WO2021131175A1 - Cooling structure and heatsink - Google Patents

Cooling structure and heatsink Download PDF

Info

Publication number
WO2021131175A1
WO2021131175A1 PCT/JP2020/034119 JP2020034119W WO2021131175A1 WO 2021131175 A1 WO2021131175 A1 WO 2021131175A1 JP 2020034119 W JP2020034119 W JP 2020034119W WO 2021131175 A1 WO2021131175 A1 WO 2021131175A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
refrigerant
path
heat sink
flow
Prior art date
Application number
PCT/JP2020/034119
Other languages
French (fr)
Japanese (ja)
Inventor
佑介 上高
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Priority to CN202080090152.9A priority Critical patent/CN115004362B/en
Publication of WO2021131175A1 publication Critical patent/WO2021131175A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a heat sink cooling structure.
  • the heat sinks shown in Patent Documents 1 to 3 are applied to cool an element having a high heat generation, which is exemplified by a power semiconductor module or the like.
  • a large number of fins are arranged in the inflow path of the refrigerant in order to minimize the pressure loss of the refrigerant, increase the heat dissipation effect, and further minimize the temperature deviation on the entire surface of the element.
  • the fins are closely arranged in the direction of the refrigerant discharge portion. Further, by increasing the contact surface area with the refrigerant from the inflow side to the discharge side of the refrigerant, the flow pressure loss of the refrigerant can be reduced.
  • pin-shaped fins having a small fluid resistance are arranged in a region requiring high cooling performance in order to suppress an increase in pressure loss in the same heat sink. Then, by arranging fins having a shape in which a plurality of meandering grooves are arranged in parallel in a region where relatively low cooling performance is acceptable, an increase in pressure loss can be suppressed.
  • a plurality of pin-shaped fins are erected on the base surface opposite to the heating element, and these fins are housed in a water jacket.
  • the flow resistance is adjusted by partially densely arranging the plurality of fins on the base surface.
  • the heat sink of Patent Document 1 is effective when the calorific value of a plurality of elements arranged in the same heat sink is different, but if the calorific values of the arranged elements are the same, a temperature imbalance occurs and it is effective. I can't say. Further, when the water channels are formed in parallel in the heat sink, it is necessary to provide a water channel wall between the water channels in order to secure the balance of the flow, which causes an increase in pressure loss.
  • the heat sink of Patent Document 2 is formed with a flow path that meanders the flow of the refrigerant, but when the flow rate increases, the pressure loss increases at a considerable rate as compared with the pin-shaped fin structure. Moreover, even if the size is reduced, the cooling efficiency of the pressure loss is lowered.
  • the present invention aims to reduce the pressure loss and reduce the size of the cooling structure of the heat sink to which a plurality of heating elements are attached, while efficiently and uniformly cooling the whole with a fin structure having a simple processing. Make it an issue.
  • one aspect of the present invention has a cooling main body portion to which a plurality of heating elements are mounted in parallel, and the cooling main body portion has an inflow path for a refrigerant and a flow of the refrigerant provided from the inflow path.
  • a path and an outflow path of the refrigerant provided from the flow path are formed, the flow path is formed corresponding to an attachment portion of the heating element, and a plurality of fin portions are formed on one surface of the flow path. Is a densely erected cooling structure.
  • the flow passage is provided with a partition at a portion corresponding to the parallel heating elements.
  • the plurality of fin portions facing the inflow path and the outflow path are formed to have a smaller diameter than the other plurality of fin portions. Has been done.
  • the plurality of fin portions form a cylinder.
  • the plurality of fin portions form a prism, and one corner of the prism faces the flow of the refrigerant.
  • the cooling main body portion has a long plate shape, and the inflow path is formed along one longitudinal end portion of the cooling main body portion, and the outflow.
  • the path is formed along the other longitudinal end of the cooling body, and the outlet of the refrigerant communicating with the outflow path cools the inlet of the refrigerant communicating with the inflow path. It is formed at a diagonal position of the main body.
  • Another aspect of the present invention is a heat sink having any of the above cooling structures.
  • the cooling structure of the heat sink it is possible to reduce the pressure loss and reduce the size while efficiently and uniformly cooling the whole with the fin portion structure having a simple processing.
  • a plurality of elements 2 are attached as a heating element to the heat sink 1 having the cooling structure which is one aspect of the present invention shown in FIG.
  • Examples of the element 2 include a power semiconductor module. Although four elements 2 are attached in this embodiment, the number of heating elements according to the present invention is not limited to the number in this embodiment.
  • the heat sink 1 has a cooling main body 10 to which four elements 2 are mounted in parallel.
  • the cooling main body 10 forms a rectangular parallelepiped in the shape of a long plate, and is made of a steel material having a relatively high thermal conductivity, which is exemplified by an aluminum alloy. Then, an inflow passage 11, a flow passage 12, and an outflow passage 13 are formed inside the cooling main body 10.
  • a refrigerant for example, cooling water
  • the inflow path 11 is formed along the longitudinal direction of the cooling main body 10, that is, along one longitudinal end.
  • the communication surface 111 between the inner surface of the inflow path 11 and the inner surface of the flow passage 12 on the most upstream side forms a curved surface.
  • the communication surface 112 between the inner surface of the inflow path 11 and the inner surface of the flow passage 12 on the most downstream side also forms a curved surface.
  • the refrigerant supplied from the inflow passage 11 flows through the flow passage 12.
  • the flow passage 12 is formed corresponding to the attachment portion of each element 2.
  • a plurality of fin portions 14 are densely erected on one surface of the flow passage 12.
  • the fin portion 14 forms a cylinder.
  • the flow passage 12 is provided with a partition 15 at a portion corresponding to the parallel elements 2.
  • the downstream side corner portion 151 of the end portion of the partition 15 facing the inflow path 11 forms a curved surface.
