WO2021131565A1 - Multilayer body, printed wiring board, flexible printed wiring board, electromagnetic wave shield and molded article - Google Patents

Multilayer body, printed wiring board, flexible printed wiring board, electromagnetic wave shield and molded article Download PDF

Info

Publication number
WO2021131565A1
WO2021131565A1 PCT/JP2020/044970 JP2020044970W WO2021131565A1 WO 2021131565 A1 WO2021131565 A1 WO 2021131565A1 JP 2020044970 W JP2020044970 W JP 2020044970W WO 2021131565 A1 WO2021131565 A1 WO 2021131565A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
mass
resin
metal
primer
Prior art date
Application number
PCT/JP2020/044970
Other languages
French (fr)
Japanese (ja)
Inventor
亘 冨士川
深澤 憲正
白髪 潤
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2021546763A priority Critical patent/JP7052927B2/en
Priority to CN202080083711.3A priority patent/CN114746270A/en
Priority to KR1020227019882A priority patent/KR20220119375A/en
Publication of WO2021131565A1 publication Critical patent/WO2021131565A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/02Layer formed of wires, e.g. mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0084Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single continuous metallic layer on an electrically insulating supporting structure, e.g. metal foil, film, plating coating, electro-deposition, vapour-deposition

Definitions

  • the present invention relates to a laminate, a printed wiring board, a flexible printed wiring board, an electromagnetic wave shield, and a molded product.
  • FCCL flexible copper-clad laminate
  • a metal thin film is formed on the surface of a polyimide film by a vapor deposition method or a sputtering method, and then an electrolytic plating method, a non-electrolytic plating method, or a combination thereof is performed on the metal thin film.
  • a method for forming copper by a method has been proposed (see, for example, Patent Document 1).
  • Patent Document 1 A method for forming copper by a method has been proposed (see, for example, Patent Document 1).
  • a thin film deposition method or a sputtering method is used to form a metal thin film, a large-scale vacuum facility is required, and there is a problem that the size of the base material is limited in terms of the facility.
  • ABS acrylonitrile-butadiene-styrene copolymers
  • ABS-PC ABS-polycarbonate polymer alloys
  • the base material is not limited to ABS or ABS-PC, and a plating film having excellent adhesion can be obtained even with other types of plastics. It was required to reduce the amount of environmentally hazardous substances used.
  • the problem to be solved by the present invention is that it can be manufactured by a simple method without roughening the surface of the support, and further, even after a long-term heat resistance test, between the support and the metal layer (metal plating layer). It is an object of the present invention to provide a laminated body having excellent adhesion, and a printed wiring board, a flexible printed wiring board and a molded product using the same.
  • the present inventors provided a layer containing a primer resin and silica particles as a primer layer on the support, and formed a metal layer formed of metal particles on the layer. , And found that a laminated body in which metal plating layers are sequentially laminated can solve the above-mentioned problems, and completed the present invention.
  • the present invention is a laminate in which a primer layer (B) and a metal particle layer (C) are sequentially laminated on a support (A), and the primer layer (B) is a primer resin (b1).
  • the present invention provides a laminate characterized by being a layer containing silica particles (b2), a printed wiring board using the same, a flexible printed wiring board, and a molded product.
  • the laminate of the present invention has excellent adhesion between the support and the metal layer (metal plating layer) without roughening the surface of the support. Further, when the metal layer is thinned, it is a laminate having a metal layer having a smooth surface and a sufficiently thin metal layer without using a large-scale vacuum equipment. Further, it is a laminated body having excellent adhesion even after the heat resistance test.
  • the laminate of the present invention has, for example, a printed wiring board, a flexible printed wiring board, a conductive film for a touch panel, a metal mesh for a touch panel, an organic solar cell, an organic EL element, an organic transistor, by patterning a metal layer.
  • a printed wiring board for example, a printed wiring board, a flexible printed wiring board, a conductive film for a touch panel, a metal mesh for a touch panel, an organic solar cell, an organic EL element, an organic transistor, by patterning a metal layer.
  • an RFID such as a non-contact IC card, an electromagnetic wave shield, an LED lighting base material, and an electronic member such as digital signage.
  • FCCL flexible printed wiring board applications
  • electronic members such as connectors for connecting wiring for optical communication, electrical components, electric motor peripheral members, battery members, etc .; decorative parts for automobiles, lamp reflectors, mobile phones, personal computers, mirrors, etc. It can be suitably used for decoration of containers, home appliances, various switches, faucet parts, shower heads, and the like.
  • the laminate of the present invention is a laminate in which a primer layer (B), a metal particle layer (C), and a metal plating layer (D) are sequentially laminated on a support (A), and the primer layer ( B) is a layer containing a primer resin (b1) and silica particles (b2).
  • the laminated body of the present invention may be a laminated body in which a primer layer (B) or the like is sequentially laminated on one side of the support (A), or a primer layer (B) or the like on both sides of the support (A). May be a laminated body in which the above are sequentially laminated.
  • support (A) examples include polyimide, transparent polyimide, polyamideimide, polyamide, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, acrylonitrile-butadiene-styrene (ABS) resin, polymer alloy of ABS and polycarbonate, and poly (A).
  • ABS acrylonitrile-butadiene-styrene
  • Acrylic resin such as methyl acrylate, polytetrafluoroethylene, ethylene tetrafluoroalkyl vinyl ether copolymer, ethylene tetrafluoride-propylene hexafluoride copolymer, ethylene tetrafluoride-ethylene copolymer, foot Vinylene sulfide resin, ethylene trifluoride resin, ethylene trifluoride-ethylene copolymer, ethylene tetrafluoride / perfluorodioxysole copolymer, vinyl fluoride resin, vinylidene polyfluoride, polyvinyl chloride, poly Vinylidene chloride, polyvinyl alcohol, polycarbonate, polyethylene, polypropylene, polyurethane, liquid crystal polymer (LCP), polyether ether ketone (PEEK), polyphenylene sulfide (PPS), polyphenylene sulfide (PPSU), epoxy resin, cellulose nanofibers, silicon, ceramics , A support made of
  • the support (A) may be polyimide, transparent polyimide, polytetrafluoroethylene, tetrafluoroethylene-ethylene copolymer, polyethylene terephthalate, or polyethylenener. It is preferable to use a support made of phthalate, liquid crystal polymer (LCP), polyetheretherketone (PEEK), glass, cellulose nanofibers and the like.
  • LCP liquid crystal polymer
  • PEEK polyetheretherketone
  • the support (A) is preferably a film-shaped or sheet-shaped support having foldable flexibility.
  • the thickness thereof is usually preferably in the range of 1 to 5,000 ⁇ m, more preferably in the range of 1 to 300 ⁇ m, and further in the range of 1 to 200 ⁇ m. preferable.
  • the surface of the support (A) is fine enough not to lose smoothness, if necessary. Concavities and convexities may be formed, stains adhering to the surface thereof may be cleaned, and surface treatment may be performed for the introduction of functional groups such as hydroxyl groups, carbonyl groups, and carboxyl groups. Specific examples thereof include plasma discharge treatment such as corona discharge treatment, dry treatment such as ultraviolet treatment, and wet treatment using an aqueous solution of water, an acid / alkali, or an organic solvent.
  • the primer layer (B) is a layer containing a primer resin (b1) and silica particles (b2).
  • the primer resin (b1) examples include a urethane resin, an acrylic resin, a core-shell type composite resin having a urethane resin as a shell and an acrylic resin as a core, an epoxy resin, an imide resin, an amide resin, a melamine resin, and a phenol resin.
  • examples thereof include blocked isocyanate polyvinyl alcohol and polyvinylpyrrolidone obtained by reacting urea-formaldehyde resin and polyisocyanate with a blocking agent such as phenol.
  • a core-shell type composite resin having a urethane resin as a shell and an acrylic resin as a core can be obtained, for example, by polymerizing an acrylic monomer in the presence of a urethane resin. Further, these resins can be used alone or in combination of two or more.
  • the aminotriazine-modified novolak resin (b1-1) is a novolak resin in which an aminotriazine ring structure and a phenol structure are bonded via a methylene group.
  • the aminotriazine-modified novolac resin (b1-1) includes, for example, aminotriazine compounds such as melamine, benzoguanamine and acetguanamine, phenol compounds such as phenol, cresol, butylphenol, bisphenol A, phenylphenol, naphthol and resorcin, and formaldehyde.
  • the aminotriazine-modified novolak resin (b1-1) preferably has substantially no methylol group. Further, the aminotriazine-modified novolak resin (b1-1) may contain a molecule in which only the aminotriazine structure generated as a by-product during its production is methylene-bonded, a molecule in which only the phenol structure is methylene-bonded, and the like. Absent. In addition, a small amount of unreacted raw material may be included.
  • phenol structure examples include phenol residues, cresol residues, butylphenol residues, bisphenol A residues, phenylphenol residues, naphthol residues, resorcin residues and the like.
  • residue here means a structure in which at least one hydrogen atom bonded to the carbon of the aromatic ring is removed.
  • phenol it means a hydroxyphenyl group.
  • triazine structure examples include structures derived from aminotriazine compounds such as melamine, benzoguanamine, and acetoguanamine.
  • the phenol structure and the triazine structure can be used alone or in combination of two or more. Further, since the adhesion can be further improved, a phenol residue is preferable as the phenol structure, and a melamine-derived structure is preferable as the triazine structure.
  • the hydroxyl value of the aminotriazine-modified novolak resin (b1-1) is preferably in the range of 50 to 200 mgKOH / g, more preferably in the range of 80 to 180 mgKOH / g, and more preferably 100 to 150 mgKOH because the adhesion can be further improved.
  • the / g range is even more preferred.
  • the aminotriazine-modified novolak resin (b1-1) can be used alone or in combination of two or more.
  • an aminotriazine-modified novolac resin (b1-1) is used as the compound (b1) having an aminotriazine ring, it is preferable to use an epoxy resin (b1-2) in combination.
  • Examples of the epoxy resin (b1-2) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, bisphenol A novolac type epoxy resin, and alcohol ether type.
  • Examples thereof include epoxy resins having a derived structure and epoxidized products of fats and oils such as epoxidized soybean oil. These epoxy resins can be used alone or in combination of two or more.
  • epoxy resins (b1-2) bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, bisphenol A can be further improved.
  • Novolak type epoxy resin is preferable, and bisphenol A type epoxy resin is particularly preferable.
  • the epoxy equivalent of the epoxy resin (b1-2) is preferably in the range of 100 to 300 g / equivalent, more preferably in the range of 120 to 250 g / equivalent, and 150 to 200 g / equivalent, because the adhesiveness can be further improved. The range is even more preferred.
  • the primer layer (B) is a layer containing an aminotriazine-modified novolac resin (b1-1) and an epoxy resin (b1-2), the adhesion can be further improved. Therefore, the aminotriazine-modified novolac resin (b1) can be further improved.
  • the molar ratio [(x) / (y)] of the phenolic hydroxyl group (x) in -1) to the epoxy group (y) in the epoxy resin (b1-2) is in the range of 0.1 to 5 or less. Is preferable, the range of 0.2 to 3 or less is more preferable, and the range of 0.3 to 2 is further preferable.
  • a curing accelerator may be used in combination.
  • the curing accelerator include amine compounds having a primary, secondary or tertiary amino group.
  • the amine compound any of an aliphatic, alicyclic, and aromatic compound can be used.
  • the curing accelerator mercaptan, acid anhydride, boron trifluoride, borate ester, organic acid hydrazite, Lewis acid, organic metal compound, onium salt, cationic compound and the like can also be used.
  • silica particles (b2) either natural silica particles produced from natural raw materials or synthetic silica particles produced by chemical synthesis can be used. Further, the silica particles (b2) may be dispersed in water or an organic solvent, or may be used as a slurry or colloidal solution in which silica particles are dispersed in advance.
  • impurities include sodium ion, potassium ion, iron ion, aluminum ion, chloride ion and the like.
  • the silica particles (b2) are not particularly limited, but commercially available products that can be used include, for example, the SFP series and the UFP series (UFP-30, UFP) manufactured by a synthetic method manufactured by Denka Co., Ltd. -40, SFP-20M, SFP-30M, SFP-130MC, SFP-120MC, SFP-120MC, SFP-30MHE, UFP-30HH), FB series manufactured by natural method (FB-5D, FB-8S, FB- 15D, FB-20D, FB-40R); Snowtex series (ST-XS, ST-OXS, ST-NXS, ST-CXS, ST-S), which is a colloidal solution made by Nissan Chemical Co., Ltd. using water as a dispersion medium.
  • ST-OS ST-NS, ST-30, ST-O, ST-N, ST-C, ST-AK, ST-50-T, ST-O-40, ST-CM, ST-30L, ST -OL, ST-AK-L, ST-YL, ST-OYL, ST-AK-YL, ST-ZL, MP-1040, MP-2040, MP-4540M, ST-UP, ST-OUP, ST-PS -S, ST-PS-SO, ST-PS-M, ST-PS-MO), organosilica sol series (methanol silica sol, MA-ST-M, MA-ST-), which is a colloidal solution using an organic solvent as a dispersion medium.
  • organosilica sol series methanol silica sol, MA-ST-M, MA-ST-
  • the silica particles (b2) are provided with dispersibility and affinity with the solvent and the primer resin (b1), and high adhesion with the support and the metal particle layer (C).
  • the surface of the silica particles (b2) is treated with a silane coupling agent for the purpose of treating the silica particles (b2).
  • the silane coupling agent is not particularly limited, and examples thereof include epoxysilane, aminosilane, vinylsilane, and mercaptosilane.
  • a resin may be attached to the surface of the particles (b2). Examples of the resin to be adhered include acrylic resin, epoxy resin, urethane resin, polyester resin and the like, and it is preferable to use the same type of resin as the primer resin (b1).
  • epoxy silane examples include 2- (3,4-epoxide cyclohexyl) ethyltrialkoxymethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxy.
  • silane coupling agents those having an alicyclic structure are preferable, and specifically, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane is preferable.
  • aminosilane examples include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, and 3 -Aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl) -2-aminoethyl Hydrochloride of -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -8-aminooctyltrimethoxysilane, amino group-protected silane coupling agent (for example, "KBE-9103P" manufactured by Shin-Etsu Chemical
  • the vinylsilane refers to a silane compound having a double bond in the present invention.
  • a silane coupling agent having a vinyl group vinyltrimethoxysilane, vinyltriethoxysilane, 7-octenyltrimethoxysilane, and a polyfunctional group type silane coupling having a siloxane chain as the main chain and a plurality of vinyl groups and phenyl groups.
  • examples thereof include agents (for example, "KR-511" manufactured by Shin-Etsu Chemical Industry Co., Ltd.).
  • examples of the silane compound having a double bond include acrylic silane, methacryl silane, and styryl silane.
  • the acrylic silane is 3-acryloxypropyltrimethoxysilane, a polyfunctional group-type silane coupling agent having an organic main chain and a plurality of alkoxysilyl groups and acrylic groups (for example, "X-" manufactured by Shin-Etsu Chemical Industry Co., Ltd. 12-1048 “,” X-12-1050 “, etc.), a polyfunctional group-type alkoxyl coupling agent having a siloxane chain as the main chain and having a plurality of acrylic and methyl groups (for example,” KR-513 "manufactured by Shin-Etsu Chemical Industry Co., Ltd.” "Etc.) and so on.
  • methacrylsilane examples include 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, and 8-methacryloxyoctylrimethoxy.
  • examples thereof include silane and a polyfunctional group-type lancoupling agent having a siloxane chain as the main chain and having a plurality of methacryl groups and methyl groups (for example, "KR-503" manufactured by Shinetsu Chemical Industry Co., Ltd.).
  • styrylsilane examples include P-styryltrimethoxysilane.
  • Examples of the mercaptosilane include 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, and a polyfunctional group-type silane coupling agent having an organic main chain and a plurality of alkoxysilyl groups and mercaptoki groups (for example,). "X-12-1154”, “X-12-1156”, etc.
  • silane coupling agents include, for example, 3-ureidopropyltrialkoxysilane, tris- (trimethoxysilylpropyl) isocyanurate, tris- (triethoxysilylpropyl) isocyanurate, 3-isocyanatopropyltriethoxysilane, 3-.
  • Trimethoxysilylpropyl succinic acid anhydride, a polyfunctional group-type silane coupling agent having an organic main chain and a plurality of alkoxysilyl groups and isocyanate groups for example, "X-12-1159L" manufactured by Shin-Etsu Chemical Industry Co., Ltd.
  • silane coupling agents epoxy silane, amino silane, and methacryl silane are preferable, and epoxy silane is more preferable.
  • the content of the silica particles (b2) in the primer layer (B) is preferably in the range of 1 to 400 parts by mass with respect to 100 parts by mass of the primer resin (b1) because the adhesion can be further improved. Further, since the heat-resistant adhesion after the heat-resistant test can be further improved, the content of the silica particles (b2) in the primer layer (B) is 5 to 200 with respect to 100 parts by mass of the primer resin (b1). The range of parts by mass is preferable, the range of 8 to 100 parts by mass is more preferable, and the range of 10 to 80 parts by mass is further preferable.
  • the average particle size of the silica particles (b2) is preferably in the range of 0.001 to 0.5 ⁇ m, more preferably in the range of 0.01 to 0.1 ⁇ m, and 0. The range of 01 to 0.05 ⁇ m is more preferable.
  • the average particle size in the present invention is a volume average value measured by a dynamic light scattering method obtained by diluting the silica particles (b2) with a good dispersion solvent.
  • the primer composition (b) is used for forming the primer layer (B).
  • the primer composition (b) contains the primer resin (b1) and silica particles (b2), but may further contain a cross-linking agent (b3), if necessary.
  • a cross-linking agent (b3) a polyvalent carboxylic acid is preferable.
  • the polyvalent carboxylic acid include trimellitic anhydride, pyromellitic anhydride, maleic anhydride, succinic acid and the like.
  • These cross-linking agents (b3) can be used alone or in combination of two or more. Further, among these cross-linking agents (b3), trimellitic anhydride is preferable because the adhesion can be further improved.
  • another resin (b4) is blended as a component other than the above components (b1) to (b3), if necessary.
  • the other resin (b4) include urethane resin, acrylic resin, blocked isocyanate resin, melamine resin, and phenol resin. These other resins (b4) can be used alone or in combination of two or more.
  • an organic solvent to the primer composition (b) in order to have a viscosity that makes it easy to apply when the support (A) is coated.
  • the organic solvent include toluene, ethyl acetate, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, isopropyl alcohol, diacetone alcohol, ethylene glycol, toluene and the like. These solvents can be used alone or in combination of two or more.
  • the amount of the organic solvent used is preferably adjusted as appropriate according to the coating method used when coating the support (A), which will be described later, and the desired film thickness of the primer layer (B).
  • primer composition (b) if necessary, known additives such as a film forming aid, a leveling agent, a thickener, a water repellent, an antifoaming agent, and an antioxidant are appropriately added to the primer composition (b). You may.
  • the primer layer (B) is coated with the primer composition (b) on a part or all of the surface of the support (A) to remove the organic solvent contained in the primer composition (b).
  • Examples of the method of applying the primer composition (b) to the surface of the support (A) include a gravure method, a coating method, a screen method, a roller method, a rotary method, a spray method, and a capillary method. Can be mentioned.
  • the primer composition (b) As a method of applying the primer composition (b) to the surface of the support (A) and then removing the organic solvent contained in the coating layer, for example, the primer composition (b) is dried using a dryer and the organic solvent is removed.
  • the method of volatilizing is common.
  • the drying temperature may be set to a temperature within a range in which the organic solvent used can be volatilized and the support (A) is not adversely affected by thermal deformation or the like.
  • the film thickness of the primer layer (B) formed by using the primer composition (b) varies depending on the use of the laminate of the present invention, but the support (A) and the metal particle layer (C) described later
  • the range for further improving the adhesion of the primer layer is preferable, and the film thickness of the primer layer is preferably in the range of 10 nm to 30 ⁇ m, more preferably in the range of 10 nm to 1 ⁇ m, and further preferably in the range of 10 nm to 500 nm.
  • a plasma discharge treatment method such as a corona discharge treatment method, a dry treatment method such as an ultraviolet treatment method, or the like is performed.
  • the surface may be treated by a method, a wet treatment method using water, an acidic or alkaline chemical solution, an organic solvent, or the like.
  • the metal particle layer (C) is formed on the primer layer (B), and examples of the metal constituting the metal particle layer (C) include transition metals or compounds thereof, and among them, ionicity. Transition metals are preferred. Examples of this ionic transition metal include copper, silver, gold, nickel, palladium, platinum, cobalt and the like. Among these, silver is preferable because the metal plating layer (D) is easily formed.
  • Examples of the metal constituting the metal plating layer (D) include copper, gold, silver, nickel, chromium, cobalt, tin and the like. Among these, copper is preferable because a laminate that has low electrical resistance and can be used for a printed wiring board that is resistant to corrosion can be obtained.
  • a primer layer (B) is formed on a support (A), and then a fluid containing metal particles (c) is coated to form the fluid.
  • a method of forming the metal particle layer (C) by removing the organic solvent and the like contained therein by drying and then forming the metal plating layer (D) by electroplating, electroless plating, or both of them can be mentioned. Be done.
  • the shape of the metal particles (c) used for forming the metal particle layer (C) is preferably particulate or fibrous.
  • the size of the metal particles (c) is preferably nano-sized. Specifically, when the metal particles (c) are in the form of particles, a fine conductive pattern can be formed and the resistance value can be further reduced. Therefore, the average particle diameter is preferably in the range of 1 to 100 nm. The range of ⁇ 50 nm is more preferable. This average particle size means the same as that described in the silica particles (b2), but "Nanotrack UPA-150" manufactured by Microtrac Co., Ltd. can be used for the measurement.
  • the diameter of the fibers is preferably in the range of 5 to 100 nm or less, and is preferably 5 to 50 nm. It is more preferable that the range is less than or equal to the range of.
  • the fiber length is preferably in the range of 0.1 to 100 ⁇ m or less, more preferably in the range of 0.1 to 30 ⁇ m.
  • the content of the metal particles (c) in the fluid is preferably in the range of 1 to 90% by mass, more preferably in the range of 1 to 60% by mass, and even more preferably in the range of 1 to 10% by mass.
  • the components that may be blended in the fluid include a dispersant and a solvent for dispersing the metal particles (c) in a solvent, and if necessary, a surfactant, a leveling agent, and a viscosity modifier described later. , Film forming aids, antifoaming agents, preservatives and the like.
  • a dispersant In order to disperse the metal particles (c) in a solvent, it is preferable to use a dispersant.
  • the dispersant include dodecanethiol, 1-octanethiol, triphenylphosphine, dodecylamine, polyethylene glycol, polyvinylpyrrolidone, polyethyleneimine, polyvinylpyrrolidone; fatty acids such as myristic acid, octanoic acid and stearic acid; Examples thereof include polycyclic hydrocarbon compounds having a carboxyl group such as glycyrrhizic acid and avietic acid.
  • the polymer dispersant is preferable because the adhesion between the metal particle layer (C) and the metal plating layer (D) described later can be improved by making the metal particle layer (C) porous.
  • the polymer dispersant polyalkyleneimine such as polyethyleneimine and polypropyleneimine, a compound in which polyoxyalkylene is added to the polyalkyleneimine, a urethane resin, an acrylic resin, a urethane resin, and a phosphoric acid group in the acrylic resin. Examples thereof include compounds containing.
  • the dispersant in the metal particle layer (C) is removed to make it porous as compared with the low molecular weight dispersant, and the void size thereof is obtained. Can be increased, and voids having a size of nano-order to sub-micron order can be formed.
  • the gap is easily filled with the metal constituting the metal plating layer (D) described later, and the filled metal serves as an anchor to improve the adhesion between the metal particle layer (C) and the metal plating layer (D) described later. It can be greatly improved.
  • the amount of the dispersant used to disperse the metal particles (c) is preferably in the range of 0.01 to 50 parts by mass, preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the metal particles (c). The range of parts is more preferable.
  • the dispersant is removed by firing to form the porous metal layer (C).
  • the range of 0.1 to 10 parts by mass is preferable, and the range of 0.1 to 5 parts by mass is more preferable with respect to the range of 100 parts by mass of the metal particles (c).
  • an aqueous medium or an organic solvent can be used as the solvent used for the fluid.
  • the aqueous medium include distilled water, ion-exchanged water, pure water, ultrapure water, and the like.
  • the organic solvent include alcohol compounds, ether compounds, ester compounds, ketone compounds and the like.
  • Examples of the alcohol compound include methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, isobutyl alcohol, sec-butanol, tert-butanol, heptanol, hexanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, and the like.
  • ethylene glycol, diethylene glycol, 1,3-butanediol, isoprene glycol and the like can be used as the fluid, if necessary.
  • a general surfactant can be used, for example, di-2-ethylhexyl sulfosuccinate, dodecylbenzene sulfonate, alkyldiphenyl ether disulfonate, alkylnaphthalene sulfonate, hexametaphosphate.
  • Examples include salt.
  • leveling agent a general leveling agent can be used, and examples thereof include silicone-based compounds, acetylenediol-based compounds, and fluorine-based compounds.
  • a general thickener can be used as the viscosity modifier.
  • an acrylic polymer or synthetic rubber latex that can be thickened by adjusting to alkaline, or a urethane that can be thickened by associating molecules.
  • examples thereof include resins, hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, polyvinyl alcohol, water-added castor oil, amido wax, polyethylene oxide, metal soap, dibenzylidene sorbitol and the like.
  • a general film-forming auxiliary can be used, for example, an anionic surfactant (such as dioctylsulfosuccinate sodium salt) and a hydrophobic nonionic surfactant (sorbitan monooleate). Etc.), polyether-modified siloxane, silicone oil, etc.
  • anionic surfactant such as dioctylsulfosuccinate sodium salt
  • hydrophobic nonionic surfactant sorbitan monooleate
  • Etc. polyether-modified siloxane
  • silicone oil etc.
  • a general defoaming agent can be used, and examples thereof include silicone-based defoaming agents, nonionic-based surfactants, polyethers, higher alcohols, and polymer-based surfactants.
  • preservative general preservatives can be used, and examples thereof include isothiazoline-based preservatives, triazine-based preservatives, imidazole-based preservatives, pyridine-based preservatives, azole-based preservatives, and pyrithion-based preservatives. Can be mentioned.
  • the viscosity of the fluid (value measured using a B-type viscometer at 25 ° C.) is preferably in the range of 0.1 to 500,000 mPa ⁇ s, more preferably in the range of 0.2 to 10,000 mPa ⁇ s. .. Further, when the fluid is coated (printed) by a method such as an inkjet printing method or letterpress reverse printing described later, its viscosity is preferably in the range of 5 to 20 mPa ⁇ s.
  • Examples of the method of coating or printing the fluid on the primer layer (B) include an inkjet printing method, a reverse printing method, a screen printing method, an offset printing method, a gravure printing method, a flexo printing method, and pad printing. Examples thereof include a method, a spin coating method, a spray coating method, a bar coating method, a die coating method, a slit coating method, a roll coating method, a dip coating method, a rotary coating method, and a capillary coating method.
  • Mass per unit area of the metal particle layer (C) is preferably in the range of 1 ⁇ 30,000mg / m 2, the range of 1 ⁇ 5,000mg / m 2 is preferred.
  • the thickness of the metal particle layer (C) can be adjusted by controlling the treatment time, the current density, the amount of the plating additive used, and the like in the plating treatment step when the metal plating layer (D) is formed.
  • the metal-plated layer (D) constituting the laminate of the present invention is reliable, for example, when the laminate is used for a printed wiring board or the like, it can maintain good electrical conductivity without causing disconnection or the like for a long period of time. It is a layer provided for the purpose of forming a wiring pattern having high performance.
  • the metal plating layer (D) is a layer formed on the metal particle layer (C), and as a method for forming the metal particle layer (C), a method of forming by a plating treatment is preferable.
  • this plating treatment include wet plating methods such as an electrolytic plating method and a non-electrolytic plating method that can easily form the metal plating layer (D). Moreover, you may combine two or more of these plating methods.
  • the metal plating layer (D) may be formed by performing electrolytic plating after electroplating.
  • a metal such as copper contained in the electroless plating solution is precipitated by bringing the electroless plating solution into contact with the metal constituting the metal particle layer (C) to form a metal film.
  • This is a method of forming an electroless plating layer (coating) composed of.
  • Examples of the electroless plating solution include those containing a metal such as copper, silver, gold, nickel, chromium, cobalt, and tin, a reducing agent, and a solvent such as an aqueous medium and an organic solvent.
  • reducing agent examples include dimethylaminoborane, hypophosphoric acid, sodium hypophosphate, dimethylamine borane, hydrazine, formaldehyde, sodium borohydride, phenol and the like.
  • monocarboxylic acids such as acetic acid and formic acid
  • dicarboxylic acid compounds such as malonic acid, succinic acid, adipic acid, maleic acid and fumaric acid
  • malic acid lactic acid and glycol
  • Hydroxycarboxylic acid compounds such as acid, gluconic acid and citric acid; amino acid compounds such as glycine, alanine, iminodiacetic acid, arginine, aspartic acid and glutamate; Contains an organic acid such as an aminopolycarboxylic acid compound, or a complexing agent such as a soluble salt of these organic acids (sodium salt, potassium salt, ammonium salt, etc.), an amine compound such as ethylenediamine, diethylenetriamine, triethylenetetramine, etc. Can be used.
  • the metal constituting the metal particle layer (C) or the surface of the electroless plating layer (film) formed by the electroless treatment is energized in a state where the electrolytic plating solution is in contact with the surface.
  • the metal such as copper contained in the electroplating solution is placed on the cathode of the metal particles (c) constituting the metal particle layer (C) or the electroless plating layer formed by the electroless treatment.
  • This is a method of forming an electrolytic plating layer (metal film) by precipitating it on the surface of the (film).
  • Examples of the electrolytic plating solution include those containing a sulfide of a metal such as copper, nickel, chromium, cobalt, and tin, sulfuric acid, and an aqueous medium. Specific examples thereof include those containing copper sulfate, sulfuric acid, and an aqueous medium.
  • the electroless plating solution and the electrolytic plating solution are preferably used in the range of 20 to 98 ° C.
  • the metal plating layer (D) As a method for forming the metal plating layer (D), since it is easy to control the film thickness of the metal plating layer (D) to a desired film thickness from a thin film to a thick film, after electroplating, the metal plating layer (D) is formed.
  • the method of performing electrolytic plating is preferable.
  • the film thickness of the metal plating layer (D) is preferably 1 ⁇ m or more and 50 ⁇ m or less.
  • the film thickness of the metal plating layer (D) is adjusted by controlling the treatment time, the current density, the amount of the plating additive used, etc. in the plating treatment step when the metal plating layer (D) is formed. Can be done.
  • Examples of the patterning method of the metal plating layer (D) include a photolithography etching method such as a subtractive method and a semi-additive method, and a method of plating on a printing pattern of the metal particle layer (C).
  • an etching resist layer having a shape corresponding to a desired pattern shape is formed on the metal plating layer (D) constituting the laminated body of the present invention manufactured in advance, and a subsequent development process is performed.
  • This is a method of forming a desired pattern by dissolving and removing the metal plating layer (D) and the metal particle layer (C) of the portion from which the resist has been removed with a chemical solution.
  • a chemical solution a chemical solution containing copper chloride, iron chloride or the like can be used.
  • the primer layer (B) and the metal particle layer (C) are formed on the support (A), surface treatment is performed as necessary, and then the surface thereof is desired.
  • a plating resist layer having a shape corresponding to the above pattern was formed, and then the metal plating layer (D) was formed by an electroless plating method, an electrolytic plating method, or a combination thereof, and then contacted with the plating resist layer.
  • the method of plating on the printing pattern of the metal particle layer (C) is such that the metal is plated on the primer layer (B) formed on the support (A) by an inkjet method, a reverse printing method or the like.
  • the surface of the formed metal particle layer (C) is subjected to an electroless plating method, an electrolytic plating method, or an electrolytic plating method. It is a method of forming a desired pattern by forming the metal plating layer (D) by a combination thereof.
  • the laminate of the present invention obtained as described above is obtained by patterning a metal layer, for example, a printed wiring board, a flexible printed wiring board, a conductive film for a touch panel, a metal mesh for a touch panel, an organic solar cell, and an organic EL.
  • a metal layer for example, a printed wiring board, a flexible printed wiring board, a conductive film for a touch panel, a metal mesh for a touch panel, an organic solar cell, and an organic EL.
  • a metal layer for example, a printed wiring board, a flexible printed wiring board, a conductive film for a touch panel, a metal mesh for a touch panel, an organic solar cell, and an organic EL.
  • a metal layer for example, a printed wiring board, a flexible printed wiring board, a conductive film for a touch panel, a metal mesh for a touch panel, an organic solar cell, and an organic EL.
  • It can be suitably used as an element, an organic transistor, an RFID such as a non-
  • a polyester polyol (a polyester polyol obtained by reacting 1,4-cyclohexanedimethanol, neopentyl glycol, and adipic acid) in a nitrogen-substituted container equipped with a thermometer, a nitrogen gas introduction tube, and a stirrer.
  • aqueous dispersion of% urethane resin was obtained.
  • the weight average molecular weight of the urethane resin was 53,000.
  • a monomer mixture consisting of 60 parts by mass of methyl methacrylate, 30 parts by mass of n-butyl acrylate and 10 parts by mass of Nn-butoxymethylacrylamide and ammonium persulfate under stirring. 20 parts by mass of an aqueous solution (concentration: 0.5% by mass) was added dropwise from separate dropping funnels over 120 minutes while maintaining the temperature inside the reaction vessel at 80 ⁇ 2 ° C. for polymerization.
  • the mixture was stirred at the same temperature for 60 minutes to obtain a urethane-acrylic composite resin composed of the urethane resin shell layer and the acrylic resin core layer.
  • aminotriazine-modified novolak resin 65 parts by mass of aminotriazine-modified novolak resin and 35 parts by mass of epoxy resin (“EPICLON 850-S” manufactured by DIC Co., Ltd .; bisphenol A type epoxy resin, epoxy group equivalent 188 g / equivalent) are mixed, and then non-volatile with methyl ethyl ketone.
  • a mixed resin solution of an aminotriazine-modified novolak resin and an epoxy resin was obtained by diluting the mixture so as to have a content of 2% by mass and mixing uniformly.
  • the mixture was stirred at 50 ° C. for 24 hours. Then, the mixture was cooled to 30 ° C., diluted with isopropyl alcohol so that the non-volatile content was 2% by mass, and mixed uniformly to obtain a dispersion liquid of silica particles (1).
  • the silane coupling agent used in Production Example 5 is a silane coupling agent containing an epoxy group (“KBM-303” manufactured by Shin-Etsu Chemical Co., Ltd., 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, non-volatile.
  • KBM-303 manufactured by Shin-Etsu Chemical Co., Ltd.
  • 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane non-volatile.
  • a dispersion of silica particles (2) having a non-volatile content of 2% by mass was obtained by the same method except that the content was changed to 100% by mass.
  • the silane coupling agent used in Production Example 5 is a silane coupling agent containing an amino group (“KBM-573” manufactured by Shin-Etsu Chemical Co., Ltd., N-phenyl-3-aminopropyltrimethoxysilane, non-volatile content 100 mass). %) was used in the same manner to obtain a dispersion of silica particles (3) having a non-volatile content of 2% by mass.
  • KBM-573 manufactured by Shin-Etsu Chemical Co., Ltd., N-phenyl-3-aminopropyltrimethoxysilane, non-volatile content 100 mass.
  • the silane coupling agent used in Production Example 5 is a silane coupling agent containing a methacryl group (“KBE-502” manufactured by Shin-Etsu Chemical Co., Ltd., 3-methacryloxypropylmethyldiethoxysilane, non-volatile content 100% by mass).
  • KBE-502 manufactured by Shin-Etsu Chemical Co., Ltd., 3-methacryloxypropylmethyldiethoxysilane, non-volatile content 100% by mass.
  • a dispersion of silica particles (4) having a non-volatile content of 2% by mass was obtained by the same method except that the mixture was changed to.
  • Preparation Example 4 Preparation of Primer Composition (4)
  • Preparation Example 8 Preparation of Primer Composition (R1)
  • the mixed resin solution of the aminotriazine-modified novolac resin and the epoxy resin having a non-volatile content of 2% by mass obtained in Production Example 3 was used as the primer composition (R1) without adding the silica particle dispersion.
  • Preparation Example 9 Preparation of Primer Composition (R2)
  • Silica particle dispersion (“Snowtex-OL” manufactured by Nissan Chemical Co., Ltd .; average particle diameter 45 nm, non-volatile content 20% by mass) is diluted with isopropyl alcohol so as to have a non-volatile content of 2% by mass, and treated with a silane coupling agent. 75 parts by mass of untreated silica particles were prepared. These silica particles are added to 100 parts by mass of a mixed resin solution of an aminotriazine-modified novolac resin and an epoxy resin having a non-volatile content of 2% by mass obtained in Production Example 3 and mixed for 30 minutes for use as a primer composition (R2). There was.
  • Example 1 On the surface of a polyimide film (“Kapton 50EN-C” manufactured by Toray DuPont Co., Ltd .; thickness 12.5 ⁇ m), the primer composition (1) obtained in Preparation Example 1 was applied to a desktop compact coater (RK print coat instrument). Using a "K printing loafer” manufactured by the same company, the coating was applied so that the thickness after drying was 100 nm. Then, a primer layer was formed on the surface of the polyimide film by drying at 150 ° C. for 5 minutes using a hot air dryer.
  • the fluid (1) obtained above was coated on the surface of the primer layer formed above using a bar coater. Then, by drying at 200 ° C. for 5 minutes, a silver layer (thickness 100 nm) corresponding to the metal particle layer (C) was formed.
  • the silver layer obtained above is set on the cathode side, phosphorus-containing copper is set on the anode side, and electroplating is performed for 30 minutes at a current density of 2.5 A / dm 2 using an electrolytic plating solution containing copper sulfate.
  • a copper plating layer (thickness 15 ⁇ m) by electroplating was formed on the surface of the copper plating layer by electroless copper plating.
  • the electrolytic plating solution 70 g / L of copper sulfate, 200 g / L of sulfuric acid, 50 mg / L of chloride ion, and 5 ml / L of an additive (“Top Lucina SF-M” manufactured by Okuno Pharmaceutical Co., Ltd.) were used.
  • the combination of the copper plating layer by electrolytic copper plating and the copper plating layer by electrolytic copper plating formed on the copper plating layer corresponds to the metal plating layer (D).
  • a laminate (1) in which a support (A), a primer layer (B), a metal particle layer (C), and a metal plating layer (D) were sequentially laminated was obtained.
  • Example 1 Comparative Examples 1 and 2
  • the laminate (1) was prepared by the same method as in Example 1 except that the primer composition (1) used in Example 1 was changed to the primer compositions (2) to (7), (R1) or (R2). 2) to (7), (R1) and (R2) were obtained.
  • the retention rate before and after heating was calculated, and the heat resistance was evaluated according to the following criteria.
  • Table 1 shows the composition of the primer compositions used in Examples 1 to 7, the measurement results of the peel strength before and after heating, and the evaluation results of adhesion and heat resistance.
  • the composition of the primer composition shows only the non-volatile content.
  • the laminates (1) to (7) obtained in Examples 1 to 7, which are the laminates of the present invention had high initial (before heating) peel strength and excellent adhesion.
  • the peel strength was slightly reduced after the heat resistance test at 150 ° C. for 300 hours, and the heat resistance and adhesion were excellent.
  • the laminate (R1) obtained in Comparative Example 1 is an example using a primer layer containing no silica particles, and although the initial (before heating) peel strength is relatively high, it is at 150 ° C. for 300 hours. It was confirmed that the peel strength after the heat resistance test was significantly reduced and the heat resistance was inferior.
  • the laminate (R2) obtained in Comparative Example 2 is an example in which a primer layer containing silica particles not treated with a silane coupling agent is used, but the initial (before heating) peeling strength is low. As a result, the retention rate of the peel strength after the heat resistance test at 150 ° C. for 300 hours was high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Laminated Bodies (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

The present invention provides: a multilayer body which is able to be produced by a simple method without roughening the surface of a support, while exhibiting excellent adhesion between the support and a metal layer (a metal plating layer) even after a long-term heat resistance test; and a printed wiring board, a flexible printed wiring board and a molded article, each of which uses this multilayer body. The present invention uses a multilayer body which is obtained by sequentially superposing a primer layer (B) and a metal particle layer (C) on a support (A), and which is characterized in that the primer layer (B) contains a primer resin (b1) and silica particles (b2) that are treated with a silane coupling agent.

