WO2021129347A1 - 辅助定位柱以及自行走机器人的导航辅助*** - Google Patents

辅助定位柱以及自行走机器人的导航辅助*** Download PDF

Info

Publication number
WO2021129347A1
WO2021129347A1 PCT/CN2020/133747 CN2020133747W WO2021129347A1 WO 2021129347 A1 WO2021129347 A1 WO 2021129347A1 CN 2020133747 W CN2020133747 W CN 2020133747W WO 2021129347 A1 WO2021129347 A1 WO 2021129347A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
assembled
positioning column
auxiliary positioning
positioning
Prior art date
Application number
PCT/CN2020/133747
Other languages
English (en)
French (fr)
Inventor
杨志钦
钟扬
Original Assignee
炬星科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 炬星科技(深圳)有限公司 filed Critical 炬星科技(深圳)有限公司
Publication of WO2021129347A1 publication Critical patent/WO2021129347A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • This application relates to the technical field of robot navigation, and in particular to an auxiliary positioning column that can improve the recognition of navigation radar and a navigation assistance system for a self-propelled robot.
  • lidar for positioning and navigation
  • lidar for positioning and navigation
  • SLAM simultaneous localization and mapping real-time positioning and map construction
  • the prior art is based on the principle of TOF Time of flight lidar, which emits laser light around at a certain frequency, and calculates the time interval for the laser light to reflect back on the surface of the obstacle contour. Determine the distance and form a point cloud. Then, the closer the obstacle contour distance, the higher the point cloud density, the higher the contour recognition degree, the higher the success rate of matching with the map, and the more accurate the positioning. Conversely, the farther the distance, the lower the density of the point cloud, and the lower the success rate of the contour recognition margin and the map matching, and the accurate positioning will not be possible.
  • the present application provides an auxiliary positioning column that can improve the positioning efficiency of a navigation radar and a navigation assistance system of a self-propelled robot, so as to solve the technical problem of an inaccurate positioning situation in the prior art.
  • the present application provides an auxiliary positioning column, the positioning column is erected on a support, and the column body of the positioning column is provided with a plurality of contour features for improving the recognition of the navigation radar, and each of the positioning columns is The contour features each face different directions.
  • the present application provides a navigation assistance system for a self-propelled robot, which includes a plurality of auxiliary positioning posts as described above.
  • the auxiliary positioning pillars provided by the embodiments of the application can be added to the open ground, and the laser radar on the robot scans the outline of the positioning pillars Later, the recognition speed and recognition rate can be improved, and the corresponding obstacle contours in the navigation data can be compared according to the recognition results, and the robot itself can be accurately positioned. Because the auxiliary positioning column faces in multiple directions and has contour features that improve the recognition of the navigation radar, it can provide a positioning reference for the robot in any direction.
  • FIG. 1 is an exploded schematic diagram of the auxiliary positioning column structure provided by the first embodiment of the application.
  • FIG. 2 is a schematic diagram of the assembled column body of the auxiliary positioning column provided by the first embodiment of the application.
  • FIG. 3 is a schematic diagram of the bottom surface structure of the auxiliary positioning column assembled column body provided by the second embodiment of the application.
  • FIG. 4 is a schematic diagram of the structure of the auxiliary positioning column provided by the second embodiment of the application.
  • FIG. 5 is a schematic diagram of the assembled column body of the auxiliary positioning column provided by the third embodiment of the application.
  • FIG. 6 is a schematic diagram of the bottom surface structure of the assembled column body of the auxiliary positioning column provided by the third embodiment of the application.
  • FIG. 7 is a schematic diagram 1 of the auxiliary positioning column assembly structure provided by the third embodiment of the application.
  • FIG. 8 is a second schematic diagram of the auxiliary positioning column assembly structure provided by the third embodiment of the application.
  • FIG. 9 is a schematic diagram of the first working mode of the navigation assistance system provided by an embodiment of this application.
  • FIG. 10 is a schematic diagram of a second working mode of the navigation assistance system provided by an embodiment of this application.
  • Positioning column 11. Contour feature; 111, cavity; 112, first clamping end; 113, second clamping end; 114, support rib; 12. first assembled column; 121, positioning groove ; 13. The second assembled column body; 15, the set hole; 16, the bottom support; 17, the bottom plate; 18, the fixed column; 19, the marking area; 2. the robot; 21, the lidar; 3. the fixed facility; 4. logo.
  • the main technical direction of the embodiments of the present application is to provide an auxiliary positioning column to improve the recognition of the navigation radar, wherein the positioning column can be erected On the ground or other supports, the pillar body of the positioning column has a plurality of contour feature parts for improving the recognition of the navigation radar, and each contour feature part faces a different direction.
  • the contour feature used to improve the recognition of the navigation radar is a structure that can be distinguished from the simple common shapes such as common single-line, square, or circular shapes, such as in some common pillars. Concave or convex edges with cross-sectional shapes such as diamonds, triangles, rectangles, or trapezoids are set on the solid surface to facilitate the addition of angular lines on the positioning column that are more convenient for the radar to accurately identify.
  • the auxiliary positioning column can be added to the open ground. After the laser radar on the robot scans the contour of the positioning column, the recognition speed and the recognition rate can be improved, so as to compare the corresponding obstacle contours in the navigation data according to the recognition result. Yes, you can accurately locate the robot itself. Because the auxiliary positioning column faces in multiple directions and has contour features that improve the recognition of the navigation radar, it can provide a positioning reference for the robot in any direction.
  • FIG. 1 is an exploded schematic diagram of the auxiliary positioning column structure provided by the first embodiment of the application
  • FIG. 2 is a schematic diagram of the assembled column body structure of the auxiliary positioning column provided by the second embodiment of the application.
  • this embodiment provides an auxiliary positioning pillar 1, which can be erected on the ground or other supports.
