WO2021130835A1 - Heat exchanger and refrigeration cycle device - Google Patents

Heat exchanger and refrigeration cycle device Download PDF

Info

Publication number
WO2021130835A1
WO2021130835A1 PCT/JP2019/050476 JP2019050476W WO2021130835A1 WO 2021130835 A1 WO2021130835 A1 WO 2021130835A1 JP 2019050476 W JP2019050476 W JP 2019050476W WO 2021130835 A1 WO2021130835 A1 WO 2021130835A1
Authority
WO
WIPO (PCT)
Prior art keywords
recess
flow path
plate body
header
refrigerant
Prior art date
Application number
PCT/JP2019/050476
Other languages
French (fr)
Japanese (ja)
Inventor
崇史 畠田
亮輔 是澤
成浩 岡田
田中 誠
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to PCT/JP2019/050476 priority Critical patent/WO2021130835A1/en
Priority to CN201980099418.3A priority patent/CN114245860A/en
Priority to KR1020227006507A priority patent/KR20220041164A/en
Priority to JP2021566412A priority patent/JP7437418B2/en
Publication of WO2021130835A1 publication Critical patent/WO2021130835A1/en
Priority to JP2024017036A priority patent/JP2024045455A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0471Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05358Assemblies of conduits connected side by side or with individual headers, e.g. section type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0221Header boxes or end plates formed by stacked elements