Description

積層体、プリント配線板、フレキシブルプリント配線板、電磁波シールド及び成形品Laminates, printed wiring boards, flexible printed wiring boards, electromagnetic wave shields and molded products
 本発明は、積層体、プリント配線板、フレキシブルプリント配線板、電磁波シールド及び成形品に関する。 The present invention relates to a laminate, a printed wiring board, a flexible printed wiring board, an electromagnetic wave shield, and a molded product.
 電子機器の小型化、高速化により、プリント配線基板の高密度化、高性能化が要求されており、この要求に応えるため、表面が平滑で充分薄い導電層(金属層)を有するプリント配線板が求められている。また、このプリント配線基板を構成するものとしてフレキシブル銅張積層板(以下、「FCCL」と略記する。)が知られている。FCCLは、主に耐熱性高分子フィルムと銅箔とを積層する方法で製造されている。 Due to the miniaturization and speeding up of electronic devices, high density and high performance of printed wiring boards are required. To meet these demands, printed wiring boards having a smooth surface and a sufficiently thin conductive layer (metal layer). Is required. Further, a flexible copper-clad laminate (hereinafter, abbreviated as "FCCL") is known as a component of this printed wiring board. FCCL is mainly produced by a method of laminating a heat-resistant polymer film and a copper foil.
 しかし、この銅箔を用いたFCCLでは、ロール状に巻かれた銅箔を引き出しながら絶縁性高分子フィルムと張り合わせる、あるいは絶縁性高分子の溶液を塗工することから、取り扱い上、銅箔は充分に薄くすることができない。さらに、高分子フィルムとの密着性を高めるため、銅箔表面を粗化する必要があるので、プリント配線板の高密度化、高性能化を図るために必要な高周波数(GHz帯域)、高伝送速度(数十Gbps)領域で伝送損失を生じる問題があった。 However, in FCCL using this copper foil, the copper foil wound in a roll shape is pulled out and attached to the insulating polymer film, or a solution of the insulating polymer is applied, so that the copper foil is easy to handle. Cannot be thin enough. Furthermore, since it is necessary to roughen the surface of the copper foil in order to improve the adhesion with the polymer film, the high frequency (GHz band) and high required for increasing the density and performance of the printed wiring board. There is a problem that transmission loss occurs in the transmission speed (several tens of Gbps) region.
 ここで、FCCLの銅層を薄膜化する方法として、ポリイミドフィルムの表面に金属薄膜を蒸着法又はスパッタ法により形成した後、その金属薄膜上に電解めっき法、無電解めっき法もしくは両者を組み合わせた方法で銅を形成する方法が提案されている(例えば、特許文献1参照。)。しかしながら、この方法では、金属薄膜を形成するために、蒸着法又はスパッタ法を用いるため、大がかりな真空設備が必要となり、設備上、基材サイズが限定されるなどの問題があった。 Here, as a method of thinning the copper layer of FCCL, a metal thin film is formed on the surface of a polyimide film by a vapor deposition method or a sputtering method, and then an electrolytic plating method, a non-electrolytic plating method, or a combination thereof is performed on the metal thin film. A method for forming copper by a method has been proposed (see, for example, Patent Document 1). However, in this method, since a thin film deposition method or a sputtering method is used to form a metal thin film, a large-scale vacuum facility is required, and there is a problem that the size of the base material is limited in terms of the facility.
 そこで、銅箔等の金属層の表面を粗化することなく、高分子フィルム等の支持体と充分な密着性を有し、またその金属層の形成に際して、大がかりな真空設備を必要とせず、簡便な方法で製造できる積層体が求められていた。 Therefore, it has sufficient adhesion to a support such as a polymer film without roughening the surface of a metal layer such as a copper foil, and does not require a large-scale vacuum equipment for forming the metal layer. There has been a demand for a laminate that can be produced by a simple method.
 また従来、プラスチック成形品への装飾めっきとしては、携帯電話、パソコン、鏡、容器、各種スイッチ、シャワーヘッド等に用いられてきた。これらの用途の支持体は、アクリロニトリル-ブタジエン-スチレン共重合体(以下、「ABS」と略記する。)やABSとポリカーボネートとのポリマーアロイ(以下、「ABS-PC」と略記する。)にのみ限定されてきた。この理由として、基材とめっき膜の密着性を確保するため基材表面を粗化する必要があり、例えばABSであれば、ポリブタジエン成分を六価クロム酸、過マンガン酸塩等の強力な酸化剤でエッチングし、除去することで表面粗化が可能である。しかしながら、六価クロム酸などは、環境負荷物質であるため、使用しないことが好ましく、代替方法が開発されてきた(例えば、特許文献2参照。)。 Conventionally, as decorative plating on plastic molded products, it has been used for mobile phones, personal computers, mirrors, containers, various switches, shower heads, and the like. Supports for these applications are limited to acrylonitrile-butadiene-styrene copolymers (hereinafter abbreviated as "ABS") and ABS-polycarbonate polymer alloys (hereinafter abbreviated as "ABS-PC"). Has been limited. The reason for this is that it is necessary to roughen the surface of the base material in order to ensure the adhesion between the base material and the plating film. For example, in the case of ABS, the polybutadiene component is strongly oxidized with hexavalent chromic acid, permanganate, etc. The surface can be roughened by etching with an agent and removing it. However, since hexavalent chromic acid and the like are environmentally hazardous substances, it is preferable not to use them, and alternative methods have been developed (see, for example, Patent Document 2).
 このように、プラスチック成形品への装飾などを目的としためっきでは、基材がABS又はABS-PCに限定されることなく、他の種類のプラスチックでも密着性に優れるめっき膜が得られ、また環境負荷物質の使用量を低減することが求められていた。 As described above, in the plating for the purpose of decorating a plastic molded product, the base material is not limited to ABS or ABS-PC, and a plating film having excellent adhesion can be obtained even with other types of plastics. It was required to reduce the amount of environmentally hazardous substances used.
特開2015-118044号公報Japanese Unexamined Patent Publication No. 2015-118044 特許第5830807号公報Japanese Patent No. 5830807
 本発明が解決しようとする課題は、支持体表面を粗化することなく、簡便な方法で製造でき、さらに、長期耐熱性試験後にも、支持体と金属層(金属めっき層)との間の密着性に優れた積層体、並びにそれを用いたプリント配線板、フレキシブルプリント配線板及び成形品を提供することである。 The problem to be solved by the present invention is that it can be manufactured by a simple method without roughening the surface of the support, and further, even after a long-term heat resistance test, between the support and the metal layer (metal plating layer). It is an object of the present invention to provide a laminated body having excellent adhesion, and a printed wiring board, a flexible printed wiring board and a molded product using the same.
 本発明者らは、上記の課題を解決するため鋭意研究した結果、支持体上に、プライマー層として、プライマー樹脂及びシリカ粒子を含有する層を設け、その上に金属粒子により形成した金属層と、金属めっき層とを順次積層した積層体が上記課題を解決できることを見出し、本発明を完成させた。 As a result of diligent research to solve the above problems, the present inventors provided a layer containing a primer resin and silica particles as a primer layer on the support, and formed a metal layer formed of metal particles on the layer. , And found that a laminated body in which metal plating layers are sequentially laminated can solve the above-mentioned problems, and completed the present invention.
 すなわち、本発明は、支持体(A)の上に、プライマー層(B)及び金属粒子層(C)が順次積層された積層体であって、前記プライマー層(B)がプライマー樹脂(b1)及びシリカ粒子(b2)を含有する層であることを特徴とする積層体、それを用いたプリント配線板、フレキシブルプリント配線板及び成形品を提供するものである。 That is, the present invention is a laminate in which a primer layer (B) and a metal particle layer (C) are sequentially laminated on a support (A), and the primer layer (B) is a primer resin (b1). The present invention provides a laminate characterized by being a layer containing silica particles (b2), a printed wiring board using the same, a flexible printed wiring board, and a molded product.
 本発明の積層体は、支持体表面を粗化しなくても、支持体と金属層(金属めっき層)との間の密着性に優れたものである。また、その金属層の薄膜化に際して、大がかりな真空設備を用いなくても、表面が平滑で充分薄い金属層を有する積層体である。さらに、耐熱性試験後にも、優れた密着力を有する積層体である。 The laminate of the present invention has excellent adhesion between the support and the metal layer (metal plating layer) without roughening the surface of the support. Further, when the metal layer is thinned, it is a laminate having a metal layer having a smooth surface and a sufficiently thin metal layer without using a large-scale vacuum equipment. Further, it is a laminated body having excellent adhesion even after the heat resistance test.
 また、本発明の積層体は、金属層をパターニングすることにより、例えば、プリント配線板、フレキシブルプリント配線板、タッチパネル向け導電性フィルム、タッチパネル用メタルメッシュ、有機太陽電池、有機EL素子、有機トランジスタ、非接触ICカード等のRFID、電磁波シールド、LED照明基材、デジタルサイネージなどの電子部材として好適に用いることができる。特に、FCCL等のフレキシブルプリント配線板用途に最適である。 Further, the laminate of the present invention has, for example, a printed wiring board, a flexible printed wiring board, a conductive film for a touch panel, a metal mesh for a touch panel, an organic solar cell, an organic EL element, an organic transistor, by patterning a metal layer. It can be suitably used as an RFID such as a non-contact IC card, an electromagnetic wave shield, an LED lighting base material, and an electronic member such as digital signage. In particular, it is most suitable for flexible printed wiring board applications such as FCCL.
 また、成形品へ適用することにより、光通信等の配線を接続するコネクター、電装部材、電気モーター周辺部材、電池部材などの電子部材;自動車用装飾部品、ランプリフレクター、携帯電話、パソコン、鏡、容器、家電、各種スイッチ、水栓部品、シャワーヘッド、などの装飾に好適に用いることができる。 In addition, by applying it to molded products, electronic members such as connectors for connecting wiring for optical communication, electrical components, electric motor peripheral members, battery members, etc .; decorative parts for automobiles, lamp reflectors, mobile phones, personal computers, mirrors, etc. It can be suitably used for decoration of containers, home appliances, various switches, faucet parts, shower heads, and the like.
 本発明の積層体は、支持体(A)の上に、プライマー層(B)、金属粒子層(C)及び金属めっき層(D)が順次積層された積層体であって、前記プライマー層(B)が、プライマー樹脂(b1)及びシリカ粒子(b2)を含有する層であるものである。 The laminate of the present invention is a laminate in which a primer layer (B), a metal particle layer (C), and a metal plating layer (D) are sequentially laminated on a support (A), and the primer layer ( B) is a layer containing a primer resin (b1) and silica particles (b2).
 本発明の積層体は、前記支持体(A)の片面に、プライマー層(B)等を順次積層した積層体であってもよく、前記支持体(A)の両面にプライマー層(B)等を順次積層した積層体であってもよい。 The laminated body of the present invention may be a laminated body in which a primer layer (B) or the like is sequentially laminated on one side of the support (A), or a primer layer (B) or the like on both sides of the support (A). May be a laminated body in which the above are sequentially laminated.
 前記支持体(A)としては、例えば、ポリイミド、透明ポリイミド、ポリアミドイミド、ポリアミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、ABSとポリカーボネートとのポリマーアロイ、ポリ(メタ)アクリル酸メチル等のアクリル樹脂、ポリテトラフルオロエチレン、四フッ化エチレンパーフルオロアルキルビニルエーテル共重合体、四フッ化エチレンー六フッ化プロピレン共重合体、四フッ化エチレンーエチレン共重合体、フッ化ビニリデン樹脂、三フッ化塩化エチレン樹脂、三フッ化塩化エチレンーエチレン共重合体、四フッ化エチレン・パーフルオロジオキシソール共重合体、フッ化ビニル樹脂、ポリフッ化ビニリデン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリカーボネート、ポリエチレン、ポリプロピレン、ポリウレタン、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンスルフィド(PPS)、ポリフェニレンスルホン(PPSU)、エポキシ樹脂、セルロースナノファイバー、シリコン、セラミックス、ガラス等からなる支持体、それらからなる多孔質の支持体、鋼板、銅等の金属からなる支持体、それらの表面をシリコンカーバイド、ダイヤモンドライクカーボン、アルミニウム、銅、チタン等を蒸着処理した支持体などが挙げられる。 Examples of the support (A) include polyimide, transparent polyimide, polyamideimide, polyamide, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, acrylonitrile-butadiene-styrene (ABS) resin, polymer alloy of ABS and polycarbonate, and poly (A). Meta) Acrylic resin such as methyl acrylate, polytetrafluoroethylene, ethylene tetrafluoroalkyl vinyl ether copolymer, ethylene tetrafluoride-propylene hexafluoride copolymer, ethylene tetrafluoride-ethylene copolymer, foot Vinylene sulfide resin, ethylene trifluoride resin, ethylene trifluoride-ethylene copolymer, ethylene tetrafluoride / perfluorodioxysole copolymer, vinyl fluoride resin, vinylidene polyfluoride, polyvinyl chloride, poly Vinylidene chloride, polyvinyl alcohol, polycarbonate, polyethylene, polypropylene, polyurethane, liquid crystal polymer (LCP), polyether ether ketone (PEEK), polyphenylene sulfide (PPS), polyphenylene sulfide (PPSU), epoxy resin, cellulose nanofibers, silicon, ceramics , A support made of glass, etc., a porous support made of them, a steel plate, a support made of metal such as copper, and a support whose surface is vapor-deposited with silicon carbide, diamond-like carbon, aluminum, copper, titanium, etc. The body etc. can be mentioned.
 また、本発明の積層体をプリント配線板等に用いる場合は、前記支持体(A)として、ポリイミド、透明ポリイミド、ポリテトラフルオロエチレン、四フッ化エチレンーエチレン共重合体、ポリエチレンテレフタレート、ポリエチレンナフタレート、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ガラス、セルロースナノファイバーなどからなる支持体を用いることが好ましい。 When the laminate of the present invention is used for a printed wiring board or the like, the support (A) may be polyimide, transparent polyimide, polytetrafluoroethylene, tetrafluoroethylene-ethylene copolymer, polyethylene terephthalate, or polyethylenener. It is preferable to use a support made of phthalate, liquid crystal polymer (LCP), polyetheretherketone (PEEK), glass, cellulose nanofibers and the like.
 さらに、本発明の積層体をフレキシブルプリント配線板等に用いる場合は、前記支持体(A)として、折り曲げ可能な柔軟性を有するフィルム状又はシート状の支持体が好ましい。 Further, when the laminate of the present invention is used for a flexible printed wiring board or the like, the support (A) is preferably a film-shaped or sheet-shaped support having foldable flexibility.
 前記支持体(A)の形状がフィルム状又はシート状の場合、その厚さは、通常、1~5,000μmの範囲が好ましく、1~300μmの範囲がより好ましく、1~200μmの範囲がさらに好ましい。 When the shape of the support (A) is a film or a sheet, the thickness thereof is usually preferably in the range of 1 to 5,000 μm, more preferably in the range of 1 to 300 μm, and further in the range of 1 to 200 μm. preferable.
 また、前記支持体(A)と後述するプライマー層(B)との密着性をより向上できることから、必要に応じて、前記支持体(A)の表面に、平滑性を失わない程度の微細な凹凸を形成したり、その表面に付着した汚れを洗浄したり、ヒドロキシル基、カルボニル基、カルボキシル基等の官能基の導入のために表面処理したりしてもよい。具体的には、コロナ放電処理等のプラズマ放電処理、紫外線処理等の乾式処理、水、酸・アルカリ等の水溶液又は有機溶剤等を用いる湿式処理等の方法が挙げられる。 Further, since the adhesion between the support (A) and the primer layer (B) described later can be further improved, the surface of the support (A) is fine enough not to lose smoothness, if necessary. Concavities and convexities may be formed, stains adhering to the surface thereof may be cleaned, and surface treatment may be performed for the introduction of functional groups such as hydroxyl groups, carbonyl groups, and carboxyl groups. Specific examples thereof include plasma discharge treatment such as corona discharge treatment, dry treatment such as ultraviolet treatment, and wet treatment using an aqueous solution of water, an acid / alkali, or an organic solvent.
 前記プライマー層(B)は、プライマー樹脂(b1)及びシリカ粒子(b2)を含有する層である。 The primer layer (B) is a layer containing a primer resin (b1) and silica particles (b2).
 前記プライマー樹脂(b1)としては、例えば、ウレタン樹脂、アクリル樹脂、ウレタン樹脂をシェルとしアクリル樹脂をコアとするコア・シェル型複合樹脂、エポキシ樹脂、イミド樹脂、アミド樹脂、メラミン樹脂、フェノール樹脂、尿素ホルムアルデヒド樹脂、ポリイソシアネートにフェノール等のブロック化剤を反応させて得られたブロックイソシアネートポリビニルアルコール、ポリビニルピロリドン等が挙げられる。なお、ウレタン樹脂をシェルとしアクリル樹脂をコアとするコア・シェル型複合樹脂は、例えば、ウレタン樹脂存在下でアクリル単量体を重合することにより得られる。また、これらの樹脂は、1種で用いることも2種以上併用することもできる。 Examples of the primer resin (b1) include a urethane resin, an acrylic resin, a core-shell type composite resin having a urethane resin as a shell and an acrylic resin as a core, an epoxy resin, an imide resin, an amide resin, a melamine resin, and a phenol resin. Examples thereof include blocked isocyanate polyvinyl alcohol and polyvinylpyrrolidone obtained by reacting urea-formaldehyde resin and polyisocyanate with a blocking agent such as phenol. A core-shell type composite resin having a urethane resin as a shell and an acrylic resin as a core can be obtained, for example, by polymerizing an acrylic monomer in the presence of a urethane resin. Further, these resins can be used alone or in combination of two or more.
 上記のプライマー層(B)を形成する樹脂の中でも、アミノトリアジン変性ノボラック樹脂(b1-1)を含有するものを用いることが好ましい。 Among the resins forming the primer layer (B) described above, it is preferable to use a resin containing an aminotriazine-modified novolac resin (b1-1).
 前記アミノトリアジン変性ノボラック樹脂(b1-1)は、アミノトリアジン環構造とフェノール構造とがメチレン基を介して結合したノボラック樹脂である。前記アミノトリアジン変性ノボラック樹脂(b1-1)は、例えば、メラミン、ベンゾグアナミン、アセトグアナミン等のアミノトリアジン化合物と、フェノール、クレゾール、ブチルフェノール、ビスフェノールA、フェニルフェノール、ナフトール、レゾルシン等のフェノール化合物と、ホルムアルデヒドとをアルキルアミン等の弱アルカリ性触媒の存在下又は無触媒で、中性付近で共縮合反応させるか、メチルエーテル化メラミン等のアミノトリアジン化合物のアルキルエーテル化物と、前記フェノール化合物とを反応させることにより得られる。 The aminotriazine-modified novolak resin (b1-1) is a novolak resin in which an aminotriazine ring structure and a phenol structure are bonded via a methylene group. The aminotriazine-modified novolac resin (b1-1) includes, for example, aminotriazine compounds such as melamine, benzoguanamine and acetguanamine, phenol compounds such as phenol, cresol, butylphenol, bisphenol A, phenylphenol, naphthol and resorcin, and formaldehyde. In the presence of a weakly alkaline catalyst such as alkylamine or in the absence of a catalyst, a cocondensation reaction is carried out in the vicinity of neutrality, or an alkylether compound of an aminotriazine compound such as methyl etherified melamine is reacted with the phenol compound. Obtained by
 前記アミノトリアジン変性ノボラック樹脂(b1-1)は、メチロール基を実質的に有していないものが好ましい。また、前記アミノトリアジン変性ノボラック樹脂(b1-1)には、その製造時に副生成物として生じるアミノトリアジン構造のみがメチレン結合した分子、フェノール構造のみがメチレン結合した分子等が含まれていても構わない。さらに、若干量の未反応原料が含まれていてもよい。 The aminotriazine-modified novolak resin (b1-1) preferably has substantially no methylol group. Further, the aminotriazine-modified novolak resin (b1-1) may contain a molecule in which only the aminotriazine structure generated as a by-product during its production is methylene-bonded, a molecule in which only the phenol structure is methylene-bonded, and the like. Absent. In addition, a small amount of unreacted raw material may be included.
 前記フェノール構造としては、例えば、フェノール残基、クレゾール残基、ブチルフェノール残基、ビスフェノールA残基、フェニルフェノール残基、ナフトール残基、レゾルシン残基等が挙げられる。また、ここでの残基とは、芳香環の炭素に結合している水素原子が少なくとも1つが抜けた構造を意味する。例えば、フェノールの場合は、ヒドロキシフェニル基を意味する。 Examples of the phenol structure include phenol residues, cresol residues, butylphenol residues, bisphenol A residues, phenylphenol residues, naphthol residues, resorcin residues and the like. Further, the residue here means a structure in which at least one hydrogen atom bonded to the carbon of the aromatic ring is removed. For example, in the case of phenol, it means a hydroxyphenyl group.
 前記トリアジン構造としては、例えば、メラミン、ベンゾグアナミン、アセトグアナミン等のアミノトリアジン化合物由来の構造が挙げられる。 Examples of the triazine structure include structures derived from aminotriazine compounds such as melamine, benzoguanamine, and acetoguanamine.