  • the pillar body of the positioning pillar 1 has a plurality of contour features for improving the recognition of the navigation radar. Part 11, each contour feature part 11 faces a different direction.
  • Each contour feature 11 can be published uniformly in the circumferential direction, so that it can be effectively identified at all angles.
  • the positioning column 1 can be an integrally formed structure, and the cross section of the positioning column 1 can be selected to be a common column shape such as a circle, a square, or an ellipse, or it can be a column assembled from multiple parts, and its height can be Change according to demand.
  • the positioning column 1 can be selected to be a flexible material such as plastic or rubber to avoid damage after collision with the robot.
  • the positioning column 1 of the prefabricated structure mainly includes a bottom brace 16 and at least two assembled columns, at least two assembled columns.
  • the body is assembled and connected to the bottom support 16 for fixing, and at least two assembled column bodies can be quickly spliced into the column body of the positioning column 1 through fasteners such as screws or snap-fit structures such as buckles.
  • each assembled column body is selected to be able to be spliced into a whole structure form, so as to form a complete contour feature part of the column body after splicing.
  • the same position of each assembled column module is configured to be mutually connected.
  • the butt concave or convex edges, after being joined, each contour feature part can be assembled into a whole contour feature part on the cylinder body.
  • At least two assembled columns include a first assembled column 12 and a second assembled column 13, and the material density of the first assembled column 12 is selected to be smaller than that of the second assembled column 13 The density of the material. In order to make the center of gravity of the positioning column 1 fall at the bottom, the positioning column is less likely to fall.
  • the material of the first assembled column body 12 can be selected from light materials such as sponge, foam, foam plastic material or foam rubber material
  • the second assembled column body 13 can be selected from metal, rubber or These heavier materials such as plastics; or, alternatively, a counterweight may be separately arranged in the second assembled column 13, for example, a lead block can be added to the inside of the second assembled column 13.
  • the positioning column 1 can be made of a common industrial material with low cost and convenient for rapid production. And in order to push down the center of gravity of the positioning column 1 as much as possible, so that the positioning column 1 is more stable.
  • one positioning column is selected to include two assembled column modules to meet the auxiliary positioning requirements. It is understandable that in the case of a higher radar plane, a larger number of assembled column modules can also be configured as required.
  • the bottom support 16 mainly includes a bottom plate 17 and a fixed column 18 that are integrally connected by welding.
  • the fixed column 18 may be rectangular in cross section, and the first assembled column body 12 and the second assembled column body 13
  • the middle part is provided with a sleeve hole 15 adapted to the fixed column 18, and the first assembled column body 12 and the second assembled column body 13 can be sleeved on the fixed column 18 with the sleeve hole 15 to fix the assembled column body on the bottom.
  • Support 16 mainly includes a bottom plate 17 and a fixed column 18 that are integrally connected by welding.
  • the fixed column 18 may be rectangular in cross section, and the first assembled column body 12 and the second assembled column body 13
  • the middle part is provided with a sleeve hole 15 adapted to the fixed column 18, and the first assembled column body 12 and the second assembled column body 13 can be sleeved on the fixed column 18 with the sleeve hole 15 to fix the assembled column body on the bottom.
  • Support 16 mainly includes
  • the bottom support 16 can be an integrally formed metal piece, and can be selected as a heavier metal such as iron, stainless steel, aluminum or steel, so that the center of gravity of the positioning column 1 is more downward to maintain stability.
  • the bottom plate 17 can be a square, round or oval plate with a larger area, and the bottom plate 17 can also be equipped with through holes to facilitate the use of expansion screws and other fasteners to fix the bottom support 16 on the ground and rigidly connect it to the ground. A higher fixing strength is obtained, and the positioning column 1 can be prevented from overturning due to collision.
  • the positioning pillar 1 may be provided with an identification area 19 on the pillar body.
  • the identification area 19 may be a plane located on the pillar body.
  • the identification area 19 may be provided with a navigation information identification 4 for remote reading.
  • the navigation information identification 4 such as Marks such as two-dimensional codes containing navigation information can be identified and read by the robot's inspection system.
  • the contour feature 11 is selected as a convex edge protruding from the surface of the cylindrical body of the square positioning column 1.
  • the rib is selected to have a trapezoidal cross-section.
  • the assembled column body can be roughly rectangular parallelepiped as a whole, and the contour feature portion 11 protrudes outward from the four corners in the opposite diagonal direction. In this way, a shape that can be easily recognized by the lidar can be formed, and the identification area can be easily set.
  • the shapes shown in Fig. 1 and Fig. 2 can be described from another angle.
  • the contour feature can also be considered as an inverted trapezoidal concave edge recessed into the surface of the square positioning column.
  • the concave edge is a concave edge with an inverted trapezoidal cross-section, and the assembled column body can be a rectangular parallelepiped as a whole. It can be considered that the contour feature 11 is formed by recessing inward from the middle of the four sides.
  • the cross-section of the convex or concave ribs in the embodiments of the present application can be selected to be trapezoidal, rectangular or triangular, and the number of settings is also limited to this. It can be evenly arranged 360 degrees facing the surrounding and 3, 4 , 5 or 6 etc.
  • the positioning column 1 provided by the embodiment of the present application, there is no need to customize a recognizable contour structure for various fixed facilities to add additional cost and R&D production cycle. Since the positioning column 1 is movable, it can be flexibly configured as required.
  • FIG. 3 is a schematic diagram of the structure of the bottom surface of the auxiliary positioning column assembled column body provided by the second embodiment of the application
  • FIG. 4 is a schematic diagram of the structure of the auxiliary positioning column provided by the second embodiment of the application.
  • the positioning pillar 1 also includes one or more assembled pillars, and the assembled pillars may include a first assembled pillar 12 and a second assembled pillar 13.
