WO2021140819A1 - Signal detection device - Google Patents

Signal detection device Download PDF

Info

Publication number
WO2021140819A1
WO2021140819A1 PCT/JP2020/045839 JP2020045839W WO2021140819A1 WO 2021140819 A1 WO2021140819 A1 WO 2021140819A1 JP 2020045839 W JP2020045839 W JP 2020045839W WO 2021140819 A1 WO2021140819 A1 WO 2021140819A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
standby
signal detection
unit
standby signal
Prior art date
Application number
PCT/JP2020/045839
Other languages
French (fr)
Japanese (ja)
Inventor
水谷 圭一
原田 博司
武 松村
愛富 酒井
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Publication of WO2021140819A1 publication Critical patent/WO2021140819A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to a signal detection device in a dynamic frequency sharing system.
  • the 5th generation mobile communication system whose full-scale operation is imminent, is expected to be a technology that can cope with this problem because it can communicate at a higher speed and a larger capacity than before.
  • 5G 5th generation mobile communication system
  • the allocation of 3.7GHz band, 4.5GHz band, and 28GHz band to 5G has already been decided, but the total allocated bandwidth is 500MHz or 600MHz for each operator, especially wireless of 6GHz or less.
  • the allocation is limited to about 100 MHz, which is by no means sufficient.
  • the frequency band assigned to the existing system primary user
  • other systems can specify or detect the place and time that the primary user is not operating, and other systems can operate under the condition that they do not interfere with the neighboring primary users.
  • Dynamic frequency sharing systems for secondary use are attracting attention.
  • the band that can be used by the secondary user is called white space. Research and development to detect and utilize this white space has been studied in Japan and overseas (see Non-Patent Document 1).
  • LSA Licensed Shard Access
  • LR frequency sharing database
  • LC LSA Controller
  • LSA in Europe is operated based on a frequency sharing database because the primary user is a fixed station.
  • a portable wireless relay communication system Field Pickup Unit: FPU
  • FPU Field Pickup Unit
  • the FPU signal is high while the operation is based on the frequency sharing database.
  • a radio wave sensor that can detect accurately, more secure sharing can be expected. Further, as for the detection performance, it is necessary to reliably detect the signal level up to 10 dB lower than the noise level of the radio.
  • an object of the present invention is to provide a signal detection device capable of detecting even a very weak signal level.
  • the present invention includes a complex cross-correlation unit that performs complex cross-correlation calculation between a received signal and a standby signal.
  • the output of the complex cross-correlation section is supplied, and the signal detection section that generates the detection result of the target signal of the OFDM method is provided.
  • the standby signal is a signal detection device that includes a signal known on the receiving side that appears periodically in the time axis direction in the target signal.
  • the circuit scale of the signal detection circuit can be simplified by simplifying the standby signal used in the correlation circuit.
  • the effects described here are not necessarily limited, and any of the effects described in the present invention may be used.
  • the content of the present invention is not construed as being limited by the effects exemplified in the following description.
  • FIG. 1 is a schematic diagram showing a frame configuration of a wireless transmission system to which the present invention can be applied.
  • FIG. 2 is a block diagram showing a schematic configuration of a signal detection device according to an embodiment of the present invention.
  • FIG. 3 is a block diagram of an example of a complex cross-correlator.
  • 4 (a) and 4 (b) are waveform diagrams of the in-phase component and the orthogonal component of the quantized Partial-CP standby signal according to the embodiment of the present invention.
  • 5 (a) and 5 (b) are waveform diagrams of the in-phase component and the orthogonal component of the Full-CP standby signal according to the embodiment of the present invention, respectively.
  • FIG. 6 is a block diagram of an example of the signal detection unit of the sample addition method.
  • FIG. 7 is a diagram showing a processing flow of a signal detection device in which a sample addition method is applied to a complex cross-correlation result when a 1FC standby signal or a 1PC standby signal is used.
  • FIG. 8 is a block diagram of an example of a signal detection unit of the symbol addition method.
  • FIG. 9 is a diagram showing a processing flow of a signal detection device in which a symbol addition method is applied to a complex cross-correlation result when a 9FC standby signal or a 9PC standby signal is used.
  • FIG. 10 is a diagram showing a processing flow of a signal detection device in which a symbol addition circuit is applied to a complex cross-correlation result when a 1FC standby signal or a 1PC standby signal is used.
  • FIG. 11 is a block diagram of a signal detection unit having a configuration in which the addition unit of the signal addition unit of the symbol addition method is connected to the addition unit of the signal detection unit of the sample addition method, and the comparison unit is further connected.
  • FIG. 12 is a diagram showing a processing flow of a signal detection device to which a sample addition circuit is applied to a complex cross-correlation result when a 1FC or 1PC standby signal is used and then a symbol addition circuit is further applied.
  • FIG. 13 is a graph showing the signal detection rate (computer simulation) of the Full-CP standby signal (1FC standby signal and 9FC standby signal) with respect to SNR in the AWGN environment.
  • FIG. 14 is a graph showing a signal detection rate (computer simulation) of Full-CP standby signals (1FC standby signal and 9FC standby signal) with respect to SNR in a 3GPP EVA channel environment.
  • FIG. 15 is a graph showing the signal detection rate (computer simulation) for the SNR of the quantized Partial-CP standby signal (1PC standby signal and 9PC standby signal) in the AWGN environment.
  • FIG. 16 is a graph showing a signal detection rate (computer simulation) obtained in the process of generating a quantized Partial-CP standby signal when a signal that does not convert a time axis signal into a Walsh waveform is used as a standby signal. is there.
  • FIG. 17 is a graph showing the signal detection rate (computer simulation) for the SNR of the quantized Partial-CP standby signal (1PC standby signal and 9PC standby signal) in the 3GPP EVA channel environment.
  • ARIB STD-B57 compliant FPU system
  • ARIB STD-B57 is a standard for portable OFDM digital wireless transmission system for transmission of television broadcast program material operated in 1.2 GHz band and 2.3 GHz band, and the first edition was formulated in December 2013. It was completed and the 2.2th edition was published in January 2018.
  • ARIB STD-B57 is a unidirectional communication system, with orthogonal frequency division multiplexing (OFDM) as the multiplexing method, and 64QAM, 32QAM, 16QAM, 8PSK, QPSK, DQPSK, BQPSK, and DBPSK as the modulation method for each carrier. Has been adopted. In addition, half mode and full mode are defined as transmission modes, and the number of inverse fast Fourier transform (IFFT) points used in the OFDM modulator / demodulator is defined as 2,048 (2K mode) and 1,024 (1K mode). ing.
  • OFDM orthogonal frequency division multiplexing
  • the occupied bandwidth is 8.40 MHz in half mode and 17.19 MHz in full mode.
  • the maximum transmission bit rate is 51.0 Mbit / s in the half mode and 105.0 Mbit / s in the full mode.
  • two modes are defined: Single-Input Single-Output (SISO) and Multiple-Input Multiple-Output (MIMO) having a configuration of 2 ⁇ 2 transmitting and receiving antennas.
  • SISO Single-Input Single-Output
  • MIMO Multiple-Input Multiple-Output
  • evaluation is performed by the SISO, 2K mode, half mode, and Continuous Pilot (CP) method.
  • GI is evaluated assuming 1/8.
  • the present invention can be applied to the case of MIMO, the case of full mode, and the case of Scattered Pilot (SP) method. Further, the GI is also applicable to cases other than 1/8.
  • FIG. 1 shows an OFDM frame configuration in the 2K half-mode CP system of ARIB STD-B57.
  • a pilot signal which is a known signal, is assigned to both transmission and reception every eight carriers.
  • the OFDM frame consists of CP, Transmission and Multiplexing Configuration Control (TMCC), Auxiliary Channel (AC), Data, and Null. There are 841 subcarriers with indexes 0 to 840, and 106 carriers (CP carriers) correspond to CP.
  • the OFDM frame of FIG. 1 is IFFTed, and a guard interval (GI) is added to form an OFDM symbol. The OFDM symbol is then quadrature modulated.
  • GI guard interval
  • FIG. 2 shows a schematic configuration of a signal detection device according to an embodiment of the present invention.
  • the OFDM signal of SISO's CP method 2K half mode based on the ARIB STD-B57 to be detected has the fading channel folded on the time axis, received by the antenna, converted into an IF signal, and passed through the A / D converter. Is input to the signal detection device 1.
  • White Gaussian noise in the device is added to the signal input to the signal detection device 1.
  • the signal detection device 1 is composed of a complex cross-correlation unit 2 and a signal detection unit 3.
  • a detection target signal and a standby signal also referred to as a replica signal or a reference signal
  • the complex cross-correlation results of these signals are input to the signal detection unit 3 in the subsequent stage, and the detection results (detection / non-detection) calculated by the detection method described later are output.
  • FIG. 3 shows the configuration of an example of the complex cross-correlation unit 2.
  • the received signal converted into a digital signal by the A / D converter 4 is supplied to the quadrature modulation demodulator 21, and the demodulated output of the I component and the Q component is obtained.
  • the received signal may be a wireless signal, noise, or the like in addition to the detection target signal.
  • the I component is supplied to the cross-correlator 22, and the Q component is supplied to the cross-correlator 23.
  • the standby signal (I) is supplied to the cross-correlator 22, and the standby signal (Q) is supplied to the cross-correlator 23.
  • the output of the cross-correlator 22 is squared by the multiplier 24 and converted to electric power
  • the output of the cross-correlator 23 is squared by the multiplier 25 and converted to electric power.
  • the outputs of the multiplier 24 and the multiplier 25 are added by the adder 26 and output to the signal detection unit 3 (see FIG. 2).
  • the cross-correlators 22 and 23 determine the complex correlation of the two time complex signals represented by the following equation (1).
  • a signal (feature amount) known on the receiving side such as the FPU preamble or pilot signal uses the feature that the same pattern appears periodically for each OFDM symbol in the time axis direction, and the preamplifier or The standby signal is composed only of signal components known on the receiving side such as a pilot signal. Since the feature quantity to be detected by the standby signal is periodically included in the time direction, a periodic peak value appears in the output of the complex cross-correlation part. The pattern depends on the standby signal pattern.
  • “Full-CP standby signal” A plurality of examples of the standby signal according to the embodiment of the present invention will be described below.
  • the standby signal used in the complex cross-correlation unit a pattern known on the receiving side such as a pilot signal of a radio wave transmitted by the primary user and a preamble is used.
  • the “Full-CP standby signal” is a signal in which only the CP carrier is mapped among the OFDM signals conforming to the ARIB STD-B57 to be detected, and the other subcarriers are null.
  • FIGS. 4 (a) and 4 (b) show the in-phase component and the orthogonal component of the Full-CP standby signal, respectively. Since 106 CPs are inserted every 8 subcarriers in the frequency direction, a repeating pattern for 8 cycles is generated in the 1 OFDM symbol on the complex plane on the time axis. However, in the in-phase component and the orthogonal component, the positive and negative are reversed every period. Then, since the portion corresponding to 1/8 of the 1 OFDM symbol is added as the GI, a repeating pattern for a total of 9 cycles is generated. (If the GI length is other than 1/8, the cycle is repeated for 8 ⁇ GI length in addition to 8 cycles.
  • 2,304 samples having the repetition pattern for these 9 cycles (2,048 corresponding to 1 OFDM symbol)
  • a standby signal 9-cycle Full-CP standby signal (9FC standby signal)”.
  • a repeating pattern for one cycle composed of 256 samples is used as the standby signal (referred to as "1 cycle Full-CP standby signal (1FC standby signal)").
  • 1FC standby signal 1FC standby signal
  • the standby signal In the complex cross-correlation unit 2, it is desirable that the standby signal length and the number of quantization bits of the standby signal can be reduced in order to reduce the amount of calculation and simplify the circuit. Therefore, after limiting the number of CP carriers used for the standby signal, the standby signal is simplified by converting the time axis signal into a Walsh waveform (referred to as “quantized Partial-CP standby signal”).
  • the quantized Partial-CP standby signal is composed of only these 16 CP carriers, and is quantized by converting the time axis signal composed of each CP carrier into a Walsh waveform. That is, the number of quantization bits can be reduced to 2 bits for the in-phase component and 3 bits for the orthogonal component.
  • the CP carrier to be selected may be arbitrarily selected from these 16 carriers.
  • FIGS. 5 (a) and 5 (b) show in-phase components and orthogonal components of the quantized Partial-CP standby signal when the above 16 CP carriers are selected and generated, respectively.
  • the quantized Partial-CP standby signal has a repeating pattern for 9 cycles in the 1 OFDM symbol section including the guard interval.
  • a "9-cycle quantized Partial-CP standby signal (9PC standby signal)" whose standby signal is an OFDM symbol composed of 945 samples having a repetition pattern for 9 cycles, and 1 composed of 105 samples.
  • Two methods of "1 cycle quantization Partial-CP standby signal (1PC standby signal)" in which the repetition pattern for each cycle is used as the standby signal can be considered.
  • the present invention combines two methods, a “sample addition method” and a “symbol addition method”, as a signal detection method for improving the signal detection capability by utilizing the periodic peak value appearing as the output of the complex cross-correlation part.
  • a sample addition method and a symbol addition method
  • a symbol addition method as a signal detection method for improving the signal detection capability by utilizing the periodic peak value appearing as the output of the complex cross-correlation part.
  • FIG. 6 shows the signal detection unit 30 of the sample addition method. This method can be applied only when the 1FC standby signal and the 1PC standby signal are used.
  • the output z (t) of the complex cross-correlation unit is supplied to the addition unit 31.
  • the adding unit 31 has a cascade connection of eight M sample delay circuits, and is adapted to add the input / output of the cascade connection and the nine outputs taken out from between the stages.
  • the addition output of the addition unit 31 is supplied to the comparison unit 32.
  • the comparison unit 32 has a comparator to which an output (electric power) obtained by squared the absolute value of the added output z'(t) is supplied.
  • the added output is supplied to the threshold value determination unit via the switch SW1.
  • the threshold value determined by the threshold value determination unit is supplied to the comparator via the switch SW2 and compared with the power of the added output z'(t). For example, if the power of the added output z'(t) is larger than the threshold value, it is determined that the signal is detected.
  • FIG. 7 is a diagram showing a processing flow of a signal detection device in which a sample addition method is applied to a complex cross-correlation result when a 1FC standby signal or a 1PC standby signal is used.
  • the correlation result z (t) shows the number of repetition cycles in the 1OFDM symbol including the guard interval. Peak values appear (that is, 9 peak values appear when the GI length is 1/8).
  • the signal detection unit can improve the noise immunity of the signal detection capability by adding up these nine peak values.
  • the threshold value required for signal detection is calculated by calculating z'(t) with the switch SW1 in the figure turned on, the switch SW2 turned off, and the input to the complex cross-correlation part being noise only, and its power. Set to the maximum value of.
  • FIG. 8 shows a signal detection unit 40 of the symbol addition method. This method is applicable when all the proposed standby signals are used.
  • the output z (t) of the complex cross-correlation unit is supplied to the addition unit 41.
  • the adding unit 41 has (N-1) sequential connections of L sample delay circuits, and is adapted to add the input / output of the cascade connections and the N outputs taken out from between the stages.
  • the addition output of the addition unit 41 is supplied to the comparison unit 42.
  • the comparison unit 42 has a comparator to which an output (electric power) obtained by squared the absolute value of a signal obtained by multiplying the added output z'(t) by 1 / N is supplied.
  • the power of the signal obtained by 1 / N of the added output z'(t) is supplied to the threshold value determination unit via the switch SW3.
  • the threshold value determined by the threshold value determination unit is supplied to the comparator via the switch SW4, and is compared with the power of the signal obtained by 1 / N of the added output z'(t). For example, if the power is larger than the threshold value, it is determined that the signal is detected.
  • z'(t) is calculated with the switch SW3 in the figure turned on, the switch SW4 turned off, and the input to the complex cross-correlation part is noise only, and the maximum value of the power is calculated.
  • FIG. 9 is a diagram showing a processing flow of a signal detection device to which the symbol addition method is applied to the complex cross-correlation result when the 9FC standby signal or the 9PC standby signal is used.
  • a peak value appears in the correlation result z (t) for each 1 OFDM symbol including a guard interval.
  • This method improves the noise immunity of the signal detection capability by adding up the peak values of N lines while shifting the correlation result z (t) by 1 OFDM symbol.
  • FIG. 10 is a diagram showing a processing flow of a signal detection device in which a symbol addition circuit is applied to a complex cross-correlation result when a 1FC standby signal or a 1PC standby signal is used.
  • FIG. 12 is a diagram showing a processing flow of a signal detection device to which a sample addition circuit is applied to a complex cross-correlation result when a 1FC or 1PC standby signal is used and then a symbol addition circuit is further applied.
  • a plurality of radio wave sensors having the signal detection device having the above-described configuration are arranged in a distributed manner, and when even one of them detects the target signal, it is regarded as “signal detection” (that is, selective diversity), so that the fading environment can be used.
  • the signal detection performance of the above may be improved. Assuming that the fading paths between the FPU and each signal detection device are independent of each other, and assuming that the signal detection rate when a single signal detection device is used is pd, the signal detection Pd when S units of sensors are used. Can be expressed by the following equation (3).
  • Computer simulation The performance of the signal detection device and the standby signal according to the embodiment of the present invention is evaluated by computer simulation. Table 1 shows the specifications of the transmitted signal.
  • the OFDM signal of the CP method 2K half mode of the SISO mode is used as the transmission signal (detection target signal). Since the AC carrier of the transmission signal is not used, all of them are Null carriers.
  • the channel model will be AWSGN and 3GPP Extended Vehicle A (EVA) model.
  • EVA Extended Vehicle A
  • the sample addition method is applied, and the symbol addition method is also applied (see FIG. 11).
  • Determination of signal detection threshold In order to determine the signal detection threshold, only Gaussian noise whose power is standardized to 1 is input to the signal detection unit, and the probability (false positive rate) that the maximum value of the power-converted correlation signal exceeds a certain value is evaluated. , The level at which the false detection rate becomes 0% was set as the threshold value. Table 2 shows the threshold values for each standby signal and the number of symbol additions N. As the value of the number of symbol additions N is increased, the average value of the noise power after addition approaches 0 by the central limit theorem, and the threshold value can be reduced.
  • FIG. 13 shows the signal detection rate of the Full-CP standby signal (1FC standby signal and 9FC standby signal) with respect to SNR in the AWGN environment.
  • the SNR required to achieve the signal detection rate of 99% is approximately the same for the 1FC standby signal and the 9FC standby signal.
  • FIG. 14 shows the signal detection ratio of the Full-CP standby signal (1FC standby signal and 9FC standby signal) with respect to SNR in the 3GPP EVA channel environment.
  • the SNR required to achieve the signal detection rate of 99% is approximately the same for the 1FC standby signal and the 9FC standby signal.
  • the larger the number of symbol additions N, the more the signal can be detected even with a lower SNR, and 99% or more of the FPU signal with SNR -14 dB can be detected by 10 symbol additions.
  • FIG. 15 shows the signal detection ratio of the quantized Partial-CP standby signal (1PC standby signal and 9PC standby signal) with respect to SNR in the AWGN environment.
  • the SNR required to achieve the signal detection rate of 99% is approximately the same for the 1PC standby signal and the 9PC standby signal.
  • the larger the number of symbol additions N, the lower the signal detection becomes possible, and with 20 symbol additions, 99% or more of the FPU signal with SNR -11 dB can be detected.
  • FIG. 16 shows a case where a signal that does not convert the time axis signal into a Walsh waveform, which can be obtained in the process of generating the quantized Partial-CP standby signal, is used as the standby signal (that is, the CP carrier used for the Full-CP standby signal). The signal detection rate of the standby signal) is shown.
  • FIG. 17 shows the signal detection ratio for the SNR of the quantized Partial-CP standby signal (1PC standby signal and 9PC standby signal) in the 3GPP EVA channel environment.
  • the circuit scale of the radio wave sensor can be simplified by a simplified method in which the standby signal used in the correlation circuit is quantized by the Walsh waveform.
  • the present invention is not limited to the above-described embodiments, and various modifications based on the technical idea of the present invention are possible.
  • the present invention can be applied to a digital television signal other than the ARIB STD-B57 system, and can be applied to an OFDM system signal other than the digital television signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This signal detection device is provided with a complex cross-correlation unit which performs a complex cross-correlation computation on a reception signal and a standby signal, and a signal detection unit to which an output of the complex cross-correlation unit is supplied and which generates a detection result of an OFDM object signal. The standby signal includes a signal periodically appearing in a time axis direction and known on the reception side in the object signal. FIG. 2

