WO2021128290A1 - 一种mof包覆的单晶三元正极材料及其前驱体的制备方法 - Google Patents

一种mof包覆的单晶三元正极材料及其前驱体的制备方法 Download PDF

Info

Publication number
WO2021128290A1
WO2021128290A1 PCT/CN2019/129254 CN2019129254W WO2021128290A1 WO 2021128290 A1 WO2021128290 A1 WO 2021128290A1 CN 2019129254 W CN2019129254 W CN 2019129254W WO 2021128290 A1 WO2021128290 A1 WO 2021128290A1
Authority
WO
WIPO (PCT)
Prior art keywords
mof
precursor
single crystal
solution
core
Prior art date
Application number
PCT/CN2019/129254
Other languages
English (en)
French (fr)
Inventor
许开华
蒋振康
张坤
薛晓斐
李聪
孙海波
陈康
黎俊
范亮姣
Original Assignee
格林美股份有限公司
荆门市格林美新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 格林美股份有限公司, 荆门市格林美新材料有限公司 filed Critical 格林美股份有限公司
Priority to JP2022539409A priority Critical patent/JP7265096B2/ja
Priority to EP19957734.7A priority patent/EP4084136A4/en
Priority to KR1020227025496A priority patent/KR102487642B1/ko
Publication of WO2021128290A1 publication Critical patent/WO2021128290A1/zh
Priority to US17/848,405 priority patent/US11708280B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1207Permanganates ([MnO]4-) or manganates ([MnO4]2-)
    • C01G45/1214Permanganates ([MnO]4-) or manganates ([MnO4]2-) containing alkali metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of lithium batteries, and relates to a method for preparing a lithium battery cathode material, and in particular to a method for preparing a MOF-coated single crystal ternary cathode material precursor.
  • Lithium-ion batteries have now occupied a very important position in the energy storage market due to their high-capacity advantages.
  • Ternary materials combine the advantages of three materials through the synergy of Ni-Co-Mn: LiCoO 2 has good cycle performance, LiNiO 2 has high specific capacity, and LiMnO 2 has the advantages of high safety and low cost.
  • LiCoO 2 has good cycle performance
  • LiNiO 2 has high specific capacity
  • LiMnO 2 has the advantages of high safety and low cost.
  • One of the most promising new cathode materials for lithium-ion batteries are the most promising new cathode materials for lithium-ion batteries.
  • the high nickel ternary cathode material has a higher specific capacity, it is a direction for the development of cathode materials in the future.
  • the material cycle and thermal stability also decrease, thereby affecting the cycle life and safety of the battery.
  • the most effective way to solve this problem is to prepare the core with high nickel and low manganese, and the outer shell with high manganese and low manganese.
  • the core-shell structure of nickel can increase the stability of the material and increase the capacity of the positive electrode material.
  • MOF materials have become an emerging material that has attracted the attention of scientific researchers in recent years due to their advantages of high specific surface area, controllable structure, porosity and large specific surface area. Since it is highly ordered at the nanometer level and the particles formed at the same time are at the nanometer level, it can ensure uniform dispersion at the atomic level.
  • the core-shell material structure precursor material prepared by ordinary co-precipitation method mainly adopts nickel, cobalt, manganese metal salt solution and ammonia complexing agent and liquid caustic to react to form spherical particles.
  • This precursor needs assistance when it is subsequently mixed with Li salt.
  • the solvent can ensure uniform mixing with the Li salt.
  • the required calcination temperature is high, the cost is high, and the structure stability formed after the final calcination is also poor, which affects the electrochemical performance of the cathode material.
  • the present invention provides a method for preparing a MOF-coated single crystal ternary cathode material precursor, which solves the problem of using high nickel to obtain higher specific capacity, cycle life, and safety in the prior art. Problems that cannot coexist.
  • the core adopts high nickel and low manganese precursors in the reaction
  • the outer shell adopts Mn to coordinate with organic carboxylate to synthesize Mn metal organic framework compound (Mn-MOF).
  • Mn-MOF Mn metal organic framework compound
  • This Mn MOF material is an infinitely ordered
  • the single crystal structure compound can ensure the uniformity of the Mn of the shell at the atomic level.