  • the bottom of the assembled column is equipped with a positioning groove 121 corresponding to the bottom support 16, so that the bottom plate of the bottom support 16 can be partially clamped into the positioning groove 121, so that It can be quickly fixed to the bottom support 16 and the mounting column.
  • the positioning pillar 1 in this embodiment includes three assembled pillars, including two first assembled pillars 12 at the top and a second assembled pillar 13 at the bottom.
  • FIG. 5 is a schematic diagram of the assembled column body structure of the auxiliary positioning column provided by the third embodiment of the application
  • FIG. 6 is a schematic diagram of the bottom surface structure of the assembled column body of the auxiliary positioning column provided by the third embodiment of the application.
  • the positioning pillar 1 also includes one or more assembled pillars, and the assembled pillars may include a first assembled pillar 12 and a second assembled pillar 13.
  • the main difference between this embodiment and the first embodiment is that there are multiple cavities 111 in the assembled column, which may include a middle cavity 111 and a side cavity 111.
  • the middle cavity 111 can be composed of four main structures in the middle.
  • the side panels are enclosed, and part of the side cavity 111 is optionally configured with one or more diagonal bracing support ribs 114, which can save material while ensuring structural strength.
  • the middle cavity 111 can be used to install a counterweight, etc.
  • the counterweight can be fixed in the middle cavity 111 through a screw or similar solid part through a nut and a through hole at the bottom.
  • the assembled column in this embodiment includes a first clamping end 112 and a second clamping end 113, and the first clamping end 112 and the second clamping end 113 are capable of mating and clamping.
  • the fixed clamping structure in this way, each assembled column of the positioning column 1 can be fastened end-to-end with the adjacent assembled column by using the first clamping end 112 and the second clamping end 113.
  • Each modular column can be equipped with a bottom brace 16.
  • the bottom brace 16 can be a plurality of protruding feet integrally formed on the bottom surface of the modular column, or it can be fixed to the modular column by screws or other fasteners. The protruding feet on the underside of the body.
  • the bottom support 16 includes four circular legs, and the outermost edge of the four circular legs after installation can be positioned and clamped with the top edge of the middle cavity 111.
  • the first clamping end 112 of the assembled column may be an empty section on the top surface of the side cavity 111, and the second clamping end 113 may be a protrusion protruding from the bottom surface of the assembled column. So that the first clamping end 112 and the second clamping end 113 can be clamped and fixed by the convex-concave cooperation.
  • FIG. 7 is a schematic diagram 1 of the auxiliary positioning column assembly structure provided by the third embodiment of the application.
  • the positioning column 1 includes two assembled columns, including a first assembled column 12 on the upper side and a first assembled column on the bottom.
  • the second assembled column body 13 is a schematic diagram 1 of the auxiliary positioning column assembly structure provided by the third embodiment of the application.
  • the positioning column 1 includes two assembled columns, including a first assembled column 12 on the upper side and a first assembled column on the bottom.
  • the second assembled column body 13 is a schematic diagram 1 of the auxiliary positioning column assembly structure provided by the third embodiment of the application.
  • the positioning column 1 includes two assembled columns, including a first assembled column 12 on the upper side and a first assembled column on the bottom.
  • the second assembled column body 13 is a schematic diagram 1 of the auxiliary positioning column assembly structure provided by the third embodiment of the application.
  • the second assembled column body 13 is a schematic diagram 1 of the auxiliary positioning column assembly structure provided by the third embodiment of the application.
  • the positioning column 1 includes three assembled columns, including the two first assembled columns 12 on the upper side and the bottom One of the second assembled column 13.
  • a navigation assistance system for a self-propelled robot which includes a plurality of auxiliary positioning pillars 1 as described above to form a navigation assistance system for a scene. It mainly includes multiple auxiliary positioning columns 1, robots 2, and fixed facilities 3.
  • FIG. 9 is a schematic diagram of the first working mode of the navigation assistance system provided by the embodiment of the application.
  • positioning posts 1 can be added on both sides of the fixed facility, and the robot 2 can be mounted After the lidar 21 scans the positioning pillars 1 on both sides, it can be identified as a fixed facility 3.
  • the fixed facility system composed of the fixed facility 3 and the positioning column 1 can provide contour features with high recognition for precise docking.
  • the relevant information of the fixed facility can be identified through the two-dimensional code on the top.
  • Figure 10 is a schematic diagram of the second working mode of the navigation assistance system provided by the embodiment of the application.
  • the lidar 21 on the robot 2 scans to positioning pillar 1, and SLAM
  • the corresponding obstacle outlines on the data map can be compared to accurately locate itself. Since the positioning column 1 has a recognition contour on all four sides, it can provide a positioning reference for the robot in any direction.
  • the robot 2 can also read the relevant information of the open environment through the mark 4 on the top.
  • Placement method Place it at a suitable position in the open area before the SLAM data map is established in the scanning environment of the robot 2 and ensure that the robot 2 scans its complete outline.
  • the auxiliary positioning pillar provided in the embodiment of the application can increase the positioning pillar on the open ground, and after the laser radar on the robot scans the outline of the positioning pillar, the identification speed and the identification rate can be improved, so that the identification result is in the navigation data according to the identification result. Comparing the contours of the corresponding obstacles can accurately locate the robot itself. Because the auxiliary positioning column faces in multiple directions and has contour features that improve the recognition of the navigation radar, it can provide a positioning reference for the robot in any direction. Therefore, it has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种辅助定位柱(1)以及自行走机器人(2)的导航辅助***,辅助定位柱(1)竖立地设置于支撑物,定位柱(1)的柱身上具有多个用于提高导航雷达辨识度的轮廓特征部(11),各个轮廓特征部(11)各自面向不同的方向。机器人(2)上的激光雷达(21)扫描到定位柱(1)轮廓后,能提高辨识速度与辨识率,从而根据辨识结果在导航数据中的相应障碍物轮廓进行比对,即可准确定位机器人(2)自身。由于辅助定位柱(1)面向多个方向上都有提高导航雷达辨识度的轮廓特征部(11),因此可以在任何方向上给机器人(2)提供定位参照。