Definitions

  • Embodiments of the present invention relate to heat exchangers and refrigeration cycle devices.
  • the header type heat exchanger has a plurality of heat exchange tubes and a header.
  • a refrigerant flow path is formed inside the heat exchange tube.
  • the header is provided at the end of the heat exchange tube. Heat exchangers are required to be small and lightweight.
  • the problem to be solved by the present invention is to provide a small and lightweight heat exchanger and refrigeration cycle device.
  • the heat exchanger of the embodiment has a heat exchange tube and a header.
  • a refrigerant flow path through which the refrigerant flows is formed in the heat exchange tube.
  • Headers are provided at one end and the other end of the heat exchange tube, respectively.
  • the header includes a pair of plates laminated so that the first main surfaces face each other.
  • a recess forming a spatial flow path communicating with the refrigerant flow path is formed on at least one of the first main surfaces of the plate body.
  • FIG. 3 is a cross-sectional view of the first header of the first modification.
  • FIG. 3 is a cross-sectional view of the first header of the second modification.
  • FIG. 3 is a cross-sectional view of the first header in the second embodiment.
  • FIG. 3 is a cross-sectional view of the first header of the third modification.
  • the X direction, the Y direction and the Z direction are defined as follows.
  • the Z direction is the longitudinal direction (extending direction) of the first header and the second header.
  • the Z direction is the vertical direction
  • the + Z direction is the upward direction.
  • the X direction is the central axis direction (extending direction) of the heat exchange tube.
  • the X direction is the horizontal direction
  • the + X direction is the direction from the second header to the first header.
  • the Y direction is a direction perpendicular to the X and Z directions.
  • FIG. 1 is a schematic configuration diagram of the refrigeration cycle device of the embodiment.
  • the refrigeration cycle device 1 includes a compressor 2, a four-way valve 3, an outdoor heat exchanger (heat exchanger) 4, an expansion device 5, and an indoor heat exchanger (heat exchanger). 6 and.
  • the components of the refrigeration cycle device 1 are sequentially connected by a pipe 7.
  • the flow direction of the refrigerant (heat medium) during the cooling operation is indicated by a solid line arrow
  • the flow direction of the refrigerant during the heating operation is indicated by a broken line arrow.
  • the compressor 2 has a compressor main body 2A and an accumulator 2B.
  • the compressor body 2A compresses the low-pressure gas refrigerant taken into the inside to obtain a high-temperature and high-pressure gas refrigerant.
  • the accumulator 2B separates the gas-liquid two-phase refrigerant and supplies the gas refrigerant to the compressor main body 2A.
  • the four-way valve 3 reverses the flow direction of the refrigerant and switches between cooling operation and heating operation.
  • the refrigerant flows in the order of the compressor 2, the four-way valve 3, the outdoor heat exchanger 4, the expansion device 5, and the indoor heat exchanger 6.
  • the refrigeration cycle device 1 causes the outdoor heat exchanger 4 to function as a condenser and the indoor heat exchanger 6 to function as an evaporator to cool the room.
  • the refrigerant flows in the order of the compressor 2, the four-way valve 3, the indoor heat exchanger 6, the expansion device 5, and the outdoor heat exchanger 4.
  • the refrigeration cycle device 1 causes the indoor heat exchanger 6 to function as a condenser and the outdoor heat exchanger 4 to function as an evaporator to heat the room.
  • the condenser makes a high-pressure liquid refrigerant by radiating high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the outside air and condensing it.
  • the expansion device 5 lowers the pressure of the high-pressure liquid refrigerant sent from the condenser to make it a low-temperature / low-pressure gas-liquid two-phase refrigerant.
  • the evaporator makes a low-pressure gas-liquid refrigerant by absorbing heat from the outside air and vaporizing the low-temperature / low-pressure gas-liquid two-phase refrigerant sent from the expansion device 5.
  • the refrigerant as the working fluid circulates between the gas refrigerant and the liquid refrigerant while changing the phase.
  • the refrigerant dissipates heat in the process of phase change from gas refrigerant to liquid refrigerant, and absorbs heat in the process of phase change from liquid refrigerant to gas refrigerant.
  • the refrigeration cycle device 1 performs heating, cooling, defrosting, and the like by utilizing heat dissipation or endothermic heat of the refrigerant.
  • FIG. 2 is a perspective view of the heat exchanger of the first embodiment.
  • the heat exchanger 4 of the first embodiment is used for one or both of the outdoor heat exchanger 4 and the indoor heat exchanger 6 of the refrigeration cycle device 1.
  • the heat exchanger 4 is used as the outdoor heat exchanger 4 of the refrigeration cycle device 1 (see FIG. 1) will be described as an example.
  • the heat exchanger 4 has a first header 10, a second header 20, and a heat exchange tube (heat transfer tube) 30.
  • FIG. 3 is an exploded perspective view of the first header 10.
  • FIG. 4 is an exploded perspective view of the first header 10 and the heat exchange tube 30.
  • FIG. 5 is a cross-sectional view of the first header 10 along the XZ plane.
  • the first header 10 is configured by laminating a pair of plates 11 and 12. That is, the first header 10 is configured by laminating the first inner plate body 11 and the first outer plate body 12.
  • the first inner plate body 11 and the first outer plate body 12 are formed of a material having a high thermal conductivity and a low specific density, such as aluminum and an aluminum alloy.
  • the first inner plate body 11 and the first outer plate body 12 are substantially parallel to the YZ plane.
  • the first outer plate body 12 is laminated on the surface (first main surface 11a) on the + X direction side of the first inner plate body 11.
  • the first main surface 11a is the main surface of the first inner plate body 11 and is a surface facing the first outer plate body 12.
  • the second main surface 11b is a surface opposite to the first main surface 11a.
  • a plurality of recesses 13 are formed on the first main surface 11a of the first inner plate body 11.
  • the recess 13 is formed by a deformed portion 15 formed by bending deformation of the first inner plate body 11.
  • the recess 13 is a recess formed on the inner surface of the deformed portion 15.
  • the depth D1 of the recess 13 is larger than the thickness T1 of the first inner plate body 11.
  • the deformed portion 15 has a tray shape including a bottom plate portion 15a and a side plate portion 15b.
  • the side plate portion 15b extends from the peripheral edge of the bottom plate portion 15a while increasing its diameter in the + X direction.
  • the deformed portion 15 may have a truncated cone shape, a truncated cone shape, a truncated cone shape, or the like.
  • the deformed portion 15 can be formed by processing a flat plate. Processing methods include cold casting (embossing) and press molding.
  • a convex portion 14 having a shape corresponding to the concave portion 13 is formed on the second main surface 11b.
  • the convex portion 14 is a convex portion formed on the outer surface of the deformed portion 15.
  • the plurality of recesses 13 include the first recesses 13A to the ninth recesses 13I.
  • the first recess 13A has an oval shape when viewed from the X direction.
  • the "oval shape” is a shape composed of two straight lines parallel to each other and facing each other, and a curved convex curve (for example, a semicircle shape, an elliptical arc shape, etc.) connecting the ends of the two straight lines.
  • the major axis direction of the first recess 13A is parallel to the Y direction.
  • the first recess 13A is at the highest position among the first recess 13A to the ninth recess 13I (that is, is located at the most + Z direction side).
  • the second recess 13B to the fifth recess 13E and the eighth recess 13H have a rectangular shape when viewed from the X direction.
  • the second recess 13B to the fifth recess 13E and the eighth recess 13H have a rectangular shape having rounded corners.
  • the second recess 13B and the third recess 13C are located lower than the first recess 13A (that is, located on the ⁇ Z direction side of the first recess 13A).
  • the second recess 13B and the third recess 13C are formed side by side in the Y direction with an interval in the Y direction.
  • the third recess 13C is located on the + Y direction side with respect to the second recess 13B.
  • the fourth recess 13D is located lower than the second recess 13B (that is, located on the ⁇ Z direction side of the second recess 13B).
  • the fifth recess 13E is located lower than the third recess 13C (that is, located on the ⁇ Z direction side of the third recess 13C).
  • the fourth recess 13D and the fifth recess 13E are formed side by side in the Y direction with an interval in the Y direction.
  • the fifth recess 13E is located on the + Y direction side with respect to the fourth recess 13D.
  • the sixth recess 13F is located lower than the fourth recess 13D (that is, located on the ⁇ Z direction side of the fourth recess 13D).
  • the seventh recess 13G is located lower than the sixth recess 13F (that is, located on the ⁇ Z direction side of the sixth recess 13F).
  • the sixth recess 13F and the seventh recess 13G have an oval shape when viewed from the X direction.
  • the major axis direction of the sixth recess 13F and the seventh recess 13G is parallel to the Y direction.
  • the eighth recess 13H is located lower than the fifth recess 13E (that is, located on the ⁇ Z direction side of the fifth recess 13E).
  • the eighth recess 13H is located on the Y direction side with respect to the sixth recess 13F and the seventh recess 13G.
  • the ninth recess 13I has an oval shape when viewed from the X direction.
  • the major axis direction of the ninth recess 13I is parallel to the Y direction.
  • the ninth recess 13I is located lower than the seventh recess 13G and the eighth recess 13H (that is, located on the ⁇ Z direction side of the seventh recess 13G and the eighth recess 13H).
  • Two insertion portions 41 and 41 are formed in the bottom plate portion 15a of the deformed portion 15 forming the first recess 13A.
  • the insertion portion 41 penetrates the bottom plate portion 15a in the thickness direction.
  • the insertion portion 41 is formed in a slit shape parallel to the Y direction.
  • the end of the heat exchange tube 30 is inserted into the insertion portion 41 (see FIG. 5).
  • the two insertion portions 41 and 41 are formed at intervals in the Y direction.
  • Two insertion portions 41 and 41 are formed in the bottom plate portion 15a of the deformed portion 15 forming the second recess 13B to the fifth recess 13E and the eighth recess 13H, respectively.
  • the two insertion portions 41 and 41 are formed at intervals in the Z direction.
  • One insertion portion 41 is formed in each of the bottom plate portion 15a of the deformed portion 15 forming the sixth recess 13F and the seventh recess 13G.
  • Two insertion portions 41 and 41 are formed in the bottom plate portion 15a of the deformed portion 15 forming the ninth recess 13I.
  • the two insertion portions 41 and 41 are formed at intervals in the Y direction.
  • the first recess 13A and the ninth recess 13I are recesses having the same shape.
  • the first recess 13A and the ninth recess 13I have a length of two heat exchange tubes 30 described later arranged in the Y direction (or a length exceeding the length of two heat exchange tubes 30 arranged in the Y direction). It has an oval shape.
  • the second recess 13B, the third recess 13C, the fourth recess 13D, the fifth recess 13E, and the eighth recess 13H are recesses having the same shape.
  • the sixth recess 13F and the seventh recess 13G are recesses having the same shape.
  • the sixth recess 13F and the seventh recess 13G are formed smaller than the other recesses 13A, 13B, 13C, 13D, 13E, 13H and 13I.
  • the first main surface 12a is the main surface of the first outer plate body 12 and is a surface facing the first inner plate body 11.
  • the second main surface 12b is a surface opposite to the first main surface 12a.
  • a plurality of recesses 17 are formed on the first main surface 12a of the first outer plate body 12.
  • the recess 17 is formed by a deformed portion 19 formed by bending deformation of the first inner plate body 11.
  • the recess 17 is a recess formed on the inner surface of the deformed portion 19.
  • the depth D2 of the recess 17 is larger than the thickness T2 of the first outer plate body 12.
  • the deformed portion 19 has a tray shape including a bottom plate portion 19a and a side plate portion 19b.
  • the side plate portion 19b extends from the peripheral edge of the bottom plate portion 19a while increasing its diameter in the ⁇ X direction.
  • the deformed portion 19 may have a truncated cone shape, a truncated cone shape, a truncated cone shape, or the like.
  • the deformed portion 19 can be formed by processing a flat plate. Processing methods include cold casting (embossing) and press molding.
  • a convex portion 18 having a shape corresponding to the concave portion 17 is formed on the second main surface 12b.
  • the convex portion 18 is a convex portion formed on the outer surface of the deformed portion 19.
  • the plurality of recesses 17 include the first recesses 17A to the ninth recesses 17I.
  • the first recesses 17A to the ninth recesses 17I have shapes corresponding to the first recesses 13A to the ninth recesses 13I of the first inner plate body 11, respectively.
  • the first recess 17A has an oval shape when viewed from the X direction.
  • the second recess 17B to the fifth recess 17E and the eighth recess 17H have a rectangular shape (for example, a rectangular shape having rounded corners) when viewed from the X direction.
  • the sixth recess 17F and the seventh recess 17G have an oval shape when viewed from the X direction.
  • the ninth recess 17I has an oval shape when viewed from the X direction.
  • the first recesses 17A to the ninth recesses 17I are located so as to face the first recesses 13A to the ninth recesses 13I of the first inner plate body 11, respectively.
  • the first recess 17A and the ninth recess 17I are recesses having the same shape.
  • the first recess 17A and the ninth recess 17I have a length equal to or longer than a length in which two heat exchange tubes 30 described later are arranged in the Y direction (for example, a length in which two heat exchange tubes 30 are arranged in the Y direction). It has an oval shape (length).
  • the second recess 17B, the third recess 17C, the fourth recess 17D, the fifth recess 17E, and the eighth recess 17H are recesses having the same shape.
  • the sixth recess 17F and the seventh recess 17G are recesses having the same shape.
  • the sixth recess 17F and the seventh recess 17G are formed smaller than the other recesses 17A, 17B, 17C, 17D, 17E, 17H and 17I.
  • the recess 13 of the first inner plate 11 and the recess 17 of the first outer plate 12 facing the recess 13 form a head space flow path 16 (space).
  • the head space flow path 16 forms a space flow path partitioned by the recess 13 and the recess 17 facing each other.
  • the head space flow path 16 forms a plate-shaped space flow path along the YZ plane.
  • the end of the heat exchange tube 30 inserted into the insertion portion 41 opens into the head space flow path 16. Therefore, the head space flow path 16 communicates with the refrigerant flow path 34 of the heat exchange tube 30.
  • the head space flow path 16 in which the first recess 13A and the first recess 17A are partitioned is referred to as a first head space flow path 16A.
  • the head space flow path 16 in which the second recess 13B and the second recess 17B are partitioned is referred to as a second head space flow path 16B.
  • the head space flow path 16 in which the third recess 13C and the third recess 17C are partitioned is referred to as a third head space flow path 16C.
  • the head space flow path 16 in which the fourth recess 13D and the fourth recess 17D are partitioned is referred to as a fourth head space flow path 16D.
  • the head space flow path 16 in which the fifth recess 13E and the fifth recess 17E are partitioned is referred to as a fifth head space flow path 16E.
  • the head space flow path 16 in which the sixth recess 13F and the sixth recess 17F are partitioned is referred to as a sixth head space flow path 16F.
  • the head space flow path 16 in which the seventh recess 13G and the seventh recess 17G are partitioned is referred to as the seventh head space flow path 16G.
  • the head space flow path 16 in which the eighth recess 13H and the eighth recess 17H are partitioned is referred to as an eighth head space flow path 16H.
  • the head space flow path 16 in which the ninth recess 13I and the ninth recess 17I are partitioned is referred to as a ninth head space flow path 16I.
  • the first head space flow path 16A and the ninth head space flow path 16I form a space flow path portion having the same shape.
  • the first head space flow path 16A and the ninth head space flow path 16I have a length equal to or longer than the length of two heat exchange tubes 30 described later arranged in the Y direction (for example, two heat exchange tubes 30 in the Y direction). It has an oval shape (length exceeding the arranged length).
  • the second head space flow path 16B, the third head space flow path 16C, and the fourth head space flow path 16D form a space flow path portion having the same shape.
  • the third head space flow path 16C, the fifth head space flow path 16E, and the eighth head space flow path 16H form a space flow path portion having the same shape.
  • the sixth head space flow path 16F and the seventh head space flow path 16G form a space flow path portion having the same shape.
  • the sixth head space flow path 16F and the seventh head space flow path 16G are formed smaller than the other head space flow paths 16A, 16B, 16C, 16D, 16E, 16H and 16I.
  • an insertion portion 42 is formed in the bottom plate portion 19a of the deformed portion 19 forming the sixth recess 17F.
  • the insertion portion 42 has a circular shape.
  • a tubular first refrigerant port 51 is inserted into the insertion portion 42 (see FIG. 2).
  • the end of the first refrigerant port 51 opens inside the sixth head space flow path 16F. This opening serves as an introduction port for introducing the refrigerant into the heat exchanger 4 or an outlet for leading out the refrigerant from the heat exchanger 4.
  • An insertion portion 43 is formed in the bottom plate portion 19a of the deformed portion 19 forming the seventh recess 17G.
  • the insertion portion 43 has a circular shape, and is formed to have the same size and shape as the insertion portion 42.
  • a tubular second refrigerant port 52 is inserted into the insertion portion 43 (see FIG. 2).
  • the end of the second refrigerant port 52 opens inside the seventh head space flow path 16G. This opening serves as an introduction port for introducing the refrigerant into the heat exchanger 4 or an outlet for leading out the refrigerant from the heat exchanger 4.
  • An insertion portion 44 is formed in the bottom plate portion 19a of the deformed portion 19 forming the third recess 17C.
  • the insertion portion 44 has a circular shape and is formed larger than the insertion portions 42 and 43.
  • a tubular third refrigerant port 53 is inserted into the insertion portion 44 (see FIG. 2).
  • the end of the third refrigerant port 53 opens inside the third head space flow path 16C. This opening serves as an introduction port for introducing the refrigerant into the heat exchanger 4 or an outlet for leading out the refrigerant from the heat exchanger 4.
  • the pressure of the head space flow path 16 is defined as "P".
  • the thickness of the first inner plate body 11 and the first outer plate body 12 be "T”.
  • L be the thickness dimension (dimension in the X direction) of the head space flow path 16.
  • the material proof stress ⁇ of the first inner plate body 11 and the first outer plate body 12 preferably satisfies the following formula (1).
  • the pressure resistance of the first header 10 can be ensured.
  • FIG. 6 is an exploded perspective view of the second header 20.
  • FIG. 7 is a cross-sectional view of the second header 20 along the XZ plane.
  • the second header 20 is configured by laminating a pair of plates 21 and 22. That is, the second header 20 is configured by laminating the second inner plate body 21 and the second outer plate body 22.
  • the second inner plate body 21 and the second outer plate body 22 are formed of a material having a high thermal conductivity and a low specific density, such as aluminum and an aluminum alloy.
  • the second inner plate body 21 and the second outer plate body 22 are substantially parallel to the YZ plane.
  • the second outer plate body 22 is laminated on the surface (first main surface 21a) on the ⁇ X direction side of the second inner plate body 21.
  • the first main surface 21a is the main surface of the second inner plate body 21 and is a surface facing the second outer plate body 22.
  • the second main surface 21b is a surface opposite to the first main surface 21a.
  • a plurality of recesses 23 are formed on the first main surface 21a of the second inner plate body 21.
  • the recess 23 is formed by a deformed portion 25 formed by bending deformation of the second inner plate body 21.
  • the recess 23 is a recess formed on the inner surface of the deformed portion 25.
  • the depth D3 of the recess 23 is larger than the thickness T3 of the second inner plate body 21.
  • the deformed portion 25 has a tray shape including a bottom plate portion 25a and a side plate portion 25b.
  • the side plate portion 25b extends from the peripheral edge of the bottom plate portion 25a while increasing its diameter in the ⁇ X direction.
  • the deformed portion 25 may have a truncated cone shape, a truncated cone shape, a truncated cone shape, or the like.
  • the deformed portion 25 can be formed by processing a flat plate body. Processing methods include cold casting (embossing) and press molding.
  • a convex portion 24 having a shape corresponding to the concave portion 23 is formed on the second main surface 21b.
  • the convex portion 24 is a convex portion formed on the outer surface of the deformed portion 25.
  • the plurality of recesses 23 include the first recess 23A to the eighth recess 23H.
  • the first recess 23A to the eighth recess 23H have a rectangular shape when viewed from the X direction.
  • the first recess 23A and the second recess 23B are formed side by side in the Y direction.
  • the third recess 23C is located on the ⁇ Z direction side of the first recess 23A.
  • the fourth recess 23D is located on the ⁇ Z direction side of the second recess 23B.
