光面上,并传输到相应的***进行识别处理,在倒车***、自动驾驶***以及监控***中均起着十分重要的作用。然而传统的车载镜头在设计时较难兼顾小型化和高解像能力,使得镜头的制备成本较高,难于批量化生产。
针对以上方案所存在的缺陷,均是发明人在经过实践并仔细研究后得到的结果,因此,上述问题的发现过程以及下文中本申请实施例针对上述问题所提出的解决方案,都应是发明人在本申请过程中对本申请做出的贡献。
以下将对本申请的特征、原理和其他方面进行详细描述。
请一并参阅图1、图3、图5、图7、图9和图11,本申请实施例提供一种可兼顾高像素以及小型化的成像镜头。具体的,该成像镜头包括七片具有屈折力的透镜,即第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜以及第七透镜。该七片透镜沿着光轴从物侧至像侧依序排列,成像镜头的成像面位于第七透镜的像侧。
第一透镜具有负屈折力,有利于使大角度入射的光线也能聚焦至成像镜头的成像面,从而实现稳定成像。
第二透镜具有正屈折力,可使光线能够平稳过渡或会聚至第三透镜,同时也有利于修正部分第一透镜产生的像差,使镜头具有较高的分辨率。
第三透镜具有负屈折力,从而有利于防止第二透镜过度矫正,进一步使入射光线聚焦至成像镜头的成像面。
第四透镜具有屈折力,且其物侧面和像侧面均可为凸面,从而有利于减小离轴视场的畸变,避免成像失真,同时也有利于修正像差。
第五透镜具有屈折力,且其物侧面和像侧面均可为凹面,可以使第五 透镜具备较强的负屈折力,从而与具有正屈折力的第六透镜配合,以校正镜头色差,减小镜头的偏心敏感度,并进一步修正像差,提升镜头的成像解析能力;同时,也有利于与第四透镜的面型相适配,进一步减小镜头总长。进一步的,可以将第五透镜和第六透镜设置为胶合透镜,使得成像镜头的整体结构更为紧凑,降低镜片在组立过程中产生的倾斜或偏心等公差敏感度问题,提升镜头的组装良率。
如本领域技术人员已知的,在光线转折处的离散透镜,容易因加工误差和/或组立误差造成敏感,而胶合透镜的使用可有效地降低镜头的敏感度。在本申请中使用胶合透镜,不仅能够有效地降低镜头的敏感度、缩短镜头的整体长度,还能够分担镜头的整体色差、像差的矫正,提高成像镜头的解像能力。进一步的,胶合透镜可包括一枚具有正屈折力的透镜和一枚具有负屈折力的透镜,如第六透镜具有正屈折力,则第五透镜具有负屈折力。
第七透镜具有屈折力,其像侧面为凸面。在一些实施方式中,第七透镜可具有负屈折力,以将经过第六透镜的光线进行发散,使光线平稳过渡至成像面,有利于缩短镜头总长;在另一些实施方式中,第七透镜可具有正屈折力,从而有利于获得较小的主光线入射角,以进一步提高镜头的成像分辨率,并使像面亮度较为均匀。
成像镜头中还设置有光阑,光阑设于第四透镜的物侧,以更好地控制入射光束的大小。具体的,光阑包括孔径光阑和视场光阑。优选的,光阑为孔径光阑。孔径光阑可位于透镜的表面上(例如物侧面和像侧面),并与透镜形成作用关系,例如,通过在透镜的表面涂覆阻光涂层以在该表面形成孔径光阑;或通过夹持件固定夹持透镜的表面,位于该表面的夹持件结构能够限制轴上物点成像光束的宽度,从而在该表面上形成孔径光阑。
当上述成像镜头用于成像时,被摄物体发出或者反射的光线从物侧方向进入成像镜头,并依次穿过第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜,最终汇聚到成像面上。
上述成像镜头,通过选取合适数量的透镜并合理分配各透镜的屈折力、面型以及各透镜的有效焦距,可以增强成像镜头的成像解析能力并有效修正像差;同时通过合理控制各透镜间的距离可以有效缩短所述成像镜头的总长,实现镜头的小型化、轻量化;同时,通过在第四透镜的物侧设置光阑可以有效限制入射光束的大小,从而进一步提高成像质量。
在示例性实施方式中,第二透镜至第七透镜中,至少一个透镜的物侧面和/或像侧面为非球面。通过上述方式,可以提高透镜设计的灵活性,并有效地校正像差,提高成像镜头的成像质量。在另一些实施方式中,成像镜头的各透镜的物侧面和像侧面也可以均为球面。需要注意的是,上述实施方式仅是对本申请的一些实施方式的举例,在一些实施方式中,成像镜头中各透镜的表面可以是非球面或球面的任意组合。
进一步的,第二透镜至第七透镜中,至少一个透镜的物侧面或像侧面 为平面。通过上述方式,有利于降低透镜的加工难度,同时也有利于降低镜头的组装敏感度,提升组装良率,降低镜头的生产成本。
在示例性实施方式中,成像镜头满足下列关系式:-10<R1/f1<-1.5;其中,R1表示第一透镜物侧面于光轴处的曲率半径,f1表示第一透镜的有效焦距。R1/f1可以为-9、-8、-6、-4、-3、-2.9、-2.7、-2.5、-2.3、-2.1、-1.8或-1.6。当R1/f1低于上限时,有利于为成像镜头提供负的屈折力,使大角度入射的光线也能进入镜头,从而提高成像镜头的视场角,同时也有利于降低成像镜头的敏感度,实现镜头的小型化;当R1/f1高于下限时,则可以避免成像时鬼影的产生。而当R1/f1大于等于上限时,无法为镜头提供足够的负屈折力以使大角度入射的光线也能进入镜头,容易导致成像不完整和画面亮度低的问题;而当R1/f1小于等于下限时,则较难遏制杂散光的形成,容易产生鬼影。
在示例性实施方式中,成像镜头满足下列关系式:12<TTL/D34<20;其中,TTL表示第一透镜物侧面至成像镜头的成像面在光轴上的距离,D34表示第三透镜像侧面至第四透镜物侧面在光轴上的距离。TTL/D34可以是13、14、15、15.4、15.8、16.2、16.4、16.6、16.8、17.0、17.2、17.4、17.6、18或19。在满足上述关系的条件下,有利于减小第三透镜和第四透镜之间的空气间隔,实现镜头的小型化。而当TTL/D34大于等于上限时,会使得镜头的总长较长,不利于小型化,或是使得第三透镜和第四透镜的空气间隔较小,不利于降低镜头的组装敏感度;而当TTL/D34小于等于下限时,会使得第三透镜和第四透镜的空气间隔过大,不利于镜头的小型化。
在示例性实施方式中,成像镜头满足下列关系式:-2<f5/f<0;其中,f5表示第五透镜的有效焦距,f表示成像镜头的有效焦距。f5/f可以是-1、-0.8、-0.7、-0.68、-0.66、-0.64、-0.62、-0.6、-0.4或-0.2。在满足上述关系的条件下,有利于为成像镜头提供负的屈折力,以矫正镜头的高阶像差,保证镜头的成像质量。而当f5/f大于等于0时,则无法为镜头提供负的屈折力以校正镜头像差;而当f5/f小于等于-2时,第五透镜的负屈折力过小,不利于矫正像差。
