WO2021128683A1 - 基于稻壳灰颗粒的强化泡沫体系、制备方法及应用 - Google Patents

基于稻壳灰颗粒的强化泡沫体系、制备方法及应用 Download PDF

Info

Publication number
WO2021128683A1
WO2021128683A1 PCT/CN2020/088124 CN2020088124W WO2021128683A1 WO 2021128683 A1 WO2021128683 A1 WO 2021128683A1 CN 2020088124 W CN2020088124 W CN 2020088124W WO 2021128683 A1 WO2021128683 A1 WO 2021128683A1
Authority
WO
WIPO (PCT)
Prior art keywords
foam
rice husk
foam system
husk ash
water
Prior art date
Application number
PCT/CN2020/088124
Other languages
English (en)
French (fr)
Inventor
李兆敏
徐正晓
艾哈迈德伊沙格
刘成文
武守亚
吴明轩
陈丹琦
Original Assignee
中国石油大学(华东)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(华东) filed Critical 中国石油大学(华东)
Publication of WO2021128683A1 publication Critical patent/WO2021128683A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/166Injecting a gaseous medium; Injecting a gaseous medium and a liquid medium

Definitions

  • the invention relates to the technical field of oil and gas field development engineering, in particular to an enhanced foam system based on synergistic stability of rice husk ash particles, a preparation method and an application.
  • Foam flooding is widely used as a technical means to improve oil recovery, and it has been applied for nearly 60 years. Foam can cause the relative permeability of the gas phase to decrease and delay the gas fingering. Foam quality is a key factor in determining the efficiency of foam flooding.
  • foam is a thermodynamically unstable dispersion system, and this instability has a huge impact on the application of foam.
  • the main factors that affect foam flooding to increase recovery are the stability and plugging performance of the foam system.
  • Scholars at home and abroad have conducted a lot of research on how to improve foam stability and have also proposed many methods.
  • Chinese patent CN 108165248 B provides an enhanced foam system based on synergistic stability of graphite particles and a preparation method thereof. It has a simple preparation process and can realize large-scale and rapid preparation. It is a foam system suitable for oil and gas well applications and can significantly improve oil recovery. , The advantages of environmental protection. However, only when the graphite particles reach the nanometer level (graphene) can stabilize the foam, and the preparation process of graphene is not simple. Large-scale preparation cannot guarantee the quality of graphene, which will affect the stability of the foam.
  • Chinese patent document CN 109517337 A (application number 201811314211.7) relates to a carbonized rice husk foam photothermal material and its preparation method.
  • the above-mentioned patent uses rice husk ash to prepare photothermal materials, using rice husk ash's natural micro- and nano-pore structure, high carbon content (30-40 wt%) and wide light absorption range (UV-NIR). Light zone).
  • rice husk ash As a foam flooding in the oil field, it needs to stabilize the foam under harsh reservoir conditions, improve the water-oil mobility ratio, and increase the sweep volume and oil washing efficiency. Therefore, there is no relevant report about the application of rice husk ash in foam flooding to improve oil recovery.
  • the purpose of the present invention is to provide a low-cost, stable performance, simple preparation method based on rice husk ash synergistically stable reinforced foam system, preparation method and application, so as to solve the problem of high cost, complex preparation and unstable performance of the existing foam system. problem.
  • the present invention provides technical solutions as follows:
  • a reinforced foam system based on synergistic stability of rice husk ash which comprises the following components in parts by weight: 0.6-0.8 parts of anionic surfactant, 0.5-2 parts of rice husk ash particles, and 100 parts of water.
  • the rice husk ash particles are 0.8 to 1.5 parts.
  • the anionic surfactant is an anionic surfactant having both a hydrophilic group and a hydrophobic group.
  • the anionic surfactant is one or more of sodium dodecylbenzene sulfonate, sodium lauryl sulfate, and sodium (-2-ethyl)hexyl succinate; More preferably, it is sodium dodecylbenzene sulfonate.
  • the water is distilled water.
  • the average particle size of the rice husk ash particles is 50-100 nm, and the wetting angle to water is 30°-50°.
  • the rice husk ash particles are made of flake powder rice husk ash by ball milling, the average particle size of the rice husk ash flake powder is 2-10 ⁇ m, and the wetting angle to water is 30°-50° .
  • the rice husk ash After the rice husk ash is ball milled, it is sieved into smaller rice husk ash particles, which are evenly and stably dispersed in water, showing a certain degree of hydrophilicity; anionic surfactants have both hydrophilic and hydrophobic groups, By combining hydrophilic segments with hydrophilic rice husk ash particles, and extending the hydrophobic segments to the aqueous solution, the surface hydrophobic properties of the rice husk ash particles are increased.
  • the reinforced foam system provided by the present invention has stronger temperature resistance.
  • the present invention also provides a method for preparing the above-mentioned reinforced foam system based on synergistic stability of rice husk ash particles, including:
  • Step 1 Add the rice husk ash particles after ball milling to water for ultrasonic dispersion to obtain a rice husk ash dispersion;
  • Step 2 Add an anionic surfactant to the rice husk ash dispersion of step 1, and stir to obtain a compound dispersion;
  • Step 3 Put the compound dispersion liquid in the pipe column, and use the aeration method to generate foam.
  • the particle size of the rice husk ash particles is between 50-100 nm, and the wetting angle to water is 30°-50°; the quality of the rice husk ash particles in the rice husk ash dispersion is equal to The mass ratio of water is 0.5 to 1:100.
  • the ultrasonic dispersion time is 1 to 3 hours, and the ultrasonic power is 500 to 1000 W; further preferably, the ultrasonic dispersion condition is 2 hours.
  • the mass ratio of the mass of the anionic surfactant to the water in the compound dispersion is 0.6-0.8:100.
  • the contact angle of rice husk ash with water is 100° ⁇ 120°, forming rice husk ash with certain hydrophobic properties, which can be irreversibly adsorbed to the bubble interface liquid film, and through flocculation, it forms a surface at the interface.
  • the dense layer increases the viscoelasticity of the foam liquid film and reduces the drainage and gas diffusion of the foam.
  • the stirring temperature is 25°C to 30°C, and the stirring time is 0.5 to 1 h.
  • the aeration method adopted is to pass the gas source through the capillary glass core plate at the bottom of the pipe column at a certain flow rate, so that the rice husk ash dispersion in the pipe column generates foam.
  • the flow rate used is 300 mL/min
  • the gas source used is air, nitrogen or carbon dioxide gas.
  • the gas source is nitrogen.
  • the present invention also provides the application of the above-mentioned enhanced foam system in oilfield development.
  • the enhanced foam system can be used as a foam flooding to improve the oil recovery.
  • the above-mentioned enhanced foam system is used as a foam flooding method to increase the oil recovery rate as follows:
  • the applicable stratum permeability gradient range of the foam system is less than 15, and the stratum variation coefficient is 0.6 ⁇ 0.7;
  • the gas-liquid ratio of the foam system is between 0.5 and 2.5, and the best injection time for the foam system is 80% to 90% of the formation water content;
  • the foam system injection method adopts slug injection, continuous foam injection or alternate gas-liquid injection, and the injection volume of the foam system is controlled within 0.3-0.5 PV.
  • the laboratory test can increase the recovery rate in the range of 20% to 30%.
  • the formation permeability difference is about 10
  • the recovery rate is increased the most.
  • the reason for injecting the foam system when the formation water content is 80%-90% is: when the water content is too low, the remaining oil saturation of the formation is high, the foam meets the oil and the defoaming effect is too strong, when the water content is too high, the formation is easy to form a water drive channel, which reduces The blocking strength of the foam.
  • the gas-liquid ratio of the foam system has the strongest plugging effect in the range of 0.5-2.5.
  • the gas-liquid ratio is preferably in the range of 0.5-1.0;
  • the foam system injection mode in step (4) is a slug injection mode, which has a greater extent of improvement in oil recovery than the foam continuous injection and gas-liquid alternate injection modes.
  • the foam control and displacement has a good regulation effect on longitudinal heterogeneity and planar heterogeneity, and can form a displacement front like a piston.
  • the rice husk ash used in the present invention is prepared by a high-temperature roasting method, and the specific preparation method includes the following steps:
  • the sieved rice husk (average particle size between 2-10 ⁇ m) is soaked in distilled water and a hydrochloric acid solution with a concentration of 0.1-0.4mol/L to remove the dust and metal in the rice husk and then put it in a muffle furnace Medium roasting at a temperature of 200-500°C, and a time of 1 to 5 hours, to remove the volatiles in the rice husks to obtain charred rice husks;
  • step (2) Mix the carbonized rice husk obtained in step (1) with 0.1-0.4mol/L sodium hydroxide solution (wherein the mass ratio of sodium hydroxide to carbonized rice husk is 0.2-0.6), mix uniformly after mechanical stirring, and make Sodium hydroxide solution fully soaks the carbonized rice husk, washes and dries for use after removing impurities;
  • step (2) The sample in step (2) is roasted in an inert gas atmosphere for 0.5-5h, at a temperature of 400-800°C, and a heating rate of 2-5°C/min to obtain activated rice husk ash.
  • the calcination temperature in step (3) is 400-600°C, and the content of lignin and cellulose that have not been completely decomposed in the low-temperature rice husk ash obtained is about 2% to 5% (weight percentage). There is a fibrous structure in the obtained rice husk ash, which acts as a bridge and support on the foam liquid film.
  • the present invention further provides a method for ball milling and sieving rice husk ash into smaller rice husk ash particles, and the specific method is as follows:
  • the present invention uses an anionic surfactant and rice husk ash particles to prepare a stable foam system for the first time, increases the hydrophobic properties of the rice husk ash particles, can be irreversibly adsorbed to the bubble interface liquid film, and through flocculation, on the interface A dense layer is formed, which increases the viscoelasticity of the foam liquid film, reduces the drainage and gas diffusion of the foam; and the present invention can serve as a part of the silica nanoparticles due to the high silica content in the rice husk ash.
  • the foam stabilizing effect saves the step of processing rice husk ash into nano-silica, reduces the cost, has a simple preparation process, and can significantly improve the recovery factor.
  • Using the rice husk ash nanoparticles of the present invention to enhance the recovery rate of foam flooding can increase by 20%-30%.
  • Rice husk is a kind of agricultural waste that is abundant in rice-producing countries, and its combustion product is rice husk ash. In rural areas, the most important way for people to treat rice husk is to burn it in the wild, which will cause serious air pollution.
  • the rice husk ash prepared by controlling the burning conditions of rice husk has the characteristics of high amorphous silica content, huge specific surface area and porosity, and has been successfully applied to improve various properties of concrete.
  • the invention is based on the high activity of rice husk ash.