  • the upstream side corner portion 152 of the end portion of the partition 15 facing the outflow path 13 also forms a curved surface.
  • curved convex portions 153 are provided on the upstream and downstream side surfaces of the partition 15 along the flow direction of the refrigerant. Further, on the inner side surfaces of the flow passages 12 on the most upstream side and the most downstream side, curved surface convex portions 121 having the same shape as the curved surface convex portions 153 are provided along the same direction.
  • the refrigerant supplied from the flow passage 12 flows through the outflow passage 13.
  • the refrigerant flows out from the outlet 18 at the downstream end of the cooling main body 10.
  • the outflow passage 13 is formed so as to face the inflow passage 11 along the longitudinal direction of the cooling main body 10, that is, along the other longitudinal end portion.
  • the outflow port 18 communicating with the outflow passage 13 is formed at a diagonal position of the cooling main body 10 with respect to the inflow port 17 communicating with the inflow passage 11.
  • the communication surface 131 between the inner surface of the outflow passage 13 and the inner surface of the flow passage 12 on the most upstream side forms a curved surface.
  • the communication surface 132 between the inner surface of the outflow passage 13 and the inner surface of the flow passage 12 on the most downstream side also forms a curved surface.
  • the refrigerant in the cooling main body 10, the refrigerant is supplied in parallel corresponding to the attachment portion of the element 2, so that the refrigerant is evenly distributed to the flow passage 12 corresponding to the position of each element 2. Since it is supplied, the pressure loss can be reduced.
  • V Pipe flow velocity [m / s]
  • L Pipe length [m]
  • d Pipe inner diameter [m]
  • hb (0.131 + (0.1632 ⁇ (d / r) ⁇ (7/2))) ⁇ (( ⁇ / 90) ⁇ (1/2)) ⁇ (V ⁇ 2/2 g).
  • r radius of curvature [mm]
  • Path angle [°]
  • the heat sink 1 of the present embodiment it is possible to reduce the pressure loss while efficiently and uniformly cooling the whole with a fin structure having a simple processing.
  • the plurality of elements 2 can be cooled by a single heat sink 1, miniaturization can be achieved.
  • the communication surfaces 111 and 112 between the inflow passage 11 and the flow passage 12 form a curved surface, the pressure loss on the most upstream side and the most downstream side of the inflow passage 11 is reduced, and the inflow passage 11 to the most upstream side and The guidance of the refrigerant to the flow passage 12 on the most downstream side becomes smooth.
  • the communication surfaces 131 and 132 between the flow passage 12 and the outflow passage 13 form a curved surface, the pressure loss on the most upstream side and the most downstream side of the outflow passage 13 is reduced, and the upstream side and the most downstream side flow passages. The guidance of the refrigerant from 12 to the outflow passage 13 becomes smooth.
  • the partition 15 in the cooling main body 10 the refrigerant introduced into the inflow passage 11 is guided to the individual flow passages 12.
  • the downstream corner portion 151 of the partition 15 forms a curved surface
  • the pressure loss at the end of the partition 15 facing the inflow path 11 is reduced, and the refrigerant is more smoothly guided to the flow passage 12.
  • the upstream side corner portion 152 of the partition 15 also forms a curved surface, the pressure loss at the end portion of the partition 15 facing the outflow path 13 is reduced, and the flow of the refrigerant becomes smoother.
  • the concentration of the flux on the side surface of the partition 15 is suppressed, and the heat conduction of the heat sink 1 to the element 2 is enhanced, so that the cooling effect of the heat sink 1 is improved. ..
  • the fin portion 14 forms a cylinder, the pressure loss caused by the fin portion 14 can be minimized.
  • the heat sink 1 shown in FIG. 2 has the same embodiment as the heat sink 1 of the first embodiment except that the partition 15 is not provided. In the space having no partition 15, fin portions 14 are added at the same pitch as the fin portions 14 of the first embodiment.
  • the heat sink 1 of the present embodiment in addition to the effect of the heat sink 1 of the first embodiment, the obstacle of the flow of the refrigerant is eliminated and the pressure loss is improved. Further, by adding the fin portion 14, the contact surface area between the inner surface of the cooling main body portion 10 and the refrigerant is expanded, and the cooling performance of the heat sink 1 can be improved.
  • the plurality of fin portions 14 surrounded by the broken lines BL facing the inflow path 11 and the outflow path 13 are larger than the other plurality of fin portions 14. It has the same aspect as the heat sink 1 of the second embodiment except that it is formed to have a small diameter. For example, when the diameter of the other plurality of fin portions 14 is ⁇ 2, the diameter of the plurality of facing fin portions 14 is set to ⁇ 1.5.
  • the resistance on the inflow side and the outflow side of the flow passage 12 can be reduced, and in addition to the effects of the first embodiment and the second embodiment, the pressure loss can be further reduced.
  • the heat sink 1 shown in FIG. 4A has the same embodiment as the heat sink 1 of the second embodiment except that the fin portion 16 is provided instead of the fin portion 14.
  • the fin portion 16 forms a prism, for example, a prism having a square cross section with an aspect ratio of 2 ⁇ 2.
  • One corner portion 161 of the fin portion 16 is arranged so as to face the flow F of the refrigerant (FIG. (B)).
  • the heat sink 1 of the present embodiment since one corner portion 161 of the fin portion 16 faces the flow F of the refrigerant, in addition to the effects of the first embodiment and the second embodiment, the refrigerant and the fin portion Turbulence due to contact with 14 is suppressed, and pressure loss is further reduced.
  • a quadrangular prism having a rhombic cross section is exemplified.
  • the pressure loss can be reduced by arranging the quadrangular prism so that the longer diagonal line of the rhombus follows the flow.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

A heatsink 1 comprises a cooling body unit 10 to which a plurality of elements 2 are mounted in parallel. In the cooling body unit 10, a refrigerant inflow path 11, circulating paths 12 for the refrigerant supplied from the inflow path 11, and an outflow path 13 for the refrigerant supplied from the circulating paths 12 are formed. The circulating paths 12 are formed in correspondence to the location at which the elements 2 are mounted. A plurality of fins 14 densely rise from one surface of the circulating paths 12.