 前記フェノール構造及び前記トリアジン構造は、それぞれ1種で用いることも2種以上併用することもできる。また、密着性をより向上できることから、前記フェノール構造としてはフェノール残基が好ましく、前記トリアジン構造としてはメラミン由来の構造が好ましい。 The phenol structure and the triazine structure can be used alone or in combination of two or more. Further, since the adhesion can be further improved, a phenol residue is preferable as the phenol structure, and a melamine-derived structure is preferable as the triazine structure.
 また、前記アミノトリアジン変性ノボラック樹脂(b1-1)の水酸基価は、密着性をより向上できることから、50~200mgKOH/gの範囲が好ましく、80~180mgKOH/gの範囲がより好ましく、100~150mgKOH/gの範囲がさらに好ましい。 Further, the hydroxyl value of the aminotriazine-modified novolak resin (b1-1) is preferably in the range of 50 to 200 mgKOH / g, more preferably in the range of 80 to 180 mgKOH / g, and more preferably 100 to 150 mgKOH because the adhesion can be further improved. The / g range is even more preferred.
 前記アミノトリアジン変性ノボラック樹脂(b1-1)は、1種で用いることも2種以上併用することもできる。 The aminotriazine-modified novolak resin (b1-1) can be used alone or in combination of two or more.
 また、前記アミノトリアジン環を有する化合物(b1)として、アミノトリアジン変性ノボラック樹脂(b1-1)を用いる場合、エポキシ樹脂(b1-2)を併用することが好ましい。 When an aminotriazine-modified novolac resin (b1-1) is used as the compound (b1) having an aminotriazine ring, it is preferable to use an epoxy resin (b1-2) in combination.
 前記エポキシ樹脂(b1-2)としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、アルコールエーテル型エポキシ樹脂、テトラブロムビスフェノールA型エポキシ樹脂、ナフタレン型エポキシ樹脂、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド誘導体由来の構造を有する含リンエポキシ化合物、ジシクロペンタジエン誘導体由来の構造を有するエポキシ樹脂、エポキシ化大豆油等の油脂のエポキシ化物などが挙げられる。これらのエポキシ樹脂は、1種で用いることも2種以上併用することもできる。 Examples of the epoxy resin (b1-2) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, bisphenol A novolac type epoxy resin, and alcohol ether type. Epoxy resin, tetrabrombisphenol A type epoxy resin, naphthalene type epoxy resin, phosphorus-containing epoxy compound having a structure derived from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative, dicyclopentadiene derivative Examples thereof include epoxy resins having a derived structure and epoxidized products of fats and oils such as epoxidized soybean oil. These epoxy resins can be used alone or in combination of two or more.
 前記エポキシ樹脂(b1-2)の中でも、密着性をより向上できることから、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂が好ましく、特に、ビスフェノールA型エポキシ樹脂が好ましい。 Among the epoxy resins (b1-2), bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, bisphenol A can be further improved. Novolak type epoxy resin is preferable, and bisphenol A type epoxy resin is particularly preferable.
 また、前記エポキシ樹脂(b1-2)のエポキシ当量は、密着性をより向上できることから、100~300g/当量の範囲が好ましく、120~250g/当量の範囲がより好ましく、150~200g/当量の範囲がさらに好ましい。 Further, the epoxy equivalent of the epoxy resin (b1-2) is preferably in the range of 100 to 300 g / equivalent, more preferably in the range of 120 to 250 g / equivalent, and 150 to 200 g / equivalent, because the adhesiveness can be further improved. The range is even more preferred.
 前記プライマー層(B)が、アミノトリアジン変性ノボラック樹脂(b1-1)及びエポキシ樹脂(b1-2)を含有する層とする場合、密着性をより向上できることから、前記アミノトリアジン変性ノボラック樹脂(b1-1)中のフェノール性水酸基(x)と前記エポキシ樹脂(b1-2)中のエポキシ基(y)とのモル比[(x)/(y)]は、0.1~5の範囲以下が好ましく、0.2~3の範囲以下がより好ましく、0.3~2の範囲がさらに好ましい。 When the primer layer (B) is a layer containing an aminotriazine-modified novolac resin (b1-1) and an epoxy resin (b1-2), the adhesion can be further improved. Therefore, the aminotriazine-modified novolac resin (b1) can be further improved. The molar ratio [(x) / (y)] of the phenolic hydroxyl group (x) in -1) to the epoxy group (y) in the epoxy resin (b1-2) is in the range of 0.1 to 5 or less. Is preferable, the range of 0.2 to 3 or less is more preferable, and the range of 0.3 to 2 is further preferable.
 前記アミノトリアジン変性ノボラック樹脂(b1-1)とエポキシ樹脂(b1-2)との反応を促進するため、硬化促進剤を併用してもよい。前記硬化促進剤としては、例えば、一級、二級又は三級のアミノ基を有するアミン化合物が挙げられる。また、前記アミン化合物としては、脂肪族、脂環族、芳香族のいずれのものも用いることができる。また、前記硬化促進剤として、メルカプタン、酸無水物、酸フッ化ホウ素、ホウ酸エステル、有機酸ヒドラジット、ルイス酸、有機金属化合物、オニウム塩、カチオン性化合物等も用いることができる。 In order to promote the reaction between the aminotriazine-modified novolak resin (b1-1) and the epoxy resin (b1-2), a curing accelerator may be used in combination. Examples of the curing accelerator include amine compounds having a primary, secondary or tertiary amino group. Further, as the amine compound, any of an aliphatic, alicyclic, and aromatic compound can be used. Further, as the curing accelerator, mercaptan, acid anhydride, boron trifluoride, borate ester, organic acid hydrazite, Lewis acid, organic metal compound, onium salt, cationic compound and the like can also be used.
 前記シリカ粒子(b2)としては、天然原料から製造された天然シリカ粒子、化学合成により製造された合成シリカ粒子のいずれも用いることができる。また、前記シリカ粒子(b2)は、水や有機溶剤に分散させたものを用いてもよく、予めシリカ粒子を分散させたスラリーやコロイド溶液として用いることもできる。 As the silica particles (b2), either natural silica particles produced from natural raw materials or synthetic silica particles produced by chemical synthesis can be used. Further, the silica particles (b2) may be dispersed in water or an organic solvent, or may be used as a slurry or colloidal solution in which silica particles are dispersed in advance.
 前記シリカ粒子(b2)は、エレクトロニクス用途で用いる際には、不純物の少ないものを用いることが好ましい。例えば、不純物としては、ナトリウムイオン、カリウムイオン、鉄イオン、アルミニウムイオン、塩化物イオン等が挙げられる。 When the silica particles (b2) are used in electronics applications, it is preferable to use those having few impurities. For example, impurities include sodium ion, potassium ion, iron ion, aluminum ion, chloride ion and the like.
 前記シリカ粒子(b2)としては、特に限定されるものではないが、用いることのできる市販品としては、例えば、デンカ株式会社製の合成法で製造したSFPシリーズやUFPシリーズ(UFP-30、UFP-40、SFP-20M、SFP―30M、SFP-130MC、SFP-120MC、SFP-120MC、SFP-30MHE、UFP-30HH)、天然法で製造したFBシリーズ(FB-5D、FB-8S、FB-15D、FB-20D、FB-40R);日産化学株式会社製の水を分散媒としたコロイド溶液であるスノーテックスシリーズ(ST-XS、ST-OXS、ST-NXS、ST-CXS、ST-S、ST-OS、ST-NS、ST-30、ST-O、ST-N、ST-C、ST-AK、ST-50-T、ST-O-40、ST-CM、ST-30L、ST-OL、ST-AK-L、ST-YL、ST-OYL、ST-AK-YL、ST-ZL、MP-1040、MP-2040、MP-4540M、ST-UP、ST-OUP、ST-PS-S、ST-PS-SO、ST-PS-M、ST-PS-MO)、有機溶剤を分散媒としたコロイド溶液であるオルガノシリカゾルシリーズ(メタノールシリカゾル、MA-ST-M、MA-ST-L、IPA-ST、IPA-ST-L、IPAST-ZL、IPA-ST-UP、EG-ST、NPC-ST-30、PGM-ST、DMAC-ST、MEK-ST-40、MEK-ST-L、MEK-ST-ZL、MEK-ST-UP、MIBK-ST-L、CHO-ST-M、EAC-ST、PMA-ST、TOL-ST、MEK-AC-2140Z,MEK-AC-4130Y、MEK-AC5140Z、PMG-AC2140Y、PGM-AC-4130Y、MIBK-AC-2140Z、MIBK-SD-L、MEK-EC-2130Y、EP-M2130Y);株式会社アドマテックス製のSO-Cタイプ(SO-C1、SO-C2、SO-C4、SO-C5、SO-C6)、SO-Eタイプ(SO-E1、SO-E2、SO-E3、SO-E4、SO-E5、SO-E6)等が挙げられる。 The silica particles (b2) are not particularly limited, but commercially available products that can be used include, for example, the SFP series and the UFP series (UFP-30, UFP) manufactured by a synthetic method manufactured by Denka Co., Ltd. -40, SFP-20M, SFP-30M, SFP-130MC, SFP-120MC, SFP-120MC, SFP-30MHE, UFP-30HH), FB series manufactured by natural method (FB-5D, FB-8S, FB- 15D, FB-20D, FB-40R); Snowtex series (ST-XS, ST-OXS, ST-NXS, ST-CXS, ST-S), which is a colloidal solution made by Nissan Chemical Co., Ltd. using water as a dispersion medium. , ST-OS, ST-NS, ST-30, ST-O, ST-N, ST-C, ST-AK, ST-50-T, ST-O-40, ST-CM, ST-30L, ST -OL, ST-AK-L, ST-YL, ST-OYL, ST-AK-YL, ST-ZL, MP-1040, MP-2040, MP-4540M, ST-UP, ST-OUP, ST-PS -S, ST-PS-SO, ST-PS-M, ST-PS-MO), organosilica sol series (methanol silica sol, MA-ST-M, MA-ST-), which is a colloidal solution using an organic solvent as a dispersion medium. L, IPA-ST, IPA-ST-L, IPAST-ZL, IPA-ST-UP, EG-ST, NPC-ST-30, PGM-ST, DMAC-ST, MEK-ST-40, MEK-ST- L, MEK-ST-ZL, MEK-ST-UP, MIBK-ST-L, CHO-ST-M, EAC-ST, PMA-ST, TOR-ST, MEK-AC-2140Z, MEK-AC-4130Y, MEK-AC5140Z, PMG-AC2140Y, PGM-AC-4130Y, MIBK-AC-2140Z, MIBK-SD-L, MEK-EC-2130Y, EP-M2130Y; SO-C type (SO-) manufactured by Admatex Co., Ltd. C1, SO-C2, SO-C4, SO-C5, SO-C6), SO-E types (SO-E1, SO-E2, SO-E3, SO-E4, SO-E5, SO-E6), etc. Can be mentioned.
 また、本発明においては、前記シリカ粒子(b2)に溶媒や前記プライマー樹脂(b1)との分散性や親和性、前記支持体や前記金属粒子層(C)との間の高い密着性を付与する目的で、前記シリカ粒子(b2)の表面をシランカップリング剤で処理する。前記シランカップリング剤としては、特に限定されるものではないが、例えば、エポキシシラン、アミノシラン、ビニルシラン、メルカプトシラン等が挙げられる。また、前記シリカ粒子(b2)の表面をシランカップリング剤で処理した後、さらに前記プライマー樹脂(b1)との分散性や親和性を向上する目的で、シランカップリング剤で処理された前記シリカ粒子(b2)の表面に樹脂を付着させてもよい。この付着させる樹脂としては、例えば、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、ポリエステル樹脂等が挙げられるが、前記プライマー樹脂(b1)と同種の樹脂を用いることが好ましい。 Further, in the present invention, the silica particles (b2) are provided with dispersibility and affinity with the solvent and the primer resin (b1), and high adhesion with the support and the metal particle layer (C). The surface of the silica particles (b2) is treated with a silane coupling agent for the purpose of treating the silica particles (b2). The silane coupling agent is not particularly limited, and examples thereof include epoxysilane, aminosilane, vinylsilane, and mercaptosilane. Further, after treating the surface of the silica particles (b2) with a silane coupling agent, the silica treated with a silane coupling agent for the purpose of further improving the dispersibility and affinity with the primer resin (b1). A resin may be attached to the surface of the particles (b2). Examples of the resin to be adhered include acrylic resin, epoxy resin, urethane resin, polyester resin and the like, and it is preferable to use the same type of resin as the primer resin (b1).
 前記エポキシシランとしては、例えば、2-(3,4-エポキシシクロヘキシル)エチルトリアルコキシメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、8-グリシドキシオクチルトリメトキシシラン、主鎖が有機鎖でアルコキシシリル基とエポキシ基を複数有する多官能基型シランカップリング剤(例えば、信越化学工業株式会社製「X-12-981S」、「X-12-984S」等)、主鎖がシロキサン鎖でエポキシ基を複数有する多官能基型ランカップリング剤(例えば、信越化学工業株式会社製「KR-516」、「KR-517」等)などが挙げられる。これらのシランカップリング剤の中でも、脂環構造を有するものが好ましく、具体的には、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランが好ましい。 Examples of the epoxy silane include 2- (3,4-epoxide cyclohexyl) ethyltrialkoxymethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxy. Propyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 8-glycidoxyoctyltrimethoxysilane, a polyfunctional group-type silane coupling agent having an organic chain as the main chain and having a plurality of alkoxysilyl groups and epoxy groups (for example). , "X-12-981S", "X-12-984S", etc. manufactured by Shin-Etsu Chemical Industry Co., Ltd.), Polyfunctional group-type alkyl coupling agent having a siloxane chain as the main chain and a plurality of epoxy groups (for example, Shin-Etsu Chemical Industry Co., Ltd.) "KR-516", "KR-517", etc. manufactured by Co., Ltd.) and the like can be mentioned. Among these silane coupling agents, those having an alicyclic structure are preferable, and specifically, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane is preferable.
 前記アミノシランとしては、例えば、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランの塩酸塩、N-2-(アミノエチル)-8-アミノオクチルトリメトキシシラン、アミノ基保護型シランカップリング剤(例えば、信越化学工業株式会社製「KBE-9103P」(ケチミンタイプ)、「X-12-1172ES」(アルジミンタイプ)等)、主鎖が有機鎖でアルコキシシリル基とアミノ基を複数有する多官能基型シランカップリング剤(例えば、信越化学工業株式会社製「X-12-972F」等)などが挙げられる。 Examples of the aminosilane include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, and 3 -Aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl) -2-aminoethyl Hydrochloride of -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -8-aminooctyltrimethoxysilane, amino group-protected silane coupling agent (for example, "KBE-9103P" manufactured by Shin-Etsu Chemical Industry Co., Ltd. (Ketimine type), "X-12-1172ES" (Aldimine type), etc.), a polyfunctional silane coupling agent having an organic main chain and a plurality of alkoxysilyl groups and amino groups (for example, Shin-Etsu Chemical Industry Co., Ltd.) Company-made "X-12-972F" etc.) and the like.
 前記ビニルシランは、本発明においては二重結合を有するシラン化合物をいう。例えばビニル基を有するシランカップリング剤として、ビニルトリメトキシシラン、ビニルトリエトキシシラン、7-オクテニルトリメトキシシラン、主鎖がシロキサン鎖でビニル基とフェニル基を複数有する多官能基型シランカップリング剤(例えば、信越化学工業株式会社製「KR-511」等)などが挙げられる。また、二重結合を有するシラン化合物としては、例えば、アクリルシラン、メタクリルシラン、スチリルシラン等も挙げられる。 The vinylsilane refers to a silane compound having a double bond in the present invention. For example, as a silane coupling agent having a vinyl group, vinyltrimethoxysilane, vinyltriethoxysilane, 7-octenyltrimethoxysilane, and a polyfunctional group type silane coupling having a siloxane chain as the main chain and a plurality of vinyl groups and phenyl groups. Examples thereof include agents (for example, "KR-511" manufactured by Shin-Etsu Chemical Industry Co., Ltd.). Further, examples of the silane compound having a double bond include acrylic silane, methacryl silane, and styryl silane.
 前記アクリルシランとしては、3-アクリロキシプロピルトリメトキシシラン、主鎖が有機鎖でアルコキシシリル基とアクリル基を複数有する多官能基型シランカップリング剤(例えば、信越化学工業株式会社製「X-12-1048」、「X-12-1050」等)、主鎖がシロキサン鎖でアクリル基とメチル基を複数有する多官能基型ランカップリング剤(例えば、信越化学工業株式会社製「KR-513」等)などが挙げられる。 The acrylic silane is 3-acryloxypropyltrimethoxysilane, a polyfunctional group-type silane coupling agent having an organic main chain and a plurality of alkoxysilyl groups and acrylic groups (for example, "X-" manufactured by Shin-Etsu Chemical Industry Co., Ltd. 12-1048 "," X-12-1050 ", etc.), a polyfunctional group-type alkoxyl coupling agent having a siloxane chain as the main chain and having a plurality of acrylic and methyl groups (for example," KR-513 "manufactured by Shin-Etsu Chemical Industry Co., Ltd." "Etc.) and so on.
 前記メタクリルシランとしては、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、8-メタクリロキシオクチルトリメトキシシラン、主鎖がシロキサン鎖でメタクリル基とメチル基を複数有する多官能基型ランカップリング剤(例えば、信越化学工業株式会社製「KR-503」等)などが挙げられる。 Examples of the methacrylsilane include 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, and 8-methacryloxyoctylrimethoxy. Examples thereof include silane and a polyfunctional group-type lancoupling agent having a siloxane chain as the main chain and having a plurality of methacryl groups and methyl groups (for example, "KR-503" manufactured by Shinetsu Chemical Industry Co., Ltd.).
 前記スチリルシランは、例えば、P-スチリルトリメトキシシラン等が挙げられる。 Examples of the styrylsilane include P-styryltrimethoxysilane.
 前記メルカプトシランとしては、例えば、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、主鎖が有機鎖でアルコキシシリル基とメルカプトキ基を複数有する多官能基型シランカップリング剤(例えば、信越化学工業株式会社製「X-12-1154」、「X-12-1156」等)、主鎖がシロキサン鎖でメルカプト基を複数有する多官能基型ランカップリング剤(例えば、信越化学工業株式会社製「KR-518」、「KR-519」等)、メルカプト基保護型シランカップリング剤(信越化学製「X-12-1056ES」等)などが挙げられる。 Examples of the mercaptosilane include 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, and a polyfunctional group-type silane coupling agent having an organic main chain and a plurality of alkoxysilyl groups and mercaptoki groups (for example,). "X-12-1154", "X-12-1156", etc. manufactured by Shin-Etsu Chemical Industry Co., Ltd.), a polyfunctional group-type silane coupling agent having a siloxane chain as the main chain and a plurality of mercapto groups (for example, Shin-Etsu Chemical Industry Co., Ltd.) Examples thereof include "KR-518" and "KR-519" manufactured by the company) and mercapto group-protected silane coupling agents ("X-12-1056ES" manufactured by Shin-Etsu Chemical Co., Ltd.).
 その他シランカップリング剤としては、例えば、3-ウレイドプロピルトリアルコキシシラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、トリス-(トリエトキシシリルプロピル)イソシアヌレート、3-イソシアネートプロピルトリエトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物、主鎖が有機鎖でアルコキシシリル基とイソシアネート基を複数有する多官能基型シランカップリング剤(例えば、信越化学工業株式会社製「X-12-1159L」等)などが挙げられる。 Other silane coupling agents include, for example, 3-ureidopropyltrialkoxysilane, tris- (trimethoxysilylpropyl) isocyanurate, tris- (triethoxysilylpropyl) isocyanurate, 3-isocyanatopropyltriethoxysilane, 3-. Trimethoxysilylpropyl succinic acid anhydride, a polyfunctional group-type silane coupling agent having an organic main chain and a plurality of alkoxysilyl groups and isocyanate groups (for example, "X-12-1159L" manufactured by Shin-Etsu Chemical Industry Co., Ltd.) And so on.
 前記シランカップリング剤の中でも、エポキシシラン、アミノシラン、メタクリルシランが好ましく、エポキシシランがより好ましい。 Among the silane coupling agents, epoxy silane, amino silane, and methacryl silane are preferable, and epoxy silane is more preferable.
 密着性をより向上できることから、前記プライマー層(B)中の前記シリカ粒子(b2)の含有量は、前記プライマー樹脂(b1)100質量部に対して、1~400質量部の範囲が好ましい。また、耐熱試験後の耐熱密着性をより向上できることから、前記プライマー層(B)中の前記シリカ粒子(b2)の含有量は、前記プライマー樹脂(b1)100質量部に対して、5~200質量部の範囲が好ましく、8~100質量部の範囲がより好ましく、10~80質量部の範囲がさらに好ましい。 The content of the silica particles (b2) in the primer layer (B) is preferably in the range of 1 to 400 parts by mass with respect to 100 parts by mass of the primer resin (b1) because the adhesion can be further improved. Further, since the heat-resistant adhesion after the heat-resistant test can be further improved, the content of the silica particles (b2) in the primer layer (B) is 5 to 200 with respect to 100 parts by mass of the primer resin (b1). The range of parts by mass is preferable, the range of 8 to 100 parts by mass is more preferable, and the range of 10 to 80 parts by mass is further preferable.
 また、前記シリカ粒子(b2)の平均粒子径としては、密着性をより向上できることから、0.001~0.5μmの範囲が好ましく、0.01~0.1μmの範囲がより好ましく、0.01~0.05μmの範囲がさらに好ましい。なお、本発明における平均粒子径は、前記シリカ粒子(b2)を分散良溶媒で希釈し、動的光散乱法により測定した体積平均値である。 Further, the average particle size of the silica particles (b2) is preferably in the range of 0.001 to 0.5 μm, more preferably in the range of 0.01 to 0.1 μm, and 0. The range of 01 to 0.05 μm is more preferable. The average particle size in the present invention is a volume average value measured by a dynamic light scattering method obtained by diluting the silica particles (b2) with a good dispersion solvent.