  • the third recess 23C and the fourth recess 23D are formed side by side in the Y direction.
  • the fifth recess 23E is located on the ⁇ Z direction side of the third recess 23C.
  • the sixth recess 23F is located on the ⁇ Z direction side of the fourth recess 23D.
  • the fifth recess 23E and the sixth recess 23F are formed side by side in the Y direction.
  • the seventh recess 23G is located on the ⁇ Z direction side of the fifth recess 23E.
  • the eighth recess 23H is located on the ⁇ Z direction side of the sixth recess 23F.
  • the seventh recess 23G and the eighth recess 23H are formed side by side in the Y direction.
  • Two insertion portions 45 and 45 are formed in the bottom plate portion 25a of the deformed portion 25 forming the first recess 23A to the eighth recess 23H, respectively.
  • the insertion portion 45 is formed in a slit shape parallel to the Y direction.
  • the end of the heat exchange tube 30 is inserted into the insertion portion 45 (see FIG. 7).
  • the two insertion portions 45, 45 are formed at intervals in the Z direction.
  • the first main surface 22a is the main surface of the second outer plate body 22 and is a surface facing the second inner plate body 21.
  • the second main surface 22b is a surface opposite to the first main surface 22a.
  • a plurality of recesses 27 are formed on the first main surface 22a of the second outer plate body 22.
  • the recess 27 is formed by a deformed portion 29 formed by bending deformation of the second inner plate body 21.
  • the recess 27 is a recess formed on the inner surface of the deformed portion 29.
  • the depth D4 of the recess 27 is larger than the thickness T4 of the second outer plate body 22.
  • the deformed portion 29 has a tray shape including a bottom plate portion 29a and a side plate portion 29b.
  • the side plate portion 29b extends from the peripheral edge of the bottom plate portion 29a while increasing its diameter in the + X direction.
  • the deformed portion 29 may have a truncated cone shape, a truncated cone shape, a truncated cone shape, or the like.
  • the deformed portion 29 can be formed by processing a flat plate. Processing methods include cold casting (embossing) and press molding.
  • a convex portion 28 having a shape corresponding to the concave portion 27 is formed on the second main surface 21b.
  • the convex portion 28 is a convex portion formed on the outer surface of the deformed portion 29.
  • the plurality of recesses 27 include the first recess 27A to the eighth recess 27H.
  • the first recess 27A to the ninth recess 27I have shapes corresponding to the first recess 23A to the eighth recess 27H of the second inner plate body 21, respectively.
  • the first recess 27A to the eighth recess 27H have a rectangular shape when viewed from the X direction.
  • the first recess 27A to the eighth recess 27H are located so as to face the first recess 23A to the eighth recess 23H of the second inner plate body 21, respectively.
  • the recess 23 of the second inner plate 21 and the corresponding recess 27 of the second outer plate 22 form a head space flow path 26 (space).
  • the head space flow path 26 forms a space flow path in a space partitioned by the recess 23 and the recess 27.
  • the head space flow path 26 forms a space flow path in a plate-like space along the YZ plane.
  • the head space flow path 26 in which the first recess 23A and the first recess 27A are partitioned is referred to as a first head space flow path 26A.
  • the head space flow path 26 in which the second recess 23B and the second recess 27B are partitioned is referred to as a second head space flow path 26B.
  • the head space flow path 26 in which the third recess 23C and the third recess 27C are partitioned is referred to as a third head space flow path 26C.
  • the head space flow path 26 that divides the fourth recess 23D and the fourth recess 27D is referred to as a fourth head space flow path 26D.
  • the head space flow path 26 in which the fifth recess 23E and the fifth recess 27E are partitioned is referred to as a fifth head space flow path 26E.
  • the head space flow path 26 in which the sixth recess 23F and the sixth recess 27F are partitioned is referred to as a sixth head space flow path 26F.
  • the head space flow path 26 in which the seventh recess 23G and the seventh recess 27G are partitioned is referred to as the seventh head space flow path 26G.
  • the head space flow path 26 in which the eighth recess 23H and the eighth recess 27H are partitioned is referred to as an eighth head space flow path 26H.
  • the first header 10 and the second header 20 are arranged side by side so as to be separated from each other in the X direction.
  • the heat exchange tube 30 is made of a material having a high thermal conductivity and a low specific density, such as aluminum and an aluminum alloy.
  • the heat exchange tube 30 is formed in a flat tubular shape. That is, the heat exchange tube 30 has a larger dimension in the Y direction than the dimension in the Z direction.
  • the shape of the cross section (YZ cross section) of the heat exchange tube 30 orthogonal to the length direction is an oval shape.
  • the heat exchange tube 30 extends in the X direction.
  • a refrigerant flow path 34 is formed inside the heat exchange tube 30 (see FIG. 5). The refrigerant flow path 34 is formed over the entire length of the heat exchange tube 30.
  • At least a part of the plurality of heat exchange tubes 30 is arranged in parallel at intervals in the Z direction.
  • the end of the heat exchange tube 30 in the + X direction is inserted into the insertion portion 41 formed in the first header 10 (see FIG. 5).
  • the end of the refrigerant flow path 34 of the heat exchange tube 30 in the + X direction opens inside the head space flow path 16 of the first header 10. Therefore, the head space flow path 16 communicates with the refrigerant flow path 34 of the heat exchange tube 30.
  • the end of the heat exchange tube 30 in the ⁇ X direction is inserted into the insertion portion 45 formed in the second header 20 (see FIG. 7).
  • the end portion of the refrigerant flow path 34 of the heat exchange tube 30 in the ⁇ X direction opens inside the head space flow path 26 of the second header 20. Therefore, the head space flow path 26 communicates with the refrigerant flow path 34 of the heat exchange tube 30.
  • the gap between the first header 10 and the second header 20 and the heat exchange tube 30 is sealed by brazing or the like.
  • the specific procedure for brazing is as follows. Row is applied to the inner surfaces of the first header 10 and the second header 20.
  • the heat exchange tube 30 is inserted into the first header 10 and the second header 20, and the heat exchanger 4 is assembled.
  • the assembled heat exchanger 4 is heated in the furnace. The heating melts the wax on the inner surfaces of the first header 10 and the second header 20.
  • the molten wax closes the gap between the first header 10 and the second header 20 and the heat exchange tube 30.
  • the heat exchanger 4 is cooled and the wax solidifies. As a result, the first header 10 and the second header 20 and the heat exchange tube 30 are fixed.
  • An outside air flow path along the Y direction is formed between the heat exchange tubes 30 adjacent to each other on the top and bottom.
  • the heat exchanger 4 circulates the outside air through the outside air flow path by a blower fan (not shown) or the like.
  • the heat exchanger 4 exchanges heat between the outside air flowing through the outside air flow path and the refrigerant flowing through the refrigerant flow path 34.
  • the heat exchange is indirectly performed via the heat exchange tube 30.
  • the outdoor heat exchanger 4 functions as a condenser.
  • the gaseous refrigerant flowing out of the compressor 2 flows into the outdoor heat exchanger 4.
  • the refrigerant flows into the inside of the first header 10 from the first refrigerant port 51 and the second refrigerant port 52.
  • the refrigerant that has flowed from the first refrigerant port 51 into the sixth head space flow path 16F flows through the heat exchange tube 30 (30F) in the ⁇ X direction and flows into the lower part of the fifth head space flow path 26E of the second header 20. ..
  • the refrigerant flows from the upper part of the fifth head space flow path 26E through the heat exchange tube 30 (30D2) in the + X direction, and flows into the lower part of the fourth head space flow path 16D of the first header 10.
  • the refrigerant flows from the upper part of the fourth head space flow path 16D through the heat exchange tube 30 (30D1) in the ⁇ X direction, and flows into the lower part of the third head space flow path 26C of the second header 20.
  • the refrigerant flows from the upper part of the third head space flow path 26C through the heat exchange tube 30 (30B2) in the + X direction, and flows into the lower part of the second head space flow path 16B of the first header 10.
  • the refrigerant flows from the upper part of the second head space flow path 16B through the heat exchange tube 30 (30B1) in the ⁇ X direction, and flows into the lower part of the first head space flow path 26A of the second header 20.
  • the refrigerant flows from the upper part of the first head space flow path 26A through the heat exchange tube 30 (30A1) in the + X direction and flows into the first head space flow path 16A of the first header 10.
  • the refrigerant flows from the first head space flow path 16A through the heat exchange tube 30 (30A2) in the ⁇ X direction and flows into the upper part of the second head space flow path 26B of the second header 20.
  • the refrigerant flows from the lower part of the second head space flow path 26B through the heat exchange tube 30 (30C1) in the + X direction and flows into the third head space flow path 16C of the first header 10.
  • the refrigerant flows out from the third head space flow path 16C through the third refrigerant port 53.
  • the refrigerant that has flowed from the second refrigerant port 52 into the seventh head space flow path 16G flows through the heat exchange tube 30 (30G) in the ⁇ X direction and flows into the upper part of the seventh head space flow path 26G of the second header 20. ..
  • the refrigerant flows from the lower part of the 7th head space flow path 26G through the heat exchange tube 30 (30I1) in the + X direction and flows into the 9th head space flow path 16I of the first header 10.
  • the refrigerant flows from the 9th head space flow path 16I through the heat exchange tube 30 (30I2) in the ⁇ X direction and flows into the lower part of the 8th head space flow path 26H of the second header 20.
  • the refrigerant flows from the upper part of the eighth head space flow path 26H through the heat exchange tube 30 (30H2) in the + X direction, and flows into the lower part of the eighth head space flow path 16H of the first header 10.
  • the refrigerant flows from the upper part of the eighth head space flow path 16H through the heat exchange tube 30 (30H1) in the ⁇ X direction, and flows into the lower part of the sixth head space flow path 26F of the second header 20.
  • the refrigerant flows from the upper part of the sixth head space flow path 26F through the heat exchange tube 30 (30E2) in the + X direction, and flows into the lower part of the fifth head space flow path 16E of the first header 10.
  • the refrigerant flows from the upper part of the fifth head space flow path 16E through the heat exchange tube 30 (30E1) in the ⁇ X direction, and flows into the lower part of the fourth head space flow path 26D of the second header 20.
  • the refrigerant flows from the upper part of the fourth head space flow path 26D through the heat exchange tube 30 (30C2) in the + X direction, and flows into the third head space flow path 16C of the first header 10.
  • the refrigerant flows out from the third head space flow path 16C through the third refrigerant port 53.
  • the gaseous refrigerant dissipates heat to the outside air and condenses in the process of flowing through the heat exchange tube 30.
  • the condensed refrigerant becomes a liquid refrigerant and flows out from the third refrigerant port 53 to the outside of the heat exchanger 4.
  • the refrigerant flows in the opposite direction to the above. That is, the liquid refrigerant flows into the third head space flow path 16C from the third refrigerant port 53, and the gas-liquid two-phase refrigerant flows out from the first refrigerant port 51 and the second refrigerant port 52.
  • the head space flow paths 16 and 26 through which the refrigerant flows are formed in the first header 10 and the second header 20 by the recesses 13, 17, 23 and 27 (FIGS. 5 and 5 and). (See FIG. 7). Therefore, the structures of the first header 10 and the second header 20 can be simplified. Therefore, a small and lightweight heat exchanger 4 can be obtained. Since the first header 10 and the second header 20 are made of plate members 11 to 14, they can be made smaller and lighter than the cylindrical header. Therefore, the heat exchanger 4 can be made smaller and lighter. Since the heat exchanger 4 is small and lightweight, it is also excellent in terms of storability in a housing such as an outdoor unit. Since the head space flow paths 16 and 26 capable of flowing the refrigerant in just proportion can be designed for the first header 10 and the second header 20, the amount of refrigerant used can be suppressed.
  • a heat exchanger using a cylindrical header is assumed. Since this heat exchanger uses a header having a large outer diameter, it is difficult to reduce the size and weight. In particular, when a flat heat exchange tube is used to improve heat exchange efficiency, a head having a large outer diameter is required, which makes it difficult to reduce the size and weight. With a cylindrical header, the internal space becomes large and the amount of refrigerant used may increase.
  • a heat exchanger without a header is assumed.
  • a meandering heat exchange tube in which straight portions and curved portions are alternately formed is used.
  • the radius of curvature can be reduced by using a circular tubular heat exchange tube only in the curved portion.
  • miniaturization is not easy.
  • the first header 10 is provided with refrigerant ports 51 and 52 having a refrigerant inlet and a refrigerant port 53 having a refrigerant outlet (see FIG. 2). Since the refrigerant ports 51 to 53 are all provided in the first header 10, the heat exchanger 4 can be miniaturized as compared with the case where the refrigerant ports are distributed in the two headers. Therefore, the heat exchanger 4 is excellent in terms of storability in the housing.
  • FIG. 8 is a cross-sectional view taken along the XZ plane of the first header 10A of the first modification.
  • the above-mentioned configurations are designated by the same reference numerals and the description thereof will be omitted.
  • the first inner plate body 111 is used instead of the first inner plate body 11 (see FIG. 5).
  • the first outer plate body 112 is used instead of the first outer plate body 12 (see FIG. 5).
  • the first inner plate body 111 includes a plate body main portion 113 and a coating layer 114.
  • the plate body main portion 113 is made of a material containing aluminum (aluminum, aluminum alloy, etc.).
  • the coating layer 114 is provided on the outer surface 113b (second main surface) of the plate body main portion 113.
  • the outer surface 113b is a surface opposite to the first main surface 111a facing the first outer plate body 112.
  • the coating layer 114 is made of a metal material containing Zn.
  • the coating layer 114 is made of a 7000 series aluminum alloy.
  • the Zn content (content rate) of the coating layer 114 is higher than the Zn content (content rate) of the plate body main portion 113.
  • the first outer plate body 112 includes a plate body main portion 115 and a coating layer 116.
  • the plate body main portion 115 is made of a material containing aluminum (aluminum, aluminum alloy, etc.).
  • the coating layer 116 is provided on the outer surface 115b (second main surface) of the plate body main portion 115.
  • the outer surface 115b is a surface opposite to the first main surface 112a facing the first inner plate body 111.
  • the coating layer 116 is made of a metal material containing Zn.
  • the coating layer 116 is made of a 7000 series aluminum alloy.
  • the Zn content (content rate) of the coating layer 116 is higher than the Zn content (content rate) of the plate body main portion 115.
  • the first inner plate body 111 and the first outer plate body 112 can be manufactured by using a clad material (laminated plate material) on which a coating layer containing Zn is previously formed.
  • the coating layer can also be formed by thermal spraying.
  • a plate having a coating layer can be used as in the case of the first header 10A.
  • the corrosion resistance of the first header 10A can be improved.
  • FIG. 9 is a cross-sectional view of the first header 10B of the second modification along the XZ plane.
  • the above-mentioned configurations are designated by the same reference numerals and the description thereof will be omitted.
  • the first header 10B the first inner plate body 211 is used instead of the first inner plate body 11 (see FIG. 5).
  • the first outer plate body 212 is used instead of the first outer plate body 12 (see FIG. 5).
  • the first inner plate body 211 includes a plate body main portion 213 and a low melting point layer 214.
  • the plate body main portion 213 is made of a material containing aluminum (aluminum, aluminum alloy, etc.).
  • the low melting point layer 214 is provided on the inner surface 213a (first main surface) of the plate body main portion 213.
  • the low melting point layer 214 is made of a metal material containing Si.
  • the low melting point layer 214 is made of a 4000 series aluminum alloy.
  • the Si content (content rate) of the low melting point layer 214 is higher than the Si content (content rate) of the plate body main portion 213.
  • the melting point of the constituent material of the low melting point layer 214 is lower than the melting point of the constituent material of the plate body main portion 213.
  • the first outer plate body 212 includes a plate body main portion 215 and a low melting point layer 216.
  • the plate body main portion 215 is made of a material containing aluminum (aluminum, aluminum alloy, etc.).
  • the low melting point layer 216 is provided on the inner surface 215a (first main surface) of the plate body main portion 215.
  • the low melting point layer 216 is made of a metal material containing Si.
  • the low melting point layer 216 is composed of a 4000 series aluminum alloy.
  • the Si content (content rate) of the low melting point layer 216 is higher than the Si content (content rate) of the plate body main portion 215.
  • the melting point of the constituent material of the low melting point layer 216 is lower than the melting point of the constituent material of the plate body main portion 215.
  • the first inner plate body 212 and the first outer plate body 212 can be manufactured by using a clad material (laminated plate material) on which a low melting point layer containing Si is formed in advance.
  • the low melting point layer may be formed by laminating a clad sheet made of a low melting point material on the main part of the plate body.
  • a plate having a low melting point layer can be used as in the case of the first header 10B.
  • the low melting point layers 214 and 216 function as brazing to seal the gap between the first header 10 and the second header 20 and the heat exchange tube 30, so that the brazing work becomes easy. ..
  • FIG. 10 is a cross-sectional view taken along the XZ plane of the first header 10C in the heat exchanger of the second embodiment.
  • the above-mentioned configurations are designated by the same reference numerals and the description thereof will be omitted.
  • an intermediate plate body 313 is laminated between the first inner plate body 11 (see FIG. 5) and the first outer plate body 12 (see FIG. 5).
  • the intermediate plate body 313 is made of a material containing aluminum (aluminum, aluminum alloy, etc.).
  • the intermediate plate body 313 is formed with an insertion portion 314 that overlaps the recesses 13 and 17 when viewed from the X direction.
  • the recesses 13 and 17 and the insertion portion 314 form a head space flow path 316.
  • the second header similarly to the first header 10C, a configuration in which an intermediate plate body is laminated between the second inner plate body and the second outer plate body can be adopted.
  • the degree of freedom in designing the head space flow path 316 can be increased.
  • the volume of the head space flow path 316 can be increased by increasing the X-direction dimension of the head space flow path 316.
  • FIG. 11 is a cross-sectional view of the first header 10D of the third modification along the XZ plane.
  • the above-mentioned configurations are designated by the same reference numerals and the description thereof will be omitted.
  • a flat plate-shaped first outer plate body 412 is used instead of the first outer plate body 12 (see FIG. 5).
  • the recess 13 and the first outer plate body 412 form a head space flow path 416. Since the first header 10D uses a flat plate-shaped first outer plate body 412, the structure is simple. Therefore, it is advantageous in terms of miniaturization and cost reduction.
  • the structure of the header can be simplified because a space through which the refrigerant flows is formed in the header by the recesses. Therefore, a small and lightweight heat exchanger can be obtained. Since the header is made of a plate material, it can be made smaller and lighter than a cylindrical header. Therefore, the heat exchanger can be made smaller and lighter. Since the heat exchanger is small and lightweight, it is also excellent in terms of storability in a housing such as an outdoor unit. Since the header can design a space in which the refrigerant can flow in just proportion, the amount of refrigerant used can be suppressed.
  • Refrigeration cycle device 4 Outdoor heat exchanger (heat exchanger) 10 First header (header) 11,111,211 1st inner plate body (plate body) 11a First main surface 12, 112, 212 First outer plate body (plate body) 12a 1st main surface 13, 23, 17, 27 recess 20 2nd header 21 2nd inner plate body (plate body) 21a 1st main surface 22 2nd outer plate body (plate body) 22a First main surface 30 Heat exchange tube 34 Refrigerant flow path 113b Outer surface (second main surface) 115b outer surface (second main surface) 313 Intermediate plate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A heat exchanger according to this embodiment has heat exchange tubes and headers. Refrigerant passages through which a refrigerant flows are formed in the heat exchange tubes. The headers are respectively provided to one and the other end sections of the heat exchange tubes. The headers each comprise a pair of plate bodies that are layered such that first main surfaces thereof are facing. A recessed section forming a space passage that is in communication with the refrigerant passages is formed in the first main surface of at least one of the plate bodies.