在示例性实施方式中,成像镜头满足下列关系式:-25<f56/f<-3;其中,f56表示第五透镜和第六透镜的组合焦距,f表示成像镜头的有效焦距。f56/f可以是-24、-22、-21、-15、-10、-9、-8、-7、-6.5、-6、-5.5、-5、-4.5、-4或-3.5。在满足上述关系的条件下,第五透镜配合第六透镜可以为成像镜头提供负的屈折力,以校正镜头的色差,同时也有利于减小镜头的偏心敏感度,并修正成像镜头的像差,提升镜头的成像解析度;进一步的,可以将第五透镜和第六透镜胶合,以同时解决镜片制作工艺和镜头的组装问题,从而降低镜头的组装敏感度,提升组装良率。而当f56/f大于等于上限或小于等于下限时,将较难为成像镜头提供合适大小的负屈折力以校正镜头的色差和像差。
在示例性实施方式中,成像镜头满足下列关系式:
0.6<(CT6-CT5)/(CT4-CT5)<1.4;其中,CT4表示第四透镜在光轴上的厚度,CT5表示第五透镜在光轴上的厚度,CT6表示第六透镜在光轴上的厚度。(CT6-CT5)/(CT4-CT5)可以是0.65、0.7、0.75、0.8、0.85、0.9、0.95、1.0、1.05、1.1、1.15、1.2或1.3。在满足上述关系的条件下,有利于校正成像镜头的像差,并减小镜头的像面弯曲程度,避免导致镀膜不均匀的问题,同时,也有利于实现镜头的小型化。而当(CT6-CT5)/(CT4-CT5)大于等于上限或小于等于下限时,不利于校正成像镜头的像差,且较难控制透镜表面的弯曲程度,不利于镜头的加工和组装,同时,也不利于实现镜头的小型化。
在示例性实施方式中,成像镜头满足下列关系式:
0.7<(R5r×R5f)/(R6f×R4r)<1.3;其中,R4r表示第四透镜像侧面于光轴处的曲率半径,R5f表示第五透镜物侧面于光轴处的曲率半径,R5r表示第五透镜像侧面于光轴处的曲率半径,R6f表示第六透镜物侧面于光轴处的曲率半径。(R5r×R5f)/(R6f×R4r)可以是0.8、0.84、0.88、0.92、0.96、1.0、1.04、1.08、1.12、1.16、1.2、1.24或1.28。在满足上述关系的条件下,有利于降低上述各透镜之间的空气间隔,进而缩短成像镜头的总长,实现小型化;除此之外,还可以减少镜头内杂散光的产生,降低鬼影的产生几率。而当(R5r×R5f)/(R6f×R4r)小于等于下限或大于等于上限时,则较难合理分配上述各透镜的屈折力,不利于像差修正以及鬼影消除,同时,也不利于实现镜头的小型化。
在示例性实施方式中,成像镜头满足下列关系式:f7/f>3.5;其中,f7表示第七透镜的有效焦距,f表示成像镜头的有效焦距。f7/f可以是3.6、3.7、3.8、3.9、4.0、4.1、4.2、4.3、4.4、4.6、4.8、5.0、5.2或5.4。在满足上述关系的条件下,可以为***提供正的屈折力,从而校正镜头的高阶像差,保证镜头具备较高的成像质量。而当f7/f小于等于3.5时,则无法为成像镜头提供合适的正屈折力,不利于镜头的像差修正。
在示例性实施方式中,成像镜头满足下列关系式:
0.5<(R7r+R7f)/(R7f-R7r)<3.0;其中,R7f表示第七透镜物侧面于光轴处的曲率半径,R7r表示第七透镜像侧面于光轴处的曲率半径。(R7r+R7f)/(R7f-R7r)可以是0.6、0.8、1.0、1.2、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.4、2.6或2.8。在满足上述关系的条件下,可以防止边缘视角的主光线入射角过度增大,以使镜头能够更好地与传统规格的感光元件匹配;除此之外,也有利于抑制像散的产生,从而保证镜头的成像质量。而当(R7r+R7f)/(R7f-R7r)大于等于上限时,不利于抑制像散以及像差修正;而当(R7r+R7f)/(R7f-R7r)小于等于下限时,则较难平衡第七透镜两个表面的曲率,不利于减小主光线入射到成像面的角度,较难保证成像质量。
在示例性实施方式中,成像镜头满足下列关系式:1<∑CT/∑D<5;其中,∑CT表示第一透镜至第七透镜中各透镜在光轴上的厚度之和,∑D表 示第一透镜至第七透镜的各相邻透镜中前一透镜的像侧面至后一透镜的物侧面在光轴上的距离之和。∑CT/∑D可以是1.5、2、2.5、3、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、4.0、4.2、4.4、4.6或4.8。在满足上述关系的条件下,有利于使镜头的结构更为紧凑,进而实现镜头的小型化。而当∑CT/∑D大于等于上限时,容易使得透镜的厚度过大,导致镜头的总重量增加,不利于实现镜头的轻量化以及低成本生产;而当∑CT/∑D小于等于下限时,相邻透镜间的空气间隔过大,不利于镜头的小型化。
在示例性实施方式中,成像镜头满足下列关系式:
0.1<tan(FOV)/ImgH<0.5;其中,FOV为成像镜头的最大视场角,具体的,FOV为成像镜头的成像面上有效像素区域的对角线方向视场角,ImgH为成像镜头的成像面上有效像素区域的对角线长度。tan(FOV)/ImgH可以是0.15、0.2、0.25、0.3、0.31、0.32、0.33、0.34、0.35、0.38、0.42、0.46或0.48。在满足上述关系的条件下,可以使成像镜头具备较高的成像分辨率,同时还可以将镜头的拍摄焦距以及镜头的畸变设置在一个合理范围内,从而获得较佳的广角拍摄效果。而当tan(FOV)/ImgH大于等于上限时,会使得视场角过大,不利于抑制主光线入射角,容易降低镜头的成像解析能力;而当tan(FOV)/ImgH小于等于下限时,会使得成像面的上的像高过大,不利于畸变的控制。
在示例性实施方式中,成像镜头满足下列关系式:nd2>1.95;其中,nd2表示第二透镜的d光折射率,d光为黄光,其波长为587.56nm。nd2可以是1.96、1.97、1.98、1.99、2.0、2.01、2.02、2.05或2.1。通过合理配置第二透镜的折射率,可以保证第二透镜的屈折力,从而有利于校正成像镜头的像差,提升镜头的成像解析能力。
在示例性实施方式中,成像镜头满足下列关系式:|nd6-nd5|×100<5;其中,nd5表示第五透镜的d光折射率,nd6表示第六透镜的d光折射率。|nd6-nd5|×100可以是1、1.1、1.2、1.6、2.0、2.4、2.8、3.0、3.1、3.5、3.9、4.3、4.7或4.9。在满足上述关系的条件下,有利于降低第五透镜和第六透镜胶合时胶合面的鬼影产生几率,进而提高镜头的成像质量。
在示例性实施方式中,成像镜头中各透镜的材质可以均为玻璃或均为塑料,塑料材质的透镜能够减少成像镜头的重量并降低生产成本,而玻璃材质的透镜可使成像镜头具备较好的温度耐受特性以及优良的光学性能。需要注意的是,成像镜头中各透镜的材质也可以玻璃和塑料的任意组合,并不一定要是均为玻璃或均为塑料。
在示例性实施方式中,成像镜头还包括红外滤光片。红外滤光片设于第七透镜的像侧,用于过滤入射光线,具体用于隔绝红外光,防止红外光 被感光元件吸收,从而防止红外光对正常影像的色彩与清晰度造成影响,提高成像镜头的成像品质。