 前記プライマー層(B)の形成には、プライマー組成物(b)を用いる。前記プライマー組成物(b)は、前記プライマー樹脂(b1)やシリカ粒子(b2)を含有するものであるが、必要に応じて、さらに架橋剤(b3)を含有してもよい。前記架橋剤(b3)としては、多価カルボン酸が好ましい。前記多価カルボン酸としては、例えば、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、コハク酸等が挙げられる。これらの架橋剤(b3)は、1種で用いることも2種以上併用することもできる。また、これらの架橋剤(b3)の中でも、密着性をより向上できることから、無水トリメリット酸が好ましい。 The primer composition (b) is used for forming the primer layer (B). The primer composition (b) contains the primer resin (b1) and silica particles (b2), but may further contain a cross-linking agent (b3), if necessary. As the cross-linking agent (b3), a polyvalent carboxylic acid is preferable. Examples of the polyvalent carboxylic acid include trimellitic anhydride, pyromellitic anhydride, maleic anhydride, succinic acid and the like. These cross-linking agents (b3) can be used alone or in combination of two or more. Further, among these cross-linking agents (b3), trimellitic anhydride is preferable because the adhesion can be further improved.
 さらに、前記プライマー層(B)の形成に用いるプライマー組成物(b)には、必要に応じて、上記の成分(b1)~(b3)以外の成分として、その他の樹脂(b4)を配合してもよい。前記その他の樹脂(b4)としては、例えば、ウレタン樹脂、アクリル樹脂、ブロックイソシアネート樹脂、メラミン樹脂、フェノール樹脂等が挙げられる。これらのその他の樹脂(b4)は、1種で用いることも2種以上併用することもできる。 Further, in the primer composition (b) used for forming the primer layer (B), another resin (b4) is blended as a component other than the above components (b1) to (b3), if necessary. You may. Examples of the other resin (b4) include urethane resin, acrylic resin, blocked isocyanate resin, melamine resin, and phenol resin. These other resins (b4) can be used alone or in combination of two or more.
 また、前記プライマー組成物(b)には、前記支持体(A)へ塗工する際に、塗工しやすい粘度とするため、有機溶剤を配合することが好ましい。前記有機溶剤としては、例えば、トルエン、酢酸エチル、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、イソプロピルアルコール、ダイアセトンアルコール、エチレングリコール、トルエン等が挙げられる。これらの溶剤は、1種で用いることも2種以上併用することもできる。 Further, it is preferable to add an organic solvent to the primer composition (b) in order to have a viscosity that makes it easy to apply when the support (A) is coated. Examples of the organic solvent include toluene, ethyl acetate, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, isopropyl alcohol, diacetone alcohol, ethylene glycol, toluene and the like. These solvents can be used alone or in combination of two or more.
 前記有機溶剤の使用量は、後述する前記支持体(A)へ塗工する際に用いる塗工方法、前記プライマー層(B)の所望とする膜厚により、適宜調整することが好ましい。 The amount of the organic solvent used is preferably adjusted as appropriate according to the coating method used when coating the support (A), which will be described later, and the desired film thickness of the primer layer (B).
 また、前記プライマー組成物(b)には、必要に応じて、皮膜形成助剤、レベリング剤、増粘剤、撥水剤、消泡剤、酸化防止剤等の公知の添加剤を適宜添加してもよい。 Further, if necessary, known additives such as a film forming aid, a leveling agent, a thickener, a water repellent, an antifoaming agent, and an antioxidant are appropriately added to the primer composition (b). You may.
 前記プライマー層(B)は、前記支持体(A)の表面の一部又は全部に前記プライマー組成物(b)を塗工し、前記プライマー組成物(b)中に含まれる有機溶剤を除去することによって形成できる。 The primer layer (B) is coated with the primer composition (b) on a part or all of the surface of the support (A) to remove the organic solvent contained in the primer composition (b). Can be formed by
 前記プライマー組成物(b)を前記支持体(A)の表面に塗工する方法としては、例えば、グラビア方式、コーティング方式、スクリーン方式、ローラー方式、ロータリー方式、スプレー方式、キャピラリー方式等の方法が挙げられる。 Examples of the method of applying the primer composition (b) to the surface of the support (A) include a gravure method, a coating method, a screen method, a roller method, a rotary method, a spray method, and a capillary method. Can be mentioned.
 前記プライマー組成物(b)を前記支持体(A)の表面に塗工した後、その塗工層に含まれる有機溶剤を除去する方法としては、例えば、乾燥機を用いて乾燥させ、有機溶剤を揮発させる方法が一般的である。乾燥温度としては、用いた有機溶剤を揮発させることが可能で、かつ前記支持体(A)に熱変形等の悪影響を与えない範囲の温度に設定すればよい。 As a method of applying the primer composition (b) to the surface of the support (A) and then removing the organic solvent contained in the coating layer, for example, the primer composition (b) is dried using a dryer and the organic solvent is removed. The method of volatilizing is common. The drying temperature may be set to a temperature within a range in which the organic solvent used can be volatilized and the support (A) is not adversely affected by thermal deformation or the like.
 前記プライマー組成物(b)を用いて形成するプライマー層(B)の膜厚は、本発明の積層体を用いる用途によって異なるが、前記支持体(A)と後述する金属粒子層(C)との密着性をより向上する範囲が好ましく、前記プライマー層の膜厚は、10nm~30μmの範囲が好ましく、10nm~1μmの範囲がより好ましく、10nm~500nmの範囲がさらに好ましい。 The film thickness of the primer layer (B) formed by using the primer composition (b) varies depending on the use of the laminate of the present invention, but the support (A) and the metal particle layer (C) described later The range for further improving the adhesion of the primer layer is preferable, and the film thickness of the primer layer is preferably in the range of 10 nm to 30 μm, more preferably in the range of 10 nm to 1 μm, and further preferably in the range of 10 nm to 500 nm.
 前記プライマー層(B)の表面は、前記金属粒子層(C)との密着性をより向上できることから、必要に応じて、コロナ放電処理法等のプラズマ放電処理法、紫外線処理法等の乾式処理法、水や酸性又はアルカリ性薬液、有機溶剤等を用いた湿式処理法によって、表面処理してもよい。 Since the surface of the primer layer (B) can further improve the adhesion to the metal particle layer (C), if necessary, a plasma discharge treatment method such as a corona discharge treatment method, a dry treatment method such as an ultraviolet treatment method, or the like is performed. The surface may be treated by a method, a wet treatment method using water, an acidic or alkaline chemical solution, an organic solvent, or the like.
 前記金属粒子層(C)は、前記プライマー層(B)上に形成されたものであり、前記金属粒子層(C)を構成する金属としては、遷移金属又はその化合物が挙げられ、中でもイオン性の遷移金属が好ましい。このイオン性の遷移金属としては、銅、銀、金、ニッケル、パラジウム、白金、コバルト等が挙げられる。これらの中でも、前記金属めっき層(D)を形成しやすいことから銀が好ましい。 The metal particle layer (C) is formed on the primer layer (B), and examples of the metal constituting the metal particle layer (C) include transition metals or compounds thereof, and among them, ionicity. Transition metals are preferred. Examples of this ionic transition metal include copper, silver, gold, nickel, palladium, platinum, cobalt and the like. Among these, silver is preferable because the metal plating layer (D) is easily formed.
 また、前記金属めっき層(D)を構成する金属としては、銅、金、銀、ニッケル、クロム、コバルト、スズ等が挙げられる。これらの中でも、電気抵抗が低く、腐食に強いプリント配線板に用いることができる積層体が得られることから銅が好ましい。 Examples of the metal constituting the metal plating layer (D) include copper, gold, silver, nickel, chromium, cobalt, tin and the like. Among these, copper is preferable because a laminate that has low electrical resistance and can be used for a printed wiring board that is resistant to corrosion can be obtained.
 本発明の積層体の製造方法としては、まず、支持体(A)の上に、プライマー層(B)を形成し、その後、金属粒子(c)を含有する流動体を塗工し、流動体中に含まれる有機溶剤等を乾燥により除去することによって、金属粒子層(C)を形成した後、電解めっきもしくは無電解めっき、又はその両方により前記金属めっき層(D)を形成する方法が挙げられる。 As a method for producing a laminate of the present invention, first, a primer layer (B) is formed on a support (A), and then a fluid containing metal particles (c) is coated to form the fluid. A method of forming the metal particle layer (C) by removing the organic solvent and the like contained therein by drying and then forming the metal plating layer (D) by electroplating, electroless plating, or both of them can be mentioned. Be done.
 前記金属粒子層(C)の形成に用いる前記金属粒子(c)の形状は、粒子状又繊維状のものが好ましい。また、前記金属粒子(c)の大きさは、ナノサイズのものが好ましい。具体的には、前記金属粒子(c)の形状が粒子状の場合は、微細な導電性パターンを形成でき、抵抗値をより低減できることから、平均粒子径が1~100nmの範囲が好ましく、1~50nmの範囲がより好ましい。この平均粒子径は前記シリカ粒子(b2)での記載と同じものを意味するが、測定には、マイクロトラック社製「ナノトラックUPA-150」を用いることができる。 The shape of the metal particles (c) used for forming the metal particle layer (C) is preferably particulate or fibrous. The size of the metal particles (c) is preferably nano-sized. Specifically, when the metal particles (c) are in the form of particles, a fine conductive pattern can be formed and the resistance value can be further reduced. Therefore, the average particle diameter is preferably in the range of 1 to 100 nm. The range of ~ 50 nm is more preferable. This average particle size means the same as that described in the silica particles (b2), but "Nanotrack UPA-150" manufactured by Microtrac Co., Ltd. can be used for the measurement.
 一方、前記金属粒子(c)の形状が繊維状の場合も、微細な導電性パターンを形成でき、抵抗値をより低減できることから、繊維の直径が5~100nmの範囲以下が好ましく、5~50nmの範囲以下がより好ましい。また、繊維の長さは、0.1~100μmの範囲以下が好ましく、0.1~30μmの範囲がより好ましい。 On the other hand, even when the shape of the metal particles (c) is fibrous, a fine conductive pattern can be formed and the resistance value can be further reduced. Therefore, the diameter of the fibers is preferably in the range of 5 to 100 nm or less, and is preferably 5 to 50 nm. It is more preferable that the range is less than or equal to the range of. The fiber length is preferably in the range of 0.1 to 100 μm or less, more preferably in the range of 0.1 to 30 μm.
 前記流動体中の前記金属粒子(c)の含有率は、1~90質量%の範囲が好ましく、1~60質量%の範囲がより好ましく、1~10質量%の範囲がさらに好ましい。 The content of the metal particles (c) in the fluid is preferably in the range of 1 to 90% by mass, more preferably in the range of 1 to 60% by mass, and even more preferably in the range of 1 to 10% by mass.
 前記流動体に配合してもよい成分としては、前記金属粒子(c)を溶媒中に分散させるための分散剤や溶媒、また必要に応じて、後述する界面活性剤、レベリング剤、粘度調整剤、成膜助剤、消泡剤、防腐剤等が挙げられる。 The components that may be blended in the fluid include a dispersant and a solvent for dispersing the metal particles (c) in a solvent, and if necessary, a surfactant, a leveling agent, and a viscosity modifier described later. , Film forming aids, antifoaming agents, preservatives and the like.
 前記金属粒子(c)を溶媒中に分散させるため、分散剤を用いることが好ましい。前記分散剤としては、例えば、ドデカンチオール、1-オクタンチオール、トリフェニルホスフィン、ドデシルアミン、ポリエチレングリコール、ポリビニルピロリドン、ポリエチレンイミン、ポリビニルピロリドン;ミリスチン酸、オクタン酸、ステアリン酸等の脂肪酸;コール酸、グリシルリジン酸、アビエチン酸等のカルボキシル基を有する多環式炭化水素化合物などが挙げられる。これらの中でも、前記金属粒子層(C)を多孔質状とすることで前記金属粒子層(C)と後述する金属めっき層(D)との密着性を向上できることから、高分子分散剤が好ましく、この高分子分散剤としては、ポリエチレンイミン、ポリプロピレンイミン等のポリアルキレンイミン、前記ポリアルキレンイミンにポリオキシアルキレンが付加した化合物、ウレタン樹脂、アクリル樹脂、前記ウレタン樹脂や前記アクリル樹脂にリン酸基を含有する化合物等が挙げられる。 In order to disperse the metal particles (c) in a solvent, it is preferable to use a dispersant. Examples of the dispersant include dodecanethiol, 1-octanethiol, triphenylphosphine, dodecylamine, polyethylene glycol, polyvinylpyrrolidone, polyethyleneimine, polyvinylpyrrolidone; fatty acids such as myristic acid, octanoic acid and stearic acid; Examples thereof include polycyclic hydrocarbon compounds having a carboxyl group such as glycyrrhizic acid and avietic acid. Among these, the polymer dispersant is preferable because the adhesion between the metal particle layer (C) and the metal plating layer (D) described later can be improved by making the metal particle layer (C) porous. As the polymer dispersant, polyalkyleneimine such as polyethyleneimine and polypropyleneimine, a compound in which polyoxyalkylene is added to the polyalkyleneimine, a urethane resin, an acrylic resin, a urethane resin, and a phosphoric acid group in the acrylic resin. Examples thereof include compounds containing.
 上記のように、前記分散剤に高分子分散剤を用いることで、低分子分散剤と比較して、前記金属粒子層(C)中の分散剤を除去して多孔質状とし、その空隙サイズを大きくすることができ、ナノオーダーからサブミクロンオーダーの大きさの空隙を形成することができる。この空隙に後述する金属めっき層(D)を構成する金属が充填されやすくなり、充填された金属がアンカーとなり、前記金属粒子層(C)と後述する金属めっき層(D)との密着性を大幅に向上することができる。 As described above, by using the polymer dispersant as the dispersant, the dispersant in the metal particle layer (C) is removed to make it porous as compared with the low molecular weight dispersant, and the void size thereof is obtained. Can be increased, and voids having a size of nano-order to sub-micron order can be formed. The gap is easily filled with the metal constituting the metal plating layer (D) described later, and the filled metal serves as an anchor to improve the adhesion between the metal particle layer (C) and the metal plating layer (D) described later. It can be greatly improved.
 前記金属粒子(c)を分散させるために用いる前記分散剤の使用量は、前記金属粒子(c)100質量部に対し、0.01~50質量部の範囲が好ましく、0.01~10質量部の範囲がより好ましい。 The amount of the dispersant used to disperse the metal particles (c) is preferably in the range of 0.01 to 50 parts by mass, preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the metal particles (c). The range of parts is more preferable.
 また、前記金属粒子層(C)と後述する金属めっき層(D)との密着性をより向上する目的で、焼成により分散剤を除去して多孔質状の前記金属層(C)を形成する場合は、前記金属粒子(c)100質量部の範囲に対し、0.1~10質量部の範囲が好ましく、0.1~5質量部の範囲がより好ましい。 Further, for the purpose of further improving the adhesion between the metal particle layer (C) and the metal plating layer (D) described later, the dispersant is removed by firing to form the porous metal layer (C). In this case, the range of 0.1 to 10 parts by mass is preferable, and the range of 0.1 to 5 parts by mass is more preferable with respect to the range of 100 parts by mass of the metal particles (c).
 前記流動体に用いる溶媒としては、水性媒体や有機溶剤を用いることができる。前記水性媒体としては、例えば、蒸留水、イオン交換水、純水、超純水等が挙げられる。また、前記有機溶剤としては、アルコール化合物、エーテル化合物、エステル化合物、ケトン化合物等が挙げられる。 As the solvent used for the fluid, an aqueous medium or an organic solvent can be used. Examples of the aqueous medium include distilled water, ion-exchanged water, pure water, ultrapure water, and the like. Examples of the organic solvent include alcohol compounds, ether compounds, ester compounds, ketone compounds and the like.
 前記アルコール化合物としては、例えば、メタノール、エタノール、n-プロパノール、イソプロピルアルコール、n-ブタノール、イソブチルアルコール、sec-ブタノール、tert-ブタノール、ヘプタノール、ヘキサノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール、ステアリルアルコール、アリルアルコール、シクロヘキサノール、テルピネオール、ターピネオール、ジヒドロターピネオール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、テトラエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノブチルエーテル等が挙げられる。 Examples of the alcohol compound include methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, isobutyl alcohol, sec-butanol, tert-butanol, heptanol, hexanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, and the like. Tetradecanol, pentadecanol, stearyl alcohol, allyl alcohol, cyclohexanol, terpineol, turpineol, dihydroterpineol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol Monobutyl ether, tetraethylene glycol monobutyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, propylene glycol monopropyl ether, dipropylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monobutyl ether, Examples thereof include tripropylene glycol monobutyl ether.
 また、前記流動体には、前記金属粒子(c)、溶媒の他に、必要に応じてエチレングリコール、ジエチレングリコール、1,3-ブタンジオール、イソプレングリコール等を用いることができる。 Further, in addition to the metal particles (c) and the solvent, ethylene glycol, diethylene glycol, 1,3-butanediol, isoprene glycol and the like can be used as the fluid, if necessary.
 前記界面活性剤としては、一般的な界面活性剤を用いることができ、例えば、ジ-2-エチルヘキシルスルホコハク酸塩、ドデシルベンゼンスルホン酸塩、アルキルジフェニルエーテルジスルホン酸塩、アルキルナフタレンスルホン酸塩、ヘキサメタリン酸塩等が挙げられる。 As the surfactant, a general surfactant can be used, for example, di-2-ethylhexyl sulfosuccinate, dodecylbenzene sulfonate, alkyldiphenyl ether disulfonate, alkylnaphthalene sulfonate, hexametaphosphate. Examples include salt.
 前記レベリング剤としては、一般的なレベリング剤を用いることができ、例えば、シリコーン系化合物、アセチレンジオール系化合物、フッ素系化合物等が挙げられる。 As the leveling agent, a general leveling agent can be used, and examples thereof include silicone-based compounds, acetylenediol-based compounds, and fluorine-based compounds.
 前記粘度調整剤としては、一般的な増粘剤を用いることができ、例えば、アルカリ性に調整することによって増粘可能なアクリル重合体や合成ゴムラテックス、分子が会合することによって増粘可能なウレタン樹脂、ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース、ポリビニルアルコール、水添加ヒマシ油、アマイドワックス、酸化ポリエチレン、金属石鹸、ジベンジリデンソルビトールなどが挙げられる。 As the viscosity modifier, a general thickener can be used. For example, an acrylic polymer or synthetic rubber latex that can be thickened by adjusting to alkaline, or a urethane that can be thickened by associating molecules. Examples thereof include resins, hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, polyvinyl alcohol, water-added castor oil, amido wax, polyethylene oxide, metal soap, dibenzylidene sorbitol and the like.
 前記成膜助剤としては、一般的な成膜助剤を用いることができ、例えば、アニオン系界面活性剤(ジオクチルスルホコハク酸エステルソーダ塩など)、疎水性ノニオン系界面活性剤(ソルビタンモノオレエートなど)、ポリエーテル変性シロキサン、シリコーンオイル等が挙げられる。 As the film-forming auxiliary, a general film-forming auxiliary can be used, for example, an anionic surfactant (such as dioctylsulfosuccinate sodium salt) and a hydrophobic nonionic surfactant (sorbitan monooleate). Etc.), polyether-modified siloxane, silicone oil, etc.
 前記消泡剤としては、一般的な消泡剤を用いることができ、例えば、シリコーン系消泡剤、ノニオン系界面活性剤、ポリエーテル,高級アルコール、ポリマー系界面活性剤等が挙げられる。 As the defoaming agent, a general defoaming agent can be used, and examples thereof include silicone-based defoaming agents, nonionic-based surfactants, polyethers, higher alcohols, and polymer-based surfactants.
 前記防腐剤としては、一般的な防腐剤を用いることができ、例えば、イソチアゾリン系防腐剤、トリアジン系防腐剤、イミダゾール系防腐剤、ピリジン系防腐剤、アゾール系防腐剤、ピリチオン系防腐剤等が挙げられる。 As the preservative, general preservatives can be used, and examples thereof include isothiazoline-based preservatives, triazine-based preservatives, imidazole-based preservatives, pyridine-based preservatives, azole-based preservatives, and pyrithion-based preservatives. Can be mentioned.
 前記流動体の粘度(25℃でB型粘度計を用いて測定した値)は、0.1~500,000mPa・sの範囲が好ましく、0.2~10,000mPa・sの範囲がより好ましい。また、前記流動体を、後述するインクジェット印刷法、凸版反転印刷等の方法によって塗工(印刷)する場合には、その粘度は5~20mPa・sの範囲が好ましい。 The viscosity of the fluid (value measured using a B-type viscometer at 25 ° C.) is preferably in the range of 0.1 to 500,000 mPa · s, more preferably in the range of 0.2 to 10,000 mPa · s. .. Further, when the fluid is coated (printed) by a method such as an inkjet printing method or letterpress reverse printing described later, its viscosity is preferably in the range of 5 to 20 mPa · s.
 前記プライマー層(B)の上に前記流動体を塗工や印刷する方法としては、例えば、インクジェット印刷法、反転印刷法、スクリーン印刷法、オフセット印刷法、グラビア印刷法、フレキソ印刷法、パッド印刷法、スピンコート法、スプレーコート法、バーコート法、ダイコート法、スリットコート法、ロールコート法、ディップコート法、ロータリーコート法、キャピラリーコート法等が挙げられる。 Examples of the method of coating or printing the fluid on the primer layer (B) include an inkjet printing method, a reverse printing method, a screen printing method, an offset printing method, a gravure printing method, a flexo printing method, and pad printing. Examples thereof include a method, a spin coating method, a spray coating method, a bar coating method, a die coating method, a slit coating method, a roll coating method, a dip coating method, a rotary coating method, and a capillary coating method.