Description

辅助定位柱以及自行走机器人的导航辅助*** 技术领域
本申请涉及机器人导航技术领域,尤其涉及一种能提高导航雷达辨识度的辅助定位柱以及自行走机器人的导航辅助***。
背景技术
现有技术中,使用激光雷达进行定位导航的自行走机器人,例如激光SLAM (simultaneous localization and mapping 即时定位与地图构建)导航机器人,其定位效果易受到环境影响,比如对于场景中简单线条的圆柱体物体,立柱易被识别为垃圾桶或消防栓,这将会造成定位偏差。
更具体讲,现有技术中根据飞行时间测距法(TOF Time of flight)激光雷达的作用原理,即以一定频率向四周发射激光,通过计算激光在障碍轮廓表面反射回来的时间间隔,以此确定距离并构成点云,那么,障碍轮廓距离越近点云密度越高,轮廓辨识度越高与地图匹配的成功率越高,就越能准确定位。反之,距离越远点云密度越低,轮廓辨识度余地与地图匹配的成功率越低,就无法准确定位。
现有技术中,为了便于激光SLAM导航的机器人精确对接,通常会将固定设施配置为有较高辨识度的轮廓结构。但是对于轮廓结构辨识度不足的固定设施则无法实现精确对接。另外在空旷环境中,激光SLAM导航的机器人无法精确定位自身,因此在相关解决方案中不得不尽力避免出现空旷环境。
技术问题
本申请提供了一种能提高导航雷达定位效率的辅助定位柱以及自行走机器人的导航辅助***,以解决现有技术中存在无法准确定位情形的技术问题。
技术解决方案
第一方面,本申请提供了一种辅助定位柱,所述定位柱竖立地设置于支撑物,所述定位柱的柱身上具有多个用于提高导航雷达辨识度的轮廓特征部,各个所述轮廓特征部各自面向不同的方向。
第二方面,本申请提供了一种自行走机器人的导航辅助***,包括多个如前所述的辅助定位柱。
有益效果
本申请实施例提供的上述技术方案与现有技术相比具有如下优点:本申请实施例提供的该辅助定位柱,可在空旷地面增加该定位柱后,机器人上的激光雷达扫描到定位柱轮廓后,能提高辨识速度与辨识率,从而根据辨识结果在导航数据中的相应障碍物轮廓进行比对,即可准确定位机器人自身。由于辅助定位柱面向多个方向上都有提高导航雷达辨识度的轮廓特征部,因此可以在任何方向上给机器人提供定位参照。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请第一实施例提供的辅助定位柱结构分解示意图。
图2为本申请第一实施例提供的辅助定位柱拼装式柱身结构示意图。
图3为本申请第二实施例提供的辅助定位柱拼装式柱身底面结构示意图。
图4为本申请第二实施例提供的辅助定位柱结构示意图。
图5为本申请第三实施例提供的辅助定位柱拼装式柱身结构示意图。
图6为本申请第三实施例提供的辅助定位柱的拼装式柱身底面结构示意图。
图7为本申请第三实施例提供的辅助定位柱组合结构示意图一。
图8为本申请第三实施例提供的辅助定位柱组合结构示意图二。
图9为本申请实施例提供的导航辅助***第一种工作方式示意图。
图10为本申请实施例提供的导航辅助***第二种工作方式示意图。
1、定位柱;11、轮廓特征部;111、空腔;112、第一卡接端;113、第二卡接端;114、支撑肋;12、第一拼装式柱身;121、定位槽;13、第二拼装式柱身;15、套装孔;16、底撑;17、底板;18、固定柱;19、标识区;2、机器人;21、激光雷达;3、固定设施;4、标识。
本发明的实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
为解决现有技术中的机器人导航准确性易受环境因素影响的问题,本申请实施例主要技术方向在于提供一种辅助定位柱,以提高导航雷达的辨识度,其中定位柱可竖立地设置于地面或其他支撑物上,定位柱的柱身上具有多个用于提高导航雷达辨识度的轮廓特征部,各个轮廓特征部各自面向不同的方向。本领域技术人员应该理解的是,用于提高导航雷达辨识度的轮廓特征部,是一种可以区别于常见的单线形、方形或圆形这些简单的常见形状的结构,比如在一些常见的柱体面上通过设置菱形、三角形、矩形或者梯形等截面形状的凹棱或凸棱,以便于在定位柱上增加更便于雷达准确地辨识出来的棱角线条。
该辅助定位柱,可在空旷地面增加该定位柱后,机器人上的激光雷达扫描到定位柱轮廓后,能提高辨识速度与辨识率,从而根据辨识结果在导航数据中的相应障碍物轮廓进行比对,即可准确定位机器人自身。由于辅助定位柱面向多个方向上都有提高导航雷达辨识度的轮廓特征部,因此可以在任何方向上给机器人提供定位参照。