Description

冷却構造及びヒートシンクCooling structure and heat sink
 本発明は、ヒートシンクの冷却構造に関する。 The present invention relates to a heat sink cooling structure.
 パワー半導体モジュール等に例示される発熱が高い素子を冷却するために例えば特許文献1~3に示されたヒートシンクが適用される。 For example, the heat sinks shown in Patent Documents 1 to 3 are applied to cool an element having a high heat generation, which is exemplified by a power semiconductor module or the like.
 特許文献1のヒートシンクは、冷媒の圧力損失の最小化、放熱効果の増加、さらには、前記素子の全体表面における温度偏差の最小化を図るため、冷媒の流入路にフィンが多数配列される。特に、前記フィンは冷媒の排出部の方向に密に配列される。また、冷媒との接触表面積が当該冷媒の流入側から排出側につれて増大させることで、当該冷媒の流れ圧力損失の減少が図れる。 In the heat sink of Patent Document 1, a large number of fins are arranged in the inflow path of the refrigerant in order to minimize the pressure loss of the refrigerant, increase the heat dissipation effect, and further minimize the temperature deviation on the entire surface of the element. In particular, the fins are closely arranged in the direction of the refrigerant discharge portion. Further, by increasing the contact surface area with the refrigerant from the inflow side to the discharge side of the refrigerant, the flow pressure loss of the refrigerant can be reduced.
 特許文献2のヒートシンクは、同一ヒートシンクでの圧力損失の増加を抑制するために、高冷却性能を必要とする領域に流体抵抗の小さなピン状のフィンが配置される。そして、比較的に低冷却性能でもよい領域には、蛇行した溝を複数並列させた形状を成すフィンが配置されることで、圧力損失の増大の抑制が図られる。 In the heat sink of Patent Document 2, pin-shaped fins having a small fluid resistance are arranged in a region requiring high cooling performance in order to suppress an increase in pressure loss in the same heat sink. Then, by arranging fins having a shape in which a plurality of meandering grooves are arranged in parallel in a region where relatively low cooling performance is acceptable, an increase in pressure loss can be suppressed.
 特許文献3のヒートシンクは、発熱体と反対するベース面に複数のピン状のフィンが立設され、これらのフィンはウォータージャケットに収容される。特に、前記複数のフィンが前記ベース面において部分的に密に配置されることで流動抵抗が調整される。 In the heat sink of Patent Document 3, a plurality of pin-shaped fins are erected on the base surface opposite to the heating element, and these fins are housed in a water jacket. In particular, the flow resistance is adjusted by partially densely arranging the plurality of fins on the base surface.
特開2013-98530号公報Japanese Unexamined Patent Publication No. 2013-98530 特開2018-120904号公報JP-A-2018-120904 特開2015-226039号公報Japanese Unexamined Patent Publication No. 2015-226039
 特許文献1のヒートシンクは、同一のヒートシンクに配置される複数の素子の発熱量が個々に異なれば有効だが、配置される素子の発熱量が同じであれば温度のアンバランスが生じ、有効とはいえない。また、このヒートシンク内に水路が並列に形成された場合、流れのバランスを確保するため、各水路間に水路壁を設ける必要があり、これが圧力損失の増大を招く。 The heat sink of Patent Document 1 is effective when the calorific value of a plurality of elements arranged in the same heat sink is different, but if the calorific values of the arranged elements are the same, a temperature imbalance occurs and it is effective. I can't say. Further, when the water channels are formed in parallel in the heat sink, it is necessary to provide a water channel wall between the water channels in order to secure the balance of the flow, which causes an increase in pressure loss.
 特許文献2のヒートシンクは、冷媒の流れを蛇行させる流路が形成されているが、流量が増えると、圧力損失がピン状のフィン構造に比べかなりの割合で増大する。また、小型化しても圧力損失の冷却効率が低下する。 The heat sink of Patent Document 2 is formed with a flow path that meanders the flow of the refrigerant, but when the flow rate increases, the pressure loss increases at a considerable rate as compared with the pin-shaped fin structure. Moreover, even if the size is reduced, the cooling efficiency of the pressure loss is lowered.
 また、特許文献1~3のヒートシンクは、装置構成の制約等により冷媒の流入口と流出口とが冷却本体部において対角の位置で設けられた場合、冷却本体部におけるフィンの配置が一定でないので、冷媒の流れに偏りが生じる。 Further, in the heat sinks of Patent Documents 1 to 3, when the inlet and outlet of the refrigerant are provided at diagonal positions in the cooling main body due to restrictions on the device configuration, the arrangement of fins in the cooling main body is not constant. Therefore, the flow of the refrigerant is biased.
 本発明は、以上の事情を鑑み、複数の発熱体が取り付けられるヒートシンクの冷却構造において、加工が単純なフィン構造で全体を効率よく均一に冷却しつつ圧力損失の低減と小型化を図ることを課題とする。 In view of the above circumstances, the present invention aims to reduce the pressure loss and reduce the size of the cooling structure of the heat sink to which a plurality of heating elements are attached, while efficiently and uniformly cooling the whole with a fin structure having a simple processing. Make it an issue.
 そこで、本発明の一態様は、複数の発熱体が並列して取り付けられる冷却本体部を有し、この冷却本体部には、冷媒の流入路と、この流入路から供された前記冷媒の流通路と、この流通路から供された前記冷媒の流出路とが形成され、前記流通路は、前記発熱体の取り付け部位に対応して形成され、前記流通路の一面には、複数のフィン部が密に立設された冷却構造である。 Therefore, one aspect of the present invention has a cooling main body portion to which a plurality of heating elements are mounted in parallel, and the cooling main body portion has an inflow path for a refrigerant and a flow of the refrigerant provided from the inflow path. A path and an outflow path of the refrigerant provided from the flow path are formed, the flow path is formed corresponding to an attachment portion of the heating element, and a plurality of fin portions are formed on one surface of the flow path. Is a densely erected cooling structure.
 本発明の他の態様は、前記冷却構造において、前記流通路には、並列した前記発熱体の間に対応した部位に仕切りが設けられている。 In another aspect of the present invention, in the cooling structure, the flow passage is provided with a partition at a portion corresponding to the parallel heating elements.