  • the shell of the core-shell structure synthesized by the present invention is a MOF material coated with a single crystal structure, it can be pre-fired at low temperature to form a nickel cobalt manganese oxide with a single crystal structure, and at the same time, there is no need to add a flux when mixing with Li salt. But because the single crystal structure covered by the outer shell helps the diffusion of Li.
  • the ternary positive electrode material with a single crystal structure synthesized by the present invention is highly ordered at the nanometer level, which shortens the migration path of Li, thereby improving the rate performance of the positive electrode material.
  • a preparation method of MOF-coated single crystal ternary cathode material includes the following steps:
  • Step 1 According to the molar ratio of x:y:1-xy, configure the A solution of the nickel cobalt manganese metal salt, the concentration of the A solution is 2-5mol/L, and configure a certain concentration of ammonia complexing agent solution and liquid caustic soda ( Sodium hydroxide, sodium carbonate or potassium hydroxide) solution, said ammonia concentration is 7-14 g/L, said 0.6 ⁇ x ⁇ 0.98, 0.01 ⁇ y ⁇ 0.2.
  • ammonia complexing agent solution and liquid caustic soda Sodium hydroxide, sodium carbonate or potassium hydroxide
  • Step 2 Add the solution A, ammonia complexing agent and liquid caustic soda (such as sodium hydroxide solution) into the reaction kettle at a certain feed rate, and react at 40-70°C for 60-120 hours to obtain a spherical shape Precursor core with better degree: Ni x Co y Mn 1-xy (OH) 2 , the average particle size of the precursor core is 3-8 ⁇ m.
  • the flow rate of the solution A is 6-9L/h
  • the flow rate of ammonia water is 1-1.5L/h
  • the flow rate of liquid caustic soda is 2.5-3.5L/h
  • the stirring speed is 250-500r/min.
  • Step 3 Dissolve organic carboxylate (5-hydroxyisophthalic acid, trimesic acid, 1,2,4,5-benzenetetracarboxylic acid) in a certain amount of organic solvents such as methanol, ethanol, etc., to obtain the concentration 2mol/L B solution; add B solution and a certain concentration of manganese metal salt solution to the above reaction kettle at a certain feeding rate, and react at 25-40°C and a stirring speed of 300-400r/min 3-6h, after aging for 2-5 hours, a MOF-coated single crystal ternary cathode material precursor is obtained.
  • the structure of the single crystal ternary cathode material precursor is MOF-Ni x Co y Mn 1-x (OH) 2.
  • the core of the single crystal ternary positive electrode material precursor is high nickel, and the outer shell is a pure manganese core-shell material coated with Mn-MOF single crystal.
  • the mole percentage of Ni to the total metal is 70-90%
  • the mole percentage of Co to the total metal is 5-20%
  • the mole percentage of Mn to the total metal is 10-30%.
  • the concentration of the manganese metal salt solution is 0.5-2 mol/L
  • the particle size of the MOF-Ni x Co y Mn 1-x (OH) 2 is 4-9 ⁇ m.
  • Step 4 Pre-burning the core-shell structure precursor (ie, the single crystal ternary cathode material precursor) with the core of high nickel and the outer shell of Mn-MOF single crystal coated at 300-600°C for 3-6h, A nickel-cobalt-manganese oxide with a single crystal structure is obtained.
  • the nickel-cobalt-manganese oxide of the single crystal structure and LiOH ⁇ H 2 O are uniformly mixed in a mortar according to a certain stoichiometric ratio (such as 1:1.5), and then calcined at 700-800°C for 10-20h to obtain a single crystal structure.
  • MOF-coated single crystal ternary cathode material with crystal structure is
  • the invention uses high nickel and low manganese precursors for the core in the reaction, and the shell uses Mn to coordinate with organic carboxylates to synthesize Mn-based metal organic framework compounds (Mn-MOF).
  • Mn-MOF metal organic framework compounds
  • the core-shell structure synthesized by the present invention is a MOF material coated with a single crystal structure, it can be pre-fired at low temperature to form a nickel-cobalt-manganese oxide with a single-crystal structure. At the same time, there is no need to add auxiliary when mixing with Li salt. The flux can ensure uniform mixing at the atomic level.
  • the ternary positive electrode material with a single crystal structure synthesized by the present invention is highly ordered at the nanometer level, which shortens the migration path of Li, thereby improving the rate performance of the positive electrode material.