 前記金属粒子層(C)の単位面積当たりの質量は、1~30,000mg/mの範囲が好ましく、1~5,000mg/mの範囲が好ましい。前記金属粒子層(C)の厚さは、前記金属めっき層(D)の形成する際のめっき処理工程における処理時間、電流密度、めっき用添加剤の使用量等を制御することによって調整できる。 Mass per unit area of the metal particle layer (C) is preferably in the range of 1 ~ 30,000mg / m 2, the range of 1 ~ 5,000mg / m 2 is preferred. The thickness of the metal particle layer (C) can be adjusted by controlling the treatment time, the current density, the amount of the plating additive used, and the like in the plating treatment step when the metal plating layer (D) is formed.
 本発明の積層体を構成する金属めっき層(D)は、例えば、前記積層体をプリント配線板等に用いる場合に、長期間にわたり断線等を生じることなく、良好な通電性を維持可能な信頼性の高い配線パターンを形成することを目的として設けられる層である。 The metal-plated layer (D) constituting the laminate of the present invention is reliable, for example, when the laminate is used for a printed wiring board or the like, it can maintain good electrical conductivity without causing disconnection or the like for a long period of time. It is a layer provided for the purpose of forming a wiring pattern having high performance.
 前記金属めっき層(D)は、前記金属粒子層(C)の上に形成される層であるが、その形成方法としては、めっき処理によって形成する方法が好ましい。このめっき処理としては、簡便に前記金属めっき層(D)を形成できる電解めっき法、無電解めっき法等の湿式めっき法が挙げられる。また、これらのめっき法を2つ以上組み合わせてもよい。例えば、無電解めっきを施した後、電解めっきを施して、前記金属めっき層(D)を形成してもよい。 The metal plating layer (D) is a layer formed on the metal particle layer (C), and as a method for forming the metal particle layer (C), a method of forming by a plating treatment is preferable. Examples of this plating treatment include wet plating methods such as an electrolytic plating method and a non-electrolytic plating method that can easily form the metal plating layer (D). Moreover, you may combine two or more of these plating methods. For example, the metal plating layer (D) may be formed by performing electrolytic plating after electroplating.
 上記の無電解めっき法は、例えば、前記金属粒子層(C)を構成する金属に、無電解めっき液を接触させることで、無電解めっき液中に含まれる銅等の金属を析出させ金属皮膜からなる無電解めっき層(皮膜)を形成する方法である。 In the above electroless plating method, for example, a metal such as copper contained in the electroless plating solution is precipitated by bringing the electroless plating solution into contact with the metal constituting the metal particle layer (C) to form a metal film. This is a method of forming an electroless plating layer (coating) composed of.
 前記無電解めっき液としては、例えば、銅、銀、金、ニッケル、クロム、コバルト、スズ等の金属と、還元剤と、水性媒体、有機溶剤等の溶媒とを含有するものが挙げられる。 Examples of the electroless plating solution include those containing a metal such as copper, silver, gold, nickel, chromium, cobalt, and tin, a reducing agent, and a solvent such as an aqueous medium and an organic solvent.
 前記還元剤としては、例えば、ジメチルアミノボラン、次亜燐酸、次亜燐酸ナトリウム、ジメチルアミンボラン、ヒドラジン、ホルムアルデヒド、水素化ホウ素ナトリウム、フェノール等が挙げられる。 Examples of the reducing agent include dimethylaminoborane, hypophosphoric acid, sodium hypophosphate, dimethylamine borane, hydrazine, formaldehyde, sodium borohydride, phenol and the like.
 また、前記無電解めっき液としては、必要に応じて、酢酸、蟻酸等のモノカルボン酸;マロン酸、コハク酸、アジピン酸、マレイン酸、フマール酸等のジカルボン酸化合物;リンゴ酸、乳酸、グリコール酸、グルコン酸、クエン酸等のヒドロキシカルボン酸化合物;グリシン、アラニン、イミノジ酢酸、アルギニン、アスパラギン酸、グルタミン酸等のアミノ酸化合物;イミノジ酢酸、ニトリロトリ酢酸、エチレンジアミンジ酢酸、エチレンジアミンテトラ酢酸、ジエチレントリアミンペンタ酢酸等のアミノポリカルボン酸化合物などの有機酸、又はこれらの有機酸の可溶性塩(ナトリウム塩、カリウム塩、アンモニウム塩等)、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等のアミン化合物等の錯化剤を含有するものを用いることができる。 Further, as the electroless plating solution, if necessary, monocarboxylic acids such as acetic acid and formic acid; dicarboxylic acid compounds such as malonic acid, succinic acid, adipic acid, maleic acid and fumaric acid; malic acid, lactic acid and glycol. Hydroxycarboxylic acid compounds such as acid, gluconic acid and citric acid; amino acid compounds such as glycine, alanine, iminodiacetic acid, arginine, aspartic acid and glutamate; Contains an organic acid such as an aminopolycarboxylic acid compound, or a complexing agent such as a soluble salt of these organic acids (sodium salt, potassium salt, ammonium salt, etc.), an amine compound such as ethylenediamine, diethylenetriamine, triethylenetetramine, etc. Can be used.
 前記電解めっき法は、例えば、前記金属粒子層(C)を構成する金属、又は、前記無電解処理によって形成された無電解めっき層(皮膜)の表面に、電解めっき液を接触した状態で通電することにより、前記電解めっき液中に含まれる銅等の金属を、カソードに設置した前記金属粒子層(C)を構成する金属粒子(c)又は前記無電解処理によって形成された無電解めっき層(皮膜)の表面に析出させ、電解めっき層(金属皮膜)を形成する方法である。 In the electrolytic plating method, for example, the metal constituting the metal particle layer (C) or the surface of the electroless plating layer (film) formed by the electroless treatment is energized in a state where the electrolytic plating solution is in contact with the surface. By doing so, the metal such as copper contained in the electroplating solution is placed on the cathode of the metal particles (c) constituting the metal particle layer (C) or the electroless plating layer formed by the electroless treatment. This is a method of forming an electrolytic plating layer (metal film) by precipitating it on the surface of the (film).
 前記電解めっき液としては、例えば、銅、ニッケル、クロム、コバルト、スズ等の金属の硫化物と、硫酸と、水性媒体とを含有するもの等が挙げられる。具体的には、硫酸銅と硫酸と水性媒体とを含有するものが挙げられる。 Examples of the electrolytic plating solution include those containing a sulfide of a metal such as copper, nickel, chromium, cobalt, and tin, sulfuric acid, and an aqueous medium. Specific examples thereof include those containing copper sulfate, sulfuric acid, and an aqueous medium.
 前記無電解めっき液及び前記電解めっき液は、20~98℃の範囲で用いることが好ましい。 The electroless plating solution and the electrolytic plating solution are preferably used in the range of 20 to 98 ° C.
 前記金属めっき層(D)の形成方法としては、前記金属めっき層(D)の膜厚を、薄膜から厚膜まで所望とする膜厚に制御しやすいことから、無電解めっきを施した後、電解めっきを施す方法が好ましい。 As a method for forming the metal plating layer (D), since it is easy to control the film thickness of the metal plating layer (D) to a desired film thickness from a thin film to a thick film, after electroplating, the metal plating layer (D) is formed. The method of performing electrolytic plating is preferable.
 前記金属めっき層(D)の膜厚は、1μm以上50μm以下が好ましい。前記金属めっき層(D)の膜厚は、前記金属めっき層(D)の形成する際のめっき処理工程における処理時間、電流密度、めっき用添加剤の使用量等を制御することによって調整することができる。 The film thickness of the metal plating layer (D) is preferably 1 μm or more and 50 μm or less. The film thickness of the metal plating layer (D) is adjusted by controlling the treatment time, the current density, the amount of the plating additive used, etc. in the plating treatment step when the metal plating layer (D) is formed. Can be done.
 前記金属めっき層(D)のパターニング方法としては、例えば、サブトラクティブ法、セミアディティブ法等のフォトリソ-エッチング法、前記金属粒子層(C)の印刷パターン上にめっきする方法等が挙げられる。 Examples of the patterning method of the metal plating layer (D) include a photolithography etching method such as a subtractive method and a semi-additive method, and a method of plating on a printing pattern of the metal particle layer (C).
 前記サブトラクティブ法は、予め製造した本発明の積層体を構成する前記金属めっき層(D)の上に、所望のパターン形状に対応した形状のエッチングレジスト層を形成し、その後の現像処理によって、前記レジストの除去された部分の前記金属めっき層(D)及び前記金属粒子層(C)を薬液で溶解し除去することによって、所望のパターンを形成する方法である。前記薬液としては、塩化銅、塩化鉄等を含有する薬液を使用することができる。 In the subtractive method, an etching resist layer having a shape corresponding to a desired pattern shape is formed on the metal plating layer (D) constituting the laminated body of the present invention manufactured in advance, and a subsequent development process is performed. This is a method of forming a desired pattern by dissolving and removing the metal plating layer (D) and the metal particle layer (C) of the portion from which the resist has been removed with a chemical solution. As the chemical solution, a chemical solution containing copper chloride, iron chloride or the like can be used.
 前記セミアディティブ法は、前記支持体(A)の上に、前記プライマー層(B)及び前記金属粒子層(C)を形成し、必要に応じて表面処理を行った後、その表面に、所望のパターンに対応した形状のめっきレジスト層を形成し、次いで、無電解めっき法、電解めっき法、又はそれらの組み合わせによって前記金属めっき層(D)を形成した後、前記めっきレジスト層とそれに接触した前記金属粒子層(C)とを薬液等に溶解し除去することによって、所望のパターンを形成する方法である。 In the semi-additive method, the primer layer (B) and the metal particle layer (C) are formed on the support (A), surface treatment is performed as necessary, and then the surface thereof is desired. A plating resist layer having a shape corresponding to the above pattern was formed, and then the metal plating layer (D) was formed by an electroless plating method, an electrolytic plating method, or a combination thereof, and then contacted with the plating resist layer. This is a method of forming a desired pattern by dissolving and removing the metal particle layer (C) in a chemical solution or the like.
 また、前記金属粒子層(C)の印刷パターン上にめっきする方法は、前記支持体(A)の上に形成した前記プライマー層(B)の上に、インクジェット法、反転印刷法等で前記金属粒子層(C)のパターンを印刷し、必要に応じてプラズマ放電処理等により表面処理を行った後、形成した前記金属粒子層(C)の表面に、無電解めっき法、電解めっき法、又はそれらの組み合わせによって前記金属めっき層(D)を形成することによって、所望のパターンを形成する方法である。 Further, the method of plating on the printing pattern of the metal particle layer (C) is such that the metal is plated on the primer layer (B) formed on the support (A) by an inkjet method, a reverse printing method or the like. After printing the pattern of the particle layer (C) and performing surface treatment by plasma discharge treatment or the like as necessary, the surface of the formed metal particle layer (C) is subjected to an electroless plating method, an electrolytic plating method, or an electrolytic plating method. It is a method of forming a desired pattern by forming the metal plating layer (D) by a combination thereof.
 上記のようにして得られる本発明の積層体は、金属層をパターニングすることにより、例えば、プリント配線板、フレキシブルプリント配線板、タッチパネル向け導電性フィルム、タッチパネル用メタルメッシュ、有機太陽電池、有機EL素子、有機トランジスタ、非接触ICカード等のRFID、電磁波シールド、LED照明基材、デジタルサイネージなどの電子部材として好適に用いることができる。特に、FCCL等のフレキシブルプリント配線板用途に最適である。 The laminate of the present invention obtained as described above is obtained by patterning a metal layer, for example, a printed wiring board, a flexible printed wiring board, a conductive film for a touch panel, a metal mesh for a touch panel, an organic solar cell, and an organic EL. It can be suitably used as an element, an organic transistor, an RFID such as a non-contact IC card, an electromagnetic wave shield, an LED lighting substrate, and an electronic member such as digital signage. In particular, it is most suitable for flexible printed wiring board applications such as FCCL.
 以下、実施例により本発明を詳細に説明する。なお、本発明は、以下の実施例によりなんら制限されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples. The present invention is not limited to the following examples.
(製造例1:プライマー樹脂(1)の製造/メラミン樹脂)
 還流冷却器、温度計、撹拌機を備えた反応フラスコに、37質量%のホルムアルデヒドと7質量%のメタノールとを含むホルマリン600質量部(ホルムアルデヒド含量:222質量部(7.4mol)、メタノール含量:42質量部(1.31mol))に、水200質量部及びメタノール350質量部(10.92mol)を加えて均一にした溶液を仕込んだ。次いで、25質量%水酸化ナトリウム水溶液を加え、pH10に調整した後、メラミン310質量部(2.46mol)を加え、液温を85℃まで上げ、メチロール化反応を行った(反応時間:1時間)。
(Manufacturing Example 1: Production of Primer Resin (1) / Melamine Resin)
600 parts by mass of formalin containing 37% by mass of formaldehyde and 7% by mass of methanol in a reaction flask equipped with a reflux cooler, a thermometer, and a stirrer (formaldehyde content: 222 parts by mass (7.4 mol), methanol content: To 42 parts by mass (1.31 mol)), 200 parts by mass of water and 350 parts by mass (10.92 mol) of methanol were added to prepare a uniform solution. Next, a 25 mass% sodium hydroxide aqueous solution was added to adjust the pH to 10, and then 310 parts by mass (2.46 mol) of melamine was added, the liquid temperature was raised to 85 ° C., and a methylolation reaction was carried out (reaction time: 1 hour). ).
 その後、ギ酸を加えてpH7に調整した後、60℃まで冷却し、エーテル化反応させた。白濁温度40℃で25質量%水酸化ナトリウム水溶液を加えてpH9に調整し、エーテル化反応を止めた(反応時間:1時間)。温度50℃の減圧下で残存するメタノールを除去(脱メタノール時間:4時間)した。その後、メチルエチルケトンを加えて、不揮発分2質量%のメラミン樹脂溶液を得た。 After that, formic acid was added to adjust the pH to 7, and then the mixture was cooled to 60 ° C. and subjected to an etherification reaction. A 25 mass% sodium hydroxide aqueous solution was added at a cloudiness temperature of 40 ° C. to adjust the pH to 9, and the etherification reaction was stopped (reaction time: 1 hour). The remaining methanol was removed under reduced pressure at a temperature of 50 ° C. (methanol removal time: 4 hours). Then, methyl ethyl ketone was added to obtain a melamine resin solution having a non-volatile content of 2% by mass.
(製造例2:プライマー樹脂(2)の製造/ウレタン-アクリル複合樹脂)
 温度計、窒素ガス導入管、攪拌器を備えた窒素置換された容器中で、ポリエステルポリオール(1,4-シクロヘキサンジメタノールとネオペンチルグリコールとアジピン酸とを反応させて得られたポリエステルポリオール)を100質量部、2,2―ジメチロールプロピオン酸17.6質量部、1,4-シクロヘキサンジメタノール21.7質量部、ジシクロヘキシルメタンジイソシアネート106.2質量部を、メチルエチルケトン178質量部の中で反応させることによって、末端にイソシアネート基を有するウレタンプレポリマーの有機溶剤溶液を得た。
(Manufacturing Example 2: Production of Primer Resin (2) / Urethane-Acrylic Composite Resin)
A polyester polyol (a polyester polyol obtained by reacting 1,4-cyclohexanedimethanol, neopentyl glycol, and adipic acid) in a nitrogen-substituted container equipped with a thermometer, a nitrogen gas introduction tube, and a stirrer. 100 parts by mass, 17.6 parts by mass of 2,2-dimethylolpropionic acid, 21.7 parts by mass of 1,4-cyclohexanedimethanol, and 106.2 parts by mass of dicyclohexylmethanediisocyanate are reacted in 178 parts by mass of methyl ethyl ketone. As a result, an organic solvent solution of urethane prepolymer having an isocyanate group at the terminal was obtained.
 次いで、前記ウレタン樹脂の有機溶剤溶液にトリエチルアミンを13.3質量部加えることで、前記ウレタン樹脂が有するカルボキシル基の一部または全部を中和し、さらに水380質量部を加え十分に攪拌することにより、ウレタン樹脂の水性分散液を得た。 Next, 13.3 parts by mass of triethylamine is added to the organic solvent solution of the urethane resin to neutralize a part or all of the carboxyl groups of the urethane resin, and 380 parts by mass of water is further added and sufficiently stirred. To obtain an aqueous dispersion of urethane resin.
 次いで、前記水性分散液に、25質量%のエチレンジアミン水溶液を8.8質量部加え、攪拌することによって、粒子状のポリウレタン樹脂を鎖伸長させ、次いでエージング・脱溶剤することによって、不揮発分30質量%のウレタン樹脂の水性分散液を得た。前記ウレタン樹脂の重量平均分子量は53,000であった。 Next, 8.8 parts by mass of a 25% by mass ethylenediamine aqueous solution was added to the aqueous dispersion, and the mixture was stirred to extend the chain of the particulate polyurethane resin, and then aging and removing the solvent to 30% by mass of the non-volatile content. An aqueous dispersion of% urethane resin was obtained. The weight average molecular weight of the urethane resin was 53,000.
 次に、攪拌機、還流冷却管、窒素導入管、温度計、単量体混合物滴下用滴下漏斗、重合触媒滴下用滴下漏斗を備えた反応容器に脱イオン水140質量部、前記で得たウレタン樹脂の水分散体100質量部を入れ、窒素を吹き込みながら80℃まで昇温した。 Next, 140 parts by mass of deionized water was placed in a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen introduction tube, a thermometer, a dropping funnel for dropping a monomer mixture, and a dropping funnel for dropping a polymerization catalyst. 100 parts by mass of the aqueous dispersion of No. 1 was added, and the temperature was raised to 80 ° C. while blowing nitrogen.
 80℃まで昇温した反応容器内に、攪拌下、メタクリル酸メチル60質量部、アクリル酸n-ブチル30質量部及びN-n-ブトキシメチルアクリルアミド10質量部からなる単量体混合物と、過硫酸アンモニウム水溶液(濃度:0.5質量%)20質量部とを別々の滴下漏斗から、反応容器内温度を80±2℃に保ちながら120分間かけて滴下し重合した。 In a reaction vessel heated to 80 ° C., a monomer mixture consisting of 60 parts by mass of methyl methacrylate, 30 parts by mass of n-butyl acrylate and 10 parts by mass of Nn-butoxymethylacrylamide and ammonium persulfate under stirring. 20 parts by mass of an aqueous solution (concentration: 0.5% by mass) was added dropwise from separate dropping funnels over 120 minutes while maintaining the temperature inside the reaction vessel at 80 ± 2 ° C. for polymerization.
 滴下終了後、同温度にて60分間攪拌することによって、前記ウレタン樹脂のシェル層と、アクリル樹脂のコア層とによって構成されるウレタン-アクリル複合樹脂を得た。 After completion of the dropping, the mixture was stirred at the same temperature for 60 minutes to obtain a urethane-acrylic composite resin composed of the urethane resin shell layer and the acrylic resin core layer.
 次いで、前記反応容器内の温度を40℃に冷却した後、不揮発分2質量%になるように脱イオン水を加えて、200メッシュ濾布で濾過することによって、ウレタン-アクリル複合樹脂の水分散液を得た。 Next, after cooling the temperature inside the reaction vessel to 40 ° C., deionized water was added so that the non-volatile content was 2% by mass, and the mixture was filtered through a 200-mesh filter cloth to disperse the urethane-acrylic composite resin in water. I got the liquid.
(製造例3:プライマー樹脂(3)の製造/アミノトリアジン変性ノボラック樹脂及びエポキシ樹脂の混合樹脂)
 温度計、冷却管、分留管、攪拌器を取り付けたフラスコに、フェノール750質量部、メラミン75質量部、41.5質量%ホルマリン346質量部、及びトリエチルアミン1.5質量部を加え、発熱に注意しながら100℃まで昇温した。還流下100℃にて2時間反応させた後、常圧下にて水を除去しながら180℃まで2時間かけて昇温した。次いで、減圧下で未反応のフェノールを除去し、アミノトリアジン変性ノボラック樹脂を得た。水酸基当量は120g/当量であった。
(Manufacturing Example 3: Production of Primer Resin (3) / Mixed Resin of Aminotriazine-Modified Novolac Resin and Epoxy Resin)
Add 750 parts by mass of phenol, 75 parts by mass of melamine, 346 parts by mass of 41.5% by mass of formalin, and 1.5 parts by mass of triethylamine to a flask equipped with a thermometer, a cooling tube, a fractionation tube, and a stirrer to generate heat. The temperature was raised to 100 ° C. with caution. After reacting at 100 ° C. for 2 hours under reflux, the temperature was raised to 180 ° C. over 2 hours while removing water under normal pressure. Then, unreacted phenol was removed under reduced pressure to obtain an aminotriazine-modified novolak resin. The hydroxyl group equivalent was 120 g / equivalent.
 次いで、アミノトリアジン変性ノボラック樹脂に65質量部、及びエポキシ樹脂(DIC株式会社製「EPICLON 850-S」;ビスフェノールA型エポキシ樹脂、エポキシ基当量188g/当量)35質量部を混合後、メチルエチルケトンで不揮発分2質量%となるように希釈し、均一に混合することで、アミノトリアジン変性ノボラック樹脂及びエポキシ樹脂の混合樹脂溶液を得た。 Next, 65 parts by mass of aminotriazine-modified novolak resin and 35 parts by mass of epoxy resin (“EPICLON 850-S” manufactured by DIC Co., Ltd .; bisphenol A type epoxy resin, epoxy group equivalent 188 g / equivalent) are mixed, and then non-volatile with methyl ethyl ketone. A mixed resin solution of an aminotriazine-modified novolak resin and an epoxy resin was obtained by diluting the mixture so as to have a content of 2% by mass and mixing uniformly.
(製造例4:プライマー樹脂(4)の製造/ブロックポリイソシアネート)