在示例性实施方式中,成像镜头还包括保护玻璃。保护玻璃设于红外滤光片的像侧,从而在后续组装成模组时能够靠近感光元件,起到保护感光元件的作用。感光元件位于成像镜头的成像面上。进一步的,该成像面可以为感光元件的感光表面。
本申请的上述实施方式的成像镜头可采用多片镜片,例如上文所述的七片。通过合理分配各透镜焦距、屈折力、面型、厚度以及各透镜之间的轴上间距等,可以保证上述成像镜头的总长较小、重量较轻且具备较高的成像分辨率,同时还具备较大的光圈(FNO可以为2.0)以及较大的视场角,从而更好地满足如车载辅助***的镜头、手机、平板等轻量化电子设备的应用需求。然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成成像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。
下面参照附图进一步描述可适用于上述实施方式的成像镜头的具体实施例。在下述实施例中,若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。此处近轴区域是指光轴附近的区域。每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
实施例1
以下参照图1至图2描述本申请实施例1的成像镜头100。
图1示出了实施例1的成像镜头100的结构示意图。如图1所示,成像镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7和成像面S19。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为球面,其中物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2具有正屈折力,其物侧面S3为球面,像侧面S4为平面,其中物侧面S3为凸面。
第三透镜L3具有负屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凹面,像侧面S6为凹面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为球面,其中物侧面S7为凸面,像侧面S8为凸面。
第五透镜L5具有负屈折力,其物侧面S9和像侧面S10均为球面,其中物侧面S9为凹面,像侧面S10为凹面。
第六透镜L6具有正屈折力,其物侧面S11和像侧面S12均为球面,其中物侧面S11为凸面,像侧面S12为凸面。
第七透镜L7具有正屈折力,其物侧面S13和像侧面S14均为非球面,其中物侧面S13于光轴处为凹面,于圆周处为凹面,像侧面S14于光轴处为凸面,于圆周处为凸面。
将第七透镜L7的物侧面S13和像侧面S14均设置为非球面,有利于修正像差、解决像面歪曲的问题,也能够使透镜在较小、较薄且较平的情况下实现优良的光学成像效果,进而使成像镜头100具备小型化特性。
第一透镜L1至第六透镜L6的材质均为玻璃,使用玻璃材质的透镜可使成像镜头100具备较好的温度耐受特性以及优良的光学性能。第七透镜L7的材质为塑料,可以方便透镜面型的注塑成型,从而有利于降低生产成本,同时,塑料材质的透镜还能减少成像镜头100的重量,实现轻量化。
第三透镜L3和第四透镜L4之间还设置有光阑STO,以限制入射光束的大小,进一步提升成像镜头100的成像质量。成像镜头100还包括具有物侧面S15和像侧面S16的滤光片110以及设于滤光片110像侧且具有物侧面S17和像侧面S18的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S18并最终成像在成像面S19上。进一步的,滤光片110为红外滤光片,用以滤除入射至成像镜头100的外界光线中的红外光线,避免成像失真。具体的,滤光片110的材质为玻璃。滤光片110和保护玻璃120可以属于成像镜头100的一部分,与各透镜一同装配,或者也可在成像镜头100与感光元件装配时一同安装。
表1示出了实施例1的成像镜头100的透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和透镜的有效焦距,其中,曲率半径、厚度、透镜的有效焦距的单位均为毫米(mm)。透镜中最靠近物体的表面称为物侧面,透镜中最靠近成像面的表面称为像侧面。另外,以透镜L1为例,透镜L1的“厚度”参数列中的第一个数值为该透镜在光轴上的厚度,第二个数值为该透镜的像侧面至像侧方向的后一透镜的物侧面在光轴上的距离;光阑ST0于“厚度”参数列中的数值为光阑ST0至后一透镜的物侧面顶点(顶点指透镜与光轴的交点)于光轴上的距离,我们默认第一透镜L1物侧面到最后一枚镜片像侧面的方向为光轴的正方向,当该值为负时,表明光阑ST0设置于该透镜的物侧面顶点的右侧,若光阑STO厚度为正值时,光阑在该透镜物侧面顶点的左侧。面序号S6中的“厚度”参数为第三透镜L3的像侧面S6至光阑ST0于光轴上的距离。保护玻璃120“厚度”参数中面序号S18所对应的数值为保护玻璃120的像侧面S18至成像面S19于光轴上的距离。表1的参考波长为546nm。
表1
Figure PCTCN2020072029-appb-000001
Figure PCTCN2020072029-appb-000002
透镜中的非球面面型由以下公式限定:
Figure PCTCN2020072029-appb-000003
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面的第i阶系数。下表2给出了可用于实施例1中透镜非球面S13-S14的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表2
Figure PCTCN2020072029-appb-000004
Figure PCTCN2020072029-appb-000005
本实施例成像镜头100的成像面S19上有效像素区域的对角线长度ImgH为10.29mm,因此结合表1和表2中的数据可知,实施例1中的成像镜头100满足:
R1/f1=-1.83,其中,R1表示第一透镜L1物侧面S1于光轴处的曲率半径,f1表示第一透镜L1的有效焦距;
TTL/D34=15.49,其中,TTL表示第一透镜L1物侧面S1至成像镜头100的成像面S19在光轴上的距离,D34表示第三透镜L3像侧面S6至第四透镜L4物侧面S7在光轴上的距离;
f5/f=-0.65,其中,f5表示第五透镜L5的有效焦距,f表示成像镜头100的有效焦距;
f56/f=-5.40,其中,f56表示第五透镜L5和第六透镜L6的组合焦距,f表示成像镜头100的有效焦距;
(CT6-CT5)/(CT4-CT5)=0.69,其中,CT4表示第四透镜L4在光轴上的的厚度,CT5表示第五透镜L5在光轴上的的厚度,CT6表示第六透镜L6在光轴上的的厚度;