Description

信号検出装置Signal detector
 本発明は、ダイナミック周波数共用システムにおける信号検出装置に関する。 The present invention relates to a signal detection device in a dynamic frequency sharing system.
 近年、無線通信システムを利用するアプリケーションやサービスの多様化に伴い、通信トラヒックの急増が深刻な課題となっている。本格運用が目前に迫る第5世代移動通信システム(5G)は、従来よりも高速かつ大容量の通信が可能で、この課題に対処できる技術として期待されている。日本においては3.7GHz帯,4.5GHz帯,および28GHz帯の5Gへの割り当てがすでに決定しているが、合計の割り当て帯域幅は各事業者において500MHzもしくは600MHzであり、特に6GHz以下の無線通信に適した周波数帯においては100MHz程度の割り当てに留まり、決して十分ではない。 In recent years, with the diversification of applications and services that use wireless communication systems, the rapid increase in communication traffic has become a serious issue. The 5th generation mobile communication system (5G), whose full-scale operation is imminent, is expected to be a technology that can cope with this problem because it can communicate at a higher speed and a larger capacity than before. In Japan, the allocation of 3.7GHz band, 4.5GHz band, and 28GHz band to 5G has already been decided, but the total allocated bandwidth is 500MHz or 600MHz for each operator, especially wireless of 6GHz or less. In the frequency band suitable for communication, the allocation is limited to about 100 MHz, which is by no means sufficient.
 そこで、既存システム(一次利用者)に割り当てられた周波数帯域において、一次利用者が運用していない場所や時間を特定もしくは検出し、近隣の一次利用者に干渉を与えない条件で他のシステムが二次利用する、ダイナミック周波数共用システムが注目を集めている。一次利用者に割り当てられた周波数帯域の内、二次利用者が利用可能な帯域をホワイトスペースと呼ぶ。このホワイトスペースを検出して利活用する研究開発が国内外で検討されてきた(非特許文献1参照)。 Therefore, in the frequency band assigned to the existing system (primary user), other systems can specify or detect the place and time that the primary user is not operating, and other systems can operate under the condition that they do not interfere with the neighboring primary users. Dynamic frequency sharing systems for secondary use are attracting attention. Of the frequency bands assigned to the primary user, the band that can be used by the secondary user is called white space. Research and development to detect and utilize this white space has been studied in Japan and overseas (see Non-Patent Document 1).
 特に欧州では、2.3GHz-2.4GHz帯におけるワイヤレスカメラやビデオリンク等の放送用素材伝送用システムと、携帯電話システムとの共用を行うLicensed Shard Access (LSA)の制度化および実装が進められている。LSAでは、一次利用者が周波数使用計画(周波数・場所・日時)をあらかじめ周波数共用データベース(LSA Repository: LR)に登録する。携帯電話システム側には、LRと通信し利用可能周波数・地域・時間の確認および利用承認を受けて基地局の稼働および出力を制御するLSA Controller(LC)が実装されており、LRとLCが連携して既存システムと携帯電話システムの周波数計画を照合する。その結果利用可能と判断された条件において、携帯電話システムが当該周波数帯を二次利用する。 Especially in Europe, the institutionalization and implementation of Licensed Shard Access (LSA), which shares broadcasting material transmission systems such as wireless cameras and video links in the 2.3GHz-2.4GHz band with mobile phone systems, is being promoted. ing. In LSA, the primary user registers the frequency usage plan (frequency, location, date and time) in the frequency sharing database (LSA Repository: LR) in advance. The mobile phone system is equipped with an LSA Controller (LC) that communicates with the LR, confirms the available frequencies, regions, and times, receives approval for use, and controls the operation and output of the base station. Collaborate to collate the frequency plans of existing systems and mobile phone systems. As a result, the mobile phone system secondarily uses the frequency band under the conditions determined to be available.
 このLSAの概念の導入の可否が日本でも検討されることを想定し、日本国内における放送素材用伝送システムと5Gとのダイナミック周波数共用を検討することは、有用である。欧州におけるLSAは一次利用者が固定局であるため周波数共用データベースに基づく運用となっているが、例えば日本国内における2.3GHz帯の放送中継向け可搬型無線中継通信システム(Field Pickup Unit:FPU)はマラソン中継の際の放送素材伝送に用いられており、一次利用者は固定局のみならず移動局であることも考慮する必要がある(非特許文献2参照)。 Assuming that the possibility of introducing this LSA concept will be examined in Japan, it is useful to consider the dynamic frequency sharing between the transmission system for broadcasting materials and 5G in Japan. LSA in Europe is operated based on a frequency sharing database because the primary user is a fixed station. For example, a portable wireless relay communication system (Field Pickup Unit: FPU) for broadcasting relay in the 2.3 GHz band in Japan. Is used for broadcasting material transmission during marathon broadcasting, and it is necessary to consider that the primary user is not only a fixed station but also a mobile station (see Non-Patent Document 2).
 一次利用者が移動局である場合、二次利用者が一次利用者に干渉を与えることなく当該周波数帯を共用するためには、周波数共用データベースによる運用を基本としつつも、FPUの信号を高精度に検出することが可能な電波センサを開発して併用することにより、より安心な共用が期待できる。また、検出性能としては,無線機の雑音レベルより10dB低い信号レベルまで確実に検出する必要がある。 When the primary user is a mobile station, in order for the secondary user to share the frequency band without interfering with the primary user, the FPU signal is high while the operation is based on the frequency sharing database. By developing and using a radio wave sensor that can detect accurately, more secure sharing can be expected. Further, as for the detection performance, it is necessary to reliably detect the signal level up to 10 dB lower than the noise level of the radio.
 したがって、本発明の目的は、非常に微弱な信号レベルにおいても検出することを可能とする信号検出装置を提供することにある。 Therefore, an object of the present invention is to provide a signal detection device capable of detecting even a very weak signal level.
 本発明は、受信信号と待受信号を複素相互相関演算する複素相互相関部と、
 複素相互相関部の出力が供給され、OFDM方式の対象信号の検出結果を発生する信号検出部とを備え、
 待受信号が、対象信号において、時間軸方向で周期的に現れる受信側で既知の信号を含む信号検出装置である。
The present invention includes a complex cross-correlation unit that performs complex cross-correlation calculation between a received signal and a standby signal.
The output of the complex cross-correlation section is supplied, and the signal detection section that generates the detection result of the target signal of the OFDM method is provided.
The standby signal is a signal detection device that includes a signal known on the receiving side that appears periodically in the time axis direction in the target signal.
 本発明によれば、無線機の雑音レベルより10dB低い非常に微弱な信号レベル(信号対雑音電力比(SNR)<=-10dB)を検出することを可能とできる。さらに、相関回路で用いる待受信号を簡略化することによって信号検出回路の回路規模を簡略化することができる。さらに、6GHz以下の周波数帯において新たに5Gシステムを割り当てることができる周波数資源を掘り起こすことができる。なお、ここに記載された効果は必ずしも限定されるものではなく、この発明中に記載されたいずれの効果であってもよい。また、以下の説明における例示された効果によりこの発明の内容が限定して解釈されるものではない。 According to the present invention, it is possible to detect a very weak signal level (signal-to-noise power ratio (SNR) <= -10 dB) which is 10 dB lower than the noise level of the radio. Further, the circuit scale of the signal detection circuit can be simplified by simplifying the standby signal used in the correlation circuit. Furthermore, it is possible to dig up frequency resources to which a new 5G system can be assigned in the frequency band of 6 GHz or less. The effects described here are not necessarily limited, and any of the effects described in the present invention may be used. Moreover, the content of the present invention is not construed as being limited by the effects exemplified in the following description.
図1は、本発明を適用できる無線伝送システムのフレーム構成を示す略線図である。FIG. 1 is a schematic diagram showing a frame configuration of a wireless transmission system to which the present invention can be applied. 図2は、本発明の一実施形態の信号検出装置の概略的構成を示すブロック図である。FIG. 2 is a block diagram showing a schematic configuration of a signal detection device according to an embodiment of the present invention. 図3は、複素相互相関器の一例のブロック図である。FIG. 3 is a block diagram of an example of a complex cross-correlator. 図4(a)および図4(b)は、本発明の一実施形態における量子化Partial-CP待受信号の同相成分と直交成分のそれぞれの波形図である。4 (a) and 4 (b) are waveform diagrams of the in-phase component and the orthogonal component of the quantized Partial-CP standby signal according to the embodiment of the present invention. 図5(a)および図5(b)は、本発明の一実施形態におけるFull-CP待受信号の同相成分および直交成分のそれぞれの波形図である。5 (a) and 5 (b) are waveform diagrams of the in-phase component and the orthogonal component of the Full-CP standby signal according to the embodiment of the present invention, respectively. 図6は、サンプル加算方式の信号検出部の一例のブロック図である。FIG. 6 is a block diagram of an example of the signal detection unit of the sample addition method. 図7は、1FC待受信号もしくは1PC待受信号を用いた場合の複素相互相関結果にサンプル加算方式を適用した信号検出装置の処理の流れを示す図である。FIG. 7 is a diagram showing a processing flow of a signal detection device in which a sample addition method is applied to a complex cross-correlation result when a 1FC standby signal or a 1PC standby signal is used. 図8は、シンボル加算方式の信号検出部の一例のブロック図である。FIG. 8 is a block diagram of an example of a signal detection unit of the symbol addition method. 図9は、9FC待受信号もしくは9PC待受信号を用いた場合の複素相互相関結果にシンボル加算方式を適用した信号検出装置の処理の流れを示す図である。FIG. 9 is a diagram showing a processing flow of a signal detection device in which a symbol addition method is applied to a complex cross-correlation result when a 9FC standby signal or a 9PC standby signal is used. 図10は、1FC待受信号もしくは1PC待受信号を用いた場合の複素相互相関結果にシンボル加算回路を適用した信号検出装置の処理の流れを示す図である。FIG. 10 is a diagram showing a processing flow of a signal detection device in which a symbol addition circuit is applied to a complex cross-correlation result when a 1FC standby signal or a 1PC standby signal is used. 図11は、サンプル加算方式の信号検出部の加算部に対してシンボル加算方式の信号検出部の加算部を接続し、さらに、比較部を接続した構成の信号検出部のブロック図である。