  • FIG. 1 is an SEM image of the MOF-coated core-shell structure precursor obtained in Example 1 of the present invention.
  • Example 2 is a cross-sectional SEM image of the MOF-coated core-shell structure precursor obtained in Example 1 of the present invention
  • FIG. 3 is an EDS diagram of the core-shell structure precursor obtained in Example 1 of the present invention, in which the inside of the sphere represents the metallic Ni element, and the outside of the sphere represents the metallic Mn element.
  • Example 4 is a MOF-coated single crystal ternary cathode material obtained in Example 1 of the present invention.
  • Example 5 is an SEM image of the MOF-coated core-shell structure precursor obtained in Example 2 of the present invention.
  • Example 6 is a cross-sectional SEM image of the MOF-coated core-shell structure precursor obtained in Example 2 of the present invention.
  • FIG. 7 is a MOF-coated single crystal ternary cathode material obtained in Example 2 of the present invention.
  • Example 9 is a cross-sectional SEM image of the MOF-coated core-shell structure precursor obtained in Example 3 of the present invention.
  • FIG. 10 is a MOF-coated single crystal ternary cathode material obtained in Example 3 of the present invention.
  • Step 1 Add a nickel-cobalt-manganese salt solution (metal concentration of 2mol/L) with a metal molar ratio of 82:8:10 to the reactor at a flow rate of 6L/h with a metering pump, and at the same time add 12g/
  • the flow rates of L ammonia water and 3mol/L sodium hydroxide are 1L/h and 2.5L/h, respectively.
  • the pH of the system is maintained between 10.5-12.0 by controlling the flow rates of ammonia water and sodium hydroxide.
  • Nitrogen gas was introduced into the sealed reaction kettle with a flow rate of 2L/h.
  • the stirring speed of the stirring blade is 400r/min, and the reaction temperature of the system is 62°C.
  • the particle size of the particles in the reactor was measured with a laser particle size analyzer every 1 hour. By observing the morphology of the primary particles and secondary particles during the reaction, the primary particles were controlled to be flaky uniformly agglomerated spherical particles. When the particle size reaches 3.0 ⁇ m, the feeding is stopped, and nickel cobalt manganese hydroxide Ni 0.82 Co 0.08 Mn 0.1 (OH) 2 is obtained .
  • Step 2 Dissolve 5-hydroxyisophthalic acid in a certain amount of ethanol to obtain a mixed solution with a concentration of 2mol/L; combine 2mol 5-hydroxyisophthalic acid solution and 1.5mol/L manganese metal salt solution Add to the above reaction kettle at a certain feed rate, react at 40°C for 4 hours, stir at 350r/min, and then age for 2 hours to obtain a core with a particle size of 5.0 ⁇ m and a single crystal Mn-MOF coated shell.
  • Shell structure precursor (the structural formula is MOF-Ni 0.82 Co 0.08 Mn 0.1 (OH) 2 ), the core of the precursor is high nickel, and the outer shell is a core-shell material of pure manganese, and the chemical formula of the Mn-MOF is Mn (C 8 H 3 O 5 ) 2 ⁇ 2H 2 O.
  • Step 3 Pre-sintering 5Kg of MOF-Ni 0.82 Co 0.08 Mn 0.1 (OH) 2 precursor at 350°C to obtain a nickel-cobalt-manganese oxide with a single crystal structure (the structure is Ni 0.8 Co 0.05 Mn 0.15 O 1.5 ) .
  • the oxide and 4.5Kg of LiOH ⁇ H 2 O were uniformly mixed in a Henschel mixer.
  • the mixed materials were calcined at 700°C under an oxygen atmosphere for 10 hours.
  • the calcined materials were crushed and sieved, and finally A nickel-cobalt-manganese positive electrode material with a single crystal structure is obtained.
  • the positive electrode material was assembled into a CR2025 button cell, and its electrochemical performance was tested. The results showed that the discharge capacity was 196.56mA/g at a current density of 0.1C (17mA/g) and a voltage range of 2.5 to 4.3V.
  • the capacity retention rate of 50 cycles of 1C cycle is 97.56%
  • Step 1 The nickel-cobalt-manganese salt solution (metal concentration is 2mol/L) with a metal molar ratio of 75:13:12 is added to the reactor with a metering pump at a flow rate of 6L/h, and 12g/h is added to the reactor at the same time.