下面将参照附图示例性地给出本申请的一些实施例。应当理解,参照的实施例并不限制本申请的范围。也就是说,本说明书中举出的任何实例都不是限制性的,而是仅仅是示例性的。
图1为本申请第一实施例提供的辅助定位柱结构分解示意图,以及图2为本申请第二实施例提供的辅助定位柱拼装式柱身结构示意图。如图中示意,本实施例提供一种辅助定位柱1,定位柱1可竖立地设置于地面或其他支撑物上,定位柱1的柱身上具有多个用于提高导航雷达辨识度的轮廓特征部11,各个轮廓特征部11各自面向不同的方向。各个轮廓特征部11可以在周向上均匀公布,以便于在各个角度均可以有效辨识。
举例来说,定位柱1可以是一体成型结构,定位柱1截面可选择为圆形、方形或椭圆形等常见柱体形状,也可以是由多件部件组装而成的柱体,其高度可根据需求变更。且定位柱1可选择为塑料或橡胶等柔性材料,以避免与机器人出现碰撞后发生损坏。
而如图1中所示例,提出了一种装配式结构的定位柱1的实施例,装配式结构的定位柱1主要包括底撑16以及至少两个拼装式柱身,至少两个拼装式柱身装配连接于底撑16上进行固定,至少两个拼装式柱身可以通过螺丝等紧固件或卡扣等卡接结构快速拼接为定位柱1的柱身。
而各个拼装式柱身上的轮廓特征部选择为能相互拼接成整条的结构形式,以便于拼接后组成柱身上完整的轮廓特征部,比如各个拼装式柱身模块的相同位置上配置有可以相互对接的凹棱或凸棱,以此拼接后各个轮廓特征部恰可拼为柱身上的一个整体的轮廓特征部。
本申请实施例中,至少两个拼装式柱身包括第一拼装式柱身12与第二拼装式柱身13,第一拼装式柱身12的材质密度选择为小于第二拼装式柱身13的材质密度。以便于将定位柱1的重心落于底部,使得定位柱更不容易倾倒。
本申请实施例中,第一拼装式柱身12材质可选择为海绵、泡棉、泡沫塑料材料或泡沫橡胶材料等这些轻质材料,而第二拼装式柱身13可选择为金属、橡胶或塑料等这些较重的材料;或者,也可以单独在第二拼装式柱身13内配置配重块,例如可以在第二拼装式柱身13内部加铅块。如以上实施例,可使得定位柱1成本低廉且便于快速生产的常用工业材质。并且以便于将定位柱1的重心尽量下压,使得定位柱1更稳定。
本实施例中,针对机器人的导航雷达平面是由地面向上180mm高度的情形,一个定位柱选择为包括两个拼装式柱身模块,便可以满足辅助定位需求。可以理解的是,在雷达平面较高的情况下,还可以按需要配置更多数量的拼装式柱身模块。
本申请实施例中,底撑16主要包括通过焊接连接为一体的底板17与固定柱18,这里的固定柱18截面可呈长方形,且第一拼装式柱身12与第二拼装式柱身13中部均具有与固定柱18适配的套装孔15,第一拼装式柱身12与第二拼装式柱身13能以套装孔15套于固定柱18上,以将拼装式柱身固定于底撑16。同时,由于套装孔15的形状与固定柱18的长方形是可以套装配合关系,由于是非圆形的配合关系,所以可以达成防呆的效果,可以避免第一拼装式柱身12与第二拼装式柱身13将方向装错。
其中底撑16可为一体成型的金属件,可以选择为铁、不锈钢、铝或钢这类较重的金属,以便于定位柱1的重心更向下,以保持稳定。而底板17可以面积较大的方形、圆形或椭圆形板件,底板17还可以配置有通孔,以便于利用膨胀螺丝等紧固件将底撑16固定于地面上,刚性连接于地面以获得较高的固定强度,可以避免定位柱1因碰撞而翻倒。
本申请实施例中,定位柱1柱身上可以设置有标识区19,标识区19可以是位于柱身上的平面,标识区19上可设置供远程读取的导航信息标识4,导航信息标识4比如含有导航信息的二维码等标识,可以利用机器人的视学***进行识别读取。
如图2示例的具体实施例中,轮廓特征部11选择为凸出于方形定位柱1柱身表面的凸棱。本申请实施例中,凸棱选择为截面呈梯形的形状。而拼装式柱身整体可概呈长方体形,而轮廓特征部11从四个角部反向于对角线方向向外凸出设置。以此形成一个可便于激光雷达可以准确辨识的形状,且可便于设置标识区。
图1与图2的形状,换一个角度描述,轮廓特征部也可以认为是凹入方形定位柱柱身表面的倒梯形凹棱。凹棱为呈截面为倒梯形的凹棱,而拼装式柱身整体可呈长方体形,可认为轮廓特征部11是从四个侧面中部向内凹入形成。
应该理解的是,本申请实施例中凸棱或凹棱的截面可选择为呈梯形、矩形或三角形,设置数量也并以此为限,可以是面向周围360度均匀配置和3个、4个、5个或6个等数量。利用本申请实施例提供的定位柱1,无需为各种固定设施定制足够具有辨识度的轮廓结构增添额外成本和研发生产周期,且定位柱1由于可移动,因此可以按照需要灵活配置。