Description

熱交換器および冷凍サイクル装置Heat exchanger and refrigeration cycle equipment
 本発明の実施形態は、熱交換器および冷凍サイクル装置に関する。 Embodiments of the present invention relate to heat exchangers and refrigeration cycle devices.
 ヘッダ型の熱交換器は、複数の熱交換チューブと、ヘッダとを持つ。熱交換チューブの内部には、冷媒流路が形成される。ヘッダは、熱交換チューブの端部に設けられている。熱交換器は、小型であること、および軽量であることが要望されている。 The header type heat exchanger has a plurality of heat exchange tubes and a header. A refrigerant flow path is formed inside the heat exchange tube. The header is provided at the end of the heat exchange tube. Heat exchangers are required to be small and lightweight.
国際公開第2015/037641号International Publication No. 2015/037641 国際公開第2015/063875号International Publication No. 2015/063875
 本発明が解決しようとする課題は、小型かつ軽量の熱交換器および冷凍サイクル装置を提供することである。 The problem to be solved by the present invention is to provide a small and lightweight heat exchanger and refrigeration cycle device.
 実施形態の熱交換器は、熱交換チューブと、ヘッダとを持つ。熱交換チューブは、冷媒が流れる冷媒流路が形成される。ヘッダは、前記熱交換チューブの一方および他方の端部にそれぞれ設けられる。前記ヘッダは、第1主面どうしが向かい合うように積層された一対の板体を備える。前記板体の少なくとも1つの前記第1主面に、前記冷媒流路と連通する空間流路を形成する凹部が形成されている。 The heat exchanger of the embodiment has a heat exchange tube and a header. In the heat exchange tube, a refrigerant flow path through which the refrigerant flows is formed. Headers are provided at one end and the other end of the heat exchange tube, respectively. The header includes a pair of plates laminated so that the first main surfaces face each other. A recess forming a spatial flow path communicating with the refrigerant flow path is formed on at least one of the first main surfaces of the plate body.
実施形態における冷凍サイクル装置の概略構成図。The schematic block diagram of the refrigeration cycle apparatus in embodiment. 第1の実施形態における熱交換器の斜視図。The perspective view of the heat exchanger in the 1st Embodiment. 第1ヘッダの分解斜視図。An exploded perspective view of the first header. 第1ヘッダおよび熱交換チューブの分解斜視図。An exploded perspective view of the first header and the heat exchange tube. 第1ヘッダの断面図。Cross-sectional view of the first header. 第2ヘッダの分解斜視図。An exploded perspective view of the second header. 第2ヘッダの断面図。Sectional drawing of the 2nd header. 第1変形例の第1ヘッダの断面図。FIG. 3 is a cross-sectional view of the first header of the first modification. 第2変形例の第1ヘッダの断面図。FIG. 3 is a cross-sectional view of the first header of the second modification. 第2の実施形態における第1ヘッダの断面図。FIG. 3 is a cross-sectional view of the first header in the second embodiment. 第3変形例の第1ヘッダの断面図。FIG. 3 is a cross-sectional view of the first header of the third modification.
 以下、実施形態の熱交換器を、図面を参照して説明する。
 本願において、X方向、Y方向およびZ方向は、以下のように定義される。Z方向は、第1ヘッダおよび第2ヘッダの長手方向(延在方向)である。例えば、Z方向は鉛直方向であり、+Z方向は上方向である。X方向は、熱交換チューブの中心軸方向(延在方向)である。例えば、X方向は水平方向であり、+X方向は第2ヘッダから第1ヘッダに向かう方向である。Y方向は、X方向およびZ方向に垂直な方向である。
Hereinafter, the heat exchanger of the embodiment will be described with reference to the drawings.
In the present application, the X direction, the Y direction and the Z direction are defined as follows. The Z direction is the longitudinal direction (extending direction) of the first header and the second header. For example, the Z direction is the vertical direction, and the + Z direction is the upward direction. The X direction is the central axis direction (extending direction) of the heat exchange tube. For example, the X direction is the horizontal direction, and the + X direction is the direction from the second header to the first header. The Y direction is a direction perpendicular to the X and Z directions.
(第1の実施形態)
 図1は、実施形態の冷凍サイクル装置の概略構成図である。
 図1に示されるように、冷凍サイクル装置1は、圧縮機2と、四方弁3と、室外熱交換器(熱交換器)4と、膨張装置5と、室内熱交換器(熱交換器)6と、を有する。冷凍サイクル装置1の構成要素は、配管7によって順次接続されている。図1では、冷房運転時の冷媒(熱媒体)の流通方向が実線矢印で示され、暖房運転時の冷媒の流通方向が破線矢印で示される。
(First Embodiment)
FIG. 1 is a schematic configuration diagram of the refrigeration cycle device of the embodiment.
As shown in FIG. 1, the refrigeration cycle device 1 includes a compressor 2, a four-way valve 3, an outdoor heat exchanger (heat exchanger) 4, an expansion device 5, and an indoor heat exchanger (heat exchanger). 6 and. The components of the refrigeration cycle device 1 are sequentially connected by a pipe 7. In FIG. 1, the flow direction of the refrigerant (heat medium) during the cooling operation is indicated by a solid line arrow, and the flow direction of the refrigerant during the heating operation is indicated by a broken line arrow.
 圧縮機2は、圧縮機本体2Aと、アキュムレータ2Bと、を有する。圧縮機本体2Aは、内部に取り込まれる低圧の気体冷媒を圧縮して高温・高圧の気体冷媒にする。アキュムレータ2Bは、気液二相冷媒を分離して、気体冷媒を圧縮機本体2Aに供給する。 The compressor 2 has a compressor main body 2A and an accumulator 2B. The compressor body 2A compresses the low-pressure gas refrigerant taken into the inside to obtain a high-temperature and high-pressure gas refrigerant. The accumulator 2B separates the gas-liquid two-phase refrigerant and supplies the gas refrigerant to the compressor main body 2A.
 四方弁3は、冷媒の流通方向を逆転させ、冷房運転と暖房運転とを切り替える。冷房運転時に冷媒は、圧縮機2、四方弁3、室外熱交換器4、膨張装置5及び室内熱交換器6の順に流れる。このとき冷凍サイクル装置1は、室外熱交換器4を凝縮器として機能させ、室内熱交換器6を蒸発器として機能させ、室内を冷房する。暖房運転時に冷媒は、圧縮機2、四方弁3、室内熱交換器6、膨張装置5、室外熱交換器4の順に流れる。このとき冷凍サイクル装置1は、室内熱交換器6を凝縮器として機能させ、室外熱交換器4を蒸発器として機能させ、室内を暖房する。 The four-way valve 3 reverses the flow direction of the refrigerant and switches between cooling operation and heating operation. During the cooling operation, the refrigerant flows in the order of the compressor 2, the four-way valve 3, the outdoor heat exchanger 4, the expansion device 5, and the indoor heat exchanger 6. At this time, the refrigeration cycle device 1 causes the outdoor heat exchanger 4 to function as a condenser and the indoor heat exchanger 6 to function as an evaporator to cool the room. During the heating operation, the refrigerant flows in the order of the compressor 2, the four-way valve 3, the indoor heat exchanger 6, the expansion device 5, and the outdoor heat exchanger 4. At this time, the refrigeration cycle device 1 causes the indoor heat exchanger 6 to function as a condenser and the outdoor heat exchanger 4 to function as an evaporator to heat the room.
 凝縮器は、圧縮機2から吐出される高温・高圧の気体冷媒を、外気へ放熱させて凝縮させることにより、高圧の液体冷媒にする。
 膨張装置5は、凝縮器から送り込まれる高圧の液体冷媒の圧力を下げ、低温・低圧の気液二相冷媒にする。
 蒸発器は、膨張装置5から送り込まれる低温・低圧の気液二相冷媒を、外気から吸熱させて気化させることにより、低圧の気体冷媒にする。
The condenser makes a high-pressure liquid refrigerant by radiating high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the outside air and condensing it.
The expansion device 5 lowers the pressure of the high-pressure liquid refrigerant sent from the condenser to make it a low-temperature / low-pressure gas-liquid two-phase refrigerant.
The evaporator makes a low-pressure gas-liquid refrigerant by absorbing heat from the outside air and vaporizing the low-temperature / low-pressure gas-liquid two-phase refrigerant sent from the expansion device 5.
 このように、冷凍サイクル装置1では、作動流体である冷媒が気体冷媒と液体冷媒との間で相変化しながら循環する。冷媒は、気体冷媒から液体冷媒に相変化する過程で放熱し、液体冷媒から気体冷媒に相変化する過程で吸熱する。冷凍サイクル装置1は、冷媒の放熱または吸熱を利用して、暖房や冷房、除霜などを行う。 In this way, in the refrigeration cycle device 1, the refrigerant as the working fluid circulates between the gas refrigerant and the liquid refrigerant while changing the phase. The refrigerant dissipates heat in the process of phase change from gas refrigerant to liquid refrigerant, and absorbs heat in the process of phase change from liquid refrigerant to gas refrigerant. The refrigeration cycle device 1 performs heating, cooling, defrosting, and the like by utilizing heat dissipation or endothermic heat of the refrigerant.
 図2は、第1の実施形態の熱交換器の斜視図である。図2に示されるように、第1の実施形態の熱交換器4は、冷凍サイクル装置1の室外熱交換器4および室内熱交換器6のうち一方または両方に使用される。以下、熱交換器4が冷凍サイクル装置1(図1参照)の室外熱交換器4として使用される場合を例にして説明する。 FIG. 2 is a perspective view of the heat exchanger of the first embodiment. As shown in FIG. 2, the heat exchanger 4 of the first embodiment is used for one or both of the outdoor heat exchanger 4 and the indoor heat exchanger 6 of the refrigeration cycle device 1. Hereinafter, a case where the heat exchanger 4 is used as the outdoor heat exchanger 4 of the refrigeration cycle device 1 (see FIG. 1) will be described as an example.
 熱交換器4は、第1ヘッダ10と、第2ヘッダ20と、熱交換チューブ(伝熱管)30と、を有する。
 図3は、第1ヘッダ10の分解斜視図である。図4は、第1ヘッダ10および熱交換チューブ30の分解斜視図である。図5は、第1ヘッダ10のXZ平面に沿う断面図である。
The heat exchanger 4 has a first header 10, a second header 20, and a heat exchange tube (heat transfer tube) 30.
FIG. 3 is an exploded perspective view of the first header 10. FIG. 4 is an exploded perspective view of the first header 10 and the heat exchange tube 30. FIG. 5 is a cross-sectional view of the first header 10 along the XZ plane.
 図3および図5に示されるように、第1ヘッダ10は、一対の板体11,12が積層されて構成されている。すなわち、第1ヘッダ10は、第1内板体11と第1外板体12とが積層されて構成されている。第1内板体11および第1外板体12は、アルミニウム、アルミニウム合金等の、熱伝導率が高く比重が小さい材料で形成される。第1内板体11および第1外板体12は、概略、YZ平面と平行とされる。第1外板体12は、第1内板体11の+X方向側の面(第1主面11a)に積層される。
 図5に示されるように、第1主面11aは、第1内板体11の主面であって、第1外板体12に対向する面である。第2主面11bは、第1主面11aとは反対の面である。
As shown in FIGS. 3 and 5, the first header 10 is configured by laminating a pair of plates 11 and 12. That is, the first header 10 is configured by laminating the first inner plate body 11 and the first outer plate body 12. The first inner plate body 11 and the first outer plate body 12 are formed of a material having a high thermal conductivity and a low specific density, such as aluminum and an aluminum alloy. The first inner plate body 11 and the first outer plate body 12 are substantially parallel to the YZ plane. The first outer plate body 12 is laminated on the surface (first main surface 11a) on the + X direction side of the first inner plate body 11.
As shown in FIG. 5, the first main surface 11a is the main surface of the first inner plate body 11 and is a surface facing the first outer plate body 12. The second main surface 11b is a surface opposite to the first main surface 11a.
 第1内板体11の第1主面11aには、複数の凹部13が形成されている。凹部13は、第1内板体11の曲げ変形により形成された変形部15によって形成されている。凹部13は、変形部15の内面に形成された凹部である。例えば、凹部13の深さD1は、第1内板体11の厚さT1より大である。 A plurality of recesses 13 are formed on the first main surface 11a of the first inner plate body 11. The recess 13 is formed by a deformed portion 15 formed by bending deformation of the first inner plate body 11. The recess 13 is a recess formed on the inner surface of the deformed portion 15. For example, the depth D1 of the recess 13 is larger than the thickness T1 of the first inner plate body 11.
 変形部15は、底板部15aと、側板部15bとを備えるトレイ形状とされている。側板部15bは、底板部15aの周縁から+X方向に向かって拡径しつつ延出する。例えば、変形部15は、長円錐台形状、角錐台形状、円錐台形状などであってよい。例えば、変形部15は、平板状の板体を加工することによって形成することができる。加工方法としては、冷間鋳造(エンボス加工)、プレス成形などがある。 The deformed portion 15 has a tray shape including a bottom plate portion 15a and a side plate portion 15b. The side plate portion 15b extends from the peripheral edge of the bottom plate portion 15a while increasing its diameter in the + X direction. For example, the deformed portion 15 may have a truncated cone shape, a truncated cone shape, a truncated cone shape, or the like. For example, the deformed portion 15 can be formed by processing a flat plate. Processing methods include cold casting (embossing) and press molding.
 第2主面11bには、凹部13に即した形状の凸部14が形成されている。凸部14は、変形部15の外面に形成された凸部である。 A convex portion 14 having a shape corresponding to the concave portion 13 is formed on the second main surface 11b. The convex portion 14 is a convex portion formed on the outer surface of the deformed portion 15.
 図3に示されるように、複数の凹部13は、第1凹部13A~第9凹部13Iを含む。
 第1凹部13Aは、X方向から見て長円形状とされている。「長円形状」は、互いに平行かつ向かい合う2つの直線と、2つの直線の端部どうしをそれぞれ結ぶ湾曲凸状(例えば半円状、楕円弧状など)の曲線とで構成される形状である。第1凹部13Aの長径方向はY方向と平行である。第1凹部13Aは、第1凹部13A~第9凹部13Iのなかで最も高い位置にある(すなわち、最も+Z方向側に位置する)。
As shown in FIG. 3, the plurality of recesses 13 include the first recesses 13A to the ninth recesses 13I.
The first recess 13A has an oval shape when viewed from the X direction. The "oval shape" is a shape composed of two straight lines parallel to each other and facing each other, and a curved convex curve (for example, a semicircle shape, an elliptical arc shape, etc.) connecting the ends of the two straight lines. The major axis direction of the first recess 13A is parallel to the Y direction. The first recess 13A is at the highest position among the first recess 13A to the ninth recess 13I (that is, is located at the most + Z direction side).
 第2凹部13B~第5凹部13Eおよび第8凹部13Hは、X方向から見て矩形状とされている。例えば、第2凹部13B~第5凹部13Eおよび第8凹部13Hは、丸みを帯びた角部を有する矩形状とされている。
 第2凹部13Bおよび第3凹部13Cは、第1凹部13Aに対して低い位置にある(すなわち、第1凹部13Aの-Z方向側に位置する)。第2凹部13Bと第3凹部13Cとは、Y方向に間隔をおいて、Y方向に並んで形成されている。第3凹部13Cは、第2凹部13Bに対して、+Y方向側に位置する。
The second recess 13B to the fifth recess 13E and the eighth recess 13H have a rectangular shape when viewed from the X direction. For example, the second recess 13B to the fifth recess 13E and the eighth recess 13H have a rectangular shape having rounded corners.
The second recess 13B and the third recess 13C are located lower than the first recess 13A (that is, located on the −Z direction side of the first recess 13A). The second recess 13B and the third recess 13C are formed side by side in the Y direction with an interval in the Y direction. The third recess 13C is located on the + Y direction side with respect to the second recess 13B.
 第4凹部13Dは、第2凹部13Bに対して低い位置にある(すなわち、第2凹部13Bの-Z方向側に位置する)。第5凹部13Eは、第3凹部13Cに対して低い位置にある(すなわち、第3凹部13Cの-Z方向側に位置する)。第4凹部13Dと第5凹部13Eとは、Y方向に間隔をおいて、Y方向に並んで形成されている。第5凹部13Eは、第4凹部13Dに対して、+Y方向側に位置する。 The fourth recess 13D is located lower than the second recess 13B (that is, located on the −Z direction side of the second recess 13B). The fifth recess 13E is located lower than the third recess 13C (that is, located on the −Z direction side of the third recess 13C). The fourth recess 13D and the fifth recess 13E are formed side by side in the Y direction with an interval in the Y direction. The fifth recess 13E is located on the + Y direction side with respect to the fourth recess 13D.
 第6凹部13Fは、第4凹部13Dに対して低い位置にある(すなわち、第4凹部13Dの-Z方向側に位置する)。第7凹部13Gは、第6凹部13Fに対して低い位置にある(すなわち、第6凹部13Fの-Z方向側に位置する)。第6凹部13Fおよび第7凹部13Gは、X方向から見て長円形状とされている。第6凹部13Fおよび第7凹部13Gの長径方向はY方向と平行である。
 第8凹部13Hは、第5凹部13Eに対して低い位置にある(すなわち、第5凹部13Eの-Z方向側に位置する)。第8凹部13Hは、第6凹部13Fおよび第7凹部13Gに対して、Y方向側に位置する。
The sixth recess 13F is located lower than the fourth recess 13D (that is, located on the −Z direction side of the fourth recess 13D). The seventh recess 13G is located lower than the sixth recess 13F (that is, located on the −Z direction side of the sixth recess 13F). The sixth recess 13F and the seventh recess 13G have an oval shape when viewed from the X direction. The major axis direction of the sixth recess 13F and the seventh recess 13G is parallel to the Y direction.
The eighth recess 13H is located lower than the fifth recess 13E (that is, located on the −Z direction side of the fifth recess 13E). The eighth recess 13H is located on the Y direction side with respect to the sixth recess 13F and the seventh recess 13G.
 第9凹部13Iは、X方向から見て長円形状とされている。第9凹部13Iの長径方向はY方向と平行である。第9凹部13Iは、第7凹部13Gおよび第8凹部13Hに対して低い位置にある(すなわち、第7凹部13Gおよび第8凹部13Hの-Z方向側に位置する)。 The ninth recess 13I has an oval shape when viewed from the X direction. The major axis direction of the ninth recess 13I is parallel to the Y direction. The ninth recess 13I is located lower than the seventh recess 13G and the eighth recess 13H (that is, located on the −Z direction side of the seventh recess 13G and the eighth recess 13H).
 第1凹部13Aを形成する変形部15の底板部15aには、2つの差込部41,41が形成されている。差込部41は、底板部15aを厚さ方向に貫通する。差込部41は、Y方向に平行なスリット状に形成されている。差込部41には、熱交換チューブ30の端部が挿入される(図5参照)。2つの差込部41,41は、Y方向に間隔をおいて形成されている。 Two insertion portions 41 and 41 are formed in the bottom plate portion 15a of the deformed portion 15 forming the first recess 13A. The insertion portion 41 penetrates the bottom plate portion 15a in the thickness direction. The insertion portion 41 is formed in a slit shape parallel to the Y direction. The end of the heat exchange tube 30 is inserted into the insertion portion 41 (see FIG. 5). The two insertion portions 41 and 41 are formed at intervals in the Y direction.
 第2凹部13B~第5凹部13Eおよび第8凹部13Hを形成する変形部15の底板部15aには、それぞれ2つの差込部41,41が形成されている。2つの差込部41,41は、Z方向に間隔をおいて形成されている。 Two insertion portions 41 and 41 are formed in the bottom plate portion 15a of the deformed portion 15 forming the second recess 13B to the fifth recess 13E and the eighth recess 13H, respectively. The two insertion portions 41 and 41 are formed at intervals in the Z direction.
 第6凹部13Fおよび第7凹部13Gを形成する変形部15の底板部15aには、それぞれ1つの差込部41が形成されている。