  • Nano rice husk ash particles can be adsorbed on the foam liquid film to increase the viscoelasticity of the liquid film, reduce foam drainage, and slow down gas diffusion; the rice husk is rich in lignin and cellulose, After the rice husk ash is formed, part of the undecomposed lignin and cellulose remains. It has a bridging support function to improve the stability of the foam; the addition of rice husk ash can enhance the viscosity of the foam system liquid phase, thereby increasing the foam
  • the thickness of the liquid film can reduce the gas fluidity during the displacement process, slow down the occurrence of gas channeling, and improve the recovery factor. It is used as a foam stabilizing material to improve the stability of the foam, so that rice husk, which is a huge annual output of agricultural product processing waste, can be fully utilized in the field of oil and gas field development engineering technology.
  • Figure 1 is a SEM scanning electron microscope image of the rice husk ash before ball milling and sieving treatment of the present invention
  • Figure 2 is an SEM scanning electron microscope image of the rice husk ash after ball mill sieving treatment of the present invention
  • Figure 3 is a particle size distribution diagram of the rice husk ash ball mill and sieving process of the present invention.
  • Figure 4 is a comparison diagram of the viscosity of the foaming agent base liquid with and without rice husk ash according to the present invention.
  • Figure 5 is a comparison diagram of the maximum viscosity of the foam produced with and without rice husk ash according to the present invention.
  • Fig. 6 is a comparison diagram of the recovery factor of different displacement modes of the present invention.
  • the rice husk ash used in the embodiment of the present invention is prepared according to the following method, including:
  • Step 1 The sieved rice husks are mixed with distilled water and 0.2mol/L hydrochloric acid solution to remove dust and metal from the rice husks and then roasted in a muffle furnace at a temperature of 300°C and a time of 3 hours. Remove the volatile matter in the rice husk to obtain carbonized rice husk;
  • Step 2 Mix the carbonized rice husks obtained in step (1) with 0.2mol/L sodium hydroxide solution (the mass ratio of sodium hydroxide to carbonized rice husks is 0.4), stir and mix uniformly to make the sodium hydroxide solution Fully infiltrate the carbonized rice husk, wash and dry for later use after removing impurities;
  • Step 3 The sample in step (2) is roasted in an inert gas atmosphere for 3 hours, at a temperature of 600° C., and a heating rate of 3° C./min to obtain activated rice husk ash.
  • the rice husk ash obtained by the above method is a flake powder before ball milling, with a particle size of 2-10 ⁇ m. As shown in Figure 1, the wetting angle to water is in the range of 30°-50°.
  • the flake powder rice husk ash is ball milled and sieved into smaller rice husk ash particles, and the method includes the following steps:
  • Step 1 Take a sufficient amount of rice husk ash and place it in the zirconia tank of the planetary ball mill, and put it into the grinding ball;
  • Step 2 Set the rotation speed of the ball mill in step (1) to 300s -1 , the instrument stops working after 2 hours of processing, and a sample of rice husk ash particles is collected;
  • Step 3 Use a laser particle size analyzer to test the particle size distribution of the rice husk ash particle sample
  • Step 4 Determine whether the particle size of the rice husk ash particle sample meets the requirement of 50-100nm, if not, continue to repeat step (2) and step (3) in sequence until the particle size meets the requirement.
  • the rice husk ash after ball milling is granular, with an average particle size between 50 and 100 nm, as shown in Figure 2.
  • the average particle size is about 100 nm, as shown in Figure 3.
  • the rice husk ash particles after ball milling were subjected to XRF (X-ray fluorescence spectroscopy) analysis, and the components and percentages are shown in Table 1.
  • Table 1 The components and percentages of rice husk ash particles after ball milling
  • rice husk ash is mainly composed of a variety of oxides, the main component is silica, and multiple oxides can synergistically play a good role in the foam stabilization system.
  • rice husk is rich in lignin and cellulose. After the rice husk ash is formed, part of the undecomposed lignin and cellulose remains. It has a bridging support function to improve the stability of the foam.
  • the preparation method of the strengthened nitrogen foam system based on the synergistic stability of rice husk ash particles includes:
  • Step 1 Add 1g of rice husk ash particles with a particle size of 50-100nm and a wetting angle of 30°-50° to water into 100g of water, and perform ultrasonic dispersion at 30°C for 2h with an ultrasonic power of 800W to obtain rice husks Ash dispersion
  • Step 2 Add 0.7g of sodium dodecylbenzene sulfonate to the rice husk ash dispersion obtained in Step 1, stir at 30°C for 1 hour, and let stand for 10 minutes to obtain a compound dispersion.
  • the rice husk in the compound dispersion The contact angle of ash and water is about 100°;
  • Step 3 Put the compound dispersion liquid in the pipe column, and use the blast method to pass the nitrogen gas source through the capillary glass core plate at the flow rate of 300 mL/min at the bottom of the pipe column to make the rice husk ash dispersion liquid in the pipe column foam.
  • a synergistic and stable enhanced nitrogen foam system based on rice husk ash particles is obtained.
  • the preparation method of the enhanced carbon dioxide foam system based on the synergistic stability of rice husk ash particles includes:
  • Step 1 Add 1g of rice husk ash particles with a particle size of 50-100nm and a wetting angle of 30°-50° to water into 100g of water, and perform ultrasonic dispersion at 30°C for 2h with an ultrasonic power of 800W to obtain rice husks Ash dispersion
  • Step 2 Add 0.7g of sodium dodecylbenzene sulfonate to the rice husk ash dispersion obtained in Step 1, stir at 30°C for 1 hour, and let stand for 10 minutes to obtain a compound dispersion.
  • the rice husk in the compound dispersion The contact angle of ash and water is about 100°;
  • Step 3 Put the compound dispersion liquid in the pipe column, and use the air blast method to pass the carbon dioxide gas source through the capillary glass core plate at the bottom of the pipe column at a flow rate of 300 mL/min to make the rice husk ash dispersion liquid in the pipe column foam.
  • a synergistically stable enhanced carbon dioxide foam system based on rice husk ash particles is obtained.
  • the preparation method of the strengthened nitrogen foam system based on the synergistic stability of rice husk ash particles includes:
  • Step 1 Add 1g of rice husk ash particles with a particle size of 50-100nm and a wetting angle of 30°-50° to water into 100g of water, and perform ultrasonic dispersion at 30°C for 2h with an ultrasonic power of 800W to obtain rice husks Ash dispersion
  • Step 2 Add 0.6g of sodium dodecylbenzene sulfonate to the rice husk ash dispersion obtained in Step 1, stir at 30°C for 1 hour, and let stand for 10 minutes to obtain a compound dispersion.
  • the rice husk in the compound dispersion The contact angle of ash and water is about 100°;
  • Step 3 Put the compound dispersion liquid in the pipe column, and use the blast method to pass the nitrogen gas source through the capillary glass core plate at the flow rate of 300 mL/min at the bottom of the pipe column to make the rice husk ash dispersion liquid in the pipe column foam.
  • a synergistic and stable enhanced nitrogen foam system based on rice husk ash particles is obtained.
  • the preparation method of the strengthened nitrogen foam system based on the synergistic stability of rice husk ash particles includes:
  • Step 1 Add 1g of rice husk ash particles with a particle size of 50-100nm and a wetting angle of 30°-50° to water into 100g of water, and perform ultrasonic dispersion at 30°C for 2h with an ultrasonic power of 800W to obtain rice husks Ash dispersion
  • Step 2 Add 0.8 g of sodium dodecylbenzene sulfonate to the rice husk ash dispersion obtained in step 1, stir at 30°C for 1 hour, and let stand for 10 minutes to obtain a compound dispersion.
  • the rice husk in the compound dispersion The contact angle of ash and water is about 100°;
  • Step 3 Put the compound dispersion liquid in the pipe column, and use the blast method to pass the nitrogen gas source through the capillary glass core plate at the flow rate of 300 mL/min at the bottom of the pipe column to make the rice husk ash dispersion liquid in the pipe column foam.
  • a synergistic and stable enhanced nitrogen foam system based on rice husk ash particles is obtained.
  • the preparation method of the strengthened nitrogen foam system based on the synergistic stability of rice husk ash particles includes:
  • Step 1 Add 0.5g of rice husk ash particles with a particle size of 50-100nm and a wettability angle of 30°-50° to water into 100g of water, and conduct ultrasonic dispersion at 30°C for 2h, with an ultrasonic power of 800W, to obtain rice Shell ash dispersion;
  • Step 2 Add 0.7g of sodium dodecylbenzene sulfonate to the rice husk ash dispersion obtained in Step 1, stir at 30°C for 1 hour, and let stand for 10 minutes to obtain a compound dispersion.
  • the rice husk in the compound dispersion The contact angle of ash and water is about 100°;
  • Step 3 Put the compound dispersion liquid in the pipe column, and use the blast method to pass the nitrogen gas source through the capillary glass core plate at the flow rate of 300 mL/min at the bottom of the pipe column to make the rice husk ash dispersion liquid in the pipe column foam.
  • a synergistic and stable enhanced nitrogen foam system based on rice husk ash particles is obtained.
  • the preparation method of the strengthened nitrogen foam system based on the synergistic stability of rice husk ash particles includes:
  • Step 1 Add 1g of rice husk ash particles with a particle size of 50-100nm and a wetting angle of 30°-50° to water into 100g of water, and perform ultrasonic dispersion at 30°C for 2h, with an ultrasonic power of 800W, to obtain rice husks Ash dispersion
  • Step 2 Add 0.7g of sodium lauryl sulfate to the rice husk ash dispersion obtained in step 1, stir at 30°C for 1 hour, and let stand for 10 minutes to obtain a compound dispersion.
  • the rice husk ash and the rice husk ash in the compound dispersion The contact angle of water is about 100°;
  • Step 3 Put the compound dispersion liquid in the pipe column, and use the blast method to pass the nitrogen gas source through the capillary glass core plate at the flow rate of 300 mL/min at the bottom of the pipe column to make the rice husk ash dispersion liquid in the pipe column foam.
  • a synergistic and stable enhanced nitrogen foam system based on rice husk ash particles is obtained.
  • a relevant comparison ratio is set for performance verification.
  • the reagents and materials used in the examples and comparative examples can be obtained through commercial channels unless otherwise specified.
  • the preparation method of the nitrogen foam system containing only sodium dodecylbenzene sulfonate and water includes:
  • Step 1 Add 0.7g of sodium dodecylbenzene sulfonate to 100g of water, stir at 30°C for 1 hour, and let stand for 10 minutes;
  • Step 2 Place the re-foaming agent solution in the pipe column, and use the air bubbling method to pass the nitrogen gas source through the capillary glass core plate at the bottom of the pipe column at a flow rate of 300 mL/min to make the foaming agent solution in the pipe column foam.
  • the nitrogen foam system is obtained.
  • the preparation method of the carbon dioxide foam system containing only sodium dodecylbenzene sulfonate and water includes:
  • Step 1 Add 0.7g of sodium dodecylbenzene sulfonate to 100g of water, stir at 30°C for 1 hour, and let stand for 10 minutes;