 本発明の他の態様は、前記冷却構造において、前記複数のフィン部のうち、前記流入路及び前記流出路に面した複数の前記フィン部は、他の複数の前記フィン部よりも小径に形成されている。 In another aspect of the present invention, in the cooling structure, among the plurality of fin portions, the plurality of fin portions facing the inflow path and the outflow path are formed to have a smaller diameter than the other plurality of fin portions. Has been done.
 本発明の他の態様は、前記冷却構造において、前記複数のフィン部は円柱を成す。 In another aspect of the present invention, in the cooling structure, the plurality of fin portions form a cylinder.
 本発明の他の態様は、前記冷却構造において、前記複数のフィン部は角柱を成し、この角柱の一つの角部は前記冷媒の流れと対向する。 In another aspect of the present invention, in the cooling structure, the plurality of fin portions form a prism, and one corner of the prism faces the flow of the refrigerant.
 本発明の他の態様は、前記冷却構造において、前記冷却本体部は、長板状を成し、前記流入路は、前記冷却本体部の一方の長手方向端部に沿って形成され、前記流出路は、前記冷却本体部の他方の長手方向端部に沿って形成され、前記流出路に連通する前記冷媒の流出口は、前記流入路に連通する前記冷媒の流入口に対して、前記冷却本体部の対角位置に形成されている。 In another aspect of the present invention, in the cooling structure, the cooling main body portion has a long plate shape, and the inflow path is formed along one longitudinal end portion of the cooling main body portion, and the outflow. The path is formed along the other longitudinal end of the cooling body, and the outlet of the refrigerant communicating with the outflow path cools the inlet of the refrigerant communicating with the inflow path. It is formed at a diagonal position of the main body.
 本発明の他の態様は、前記いずれかの冷却構造を有するヒートシンクである。 Another aspect of the present invention is a heat sink having any of the above cooling structures.
 以上の本発明によれば、ヒートシンクの冷却構造において、加工が単純なフィン部構造で全体を効率よく均一に冷却しつつ圧力損失の低減と小型化を図ることできる。 According to the above invention, in the cooling structure of the heat sink, it is possible to reduce the pressure loss and reduce the size while efficiently and uniformly cooling the whole with the fin portion structure having a simple processing.
本発明の第一実施形態におけるヒートシンクの内部構成を示した平面図。The plan view which showed the internal structure of the heat sink in 1st Embodiment of this invention. 本発明の第二実施形態におけるヒートシンクの内部構成を示した平面図。The plan view which showed the internal structure of the heat sink in the 2nd Embodiment of this invention. 本発明の第三実施形態におけるヒートシンクの内部構成を示した平面図。The plan view which showed the internal structure of the heat sink in the 3rd Embodiment of this invention. (a)は本発明の第四実施形態におけるヒートシンクの内部構成を示した平面図、(b)は当該実施形態のフィン部の平面図。(A) is a plan view showing the internal configuration of the heat sink according to the fourth embodiment of the present invention, and (b) is a plan view of the fin portion of the embodiment.
 以下に図面を参照しながら本発明の実施形態について説明する。 An embodiment of the present invention will be described below with reference to the drawings.
 [第一実施形態]
 図1に示された本発明の一態様である冷却構造を有するヒートシンク1は、発熱体として複数の素子2が取り付けられる。素子2としては例えばパワー半導体モジュールが挙げられる。尚、本態様は4つの素子2が取り付けられているが、本発明に係る発熱体の個数は本態様の個数に限定されるものではない。
[First Embodiment]
A plurality of elements 2 are attached as a heating element to the heat sink 1 having the cooling structure which is one aspect of the present invention shown in FIG. Examples of the element 2 include a power semiconductor module. Although four elements 2 are attached in this embodiment, the number of heating elements according to the present invention is not limited to the number in this embodiment.
 ヒートシンク1は4つの素子2が並列して取り付けられる冷却本体部10を有する。冷却本体部10は、長板状の直方体を成し、アルミニウム合金に例示される比較的に熱伝導性の高い鋼材から成る。そして、この冷却本体部10の内部には、流入路11、流通路12及び流出路13が形成される。 The heat sink 1 has a cooling main body 10 to which four elements 2 are mounted in parallel. The cooling main body 10 forms a rectangular parallelepiped in the shape of a long plate, and is made of a steel material having a relatively high thermal conductivity, which is exemplified by an aluminum alloy. Then, an inflow passage 11, a flow passage 12, and an outflow passage 13 are formed inside the cooling main body 10.
 流入路11は、冷却本体部10の上流側端部の流入口17から流入した冷媒(例えば冷却水)が流通する。流入路11は、冷却本体部10の長手方向、すなわち、一方の長手方向端部に沿って形成される。流入路11の内側面と最上流側の流通路12の内側面との連通面111は、曲面を成す。同様に、流入路11の内側面と最下流側の流通路12の内側面との連通面112も、曲面を成す。 A refrigerant (for example, cooling water) that has flowed in from the inflow port 17 at the upstream end of the cooling main body 10 flows through the inflow path 11. The inflow path 11 is formed along the longitudinal direction of the cooling main body 10, that is, along one longitudinal end. The communication surface 111 between the inner surface of the inflow path 11 and the inner surface of the flow passage 12 on the most upstream side forms a curved surface. Similarly, the communication surface 112 between the inner surface of the inflow path 11 and the inner surface of the flow passage 12 on the most downstream side also forms a curved surface.
 流通路12は、流入路11から供された前記冷媒が流通する。流通路12は、個々の素子2の取り付け部位に対応して形成される。流通路12の一面には、複数のフィン部14が密に立設されている。フィン部14は円柱を成す。このフィン部14は、例えば、「冷媒の流れ方向に垂直な間隔×当該流れ方向の間隔=3×2」のピッチで前記冷媒の流れ方向に密に配置される。 The refrigerant supplied from the inflow passage 11 flows through the flow passage 12. The flow passage 12 is formed corresponding to the attachment portion of each element 2. A plurality of fin portions 14 are densely erected on one surface of the flow passage 12. The fin portion 14 forms a cylinder. The fin portions 14 are densely arranged in the flow direction of the refrigerant at a pitch of, for example, "interval perpendicular to the flow direction of the refrigerant x interval in the flow direction = 3 x 2".