FIG. 11 is a block diagram of a signal detection unit having a configuration in which the addition unit of the signal addition unit of the symbol addition method is connected to the addition unit of the signal detection unit of the sample addition method, and the comparison unit is further connected. 図12は、1FCもしくは1PC待受信号を用いた場合の複素相互相関結果にサンプル加算回路を適用した後、さらにシンボル加算回路を適用した信号検出装置の処理の流れを示す図である。FIG. 12 is a diagram showing a processing flow of a signal detection device to which a sample addition circuit is applied to a complex cross-correlation result when a 1FC or 1PC standby signal is used and then a symbol addition circuit is further applied. 図13は、AWGN環境におけるFull-CP待受信号(1FC待受信号および9FC待受信号)のSNRに対する信号検出率(計算機シミュレーション)を示すグラフである。FIG. 13 is a graph showing the signal detection rate (computer simulation) of the Full-CP standby signal (1FC standby signal and 9FC standby signal) with respect to SNR in the AWGN environment. 図14は、3GPP EVAチャネル環境におけるFull-CP待受信号(1FC待受信号および9FC待受信号)のSNRに対する信号検出率(計算機シミュレーション)を示すグラフである。FIG. 14 is a graph showing a signal detection rate (computer simulation) of Full-CP standby signals (1FC standby signal and 9FC standby signal) with respect to SNR in a 3GPP EVA channel environment. 図15は、AWGN環境における量子化Partial-CP待受信号(1PC待受信号および9PC待受信号)のSNRに対する信号検出率(計算機シミュレーション)を示すグラフである。FIG. 15 is a graph showing the signal detection rate (computer simulation) for the SNR of the quantized Partial-CP standby signal (1PC standby signal and 9PC standby signal) in the AWGN environment. 図16は、量子化Partial-CP待受信号の生成過程で得ることができる、時間軸信号をWalsh波形に変換しない信号を待受信号とした場合の信号検出率(計算機シミュレーション)を示すグラフである。FIG. 16 is a graph showing a signal detection rate (computer simulation) obtained in the process of generating a quantized Partial-CP standby signal when a signal that does not convert a time axis signal into a Walsh waveform is used as a standby signal. is there. 図17は、3GPP EVAチャネル環境における量子化Partial-CP待受信号(1PC待受信号および9PC待受信号)のSNRに対する信号検出率(計算機シミュレーション)を示すグラフである。FIG. 17 is a graph showing the signal detection rate (computer simulation) for the SNR of the quantized Partial-CP standby signal (1PC standby signal and 9PC standby signal) in the 3GPP EVA channel environment.
 以下、この発明の一実施形態について説明する。なお、以下に説明する一実施形態は、この発明の好適な具体例であり、技術的に好ましい種々の限定が付されているが、この発明の範囲は、以下の説明において、特にこの発明を限定する旨の記載がない限り、これらの実施形態に限定されないものとする。 Hereinafter, an embodiment of the present invention will be described. It should be noted that one embodiment described below is a preferred specific example of the present invention and is provided with various technically preferable limitations. However, the scope of the present invention is particularly limited to the present invention in the following description. Unless otherwise stated, it is not limited to these embodiments.
「ARIB STD-B57準拠FPUシステム」
 最初に、本発明を適用できるOFDM方式の対象信号の一例である、無線伝送システム(ARIB STD-B57)について説明する。ARIB STD-B57は、1.2GHz帯および2.3GHz帯で運用されるテレビジョン放送番組素材伝送用の可搬型OFDM方式デジタル無線伝送システムの標準規格であり、2013年12月に初版の策定が完了し、2018年1月に第2.2版が発行された。
"ARIB STD-B57 compliant FPU system"
First, a wireless transmission system (ARIB STD-B57), which is an example of a target signal of the OFDM system to which the present invention can be applied, will be described. ARIB STD-B57 is a standard for portable OFDM digital wireless transmission system for transmission of television broadcast program material operated in 1.2 GHz band and 2.3 GHz band, and the first edition was formulated in December 2013. It was completed and the 2.2th edition was published in January 2018.
「伝送パラメータ」
 ARIB STD-B57の伝送パラメータについて説明する。ARIB STD-B57は単向通信方式であり、多重化方式として直交周波数分割多重(OFDM)方式が、また各キャリアの変調方式として、64QAM,32QAM,16QAM,8PSK,QPSK,DQPSK,BQPSK,およびDBPSKが採用されている。また、伝送モードとしてハーフモードとフルモードが規定されており、OFDM変復調器に使用する逆高速フーリエ変換(IFFT)ポイント数は2,048(2Kモード)と1,024(1Kモード)が定義されている。
"Transmission parameters"
The transmission parameters of ARIB STD-B57 will be described. ARIB STD-B57 is a unidirectional communication system, with orthogonal frequency division multiplexing (OFDM) as the multiplexing method, and 64QAM, 32QAM, 16QAM, 8PSK, QPSK, DQPSK, BQPSK, and DBPSK as the modulation method for each carrier. Has been adopted. In addition, half mode and full mode are defined as transmission modes, and the number of inverse fast Fourier transform (IFFT) points used in the OFDM modulator / demodulator is defined as 2,048 (2K mode) and 1,024 (1K mode). ing.
 2Kモードの場合、占有帯域幅はハーフモード時で8.40MHz、フルモード時で17.19MHzである。また、最大伝送ビットレートは64QAM使用の場合、ハーフモード時で51.0Mbit/s、フルモード時で105.0Mbit/sである。またSingle-Input Single-Output(SISO)と送受信アンテナ数2×2構成のMultiple-Input Multiple-Output(MIMO)の二つのモードが定義されている。一実施形態では、SISO・2Kモード・ハーフモード・Continual Pilot(CP)方式で評価を行う。またGIは1/8を想定して評価する。但し、本発明は、MIMOの場合に対しても適用でき、また、フルモードの場合に対しても適用でき、また、Scattered Pilot(SP)方式に対しても適用することができる。さらにGIも1/8以外の場合においても適用可能である。 In the case of 2K mode, the occupied bandwidth is 8.40 MHz in half mode and 17.19 MHz in full mode. When 64QAM is used, the maximum transmission bit rate is 51.0 Mbit / s in the half mode and 105.0 Mbit / s in the full mode. In addition, two modes are defined: Single-Input Single-Output (SISO) and Multiple-Input Multiple-Output (MIMO) having a configuration of 2 × 2 transmitting and receiving antennas. In one embodiment, evaluation is performed by the SISO, 2K mode, half mode, and Continuous Pilot (CP) method. In addition, GI is evaluated assuming 1/8. However, the present invention can be applied to the case of MIMO, the case of full mode, and the case of Scattered Pilot (SP) method. Further, the GI is also applicable to cases other than 1/8.
「フレーム構成」
 図1はARIB STD-B57の2KハーフモードCP方式におけるOFDMフレーム構成を示す。CP方式では、8キャリアおきに送受双方において既知信号であるパイロット信号が割り当てられている。OFDMフレームは、CP,Transmission and Multiplexing Configuration Control(TMCC),Auxiliary Channel(AC),Data,およびNullから構成される。サブキャリアはインデックス0から840までの841本存在し、CPに該当するキャリア(CPキャリア)は106本である。図1のOFDMフレームがIFFTされ、さらに、ガードインターバル(GI)が付加されることによってOFDMシンボルが形成される。その後OFDMシンボルが直交変調される。
"Frame structure"
FIG. 1 shows an OFDM frame configuration in the 2K half-mode CP system of ARIB STD-B57. In the CP method, a pilot signal, which is a known signal, is assigned to both transmission and reception every eight carriers. The OFDM frame consists of CP, Transmission and Multiplexing Configuration Control (TMCC), Auxiliary Channel (AC), Data, and Null. There are 841 subcarriers with indexes 0 to 840, and 106 carriers (CP carriers) correspond to CP. The OFDM frame of FIG. 1 is IFFTed, and a guard interval (GI) is added to form an OFDM symbol. The OFDM symbol is then quadrature modulated.
「信号検出装置の構成」
 図2は、本発明の一実施形態の信号検出装置の概略的構成を示す。検出対象であるARIB STD-B57に基づくSISOのCP方式2KハーフモードのOFDM信号は、フェージングチャネルが時間軸で畳み込まれ、アンテナによって受信され、IF信号へ変換され、A/D変換器を介して信号検出装置1に入力される。信号検出装置1に対して入力される信号には、機器における白色ガウス雑音が付加されている。信号検出装置1は複素相互相関部2と信号検出部3から構成される。複素相互相関部2には、検出対象信号と待受信号(レプリカ信号、リファレンス信号とも称される)が入力される。これらの信号の複素相互相関結果は、後段の信号検出部3に入力され、後述する検出方式により算出された検出結果(検出/非検出)を出力する。
"Configuration of signal detection device"
FIG. 2 shows a schematic configuration of a signal detection device according to an embodiment of the present invention. The OFDM signal of SISO's CP method 2K half mode based on the ARIB STD-B57 to be detected has the fading channel folded on the time axis, received by the antenna, converted into an IF signal, and passed through the A / D converter. Is input to the signal detection device 1. White Gaussian noise in the device is added to the signal input to the signal detection device 1. The signal detection device 1 is composed of a complex cross-correlation unit 2 and a signal detection unit 3. A detection target signal and a standby signal (also referred to as a replica signal or a reference signal) are input to the complex cross-correlation unit 2. The complex cross-correlation results of these signals are input to the signal detection unit 3 in the subsequent stage, and the detection results (detection / non-detection) calculated by the detection method described later are output.
「複素相互相関部」
 複素相互相関部2では、複素相互相関演算によって、2つの複素信号の類似度を算出する。図3は、複素相互相関部2の一例の構成を示す。A/D変換器4によってデジタル信号に変換された受信信号が直交変調の復調器21に供給され、I成分およびQ成分の復調出力が得られる。受信信号には、検出対象信号以外に無線信号、ノイズなどの場合がある。I成分が相互相関器22に供給され、Q成分が相互相関器23に供給される。相互相関器22に対しては待受信号(I)が供給され、相互相関器23に対しては待受信号(Q)が供給される。相互相関器22の出力が乗算器24によって二乗され、電力に変換され、相互相関器23の出力が乗算器25によって二乗され、電力に変換される。乗算器24および乗算器25の出力が加算器26で加算され、信号検出部3(図2参照)に対して出力される。
"Complex cross-correlation part"
The complex cross-correlation unit 2 calculates the similarity between the two complex signals by the complex cross-correlation calculation. FIG. 3 shows the configuration of an example of the complex cross-correlation unit 2. The received signal converted into a digital signal by the A / D converter 4 is supplied to the quadrature modulation demodulator 21, and the demodulated output of the I component and the Q component is obtained. The received signal may be a wireless signal, noise, or the like in addition to the detection target signal. The I component is supplied to the cross-correlator 22, and the Q component is supplied to the cross-correlator 23. The standby signal (I) is supplied to the cross-correlator 22, and the standby signal (Q) is supplied to the cross-correlator 23. The output of the cross-correlator 22 is squared by the multiplier 24 and converted to electric power, and the output of the cross-correlator 23 is squared by the multiplier 25 and converted to electric power. The outputs of the multiplier 24 and the multiplier 25 are added by the adder 26 and output to the signal detection unit 3 (see FIG. 2).