 温度計、窒素ガス導入管、攪拌器を備えた窒素置換された反応容器中で、2,2-ジメチロールプロピオン酸6.3質量部と、4,4’-ジフェニルメタンジイソシアネートのヌレート体71.1質量部とを、メチルエチルケトン中で反応させることによってイソシアネート化合物を調製した後、前記反応容器にブロック剤としてフェノール17.8質量部を供給し反応させることによって、ブロックポリイソシアネートの溶剤溶液を調製した。
(Production Example 4: Production of Primer Resin (4) / Blocked Polyisocyanate)
In a nitrogen-substituted reaction vessel equipped with a thermometer, a nitrogen gas introduction tube, and a stirrer, 6.3 parts by mass of 2,2-dimethylolpropionic acid and a nurate compound of 4,4'-diphenylmethane diisocyanate 71.1. An isocyanate compound was prepared by reacting with parts by mass in methyl ethyl ketone, and then 17.8 parts by mass of phenol as a blocking agent was supplied to the reaction vessel and reacted to prepare a solvent solution of blocked polyisocyanate.
 次に、前記ブロックポリイソシアネートの溶剤溶液にトリエチルアミンを4.8質量部加えることで、前記ブロックポリイソシアネートが有するカルボキシル基を中和した。その後、メチルエチルケトンを加えて、不揮発分2質量%のブロックポリイソシアネート溶液を得た。 Next, 4.8 parts by mass of triethylamine was added to the solvent solution of the blocked polyisocyanate to neutralize the carboxyl group of the blocked polyisocyanate. Then, methyl ethyl ketone was added to obtain a blocked polyisocyanate solution having a non-volatile content of 2% by mass.
(製造例5:シランカップリング剤で処理したシリカ粒子(1)の製造)
 温度計、冷却管、攪拌器を取り付けたフラスコに、シリカ粒子分散体(日産化学株式会社製「スノーテックス-OL」;平均粒子径45nm、不揮発分20質量%)を500質量部仕込み、50℃まで昇温した。その後、エポキシ基を含有するシランカップリング剤(信越化学工業株式会社製「KBM-402」、3-グリシドキシプロピルメチルジメトキシシラン、不揮発分100質量%)を20質量部添加した。発熱を確認した後、50℃で24時間攪拌した。その後、30℃まで冷却し、イソプロピルアルコールで不揮発分が2質量%になるよう希釈し、均一に混合することで、シリカ粒子(1)の分散液を得た。
(Production Example 5: Production of silica particles (1) treated with a silane coupling agent)
In a flask equipped with a thermometer, a cooling tube, and a stirrer, 500 parts by mass of a silica particle dispersion (“Snowtex-OL” manufactured by Nissan Chemical Co., Ltd .; average particle diameter 45 nm, non-volatile content 20% by mass) was charged at 50 ° C. The temperature was raised to. Then, 20 parts by mass of an epoxy group-containing silane coupling agent (“KBM-402” manufactured by Shin-Etsu Chemical Co., Ltd., 3-glycidoxypropylmethyldimethoxysilane, non-volatile content 100% by mass) was added. After confirming the heat generation, the mixture was stirred at 50 ° C. for 24 hours. Then, the mixture was cooled to 30 ° C., diluted with isopropyl alcohol so that the non-volatile content was 2% by mass, and mixed uniformly to obtain a dispersion liquid of silica particles (1).
(製造例6:シランカップリング剤で処理したシリカ粒子(2)の製造)
 製造例5で用いたシランカップリング剤を、エポキシ基を含有するシランカップリング剤(信越化学工業株式会社製「KBM-303」、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、不揮発分100質量%)に変更した以外は同じ方法で不揮発分が2質量%のシリカ粒子(2)の分散液を得た。
(Production Example 6: Production of silica particles (2) treated with a silane coupling agent)
The silane coupling agent used in Production Example 5 is a silane coupling agent containing an epoxy group (“KBM-303” manufactured by Shin-Etsu Chemical Co., Ltd., 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, non-volatile. A dispersion of silica particles (2) having a non-volatile content of 2% by mass was obtained by the same method except that the content was changed to 100% by mass.
(製造例7:シランカップリング剤で処理したシリカ粒子(3)の製造)
 製造例5で用いたシランカップリング剤を、アミノ基を含有するシランカップリング剤(信越化学工業株式会社製「KBM-573」、N-フェニル-3-アミノプロピルトリメトキシシラン、不揮発分100質量%)に変更した以外は同じ方法で、不揮発分が2質量%のシリカ粒子(3)の分散液を得た。
(Production Example 7: Production of silica particles (3) treated with a silane coupling agent)
The silane coupling agent used in Production Example 5 is a silane coupling agent containing an amino group (“KBM-573” manufactured by Shin-Etsu Chemical Co., Ltd., N-phenyl-3-aminopropyltrimethoxysilane, non-volatile content 100 mass). %) Was used in the same manner to obtain a dispersion of silica particles (3) having a non-volatile content of 2% by mass.
(製造例8:シランカップリング剤で処理したシリカ粒子(4)の製造)
 製造例5で用いたシランカップリング剤を、メタクリル基を含有するシランカップリング剤(信越化学工業株式会社製「KBE-502」、3-メタクリロキシプロピルメチルジエトキシシラン、不揮発分100質量%)に変更した以外は同じ方法で、不揮発分が2質量%のシリカ粒子(4)の分散液を得た。
(Production Example 8: Production of silica particles (4) treated with a silane coupling agent)
The silane coupling agent used in Production Example 5 is a silane coupling agent containing a methacryl group (“KBE-502” manufactured by Shin-Etsu Chemical Co., Ltd., 3-methacryloxypropylmethyldiethoxysilane, non-volatile content 100% by mass). A dispersion of silica particles (4) having a non-volatile content of 2% by mass was obtained by the same method except that the mixture was changed to.
(調製例1:プライマー組成物(1)の調製)
 製造例1で得られた不揮発分2質量%のメラミン樹脂溶液100質量部に、製造例5で得られたシリカ粒子(1)の分散液を1質量部添加し、30分間混合してプライマー組成物(1)を得た。
(Preparation Example 1: Preparation of Primer Composition (1))
To 100 parts by mass of the melamine resin solution having a non-volatile content of 2% by mass obtained in Production Example 1, 1 part by mass of the dispersion liquid of the silica particles (1) obtained in Production Example 5 was added and mixed for 30 minutes to form a primer composition. I got the thing (1).
(調製例2:プライマー組成物(2)の調製)
 製造例2で得られた不揮発分2質量%のウレタン-アクリル複合樹脂の水分散液100質量部に、製造例5で得られたシリカ粒子(1)の分散液を5質量部添加し、30分間混合してプライマー組成物(2)を得た。
(Preparation Example 2: Preparation of Primer Composition (2))
To 100 parts by mass of the aqueous dispersion of the urethane-acrylic composite resin having a non-volatile content of 2% by mass obtained in Production Example 2, 5 parts by mass of the dispersion of the silica particles (1) obtained in Production Example 5 was added to 30 parts. Mixing for minutes gave the primer composition (2).
(調製例3:プライマー組成物(3)の調製)
 製造例3で得られた不揮発分2質量%のアミノトリアジン変性ノボラック及びエポキシ樹脂の混合物溶液100質量部に、製造例5で得られたシリカ粒子(1)の分散液を10質量部添加し、30分間混合してプライマー組成物(3)を得た。
(Preparation Example 3: Preparation of Primer Composition (3))
To 100 parts by mass of the mixture solution of aminotriazine-modified novolac and epoxy resin having a non-volatile content of 2% by mass obtained in Production Example 3, 10 parts by mass of the dispersion liquid of the silica particles (1) obtained in Production Example 5 was added. Mixing for 30 minutes gave the primer composition (3).
(調製例4:プライマー組成物(4)の調製)
 製造例3で得られた不揮発分2質量%のアミノトリアジン変性ノボラック樹脂及びエポキシ樹脂の混合樹脂溶液100質量部に、製造例6で得られたシリカ粒子(2)の分散液を25質量部添加し、30分間混合してプライマー組成物(4)を得た。
(Preparation Example 4: Preparation of Primer Composition (4))
To 100 parts by mass of the mixed resin solution of the aminotriazine-modified novolac resin and the epoxy resin having a non-volatile content of 2% by mass obtained in Production Example 3, 25 parts by mass of the dispersion liquid of the silica particles (2) obtained in Production Example 6 was added. Then, it was mixed for 30 minutes to obtain a primer composition (4).
(調製例5:プライマー組成物(5)の調製)
 製造例3で得られた不揮発分2質量%のアミノトリアジン変性ノボラック樹脂及びエポキシ樹脂の混合樹脂溶液100質量部に、製造例6で得られたシリカ粒子(2)の分散液75質量部を添加し、30分間混合してプライマー組成物(5)を得た。
(Preparation Example 5: Preparation of Primer Composition (5))
To 100 parts by mass of the mixed resin solution of the aminotriazine-modified novolac resin and the epoxy resin having a non-volatile content of 2% by mass obtained in Production Example 3, 75 parts by mass of the dispersion liquid of the silica particles (2) obtained in Production Example 6 was added. Then, it was mixed for 30 minutes to obtain a primer composition (5).
(調製例6:プライマー組成物(6)の調製)
 製造例4で得られた不揮発分2質量%のブロックポリイソシアネート溶液100質量部に、製造例7で得られたシリカ粒子(3)の分散液を150質量部添加し、30分間混合してプライマー組成物(6)を得た。
(Preparation Example 6: Preparation of Primer Composition (6))
To 100 parts by mass of the blocked polyisocyanate solution having a non-volatile content of 2% by mass obtained in Production Example 4, 150 parts by mass of the dispersion liquid of the silica particles (3) obtained in Production Example 7 was added, mixed for 30 minutes, and primered. The composition (6) was obtained.
(調製例7:プライマー組成物(7)の調製)
 製造例1で得られた不揮発分2質量%のメラミン樹脂溶液100質量部に、製造例8で得られたシリカ粒子(4)の分散液を400質量部添加し、30分間混合してプライマー組成物(7)を得た。
(Preparation Example 7: Preparation of Primer Composition (7))
To 100 parts by mass of the melamine resin solution having a non-volatile content of 2% by mass obtained in Production Example 1, 400 parts by mass of the dispersion liquid of the silica particles (4) obtained in Production Example 8 was added and mixed for 30 minutes to form a primer composition. I got the thing (7).
(調製例8:プライマー組成物(R1)の調製)
 製造例3で得られた不揮発分2質量%のアミノトリアジン変性ノボラック樹脂及びエポキシ樹脂の混合樹脂溶液を、シリカ粒子分散液を添加せずにプライマー組成物(R1)として用いた。
(Preparation Example 8: Preparation of Primer Composition (R1))
The mixed resin solution of the aminotriazine-modified novolac resin and the epoxy resin having a non-volatile content of 2% by mass obtained in Production Example 3 was used as the primer composition (R1) without adding the silica particle dispersion.
(調製例9:プライマー組成物(R2)の調製)
 シリカ粒子分散体(日産化学株式会社製「スノーテックス-OL」;平均粒子径45nm、不揮発分20質量%)を不揮発分2質量%になるようにイソプロピルアルコールで希釈し、シランカップリング剤で処理していないシリカ粒子を75質量部作製した。このシリカ粒子を、製造例3で得られた不揮発分2質量%のアミノトリアジン変性ノボラック樹脂及びエポキシ樹脂の混合樹脂溶液100質量部へ添加し、30分間混合してプライマー組成物(R2)として用いた。
(Preparation Example 9: Preparation of Primer Composition (R2))
Silica particle dispersion (“Snowtex-OL” manufactured by Nissan Chemical Co., Ltd .; average particle diameter 45 nm, non-volatile content 20% by mass) is diluted with isopropyl alcohol so as to have a non-volatile content of 2% by mass, and treated with a silane coupling agent. 75 parts by mass of untreated silica particles were prepared. These silica particles are added to 100 parts by mass of a mixed resin solution of an aminotriazine-modified novolac resin and an epoxy resin having a non-volatile content of 2% by mass obtained in Production Example 3 and mixed for 30 minutes for use as a primer composition (R2). There was.
(調製例10:流動体(1)の調製)
 特許第4573138号公報記載の実施例1にしたがって、銀ナノ粒子とカチオン性基(アミノ基)を有する有機化合物の複合体である灰緑色の金属光沢があるフレーク状の塊からなるカチオン性銀ナノ粒子を得た。その後、この銀ナノ粒子の粉末を、エチレングリコール45質量部と、イオン交換水55質量部との混合溶媒に分散させて、カチオン性銀ナノ粒子が5質量%の流動体(1)を調製した。
(Preparation Example 10: Preparation of fluid (1))
According to Example 1 described in Japanese Patent No. 4573138, a cationic silver nano composed of a grayish green metallic luster flake-like mass which is a composite of silver nanoparticles and an organic compound having a cationic group (amino group). Obtained particles. Then, the powder of the silver nanoparticles was dispersed in a mixed solvent of 45 parts by mass of ethylene glycol and 55 parts by mass of ion-exchanged water to prepare a fluid (1) containing 5% by mass of cationic silver nanoparticles. ..
(実施例1)
 ポリイミドフィルム(東レデュポン株式会社製「カプトン50EN-C」;厚さ12.5μm)の表面に、調製例1で得られたプライマー組成物(1)を、卓上型小型コーター(RKプリントコートインストルメント社製「Kプリンティングプローファー」)を用いて、その乾燥後の厚さが100nmとなるように塗工した。次いで、熱風乾燥機を用いて150℃で5分間乾燥することによって、ポリイミドフィルムの表面にプライマー層を形成した。
(Example 1)
On the surface of a polyimide film (“Kapton 50EN-C” manufactured by Toray DuPont Co., Ltd .; thickness 12.5 μm), the primer composition (1) obtained in Preparation Example 1 was applied to a desktop compact coater (RK print coat instrument). Using a "K printing loafer" manufactured by the same company, the coating was applied so that the thickness after drying was 100 nm. Then, a primer layer was formed on the surface of the polyimide film by drying at 150 ° C. for 5 minutes using a hot air dryer.
 上記で形成したプライマー層の表面に、上記で得られた流動体(1)を、バーコーターを用いて塗工した。次いで、200℃で5分間乾燥することによって、前記金属粒子層(C)に相当する銀層(膜厚100nm)を形成した。 The fluid (1) obtained above was coated on the surface of the primer layer formed above using a bar coater. Then, by drying at 200 ° C. for 5 minutes, a silver layer (thickness 100 nm) corresponding to the metal particle layer (C) was formed.
 上記で得られた銀層をカソード側に設定し、含リン銅をアノード側に設定し、硫酸銅を含有する電解めっき液を用いて電流密度2.5A/dmで30分間電解めっきを行うことによって、無電解銅めっきによる銅めっき層の表面に、電解銅めっきによる銅めっき層(膜厚15μm)を形成した。前記電解めっき液としては、硫酸銅70g/L、硫酸200g/L、塩素イオン50mg/L、添加剤(奥野製薬工業(株)製「トップルチナSF-M」)5ml/Lを用いた。なお、無電解銅めっきによる銅めっき層及びその上に形成した電解銅めっきによる銅めっき層を合わせたものが、前記金属めっき層(D)に相当する。 The silver layer obtained above is set on the cathode side, phosphorus-containing copper is set on the anode side, and electroplating is performed for 30 minutes at a current density of 2.5 A / dm 2 using an electrolytic plating solution containing copper sulfate. As a result, a copper plating layer (thickness 15 μm) by electroplating was formed on the surface of the copper plating layer by electroless copper plating. As the electrolytic plating solution, 70 g / L of copper sulfate, 200 g / L of sulfuric acid, 50 mg / L of chloride ion, and 5 ml / L of an additive (“Top Lucina SF-M” manufactured by Okuno Pharmaceutical Co., Ltd.) were used. The combination of the copper plating layer by electrolytic copper plating and the copper plating layer by electrolytic copper plating formed on the copper plating layer corresponds to the metal plating layer (D).
 以上の方法によって、支持体(A)、プライマー層(B)、金属粒子層(C)、及び金属めっき層(D)が順次積層された積層体(1)を得た。 By the above method, a laminate (1) in which a support (A), a primer layer (B), a metal particle layer (C), and a metal plating layer (D) were sequentially laminated was obtained.
(実施例2~7、比較例1及び2)
 実施例1で用いたプライマー組成物(1)を、プライマー組成物(2)~(7)、(R1)又は(R2)に変更した以外は、実施例1と同様の方法によって、積層体(2)~(7)、(R1)及び(R2)を得た。
(Examples 2 to 7, Comparative Examples 1 and 2)
The laminate (1) was prepared by the same method as in Example 1 except that the primer composition (1) used in Example 1 was changed to the primer compositions (2) to (7), (R1) or (R2). 2) to (7), (R1) and (R2) were obtained.
 上記の実施例1~7及び比較例1~2で得られた積層体(1)~(7)、(R1)及び(R2)について、以下の測定及び評価を行った。 The following measurements and evaluations were performed on the laminates (1) to (7), (R1) and (R2) obtained in Examples 1 to 7 and Comparative Examples 1 and 2 above.
[加熱前の剥離強度の測定]
 上記で得られた各積層体について、株式会社島津製作所製「オートグラフAGS-X 500N」を用いて剥離強度を測定した。なお、測定に用いるリード幅は5mm、そのピールの角度は90°とした。また、ピール強度は、金属めっき層の厚さが厚くなるほど高い値を示す傾向にあるが、本発明でのピール強度の測定は、金属めっき層の厚さ15μmにおける測定値を基準として実施した。
[Measurement of peel strength before heating]
The peel strength of each of the above-mentioned laminates was measured using "Autograph AGS-X 500N" manufactured by Shimadzu Corporation. The lead width used for the measurement was 5 mm, and the peel angle was 90 °. Further, the peel strength tends to show a higher value as the thickness of the metal plating layer becomes thicker, but the measurement of the peel strength in the present invention was carried out based on the measured value at a thickness of 15 μm of the metal plating layer.
[密着性の評価]
 上記で測定した加熱前の剥離強度の値から、下記の基準にしたがって密着性を評価した。
 A:剥離強度の値が650N/m以上である。
 B:剥離強度の値が450N/m以上、650N/m未満である。
 C:剥離強度の値が250N/m以上、450N/m未満である。
 D:剥離強度の値が250N/m未満である。
[Evaluation of adhesion]
From the value of the peel strength before heating measured above, the adhesion was evaluated according to the following criteria.
A: The value of peel strength is 650 N / m or more.
B: The value of the peel strength is 450 N / m or more and less than 650 N / m.
C: The value of the peel strength is 250 N / m or more and less than 450 N / m.
D: The value of peel strength is less than 250 N / m.
[加熱後の剥離強度の測定]
 上記で得られた各積層体について、それぞれ150℃に設定した乾燥機内に300時間保管して加熱した。加熱後、上記と同様の方法でピール強度を測定した。
[Measurement of peel strength after heating]
Each of the above-mentioned laminates was stored in a dryer set at 150 ° C. for 300 hours and heated. After heating, the peel strength was measured by the same method as described above.
[耐熱性の評価]
 上記で測定した加熱前後のピール強度値を用いて、加熱前後での保持率を算出し、下記の基準にしたがって耐熱性を評価した。
 A:保持率が85%以上である。
 B:保持率が70%以上85%未満である。
 C:保持率が55%以上70%未満である。
 D:保持率が55%未満である。
[Evaluation of heat resistance]
Using the peel strength values before and after heating measured above, the retention rate before and after heating was calculated, and the heat resistance was evaluated according to the following criteria.
A: The retention rate is 85% or more.
B: The retention rate is 70% or more and less than 85%.
C: The retention rate is 55% or more and less than 70%.
D: The retention rate is less than 55%.
 実施例1~7、比較例1及び2で用いたプライマー組成物の組成、加熱前後の剥離強度の測定結果、密着性及び耐熱性の評価結果を表1に示す。なお、プライマー組成物の組成は、不揮発分のみを示す。 Table 1 shows the composition of the primer compositions used in Examples 1 to 7, the measurement results of the peel strength before and after heating, and the evaluation results of adhesion and heat resistance. The composition of the primer composition shows only the non-volatile content.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の積層体である実施例1~7で得られた積層体(1)~(7)は、初期(加熱前)の剥離強度は高く密着性に優れていることが確認できた。また、150℃で300時間の耐熱試験後の剥離強度の低下もわずかで耐熱密着性にも優れていることを確認できた。 It was confirmed that the laminates (1) to (7) obtained in Examples 1 to 7, which are the laminates of the present invention, had high initial (before heating) peel strength and excellent adhesion. In addition, it was confirmed that the peel strength was slightly reduced after the heat resistance test at 150 ° C. for 300 hours, and the heat resistance and adhesion were excellent.
 一方、比較例1で得られた積層体(R1)は、シリカ粒子を含有しないプライマー層を用いた例であるが、初期(加熱前)の剥離強度は比較的高いが、150℃で300時間の耐熱性試験後の剥離強度が大幅に低下し、耐熱密着性に劣っていることを確認できた。 On the other hand, the laminate (R1) obtained in Comparative Example 1 is an example using a primer layer containing no silica particles, and although the initial (before heating) peel strength is relatively high, it is at 150 ° C. for 300 hours. It was confirmed that the peel strength after the heat resistance test was significantly reduced and the heat resistance was inferior.
 また、比較例2で得られた積層体(R2)は、シランカップリング剤で処理していないシリカ粒子を含有するプライマー層を用いた例であるが、初期(加熱前)の剥離強度が低くなり、150℃で300時間の耐熱試験後の剥離強度の保持率は高い結果となった。 Further, the laminate (R2) obtained in Comparative Example 2 is an example in which a primer layer containing silica particles not treated with a silane coupling agent is used, but the initial (before heating) peeling strength is low. As a result, the retention rate of the peel strength after the heat resistance test at 150 ° C. for 300 hours was high.