图3为本申请第二实施例提供的辅助定位柱拼装式柱身底面结构示意图以及图4为本申请第二实施例提供的辅助定位柱结构示意图。由图中所示例,定位柱1同样包括一个或多个拼装式柱身,而拼装式柱身可以是包括第一拼装式柱身12与第二拼装式柱身13。本实施例中与第一实施例的主要区别在于,这里的拼装式柱身底部配置有对应于底撑16的定位槽121,以便于底撑16的底板可以部分卡入定位槽121中,以便于底撑16与装式柱身可进行快速固定。
另一方面,本实施例中定位柱1包括三个拼装式柱身,其中包括上方的两个第一拼装式柱身12以及最下方的一个第二拼装式柱身13。
图5为本申请第三实施例提供的辅助定位柱拼装式柱身结构示意图,以及图6为本申请第三实施例提供的辅助定位柱的拼装式柱身底面结构示意图。由图中所示例,定位柱1同样包括一个或多个拼装式柱身,而拼装式柱身可以是包括第一拼装式柱身12与第二拼装式柱身13。
本实施例中与第一实施例的主要区别在于,拼装式柱身内具有多个空腔111,其中可包括中部空腔111与侧边空腔111,中部空腔111可由中部的四个主要结构侧板围成,部分的侧边空腔111内选择配置有一个或多个斜撑的支撑肋114,在节省材料的同时还能保证结构强度。中部空腔111内可用于安装配重件等,配重件可通过螺杆或类似坚固件通过螺母与底部的通孔固定于中部空腔111内。
另一方面,本实施例中拼装式柱身包括第一卡接端112与第二卡接端113,所述第一卡接端112与所述第二卡接端113是能相互配合卡接固定的卡合结构,如此,可以定位柱1的各个拼装式柱身可以利用第一卡接端112与第二卡接端113与相邻拼装式柱身首尾卡接固定。而每个拼装式柱身可以均配置有底撑16,底撑16可以是多个一体成型于拼装式柱身底面上的凸出支脚,也可以是通过螺杆等紧固件固定于拼装式柱身底面上的凸出支脚。
如图中示例,底撑16包括四个圆形的支脚,且四个圆形的支脚安装后的最外沿可与中部空腔111的顶沿定位卡接。而拼装式柱身的第一卡接端112可以是侧边空腔111的位于顶面的留空段,而第二卡接端113可以是凸出于拼装式柱身底面的凸出部,以便于第一卡接端112与第二卡接端113通过凸凹配合进行卡接固定。
图7为本申请第三实施例提供的辅助定位柱组合结构示意图一,本实施例中定位柱1包括两个拼装式柱身,其中包括上方的一个第一拼装式柱身12以及下方的一个第二拼装式柱身13。
图8为本申请第三实施例提供的辅助定位柱组合结构示意图二,本实施例中定位柱1包括三个拼装式柱身,其中包括上方的两个第一拼装式柱身12以及最下方的一个第二拼装式柱身13。
本申请另一方面,还可以认为是提供一种自行走机器人的导航辅助***,包括多个如前所述的辅助定位柱1,以组成一个场景的导航辅助***。其中主要包括多个辅助定位柱1、机器人2以及固定设施3。
图9为本申请实施例提供的导航辅助***第一种工作方式示意图,如图所示意,为便于机器人2与固定设施3精确对接,可在固定设施两侧增加定位柱1后,机器人2上的激光雷达21扫描到两侧的定位柱1后便可识别为固定设施3,由固定设施3与定位柱1共同构成的固定设施***,可以提供具有高辨识度的轮廓特征以精确对接。同时可以通过顶部的二维码识别该固定设施的相关信息。摆放时,可根据事先设计的摆放相对位置数据,在场地上准确测量,并将定位柱摆放得尽可能精确,以提高定位精度。
图10为本申请实施例提供的导航辅助***第二种工作方式示意图,在空旷环境辅助定位时,在空旷地面增加定位柱1后,机器人2上的激光雷达21扫描到定位柱1,与SLAM数据地图上的相应障碍物轮廓进行比对,即可准确定位自身。由于定位柱1四面都有识别轮廓,因此可以在任何方向上给机器人提供定位参照。同时机器人2还可以通过顶部的标识4读取该空旷环境的相关信息。摆放方式:在机器人2扫描环境建立SLAM数据地图前摆放在空旷区域合适位置,并确保机器人2扫描到其完整轮廓。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本申请的具体实施方式,使本领域技术人员能够理解或实现本申请。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所申请的原理和新颖特点相一致的最宽的范围。
工业实用性
本申请实施例提供的该辅助定位柱,可在空旷地面增加该定位柱后,机器人上的激光雷达扫描到定位柱轮廓后,能提高辨识速度与辨识率,从而根据辨识结果在导航数据中的相应障碍物轮廓进行比对,即可准确定位机器人自身。由于辅助定位柱面向多个方向上都有提高导航雷达辨识度的轮廓特征部,因此可以在任何方向上给机器人提供定位参照。因此,具有工业实用性。