  • the flow rates of L ammonia water and 3mol/L sodium hydroxide are 1L/h and 2.5L/h, respectively.
  • the pH of the system is maintained between 10.5-12.0 by controlling the flow rates of ammonia water and sodium hydroxide.
  • Nitrogen gas was introduced into the sealed reaction kettle with a flow rate of 2L/h.
  • the stirring speed of the stirring blade is 400r/min, and the reaction temperature of the system is 62°C.
  • the particle size of the particles in the reactor was measured with a laser particle size analyzer every 1 hour. By observing the morphology of the primary particles and secondary particles during the reaction, the primary particles were controlled to be flaky uniformly agglomerated spherical particles. When the particle size reaches 3.8 ⁇ m, the feeding is stopped, and nickel-cobalt-manganese hydroxide Ni 0.75 Co 0.13 Mn 0.12 (OH) 2 is obtained .
  • Step 2 Dissolve 5-hydroxyisophthalic acid in a certain amount of ethanol to obtain a mixed solution with a concentration of 2mol/L; combine 2mol 5-hydroxyisophthalic acid solution with 1.5 manganese metal salt solution in a certain amount
  • the feed rate was added to the above reaction kettle, reacted at 40°C for 4h, stirred at 350r/min, and then aged for 2h to obtain a core-shell structure precursor with a particle size of 5.5 ⁇ m and a single crystal Mn-MOF coated outer shell.
  • the structural formula is MOF-Ni 0.75 Co 0.13 Mn 012 (OH) 2 ), the core of the precursor is high nickel, and the outer shell is a core-shell material of pure manganese.
  • the chemical formula of the Mn-MOF is Mn(C 8 H 3 O 5 ) 2 ⁇ 2H 2 O.
  • Step 3 Pre-sintering 5Kg of MOF-Ni 0.75 Co 0.13 Mn 0.12 (OH) 2 precursor at 350°C to obtain a single crystal structure of nickel cobalt manganese oxide (structure Ni 0.7 Co 0.1 Mn 0.2 O 1.5 ) .
  • the oxide and 4.5Kg of LiOH ⁇ H 2 O were uniformly mixed in a Henschel mixer.
  • the mixed materials were calcined at 700°C under an oxygen atmosphere for 10 hours.
  • the calcined materials were crushed and sieved, and finally A nickel-cobalt-manganese positive electrode material with a single crystal structure is obtained.
  • the cathode material was assembled into a CR2025 button cell, and its electrochemical performance was tested. The results showed that the discharge capacity was 186.56mA/g at a current density of 0.1C (17mA/g) and a voltage range of 2.5 to 4.3V.
  • the capacity retention rate of 50 cycles of 1C cycle is 98.56%.
  • Step 1 Add a nickel-cobalt-manganese salt solution with a metal molar ratio of 90:5:5 (metal concentration is 2mol/L) into the reactor at a flow rate of 6L/h with a metering pump, and at the same time add 12g/
  • the flow rates of L ammonia water and 3mol/L sodium hydroxide are 1L/h and 2.5L/h, respectively.
  • the pH of the system is maintained between 10.5-12.0 by controlling the flow rates of ammonia water and sodium hydroxide.
  • Nitrogen gas was introduced into the sealed reaction kettle with a flow rate of 2L/h.
  • the stirring speed of the stirring blade is 400r/min, and the reaction temperature of the system is 62°C.
  • the particle size of the particles in the reactor was measured with a laser particle size analyzer every 1 hour. By observing the morphology of the primary particles and secondary particles during the reaction, the primary particles were controlled to be flaky uniformly agglomerated spherical particles. When the particle size reaches 3.0 ⁇ m, the feeding is stopped, and nickel cobalt manganese hydroxide Ni 0.9 Co 0.05 Mn 0.05 (OH) 2 is obtained .
  • Step 2 Dissolve 5-hydroxyisophthalic acid in a certain amount of ethanol to obtain a mixed solution with a concentration of 2mol/L; combine 2mol 5-hydroxyisophthalic acid solution with 1.5 manganese metal salt solution in a certain amount
  • the feed rate was added to the above reaction kettle, reacted at 40°C for 4h, stirred at 350r/min, and then aged for 2h to obtain a core-shell structure precursor with a particle size of 4.5 ⁇ m and a single crystal Mn-MOF coated outer shell.