 相互相関器22および23によって次の式(1)で表される2つの時間複素信号の複素相関が求められる。 The cross-correlators 22 and 23 determine the complex correlation of the two time complex signals represented by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
「待受信号」
 検出対象信号には、FPUのプリアンブルやパイロット信号などの受信側で既知である信号(特徴量)が、時間軸方向でOFDMシンボル毎に周期的に同じパターンが現れる特徴を利用し、プリアンプルやパイロット信号などの受信側で既知である信号成分のみで待受信号を構成する。待受信号で検出を行う特徴量が時間方向に周期的に含まれているため、複素相互相関部の出力には周期的なピーク値が出現する。そのパターンは待受信号パターンによる。
"Standby signal"
As the detection target signal, a signal (feature amount) known on the receiving side such as the FPU preamble or pilot signal uses the feature that the same pattern appears periodically for each OFDM symbol in the time axis direction, and the preamplifier or The standby signal is composed only of signal components known on the receiving side such as a pilot signal. Since the feature quantity to be detected by the standby signal is periodically included in the time direction, a periodic peak value appears in the output of the complex cross-correlation part. The pattern depends on the standby signal pattern.
「Full-CP待受信号」
 本発明の一実施形態における待受信号の複数の例について以下説明する。複素相互相関部で用いる待受信号には、一次利用者が送信する電波のパイロット信号、プリアンブルなど、受信側で既知のパターンが用いられる。「Full-CP待受信号」は、検出対象となるARIB STD-B57に準拠したOFDM信号のうちCPキャリアのみをマッピングし、その他のサブキャリアをNullとした信号である。
"Full-CP standby signal"
A plurality of examples of the standby signal according to the embodiment of the present invention will be described below. As the standby signal used in the complex cross-correlation unit, a pattern known on the receiving side such as a pilot signal of a radio wave transmitted by the primary user and a preamble is used. The “Full-CP standby signal” is a signal in which only the CP carrier is mapped among the OFDM signals conforming to the ARIB STD-B57 to be detected, and the other subcarriers are null.
 図4(a)および図4(b)はそれぞれFull-CP待受信号の同相成分と直交成分を示す。CPは周波数方向で8サブキャリアおきに106本挿入されているため、時間軸では複素平面において1OFDMシンボルに8周期分の繰り返しパターンが発生する。ただし、同相成分および直交成分において、周期ごとにその正負が反転する。そして1OFDMシンボルの1/8に相当する部分をGIとして付加するため、合計9周期分の繰り返しパターンが発生する。(なお、GI長が1/8以外の場合は、8周期に加えて、8×GI長の周期分の繰り返しとなる。例えばGI長が1/8の場合は前述の通り8+8×(1/8)=9周期分、GI長が1/4の場合は8+8×(1/4)=10周期分の様に算出できる。以降はGI長=1/8の例で記述するが、例えばGI長が1/4の場合に適用するためには「9周期」の表記を「10周期」と読み替える。)この9周期分の繰り返しパターンを有する2,304サンプル(1OFDMシンボルに相当する2,048サンプルと、GIである2,048×(1/8)=256サンプルの合計サンプル数)から構成されるOFDMシンボルを待受信号とする(「9周期Full-CP待受信号(9FC待受信号)」と称する)。受信信号と9FC待受信号の相互相関結果として、OFDMシンボル毎にピークが発生する。 FIGS. 4 (a) and 4 (b) show the in-phase component and the orthogonal component of the Full-CP standby signal, respectively. Since 106 CPs are inserted every 8 subcarriers in the frequency direction, a repeating pattern for 8 cycles is generated in the 1 OFDM symbol on the complex plane on the time axis. However, in the in-phase component and the orthogonal component, the positive and negative are reversed every period. Then, since the portion corresponding to 1/8 of the 1 OFDM symbol is added as the GI, a repeating pattern for a total of 9 cycles is generated. (If the GI length is other than 1/8, the cycle is repeated for 8 × GI length in addition to 8 cycles. For example, if the GI length is 1/8, 8 + 8 × (1 /) as described above. 8) = 9 cycles, and when the GI length is 1/4, it can be calculated as 8 + 8 × (1/4) = 10 cycles. Hereinafter, the example of GI length = 1/8 will be described. For example, GI In order to apply it when the length is 1/4, the notation of "9 cycles" is read as "10 cycles".) 2,304 samples having the repetition pattern for these 9 cycles (2,048 corresponding to 1 OFDM symbol) An OFDM symbol composed of a sample and a total number of samples of 2,048 × (1/8) = 256 samples, which is GI) is used as a standby signal (“9-cycle Full-CP standby signal (9FC standby signal)”. ) ”). As a result of the cross-correlation between the received signal and the 9FC standby signal, a peak occurs for each OFDM symbol.
 他の待受信号は、256サンプルから構成される1周期分の繰り返しパターンを待受信号とする(「1周期Full-CP待受信号(1FC待受信号)」と称する)。受信信号と1FC待受信号の相互相関結果には、繰り返しパターン毎にピークが発生する。 For other standby signals, a repeating pattern for one cycle composed of 256 samples is used as the standby signal (referred to as "1 cycle Full-CP standby signal (1FC standby signal)"). In the cross-correlation result of the received signal and the 1FC standby signal, a peak occurs for each repetition pattern.
「量子化Partial-CP待受信号」
 複素相互相関部2においては、計算量を削減して回路を簡易化するために、待受信号長とその待受信号の量子化ビット数を削減できる方が望ましい。そこで、待受信号に用いるCPキャリアの本数を限定した上で、時間軸信号をWalsh波形に変換することで待受信号を簡素化する(「量子化Partial-CP待受信号」と称する)。この待受信号を生成するサンプリング周波数は、OFDM信号を構成する一番高い周波数成分をもつ840番目のサブキャリアの周波数とし、サンプリング周波数の逆数の整数倍の周期長を持つCPキャリア(式(2)を満たす第n番目のキャリア)のみを、待受信号を構成するキャリアの候補とする。
(420+n)mod8=0   (2)
"Quantized Partial-CP standby signal"
In the complex cross-correlation unit 2, it is desirable that the standby signal length and the number of quantization bits of the standby signal can be reduced in order to reduce the amount of calculation and simplify the circuit. Therefore, after limiting the number of CP carriers used for the standby signal, the standby signal is simplified by converting the time axis signal into a Walsh waveform (referred to as "quantized Partial-CP standby signal"). The sampling frequency for generating this standby signal is the frequency of the 840th subcarrier having the highest frequency component constituting the OFDM signal, and the CP carrier having a period length that is an integral multiple of the reciprocal of the sampling frequency (Equation (2). ) Is the only carrier candidate that constitutes the standby signal.
(420 + n) mod8 = 0 (2)
 式(2)を満たすCPキャリアは16本存在する(同相成分:第280,360,400,440,480,560番目キャリアの計6本、直交成分:第0,336,392,408,416,424,432,448,504,840番目キャリアの計10本)。量子化Partial-CP待受信号はこの16本のCPキャリアのみから構成され、さらに各CPキャリアで構成された時間軸信号をWalsh波形に変換することで量子化する。すなわち、量子化ビット数を同相成分では2ビット、直交成分では3ビットまで削減できる。なお、選択するCPキャリアはこの16本のうち任意に選択しても良い。 There are 16 CP carriers satisfying the formula (2) (in-phase components: 280, 360, 400, 440, 480, 560th carriers in total, 6 in total, orthogonal components: 0,336,392,408,416. A total of 10 carriers at the 424, 432, 448, 504, and 840th carriers). The quantized Partial-CP standby signal is composed of only these 16 CP carriers, and is quantized by converting the time axis signal composed of each CP carrier into a Walsh waveform. That is, the number of quantization bits can be reduced to 2 bits for the in-phase component and 3 bits for the orthogonal component. The CP carrier to be selected may be arbitrarily selected from these 16 carriers.
 図5(a)および図5(b)に、それぞれ上記16本のCPキャリアを選択して生成した場合の量子化Partial-CP待受信号の同相成分と直交成分を示す。量子化Partial-CP待受信号には、Full-CP待受信号と同様、ガードインターバルを含む1OFDMシンボル区間において9周期分の繰り返しパターンをもつ。この9周期分の繰り返しパターンを有する945サンプルから構成されるOFDMシンボルを待受信号とする「9周期量子化Partial-CP待受信号(9PC待受信号)」と、105サンプルから構成される1周期分の繰り返しパターンを待受信号とする「1周期量子化Partial-CP待受信号(1PC待受信号)」の2方式が考えられる。 FIGS. 5 (a) and 5 (b) show in-phase components and orthogonal components of the quantized Partial-CP standby signal when the above 16 CP carriers are selected and generated, respectively. Like the Full-CP standby signal, the quantized Partial-CP standby signal has a repeating pattern for 9 cycles in the 1 OFDM symbol section including the guard interval. A "9-cycle quantized Partial-CP standby signal (9PC standby signal)" whose standby signal is an OFDM symbol composed of 945 samples having a repetition pattern for 9 cycles, and 1 composed of 105 samples. Two methods of "1 cycle quantization Partial-CP standby signal (1PC standby signal)" in which the repetition pattern for each cycle is used as the standby signal can be considered.
「信号検出部」
 本発明は複素相互相関部の出力として出現する周期的なピーク値を利用して信号検出能力を向上させる信号検出方式として、「サンプル加算方式」と「シンボル加算方式」と二つの方式を組み合わせた三つの方式を提案する。
"Signal detector"
The present invention combines two methods, a "sample addition method" and a "symbol addition method", as a signal detection method for improving the signal detection capability by utilizing the periodic peak value appearing as the output of the complex cross-correlation part. We propose three methods.
「サンプル加算方式」
 図6にサンプル加算方式の信号検出部30を示す。本方式は1FC待受信号および1PC待受信号を用いる場合のみに適用可能である。複素相互相関部の出力z(t)が加算部31に供給される。加算部31は、8個のMサンプル遅延回路の縦続接続を有し、縦続接続の入出力および段間から取り出した9個の出力を加算するようになされている。
"Sample addition method"
FIG. 6 shows the signal detection unit 30 of the sample addition method. This method can be applied only when the 1FC standby signal and the 1PC standby signal are used. The output z (t) of the complex cross-correlation unit is supplied to the addition unit 31. The adding unit 31 has a cascade connection of eight M sample delay circuits, and is adapted to add the input / output of the cascade connection and the nine outputs taken out from between the stages.