 第9凹部13Iを形成する変形部15の底板部15aには、2つの差込部41,41が形成されている。2つの差込部41,41は、Y方向に間隔をおいて形成されている。
One insertion portion 41 is formed in each of the bottom plate portion 15a of the deformed portion 15 forming the sixth recess 13F and the seventh recess 13G.
Two insertion portions 41 and 41 are formed in the bottom plate portion 15a of the deformed portion 15 forming the ninth recess 13I. The two insertion portions 41 and 41 are formed at intervals in the Y direction.
 第1凹部13Aおよび第9凹部13Iは、同一形状の凹部である。第1凹部13Aおよび第9凹部13Iは、後述する熱交換チューブ30をY方向に2つ並べた長さ(または、熱交換チューブ30をY方向に2つ並べた長さを超える長さ)の長円形状となっている。第2凹部13B、第3凹部13C、第4凹部13D、第5凹部13Eおよび第8凹部13Hは、同一形状の凹部である。第6凹部13Fおよび第7凹部13Gは、同一形状の凹部である。第6凹部13Fおよび第7凹部13Gは、他の凹部13A,13B,13C,13D,13E,13Hおよび13Iよりも小さく形成されている。 The first recess 13A and the ninth recess 13I are recesses having the same shape. The first recess 13A and the ninth recess 13I have a length of two heat exchange tubes 30 described later arranged in the Y direction (or a length exceeding the length of two heat exchange tubes 30 arranged in the Y direction). It has an oval shape. The second recess 13B, the third recess 13C, the fourth recess 13D, the fifth recess 13E, and the eighth recess 13H are recesses having the same shape. The sixth recess 13F and the seventh recess 13G are recesses having the same shape. The sixth recess 13F and the seventh recess 13G are formed smaller than the other recesses 13A, 13B, 13C, 13D, 13E, 13H and 13I.
 図5に示されるように、第1主面12aは、第1外板体12の主面であって、第1内板体11に対向する面である。第2主面12bは、第1主面12aとは反対の面である。 As shown in FIG. 5, the first main surface 12a is the main surface of the first outer plate body 12 and is a surface facing the first inner plate body 11. The second main surface 12b is a surface opposite to the first main surface 12a.
 第1外板体12の第1主面12aには、複数の凹部17が形成されている。凹部17は、第1内板体11の曲げ変形により形成された変形部19によって形成されている。凹部17は、変形部19の内面に形成された凹部である。例えば、凹部17の深さD2は、第1外板体12の厚さT2より大である。 A plurality of recesses 17 are formed on the first main surface 12a of the first outer plate body 12. The recess 17 is formed by a deformed portion 19 formed by bending deformation of the first inner plate body 11. The recess 17 is a recess formed on the inner surface of the deformed portion 19. For example, the depth D2 of the recess 17 is larger than the thickness T2 of the first outer plate body 12.
 変形部19は、底板部19aと、側板部19bとを備えるトレイ形状とされている。側板部19bは、底板部19aの周縁から-X方向に向かって拡径しつつ延出する。例えば、変形部19は、長円錐台形状、角錐台形状、円錐台形状などであってよい。例えば、変形部19は、平板状の板体を加工することによって形成することができる。加工方法としては、冷間鋳造(エンボス加工)、プレス成形などがある。 The deformed portion 19 has a tray shape including a bottom plate portion 19a and a side plate portion 19b. The side plate portion 19b extends from the peripheral edge of the bottom plate portion 19a while increasing its diameter in the −X direction. For example, the deformed portion 19 may have a truncated cone shape, a truncated cone shape, a truncated cone shape, or the like. For example, the deformed portion 19 can be formed by processing a flat plate. Processing methods include cold casting (embossing) and press molding.
 第2主面12bには、凹部17に即した形状の凸部18が形成されている。凸部18は、変形部19の外面に形成された凸部である。 A convex portion 18 having a shape corresponding to the concave portion 17 is formed on the second main surface 12b. The convex portion 18 is a convex portion formed on the outer surface of the deformed portion 19.
 図4に示されるように、複数の凹部17は、第1凹部17A~第9凹部17Iを含む。第1凹部17A~第9凹部17Iは、それぞれ、第1内板体11の第1凹部13A~第9凹部13Iと対応する形状とされる。詳しくは、第1凹部17Aは、X方向から見て長円形状とされている。第2凹部17B~第5凹部17Eおよび第8凹部17Hは、X方向から見て矩形状(例えば、丸みを帯びた角部を有する矩形状)とされている。第6凹部17Fおよび第7凹部17Gは、X方向から見て長円形状とされている。第9凹部17Iは、X方向から見て長円形状とされている。第1凹部17A~第9凹部17Iは、それぞれ、第1内板体11の第1凹部13A~第9凹部13Iと対面して位置する。 As shown in FIG. 4, the plurality of recesses 17 include the first recesses 17A to the ninth recesses 17I. The first recesses 17A to the ninth recesses 17I have shapes corresponding to the first recesses 13A to the ninth recesses 13I of the first inner plate body 11, respectively. Specifically, the first recess 17A has an oval shape when viewed from the X direction. The second recess 17B to the fifth recess 17E and the eighth recess 17H have a rectangular shape (for example, a rectangular shape having rounded corners) when viewed from the X direction. The sixth recess 17F and the seventh recess 17G have an oval shape when viewed from the X direction. The ninth recess 17I has an oval shape when viewed from the X direction. The first recesses 17A to the ninth recesses 17I are located so as to face the first recesses 13A to the ninth recesses 13I of the first inner plate body 11, respectively.
 第1凹部17Aおよび第9凹部17Iは、同一形状の凹部である。第1凹部17Aおよび第9凹部17Iは、後述する熱交換チューブ30をY方向に2つ並べた長さ以上の長さ(例えば、熱交換チューブ30をY方向に2つ並べた長さを超える長さ)の長円形状となっている。第2凹部17B、第3凹部17C、第4凹部17D、第5凹部17Eおよび第8凹部17Hは、同一形状の凹部である。第6凹部17Fおよび第7凹部17Gは、同一形状の凹部である。第6凹部17Fおよび第7凹部17Gは、他の凹部17A,17B,17C,17D,17E,17Hおよび17Iよりも小さく形成されている。 The first recess 17A and the ninth recess 17I are recesses having the same shape. The first recess 17A and the ninth recess 17I have a length equal to or longer than a length in which two heat exchange tubes 30 described later are arranged in the Y direction (for example, a length in which two heat exchange tubes 30 are arranged in the Y direction). It has an oval shape (length). The second recess 17B, the third recess 17C, the fourth recess 17D, the fifth recess 17E, and the eighth recess 17H are recesses having the same shape. The sixth recess 17F and the seventh recess 17G are recesses having the same shape. The sixth recess 17F and the seventh recess 17G are formed smaller than the other recesses 17A, 17B, 17C, 17D, 17E, 17H and 17I.
 図5に示されるように、第1内板体11の凹部13と、これに対向する第1外板体12の凹部17とは、ヘッド空間流路16(空間)を形成する。ヘッド空間流路16は、向かい合う凹部13と凹部17とによって区画される空間流路を形成する。ヘッド空間流路16は、YZ平面に沿う板状の空間流路を形成する。差込部41に挿入された熱交換チューブ30の端部は、ヘッド空間流路16に開口する。そのため、ヘッド空間流路16は、熱交換チューブ30の冷媒流路34と連通する。 As shown in FIG. 5, the recess 13 of the first inner plate 11 and the recess 17 of the first outer plate 12 facing the recess 13 form a head space flow path 16 (space). The head space flow path 16 forms a space flow path partitioned by the recess 13 and the recess 17 facing each other. The head space flow path 16 forms a plate-shaped space flow path along the YZ plane. The end of the heat exchange tube 30 inserted into the insertion portion 41 opens into the head space flow path 16. Therefore, the head space flow path 16 communicates with the refrigerant flow path 34 of the heat exchange tube 30.
 図2および図3に示されるように、第1凹部13Aと第1凹部17Aとが区画するヘッド空間流路16を第1ヘッド空間流路16Aという。第2凹部13Bと第2凹部17Bとが区画するヘッド空間流路16を第2ヘッド空間流路16Bという。第3凹部13Cと第3凹部17Cとが区画するヘッド空間流路16を第3ヘッド空間流路16Cという。第4凹部13Dと第4凹部17Dとが区画するヘッド空間流路16を第4ヘッド空間流路16Dという。第5凹部13Eと第5凹部17Eとが区画するヘッド空間流路16を第5ヘッド空間流路16Eという。第6凹部13Fと第6凹部17Fとが区画するヘッド空間流路16を第6ヘッド空間流路16Fという。第7凹部13Gと第7凹部17Gとが区画するヘッド空間流路16を第7ヘッド空間流路16Gという。第8凹部13Hと第8凹部17Hとが区画するヘッド空間流路16を第8ヘッド空間流路16Hという。第9凹部13Iと第9凹部17Iとが区画するヘッド空間流路16を第9ヘッド空間流路16Iという。 As shown in FIGS. 2 and 3, the head space flow path 16 in which the first recess 13A and the first recess 17A are partitioned is referred to as a first head space flow path 16A. The head space flow path 16 in which the second recess 13B and the second recess 17B are partitioned is referred to as a second head space flow path 16B. The head space flow path 16 in which the third recess 13C and the third recess 17C are partitioned is referred to as a third head space flow path 16C. The head space flow path 16 in which the fourth recess 13D and the fourth recess 17D are partitioned is referred to as a fourth head space flow path 16D. The head space flow path 16 in which the fifth recess 13E and the fifth recess 17E are partitioned is referred to as a fifth head space flow path 16E. The head space flow path 16 in which the sixth recess 13F and the sixth recess 17F are partitioned is referred to as a sixth head space flow path 16F. The head space flow path 16 in which the seventh recess 13G and the seventh recess 17G are partitioned is referred to as the seventh head space flow path 16G. The head space flow path 16 in which the eighth recess 13H and the eighth recess 17H are partitioned is referred to as an eighth head space flow path 16H. The head space flow path 16 in which the ninth recess 13I and the ninth recess 17I are partitioned is referred to as a ninth head space flow path 16I.
 第1ヘッド空間流路16Aおよび第9ヘッド空間流路16Iは、同一形状の空間流路部を形成している。第1ヘッド空間流路16Aおよび第9ヘッド空間流路16Iは、後述する熱交換チューブ30をY方向に2つ並べた長さ以上の長さ(例えば、熱交換チューブ30をY方向に2つ並べた長さを超える長さ)の長円形状となっている。第2ヘッド空間流路16B、第3ヘッド空間流路16Cおよび第4ヘッド空間流路16Dは、同一形状の空間流路部を形成している。また、第3ヘッド空間流路16C、第5ヘッド空間流路16Eおよび第8ヘッド空間流路16Hは、同一形状の空間流路部を形成している。第6ヘッド空間流路16Fおよび第7ヘッド空間流路16Gは、同一形状の空間流路部を形成している。第6ヘッド空間流路16Fおよび第7ヘッド空間流路16Gは、他のヘッド空間流路16A,16B,16C,16D,16E,16Hおよび16Iよりも小さく形成されている。 The first head space flow path 16A and the ninth head space flow path 16I form a space flow path portion having the same shape. The first head space flow path 16A and the ninth head space flow path 16I have a length equal to or longer than the length of two heat exchange tubes 30 described later arranged in the Y direction (for example, two heat exchange tubes 30 in the Y direction). It has an oval shape (length exceeding the arranged length). The second head space flow path 16B, the third head space flow path 16C, and the fourth head space flow path 16D form a space flow path portion having the same shape. Further, the third head space flow path 16C, the fifth head space flow path 16E, and the eighth head space flow path 16H form a space flow path portion having the same shape. The sixth head space flow path 16F and the seventh head space flow path 16G form a space flow path portion having the same shape. The sixth head space flow path 16F and the seventh head space flow path 16G are formed smaller than the other head space flow paths 16A, 16B, 16C, 16D, 16E, 16H and 16I.
 図3に示されるように、第6凹部17Fを形成する変形部19の底板部19aには、差込部42が形成されている。例えば、差込部42は、円形状である。差込部42には、管状の第1冷媒ポート51が挿入される(図2参照)。第1冷媒ポート51の端部は、第6ヘッド空間流路16Fの内部に開口する。この開口は、冷媒を熱交換器4に導入する導入口、または冷媒を熱交換器4から導出する導出口となる。 As shown in FIG. 3, an insertion portion 42 is formed in the bottom plate portion 19a of the deformed portion 19 forming the sixth recess 17F. For example, the insertion portion 42 has a circular shape. A tubular first refrigerant port 51 is inserted into the insertion portion 42 (see FIG. 2). The end of the first refrigerant port 51 opens inside the sixth head space flow path 16F. This opening serves as an introduction port for introducing the refrigerant into the heat exchanger 4 or an outlet for leading out the refrigerant from the heat exchanger 4.
 第7凹部17Gを形成する変形部19の底板部19aには、差込部43が形成されている。例えば、差込部43は、円形状であり、差込部42と同じ大きさ、形状で形成されている。差込部43には、管状の第2冷媒ポート52が挿入される(図2参照)。第2冷媒ポート52の端部は、第7ヘッド空間流路16Gの内部に開口する。この開口は、冷媒を熱交換器4に導入する導入口、または冷媒を熱交換器4から導出する導出口となる。 An insertion portion 43 is formed in the bottom plate portion 19a of the deformed portion 19 forming the seventh recess 17G. For example, the insertion portion 43 has a circular shape, and is formed to have the same size and shape as the insertion portion 42. A tubular second refrigerant port 52 is inserted into the insertion portion 43 (see FIG. 2). The end of the second refrigerant port 52 opens inside the seventh head space flow path 16G. This opening serves as an introduction port for introducing the refrigerant into the heat exchanger 4 or an outlet for leading out the refrigerant from the heat exchanger 4.
 第3凹部17Cを形成する変形部19の底板部19aには、差込部44が形成されている。例えば、差込部44は、円形状であり、差込部42、43よりも大きく形成されている。差込部44には、管状の第3冷媒ポート53が挿入される(図2参照)。第3冷媒ポート53の端部は、第3ヘッド空間流路16Cの内部に開口する。この開口は、冷媒を熱交換器4に導入する導入口、または冷媒を熱交換器4から導出する導出口となる。 An insertion portion 44 is formed in the bottom plate portion 19a of the deformed portion 19 forming the third recess 17C. For example, the insertion portion 44 has a circular shape and is formed larger than the insertion portions 42 and 43. A tubular third refrigerant port 53 is inserted into the insertion portion 44 (see FIG. 2). The end of the third refrigerant port 53 opens inside the third head space flow path 16C. This opening serves as an introduction port for introducing the refrigerant into the heat exchanger 4 or an outlet for leading out the refrigerant from the heat exchanger 4.
 図5に示されるように、ヘッド空間流路16の圧力を「P」とする。第1内板体11および第1外板体12の厚さを「T」とする。ヘッド空間流路16の厚さ寸法(X方向の寸法)を「L」とする。第1内板体11および第1外板体12の材料耐力σは、次の式(1)を満たすことが好ましい。 As shown in FIG. 5, the pressure of the head space flow path 16 is defined as "P". Let the thickness of the first inner plate body 11 and the first outer plate body 12 be "T". Let "L" be the thickness dimension (dimension in the X direction) of the head space flow path 16. The material proof stress σ of the first inner plate body 11 and the first outer plate body 12 preferably satisfies the following formula (1).
 σ>-10.1T+2.1L+8.1P+3.5 ・・・(1) Σ> -10.1T + 2.1L + 8.1P + 3.5 ... (1)
 式(1)を満たす場合、第1ヘッダ10の耐圧性を確保することができる。 When the formula (1) is satisfied, the pressure resistance of the first header 10 can be ensured.
 図6は、第2ヘッダ20の分解斜視図である。図7は、第2ヘッダ20のXZ平面に沿う断面図である。
 図6および図7に示されるように、第2ヘッダ20は、一対の板体21,22が積層されて構成されている。すなわち、第2ヘッダ20は、第2内板体21と第2外板体22とが積層されて構成されている。第2内板体21および第2外板体22は、アルミニウム、アルミニウム合金等の、熱伝導率が高く比重が小さい材料で形成される。第2内板体21および第2外板体22は、概略、YZ平面と平行とされる。第2外板体22は、第2内板体21の-X方向側の面(第1主面21a)に積層される。
 図7に示されるように、第1主面21aは、第2内板体21の主面であって、第2外板体22に対向する面である。第2主面21bは、第1主面21aとは反対の面である。
FIG. 6 is an exploded perspective view of the second header 20. FIG. 7 is a cross-sectional view of the second header 20 along the XZ plane.
As shown in FIGS. 6 and 7, the second header 20 is configured by laminating a pair of plates 21 and 22. That is, the second header 20 is configured by laminating the second inner plate body 21 and the second outer plate body 22. The second inner plate body 21 and the second outer plate body 22 are formed of a material having a high thermal conductivity and a low specific density, such as aluminum and an aluminum alloy. The second inner plate body 21 and the second outer plate body 22 are substantially parallel to the YZ plane. The second outer plate body 22 is laminated on the surface (first main surface 21a) on the −X direction side of the second inner plate body 21.
As shown in FIG. 7, the first main surface 21a is the main surface of the second inner plate body 21 and is a surface facing the second outer plate body 22. The second main surface 21b is a surface opposite to the first main surface 21a.
 第2内板体21の第1主面21aには、複数の凹部23が形成されている。凹部23は、第2内板体21の曲げ変形により形成された変形部25によって形成されている。凹部23は、変形部25の内面に形成された凹部である。例えば、凹部23の深さD3は、第2内板体21の厚さT3より大である。 A plurality of recesses 23 are formed on the first main surface 21a of the second inner plate body 21. The recess 23 is formed by a deformed portion 25 formed by bending deformation of the second inner plate body 21. The recess 23 is a recess formed on the inner surface of the deformed portion 25. For example, the depth D3 of the recess 23 is larger than the thickness T3 of the second inner plate body 21.
 変形部25は、底板部25aと、側板部25bとを備えるトレイ形状とされている。側板部25bは、底板部25aの周縁から-X方向に向かって拡径しつつ延出する。例えば、変形部25は、長円錐台形状、角錐台形状、円錐台形状などであってよい。例えば、変形部25は、平板状の板体を加工することによって形成することができる。加工方法としては、冷間鋳造(エンボス加工)、プレス成形などがある。 The deformed portion 25 has a tray shape including a bottom plate portion 25a and a side plate portion 25b. The side plate portion 25b extends from the peripheral edge of the bottom plate portion 25a while increasing its diameter in the −X direction. For example, the deformed portion 25 may have a truncated cone shape, a truncated cone shape, a truncated cone shape, or the like. For example, the deformed portion 25 can be formed by processing a flat plate body. Processing methods include cold casting (embossing) and press molding.
 第2主面21bには、凹部23に即した形状の凸部24が形成されている。凸部24は、変形部25の外面に形成された凸部である。 A convex portion 24 having a shape corresponding to the concave portion 23 is formed on the second main surface 21b. The convex portion 24 is a convex portion formed on the outer surface of the deformed portion 25.