Claims (9)

  1.  支持体(A)の上に、プライマー層(B)及び金属粒子層(C)が順次積層された積層体であって、前記プライマー層(B)がプライマー樹脂(b1)及びシランカップリング剤で処理されたシリカ粒子(b2)を含有する層であることを特徴とする積層体。 A laminate in which a primer layer (B) and a metal particle layer (C) are sequentially laminated on a support (A), and the primer layer (B) is a primer resin (b1) and a silane coupling agent. A laminate characterized by being a layer containing treated silica particles (b2).
  2.  前記プライマー層(B)中の前記シリカ粒子(b2)の含有量が、前記プライマー樹脂(b1)100質量部に対して、1~400質量部の範囲である請求項1記載の積層体。 The laminate according to claim 1, wherein the content of the silica particles (b2) in the primer layer (B) is in the range of 1 to 400 parts by mass with respect to 100 parts by mass of the primer resin (b1).
  3.  前記シリカ粒子(b2)の平均粒子径が0.001~0.5μmである請求項1又は2記載の積層体。 The laminate according to claim 1 or 2, wherein the silica particles (b2) have an average particle size of 0.001 to 0.5 μm.
  4.  前記金属粒子層(C)の上に、さらに金属めっき層(D)を積層された請求項1~3のいずれか1項記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the metal plating layer (D) is further laminated on the metal particle layer (C).
  5.  前記プライマー樹脂(b1)が、アミノトリアジン変性ノボラック樹脂を含有するものである請求項1~4のいずれか1項記載の積層体。 The laminate according to any one of claims 1 to 4, wherein the primer resin (b1) contains an aminotriazine-modified novolac resin.
  6.  請求項1~5のいずれか1項記載の積層体を有することを特徴とするプリント配線板。 A printed wiring board having the laminate according to any one of claims 1 to 5.
  7.  前記支持体(A)がフィルムである請求項1~5のいずれか1項記載の積層体を有することを特徴とするフレキシブルプリント配線板。 A flexible printed wiring board according to any one of claims 1 to 5, wherein the support (A) is a film.
  8.  請求項1~5のいずれか1項記載の積層体を有することを特徴とする電磁波シールド。 An electromagnetic wave shield characterized by having the laminate according to any one of claims 1 to 5.
  9.  請求項1~5のいずれか1項記載の積層体を有することを特徴とする成形品。 A molded product having the laminate according to any one of claims 1 to 5.
PCT/JP2020/044970 2019-12-24 2020-12-03 Multilayer body, printed wiring board, flexible printed wiring board, electromagnetic wave shield and molded article WO2021131565A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021546763A JP7052927B2 (en) 2019-12-24 2020-12-03 Laminates, printed wiring boards, flexible printed wiring boards, electromagnetic wave shields and molded products
CN202080083711.3A CN114746270A (en) 2019-12-24 2020-12-03 Laminate, printed wiring board, flexible printed wiring board, electromagnetic wave shield, and molded article
KR1020227019882A KR20220119375A (en) 2019-12-24 2020-12-03 Laminates, printed wiring boards, flexible printed wiring boards, electromagnetic shields and molded products