 加算部31の加算出力が比較部32に供給される。比較部32は加算出力z' (t)の絶対値を二乗した出力(電力)が供給される比較器を有する。加算出力はスイッチSW1を介して閾値決定部に供給される。閾値決定部で決定された閾値がスイッチSW2を介して比較器に供給され、加算出力z' (t)の電力と比較される。例えば閾値より加算出力z' (t)の電力が大であれば、信号検出と判定する。 The addition output of the addition unit 31 is supplied to the comparison unit 32. The comparison unit 32 has a comparator to which an output (electric power) obtained by squared the absolute value of the added output z'(t) is supplied. The added output is supplied to the threshold value determination unit via the switch SW1. The threshold value determined by the threshold value determination unit is supplied to the comparator via the switch SW2 and compared with the power of the added output z'(t). For example, if the power of the added output z'(t) is larger than the threshold value, it is determined that the signal is detected.
 図7は1FC待受信号もしくは1PC待受信号を用いた場合の複素相互相関結果にサンプル加算方式を適用した信号検出装置の処理の流れを示す図である。図7に示すように、1FC待受信号もしくは1PC待受信号を用いて複素相互相関を行うと、その相関結果z(t)には、ガードインターバルを含む1OFDMシンボル内に繰り返し周期分の本数のピーク値が出現する(すなわち、GI長が1/8の場合は9本のピーク値が出現する)。信号検出部は、この9本のピーク値を合算することで、信号検出能力の雑音耐性を改善できる。なお、図6中のサンプル遅延量Mは1OFDMシンボルに含まれる繰り返し周期のサンプル数(本評価における1FC待受信号の場合は256、1PC待受信号の場合は105)に設定する。また、信号検出に必要な閾値は、図中のスイッチSW1をONとし、スイッチSW2をOFFとし、複素相互相関部への入力を雑音のみとした状態でz' (t)を計算し、その電力の最大値に設定する。 FIG. 7 is a diagram showing a processing flow of a signal detection device in which a sample addition method is applied to a complex cross-correlation result when a 1FC standby signal or a 1PC standby signal is used. As shown in FIG. 7, when complex cross-correlation is performed using a 1FC standby signal or a 1PC standby signal, the correlation result z (t) shows the number of repetition cycles in the 1OFDM symbol including the guard interval. Peak values appear (that is, 9 peak values appear when the GI length is 1/8). The signal detection unit can improve the noise immunity of the signal detection capability by adding up these nine peak values. The sample delay amount M in FIG. 6 is set to the number of samples having a repeating cycle included in the 1 OFDM symbol (256 in the case of the 1FC standby signal in this evaluation, 105 in the case of the 1PC standby signal). The threshold value required for signal detection is calculated by calculating z'(t) with the switch SW1 in the figure turned on, the switch SW2 turned off, and the input to the complex cross-correlation part being noise only, and its power. Set to the maximum value of.
「シンボル加算方式」
 図8にシンボル加算方式の信号検出部40を示す。本方式は提案する全ての待受信号を用いる場合に適用可能である。複素相互相関部の出力z(t)が加算部41に供給される。加算部41は、(N-1)個のLサンプル遅延回路の縦続接続を有し、縦続接続の入出力および段間から取り出したN個の出力を加算するようになされている。
"Symbol addition method"
FIG. 8 shows a signal detection unit 40 of the symbol addition method. This method is applicable when all the proposed standby signals are used. The output z (t) of the complex cross-correlation unit is supplied to the addition unit 41. The adding unit 41 has (N-1) sequential connections of L sample delay circuits, and is adapted to add the input / output of the cascade connections and the N outputs taken out from between the stages.
 加算部41の加算出力が比較部42に供給される。比較部42は加算出力z' (t)を1/Nした信号の絶対値を二乗した出力(電力)が供給される比較器を有する。加算出力z' (t)を1/Nした信号の電力がスイッチSW3を介して閾値決定部に供給される。閾値決定部で決定された閾値がスイッチSW4を介して比較器に供給され、加算出力z' (t)を1/Nした信号の電力と比較される。例えば閾値より電力が大であれば、信号検出と判定する。信号検出に必要な閾値は、図中のスイッチSW3をON、スイッチSW4をOFFとし、複素相互相関部への入力を雑音のみとした状態でz' (t)を計算し、その電力の最大値に設定する。 The addition output of the addition unit 41 is supplied to the comparison unit 42. The comparison unit 42 has a comparator to which an output (electric power) obtained by squared the absolute value of a signal obtained by multiplying the added output z'(t) by 1 / N is supplied. The power of the signal obtained by 1 / N of the added output z'(t) is supplied to the threshold value determination unit via the switch SW3. The threshold value determined by the threshold value determination unit is supplied to the comparator via the switch SW4, and is compared with the power of the signal obtained by 1 / N of the added output z'(t). For example, if the power is larger than the threshold value, it is determined that the signal is detected. For the threshold value required for signal detection, z'(t) is calculated with the switch SW3 in the figure turned on, the switch SW4 turned off, and the input to the complex cross-correlation part is noise only, and the maximum value of the power is calculated. Set to.
 図9は9FC待受信号もしくは9PC待受信号を用いた場合の複素相互相関結果にシンボル加算方式を適用した信号検出装置の処理の流れを示す図である。図9に示すように、9FC待受信号もしくは9PC待受信号を用いて複素相互相関を行うと、その相関結果z(t)には、ガードインターバルを含む1OFDMシンボル毎にピーク値が出現する。本方式は、相関結果z(t)を1OFDMシンボルずらしながらN本分のピーク値を合算することで、信号検出能力の雑音耐性を改善する。なお、図8中のシンボル遅延量LはGIを含む1OFDMシンボルのサンプル数(本評価における1FC待受信号の場合は2,304、1PC待受信号の場合は945)に設定する。さらに、図10は、1FC待受信号もしくは1PC待受信号を用いた場合の複素相互相関結果にシンボル加算回路を適用した信号検出装置の処理の流れを示す図である。 FIG. 9 is a diagram showing a processing flow of a signal detection device to which the symbol addition method is applied to the complex cross-correlation result when the 9FC standby signal or the 9PC standby signal is used. As shown in FIG. 9, when complex cross-correlation is performed using a 9FC standby signal or a 9PC standby signal, a peak value appears in the correlation result z (t) for each 1 OFDM symbol including a guard interval. This method improves the noise immunity of the signal detection capability by adding up the peak values of N lines while shifting the correlation result z (t) by 1 OFDM symbol. The symbol delay amount L in FIG. 8 is set to the number of samples of 1 OFDM symbols including GI (2,304 in the case of the 1FC standby signal in this evaluation, 945 in the case of the 1PC standby signal). Further, FIG. 10 is a diagram showing a processing flow of a signal detection device in which a symbol addition circuit is applied to a complex cross-correlation result when a 1FC standby signal or a 1PC standby signal is used.
 また、1FC待受信号もしくは1PC待受信号を用いる場合は、図11に示すように、サンプル加算方式の信号検出部の加算部31に対してシンボル加算方式の信号検出部の加算部41を接続し、さらに、比較部51を接続した構成の信号検出部50とするようにしてもよい。図12は、1FCもしくは1PC待受信号を用いた場合の複素相互相関結果にサンプル加算回路を適用した後、さらにシンボル加算回路を適用した信号検出装置の処理の流れを示す図である。 When a 1FC standby signal or a 1PC standby signal is used, as shown in FIG. 11, the addition unit 41 of the symbol addition method signal detection unit is connected to the addition unit 31 of the sample addition method signal detection unit. Further, the signal detection unit 50 may have a configuration in which the comparison unit 51 is connected. FIG. 12 is a diagram showing a processing flow of a signal detection device to which a sample addition circuit is applied to a complex cross-correlation result when a 1FC or 1PC standby signal is used and then a symbol addition circuit is further applied.
「受信ダイバーシチ」
 さらに、上述した構成の信号検出装置を有する電波センサを複数分散配置して、そのうち1つでも対象信号を検出した場合に「信号検出」とみなす(すなわち選択ダイバーシチする)ことで、フェージング環境下での信号検出性能を向上させてもよい。FPUと各信号検出装置間のフェージングパスが互いに独立であると仮定すると、単一の信号検出装置を用いた場合の信号検出率をpdとすると、S台のセンサを用いた場合の信号検出Pdは、次式(3)で表すことができる。
"Received Diversity"
Further, a plurality of radio wave sensors having the signal detection device having the above-described configuration are arranged in a distributed manner, and when even one of them detects the target signal, it is regarded as "signal detection" (that is, selective diversity), so that the fading environment can be used. The signal detection performance of the above may be improved. Assuming that the fading paths between the FPU and each signal detection device are independent of each other, and assuming that the signal detection rate when a single signal detection device is used is pd, the signal detection Pd when S units of sensors are used. Can be expressed by the following equation (3).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
「計算機シミュレーション」
 計算機シミュレーションにより,本発明の一実施形態の信号検出装置および待受信号の性能評価を行う。送信信号の諸元を表1に示す。
"Computer simulation"
The performance of the signal detection device and the standby signal according to the embodiment of the present invention is evaluated by computer simulation. Table 1 shows the specifications of the transmitted signal.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 ここでは、SISOモードのCP方式2KハーフモードのOFDM信号を送信信号(検出対象信号)とする。なお当該送信信号のACキャリアは使用しないため、全てNullキャリアとする。また、チャネルモデルはAWGNおよび3GPP Extended Vehicular A(EVA)モデルとする。1FC待受信号および1PC待受信号を用いる場合は全てサンプル加算方式を適用し、さらにシンボル加算方式を合わせて適用する(図11参照)。9FC待受信号もしくは9PC待受信号を用いる場合はシンボル加算方式のみを適用する(図8参照)。また、SNR<=-10dBにおいて、検出率99%を達成することを所要検出条件とする。 Here, the OFDM signal of the CP method 2K half mode of the SISO mode is used as the transmission signal (detection target signal). Since the AC carrier of the transmission signal is not used, all of them are Null carriers. In addition, the channel model will be AWSGN and 3GPP Extended Vehicle A (EVA) model. When the 1FC standby signal and the 1PC standby signal are used, the sample addition method is applied, and the symbol addition method is also applied (see FIG. 11). When using the 9FC standby signal or the 9PC standby signal, only the symbol addition method is applied (see FIG. 8). Further, it is a required detection condition that a detection rate of 99% is achieved at SNR <= −10 dB.