(R5r×R5f)/(R6f×R4r)=1.12,其中,R4r表示第四透镜L4像侧面S8于光轴处的曲率半径,R5f表示第五透镜L5物侧面S9于光轴处的曲率半径,R5r表示第五透镜L5像侧面S10于光轴处的曲率半径,R6f表示第六透镜L6物侧面S11于光轴处的曲率半径;
f7/f=3.63,其中,f7表示第七透镜L7的有效焦距,f表示成像镜头100的有效焦距;
(R7r+R7f)/(R7f-R7r)=1.6,其中,R7f表示第七透镜L7物侧面S13于光轴处的曲率半径,R7r表示第七透镜L7像侧面S14于光轴处的曲率半径;
∑CT/∑D=3.305其中,∑CT表示第一透镜L1至第七透镜L7中各透镜在光轴上的厚度之和,∑D表示第一透镜L1至第七透镜L7的各相邻透镜中前一透镜的像侧面至后一透镜的物侧面在光轴上的距离之和;
tan(FOV)/ImgH=0.29,其中,FOV为成像镜头100的最大视场角,具体的,FOV为成像镜头100的成像面S19上有效像素区域的对角线方向视场角,ImgH为成像镜头100的成像面S19上有效像素区域的对角线长度;
nd2=2.001,其中,nd2表示第二透镜L2的d光折射率;
|nd6-nd5|×100=3.09,其中,nd5表示第五透镜L5的d光折射率,nd6表示第六透镜L6的d光折射率。
图2分别示出了实施例1的成像镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图。其中纵向球差曲线图示出了波长为450nm、 479.99nm、546.07nm、587.56nm以及656.27nm的光线经由成像镜头100后的会聚焦点偏离;像散曲线图示出了成像镜头100的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了成像镜头100不同像高情况下的畸变率。根据图2可知,实施例1给出的成像镜头100能够实现良好的成像品质。
实施例2
以下参照图3至图4描述本申请实施例2的成像镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了本申请实施例2的成像镜头100的结构示意图。
如图3所示,成像镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7和成像面S19。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为球面,其中物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2具有正屈折力,其物侧面S3为球面,像侧面S4为平面,其中物侧面S3为凸面。
第三透镜L3具有负屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凹面,像侧面S6为凹面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为球面,其中物侧面S7为凸面,像侧面S8为凸面。
第五透镜L5具有负屈折力,其物侧面S9和像侧面S10均为球面,其中物侧面S9为凹面,像侧面S10为凹面。
第六透镜L6具有正屈折力,其物侧面S11和像侧面S12均为球面,其中物侧面S11为凸面,像侧面S12为凸面。
第七透镜L7具有正屈折力,其物侧面S13和像侧面S14均为非球面,其中物侧面S13于光轴处为凹面,于圆周处为凹面,像侧面S14于光轴处为凸面,于圆周处为凸面。
第一透镜L1至第六透镜L6的材质均为玻璃,第七透镜L7的材质为塑料,第三透镜L3和第四透镜L4之间还设置有光阑STO。成像镜头100还包括具有物侧面S15和像侧面S16的滤光片110以及设于滤光片110像侧且具有物侧面S17和像侧面S18的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S18并最终成像在成像面S19上。进一步的,滤光片110为红外滤光片,用以滤除入射至成像镜头100的外界光线中的红外光线,避免成像失真。
表3示出了实施例2的成像镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm)。表3的参考 波长为546nm。表4示出了可用于实施例2中透镜非球面S13-S14的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表5示出了实施例2中给出的成像镜头100的相关参数数值。
表3
Figure PCTCN2020072029-appb-000006
表4
Figure PCTCN2020072029-appb-000007
表5
Figure PCTCN2020072029-appb-000008
Figure PCTCN2020072029-appb-000009
图4分别示出了实施例2的成像镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图。其中纵向球差曲线图示出了波长为450nm、479.99nm、546.07nm、587.56nm以及656.27nm的光线经由成像镜头100后的会聚焦点偏离;像散曲线图示出了成像镜头100的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了成像镜头100不同像高情况下的畸变率。根据图4可知,实施例2给出的成像镜头100能够实现良好的成像品质。
实施例3
以下参照图5至图6描述本申请实施例3的成像镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图5示出了本申请实施例3的成像镜头100的结构示意图。
如图5所示,成像镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7和成像面S19。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为球面,其中物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2具有正屈折力,其物侧面S3为球面,像侧面S4为平面,其中物侧面S3为凸面。
第三透镜L3具有负屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凹面,像侧面S6为凹面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为球面,其中物侧面S7为凸面,像侧面S8为凸面。
第五透镜L5具有负屈折力,其物侧面S9和像侧面S10均为球面,其中物侧面S9为凹面,像侧面S10为凹面。