Claims (13)

  1. 一种辅助定位柱,所述定位柱竖立地设置于支撑物,其中所述定位柱的柱身上具有多个用于提高导航雷达辨识度的轮廓特征部,各个所述轮廓特征部各自面向不同的方向。
  2. 如权利要求1所述的辅助定位柱,其中,所述定位柱一体成型结构或装配式结构。
  3. 如权利要求2所述的辅助定位柱,其中,所述定位柱为装配式结构,所述定位柱包括一个或多个拼装式柱身,多个拼装式柱身相互拼接为定位柱柱身。
  4. 如权利要求3所述的辅助定位柱,其中,所述定位柱包括底撑与定位柱柱身,所述底撑包括底板与固定于所述底板上的固定柱,所述拼装式柱身具有与所述固定柱适配的套装孔,所述拼装式柱身以所述套装孔套于所述固定柱,以将所述拼装式柱身固定于所述底撑。
  5. 如权利要求3所述的辅助定位柱,其中,所述拼装式柱身包括第一卡接端与第二卡接端,所述第一卡接端与所述第二卡接端是能相互配合卡接固定的卡合结构。
  6. 如权利要求3所述的辅助定位柱,其中,所述拼装式柱身内具有多个空腔,其中部分的所述空腔内配置有一个或多个支撑肋。
  7. 如权利要求1所述的辅助定位柱,其中,所述定位柱的柱身设置有标识区,所述标识区设置供远程读取的导航信息标识。
  8. 如权利要求3所述的辅助定位柱,其中,多个所述拼装式柱身包括第一拼装式柱身与第二拼装式柱身,所述第一拼装式柱身的材质密度小于所述第二拼装式柱身的材质密度。
  9. 如权利要求8所述的辅助定位柱,其中,
    所述第一拼装式柱身材质为海绵、泡棉、泡沫塑料材料或泡沫橡胶材料,以及/或者,
    所述第二拼装式柱身为金属、橡胶或塑料,以及/或者,
    所述第二拼装式柱身包括配重块。
  10. 如权利要求1至9任一项所述的辅助定位柱,其中,所述轮廓特征部为凸出于所述定位柱柱身表面的凸棱;或者,
    所述轮廓特征部为凹入所述定位柱柱身表面的凹棱。
  11. 如权利要求10所述的辅助定位柱,其中,
    所述凸棱截面呈梯形、矩形或三角形,或者,
    所述凹棱截面呈梯形、矩形或三角形。
  12. 如权利要求3所述的辅助定位柱,其中,所述拼装式柱身呈长方体形,所述轮廓特征部从四个角部向外凸出。
  13. 一种自行走机器人的导航辅助***,包括多个如权利要求1至12任一项所述的辅助定位柱。
PCT/CN2020/133747 2019-12-24 2020-12-04 辅助定位柱以及自行走机器人的导航辅助*** WO2021129347A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201922357612.7 2019-12-24
CN201922357612.7U CN212623054U (zh) 2019-12-24 2019-12-24 辅助定位柱以及自行走机器人的导航辅助***