「信号検出閾値の決定」
 信号検出の閾値を決定するために、電力を1に規格化したガウス雑音のみを信号検出部に入力し、電力換算した相関信号の最大値がある値を超える確率(誤検出率)を評価し、その誤検出率が0%となるレベルを閾値に設定した。各待受信号およびシンボル加算回数Nにおける閾値を表2に示す。シンボル加算回数Nの値を大きくするほど、中心極限定理によって加算後の雑音電力の平均値が0に近づき,閾値を小さくできる。
"Determination of signal detection threshold"
In order to determine the signal detection threshold, only Gaussian noise whose power is standardized to 1 is input to the signal detection unit, and the probability (false positive rate) that the maximum value of the power-converted correlation signal exceeds a certain value is evaluated. , The level at which the false detection rate becomes 0% was set as the threshold value. Table 2 shows the threshold values for each standby signal and the number of symbol additions N. As the value of the number of symbol additions N is increased, the average value of the noise power after addition approaches 0 by the central limit theorem, and the threshold value can be reduced.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
「Full-CP待受信号の検出性能」
「AWGN環境」
 AWGN環境におけるFull-CP待受信号(1FC待受信号および9FC待受信号)のSNRに対する信号検出率を図13に示す。信号検出率99%を達成するのに必要なSNRは1FC待受信号および9FC待受信号で概ね一致する。シンボル加算回数Nが大きくなるとより低いSNRでも信号検出が可能となるが、AWGN環境ではシンボル加算なしでも1FC待受信号および9FC待受信号のどちらを用いた場合でも、SNR=-11dBのFPU信号を99%以上検出できる。
"Full-CP standby signal detection performance"
"AWGN environment"
FIG. 13 shows the signal detection rate of the Full-CP standby signal (1FC standby signal and 9FC standby signal) with respect to SNR in the AWGN environment. The SNR required to achieve the signal detection rate of 99% is approximately the same for the 1FC standby signal and the 9FC standby signal. As the number of symbol additions N increases, signal detection becomes possible even with a lower SNR, but in an AWGN environment, the FPU signal with SNR = -11 dB is used regardless of whether the 1FC standby signal or the 9FC standby signal is used without symbol addition. Can be detected by 99% or more.
「3GPP EVAチャネル環境」
 3GPP EVAチャネル環境におけるFull-CP待受信号(1FC待受信号および9FC待受信号)のSNRに対する信号検出率を図14に示す。信号検出率99%を達成するのに必要なSNRは1FC待受信号および9FC待受信号で概ね一致する。シンボル加算回数Nが大きいほど低いSNRでも信号検出が可能となり、10回のシンボル加算で、SNR=-14dBのFPU信号を99%以上検出できる。
"3GPP EVA Channel Environment"
FIG. 14 shows the signal detection ratio of the Full-CP standby signal (1FC standby signal and 9FC standby signal) with respect to SNR in the 3GPP EVA channel environment. The SNR required to achieve the signal detection rate of 99% is approximately the same for the 1FC standby signal and the 9FC standby signal. The larger the number of symbol additions N, the more the signal can be detected even with a lower SNR, and 99% or more of the FPU signal with SNR = -14 dB can be detected by 10 symbol additions.
「量子化Partial-CP待受信号の検出性能」
「AWGN環境」
 AWGN環境における量子化Partial-CP待受信号(1PC待受信号および9PC待受信号)のSNRに対する信号検出率を図15に示す。信号検出率99%を達成するのに必要なSNRは1PC待受信号および9PC待受信号で概ね一致する。シンボル加算回数Nが大きいほど低いSNRでも信号検出が可能となり、20回のシンボル加算で、SNR=-11dBのFPU信号を99%以上検出可能である。
"Quantized Partial-CP standby signal detection performance"
"AWGN environment"
FIG. 15 shows the signal detection ratio of the quantized Partial-CP standby signal (1PC standby signal and 9PC standby signal) with respect to SNR in the AWGN environment. The SNR required to achieve the signal detection rate of 99% is approximately the same for the 1PC standby signal and the 9PC standby signal. The larger the number of symbol additions N, the lower the signal detection becomes possible, and with 20 symbol additions, 99% or more of the FPU signal with SNR = -11 dB can be detected.
 一方、この検出性能は同じシンボル加算数であるN=20のときのFull-CP待受信号の場合の検出性能(SNR=-23dB)と比較すると、13dB劣化している。図16に量子化Partial-CP待受信号の生成過程で得ることができる、時間軸信号をWalsh波形に変換しない信号を待受信号とした場合(つまり、Full-CP待受信号の使用CPキャリアを16本に削減した待受信号)の信号検出率を示す。20回のシンボル加算でSNR=-11dBのFPU信号を99%以上検出可能であり、サブキャリアをWalsh波形に変換した場合と同等であるため、Full-CP待受信号に対する13dBの劣化はCPキャリア本数の削減に起因すると言える。 On the other hand, this detection performance is 13 dB worse than the detection performance (SNR = -23 dB) in the case of the Full-CP standby signal when N = 20, which is the same symbol addition number. FIG. 16 shows a case where a signal that does not convert the time axis signal into a Walsh waveform, which can be obtained in the process of generating the quantized Partial-CP standby signal, is used as the standby signal (that is, the CP carrier used for the Full-CP standby signal). The signal detection rate of the standby signal) is shown. Since 99% or more of the FPU signal with SNR = -11 dB can be detected by adding symbols 20 times, which is equivalent to the case where the subcarrier is converted into the Walsh waveform, the deterioration of 13 dB with respect to the Full-CP standby signal is the CP carrier. It can be said that this is due to the reduction in the number.
「3GPP EVAチャネル環境」
 3GPP EVAチャネル環境における量子化Partial-CP待受信号(1PC待受信号および9PC待受信号)のSNRに対する信号検出率を図17に示す。信号検出率99%を達成するのに必要なSNRは、20回のシンボル加算を行ったとしても、1PC待受信号の場合、SNR=-4dB、9PC待受信号の場合、SNR=-3dBであり、いずれの場合もSNR<=-10dBにおいて検出率99%を達成できない。
"3GPP EVA Channel Environment"
FIG. 17 shows the signal detection ratio for the SNR of the quantized Partial-CP standby signal (1PC standby signal and 9PC standby signal) in the 3GPP EVA channel environment. The SNR required to achieve a signal detection rate of 99% is SNR = -4 dB for a 1 PC standby signal and SNR = -3 dB for a 9 PC standby signal even after 20 symbol additions. In either case, the detection rate of 99% cannot be achieved at SNR <= -10 dB.
 そこで、上述した受信ダイバーシチを適用する。図17より、S=1台の電波センサを用いて量子化Partial-CP待受信号で20回のシンボル加算を行った場合、SNR=-10dBのFPU検出率は1PC待受信号で83.1%、9PC待受信号で81.6%であった。一方、S=3台の電波センサで協調した場合、式(3)より1PC待受信号では、99.5%、9PC待受信号では、99.4%となり、SNR=-10dBのFPU信号を99%以上検出できる。 Therefore, the above-mentioned receiving diversity is applied. From FIG. 17, when symbol addition is performed 20 times with the quantized Partial-CP standby signal using S = 1 radio wave sensor, the FPU detection rate of SNR = -10 dB is 83.1 with 1 PC standby signal. %, 81.6% for the 9PC standby signal. On the other hand, when S = 3 radio wave sensors cooperate, the 1PC standby signal is 99.5% and the 9PC standby signal is 99.4% according to the equation (3), and the FPU signal with SNR = -10 dB is obtained. 99% or more can be detected.
 上述したように、本発明の一実施形態は、一次利用システムとしてARIB STD-B57に準拠したFPU信号を想定した場合のSNR=-10dB以下の非常に微弱なレベルにおいても検出可能な信号検出方式である。さらに、相関回路で用いる待受信号をWalsh波形によって量子化する簡略化方式によって、電波センサの回路規模を簡略化することができる。さらに、計算機シミュレーションによって評価し、計算量削減を行わないFull-CP待受信号を用いた場合は、3GPP EVAチャネル環境において、10回のシンボル加算を行うことでSNR=-14dBのFPU信号を99%以上検出できる。さらに待受信号の量子化ビット数を同相成分で2ビット、直交成分で3ビットまで削減した量子化Partial-CP待受信号を用いた場合は、3GPP EVA チャネル環境において、3台の独立なフェージングパスを持つ電波センサを協調させ、選択ダイバーシチと20回のシンボル加算を行うことでSNR=-10dBのFPU信号を99%以上検出できる。 As described above, one embodiment of the present invention is a signal detection method capable of detecting even a very weak level of SNR = -10 dB or less when an FPU signal conforming to ARIB STD-B57 is assumed as a primary use system. Is. Further, the circuit scale of the radio wave sensor can be simplified by a simplified method in which the standby signal used in the correlation circuit is quantized by the Walsh waveform. Furthermore, when the Full-CP standby signal that is evaluated by computer simulation and does not reduce the amount of calculation is used, the FPU signal of SNR = -14 dB is 99 by performing symbol addition 10 times in the 3GPP EVA channel environment. % Or more can be detected. Furthermore, when a quantization Partial-CP standby signal with the number of quantization bits of the standby signal reduced to 2 bits for the in-phase component and 3 bits for the orthogonal component is used, three independent fading units are used in the 3GPP EVA channel environment. By coordinating radio sensors with paths and performing selective diversity and symbol addition 20 times, an FPU signal with SNR = -10 dB can be detected by 99% or more.
 以上、本発明の実施形態について具体的に説明したが、上述の各実施形態に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。例えば本発明はARIB STD-B57方式以外のデジタルテレビジョン信号に対して適用することができ、また、デジタルテレビジョン信号以外のOFDM方式の信号に対して適用することができる。 Although the embodiments of the present invention have been specifically described above, the present invention is not limited to the above-described embodiments, and various modifications based on the technical idea of the present invention are possible. For example, the present invention can be applied to a digital television signal other than the ARIB STD-B57 system, and can be applied to an OFDM system signal other than the digital television signal.
1・・・信号検出装置、2・・・複素相互相関部
3,30,40・・・信号検出部
22,23・・・相互相関器
30・・・サンプル加算方式の信号検出部
40・・・シンボル加算方式の信号検出部
50・・・サンプル加算方式およびシンボル加算方式の信号検出部を組み合わせた信号検出部
1 ... Signal detection device, 2 ... Complex cross-correlation unit 3, 30, 40 ... Signal detection unit 22, 23 ... Mutual correlator 30 ... Sample addition type signal detection unit 40 ... -Signal addition method signal detection unit 50: A signal detection unit that combines a sample addition method and a symbol addition method signal detection unit.