 流通路12には、並列した素子2の間に対応した部位に仕切り15が設けられる。仕切り15の流入路11に面する端部の下流側角部151は、曲面を成す。一方、仕切り15の流出路13に面する端部の上流側角部152も、曲面を成す。さらに、この仕切り15の上流側及び下流側の側面には、曲面凸部153が冷媒の流れ方向に沿って設けられる。そして、最上流側及び最下流側の流通路12の内側面においても、曲面凸部153と同形の曲面凸部121が同方向に沿って設けられる。 The flow passage 12 is provided with a partition 15 at a portion corresponding to the parallel elements 2. The downstream side corner portion 151 of the end portion of the partition 15 facing the inflow path 11 forms a curved surface. On the other hand, the upstream side corner portion 152 of the end portion of the partition 15 facing the outflow path 13 also forms a curved surface. Further, curved convex portions 153 are provided on the upstream and downstream side surfaces of the partition 15 along the flow direction of the refrigerant. Further, on the inner side surfaces of the flow passages 12 on the most upstream side and the most downstream side, curved surface convex portions 121 having the same shape as the curved surface convex portions 153 are provided along the same direction.
 流出路13は、流通路12から供された前記冷媒が流通する。前記冷媒は、冷却本体部10の下流側端部の流出口18から流出する。流出路13は、流入路11と対向して、冷却本体部10の長手方向、すなわち、他方の長手方向端部に沿って形成される。流出路13と連通する流出口18は、流入路11と連通する流入口17に対して、冷却本体部10の対角位置に形成される。 The refrigerant supplied from the flow passage 12 flows through the outflow passage 13. The refrigerant flows out from the outlet 18 at the downstream end of the cooling main body 10. The outflow passage 13 is formed so as to face the inflow passage 11 along the longitudinal direction of the cooling main body 10, that is, along the other longitudinal end portion. The outflow port 18 communicating with the outflow passage 13 is formed at a diagonal position of the cooling main body 10 with respect to the inflow port 17 communicating with the inflow passage 11.
 また、流出路13の内側面と最上流側の流通路12の内側面との連通面131は、曲面を成す。同様に、流出路13の内側面と最下流側の流通路12の内側面との連通面132も、曲面を成す。 Further, the communication surface 131 between the inner surface of the outflow passage 13 and the inner surface of the flow passage 12 on the most upstream side forms a curved surface. Similarly, the communication surface 132 between the inner surface of the outflow passage 13 and the inner surface of the flow passage 12 on the most downstream side also forms a curved surface.
 以上のヒートシンク1によれば、冷却本体部10において、素子2の取り付け部位に対応して冷媒が並列に供給されることで、個々の素子2の位置に対応した流通路12に冷媒が均等に供給されるので、圧力損失の低減が図られる。 According to the above heat sink 1, in the cooling main body 10, the refrigerant is supplied in parallel corresponding to the attachment portion of the element 2, so that the refrigerant is evenly distributed to the flow passage 12 corresponding to the position of each element 2. Since it is supplied, the pressure loss can be reduced.
 一般的に配管に流れる圧力損失の計算式は以下に示される。
P=ρ×g×h[Pa]
ρ:流体密度[kg/m3
g:重力加速度[m/s2
h:損失水頭(=hf×hb)[m]
hf:摩擦損失水頭[m]
hb:曲り損失水頭[m]
但し、hf=4f×(V^2/2g)×(L/d)である(ファニングの式)。
V:管路流速[m/s]
L:管長さ[m]
d:管内径[m]
また、hb=(0.131+(0.1632×(d/r)^(7/2)))×((θ/90)^(1/2))×(V^2/2g)である(非特許文献1)。
r:曲率半径[mm]
θ:経路角度[°]
 以上の計算式により、流速の二乗に比例して圧力損失が増大するので、並列分岐した冷媒が合流する流入路11及び流出路13の径を最大限に設定し、フィン部14を上述のように密に配置することで、ヒートシンク1の全体的な圧力損失の低減が図られる。
The formula for calculating the pressure loss that generally flows through a pipe is shown below.
P = ρ × g × h [Pa]
ρ: Fluid density [kg / m 3 ]
g: Gravity acceleration [m / s 2 ]
h: Head loss (= hf × hb) [m]
hf: Friction loss head [m]
hb: Bending loss head [m]
However, hf = 4f × (V ^ 2 / 2g) × (L / d) (Fanning's formula).
V: Pipe flow velocity [m / s]
L: Pipe length [m]
d: Pipe inner diameter [m]
Further, hb = (0.131 + (0.1632 × (d / r) ^ (7/2))) × ((θ / 90) ^ (1/2)) × (V ^ 2/2 g). (Non-Patent Document 1).
r: radius of curvature [mm]
θ: Path angle [°]
According to the above formula, the pressure loss increases in proportion to the square of the flow velocity. Therefore, the diameters of the inflow path 11 and the outflow path 13 where the parallel-branched refrigerants merge are set to the maximum, and the fin portion 14 is set as described above. By arranging them densely, the overall pressure loss of the heat sink 1 can be reduced.
 したがって、本実施形態のヒートシンク1によれば、加工が単純なフィン構造で全体を効率よく均一に冷却しつつ圧力損失を低減することができる。特に、単一のヒートシンク1で複数の素子2を冷却できるため、小型化も図ることができる。 Therefore, according to the heat sink 1 of the present embodiment, it is possible to reduce the pressure loss while efficiently and uniformly cooling the whole with a fin structure having a simple processing. In particular, since the plurality of elements 2 can be cooled by a single heat sink 1, miniaturization can be achieved.
 また、流入路11と流通路12との連通面111,112が曲面を成すことで、流入路11の最上流側及び最下流側での圧力損失が低減し、流入路11から最上流側及び最下流側の流通路12への冷媒の案内が円滑なものとなる。さらに、流通路12と流出路13との連通面131,132が曲面を成すことで、流出路13の最上流及び最下流側での圧力損失が低減し、上流側及び最下流側の流通路12から流出路13への冷媒の案内が円滑なものとなる。 Further, since the communication surfaces 111 and 112 between the inflow passage 11 and the flow passage 12 form a curved surface, the pressure loss on the most upstream side and the most downstream side of the inflow passage 11 is reduced, and the inflow passage 11 to the most upstream side and The guidance of the refrigerant to the flow passage 12 on the most downstream side becomes smooth. Further, since the communication surfaces 131 and 132 between the flow passage 12 and the outflow passage 13 form a curved surface, the pressure loss on the most upstream side and the most downstream side of the outflow passage 13 is reduced, and the upstream side and the most downstream side flow passages. The guidance of the refrigerant from 12 to the outflow passage 13 becomes smooth.