第六透镜L6具有正屈折力,其物侧面S11和像侧面S12均为球面,其中物侧面S11为凸面,像侧面S12为凸面。
第七透镜L7具有正屈折力,其物侧面S13和像侧面S14均为非球面,其中物侧面S13于光轴处为凹面,于圆周处为凹面,像侧面S14于光轴处为凸面,于圆周处为凸面。
第一透镜L1至第六透镜L6的材质均为玻璃,第七透镜L7的材质为塑料,第三透镜L3和第四透镜L4之间还设置有光阑STO。成像镜头100还包括具有物侧面S15和像侧面S16的滤光片110以及设于滤光片110像侧且具有物侧面S17和像侧面S18的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S18并最终成像在成像面S19上。进一步的,滤光片110为红外滤光片,用以滤除入射至成像镜头100的外界光线中的红外光线,避免成像失真。
表6示出了实施例3的成像镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm)。表6的参考波长为546nm。表7示出了可用于实施例3中透镜非球面S13-S14的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表8示出了实施例3中给出的成像镜头100的相关参数数值。
表6
Figure PCTCN2020072029-appb-000010
表7
Figure PCTCN2020072029-appb-000011
Figure PCTCN2020072029-appb-000012
表8
Figure PCTCN2020072029-appb-000013
图6分别示出了实施例3的成像镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图。其中纵向球差曲线图示出了波长为450nm、479.99nm、546.07nm、587.56nm以及656.27nm的光线经由成像镜头100后的会聚焦点偏离;像散曲线图示出了成像镜头100的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了成像镜头100不同像高情况下的畸变率。根据图6可知,实施例3给出的成像镜头100能够实现良好的成像品质。
实施例4
以下参照图7至图8描述本申请实施例4的成像镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图7示出了本申请实施例4的成像镜头100的结构示意图。
如图7所示,成像镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7和成像面S19。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为球面,其中物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2具有正屈折力,其物侧面S3为球面,像侧面S4为平面,其中物侧面S3为凸面。
第三透镜L3具有负屈折力,其物侧面S5和像侧面S6均为球面,其中 物侧面S5为凹面,像侧面S6为凹面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为球面,其中物侧面S7为凸面,像侧面S8为凸面。
第五透镜L5具有负屈折力,其物侧面S9和像侧面S10均为球面,其中物侧面S9为凹面,像侧面S10为凹面。
第六透镜L6具有正屈折力,其物侧面S11和像侧面S12均为球面,其中物侧面S11为凸面,像侧面S12为凸面。
第七透镜L7具有正屈折力,其物侧面S13和像侧面S14均为非球面,其中物侧面S13于光轴处为凹面,于圆周处为凹面,像侧面S14于光轴处为凸面,于圆周处为凸面。
第一透镜L1至第六透镜L6的材质均为玻璃,第七透镜L7的材质为塑料,第三透镜L3和第四透镜L4之间还设置有光阑STO。成像镜头100还包括具有物侧面S15和像侧面S16的滤光片110以及设于滤光片110像侧且具有物侧面S17和像侧面S18的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S18并最终成像在成像面S19上。进一步的,滤光片110为红外滤光片,用以滤除入射至成像镜头100的外界光线中的红外光线,避免成像失真。
表9示出了实施例4的成像镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm)。表9的参考波长为546nm。表10示出了可用于实施例4中透镜非球面S13-S14的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表11示出了实施例4中给出的成像镜头100的相关参数数值。
表9
Figure PCTCN2020072029-appb-000014
Figure PCTCN2020072029-appb-000015
表10
Figure PCTCN2020072029-appb-000016
表11
Figure PCTCN2020072029-appb-000017
图8分别示出了实施例4的成像镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图。其中纵向球差曲线图示出了波长为450nm、479.99nm、546.07nm、587.56nm以及656.27nm的光线经由成像镜头100后的会聚焦点偏离;像散曲线图示出了成像镜头100的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了成像镜头100不同像高情况下的畸变率。根据图8可知,实施例4给出的成像镜头100能够实现良好的成像品质。
实施例5
以下参照图9至图10描述本申请实施例5的成像镜头100。在本实施 例中,为简洁起见,将省略部分与实施例1相似的描述。图9示出了本申请实施例5的成像镜头100的结构示意图。
如图9所示,成像镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7和成像面S19。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为球面,其中物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2具有正屈折力,其物侧面S3为球面,像侧面S4为平面,其中物侧面S3为凸面。
第三透镜L3具有负屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凹面,像侧面S6为凹面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为球面,其中物侧面S7为凸面,像侧面S8为凸面。