 図6に示されるように、複数の凹部23は、第1凹部23A~第8凹部23Hを含む。第1凹部23A~第8凹部23Hは、X方向から見て矩形状とされている。第1凹部23Aと第2凹部23Bとは、Y方向に並んで形成されている。第3凹部23Cは、第1凹部23Aの-Z方向側に位置する。第4凹部23Dは、第2凹部23Bの-Z方向側に位置する。第3凹部23Cと第4凹部23Dとは、Y方向に並んで形成されている。第5凹部23Eは、第3凹部23Cの-Z方向側に位置する。第6凹部23Fは、第4凹部23Dの-Z方向側に位置する。第5凹部23Eと第6凹部23Fとは、Y方向に並んで形成されている。第7凹部23Gは、第5凹部23Eの-Z方向側に位置する。第8凹部23Hは、第6凹部23Fの-Z方向側に位置する。第7凹部23Gと第8凹部23Hとは、Y方向に並んで形成されている。 As shown in FIG. 6, the plurality of recesses 23 include the first recess 23A to the eighth recess 23H. The first recess 23A to the eighth recess 23H have a rectangular shape when viewed from the X direction. The first recess 23A and the second recess 23B are formed side by side in the Y direction. The third recess 23C is located on the −Z direction side of the first recess 23A. The fourth recess 23D is located on the −Z direction side of the second recess 23B. The third recess 23C and the fourth recess 23D are formed side by side in the Y direction. The fifth recess 23E is located on the −Z direction side of the third recess 23C. The sixth recess 23F is located on the −Z direction side of the fourth recess 23D. The fifth recess 23E and the sixth recess 23F are formed side by side in the Y direction. The seventh recess 23G is located on the −Z direction side of the fifth recess 23E. The eighth recess 23H is located on the −Z direction side of the sixth recess 23F. The seventh recess 23G and the eighth recess 23H are formed side by side in the Y direction.
 第1凹部23A~第8凹部23Hを形成する変形部25の底板部25aには、それぞれ2つの差込部45,45が形成されている。差込部45は、Y方向に平行なスリット状に形成されている。差込部45には、熱交換チューブ30の端部が挿入される(図7参照)。2つの差込部45,45は、Z方向に間隔をおいて形成されている。 Two insertion portions 45 and 45 are formed in the bottom plate portion 25a of the deformed portion 25 forming the first recess 23A to the eighth recess 23H, respectively. The insertion portion 45 is formed in a slit shape parallel to the Y direction. The end of the heat exchange tube 30 is inserted into the insertion portion 45 (see FIG. 7). The two insertion portions 45, 45 are formed at intervals in the Z direction.
 図7に示されるように、第1主面22aは、第2外板体22の主面であって、第2内板体21に対向する面である。第2主面22bは、第1主面22aとは反対の面である。 As shown in FIG. 7, the first main surface 22a is the main surface of the second outer plate body 22 and is a surface facing the second inner plate body 21. The second main surface 22b is a surface opposite to the first main surface 22a.
 第2外板体22の第1主面22aには、複数の凹部27が形成されている。凹部27は、第2内板体21の曲げ変形により形成された変形部29によって形成されている。凹部27は、変形部29の内面に形成された凹部である。例えば、凹部27の深さD4は、第2外板体22の厚さT4より大である。 A plurality of recesses 27 are formed on the first main surface 22a of the second outer plate body 22. The recess 27 is formed by a deformed portion 29 formed by bending deformation of the second inner plate body 21. The recess 27 is a recess formed on the inner surface of the deformed portion 29. For example, the depth D4 of the recess 27 is larger than the thickness T4 of the second outer plate body 22.
 変形部29は、底板部29aと、側板部29bとを備えるトレイ形状とされている。側板部29bは、底板部29aの周縁から+X方向に向かって拡径しつつ延出する。例えば、変形部29は、長円錐台形状、角錐台形状、円錐台形状などであってよい。例えば、変形部29は、平板状の板体を加工することによって形成することができる。加工方法としては、冷間鋳造(エンボス加工)、プレス成形などがある。 The deformed portion 29 has a tray shape including a bottom plate portion 29a and a side plate portion 29b. The side plate portion 29b extends from the peripheral edge of the bottom plate portion 29a while increasing its diameter in the + X direction. For example, the deformed portion 29 may have a truncated cone shape, a truncated cone shape, a truncated cone shape, or the like. For example, the deformed portion 29 can be formed by processing a flat plate. Processing methods include cold casting (embossing) and press molding.
 第2主面21bには、凹部27に即した形状の凸部28が形成されている。凸部28は、変形部29の外面に形成された凸部である。 A convex portion 28 having a shape corresponding to the concave portion 27 is formed on the second main surface 21b. The convex portion 28 is a convex portion formed on the outer surface of the deformed portion 29.
 図6に示されるように、複数の凹部27は、第1凹部27A~第8凹部27Hを含む。第1凹部27A~第9凹部27Iは、それぞれ、第2内板体21の第1凹部23A~第8凹部27Hと対応する形状とされる。第1凹部27A~第8凹部27Hは、X方向から見て矩形状とされている。第1凹部27A~第8凹部27Hは、それぞれ、第2内板体21の第1凹部23A~第8凹部23Hと対面して位置する。 As shown in FIG. 6, the plurality of recesses 27 include the first recess 27A to the eighth recess 27H. The first recess 27A to the ninth recess 27I have shapes corresponding to the first recess 23A to the eighth recess 27H of the second inner plate body 21, respectively. The first recess 27A to the eighth recess 27H have a rectangular shape when viewed from the X direction. The first recess 27A to the eighth recess 27H are located so as to face the first recess 23A to the eighth recess 23H of the second inner plate body 21, respectively.
 図7に示されるように、第2内板体21の凹部23と、これに対応する第2外板体22の凹部27とは、ヘッド空間流路26(空間)を形成する。ヘッド空間流路26は、凹部23と凹部27とによって区画される空間で空間流路を形成する。ヘッド空間流路26は、YZ平面に沿う板状の空間で空間流路を形成する。 As shown in FIG. 7, the recess 23 of the second inner plate 21 and the corresponding recess 27 of the second outer plate 22 form a head space flow path 26 (space). The head space flow path 26 forms a space flow path in a space partitioned by the recess 23 and the recess 27. The head space flow path 26 forms a space flow path in a plate-like space along the YZ plane.
 図2に示されるように、第1凹部23Aと第1凹部27Aとが区画するヘッド空間流路26を第1ヘッド空間流路26Aという。第2凹部23Bと第2凹部27Bとが区画するヘッド空間流路26を第2ヘッド空間流路26Bという。第3凹部23Cと第3凹部27Cとが区画するヘッド空間流路26を第3ヘッド空間流路26Cという。第4凹部23Dと第4凹部27Dとが区画するヘッド空間流路26を第4ヘッド空間流路26Dという。第5凹部23Eと第5凹部27Eとが区画するヘッド空間流路26を第5ヘッド空間流路26Eという。第6凹部23Fと第6凹部27Fとが区画するヘッド空間流路26を第6ヘッド空間流路26Fという。第7凹部23Gと第7凹部27Gとが区画するヘッド空間流路26を第7ヘッド空間流路26Gという。第8凹部23Hと第8凹部27Hとが区画するヘッド空間流路26を第8ヘッド空間流路26Hという。 As shown in FIG. 2, the head space flow path 26 in which the first recess 23A and the first recess 27A are partitioned is referred to as a first head space flow path 26A. The head space flow path 26 in which the second recess 23B and the second recess 27B are partitioned is referred to as a second head space flow path 26B. The head space flow path 26 in which the third recess 23C and the third recess 27C are partitioned is referred to as a third head space flow path 26C. The head space flow path 26 that divides the fourth recess 23D and the fourth recess 27D is referred to as a fourth head space flow path 26D. The head space flow path 26 in which the fifth recess 23E and the fifth recess 27E are partitioned is referred to as a fifth head space flow path 26E. The head space flow path 26 in which the sixth recess 23F and the sixth recess 27F are partitioned is referred to as a sixth head space flow path 26F. The head space flow path 26 in which the seventh recess 23G and the seventh recess 27G are partitioned is referred to as the seventh head space flow path 26G. The head space flow path 26 in which the eighth recess 23H and the eighth recess 27H are partitioned is referred to as an eighth head space flow path 26H.
 第1ヘッダ10および第2ヘッダ20は、X方向に相互に離間して並んで配置される。 The first header 10 and the second header 20 are arranged side by side so as to be separated from each other in the X direction.
 熱交換チューブ30は、アルミニウム、アルミニウム合金等の、熱伝導率が高く比重が小さい材料で形成される。熱交換チューブ30は、偏平管状に形成される。すなわち、熱交換チューブ30は、Z方向の寸法に比べてY方向の寸法が大きい。熱交換チューブ30の、長さ方向に直交する断面(YZ断面)の形状は、長円形状である。熱交換チューブ30は、X方向に延在する。熱交換チューブ30の内部には、冷媒流路34が形成される(図5参照)。冷媒流路34は、熱交換チューブ30の全長にわたって形成されている。 The heat exchange tube 30 is made of a material having a high thermal conductivity and a low specific density, such as aluminum and an aluminum alloy. The heat exchange tube 30 is formed in a flat tubular shape. That is, the heat exchange tube 30 has a larger dimension in the Y direction than the dimension in the Z direction. The shape of the cross section (YZ cross section) of the heat exchange tube 30 orthogonal to the length direction is an oval shape. The heat exchange tube 30 extends in the X direction. A refrigerant flow path 34 is formed inside the heat exchange tube 30 (see FIG. 5). The refrigerant flow path 34 is formed over the entire length of the heat exchange tube 30.
 複数の熱交換チューブ30の少なくとも一部は、Z方向に間隔をおいて並列配置される。熱交換チューブ30の+X方向の端部は、第1ヘッダ10に形成された差込部41に挿入される(図5参照)。これにより、熱交換チューブ30の冷媒流路34の+X方向の端部は、第1ヘッダ10のヘッド空間流路16の内部に開口する。そのため、ヘッド空間流路16は、熱交換チューブ30の冷媒流路34と連通する。 At least a part of the plurality of heat exchange tubes 30 is arranged in parallel at intervals in the Z direction. The end of the heat exchange tube 30 in the + X direction is inserted into the insertion portion 41 formed in the first header 10 (see FIG. 5). As a result, the end of the refrigerant flow path 34 of the heat exchange tube 30 in the + X direction opens inside the head space flow path 16 of the first header 10. Therefore, the head space flow path 16 communicates with the refrigerant flow path 34 of the heat exchange tube 30.
 熱交換チューブ30の-X方向の端部は、第2ヘッダ20に形成された差込部45に挿入される(図7参照)。これにより、熱交換チューブ30の冷媒流路34の-X方向の端部は、第2ヘッダ20のヘッド空間流路26の内部に開口する。そのため、ヘッド空間流路26は、熱交換チューブ30の冷媒流路34と連通する。 The end of the heat exchange tube 30 in the −X direction is inserted into the insertion portion 45 formed in the second header 20 (see FIG. 7). As a result, the end portion of the refrigerant flow path 34 of the heat exchange tube 30 in the −X direction opens inside the head space flow path 26 of the second header 20. Therefore, the head space flow path 26 communicates with the refrigerant flow path 34 of the heat exchange tube 30.
 第1ヘッダ10および第2ヘッダ20と、熱交換チューブ30との隙間は、ロウ付け等により封止される。ロウ付けの具体的な手順は以下の通りである。第1ヘッダ10および第2ヘッダ20の内面にロウが塗布される。第1ヘッダ10および第2ヘッダ20に熱交換チューブ30が挿入されて、熱交換器4が組み立てられる。組み立てられた熱交換器4が、炉内で加熱される。加熱により、第1ヘッダ10および第2ヘッダ20の内面のロウが溶融する。溶融したロウは、第1ヘッダ10および第2ヘッダ20と熱交換チューブ30との隙間を塞ぐ。熱交換器4が冷却されて、ロウは固化する。これにより、第1ヘッダ10および第2ヘッダ20と、熱交換チューブ30とが固定される。 The gap between the first header 10 and the second header 20 and the heat exchange tube 30 is sealed by brazing or the like. The specific procedure for brazing is as follows. Row is applied to the inner surfaces of the first header 10 and the second header 20. The heat exchange tube 30 is inserted into the first header 10 and the second header 20, and the heat exchanger 4 is assembled. The assembled heat exchanger 4 is heated in the furnace. The heating melts the wax on the inner surfaces of the first header 10 and the second header 20. The molten wax closes the gap between the first header 10 and the second header 20 and the heat exchange tube 30. The heat exchanger 4 is cooled and the wax solidifies. As a result, the first header 10 and the second header 20 and the heat exchange tube 30 are fixed.
 上下に隣り合う熱交換チューブ30の間には、Y方向に沿う外気流路が形成される。熱交換器4は、送風ファン(不図示)等により外気流路に外気を流通させる。熱交換器4は、外気流路を流通する外気と、冷媒流路34を流通する冷媒との間で熱交換させる。熱交換は、熱交換チューブ30を介して、間接的に行われる。 An outside air flow path along the Y direction is formed between the heat exchange tubes 30 adjacent to each other on the top and bottom. The heat exchanger 4 circulates the outside air through the outside air flow path by a blower fan (not shown) or the like. The heat exchanger 4 exchanges heat between the outside air flowing through the outside air flow path and the refrigerant flowing through the refrigerant flow path 34. The heat exchange is indirectly performed via the heat exchange tube 30.
 図1に示される冷凍サイクル装置1が冷房運転を行うとき、室外熱交換器4は凝縮器として機能する。この場合には、圧縮機2から流出した気体冷媒が、室外熱交換器4に流入する。
 図2に示されるように、冷媒は、第1冷媒ポート51および第2冷媒ポート52から、第1ヘッダ10の内部に流入する。第1冷媒ポート51から第6ヘッド空間流路16Fに流入した冷媒は、熱交換チューブ30(30F)を-X方向に流れ、第2ヘッダ20の第5ヘッド空間流路26Eの下部に流入する。冷媒は、第5ヘッド空間流路26Eの上部から、熱交換チューブ30(30D2)を+X方向に流れ、第1ヘッダ10の第4ヘッド空間流路16Dの下部に流入する。冷媒は、第4ヘッド空間流路16Dの上部から、熱交換チューブ30(30D1)を-X方向に流れ、第2ヘッダ20の第3ヘッド空間流路26Cの下部に流入する。
When the refrigeration cycle device 1 shown in FIG. 1 performs a cooling operation, the outdoor heat exchanger 4 functions as a condenser. In this case, the gaseous refrigerant flowing out of the compressor 2 flows into the outdoor heat exchanger 4.
As shown in FIG. 2, the refrigerant flows into the inside of the first header 10 from the first refrigerant port 51 and the second refrigerant port 52. The refrigerant that has flowed from the first refrigerant port 51 into the sixth head space flow path 16F flows through the heat exchange tube 30 (30F) in the −X direction and flows into the lower part of the fifth head space flow path 26E of the second header 20. .. The refrigerant flows from the upper part of the fifth head space flow path 26E through the heat exchange tube 30 (30D2) in the + X direction, and flows into the lower part of the fourth head space flow path 16D of the first header 10. The refrigerant flows from the upper part of the fourth head space flow path 16D through the heat exchange tube 30 (30D1) in the −X direction, and flows into the lower part of the third head space flow path 26C of the second header 20.
 冷媒は、第3ヘッド空間流路26Cの上部から、熱交換チューブ30(30B2)を+X方向に流れ、第1ヘッダ10の第2ヘッド空間流路16Bの下部に流入する。冷媒は、第2ヘッド空間流路16Bの上部から、熱交換チューブ30(30B1)を-X方向に流れ、第2ヘッダ20の第1ヘッド空間流路26Aの下部に流入する。冷媒は、第1ヘッド空間流路26Aの上部から、熱交換チューブ30(30A1)を+X方向に流れ、第1ヘッダ10の第1ヘッド空間流路16Aに流入する。冷媒は、第1ヘッド空間流路16Aから、熱交換チューブ30(30A2)を-X方向に流れ、第2ヘッダ20の第2ヘッド空間流路26Bの上部に流入する。冷媒は、第2ヘッド空間流路26Bの下部から、熱交換チューブ30(30C1)を+X方向に流れ、第1ヘッダ10の第3ヘッド空間流路16Cに流入する。冷媒は、第3ヘッド空間流路16Cから、第3冷媒ポート53を通して流出する。 The refrigerant flows from the upper part of the third head space flow path 26C through the heat exchange tube 30 (30B2) in the + X direction, and flows into the lower part of the second head space flow path 16B of the first header 10. The refrigerant flows from the upper part of the second head space flow path 16B through the heat exchange tube 30 (30B1) in the −X direction, and flows into the lower part of the first head space flow path 26A of the second header 20. The refrigerant flows from the upper part of the first head space flow path 26A through the heat exchange tube 30 (30A1) in the + X direction and flows into the first head space flow path 16A of the first header 10. The refrigerant flows from the first head space flow path 16A through the heat exchange tube 30 (30A2) in the −X direction and flows into the upper part of the second head space flow path 26B of the second header 20. The refrigerant flows from the lower part of the second head space flow path 26B through the heat exchange tube 30 (30C1) in the + X direction and flows into the third head space flow path 16C of the first header 10. The refrigerant flows out from the third head space flow path 16C through the third refrigerant port 53.
 第2冷媒ポート52から第7ヘッド空間流路16Gに流入した冷媒は、熱交換チューブ30(30G)を-X方向に流れ、第2ヘッダ20の第7ヘッド空間流路26Gの上部に流入する。冷媒は、第7ヘッド空間流路26Gの下部から、熱交換チューブ30(30I1)を+X方向に流れ、第1ヘッダ10の第9ヘッド空間流路16Iに流入する。冷媒は、第9ヘッド空間流路16Iから、熱交換チューブ30(30I2)を-X方向に流れ、第2ヘッダ20の第8ヘッド空間流路26Hの下部に流入する。冷媒は、第8ヘッド空間流路26Hの上部から、熱交換チューブ30(30H2)を+X方向に流れ、第1ヘッダ10の第8ヘッド空間流路16Hの下部に流入する。 The refrigerant that has flowed from the second refrigerant port 52 into the seventh head space flow path 16G flows through the heat exchange tube 30 (30G) in the −X direction and flows into the upper part of the seventh head space flow path 26G of the second header 20. .. The refrigerant flows from the lower part of the 7th head space flow path 26G through the heat exchange tube 30 (30I1) in the + X direction and flows into the 9th head space flow path 16I of the first header 10. The refrigerant flows from the 9th head space flow path 16I through the heat exchange tube 30 (30I2) in the −X direction and flows into the lower part of the 8th head space flow path 26H of the second header 20. The refrigerant flows from the upper part of the eighth head space flow path 26H through the heat exchange tube 30 (30H2) in the + X direction, and flows into the lower part of the eighth head space flow path 16H of the first header 10.
 冷媒は、第8ヘッド空間流路16Hの上部から、熱交換チューブ30(30H1)を-X方向に流れ、第2ヘッダ20の第6ヘッド空間流路26Fの下部に流入する。冷媒は、第6ヘッド空間流路26Fの上部から、熱交換チューブ30(30E2)を+X方向に流れ、第1ヘッダ10の第5ヘッド空間流路16Eの下部に流入する。冷媒は、第5ヘッド空間流路16Eの上部から、熱交換チューブ30(30E1)を-X方向に流れ、第2ヘッダ20の第4ヘッド空間流路26Dの下部に流入する。冷媒は、第4ヘッド空間流路26Dの上部から、熱交換チューブ30(30C2)を+X方向に流れ、第1ヘッダ10の第3ヘッド空間流路16Cに流入する。冷媒は、第3ヘッド空間流路16Cから、第3冷媒ポート53を通して流出する。 The refrigerant flows from the upper part of the eighth head space flow path 16H through the heat exchange tube 30 (30H1) in the −X direction, and flows into the lower part of the sixth head space flow path 26F of the second header 20. The refrigerant flows from the upper part of the sixth head space flow path 26F through the heat exchange tube 30 (30E2) in the + X direction, and flows into the lower part of the fifth head space flow path 16E of the first header 10. The refrigerant flows from the upper part of the fifth head space flow path 16E through the heat exchange tube 30 (30E1) in the −X direction, and flows into the lower part of the fourth head space flow path 26D of the second header 20. The refrigerant flows from the upper part of the fourth head space flow path 26D through the heat exchange tube 30 (30C2) in the + X direction, and flows into the third head space flow path 16C of the first header 10. The refrigerant flows out from the third head space flow path 16C through the third refrigerant port 53.