 そして、冷却本体部10に仕切り15が設けられることで、流入路11に導入された冷媒が個々の流通路12に案内される。特に、仕切り15の下流側角部151が曲面を成すことで、流入路11に面する仕切り15の端部での圧力損失が低減し、前記冷媒はさらに円滑に流通路12に案内される。また、仕切り15の上流側角部152も曲面を成すことで、流出路13に面する仕切り15の端部での圧力損失が低減し、前記冷媒の流れがさらに円滑なものとなる。 Then, by providing the partition 15 in the cooling main body 10, the refrigerant introduced into the inflow passage 11 is guided to the individual flow passages 12. In particular, since the downstream corner portion 151 of the partition 15 forms a curved surface, the pressure loss at the end of the partition 15 facing the inflow path 11 is reduced, and the refrigerant is more smoothly guided to the flow passage 12. Further, since the upstream side corner portion 152 of the partition 15 also forms a curved surface, the pressure loss at the end portion of the partition 15 facing the outflow path 13 is reduced, and the flow of the refrigerant becomes smoother.
 さらに、仕切り15の側面に曲面凸部153が設けられることで、仕切り15の側面に対する流束の集中が抑制され、素子2に対するヒートシンク1の熱伝導が高まるので、ヒートシンク1の冷却効果が向上する。  Further, by providing the curved convex portion 153 on the side surface of the partition 15, the concentration of the flux on the side surface of the partition 15 is suppressed, and the heat conduction of the heat sink 1 to the element 2 is enhanced, so that the cooling effect of the heat sink 1 is improved. ..
 そして、フィン部14が円柱を成すことで、フィン部14に起因する圧力損失を最低限に抑えることができる。 Then, since the fin portion 14 forms a cylinder, the pressure loss caused by the fin portion 14 can be minimized.
 [第二実施形態]
 図2に示されたヒートシンク1は、仕切り15を備えていないこと以外は、第一実施形態のヒートシンク1と同様の態様となっている。尚、仕切り15を有しない空間には、フィン部14が第一実施形態のフィン部14と同様のピッチで増設される。
[Second Embodiment]
The heat sink 1 shown in FIG. 2 has the same embodiment as the heat sink 1 of the first embodiment except that the partition 15 is not provided. In the space having no partition 15, fin portions 14 are added at the same pitch as the fin portions 14 of the first embodiment.
 以上の本態様のヒートシンク1によれば、第一実施形態のヒートシンク1の効果に加え、前記冷媒の流れの障害が無くなり、圧力損失が改善される。また、フィン部14の増設により、冷却本体部10の内面と冷媒との接触表面積が拡大し、ヒートシンク1の冷却性能の向上も図られる。 According to the heat sink 1 of the present embodiment described above, in addition to the effect of the heat sink 1 of the first embodiment, the obstacle of the flow of the refrigerant is eliminated and the pressure loss is improved. Further, by adding the fin portion 14, the contact surface area between the inner surface of the cooling main body portion 10 and the refrigerant is expanded, and the cooling performance of the heat sink 1 can be improved.
 [第三実施形態]
 図3に示されたヒートシンク1は、前記複数のフィン部14のうち、流入路11及び流出路13に面した破線BLに囲まれた複数のフィン部14が他の複数のフィン部14よりも小径に形成されたこと以外は、第二実施形態のヒートシンク1と同様の態様を成す。例えば、前記他の複数のフィン部14の径がφ2である場合、前記面した複数のフィン部14の径はφ1.5に設定される。
[Third Embodiment]
In the heat sink 1 shown in FIG. 3, among the plurality of fin portions 14, the plurality of fin portions 14 surrounded by the broken lines BL facing the inflow path 11 and the outflow path 13 are larger than the other plurality of fin portions 14. It has the same aspect as the heat sink 1 of the second embodiment except that it is formed to have a small diameter. For example, when the diameter of the other plurality of fin portions 14 is φ2, the diameter of the plurality of facing fin portions 14 is set to φ1.5.
 以上の本態様のヒートシンク1によれば、流通路12の流入側、流出側の抵抗を減らすことができ、第一実施形態及び第二実施形態の効果に加え、圧力損失をさらに低減できる。 According to the heat sink 1 of the present embodiment described above, the resistance on the inflow side and the outflow side of the flow passage 12 can be reduced, and in addition to the effects of the first embodiment and the second embodiment, the pressure loss can be further reduced.
 [実施形態4]
 図4(a)に示されたヒートシンク1は、フィン部14の代わりに、フィン部16を備えたこと以外は、第二実施形態のヒートシンク1と同様の態様となっている。
[Embodiment 4]
The heat sink 1 shown in FIG. 4A has the same embodiment as the heat sink 1 of the second embodiment except that the fin portion 16 is provided instead of the fin portion 14.
 フィン部16は、角柱、例えば縦横比2×2の横断面正方形の四角柱を成す。フィン部16は一つの角部161が前記冷媒の流れFと対向して配置される(同図(b))。 The fin portion 16 forms a prism, for example, a prism having a square cross section with an aspect ratio of 2 × 2. One corner portion 161 of the fin portion 16 is arranged so as to face the flow F of the refrigerant (FIG. (B)).
 以上の本態様のヒートシンク1によれば、フィン部16の一つの角部161が前記冷媒の流れFと対向するので、第一実施形態及び第二実施形態の効果に加え、前記冷媒とフィン部14との接触に因る乱流が抑制され、圧力損失のさらなる低減が図られる。 According to the heat sink 1 of the present embodiment described above, since one corner portion 161 of the fin portion 16 faces the flow F of the refrigerant, in addition to the effects of the first embodiment and the second embodiment, the refrigerant and the fin portion Turbulence due to contact with 14 is suppressed, and pressure loss is further reduced.
 また、本発明に係るフィン部の他の態様としては、横断面菱形の四角柱が例示される。特に、前記菱形の長い方の対角線が前記流れに沿うように前記四角柱が配置されることで、圧力損失の低減を図ることができる。 Further, as another aspect of the fin portion according to the present invention, a quadrangular prism having a rhombic cross section is exemplified. In particular, the pressure loss can be reduced by arranging the quadrangular prism so that the longer diagonal line of the rhombus follows the flow.