  • the structural formula is MOF-Ni 0.9 Co 0.05 Mn 0.05 (OH) 2 ), the core of the precursor is high nickel, and the outer shell is a core-shell material of pure manganese.
  • the chemical formula of the Mn-MOF is Mn(C 8 H 3 O 5 ) 2 ⁇ 2H 2 O.
  • Step 3 Pre-sintering 5Kg of MOF-Ni 0.9 Co 0.05 Mn 0.05 (OH) 2 precursor at 350°C to obtain a nickel-cobalt-manganese oxide with a single crystal structure (the structure is Ni 0.87 Co 0.03 Mn 0.1 O 1.5 ) .
  • the oxide and 4.5Kg of LiOH ⁇ H 2 O were uniformly mixed in a Henschel mixer.
  • the mixed materials were calcined at 700°C under an oxygen atmosphere for 10 hours.
  • the calcined materials were crushed and sieved, and finally A nickel-cobalt-manganese positive electrode material with a single crystal structure is obtained.
  • the cathode material was assembled into a CR2025 button cell, and its electrochemical performance was tested. The results showed that the discharge capacity was 201.56mA/g at a current density of 0.1C (17mA/g) and a voltage range of 2.5 to 4.3V.
  • the capacity retention rate of 50 cycles of 1C cycle is 9

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种MOF包覆的单晶三元正极材料及其前驱体的制备方法,首先按照摩尔比配置镍钴锰金属盐的A溶液,配置氨水络合剂溶液和液碱;然后将A溶液、氨水络合剂溶液和液碱以加入到反应釜中反应,得到前驱体内核;之后将有机羧酸盐溶于有机溶剂中得到B溶液;将B溶液与锰金属盐溶液加入到上述反应釜中反应,陈化后得到MOF包覆的核壳结构前驱体;将核壳结构前驱体进行低温预烧得到具有单晶结构的镍钴锰氧化物;将该单晶结构的镍钴锰氧化物与一水氢氧化锂在研钵中均匀混合进行高温煅烧,得到MOF包覆的单晶三元正极材料。克服了高镍带来的循环、热稳定性不好的问题,得到正极材料具有高倍率性、高容量和高循环性能的电化学性能。

Description

一种MOF包覆的单晶三元正极材料及其前驱体的制备方法 技术领域
本发明属于锂电池领域,涉及一种锂电池正极材料制备方法,具体涉及一种MOF包覆的单晶三元正极材料前驱体的制备方法。
背景技术