Claims (8)

  1.  受信信号と待受信号を複素相互相関演算する複素相互相関部と、
     前記複素相互相関部の出力が供給され、OFDM方式の対象信号の検出結果を発生する信号検出部とを備え、
     前記待受信号が、前記対象信号において、時間軸方向で周期的に現れる受信側で既知の信号を含む信号検出装置。
    A complex cross-correlation section that performs complex cross-correlation operations on received and standby signals
    The output of the complex cross-correlation unit is supplied, and the signal detection unit that generates the detection result of the target signal of the OFDM method is provided.
    A signal detection device in which the standby signal includes a signal known on the receiving side that appears periodically in the time axis direction in the target signal.
  2.  前記既知の信号がMサンプルで、前記対象信号の1シンボルにおいて周期L/Mで含まれており、
     前記待受信号が前記既知の信号のMサンプルによって構成された信号である請求項1に記載の信号検出装置。
    The known signal is an M sample, which is included in one symbol of the target signal with a period of L / M.
    The signal detection device according to claim 1, wherein the standby signal is a signal composed of M samples of the known signal.
  3.  前記既知の信号がMサンプルで、前記対象信号の1シンボルにおいて周期L/Mで含まれており、
     前記待受信号が前記既知の信号のLサンプルによって構成された信号である請求項1に記載の信号検出装置。
    The known signal is an M sample, which is included in one symbol of the target signal with a period of L / M.
    The signal detection device according to claim 1, wherein the standby signal is a signal composed of an L sample of the known signal.
  4.  請求項3に記載の前記待受信号のキャリア本数を減少させると共に、量子化して簡略化した待受信号を形成するようにした信号検出装置。 A signal detection device for reducing the number of carriers of the standby signal according to claim 3 and forming a simplified standby signal by quantization.
  5.  前記信号検出部が複数のMサンプル遅延回路により遅延された出力を加算する加算部と、前記加算部の出力を閾値と比較する比較部により構成された請求項2に記載の信号検出装置。 The signal detection device according to claim 2, wherein the signal detection unit includes an addition unit that adds outputs delayed by a plurality of M sample delay circuits, and a comparison unit that compares the output of the addition unit with a threshold value.
  6.  前記信号検出部が複数のLサンプル遅延回路により遅延された出力を加算する加算部と、前記加算部の出力を閾値と比較する比較部により構成された請求項3に記載の信号検出装置。 The signal detection device according to claim 3, wherein the signal detection unit includes an addition unit that adds outputs delayed by a plurality of L sample delay circuits, and a comparison unit that compares the output of the addition unit with a threshold value.
  7.  請求項5に記載の信号検出部と請求項6に記載の信号検出部を組み合わせて構成された信号検出装置。 A signal detection device configured by combining the signal detection unit according to claim 5 and the signal detection unit according to claim 6.
  8.  前記複素相互相関部に対してノイズ成分が供給された時に、前記ノイズ成分を前記対象信号として誤検出しないように前記閾値が決定される閾値決定部を有する請求項5、請求項6又は請求項7に記載の信号検出装置。 5, 6, or claim 6, which has a threshold value determining unit in which the threshold value is determined so that the noise component is not erroneously detected as the target signal when the noise component is supplied to the complex cross-correlation unit. 7. The signal detection device according to 7.
PCT/JP2020/045839 2020-01-10 2020-12-09 Signal detection device WO2021140819A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-002724 2020-01-10
JP2020002724A JP7463630B2 (en) 2020-01-10 2020-01-10 Signal Detection Device