Publications (1)

Publication Number Publication Date
WO2021129347A1 true WO2021129347A1 (zh) 2021-07-01

Family

ID=74728584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133747 WO2021129347A1 (zh) 2019-12-24 2020-12-04 辅助定位柱以及自行走机器人的导航辅助***

Country Status (2)

Country Link
CN (1) CN212623054U (zh)
WO (1) WO2021129347A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120089295A1 (en) * 2010-10-07 2012-04-12 Samsung Electronics Co., Ltd. Moving robot and method to build map for the same
CN104062973A (zh) * 2014-06-23 2014-09-24 西北工业大学 一种基于图像标志物识别的移动机器人slam方法
CN109556616A (zh) * 2018-11-09 2019-04-02 同济大学 一种基于视觉标记的自动建图机器人建图修整方法
CN109783593A (zh) * 2018-12-27 2019-05-21 驭势科技(北京)有限公司 一种可用于自动驾驶的地图更新***与方法
CN109920266A (zh) * 2019-02-20 2019-06-21 武汉理工大学 一种智能车辆定位方法
CN110147095A (zh) * 2019-03-15 2019-08-20 广东工业大学 基于路标信息与多传感器数据融合的机器人重定位方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120089295A1 (en) * 2010-10-07 2012-04-12 Samsung Electronics Co., Ltd. Moving robot and method to build map for the same
CN104062973A (zh) * 2014-06-23 2014-09-24 西北工业大学 一种基于图像标志物识别的移动机器人slam方法
CN109556616A (zh) * 2018-11-09 2019-04-02 同济大学 一种基于视觉标记的自动建图机器人建图修整方法
CN109783593A (zh) * 2018-12-27 2019-05-21 驭势科技(北京)有限公司 一种可用于自动驾驶的地图更新***与方法
CN109920266A (zh) * 2019-02-20 2019-06-21 武汉理工大学 一种智能车辆定位方法
CN110147095A (zh) * 2019-03-15 2019-08-20 广东工业大学 基于路标信息与多传感器数据融合的机器人重定位方法

Also Published As

Publication number Publication date
CN212623054U (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
CN203867180U (zh) 一种带导板的梁柱节点专用模板***
USRE29936E (en) Swimming pool wall
US6834471B2 (en) Extruded bracket with miter cut
CN109057366A (zh) 一种钢结构旋转楼梯分段拼装方法
WO2021129347A1 (zh) 辅助定位柱以及自行走机器人的导航辅助***
CN204000618U (zh) 一种桁架式0#块现浇支架
CN204214445U (zh) 一种激光放线定位辅助工具
CN204590602U (zh) 一种阴角限位装置
JP2019078005A (ja) 支柱の支持構造
CN205857759U (zh) 墙柱阳角标记模具
CN109518606B (zh) 用于调整曲面模板的弧形垫板及其安装工艺
JP2002201741A (ja) 間仕切パネルシステム
JP2002106065A (ja) 横断面サイズの異なる鉄骨柱材同士の接合構造
JP2016053259A (ja) 型枠の位置決め具
CN211341611U (zh) 阳角固定件
CA2948970C (en) Anchor for securing a post to deck elements, and a deck assembly therewith
CN212002263U (zh) 一种用于柱梁的拼接塑胶建筑模板
JP6914903B2 (ja) パネル施工構造
CN207878952U (zh) 可移动式标高控制器
JPS5924710Y2 (ja) 水槽組立用単位板
JP3051197U (ja) 木造軸組工法用壁パネル
JP3050790U (ja) 十字形レベル
JPH0220327Y2 (zh)
JPH0236716Y2 (zh)
JP3015896U (ja) 天井廻縁の隅納め構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20905525

Country of ref document: EP

Kind code of ref document: A1