  • Step 2 Put the re-foaming agent solution in the pipe column, and use the air bubbling method to pass the carbon dioxide gas source through the capillary glass core plate at the bottom of the pipe column at a flow rate of 300 mL/min to make the foaming agent solution in the pipe column foam. Get the carbon dioxide foam system.
  • the preparation method of the strengthened nitrogen foam system based on the synergistic stability of rice husk ash particles includes:
  • Step 1 Add 1g of rice husk ash particles with a particle size of 50-100nm and a wetting angle of 30°-50° to water into 100g of water, and perform ultrasonic dispersion at 30°C for 2h with an ultrasonic power of 800W to obtain rice husks Ash dispersion
  • Step 2 Add 0.7g of polyoxyethylene laureth to the rice husk ash dispersion obtained in step 1, stir at 30°C for 1 hour, and let stand for 10 minutes to obtain a compound dispersion.
  • the rice husk ash and the rice husk ash in the compound dispersion The contact angle of water is about 100°;
  • Step 3 Put the compound dispersion liquid in the pipe column, and use the blast method to pass the nitrogen gas source through the capillary glass core plate at the flow rate of 300 mL/min at the bottom of the pipe column to make the rice husk ash dispersion liquid in the pipe column foam.
  • a synergistic and stable enhanced nitrogen foam system based on rice husk ash particles is obtained.
  • the preparation method of the strengthened nitrogen foam system based on the synergy and stability of nano SiO2 particles includes:
  • Step 1 Add 1g of nano-SiO2 particles with a particle size of 50-100nm and a wetting angle of 30°-50° to water into 100g of water, and perform ultrasonic dispersion at 30°C for 2h, with an ultrasonic power of 800W, to obtain nano-SiO2 dispersion liquid;
  • Step 2 Add 0.7g of sodium dodecylbenzene sulfonate to the nano-SiO2 dispersion obtained in step 1, stir for 1 hour at 30°C, and let stand for 10 minutes to obtain a compound dispersion.
  • the nano-SiO2 in the compound dispersion The contact angle with water is about 100°;
  • Step 3 Put the compound dispersion liquid in the pipe column, and use the air bubbling method to pass the nitrogen gas source through the capillary glass core plate at the bottom of the pipe column at a flow rate of 300 mL/min, so that the nano-SiO2 dispersion liquid in the pipe column generates foam, namely A synergistic and stable enhanced nitrogen foam system based on nano-SiO2 particles is obtained.
  • the method for preparing an enhanced nitrogen foam system based on the synergistic stability of rice husk ash particles includes: Step 1: Add 1 g of rice husk ash particles with a particle size of 50-100nm and a wettability angle of 30°-50° to water to 100g Carry out ultrasonic dispersion in water at 30°C for 2 hours with an ultrasonic power of 800W to obtain rice husk ash dispersion;
  • Step 2 Add 0.1 g of sodium dodecylbenzene sulfonate to the rice husk ash dispersion obtained in step 1, stir at 30°C for 1 hour, and let stand for 10 minutes to obtain a compound dispersion.
  • the rice husk in the compound dispersion The contact angle of ash and water is about 100°;
  • Step 3 Put the compound dispersion liquid in the pipe column, and use the blast method to pass the nitrogen gas source through the capillary glass core plate at the flow rate of 300 mL/min at the bottom of the pipe column to make the rice husk ash dispersion liquid in the pipe column foam.
  • a synergistic and stable enhanced nitrogen foam system based on rice husk ash particles is obtained.
  • the preparation method of the strengthened nitrogen foam system based on the synergistic stability of rice husk ash particles includes:
  • Step 1 Add 2g of rice husk ash particles with a particle size of 50-100nm and a wetting angle of 30°-50° to water into 100g of water, and perform ultrasonic dispersion at 30°C for 2h with an ultrasonic power of 800W to obtain rice husks Ash dispersion
  • Step 2 Add 0.7g of sodium dodecylbenzene sulfonate to the rice husk ash dispersion obtained in Step 1, stir at 30°C for 1 hour, and let stand for 10 minutes to obtain a compound dispersion.
  • the rice husk in the compound dispersion The contact angle of ash and water is about 100°;
  • Step 3 Put the compound dispersion liquid in the pipe column, and use the blast method to pass the nitrogen gas source through the capillary glass core plate at the flow rate of 300 mL/min at the bottom of the pipe column to make the rice husk ash dispersion liquid in the pipe column foam.
  • a synergistic and stable enhanced nitrogen foam system based on rice husk ash particles is obtained.
  • Table 2 shows the performance data of the foam height and foam life of the foam systems prepared in Examples 1 to 6 and Comparative Examples 1 to 6.
  • Table 2 shows the performance data of the foam height and foam life of each foam system
  • the strengthened foam system based on the synergistic stability of rice husk ash particles provided by the present invention has excellent foaming performance, long foam life time, and good foaming stability.
  • the test results are: the height of the foam system is 450mm; when the rice husk ash is 0.6g, the foam life of the foam system is 82min; when the rice husk ash is 0.8, the foam life of the foam system is 88min; when the rice husk ash is 1.5g , The foam life of the foam system is 88min.
  • Example 1 Example 6 and Comparative Example 3 shows that in the reinforced foam system based on the synergistic stability of rice husk ash particles, anionic surfactants show better stability, while some nonionic surfactants are relatively stable. The foam stabilization performance is worse.
  • Example 1 Comparing Example 1, Example 5 and Comparative Example 6, it can be seen that when the addition amount of the surfactant is constant, the addition amount of rice husk ash particles has a certain effect on the enhanced foam system. Within a certain range, the addition of rice husk ash particles is The more the amount, the better the foam stabilization performance, but beyond the range, due to the aggregation of rice husk ash particles, the foam stabilization performance of the system will decrease.
  • Example 1 and Comparative Example 4 shows that the foam stabilization performance of rice husk ash particles is similar to that of pure nano-silica particles, but the silica content in rice husk ash particles is less than that of Comparative Example 4.
  • the amount of pure nano-silica shows that in addition to silica in rice husk ash, other ingredients also play a synergistic role.
  • the rice husk ash particles are more cost-effective.
  • the pure nano-silica particles have good uniformity and are tightly arranged on the foam liquid film, mainly for slowing down Foam drainage.
  • the uniformity of rice husk ash particles is relatively dependent on the ball milling process, which is relatively poor, but the fibrous structure has a bridging support function, which can enhance the strength of the liquid film and reduce the disproportionate deformation of the foam.
  • the rice husk ash particles are close to pure nano-silica particles in terms of foam stabilization, the liquid phase viscosity of rice husk ash is greater than that of pure silica, which has certain advantages in improving oil recovery because it improves water and oil flow.
  • rice husk ash has a fibrous network structure, similar to polymers, which can play a certain role in the efficiency of washing oil.
  • Figure 4 is a comparison diagram of the base fluid viscosity of the foam system with rice husk ash (Example 1), without rice husk ash (Comparative Example 1), and silica (Comparative Example 3) according to the present invention
  • Figure 5 is respectively The invention has a rice husk ash (Example 1), no rice husk ash (Comparative Example 1), and a silica (Comparative Example 3)-containing foam stabilizing system to produce a comparison chart of the maximum viscosity of the foam. From Figure 4 and Figure 5, it can be seen that the foaming agent base fluid viscosity after adding rice husk ash and the maximum viscosity of the generated foam are the largest.
  • the addition of rice husk ash can increase the viscosity of the liquid phase of the foam system, thereby increasing the liquid film of the foam. Thickness, can reduce the gas mobility during the displacement process, slow down the occurrence of gas channeling, and improve the recovery factor.
  • the rice husk ash-enhanced foam system is more suitable for oilfields.
  • experiment example 1 In order to compare the recovery factor under different displacement modes, experiment example 1 to experiment example 3 were carried out, and the details are as follows:
  • Water flooding Fill the core tube model with 100 mesh quartz sand, and then vacuum the core tube to saturate water; calculate the core tube porosity and water permeability; use a plunger pump to saturate oil into the core tube at a speed of 0.5 mL/min , And calculate the irreducible water saturation and initial oil saturation of the core tube; use a plunger pump to flood the core tube for 5PV at a speed of 1.5 mL/min. During the displacement process, the oil production at the outlet end was recorded and the recovery factor was calculated.
  • Ordinary foam flooding configure ordinary foam system solution (comparative example 1) to be used; fill the core tube model with 100 mesh quartz sand, and then vacuum the core tube to saturate water; calculate the core tube porosity and water permeability; use a plunger The pump saturates the core tube with oil at a speed of 0.5 mL/min, and calculates the irreducible water saturation and initial oil saturation of the core tube; a plunger pump is used to drive the core tube with water at a speed of 1.5 mL/min for 2PV; water After flooding, control the gas injection rate to 1mL/min and the foaming agent injection rate to 0.5mL/min.
  • the gas and foaming agent dispersion will pass through the foam generator to produce ordinary foam, and the foam will be injected into the core at a rate of 1.5mL/min. Perform ordinary foam flooding 1PV in the tube; after ordinary foam flooding, perform subsequent water flooding 2PV. During the displacement process, the oil production at the outlet end was recorded and the recovery factor was calculated.
  • Enhanced foam flooding configure the dispersion of the enhanced foam system (Example 1) to be used; fill the core tube model with 100 mesh quartz sand, and then vacuum the core tube to saturate water; calculate the core tube porosity and water permeability; Use a plunger pump to saturate oil into the core tube at a speed of 0.5 mL/min, and calculate the irreducible water saturation and initial oil saturation of the core tube; use a plunger pump to water drive the core tube at a speed of 1.5 mL/min 2PV; After the water flooding is completed, control the gas injection rate to 1mL/min, and control the injection rate of the enhanced foaming agent dispersion to 0.5mL/min.
  • the gas and the enhanced foaming agent dispersion will pass through the foam generator to produce enhanced foam, with the foam at 1.5
  • the rate of mL/min is injected into the core tube for enhanced foam flooding 1PV; after the enhanced foam flooding is completed, the subsequent water flooding 2PV is performed.
  • the oil production at the outlet end was recorded and the recovery factor was calculated.
  • the rice husk ash foam stabilization system is applied to the petroleum field as a chemical flooding in the tertiary oil recovery mode, which is specifically manifested as enhanced foam fluid flooding.
  • the rice husk ash particle system can enhance the strength of the foam liquid film and slow down the foam drainage.
  • the role of liquid disproportionation in the oil displacement process by increasing the viscosity of the displacement fluid, improves the water-oil mobility ratio, increases the swept volume and the oil washing efficiency, and thereby improves the crude oil recovery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