随着社会的快速发展,新能源动力电池汽车已逐渐进入人们的生活中,并且预计在2020年,新能源动力电池汽车将成为主流,这就要求动力电池具有较高的容量、热稳定性和循环稳定性。锂离子电池由于具有高容量的优势目前已经在储能市场中占据非常重要的地位。三元材料通过Ni-Co-Mn的协同作用,结合了三种材料的优点:LiCoO 2具有良好的循环性能,LiNiO 2具有高比容量和LiMnO 2具有高安全性和成本低等优点,已成为目前最具发展前景的新型锂离子电池正极材料之一。由于高镍三元正极材料具有较高的比容量,是未来正极材料发展的一个方向。但是随着镍含量增加,材料循环、热稳定性也随之降低,进而影响电池的循环寿命和安全性,目前解决该问题最有效的办法就是制备内核为高镍低锰、外壳为高锰低镍的核壳结构,可以增加材料的稳定性,提高正极材料的容量。
MOF材料由于具有高比表面积,结构可控性、多孔和大比表面积等优势近几年成为备受科研工作者关注的一种新兴材料。由于其在纳米级别上是高度有序的,同时形成的颗粒是纳米级别的,因此在能够确保在原子级别上均匀分散。
普通共沉淀法制备的核壳材料结构前驱体材料主要采用镍钴锰金属盐溶液与氨水络合剂和液碱进行反应形成球形颗粒,这种前驱体在后续与Li盐进行混合时需要加助溶剂才能确保与Li盐混合均匀,同时所需的煅烧温度较高,成本较高,最后煅烧后形成的结构稳定性也较差,从而影响正极材料的电化学性能。
发明内容
针对现有技术中的问题,本发明提供了种MOF包覆的单晶三元正极材料前驱体的制备方法,解决了现有技术中利用高镍得到较高的比容量和循环寿命、安全性不能共存的问题。
本发明在反应中内核采用高镍低锰的前驱体,外壳采用Mn与有机物羧酸盐配位合成Mn的金属有机骨架化合物(Mn-MOF),这种Mn的MOF材料为一种无限有序的单晶结构化合物,可确保外壳的Mn在原子级别的均匀性。
本发明合成的核壳结构由于外壳为单晶结构包覆的MOF材料,在低温下预烧就可以形成具有单晶结构的镍钴锰氧化物,同时在与Li盐混合时无需增加助熔剂,可因为外壳包覆的单晶结构有助于Li的扩散。
本发明合成的具有单晶结构的三元正极材料,由于其在纳米级别上是高度有序的,缩短了Li的迁移路径,从而可以提高正极材料的倍率性能。
为了解决上述技术问题,本发明采用的技术方案如下:
一种MOF包覆的单晶三元正极材料的制备方法,包括以下步骤:
步骤1、按照摩尔比为x:y:1-x-y的比例配置镍钴锰金属盐的A溶液,A溶液的浓度为2-5mol/L,配置一定浓度的氨水络合剂溶液和液碱(氢氧化钠、碳酸钠或氢氧化钾)溶液,所述的氨水浓度为7-14g/L,所述的0.6≤x≤0.98,0.01≤y≤0.2。
步骤2、将所述的溶液A、氨水络合剂和液碱(比如氢氧化钠溶液)以一定的进料速度加入到反应釜中,在40-70℃反应60-120h,得到一种球形度较好的前驱体内核:Ni xCo yMn 1-x-y(OH) 2,前驱体内核的平均粒径为3-8μm。所述溶液A的流量为6-9L/h,氨水的流量1-1.5L/h,液碱的流量为2.5-3.5L/h,搅拌速度为250-500r/min。
步骤3、将有机羧酸盐(5-羟基间苯二甲酸、均苯三甲酸、1,2,4,5-苯四羧酸)溶于一定量的有机溶剂如甲醇、乙醇中等,得到浓度为2mol/L的B溶液;将B溶液与一定浓度的锰金属盐溶液以一定的进料速度加入到上述反应釜中,在25-40℃,搅拌速度为300-400r/min的条件下反应3-6h,之后陈化2-5小时,得到MOF包覆的单晶三元正极材料前驱体,单晶三元正极材料前驱体的结构为MOF-Ni xCo yMn 1-x(OH) 2,所述的单晶三元正极材料前驱体的内核为高镍,外壳为Mn-MOF单晶包覆的纯锰核壳材料。所述的高镍内核中,Ni占总金属的摩尔百分比为70-90%,Co占总金属的摩尔百分比为5-20%,Mn占总金属的摩尔百分比为10-30%,所述的锰金属盐溶液的浓度为0.5-2mol/L,所述的MOF-Ni xCo yMn 1-x(OH) 2的粒径为4-9μm。
步骤4、将所述的内核为高镍、外壳为Mn-MOF单晶包覆的核壳结构前驱体(即单晶三元正极材料前驱体)在300-600℃下预烧3-6h,得到具有单晶结构的镍钴锰氧化物。将该单晶结构的镍钴锰氧化物与LiOH·H 2O按照一定的化学计量比(比如1:1.5)在研钵中均匀混合,在700-800℃下煅烧10-20h,得到具有单晶结构的MOF包覆的单晶三元正极材料。