第五透镜L5具有负屈折力,其物侧面S9和像侧面S10均为球面,其中物侧面S9为凹面,像侧面S10为凹面。
第六透镜L6具有正屈折力,其物侧面S11和像侧面S12均为球面,其中物侧面S11为凸面,像侧面S12为凸面。
第七透镜L7具有正屈折力,其物侧面S13和像侧面S14均为非球面,其中物侧面S13于光轴处为凹面,于圆周处为凹面,像侧面S14于光轴处为凸面,于圆周处为凸面。
第一透镜L1至第六透镜L6的材质均为玻璃,第七透镜L7的材质为塑料,第三透镜L3和第四透镜L4之间还设置有光阑STO。成像镜头100还包括具有物侧面S15和像侧面S16的滤光片110以及设于滤光片110像侧且具有物侧面S17和像侧面S18的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S18并最终成像在成像面S19上。进一步的,滤光片110为红外滤光片,用以滤除入射至成像镜头100的外界光线中的红外光线,避免成像失真。
表12示出了实施例5的成像镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm)。表12的参考波长为546nm。表13示出了可用于实施例5中透镜非球面S13-S14的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表14示出了实施例5中给出的成像镜头100的相关参数数值。
表12
Figure PCTCN2020072029-appb-000018
Figure PCTCN2020072029-appb-000019
表13
Figure PCTCN2020072029-appb-000020
表14
Figure PCTCN2020072029-appb-000021
Figure PCTCN2020072029-appb-000022
图10分别示出了实施例5的成像镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图。其中纵向球差曲线图示出了波长为450nm、479.99nm、546.07nm、587.56nm以及656.27nm的光线经由成像镜头100后的会聚焦点偏离;像散曲线图示出了成像镜头100的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了成像镜头100不同像高情况下的畸变率。根据图10可知,实施例5给出的成像镜头100能够实现良好的成像品质。
实施例6
以下参照图11至图12描述本申请实施例6的成像镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图11示出了本申请实施例6的成像镜头100的结构示意图。
如图11所示,成像镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7和成像面S19。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为球面,其中物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2具有正屈折力,其物侧面S3为球面,像侧面S4为平面,其中物侧面S3为凸面。
第三透镜L3具有负屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凹面,像侧面S6为凹面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为球面,其中物侧面S7为凸面,像侧面S8为凸面。
第五透镜L5具有负屈折力,其物侧面S9和像侧面S10均为球面,其中物侧面S9为凹面,像侧面S10为凹面。
第六透镜L6具有正屈折力,其物侧面S11和像侧面S12均为球面,其中物侧面S11为凸面,像侧面S12为凸面。
第七透镜L7具有正屈折力,其物侧面S13和像侧面S14均为非球面,其中物侧面S13于光轴处为凸面,于圆周处为凸面,像侧面S14于光轴处为凸面,于圆周处为凸面。
第一透镜L1至第六透镜L6的材质均为玻璃,第七透镜L7的材质为塑料,第三透镜L3和第四透镜L4之间还设置有光阑STO。成像镜头100还包括具有物侧面S15和像侧面S16的滤光片110以及设于滤光片110像侧且具有物侧面S17和像侧面S18的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S18并最终成像在成像面S19上。进一步的,滤光片110 为红外滤光片,用以滤除入射至成像镜头100的外界光线中的红外光线,避免成像失真。
表15示出了实施例6的成像镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm)。表15的参考波长为546nm。表16示出了可用于实施例6中透镜非球面S13-S14的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表17示出了实施例6中给出的成像镜头100的相关参数数值。
表15
Figure PCTCN2020072029-appb-000023
表16
Figure PCTCN2020072029-appb-000024
Figure PCTCN2020072029-appb-000025
表17
Figure PCTCN2020072029-appb-000026
图12分别示出了实施例6的成像镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图。其中纵向球差曲线图示出了波长为450nm、479.99nm、546.07nm、587.56nm以及656.27nm的光线经由成像镜头100后的会聚焦点偏离;像散曲线图示出了成像镜头100的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了成像镜头100不同像高情况下的畸变率。根据图12可知,实施例6给出的成像镜头100能够实现良好的成像品质。
如图13所示,本申请还提供一种取像装置200,包括如前文所述的成像镜头100;以及感光元件210,感光元件210设于成像镜头100的像侧,感光元件210的感光表面与成像面S19重合。具体的,感光元件210可以采用互补金属氧化物半导体(CMOS,Complementary Metal Oxide Semiconductor)图像传感器或者电荷耦合元件(CCD,Charge-coupled Device)图像传感器。