 気体冷媒は、熱交換チューブ30を流通する過程で外気に放熱して凝縮する。凝縮した冷媒は液体冷媒となって、第3冷媒ポート53から熱交換器4の外部に流出する。
 図1に示される冷凍サイクル装置1が暖房運転を行うとき、冷媒は上記と逆方向に流通する。つまり、液体冷媒は、第3冷媒ポート53から第3ヘッド空間流路16Cに流入し、気液二相冷媒が第1冷媒ポート51および第2冷媒ポート52から流出する。
The gaseous refrigerant dissipates heat to the outside air and condenses in the process of flowing through the heat exchange tube 30. The condensed refrigerant becomes a liquid refrigerant and flows out from the third refrigerant port 53 to the outside of the heat exchanger 4.
When the refrigeration cycle device 1 shown in FIG. 1 performs a heating operation, the refrigerant flows in the opposite direction to the above. That is, the liquid refrigerant flows into the third head space flow path 16C from the third refrigerant port 53, and the gas-liquid two-phase refrigerant flows out from the first refrigerant port 51 and the second refrigerant port 52.
 実施形態の熱交換器4では、第1ヘッダ10および第2ヘッダ20に、凹部13,17,23,27によって、冷媒が流通するヘッド空間流路16,26が形成されている(図5および図7参照)。そのため、第1ヘッダ10および第2ヘッダ20の構造を簡略にすることができる。よって、小型かつ軽量の熱交換器4が得られる。
 第1ヘッダ10および第2ヘッダ20は、板材11~14で構成されているため、円筒形状のヘッダに比べ、小型化および軽量化が可能である。よって、熱交換器4は、小型化および軽量化を図ることができる。熱交換器4は、小型かつ軽量であるため、室外機等の筐体への収納性の点でも優れている。第1ヘッダ10および第2ヘッダ20は、過不足のない冷媒の流通が可能なヘッド空間流路16,26を設計できるため、冷媒使用量を抑制できる。
In the heat exchanger 4 of the embodiment, the head space flow paths 16 and 26 through which the refrigerant flows are formed in the first header 10 and the second header 20 by the recesses 13, 17, 23 and 27 (FIGS. 5 and 5 and). (See FIG. 7). Therefore, the structures of the first header 10 and the second header 20 can be simplified. Therefore, a small and lightweight heat exchanger 4 can be obtained.
Since the first header 10 and the second header 20 are made of plate members 11 to 14, they can be made smaller and lighter than the cylindrical header. Therefore, the heat exchanger 4 can be made smaller and lighter. Since the heat exchanger 4 is small and lightweight, it is also excellent in terms of storability in a housing such as an outdoor unit. Since the head space flow paths 16 and 26 capable of flowing the refrigerant in just proportion can be designed for the first header 10 and the second header 20, the amount of refrigerant used can be suppressed.
 第1比較形態として、円筒形状のヘッダを用いた熱交換器を想定する。この熱交換器は、外径が大きいヘッダが用いられるため、小型化および軽量化は難しい。特に、熱交換効率を高めるために扁平形状の熱交換チューブを用いる場合、外径が大きいヘッドが必要となり、小型化および軽量化は難しくなる。円筒形状のヘッダでは、内部空間が大きくなり、冷媒使用量が多くなる可能性がある。 As the first comparative form, a heat exchanger using a cylindrical header is assumed. Since this heat exchanger uses a header having a large outer diameter, it is difficult to reduce the size and weight. In particular, when a flat heat exchange tube is used to improve heat exchange efficiency, a head having a large outer diameter is required, which makes it difficult to reduce the size and weight. With a cylindrical header, the internal space becomes large and the amount of refrigerant used may increase.
 第2比較形態として、ヘッダを備えていない熱交換器を想定する。この熱交換器は、ストレート部分と湾曲部分とが交互に形成された、蛇行形態の熱交換チューブが用いられる。扁平形状の熱交換チューブを用いる場合、湾曲部分では、座屈防止のため曲率半径を大きくする必要があり、熱交換器の小型化は難しい。湾曲部分にのみ円管状の熱交換チューブを用いれば曲率半径を小さくできる。しかし、その場合には、扁平形状の熱交換チューブと円管状の熱交換チューブとを接続する機構が必要となるため、小型化は容易でない。 As the second comparison form, a heat exchanger without a header is assumed. As this heat exchanger, a meandering heat exchange tube in which straight portions and curved portions are alternately formed is used. When a flat heat exchange tube is used, it is necessary to increase the radius of curvature in the curved portion in order to prevent buckling, and it is difficult to miniaturize the heat exchanger. The radius of curvature can be reduced by using a circular tubular heat exchange tube only in the curved portion. However, in that case, since a mechanism for connecting the flat heat exchange tube and the circular tubular heat exchange tube is required, miniaturization is not easy.
 実施形態の熱交換器4では、第1ヘッダ10に、冷媒の導入口を有する冷媒ポート51,52と、冷媒の導出口を有する冷媒ポート53とが設けられる(図2参照)。熱交換器4は、冷媒ポート51~53がいずれも第1ヘッダ10に設けられるため、冷媒ポートが2つのヘッダに分散して設けられる場合に比べて、小型化が可能である。よって、熱交換器4は、筐体への収納性の点で優れている。 In the heat exchanger 4 of the embodiment, the first header 10 is provided with refrigerant ports 51 and 52 having a refrigerant inlet and a refrigerant port 53 having a refrigerant outlet (see FIG. 2). Since the refrigerant ports 51 to 53 are all provided in the first header 10, the heat exchanger 4 can be miniaturized as compared with the case where the refrigerant ports are distributed in the two headers. Therefore, the heat exchanger 4 is excellent in terms of storability in the housing.
 図8は、第1変形例の第1ヘッダ10AのXZ平面に沿う断面図である。既出の構成については、同じ符号を付して説明を省略する。
 第1ヘッダ10Aは、第1内板体11(図5参照)に代えて第1内板体111が用いられる。第1ヘッダ10Aでは、第1外板体12(図5参照)に代えて第1外板体112が用いられる。
FIG. 8 is a cross-sectional view taken along the XZ plane of the first header 10A of the first modification. The above-mentioned configurations are designated by the same reference numerals and the description thereof will be omitted.
As the first header 10A, the first inner plate body 111 is used instead of the first inner plate body 11 (see FIG. 5). In the first header 10A, the first outer plate body 112 is used instead of the first outer plate body 12 (see FIG. 5).
 第1内板体111は、板体主部113と、被覆層114とを備える。例えば、板体主部113は、アルミニウムを含む材料(アルミニウム、アルミニウム合金等)で構成される。被覆層114は、板体主部113の外面113b(第2主面)に設けられている。外面113bは、第1外板体112に対向する第1主面111aとは反対の面である。被覆層114は、Znを含む金属材料で構成される。例えば、被覆層114は、7000系のアルミニウム合金で構成される。被覆層114のZn含有量(含有率)は、板体主部113のZn含有量(含有率)より高い。 The first inner plate body 111 includes a plate body main portion 113 and a coating layer 114. For example, the plate body main portion 113 is made of a material containing aluminum (aluminum, aluminum alloy, etc.). The coating layer 114 is provided on the outer surface 113b (second main surface) of the plate body main portion 113. The outer surface 113b is a surface opposite to the first main surface 111a facing the first outer plate body 112. The coating layer 114 is made of a metal material containing Zn. For example, the coating layer 114 is made of a 7000 series aluminum alloy. The Zn content (content rate) of the coating layer 114 is higher than the Zn content (content rate) of the plate body main portion 113.
 第1外板体112は、板体主部115と、被覆層116とを備える。例えば、板体主部115は、アルミニウムを含む材料(アルミニウム、アルミニウム合金等)で構成される。被覆層116は、板体主部115の外面115b(第2主面)に設けられている。外面115bは、第1内板体111に対向する第1主面112aとは反対の面である。被覆層116は、Znを含む金属材料で構成される。例えば、被覆層116は、7000系のアルミニウム合金で構成される。被覆層116のZn含有量(含有率)は、板体主部115のZn含有量(含有率)より高い。 The first outer plate body 112 includes a plate body main portion 115 and a coating layer 116. For example, the plate body main portion 115 is made of a material containing aluminum (aluminum, aluminum alloy, etc.). The coating layer 116 is provided on the outer surface 115b (second main surface) of the plate body main portion 115. The outer surface 115b is a surface opposite to the first main surface 112a facing the first inner plate body 111. The coating layer 116 is made of a metal material containing Zn. For example, the coating layer 116 is made of a 7000 series aluminum alloy. The Zn content (content rate) of the coating layer 116 is higher than the Zn content (content rate) of the plate body main portion 115.
 第1内板体111および第1外板体112は、予めZnを含む被覆層を形成したクラッド材(積層板材)を用いて作製することができる。被覆層は、溶射により形成することもできる。
 第2ヘッダについても、第1ヘッダ10Aと同様に、被覆層を有する板体を用いることができる。
The first inner plate body 111 and the first outer plate body 112 can be manufactured by using a clad material (laminated plate material) on which a coating layer containing Zn is previously formed. The coating layer can also be formed by thermal spraying.
As for the second header, a plate having a coating layer can be used as in the case of the first header 10A.
 この熱交換器では、板体111,112が被覆層114,116を有するため、第1ヘッダ10Aの耐食性を高めることができる。 In this heat exchanger, since the plate bodies 111 and 112 have the coating layers 114 and 116, the corrosion resistance of the first header 10A can be improved.
 図9は、第2変形例の第1ヘッダ10BのXZ平面に沿う断面図である。既出の構成については、同じ符号を付して説明を省略する。
 図9に示されるように、第1ヘッダ10Bは、第1内板体11(図5参照)に代えて第1内板体211が用いられる。第1ヘッダ10Bでは、第1外板体12(図5参照)に代えて第1外板体212が用いられる。
FIG. 9 is a cross-sectional view of the first header 10B of the second modification along the XZ plane. The above-mentioned configurations are designated by the same reference numerals and the description thereof will be omitted.
As shown in FIG. 9, as the first header 10B, the first inner plate body 211 is used instead of the first inner plate body 11 (see FIG. 5). In the first header 10B, the first outer plate body 212 is used instead of the first outer plate body 12 (see FIG. 5).
 第1内板体211は、板体主部213と、低融点層214とを備える。例えば、板体主部213は、アルミニウムを含む材料(アルミニウム、アルミニウム合金等)で構成される。低融点層214は、板体主部213の内面213a(第1主面)に設けられている。低融点層214は、Siを含む金属材料で構成される。例えば、低融点層214は、4000系のアルミニウム合金で構成される。低融点層214のSi含有量(含有率)は、板体主部213のSi含有量(含有率)より高い。低融点層214の構成材料の融点は、板体主部213の構成材料の融点より低い。 The first inner plate body 211 includes a plate body main portion 213 and a low melting point layer 214. For example, the plate body main portion 213 is made of a material containing aluminum (aluminum, aluminum alloy, etc.). The low melting point layer 214 is provided on the inner surface 213a (first main surface) of the plate body main portion 213. The low melting point layer 214 is made of a metal material containing Si. For example, the low melting point layer 214 is made of a 4000 series aluminum alloy. The Si content (content rate) of the low melting point layer 214 is higher than the Si content (content rate) of the plate body main portion 213. The melting point of the constituent material of the low melting point layer 214 is lower than the melting point of the constituent material of the plate body main portion 213.
 第1外板体212は、板体主部215と、低融点層216とを備える。例えば、板体主部215は、アルミニウムを含む材料(アルミニウム、アルミニウム合金等)で構成される。低融点層216は、板体主部215の内面215a(第1主面)に設けられている。低融点層216は、Siを含む金属材料で構成される。例えば、低融点層216は、4000系のアルミニウム合金で構成される。低融点層216のSi含有量(含有率)は、板体主部215のSi含有量(含有率)より高い。低融点層216の構成材料の融点は、板体主部215の構成材料の融点より低い。 The first outer plate body 212 includes a plate body main portion 215 and a low melting point layer 216. For example, the plate body main portion 215 is made of a material containing aluminum (aluminum, aluminum alloy, etc.). The low melting point layer 216 is provided on the inner surface 215a (first main surface) of the plate body main portion 215. The low melting point layer 216 is made of a metal material containing Si. For example, the low melting point layer 216 is composed of a 4000 series aluminum alloy. The Si content (content rate) of the low melting point layer 216 is higher than the Si content (content rate) of the plate body main portion 215. The melting point of the constituent material of the low melting point layer 216 is lower than the melting point of the constituent material of the plate body main portion 215.
 第1内板体212および第1外板体212は、予めSiを含む低融点層を形成したクラッド材(積層板材)を用いて作製することができる。低融点層は、板体主部に、低融点材料で構成されるクラッドシートを積層することにより形成してもよい。
 第2ヘッダについても、第1ヘッダ10Bと同様に、低融点層を有する板体を用いることができる。
The first inner plate body 212 and the first outer plate body 212 can be manufactured by using a clad material (laminated plate material) on which a low melting point layer containing Si is formed in advance. The low melting point layer may be formed by laminating a clad sheet made of a low melting point material on the main part of the plate body.
As for the second header, a plate having a low melting point layer can be used as in the case of the first header 10B.
 この熱交換器では、低融点層214,216は、第1ヘッダ10および第2ヘッダ20と、熱交換チューブ30との隙間を封止するロウとして機能するため、ロウ付けの作業が容易となる。 In this heat exchanger, the low melting point layers 214 and 216 function as brazing to seal the gap between the first header 10 and the second header 20 and the heat exchange tube 30, so that the brazing work becomes easy. ..
(第2の実施形態)
 図10は、第2の実施形態の熱交換器における第1ヘッダ10CのXZ平面に沿う断面図である。既出の構成については、同じ符号を付して説明を省略する。
 図10に示されるように、第1ヘッダ10Cは、第1内板体11(図5参照)と第1外板体12(図5参照)との間に、中間板体313が積層されている。例えば、中間板体313は、アルミニウムを含む材料(アルミニウム、アルミニウム合金等)で構成される。中間板体313は、X方向から見て凹部13,17に重なる差込部314が形成されている。凹部13,17と、差込部314とは、ヘッド空間流路316を形成する。
 第2ヘッダについても、第1ヘッダ10Cと同様に、第2内板体と第2外板体との間に中間板体が積層された構成を採用することができる。
(Second embodiment)
FIG. 10 is a cross-sectional view taken along the XZ plane of the first header 10C in the heat exchanger of the second embodiment. The above-mentioned configurations are designated by the same reference numerals and the description thereof will be omitted.
As shown in FIG. 10, in the first header 10C, an intermediate plate body 313 is laminated between the first inner plate body 11 (see FIG. 5) and the first outer plate body 12 (see FIG. 5). There is. For example, the intermediate plate body 313 is made of a material containing aluminum (aluminum, aluminum alloy, etc.). The intermediate plate body 313 is formed with an insertion portion 314 that overlaps the recesses 13 and 17 when viewed from the X direction. The recesses 13 and 17 and the insertion portion 314 form a head space flow path 316.
As for the second header, similarly to the first header 10C, a configuration in which an intermediate plate body is laminated between the second inner plate body and the second outer plate body can be adopted.
 第2の実施形態の熱交換器では、中間板体313を備えた第1ヘッダ10Cを備えるため、ヘッド空間流路316の設計の自由度を高めることができる。例えば、ヘッド空間流路316のX方向寸法を大きくすることによって、ヘッド空間流路316の容積を大きくできる。 Since the heat exchanger of the second embodiment includes the first header 10C provided with the intermediate plate body 313, the degree of freedom in designing the head space flow path 316 can be increased. For example, the volume of the head space flow path 316 can be increased by increasing the X-direction dimension of the head space flow path 316.
 図11は、第3変形例の第1ヘッダ10DのXZ平面に沿う断面図である。既出の構成については、同じ符号を付して説明を省略する。
 図11に示されるように、第1ヘッダ10Dは、第1外板体12(図5参照)に代えて、平板状の第1外板体412が用いられている。凹部13と第1外板体412とは、ヘッド空間流路416を形成する。
 第1ヘッダ10Dは、平板状の第1外板体412が用いられているため、構造が簡略である。よって、小型化、低コスト化などの点で有利となる。
FIG. 11 is a cross-sectional view of the first header 10D of the third modification along the XZ plane. The above-mentioned configurations are designated by the same reference numerals and the description thereof will be omitted.
As shown in FIG. 11, as the first header 10D, a flat plate-shaped first outer plate body 412 is used instead of the first outer plate body 12 (see FIG. 5). The recess 13 and the first outer plate body 412 form a head space flow path 416.
Since the first header 10D uses a flat plate-shaped first outer plate body 412, the structure is simple. Therefore, it is advantageous in terms of miniaturization and cost reduction.
 以上説明した少なくともひとつの実施形態によれば、ヘッダに、凹部によって、冷媒が流通する空間が形成されるため、ヘッダの構造を簡略にすることができる。よって、小型かつ軽量の熱交換器が得られる。ヘッダは、板材で構成されているため、円筒形状のヘッダに比べ、小型化および軽量化が可能である。よって、熱交換器は、小型化および軽量化を図ることができる。熱交換器は、小型かつ軽量であるため、室外機等の筐体への収納性の点でも優れている。ヘッダは、過不足のない冷媒の流通が可能な空間を設計できるため、冷媒使用量を抑制できる。 According to at least one embodiment described above, the structure of the header can be simplified because a space through which the refrigerant flows is formed in the header by the recesses. Therefore, a small and lightweight heat exchanger can be obtained. Since the header is made of a plate material, it can be made smaller and lighter than a cylindrical header. Therefore, the heat exchanger can be made smaller and lighter. Since the heat exchanger is small and lightweight, it is also excellent in terms of storability in a housing such as an outdoor unit. Since the header can design a space in which the refrigerant can flow in just proportion, the amount of refrigerant used can be suppressed.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, as well as in the scope of the invention described in the claims and the equivalent scope thereof.
1 冷凍サイクル装置
4 室外熱交換器(熱交換器)
10 第1ヘッダ(ヘッダ)
11,111,211 第1内板体(板体)
11a 第1主面
12,112,212 第1外板体(板体)
12a 第1主面
13,23,17,27 凹部
20 第2ヘッダ
21 第2内板体(板体)
21a 第1主面
22 第2外板体(板体)
22a 第1主面
30 熱交換チューブ
34 冷媒流路
113b 外面(第2主面)
115b 外面(第2主面)
313 中間板体
1 Refrigeration cycle device 4 Outdoor heat exchanger (heat exchanger)
10 First header (header)
11,111,211 1st inner plate body (plate body)
11a First main surface 12, 112, 212 First outer plate body (plate body)
12a 1st main surface 13, 23, 17, 27 recess 20 2nd header 21 2nd inner plate body (plate body)
21a 1st main surface 22 2nd outer plate body (plate body)
22a First main surface 30 Heat exchange tube 34 Refrigerant flow path 113b Outer surface (second main surface)
115b outer surface (second main surface)
313 Intermediate plate