本发明提供一种基于稻壳灰协同稳定的强化泡沫体系,由以下重量份的组分组成:阴离子表面活性剂0.6~0.8份,稻壳灰颗粒0.5~2份,水100份。本发明使用阴离子表面活性剂与稻壳灰颗粒制备得到稳定的泡沫体系,增加了稻壳灰颗粒的疏水性能,能够不可逆的吸附到气泡界面液膜上,并且通过凝絮作用,在界面上形成一层致密层,增加了泡沫液膜的粘弹性,降低了泡沫的排液以及气体扩散。稻壳灰中部分残留的未被分解的木质素和纤维素具备桥接支撑作用使得泡沫的稳定性提高。稻壳灰的加入可以增强泡沫体系液相的粘度,从而增加泡沫的液膜厚度,在驱替过程中可以降低气体流度,减缓气窜的发生,提高采收率。

Description

基于稻壳灰颗粒的强化泡沫体系、制备方法及应用 技术领域
本发明涉及油气田开发工程技术领域,特别涉及一种基于稻壳灰颗粒协同稳定的强化泡沫体系、制备方法及应用。
背景技术
泡沫驱作为一种提高原油采收率的技术手段应用广泛,至今已经有近60年的应用历史。泡沫可以引起气相相对渗透率降低,延缓气体指进。泡沫质量是决定泡沫驱油效率的关键因素,然而泡沫作为一种热力学上不稳定的分散体系,这种不稳定性给泡沫的应用带来了巨大影响。影响泡沫驱提高采收率的主要因素是泡沫体系的稳定性及封堵性能,国内外的学者们围绕如何提高泡沫稳定性进行了大量研究,也提出了许多方法。
研发新型的起泡剂是一种重要的方法。目前对起泡剂的研发主要集中在表面活性剂的合成或复配,由于表面活性剂自身化学特性的限制,虽然可以产生足够的起泡体积,但是其稳定性较差。泡沫必须保持足够稳定才能有效地发挥作用,而研究表明,单纯使用表面活性剂并不足以产生持久稳定的泡沫。为了提高表面活性剂的性能,现已提出将包含合适化学添加剂的表面活性剂组合物用于稳定泡沫,常用化学添加剂包括有机化合物、电解质、细碎颗粒、聚合物和液晶等。纳米颗粒的使用在一定程度上起到了表面活性剂的替代作用,通过在界面处产生强烈吸附,以在恶劣的储层条件下稳定泡沫,因此得到了广泛研究。但是一般的纳米颗粒往往存在制作成本高、制备工艺复杂的缺陷。
中国专利CN 108165248 B提供一种基于石墨颗粒协同稳定的强化泡沫体系及其制备方法,具有制备工艺简单,可实现大规模快速制备,是适于油气井应用的泡沫体系,能显著提高采收率,环保的优点。但是石墨颗粒达到纳米级别(石墨烯)才能够起到稳泡作用,而石墨烯的制备工艺并不简单,大规模制备无法保证石墨烯的品质,从而会对泡沫的稳定产生影响。
中国专利文献CN 109517337 A(申请号201811314211.7)涉及一种炭化稻壳泡沫光热 材料及其制备方法。将2~8质量份的炭化稻壳加入到100质量份的去离子水中,混合均匀,再加入2~2.5质量份的十二烷基磺酸钠、2~2.5质量份的十二醇和2~2.5质量份的树脂胶,在40~60℃和100~200r/min条件下搅拌10~20min,得到混合液;在转速为1500~2000r/min的条件下,将混合液搅拌15~20min,再向搅拌中的混合液加入3~12质量份的结合剂,继续搅拌5~10min,得到炭化稻壳泡沫料浆;将炭化稻壳泡沫料浆浇注成型,冷冻干燥6~12h,再于80~100℃条件下干燥18~24h,制得炭化稻壳泡沫光热材料。
但是,上述专利是利用稻壳灰制备光热材料,利用的是稻壳灰天然的微米孔和纳米孔结构、高的碳含量(30~40wt%)以及宽泛的光吸收范围(紫外-近红外光区)。而作为石油领域的泡沫驱需要在恶劣的储层条件下稳定泡沫,改善水油流度比,增大波及体积和洗油效率。因此,还未有将稻壳灰应用于泡沫驱中来提高石油采收率的相关报道。
发明内容
本发明的目的是提供一种成本低、性能稳定、制备方法简单的基于稻壳灰协同稳定的强化泡沫体系、制备方法及应用,以解决现有泡沫体系成本高、制备复杂以及性能不稳定的问题。
为解决上述技术问题,本发明提供技术方案如下:
一方面,提供一种基于稻壳灰协同稳定的强化泡沫体系,包括以下重量份的组分:阴离子表面活性剂0.6~0.8份,稻壳灰颗粒0.5~2份,水100份。
进一步优选的,所述稻壳灰颗粒为0.8~1.5份。
优选的,所述阴离子表面活性剂为同时具有亲水基团和疏水基团的阴离子表面活性剂。
进一步优选的,所述阴离子表面活性剂为十二烷基苯磺酸钠、十二烷基硫酸钠、丁二酸(-2-乙基)己酯磺酸钠中的一种或几种;进一步优选为十二烷基苯磺酸钠。
优选的,所述水为蒸馏水。
优选的,所述稻壳灰颗粒的平均粒径为50~100nm,对水的润湿角为30°~50°。
优选的,所述稻壳灰颗粒为片状粉末稻壳灰经球磨制成,所述稻壳灰片状粉末的平均粒径为2~10μm,对水的润湿角为30°~50°。
稻壳灰经球磨处理后,筛分为尺度更小的稻壳灰颗粒,均匀稳定的分散在水中,呈现出 一定的亲水性;阴离子表面活性剂同时具有亲水基团和疏水基团,其通过亲水链段和具有亲水性的稻壳灰颗粒相结合,并将疏水链段伸向水溶液,增加了稻壳灰颗粒的表面疏水性能。
优于稻壳灰具有优秀的耐温性能,所以本发明提供的强化泡沫体系具有较强的耐温性。
另一方面,本发明还提供上述基于稻壳灰颗粒协同稳定的强化泡沫体系的制备方法,包括:
步骤1:将球磨处理后的稻壳灰颗粒加入到水中进行超声分散,得到稻壳灰分散液;
步骤2:将阴离子表面活性剂加入到步骤1的稻壳灰分散液中,搅拌,得到复配分散液;
步骤3:将复配分散液置于管柱内,用鼓气法生成泡沫后即得。
优选的,所述步骤1中,稻壳灰颗粒的粒径为50~100nm之间,对水的润湿角为30°~50°;稻壳灰分散液中的稻壳灰颗粒的质量与水的质量比为0.5~1:100。
优选的,所述步骤1中,超声分散的时间为1~3h,超声功率为500~1000W;进一步优选的,超声分散的条件为时间2h。
优选的,步骤2中,所述复配分散液中阴离子表面活性剂质量与水的质量比为0.6~0.8:100。此时,稻壳灰与水的接触角为100°~120°,形成具有一定疏水性质的稻壳灰,能够不可逆的吸附到气泡界面液膜上,并且通过凝絮作用,在界面上形成一层致密层,增加了泡沫液膜的粘弹性,降低了泡沫的排液以及气体扩散。
优选的,所述步骤2中,搅拌温度为25℃~30℃,搅拌时间为0.5~1h。
优选的,所述步骤3中,所采用的鼓气法是将气源以一定的流量在管柱底部通过毛细玻璃芯板,使管柱内稻壳灰分散液产生泡沫。
进一步优选的,所用流量为300mL/min,所用气源为空气、氮气或二氧化碳气体。
进一步优选的,所述气源为氮气。
再一方面,本发明还提供上述强化泡沫体系在油田开发中的应用,该强化泡沫体系作为泡沫驱能提高原油采收率。
优选的,上述强化泡沫体系作为泡沫驱提高原油采收率的使用方法为:
(1)在泡沫体系注入之前测试注水井的吸水剖面,或者利用示踪剂等方法测试地层大孔道的存在状况,了解窜流通道的存在和发育情况;当高渗层或者水驱形成的窜流通道渗透 率大于10达西时,泡沫注入之前要用高强度堵剂进行深部封堵;
(2)泡沫体系适用的地层渗透率级差范围小于15,地层变异系数为0.6~0.7;
(3)泡沫体系气液比在0.5~2.5,泡沫体系最佳注入时机为地层含水80%~90%;
(4)泡沫体系注入方式采用段塞注入、泡沫连续注入或气液交替注入方式,所述泡沫体系注入量控制在0.3~0.5PV。
上述泡沫体系注入量控制在0.3~0.5PV范围内时,单位体积泡沫采收率提高幅度最大。
当泡沫体系适用的地层渗透率级差范围小于15时,室内试验提高采收率范围为20%~30%。优选的,当地层渗透率级差为10左右时,采收率提高幅度最大。
当地层含水80%~90%时注入泡沫体系的原因是:含水太低时地层剩余油饱和度高,泡沫遇油消泡作用太强,含水太高时地层容易形成水驱窜流通道,降低泡沫的封堵强度。
该泡沫体系气液比在0.5~2.5范围内封堵作用最强,考虑到气窜问题,气液比优选为0.5~1.0范围;