上述取像装置200利用前述的成像镜头100能够拍摄得到高清晰、视角广的图像,同时取像装置200还具有小型化、轻量化的结构特点。取像装置200可应用于手机、汽车、监控、医疗等领域。具体可作为手机摄像头、车载摄像头、监控摄像头或内窥镜等。
如图14所示,上述取像装置200可作为车载摄像头应用于驾驶装置300中。驾驶装置300可以为自动驾驶汽车或非自动驾驶汽车。取像装置200可作为驾驶装置300的前视摄像头、后视摄像头或侧视摄像头。具体的,驾驶装置300包括车体310,取像装置200安装于车体的310的左后视镜、右后视镜、后尾箱、前大灯、后大灯等任意位置,以获取车体310周围的清晰的环境图像。此外,驾驶装置300中还设置有显示屏320,显示屏320安装于车体310内,且取像装置200与显示屏320通信连接,取像装置200所获得的影像信息能够传输至显示屏320中显示,从而使司机能够获得更完整的周边影像信息,提高驾驶时的安全保障。
特别地,在一些实施例中,取像装置200可应用于自动驾驶汽车上。继续参考图14,取像装置200安装于自动驾驶汽车车体上的任意位置,具体可参考上述实施例驾驶装置300中取像装置200的安装位置。对于自动驾驶汽车而言,取像装置200还可安装于车体的顶部。此时,通过在自动驾驶汽车上安装多个取像装置200以获得车体310周围360°视角的环境信息,取像装置200获得的环境信息将被传递至自动驾驶汽车的分析处理单元以对车体310周围的道路状况进行实时分析。通过采用取像装置200,可提高分析处理单元识别分析的准确性,从而提升自动驾驶时的安全性能。
如图15所示,本申请还提供一种电子装置400,包括壳体410以及如前文所述的取像装置200,取像装置200安装在壳体410上。具体的,取像装置200设置在壳体410内并从壳体410暴露以获取图像,壳体410可以给取像装置200提供防尘、防水防摔等保护,壳体410上开设有与取像装置200对应的孔,以使光线从孔中穿入或穿出壳体。
上述电子装置400,利用前述的取像装置200能够拍摄得到分辨率较高的图像。在另一些实施方式中,上述电子装置400还设置有对应的处理***,电子装置400在拍摄物体图像后可及时地将图像传送至对应的处理***,以便***做出准确的分析和判断。
另一些实施方式中,所使用到的“电子装置”还可包括,但不限于被设置成经由有线线路连接和/或经由无线接口接收或发送通信信号的装置。被设置成通过无线接口通信的电子装置可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信***(personal communication system,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位***(global positioning system,GPS)接收器的个人数字助理(personal digital assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (18)

  1. 一种成像镜头,其特征在于,所述成像镜头沿着光轴由物侧至像侧依序包括:
    具有负屈折力的第一透镜;
    具有正屈折力的第二透镜;
    具有负屈折力的第三透镜;
    具有屈折力的第四透镜,所述第四透镜的物侧面和像侧面均为凸面;
    具有屈折力的第五透镜,所述第五透镜的物侧面和像侧面均为凹面;
    具有正屈折力的第六透镜;
    具有屈折力的第七透镜,所述第七透镜的像侧面为凸面;以及,
    光阑,所述光阑设于所述第四透镜的物侧。
  2. 根据权利要求1所述的成像镜头,其特征在于,所述第二透镜至所述第七透镜中,至少一个透镜的物侧面和/或像侧面为非球面。
  3. 根据权利要求1所述的成像镜头,其特征在于,所述第二透镜至所述第七透镜中,至少一个透镜的物侧面或像侧面为平面。
  4. 根据权利要求1所述的成像镜头,其特征在于,所述成像镜头满足下列关系式:
    -10<R1/f1<-1.5;
    其中,R1表示所述第一透镜物侧面于光轴处的曲率半径,f1表示所述第一透镜的有效焦距。
  5. 根据权利要求1所述的成像镜头,其特征在于,所述成像镜头满足下列关系式:
    12<TTL/D34<20;
    其中,TTL表示所述第一透镜物侧面至所述成像镜头的成像面在光轴上的距离,D34表示所述第三透镜像侧面至所述第四透镜物侧面在光轴上的距离。
  6. 根据权利要求1所述的成像镜头,其特征在于,所述成像镜头满足下列关系式:
    -2<f5/f<0;
    其中,f5表示所述第五透镜的有效焦距,f表示所述成像镜头的有效焦距。
  7. 根据权利要求1所述的成像镜头,其特征在于,所述成像镜头满足下列关系式:
    -25<f56/f<-3;
    其中,f56表示所述第五透镜和所述第六透镜的组合焦距,f表示所述 成像镜头的有效焦距。
  8. 根据权利要求1所述的成像镜头,其特征在于,所述成像镜头满足下列关系式:
    0.6<(CT6-CT5)/(CT4-CT5)<1.4;
    其中,CT4表示所述第四透镜在光轴上的的厚度,CT5表示所述第五透镜在光轴上的的厚度,CT6表示所述第六透镜在光轴上的的厚度。
  9. 根据权利要求1所述的成像镜头,其特征在于,所述成像镜头满足下列关系式:
    0.7<(R5r×R5f)/(R6f×R4r)<1.3;
    其中,R4r表示所述第四透镜像侧面于光轴处的曲率半径,R5f表示所述第五透镜物侧面于光轴处的曲率半径,R5r表示所述第五透镜像侧面于光轴处的曲率半径,R6f表示所述第六透镜物侧面于光轴处的曲率半径。
  10. 根据权利要求1所述的成像镜头,其特征在于,所述成像镜头满足下列关系式:
    f7/f>3.5;
    其中,f7表示所述第七透镜的有效焦距,f表示所述成像镜头的有效焦距。
  11. 根据权利要求1所述的成像镜头,其特征在于,所述成像镜头满足下列关系式:
    0.5<(R7r+R7f)/(R7f-R7r)<3.0;
    其中,R7f表示所述第七透镜物侧面于光轴处的曲率半径,R7r表示所述第七透镜像侧面于光轴处的曲率半径。
  12. 根据权利要求1所述的成像镜头,其特征在于,所述成像镜头满足下列关系式:
    1<∑CT/∑D<5;
    其中,∑CT表示所述第一透镜至所述第七透镜中各透镜在光轴上的厚度之和,∑D表示所述第一透镜至所述第七透镜的各相邻透镜中前一透镜的像侧面至后一透镜的物侧面在光轴上的距离之和。
  13. 根据权利要求1所述的成像镜头,其特征在于,所述成像镜头满足下列关系式:
    0.1<tan(FOV)/ImgH<0.5;
    其中,FOV为所述成像镜头的最大视场角,ImgH为所述成像镜头的成像面上有效像素区域的对角线长度。