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-232789 2019-12-24
JP2019232789 2019-12-24

Publications (1)

Publication Number Publication Date
WO2021131565A1 true WO2021131565A1 (en) 2021-07-01

Family

ID=76574918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044970 WO2021131565A1 (en) 2019-12-24 2020-12-03 Multilayer body, printed wiring board, flexible printed wiring board, electromagnetic wave shield and molded article

Country Status (5)

Country Link
JP (1) JP7052927B2 (en)
KR (1) KR20220119375A (en)
CN (1) CN114746270A (en)
TW (1) TW202134050A (en)
WO (1) WO2021131565A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231125A (en) * 2006-02-28 2007-09-13 Kaneka Corp Thermosetting resin composition and its use
JP2007254527A (en) * 2006-03-22 2007-10-04 Toray Ind Inc Adhesive composition for electronic equipment and adhesive sheet for electronic equipment using the same
WO2014156844A1 (en) * 2013-03-29 2014-10-02 太陽ホールディングス株式会社 Thermoplastic resin film base for optical firing, conductive circuit board using same, and method for manufacturing said conductive circuit board
JP2016112704A (en) * 2014-12-11 2016-06-23 Dic株式会社 Conductive laminate and method for manufacturing the same
JP2019014188A (en) * 2017-07-10 2019-01-31 Dic株式会社 Laminate, and printed wiring board, flexible printed wiring board and molded article using the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830807B2 (en) 1977-04-11 1983-07-01 松下電器産業株式会社 Grooving equipment for plate-shaped objects
WO2009131405A2 (en) * 2008-04-25 2009-10-29 (주)Lg화학 Epoxy-based composition, adhesive film, dicing die-bonding film and semiconductor device
JP4573138B2 (en) * 2008-06-26 2010-11-04 Dic株式会社 Method for producing silver-containing powder, silver-containing powder and dispersion thereof
JP6090148B2 (en) 2013-12-19 2017-03-08 住友金属鉱山株式会社 Method for determining adhesion strength of metal thin film / polyimide laminate, and metallized polyimide film substrate using the same
JP6351062B2 (en) * 2014-02-27 2018-07-04 インテル・コーポレーション Curable epoxy composition, film, laminated film, prepreg, laminate, cured product, and composite
JP2016114919A (en) * 2014-12-18 2016-06-23 Dic株式会社 Optical film, manufacturing method therefor, information display device, and vehicle-mounted information display device
WO2018186025A1 (en) 2017-04-07 2018-10-11 パナソニックIpマネジメント株式会社 Metal-clad laminated board, metal member provided with resin, and wiring board
CN110753617A (en) * 2017-07-10 2020-02-04 Dic株式会社 Laminate, printed wiring board using same, flexible printed wiring board, and molded article
CN110785282B (en) * 2017-07-10 2022-06-24 Dic株式会社 Laminate, printed wiring board using same, flexible printed wiring board, and molded article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231125A (en) * 2006-02-28 2007-09-13 Kaneka Corp Thermosetting resin composition and its use
JP2007254527A (en) * 2006-03-22 2007-10-04 Toray Ind Inc Adhesive composition for electronic equipment and adhesive sheet for electronic equipment using the same
WO2014156844A1 (en) * 2013-03-29 2014-10-02 太陽ホールディングス株式会社 Thermoplastic resin film base for optical firing, conductive circuit board using same, and method for manufacturing said conductive circuit board
JP2016112704A (en) * 2014-12-11 2016-06-23 Dic株式会社 Conductive laminate and method for manufacturing the same
JP2019014188A (en) * 2017-07-10 2019-01-31 Dic株式会社 Laminate, and printed wiring board, flexible printed wiring board and molded article using the same

Also Published As

Publication number Publication date
KR20220119375A (en) 2022-08-29
CN114746270A (en) 2022-07-12
TW202134050A (en) 2021-09-16
JPWO2021131565A1 (en) 2021-12-23
JP7052927B2 (en) 2022-04-12

Similar Documents

Publication Publication Date Title
JP5827203B2 (en) Conductive composition
JP6579295B2 (en) Laminated body, printed wiring board, flexible printed wiring board and molded product using the same
CN112237053B (en) Method for manufacturing printed wiring board
US20190070631A1 (en) Method for manufacturing laminate
CN118082347A (en) Prepreg, printed wiring board, semiconductor package, and method for manufacturing printed wiring board
KR20210023791A (en) Laminate for printed wiring board and printed wiring board using the same
CN112205088A (en) Method for manufacturing printed wiring board
JP6579293B2 (en) Laminated body, printed wiring board, flexible printed wiring board and molded product using the same
JP6296290B2 (en) Metal-based printed wiring board and manufacturing method thereof
JP7052927B2 (en) Laminates, printed wiring boards, flexible printed wiring boards, electromagnetic wave shields and molded products
JP2019014188A (en) Laminate, and printed wiring board, flexible printed wiring board and molded article using the same
KR101721966B1 (en) Laminate, electroconductive pattern, and electric circuit
JP2022190866A (en) Laminate and method for manufacturing the same
WO2013172229A1 (en) Conductive pattern, conductive circuit, and method for producing conductive pattern
TW201305290A (en) Condensate of amino-bearing silane coupling agent with metal alkoxide compound, material for laminate base comprising same as main component, laminate base and elecroconductive member, and processes for manufacturing same
JP7453632B1 (en) Transfer laminate and its manufacturing method
WO2019013039A1 (en) Laminate, printed wiring board in which same is used, flexible printed wiring board, and molded article
JP2024089906A (en) Manufacturing method of laminate
TW202236916A (en) Laminate for semi-additive manufacturing and printed wiring board using same
JP2022175248A (en) Wiring board, method for manufacturing the same, and surface treatment agent

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021546763

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907101

Country of ref document: EP

Kind code of ref document: A1