Claims (6)

  1.  冷媒が流れる冷媒流路が形成された熱交換チューブと、
     前記熱交換チューブの一方および他方の端部にそれぞれ設けられたヘッダと、を備え、
     前記ヘッダは、第1主面どうしが向かい合うように積層された一対の板体を備え、
     前記板体の少なくとも1つの前記第1主面に、前記冷媒流路と連通する空間流路を形成する凹部が形成されている、熱交換器。
    A heat exchange tube in which a refrigerant flow path through which the refrigerant flows is formed,
    With headers provided at one end and the other end of the heat exchange tube, respectively.
    The header comprises a pair of plates laminated so that the first main surfaces face each other.
    A heat exchanger in which a recess forming a spatial flow path communicating with the refrigerant flow path is formed on at least one of the first main surfaces of the plate body.
  2.  前記空間流路内の圧力をPとし、前記板体の厚さをTとし、前記空間流路の厚さ寸法をLとして、前記板体の材料耐力σは、次の式(1)を満たす、請求項1に記載の熱交換器。
     σ>-10.1T+2.1L+8.1P+3.5 ・・・(1)
    The pressure in the space flow path is P, the thickness of the plate body is T, the thickness dimension of the space flow path is L, and the material yield strength σ of the plate body satisfies the following equation (1). , The heat exchanger according to claim 1.
    σ> -10.1T + 2.1L + 8.1P + 3.5 ... (1)
  3.  前記板体は、前記第1主面とは反対の第2主面に、Znを含む被覆層を備える、請求項1または2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein the plate body includes a coating layer containing Zn on a second main surface opposite to the first main surface.
  4.  前記熱交換チューブの一方および他方の端部に設けられた前記ヘッドのうち1つに、前記熱交換器に前記冷媒を導入する導入口、および前記熱交換器から前記冷媒を導出する導出口が形成される、請求項1~3のうちいずれか1項に記載の熱交換器。 One of the heads provided at one end and the other end of the heat exchange tube has an introduction port for introducing the refrigerant into the heat exchanger and an outlet for drawing out the refrigerant from the heat exchanger. The heat exchanger according to any one of claims 1 to 3, which is formed.
  5.  前記一対の板体の間に、中間板体が設けられている、請求項1~4のうちいずれか1項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 4, wherein an intermediate plate body is provided between the pair of plate bodies.
  6.  請求項1~5のうちいずれか1項に記載の熱交換器を有する、冷凍サイクル装置。 A refrigeration cycle apparatus having the heat exchanger according to any one of claims 1 to 5.
PCT/JP2019/050476 2019-12-24 2019-12-24 Heat exchanger and refrigeration cycle device WO2021130835A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2019/050476 WO2021130835A1 (en) 2019-12-24 2019-12-24 Heat exchanger and refrigeration cycle device
CN201980099418.3A CN114245860A (en) 2019-12-24 2019-12-24 Heat exchanger and refrigeration cycle device
KR1020227006507A KR20220041164A (en) 2019-12-24 2019-12-24 Heat exchangers and refrigeration cycle units
JP2021566412A JP7437418B2 (en) 2019-12-24 2019-12-24 Heat exchanger and refrigeration cycle equipment
JP2024017036A JP2024045455A (en) 2019-12-24 2024-02-07 Heat exchanger and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/050476 WO2021130835A1 (en) 2019-12-24 2019-12-24 Heat exchanger and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2021130835A1 true WO2021130835A1 (en) 2021-07-01

Family

ID=76575771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050476 WO2021130835A1 (en) 2019-12-24 2019-12-24 Heat exchanger and refrigeration cycle device

Country Status (4)

Country Link
JP (2) JP7437418B2 (en)
KR (1) KR20220041164A (en)
CN (1) CN114245860A (en)
WO (1) WO2021130835A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04121595A (en) * 1990-09-12 1992-04-22 Zexel Corp Heat exchanger
JP2011085343A (en) * 2009-10-16 2011-04-28 Mitsubishi Heavy Ind Ltd Heat exchanger and air conditioning device for vehicle including the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5263489B2 (en) 2007-05-31 2013-08-14 株式会社三洋物産 Game machine
CN101161839A (en) * 2007-11-20 2008-04-16 林小港 Method for preparing heat-exchange brazing coating alloy plate
DE102011003609A1 (en) 2011-02-03 2012-08-09 J. Eberspächer GmbH & Co. KG Finned tube heat exchanger
JP5920175B2 (en) * 2012-11-13 2016-05-18 株式会社デンソー Heat exchanger
JP6090580B2 (en) 2013-09-26 2017-03-08 トヨタ自動車株式会社 VEHICLE AUTHENTICATION METHOD, VEHICLE AUTHENTICATION DEVICE, AND PORTABLE DEVICE
CN104279888A (en) * 2014-10-11 2015-01-14 新昌县儒岙镇锦云机械厂 Heat exchangers
KR102126311B1 (en) * 2017-08-25 2020-06-24 한온시스템 주식회사 Evaporator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04121595A (en) * 1990-09-12 1992-04-22 Zexel Corp Heat exchanger
JP2011085343A (en) * 2009-10-16 2011-04-28 Mitsubishi Heavy Ind Ltd Heat exchanger and air conditioning device for vehicle including the same

Also Published As

Publication number Publication date
CN114245860A (en) 2022-03-25
JP7437418B2 (en) 2024-02-22
JPWO2021130835A1 (en) 2021-07-01
KR20220041164A (en) 2022-03-31
JP2024045455A (en) 2024-04-02

Similar Documents

Publication Publication Date Title
US8272233B2 (en) Heat exchanger and refrigerating air conditioner
JP5777622B2 (en) Heat exchanger, heat exchange method and refrigeration air conditioner
US6973805B2 (en) Layered heat exchanger, layered evaporator for motor vehicle air conditioners and refrigeration system
US20110056667A1 (en) Integrated multi-circuit microchannel heat exchanger
EP3473963A1 (en) Heat exchanger and air conditioner
JP4561305B2 (en) Heat exchanger
US6814135B2 (en) Stacked-type evaporator
EP2982924A1 (en) Heat exchanger
JP5540816B2 (en) Evaporator unit
JP2003269822A (en) Heat exchanger and refrigerating cycle
WO2021130835A1 (en) Heat exchanger and refrigeration cycle device
KR101745280B1 (en) Heat transfer device and method for manufacturing thereof
JP2004183960A (en) Heat exchanger
JP7348308B2 (en) Heat exchanger and refrigeration cycle equipment
KR20030035513A (en) Heat exchanger for using CO2 as a refrigerant
WO2022230620A1 (en) Heat exchanger and refrigeration cycle device
JP4334311B2 (en) Heat exchanger
KR100859730B1 (en) Duplex heat exchanger
KR20170031515A (en) Heat exchanger
JP2012093091A (en) Heat exchanger and refrigeration air conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957560

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021566412

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227006507

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957560

Country of ref document: EP

Kind code of ref document: A1