  14. 根据权利要求1所述的成像镜头,其特征在于,所述成像镜头满足下列关系式:
    nd2>1.95;
    其中,nd2表示所述第二透镜的d光折射率。
  15. 根据权利要求1所述的成像镜头,其特征在于,所述成像镜头满足下列关系式:
    |nd6-nd5|×100<5;
    其中,nd5表示所述第五透镜的d光折射率,nd6表示所述第六透镜的d光折射率。
  16. 一种取像装置,其特征在于,包括如权利要求1-15任一项所述的成像镜头以及感光元件,所述感光元件设于所述成像镜头的像侧。
  17. 一种电子装置,其特征在于,包括壳体以及如权利要求16所述的取像装置,所述取像装置安装在所述壳体上。
  18. 一种驾驶装置,其特征在于,包括车体以及如权利要求16所述的取像装置,所述取像装置设于所述车体以获取所述车体周围的环境信息。
PCT/CN2020/072029 2020-01-14 2020-01-14 成像镜头、取像装置、电子装置及驾驶装置 WO2021142621A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072029 WO2021142621A1 (zh) 2020-01-14 2020-01-14 成像镜头、取像装置、电子装置及驾驶装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072029 WO2021142621A1 (zh) 2020-01-14 2020-01-14 成像镜头、取像装置、电子装置及驾驶装置

Publications (1)

Publication Number Publication Date
WO2021142621A1 true WO2021142621A1 (zh) 2021-07-22

Family

ID=76863360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072029 WO2021142621A1 (zh) 2020-01-14 2020-01-14 成像镜头、取像装置、电子装置及驾驶装置

Country Status (1)

Country Link
WO (1) WO2021142621A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107462977A (zh) * 2017-09-21 2017-12-12 浙江舜宇光学有限公司 光学成像镜头
CN107728290A (zh) * 2017-11-02 2018-02-23 浙江舜宇光学有限公司 光学成像***
US20180074298A1 (en) * 2016-09-12 2018-03-15 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
US20190179124A1 (en) * 2016-02-04 2019-06-13 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing device and electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190179124A1 (en) * 2016-02-04 2019-06-13 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing device and electronic device
US20180074298A1 (en) * 2016-09-12 2018-03-15 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
CN107462977A (zh) * 2017-09-21 2017-12-12 浙江舜宇光学有限公司 光学成像镜头
CN107728290A (zh) * 2017-11-02 2018-02-23 浙江舜宇光学有限公司 光学成像***

Similar Documents

Publication Publication Date Title
CN107783256B (zh) 摄像镜头、相机装置、车载相机装置、传感装置、车载传感装置
WO2022032573A1 (zh) 光学***、摄像模组、电子设备及汽车
WO2021223137A1 (zh) 光学成像镜头、取像模组、电子装置及驾驶装置
WO2022016316A1 (zh) 光学镜头、取像模组、电子装置及驾驶装置
CN112505883A (zh) 光学***、取像模组、电子装置及驾驶装置
CN111258035A (zh) 光学成像***、成像模组、电子装置及驾驶装置
WO2021217618A1 (zh) 光学***、摄像模组、电子设备及汽车
WO2021189463A1 (zh) 光学成像***、成像模组、电子装置及驾驶装置
WO2021184214A1 (zh) 广角镜头、成像模组、电子装置及驾驶装置
CN211478743U (zh) 成像镜头、取像装置、电子装置及驾驶装置
WO2021164013A1 (zh) 光学***、摄像模组、电子装置及汽车
CN211698392U (zh) 光学成像***、成像模组、电子装置及驾驶装置
WO2021168662A1 (zh) 光学***、镜头模组及终端设备
CN111856710A (zh) 光学镜头、取像模组、电子装置及驾驶装置
WO2021022500A1 (zh) 光学***、摄像模组及汽车
CN115166949B (zh) 光学镜头、摄像模组及智能终端
CN111258031A (zh) 光学镜头、成像模组、电子装置及驾驶装置
CN111239967A (zh) 光学***、摄像模组、电子装置及汽车
WO2021184212A1 (zh) 光学镜头、成像模组、电子装置及驾驶装置
WO2021184208A1 (zh) 摄像镜头、取像装置、电子装置及驾驶装置
WO2022120575A1 (zh) 光学***、取像模组及电子装置
CN212364696U (zh) 光学镜头、取像模组、电子装置及驾驶装置
WO2022011498A1 (zh) 光学***、取像模组及电子装置
WO2021142621A1 (zh) 成像镜头、取像装置、电子装置及驾驶装置
CN212181142U (zh) 光学成像镜头、取像模组、电子装置及驾驶装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914660

Country of ref document: EP

Kind code of ref document: A1