Claims (7)

  1.  複数の発熱体が並列して取り付けられる冷却本体部を有し、
     この冷却本体部には、
    冷媒の流入路と、
    この流入路から供された前記冷媒の流通路と、
    この流通路から供された前記冷媒の流出路と
    が形成され、
     前記流通路は、前記発熱体の取り付け部位に対応して形成され、
     前記流通路の一面には、複数のフィン部が密に立設された冷却構造。
    It has a cooling body where multiple heating elements can be mounted in parallel.
    In this cooling body,
    Refrigerant inflow path and
    The flow path of the refrigerant provided from this inflow path and
    An outflow path for the refrigerant provided from this flow path is formed.
    The flow path is formed corresponding to the attachment site of the heating element.
    A cooling structure in which a plurality of fins are densely erected on one surface of the flow passage.
  2.  前記流通路には、並列した前記発熱体の間に対応した部位に仕切りが設けられた請求項1に記載の冷却構造。 The cooling structure according to claim 1, wherein the flow passage is provided with a partition at a portion corresponding to the parallel heating elements.
  3.  前記複数のフィン部のうち、前記流入路及び前記流出路に面した複数のフィン部は、他の複数のフィン部よりも小径に形成された請求項1または2に記載の冷却構造。 The cooling structure according to claim 1 or 2, wherein among the plurality of fin portions, the plurality of fin portions facing the inflow path and the outflow path are formed to have a smaller diameter than the other plurality of fin portions.
  4.  前記複数のフィン部は、円柱を成す請求項1から3のいずれか1項に記載の冷却構造。 The cooling structure according to any one of claims 1 to 3, wherein the plurality of fin portions form a cylinder.
  5.  前記複数のフィン部は角柱を成し、この角柱の一つの角部は前記冷媒の流れと対向する請求項1から3のいずれか1項に記載の冷却構造。 The cooling structure according to any one of claims 1 to 3, wherein the plurality of fin portions form a prism, and one corner of the prism forms a prism.
  6.  前記冷却本体部は、長板状を成し、
     前記流入路は、前記冷却本体部の一方の長手方向端部に沿って形成され、
     前記流出路は、前記冷却本体部の他方の長手方向端部に沿って形成され、
     前記流出路に連通する前記冷媒の流出口は、前記流入路に連通する前記冷媒の流入口に対して、前記冷却本体部の対角位置に形成された請求項1から5のいずれか1項に記載の冷却構造。
    The cooling main body has a long plate shape.
    The inflow path is formed along one longitudinal end of the cooling body.
    The outflow path is formed along the other longitudinal end of the cooling body.
    One of claims 1 to 5, wherein the outlet of the refrigerant communicating with the outflow passage is formed at a diagonal position of the cooling main body with respect to the inlet of the refrigerant communicating with the inflow passage. The cooling structure described in.
  7.  請求項1から6のいずれか1項に記載の冷却構造を有するヒートシンク。 A heat sink having the cooling structure according to any one of claims 1 to 6.
PCT/JP2020/034119 2019-12-26 2020-09-09 Cooling structure and heatsink WO2021131175A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080090152.9A CN115004362B (en) 2019-12-26 2020-09-09 Cooling structure and radiator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-235533 2019-12-26
JP2019235533A JP6874823B1 (en) 2019-12-26 2019-12-26 Cooling structure and heat sink