优选的,步骤(4)中泡沫体系注入方式为段塞注入方式,该方式比泡沫连续注入和气液交替注入方式采收率提高幅度大。
该泡沫调驱对于纵向非均质和平面非均质都有较好的调节作用,可以形成类似活塞式的驱替前缘。
本发明所使用的稻壳灰经高温焙烧方法制备而成,具体制备方法包括以下步骤:
(1)筛选后的稻壳(平均粒径在2~10μm之间)分别用蒸馏水和浓度为0.1~0.4mol/L的盐酸溶液浸泡处理,除去稻壳中的灰尘和金属然后在马弗炉中焙烧,温度为200~500℃,时间为1~5小时,除去稻壳中的挥发分,得到炭化稻壳;
(2)将步骤(1)得到的炭化稻壳与0.1~0.4mol/L氢氧化钠溶液混合(其中氢氧化钠与炭化稻壳的质量比为0.2~0.6),机械搅拌后混合均匀,使氢氧化钠溶液充分浸润炭化稻壳,去除杂质后水洗、烘干备用;
(3)将步骤(2)中的样品在惰性气体氛围中焙烧,时间为0.5~5h,温度为400~800℃,升温速率为2~5℃/min,从而得到活化后的稻壳灰。
优选的,步骤(3)中所述焙烧温度为400~600℃,所得低温稻壳灰中未被完全分解的木 质素和纤维素含量大约在2%~5%(重量百分数)。所得稻壳灰中存在纤维状结构,该结构在泡沫液膜上起到桥接支撑作用。
本发明进一步提供了稻壳灰球磨筛分为尺度更小稻壳灰颗粒的方法,具体方法如下:
步骤(1.1):取足量稻壳灰置于行星球磨仪的氧化锆罐中,放入磨球;
步骤(1.2):将步骤(1.1)中的球磨仪转速设置为300s-1,加工2h后仪器停止工作,采集稻壳灰颗粒样品;
步骤(1.3):利用激光粒度仪测试稻壳灰颗粒样品的粒径分布;
步骤(1.4):判断稻壳灰颗粒样品粒径是否满足50~100nm的要求,若不满足,继续依次重复步骤(1.2)和步骤(1.3),直至粒径满足要求为止。
本申请的实施例中提供一个或多个技术方案,至少具有如下技术效果或优点:
本发明首次使用阴离子表面活性剂与稻壳灰颗粒制备得到稳定的泡沫体系,增加了稻壳灰颗粒的疏水性能,能够不可逆的吸附到气泡界面液膜上,并且通过凝絮作用,在界面上形成一层致密层,增加了泡沫液膜的粘弹性,降低了泡沫的排液以及气体扩散;且本发明因稻壳灰中二氧化硅含量较高,可以起到部分二氧化硅纳米颗粒的稳泡效果,省去了稻壳灰加工为纳米二氧化硅的步骤,成本降低,制备工艺简单,可显著提高采收率。使用本发明稻壳灰纳米颗粒强化泡沫驱采收率可以提高20%~30%。
稻壳是一种在水稻生产国家十分充足的农业废料,其燃烧产物为稻壳灰。在乡村,人们对于稻壳最重要的处理方式为野外焚烧,这会带来很严重的空气污染。控制稻壳燃烧条件制得的稻壳灰具有无定形二氧化硅含量高、比表面积巨大和多孔等特征,已被成功应用于提高混凝土的各项性能。本发明基于稻壳灰的高活性,纳米稻壳灰颗粒可以吸附在泡沫液膜上,增加液膜粘弹性,降低泡沫排液,减缓气体扩散;稻壳中含有丰富的木质素和纤维素,在形成稻壳灰后,部分未被分解的木质素和纤维素残留下来,其具备桥接支撑作用使得泡沫的稳定性提高;稻壳灰的加入可以增强泡沫体系液相的粘度,从而增加泡沫的液膜厚度,在驱替过程中可以降低气体流度,减缓气窜的发生,提高采收率。将其作为泡沫稳定材料以改善泡沫的稳定性,使得稻壳这一年产量巨大的农产品加工废弃物得以充分利用于油气田开发工程技术领域。
附图说明
图1为本发明的稻壳灰球磨筛分处理前的SEM扫描电镜图像;
图2为本发明的稻壳灰球磨筛分处理后的SEM扫描电镜图像;
图3为本发明的稻壳灰球磨筛分处理后其分散液的粒径分布图;
图4为本发明的有、无稻壳灰的起泡剂基液粘度对比图;
图5为本发明的有、无稻壳灰的所生成泡沫最大粘度对比图;
图6为本发明的不同驱替方式采收率对比图。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本发明实施例所使用的稻壳灰按照下述方法制备,包括:
步骤1:筛选后的稻壳分别用蒸馏水和浓度为0.2mol/L的盐酸溶液混合处理,除去稻壳中的灰尘和金属然后在马弗炉中焙烧,温度为300℃,时间为3小时,除去稻壳中的挥发分,得到炭化稻壳;
步骤2:将步骤(1)得到的炭化稻壳与0.2mol/L氢氧化钠溶液混合(其中氢氧化钠与炭化稻壳的质量比为0.4),机械搅拌后混合均匀,使氢氧化钠溶液充分浸润炭化稻壳,去除杂质后水洗烘干备用;
步骤3:将步骤(2)中的样品在惰性气体氛围中焙烧,时间为3h,温度为600℃,升温速率为3℃/min,从而得到活化后的稻壳灰。
上述方法所得稻壳灰在球磨处理前的为片状粉末,粒径为2~10μm,如图1所示,对水的润湿角为30°~50°范围。
将上述片状粉末稻壳灰球磨筛分为尺度更小稻壳灰颗粒,其方法包括以下步骤:
步骤1:取足量稻壳灰置于行星球磨仪的氧化锆罐中,放入磨球;
步骤2:将步骤(1)中的球磨仪转速设置为300s -1,加工2h后仪器停止工作,采集稻壳灰颗粒样品;
步骤3:利用激光粒度仪测试稻壳灰颗粒样品的粒径分布;
步骤4:判断稻壳灰颗粒样品粒径是否满足50~100nm的要求,若不满足,继续依次重复步骤(2)和步骤(3),直至粒径满足要求为止。
球磨处理后的稻壳灰为颗粒状,平均粒径在50~100nm之间,如图2所示。球磨后的稻壳灰分散液中,平均粒径在100nm左右,如图3所示。
将上述球磨后的稻壳灰颗粒进行XRF(X射线荧光光谱分析)分析,其组分及百分占比见表1。
表1球磨后的稻壳灰颗粒中各组分及百分占比
序号 组分 百分含量(%)
1 SiO 2 76.320
2 ZnO 10.352
3 K 2O 3.032
4 CaO 2.126
5 Cl 1.339
6 MnO 1.105
7 MgO 1.904
8 Al 2O 3 0.761
9 P 2O 5 0.737
10 Fe 2O 3 0.609
11 SO 3 0.566
12 ZrO 2 0.054
13 TiO 2 0.044
14 Bi 2O 3 0.018
15 Rb 2O 0.014
16 SrO 0.010
由表1的XRF分析结果可知,稻壳灰主要由多种氧化物组成,主要成分是二氧化硅,多种氧化物可以在稳泡体系中协同发挥很好的作用。另外,稻壳中含有丰富的木质素和纤维素,在形成稻壳灰后,部分未被分解的木质素和纤维素残留下来,其具备桥接支撑作用使得泡沫的稳定性提高。
实施例1
基于稻壳灰颗粒协同稳定的强化氮气泡沫体系的制备方法,包括:
步骤1:将粒径为50~100nm,对水的润湿角为30°~50°的稻壳灰颗粒1g加入到100g水中,30℃下进行超声分散2h,超声功率为800W,得到稻壳灰分散液;
步骤2:将0.7g十二烷基苯磺酸钠加入到步骤1得到的稻壳灰分散液中,在30℃下搅拌1h,静置10min,得到复配分散液,复配分散液中稻壳灰与水的接触角约为100°;
步骤3:将复配分散液置于管柱内,用鼓气法将氮气气源以300mL/min的流量在管柱底部通过毛细玻璃芯板,使管柱内稻壳灰分散液产生泡沫,即得基于稻壳灰颗粒协同稳定的强化氮气泡沫体系。
实施例2
基于稻壳灰颗粒协同稳定的强化二氧化碳泡沫体系的制备方法,包括:
步骤1:将粒径为50~100nm,对水的润湿角为30°~50°的稻壳灰颗粒1g加入到100g水中,30℃下进行超声分散2h,超声功率为800W,得到稻壳灰分散液;
步骤2:将0.7g十二烷基苯磺酸钠加入到步骤1得到的稻壳灰分散液中,在30℃下搅拌1h,静置10min,得到复配分散液,复配分散液中稻壳灰与水的接触角约为100°;
步骤3:将复配分散液置于管柱内,用鼓气法将二氧化碳气源以300mL/min的流量在管柱底部通过毛细玻璃芯板,使管柱内稻壳灰分散液产生泡沫,即得基于稻壳灰颗粒协同稳定的强化二氧化碳泡沫体系。
实施例3
基于稻壳灰颗粒协同稳定的强化氮气泡沫体系的制备方法,包括:
步骤1:将粒径为50~100nm,对水的润湿角为30°~50°的稻壳灰颗粒1g加入到100g水中,30℃下进行超声分散2h,超声功率为800W,得到稻壳灰分散液;
步骤2:将0.6g十二烷基苯磺酸钠加入到步骤1得到的稻壳灰分散液中,在30℃下搅拌1h,静置10min,得到复配分散液,复配分散液中稻壳灰与水的接触角约为100°;
步骤3:将复配分散液置于管柱内,用鼓气法将氮气气源以300mL/min的流量在管柱底部通过毛细玻璃芯板,使管柱内稻壳灰分散液产生泡沫,即得基于稻壳灰颗粒协同稳定的强化氮气泡沫体系。
实施例4
基于稻壳灰颗粒协同稳定的强化氮气泡沫体系的制备方法,包括:
步骤1:将粒径为50~100nm,对水的润湿角为30°~50°的稻壳灰颗粒1g加入到100g水中,30℃下进行超声分散2h,超声功率为800W,得到稻壳灰分散液;
步骤2:将0.8g十二烷基苯磺酸钠加入到步骤1得到的稻壳灰分散液中,在30℃下搅拌1h,静置10min,得到复配分散液,复配分散液中稻壳灰与水的接触角约为100°;
步骤3:将复配分散液置于管柱内,用鼓气法将氮气气源以300mL/min的流量在管柱底部通过毛细玻璃芯板,使管柱内稻壳灰分散液产生泡沫,即得基于稻壳灰颗粒协同稳定的强化氮气泡沫体系。
实施例5
基于稻壳灰颗粒协同稳定的强化氮气泡沫体系的制备方法,包括:
步骤1:将粒径为50~100nm,对水的润湿角为30°~50°的稻壳灰颗粒0.5g加入到100g水中,30℃下进行超声分散2h,超声功率为800W,得到稻壳灰分散液;
步骤2:将0.7g十二烷基苯磺酸钠加入到步骤1得到的稻壳灰分散液中,在30℃下搅拌1h,静置10min,得到复配分散液,复配分散液中稻壳灰与水的接触角约为100°;
步骤3:将复配分散液置于管柱内,用鼓气法将氮气气源以300mL/min的流量在管柱底部通过毛细玻璃芯板,使管柱内稻壳灰分散液产生泡沫,即得基于稻壳灰颗粒协同稳定的强化氮气泡沫体系。
实施例6
基于稻壳灰颗粒协同稳定的强化氮气泡沫体系的制备方法,包括:
步骤1:将粒径为50~100nm,对水的润湿角为30°~50°的稻壳灰颗粒1g加入到100g 水中,30℃下进行超声分散2h,超声功率为800W,得到稻壳灰分散液;
步骤2:将0.7g十二烷基硫酸钠加入到步骤1得到的稻壳灰分散液中,在30℃下搅拌1h,静置10min,得到复配分散液,复配分散液中稻壳灰与水的接触角约为100°;
步骤3:将复配分散液置于管柱内,用鼓气法将氮气气源以300mL/min的流量在管柱底部通过毛细玻璃芯板,使管柱内稻壳灰分散液产生泡沫,即得基于稻壳灰颗粒协同稳定的强化氮气泡沫体系。
为了进一步说明本发明取得的有益效果,设置相关的对比例,进行性能验证。实施例及对比例中使用试剂及材料,如无特殊说明,均可通过商业途径得到。
对比例1
仅含有十二烷基苯磺酸钠和水的氮气泡沫体系的制备方法包括:
步骤1:将0.7g十二烷基苯磺酸钠加入到100g水中,在30℃下搅拌1h,静置10min;
步骤2:将复起泡剂溶液置于管柱内,用鼓气法将氮气气源以300mL/min的流量在管柱底部通过毛细玻璃芯板,使管柱内起泡剂溶液产生泡沫,即得氮气泡沫体系。
对比例2
仅含有十二烷基苯磺酸钠和水的二氧化碳泡沫体系的制备方法包括:
步骤1:将0.7g十二烷基苯磺酸钠加入到100g水中,在30℃下搅拌1h,静置10min;
步骤2:将复起泡剂溶液置于管柱内,用鼓气法将二氧化碳气源以300mL/min的流量在管柱底部通过毛细玻璃芯板,使管柱内起泡剂溶液产生泡沫,即得二氧化碳泡沫体系。
对比例3
基于稻壳灰颗粒协同稳定的强化氮气泡沫体系的制备方法,包括:
步骤1:将粒径为50~100nm,对水的润湿角为30°~50°的稻壳灰颗粒1g加入到100g水中,30℃下进行超声分散2h,超声功率为800W,得到稻壳灰分散液;
步骤2:将0.7g月桂醇聚氧乙烯醚加入到步骤1得到的稻壳灰分散液中,在30℃下搅拌1h,静置10min,得到复配分散液,复配分散液中稻壳灰与水的接触角约为100°;
步骤3:将复配分散液置于管柱内,用鼓气法将氮气气源以300mL/min的流量在管柱底部通过毛细玻璃芯板,使管柱内稻壳灰分散液产生泡沫,即得基于稻壳灰颗粒协同稳定的强 化氮气泡沫体系。
对比例4
基于纳米SiO2颗粒协同稳定的强化氮气泡沫体系的制备方法,包括:
步骤1:将粒径为50~100nm,对水的润湿角为30°~50°的纳米SiO2颗粒1g加入到100g水中,30℃下进行超声分散2h,超声功率为800W,得到纳米SiO2分散液;
步骤2:将0.7g十二烷基苯磺酸钠加入到步骤1得到的纳米SiO2分散液中,在30℃下搅拌1h,静置10min,得到复配分散液,复配分散液中纳米SiO2与水的接触角约为100°;
步骤3:将复配分散液置于管柱内,用鼓气法将氮气气源以300mL/min的流量在管柱底部通过毛细玻璃芯板,使管柱内纳米SiO2分散液产生泡沫,即得基于纳米SiO2颗粒协同稳定的强化氮气泡沫体系。
对比例5
基于稻壳灰颗粒协同稳定的强化氮气泡沫体系的制备方法,包括:步骤1:将粒径为50~100nm,对水的润湿角为30°~50°的稻壳灰颗粒1g加入到100g水中,30℃下进行超声分散2h,超声功率为800W,得到稻壳灰分散液;
步骤2:将0.1g十二烷基苯磺酸钠加入到步骤1得到的稻壳灰分散液中,在30℃下搅拌1h,静置10min,得到复配分散液,复配分散液中稻壳灰与水的接触角约为100°;
步骤3:将复配分散液置于管柱内,用鼓气法将氮气气源以300mL/min的流量在管柱底部通过毛细玻璃芯板,使管柱内稻壳灰分散液产生泡沫,即得基于稻壳灰颗粒协同稳定的强化氮气泡沫体系。
对比例6
基于稻壳灰颗粒协同稳定的强化氮气泡沫体系的制备方法,包括:
步骤1:将粒径为50~100nm,对水的润湿角为30°~50°的稻壳灰颗粒2g加入到100g水中,30℃下进行超声分散2h,超声功率为800W,得到稻壳灰分散液;
步骤2:将0.7g十二烷基苯磺酸钠加入到步骤1得到的稻壳灰分散液中,在30℃下搅拌1h,静置10min,得到复配分散液,复配分散液中稻壳灰与水的接触角约为100°;
步骤3:将复配分散液置于管柱内,用鼓气法将氮气气源以300mL/min的流量在管柱底 部通过毛细玻璃芯板,使管柱内稻壳灰分散液产生泡沫,即得基于稻壳灰颗粒协同稳定的强化氮气泡沫体系。
上述实施例1~6及对比例1~6制备的泡沫体系的泡沫高度及泡沫寿命的性能数据见表2。
表2为各泡沫体系的泡沫高度及泡沫寿命的性能数据
Figure PCTCN2020088124-appb-000001
Figure PCTCN2020088124-appb-000002
由上表可知,本发明提供的基于稻壳灰颗粒协同稳定的强化泡沫体系,具有优异的起泡性能,且泡沫寿命时间长,起泡稳定性能好的特点。
本发明在实施例1的条件下,还进行了稻壳灰颗粒加入量分别为0.6g、0.8g和1.5g时的泡沫高度及泡沫寿命试验。试验结果为:泡沫体系的高度均为450mm;稻壳灰为0.6g时,泡沫体系的泡沫寿命为82min;稻壳灰为0.8时,泡沫体系的泡沫寿命为88min;稻壳灰为1.5g时,泡沫体系的泡沫寿命为88min。
实施例1~2和对比例1~2比较可得:氮气泡沫的稳定性要优于二氧化碳泡沫,这是由于二氧化碳气体与表面活性剂尾链及头基之间存在相互作用,使表面活性剂分子的疏水性增强,表面活性剂尾链刚性增加,使得气体透过液膜扩散速度增加、泡沫聚并现象明显,最终导致二氧化碳泡沫稳定性差。且稻壳灰颗粒的加入能够协同表面活性剂进行稳定泡沫,大大提升了泡沫的寿命。