Publications (1)

Publication Number Publication Date
WO2021140819A1 true WO2021140819A1 (en) 2021-07-15

Family

ID=76787469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045839 WO2021140819A1 (en) 2020-01-10 2020-12-09 Signal detection device

Country Status (2)

Country Link
JP (1) JP7463630B2 (en)
WO (1) WO2021140819A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009284036A (en) * 2008-05-20 2009-12-03 Mitsubishi Electric Corp Transmission path estimating device and method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009284036A (en) * 2008-05-20 2009-12-03 Mitsubishi Electric Corp Transmission path estimating device and method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HARADA, HIROSHI ET AL.: "A New Estimation Method of Propagation Characteristics Using Pilot-Data- Inserted OFDM Signals for High-Mobility OFDM TransmissionScheme", IEICE TRANSACTIONS ON COMMUNICATIONS, vol. E85-B, no. 5, 1 May 2002 (2002-05-01), pages 882 - 894, XP055840207 *
OBATA, KENTARO ET AL.: "Symbol Synchronization Scheme for Wide Area M2M Wireless Communication Systems", IEICE TECHNICAL REPORT, vol. 115, no. 189, 17 August 2015 (2015-08-17), pages 71 - 76 *
SAKAI, ATOM ET AL.: "High-efficient Sensing Methods of Primary Wireless Transmission System for Dynamic Spectrum Sharingbased 5G System", 2020 23RD INTERNATIONAL SYMPOSIUM ON WIRELESS PERSONALMULTIMEDIA COMMUNICATIONS (WPMC, 19 October 2020 (2020-10-19), XP033871753 *

Also Published As

Publication number Publication date
JP2021111874A (en) 2021-08-02
JP7463630B2 (en) 2024-04-09

Similar Documents

Publication Publication Date Title
Lee et al. A space-frequency transmitter diversity technique for OFDM systems
JP3083159B2 (en) Orthogonal frequency division multiplexing transmission system and transmitter and receiver thereof
US7724851B2 (en) Receiver with multiple collectors in a multiple user detection system
KR100613920B1 (en) Reception apparatus
CN101056130B (en) Method and system for processing signal in wireless receiver
CN100592729C (en) Quasi-parallel multichannel receivers for wideband orthogonal frequency division multiplexed communications and associated methods
US7697959B2 (en) Adaptive multiple-antenna systems with omni-directional and sector-directional antenna modes
US9184971B2 (en) Apparatus for and method of robust packet detection and frequency offset estimation
US20060223476A1 (en) Antenna selection diversity apparatus and method in a broadband wireless communication system
CN102769598A (en) Multicarrier receiver with antenna selection and maximum ratio combining
CN1909547B (en) Apparatus and method for receiving signals of adjacent frequency allocations in cellular environments
KR20070053291A (en) Multiple sub-carrier selection diversity architecture and method for wireless ofdm
JP4899554B2 (en) Wireless communication system, wireless communication method, and signal processing program thereof
CN101512996A (en) Equalizing structure and equalizing method
CN110460556B (en) Wireless data and energy integrated transmission signal design method for orthogonal multi-carrier system
KR20090105598A (en) Reciving apparatus and method for maximum likelihood in single carrier system
US8320483B2 (en) Radio transmission apparatus, radio reception apparatus, radio transmission-reception system, and method thereof
JP4611182B2 (en) Wireless terminal apparatus and communication method switching method
WO2021140819A1 (en) Signal detection device
US20230155626A1 (en) Non-coherent long-range (lora) communication system based on multiple-input multiple-output (mimo) technology
WO2009142964A1 (en) Methods and systems for hybrid mimo schemes in ofdm/a systems
JP2003338782A (en) Diversity receiver and receiving method
JP2009522907A (en) Cellular system and method
CN101507213A (en) Equalizing structure and equalizing method
JP2003283441A (en) Signal transmission system, transmission apparatus, and receiver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911721

Country of ref document: EP

Kind code of ref document: A1