Publications (1)

Publication Number Publication Date
WO2021131175A1 true WO2021131175A1 (en) 2021-07-01

Family

ID=75900113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034119 WO2021131175A1 (en) 2019-12-26 2020-09-09 Cooling structure and heatsink

Country Status (3)

Country Link
JP (1) JP6874823B1 (en)
CN (1) CN115004362B (en)
WO (1) WO2021131175A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11965702B1 (en) * 2022-10-20 2024-04-23 Amulaire Thermal Technology, Inc. Low pressure drop automotive liquid-cooling heat dissipation plate and enclosed automotive liquid-cooling cooler having the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291154A (en) * 1989-04-28 1990-11-30 Nec Corp Ceramic package provided with heat sink
JP2007214157A (en) * 2006-02-07 2007-08-23 Meidensha Corp Water-cooled cooling structure
JP2013219127A (en) * 2012-04-06 2013-10-24 Sumitomo Light Metal Ind Ltd Heat exchanger
WO2014069174A1 (en) * 2012-10-29 2014-05-08 富士電機株式会社 Semiconductor device
WO2016194158A1 (en) * 2015-06-03 2016-12-08 三菱電機株式会社 Liquid-cooled cooler, and manufacturing method for radiating fin in liquid-cooled cooler

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4861840B2 (en) * 2007-01-26 2012-01-25 アイシン・エィ・ダブリュ株式会社 Heating element cooling structure and driving device
JP5901343B2 (en) * 2012-02-24 2016-04-06 三菱電機株式会社 Cooler and cooling device
CN110383470B (en) * 2017-03-16 2023-05-09 三菱电机株式会社 Cooling system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291154A (en) * 1989-04-28 1990-11-30 Nec Corp Ceramic package provided with heat sink
JP2007214157A (en) * 2006-02-07 2007-08-23 Meidensha Corp Water-cooled cooling structure
JP2013219127A (en) * 2012-04-06 2013-10-24 Sumitomo Light Metal Ind Ltd Heat exchanger
WO2014069174A1 (en) * 2012-10-29 2014-05-08 富士電機株式会社 Semiconductor device
WO2016194158A1 (en) * 2015-06-03 2016-12-08 三菱電機株式会社 Liquid-cooled cooler, and manufacturing method for radiating fin in liquid-cooled cooler

Also Published As

Publication number Publication date
JP6874823B1 (en) 2021-05-19
JP2021103758A (en) 2021-07-15
CN115004362B (en) 2023-06-30
CN115004362A (en) 2022-09-02

Similar Documents

Publication Publication Date Title
US7334631B2 (en) Heat exchanger
US5224538A (en) Dimpled heat transfer surface and method of making same
US20200191493A1 (en) High pressure counterflow heat exchanger
JP6462737B2 (en) heatsink
JP2006295178A (en) Heatsink apparatus for electronic device
US7992625B1 (en) Fluid-operated heat transfer device
JP5145981B2 (en) Parts cooling structure
JP5332115B2 (en) Power element mounting unit
WO2021131175A1 (en) Cooling structure and heatsink
CN114521093B (en) Unit flow path, heat exchanger and liquid cooling plate
US6896043B2 (en) Heat exchanger
TWI417499B (en) Heat dissipating device
US11399446B2 (en) Water cooling heat dissipation structure
JP2008300447A (en) Heat radiation device
JP2020004766A (en) Cooler
JP2011119555A (en) Heat sink using bent louver-like heat dissipation unit
JP4128935B2 (en) Water-cooled heat sink
TW201634894A (en) Heat dissipater and heat dissipating device
JP2021050868A (en) Heat exchanger
JP7294126B2 (en) Cooler
WO2022244628A1 (en) Heatsink structure
JP2005203466A (en) Heatsink
TW202305304A (en) Liquid cooling device and cooling equipment
TW202240342A (en) Thermal module
TWM616791U (en) Heat-dissipation module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20905657

Country of ref document: EP

Kind code of ref document: A1