由实施例1、3、4和对比例3可知:表面活性剂十二烷基苯磺酸钠添加的量对强化泡沫体系有一定影响,表面活性剂加量较少时起泡性能较差,当加量达到一定值后强化泡沫体系性能达到最佳,此时再增加其用量,泡沫稳定性提升效果趋于平缓。
实施例1、实施例6和对比例3比较可知,在基于稻壳灰颗粒协同稳定的强化泡沫体系中,阴离子表面活性剂表现出较好的稳定性,而相对来说部分非离子表面活性剂的稳泡性能较差些。
实施例1、实施例5和对比例6比较可知,在表面活性剂的加量一定时,稻壳灰颗粒的加量对强化泡沫体系有一定影响,在一定范围内,稻壳灰颗粒添加得越多,稳泡性能越好, 但超出范围后,由于稻壳灰颗粒的聚集反而会使得体系的稳泡性能下降。
实施例1和对比例4比较可得:稻壳灰颗粒发挥的稳泡性能和纯纳米二氧化硅颗粒的稳泡性能相近,然而由于稻壳灰颗粒中二氧化硅含量少于对比例4中纯纳米二氧化硅的量,说明稻壳灰中除了二氧化硅发挥了重要作用外,其他成分也起到了一定的协同促进作用。另外由于稻壳灰颗粒的成本较低、原料易得,制备方法简单,因而具有更高的性价比。
就此处的稻壳灰体系和已加工好的纯二氧化硅体系的稳泡性能而言,各有优势,纯纳米二氧化硅颗粒均匀性很好,在泡沫液膜上排列紧密,主要是减缓泡沫排液。而稻壳灰颗粒的均匀性比较依赖于球磨过程,相对来说较差些,但是纤维状结构具备桥接支撑作用,能够增强液膜的强度,减弱泡沫歧化变形。虽然在稳泡方面稻壳灰颗粒接近于纯纳米二氧化硅颗粒;但是稻壳灰液相粘度要大于纯二氧化硅,在提高采收率方面要占据一定优势,因为更加改善了水油流度比,而且稻壳灰具有纤维状网络结构,类似于聚合物,能够在洗油效率上发挥一定作用。
图4分别为本发明的有稻壳灰(实施例1)、无稻壳灰(对比例1)、含二氧化硅(对比例3)的泡沫体系基液粘度对比图;图5分别为本发明的有稻壳灰(实施例1)、无稻壳灰(对比例1)、含二氧化硅(对比例3)的稳泡体系所生成泡沫最大粘度对比图。通过图4和图5可得,加入稻壳灰后的起泡剂基液粘度和所生成泡沫的最大粘度最大,稻壳灰的加入可以增强泡沫体系液相的粘度,从而增加泡沫的液膜厚度,在驱替过程中可以降低气体流度,减缓气窜的发生,提高采收率,稻壳灰强化泡沫体系更适用于油田领域中。
为比较不同驱替方式下的采收率,进行了实验例1~实验例3,具体如下:
实验例1
水驱:用100目的石英砂填充岩心管模型,然后将岩心管抽真空饱和水;计算岩心管孔隙度和水测渗透率;用柱塞泵以0.5mL/min的速度向岩心管中饱和油,并计算岩心管的束缚水饱和度和初始含油饱和度;用柱塞泵以1.5mL/min的速度对岩心管进行水驱5PV。驱替过程中记录出口端的产油量,并计算采收率。
实验例2
普通泡沫驱:配置普通泡沫体系溶液(对比例1)待用;用100目的石英砂填充岩心管 模型,然后将岩心管抽真空饱和水;计算岩心管孔隙度和水测渗透率;用柱塞泵以0.5mL/min的速度向岩心管中饱和油,并计算岩心管的束缚水饱和度和初始含油饱和度;用柱塞泵以1.5mL/min的速度对岩心管进行水驱2PV;水驱结束后,控制注入气体速率为1mL/min,控制注入起泡剂速率为0.5mL/min,气体和起泡剂分散液通过泡沫发生器产生普通泡沫,泡沫以1.5mL/min的速率注入岩心管中进行普通泡沫驱1PV;普通泡沫驱结束后进行后续水驱2PV。驱替过程中记录出口端的产油量,并计算采收率。
实验例3
强化泡沫驱:配置本强化泡沫体系的分散液(实施例1)待用;用100目的石英砂填充岩心管模型,然后将岩心管抽真空饱和水;计算岩心管孔隙度和水测渗透率;用柱塞泵以0.5mL/min的速度向岩心管中饱和油,并计算岩心管的束缚水饱和度和初始含油饱和度;用柱塞泵以1.5mL/min的速度对岩心管进行水驱2PV;水驱结束后,控制注入气体速率为1mL/min,控制注入强化起泡剂分散液速率为0.5mL/min,气体和强化起泡剂分散液通过泡沫发生器产生强化泡沫,泡沫以1.5mL/min的速率注入岩心管中进行强化泡沫驱1PV;强化泡沫驱结束后进行后续水驱2PV。驱替过程中记录出口端的产油量,并计算采收率。
结合实验例1~实验例3得到不同驱替方式采收率对比图,如图6所示。注入相同体积的流体(5PV),水驱最终采收率为0.4,普通泡沫驱最终采收率为0.55,强化泡沫驱最终采收率为0.59,由此可知,基于稻壳灰颗粒协同稳定的强化泡沫体系可以明显提高石油采收率。
本发明中将稻壳灰稳泡体系应用到石油领域,是作为三次采油方式中的化学驱,具体表现为强化泡沫流体驱,稻壳灰颗粒体系能够起到增强泡沫液膜强度、减缓泡沫排液歧化等作用,在驱油过程中,通过增加驱替液的粘度,来改善水油流度比,增大波及体积和洗油效率,进而提高原油采收率。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种基于稻壳灰协同稳定的强化泡沫体系,其特征在于,包括以下重量份的组分:阴离子表面活性剂0.6~0.8份,稻壳灰颗粒0.5~2份,水100份。
  2. 根据权利要求1所述的强化泡沫体系,其特征在于,所述阴离子表面活性剂为十二烷基苯磺酸钠、十二烷基硫酸钠、丁二酸(-2-乙基)己酯磺酸钠中的一种或几种。
  3. 权利要求1或2所述强化泡沫体系的制备方法,其特征在于,包括以下步骤:
    步骤1:将球磨处理后的稻壳灰颗粒按组分配比加入到水中进行超声分散,得到稻壳灰分散液;
    步骤2:将阴离子表面活剂加入到步骤1得到的稻壳灰分散液中,搅拌,得到复配分散液;
    步骤3:将复配分散液置于管柱内,用鼓气法生成泡沫后即得。
  4. 根据权利要求3所述的强化泡沫体系的制备方法,其特征在于,所述步骤1中,所述超声分散的条件为时间1~3小时,超声功率为500~1000W。
  5. 根据权利要求4所述的强化泡沫体系的制备方法,其特征在于,所述步骤1中,超声分散的条件为时间2小时。
  6. 根据权利要求3所述的强化泡沫体系的制备方法,其特征在于,所述步骤2中,搅拌的条件为温度25℃~30℃,时间0.5~1小时。
  7. 根据权利要求3所述的强化泡沫体系的制备方法,其特征在于,所述步骤3中,所采用的鼓气法是将气源以一定的流量在管柱底部通过毛细玻璃芯板,使管柱内稻壳灰分散液产生泡沫。
  8. 根据权利要求3~7任一项所述的强化泡沫体系的制备方法,其特征在于,所用流量为300mL/min,所用气源为空气、氮气或二氧化碳气体。
  9. 基于稻壳灰协同稳定的强化泡沫体系在油田开发中的应用,其特征在于,该强化泡沫体系作为泡沫驱能提高原油采收率。
  10. 根据权利要求9所述的应用,其特征在于,所述强化泡沫体系作为泡沫驱提高原油采收率的使用方法为:
    (1)在泡沫体系注入之前测试注水井的吸水剖面,或者利用示踪剂测试地层大孔道的存在状况,了解窜流通道的存在和发育情况;当高渗层或者水驱形成的窜流通道渗透率大于10达西时,泡沫注入之前要用高强度堵剂进行深部封堵;
    (2)泡沫体系适用的地层渗透率级差范围小于15,地层变异系数为0.6~0.7;
    (3)泡沫体系气液比为0.5~2.5,泡沫体系最佳注入时机为地层含水80%~90%;
    (4)泡沫体系注入方式采用段塞注入方式,所述泡沫体系注入量控制在0.3~0.5PV。
PCT/CN2020/088124 2019-12-23 2020-04-30 基于稻壳灰颗粒的强化泡沫体系、制备方法及应用 WO2021128683A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911338872.8 2019-12-23
CN201911338872.8A CN111019622A (zh) 2019-12-23 2019-12-23 基于稻壳灰颗粒的强化泡沫体系、制备方法及应用

Publications (1)

Publication Number Publication Date
WO2021128683A1 true WO2021128683A1 (zh) 2021-07-01

Family

ID=70212688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088124 WO2021128683A1 (zh) 2019-12-23 2020-04-30 基于稻壳灰颗粒的强化泡沫体系、制备方法及应用

Country Status (2)

Country Link
CN (1) CN111019622A (zh)
WO (1) WO2021128683A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111019622A (zh) * 2019-12-23 2020-04-17 中国石油大学(华东) 基于稻壳灰颗粒的强化泡沫体系、制备方法及应用
CN114774095B (zh) * 2022-04-07 2023-11-28 西安石油大学 一种泡排剂组合物及其制备方法、应用
CN115960598B (zh) * 2023-03-17 2023-06-09 中国石油大学(华东) 微纳米粉煤灰颗粒强化泡沫体系的应用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102746841A (zh) * 2012-06-29 2012-10-24 中国石油大学(华东) 一种油气田用添加纳米颗粒的复合泡沫体系及其制备方法
US20130244911A1 (en) * 2005-09-09 2013-09-19 Halliburton Energy Services, Inc. Foamed Spacer Fluids Containing Cement Kiln Dust and Methods of Use
CN108165248A (zh) * 2018-03-05 2018-06-15 中国石油大学(华东) 基于石墨颗粒协同稳定的强化泡沫体系及其制备方法
CN111019622A (zh) * 2019-12-23 2020-04-17 中国石油大学(华东) 基于稻壳灰颗粒的强化泡沫体系、制备方法及应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2536578B (en) * 2013-12-18 2021-06-09 Halliburton Energy Services Inc Corrosion-resistant refractory binder compositions and oil well completion and production operations
CN103694983B (zh) * 2014-01-06 2016-08-17 中国石油大学(华东) 一种泡沫驱油用粘土稳泡复合剂及其制备方法与应用
CN105038756B (zh) * 2015-07-08 2018-04-24 中国石油大学(华东) 一种驱油用添加亲水型纳米颗粒的二氧化碳泡沫体系及其制备方法
CN105238380B (zh) * 2015-09-21 2016-10-05 中国石油大学(华东) 一种油气田用新型无机微细颗粒强化泡沫体系及其制备方法
CN106753307B (zh) * 2016-11-10 2019-01-29 东北石油大学 一种用于稠油油藏热采的耐温耐盐发泡剂体系及制备方法
CN108678715B (zh) * 2018-06-15 2019-11-01 中国石油大学(华东) 一种粘弹性泡沫驱开发深层稠油油藏的方法
CN109943313B (zh) * 2019-04-23 2021-03-12 中国石油大学(华东) 一种超临界二氧化碳微乳液与粉煤灰颗粒复配分散体制备设备及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130244911A1 (en) * 2005-09-09 2013-09-19 Halliburton Energy Services, Inc. Foamed Spacer Fluids Containing Cement Kiln Dust and Methods of Use
CN102746841A (zh) * 2012-06-29 2012-10-24 中国石油大学(华东) 一种油气田用添加纳米颗粒的复合泡沫体系及其制备方法
CN108165248A (zh) * 2018-03-05 2018-06-15 中国石油大学(华东) 基于石墨颗粒协同稳定的强化泡沫体系及其制备方法
CN111019622A (zh) * 2019-12-23 2020-04-17 中国石油大学(华东) 基于稻壳灰颗粒的强化泡沫体系、制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHUAH KAI JIE, MOHD ZAIDI JAAFAR, WAN ROSLI WAN SULAIMAN: "FOAM STABILITY PERFORMANCE ENHANCED WITH RICE HUSK ASH NANOPARTICLES", JURNAL TEKNOLOGI, PENERBIT UNIVERSITI TEKNOLOGI MALAYSIA, MALAYSIA, vol. 81, no. 4, Malaysia, XP055729550, ISSN: 0127-9696, DOI: 10.11113/jt.v81.13536 *

Also Published As

Publication number Publication date
CN111019622A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
WO2021128683A1 (zh) 基于稻壳灰颗粒的强化泡沫体系、制备方法及应用
CN104449631B (zh) 强气润湿性纳米二氧化硅解水锁剂、其制备方法及岩石表面润湿反转的方法
US10934467B2 (en) Foam fracturing fluid with double interface layers of a phlogisticated air-liquid CO2 for shale gas production and preparation method thereof
Wu et al. Novel high-hydrophilic carbon dots from petroleum coke for boosting injection pressure reduction and enhancing oil recovery
CN111804930B (zh) 一种纳米零价铁锰双金属及其制备方法和应用
CN113528107B (zh) 一种煤基碳量子点驱油剂及其在油气开采中的应用
CN106987188A (zh) 一种石墨烯基水性丙烯酸涂料及其制备方法
CN109423702A (zh) 一种高强度、高储氢量的石墨烯基碳纤维及其制备方法
CN108878813A (zh) 一种二氧化硅/木质素多孔碳复合材料及其制备方法和在锂离子电池负极材料中的应用
CN114149793B (zh) 一种高储能密度、高循环稳定性的高温热化学储热材料及其制备方法
WO2024001425A1 (zh) 一种用于提高低渗砂岩油藏采收率的界面活性剂的制备方法
CN102989515A (zh) 一种二氧化钛/杂多酸复合光催化剂的制备方法
CN112226227A (zh) 一种油田用气凝胶颗粒-二氧化碳-水基三相泡沫体系及其应用
CN113717708B (zh) 一种油气井压裂用低成本纳米颗粒增强型氟碳助排剂
Jie et al. Foam stability performance enhanced with rice husk ash nanoparticles
CN104419391B (zh) 固井用复合减轻材料及制备方法和深井复合水泥浆及应用
CN106517189A (zh) 一种用于气体分离的均匀超微孔活性炭及其制备方法
CN114685079A (zh) 一种缓释引气型纳米多孔复合材料及其制备方法和应用
WO2023221751A1 (zh) 一种华夫饼形貌吸附剂复合材料的制备方法
CN115960598B (zh) 微纳米粉煤灰颗粒强化泡沫体系的应用方法
US11866367B2 (en) Oil well cement composite permeation enhancement agent suitable for hydrate layer and preparation method
CN111085107A (zh) 多孔沥青路面负载复合改性光催化剂净化车辆尾气的方法
CN116731326A (zh) 一种地热井钻井液用抗高温抗高盐皮克林稳泡剂及其制备方法
CN113697807B (zh) 以氯化盐为模板剂制备电容炭并循环再生模板剂的方法
CN106083176A (zh) 一种高强陶瓷吸声板的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907574

Country of ref document: EP

Kind code of ref document: A1