本发明的有益效果:
1、发明在反应中内核采用高镍低锰的前驱体,外壳采用Mn与有机物羧酸盐配位合成Mn基金属有机骨架化合物(Mn-MOF),这种Mn的MOF材料为一种无限有序的单晶结构化合物,可确保外壳的Mn在原子级别的均匀性。
2、本发明合成的核壳结构由于外壳为单晶结构包覆的MOF材料,在低温下预烧就可以形成具有单晶结构的镍钴锰氧化物,同时在与Li盐混合时无需增加助熔剂,能够确保在原子级别上达到均匀混合。
3、本发明合成的具有单晶结构的三元正极材料,由于其在纳米级别上是高度有序的,缩短了Li的迁移路径,从而可以提高正极材料的倍率性能。
4、通过合成一种内核为高镍低锰、外壳为Mn-MOF单晶包覆的一种核壳材料,在低温预烧下合成一种单晶结构的镍钴锰氧化物,之后无需加助熔剂与Li能够均匀混合,最后合成具有单晶结构的三元正极材料体现出高倍率性、高容量和高循环性能的电化学性能。
附图说明
图1是本发明实施例1所得到的MOF包覆的核壳结构前驱体的SEM图;
图2是本发明实施例1所得到的MOF包覆的核壳结构前驱体的剖面SEM图;
图3是本发明实施例1所得到的核壳结构前驱体的EDS图,其中球形内部代表金属Ni元素、球形外部代表金属Mn元素。
图4是本发明实施例1得到的MOF包覆的单晶三元正极材料。
图5是本发明实施例2所得到的MOF包覆的核壳结构前驱体的SEM图;
图6是本发明实施例2所得到的MOF包覆的核壳结构前驱体的剖面SEM图;
图7是本发明实施例2得到的MOF包覆的单晶三元正极材料。
图8是本发明实施例3所得到的MOF包覆的核壳结构前驱体的SEM图;
图9是本发明实施例3所得到的MOF包覆的核壳结构前驱体的剖面SEM图;
图10是本发明实施例3得到的MOF包覆的单晶三元正极材料。
具体实施方式
实施例1:
步骤1、将金属摩尔比为82:8:10的镍钴锰盐溶液(金属浓度为2mol/L)用计量泵以6L/h的流量加入到反应釜中,同时在反应釜中加入12g/L的氨水和3mol/L的氢氧化钠,流量分别为1L/h和2.5L/h,反应过程中通过控制氨水和氢氧化钠的流量调整体系的pH维持在10.5-12.0之间。向密封的反应釜中通入氮气,流量为2L/h。搅拌桨的搅拌速率为400r/min,体系的反应温度为62℃。反应时每隔1个小时用激光粒度仪检测反应釜中颗粒的粒径,通过观察过程样一次颗粒和二次颗粒的形貌,控制一次颗粒为片状均匀团聚的球形颗粒,当颗粒的平均粒径达到3.0μm时停止进料,得到镍钴锰氢氧化物Ni 0.82Co 0.08Mn 0.1(OH) 2
步骤2、将5-羟基间苯二甲酸溶于一定量的乙醇中等,得到浓度为2mol/L的混合溶液;将2mol的5-羟基间苯二甲酸溶液与1.5mol/L的锰金属盐溶液以一定的进料速度加入到上述反应釜中,在40℃下反应4h,搅拌速度为350r/min,之后陈化2h,得到粒径为5.0μm、外壳为单晶Mn-MOF包覆的核壳结构前驱体(结构式为MOF-Ni 0.82Co 0.08Mn 0.1(OH) 2),所述的 前驱体内核为高镍,外壳为纯锰的核壳材料,所述的Mn-MOF的化学式为Mn(C 8H 3O 5) 2·2H 2O。
步骤3、将5Kg的MOF-Ni 0.82Co 0.08Mn 0.1(OH) 2前驱体在350℃下进行预烧,得到单晶结构的镍钴锰氧化物(结构为Ni 0.8Co 0.05Mn 0.15O 1.5)。将该氧化物与4.5Kg的LiOH·H 2O在亨舍尔搅拌机中进行均匀混合,将混合后的物料在700℃、氧气气氛下煅烧10h,将煅烧后的物料进行粉碎、筛分,最终得到具有单晶结构的镍钴锰正极材料。将正极材料组装成CR2025扣电电池,并对其进行电化学性能检测,结果显示:在0.1C(17mA/g)的电流密度,2.5~4.3V电压范围内,放电容量为196.56mA/g,1C循环50圈的容量保持率为97.56%。
实施例2:
步骤1、将金属摩尔比为75:13:12的镍钴锰盐溶液(金属浓度为2mol/L)用计量泵以6L/h的流量加入到反应釜中,同时在反应釜中加入12g/L的氨水和3mol/L的氢氧化钠,流量分别为1L/h和2.5L/h,反应过程中通过控制氨水和氢氧化钠的流量调整体系的pH维持在10.5-12.0之间。向密封的反应釜中通入氮气,流量为2L/h。搅拌桨的搅拌速率为400r/min,体系的反应温度为62℃。反应时每隔1个小时用激光粒度仪检测反应釜中颗粒的粒径,通过观察过程样一次颗粒和二次颗粒的形貌,控制一次颗粒为片状均匀团聚的球形颗粒,当颗粒的平均粒径达到3.8μm时停止进料,得到镍钴锰氢氧化物Ni 0.75Co 0.13Mn 0.12(OH) 2
步骤2、将5-羟基间苯二甲酸溶于一定量的乙醇中等,得到浓度为2mol/L的混合溶液;将2mol的5-羟基间苯二甲酸溶液与1.5的锰金属盐溶液以一定的进料速度加入到上述反应釜中,在40℃下反应4h,搅拌速度为350r/min,之后陈化2h,得到粒径为5.5μm、外壳为单晶Mn-MOF包覆的核壳结构前驱体(结构式为MOF-Ni 0.75Co 0.13Mn 012(OH) 2),所述的前驱体内核为高镍,外壳为纯锰的核壳材料,所述的Mn-MOF的化学式为Mn(C 8H 3O 5) 2·2H 2O。
步骤3、将5Kg的MOF-Ni 0.75Co 0.13Mn 0.12(OH) 2前驱体在350℃下进行预烧,得到单晶结构的镍钴锰氧化物(结构为Ni 0.7Co 0.1Mn 0.2O 1.5)。将该氧化物与4.5Kg的LiOH·H 2O在亨舍尔搅拌机中进行均匀混合,将混合后的物料在700℃、氧气气氛下煅烧10h,将煅烧后的物料进行粉碎、筛分,最终得到具有单晶结构的镍钴锰正极材料。将正极材料组装成CR2025扣电电池,并对其进行电化学性能检测,结果显示:在0.1C(17mA/g)的电流密度,2.5~4.3V电压范围内,放电容量为186.56mA/g,1C循环50圈的容量保持率为98.56%。
实施例3:
步骤1、将金属摩尔比为90:5:5的镍钴锰盐溶液(金属浓度为2mol/L)用计量泵以6L/h的流量加入到反应釜中,同时在反应釜中加入12g/L的氨水和3mol/L的氢氧化钠,流量分别为1L/h和2.5L/h,反应过程中通过控制氨水和氢氧化钠的流量调整体系的pH维持在 10.5-12.0之间。向密封的反应釜中通入氮气,流量为2L/h。搅拌桨的搅拌速率为400r/min,体系的反应温度为62℃。反应时每隔1个小时用激光粒度仪检测反应釜中颗粒的粒径,通过观察过程样一次颗粒和二次颗粒的形貌,控制一次颗粒为片状均匀团聚的球形颗粒,当颗粒的平均粒径达到3.0μm时停止进料,得到镍钴锰氢氧化物Ni 0.9Co 0.05Mn 0.05(OH) 2
步骤2、将5-羟基间苯二甲酸溶于一定量的乙醇中等,得到浓度为2mol/L的混合溶液;将2mol的5-羟基间苯二甲酸溶液与1.5的锰金属盐溶液以一定的进料速度加入到上述反应釜中,在40℃下反应4h,搅拌速度为350r/min,之后陈化2h,得到粒径为4.5μm、外壳为单晶Mn-MOF包覆的核壳结构前驱体(结构式为MOF-Ni 0.9Co 0.05Mn 0.05(OH) 2),所述的前驱体内核为高镍,外壳为纯锰的核壳材料,所述的Mn-MOF的化学式为Mn(C 8H 3O 5) 2·2H 2O。
步骤3、将5Kg的MOF-Ni 0.9Co 0.05Mn 0.05(OH) 2前驱体在350℃下进行预烧,得到单晶结构的镍钴锰氧化物(结构为Ni 0.87Co 0.03Mn 0.1O 1.5)。将该氧化物与4.5Kg的LiOH·H 2O在亨舍尔搅拌机中进行均匀混合,将混合后的物料在700℃、氧气气氛下煅烧10h,将煅烧后的物料进行粉碎、筛分,最终得到具有单晶结构的镍钴锰正极材料。将正极材料组装成CR2025扣电电池,并对其进行电化学性能检测,结果显示:在0.1C(17mA/g)的电流密度,2.5~4.3V电压范围内,放电容量为201.56mA/g,1C循环50圈的容量保持率为96.56%。
需要说明的是,除非另有明确的规定和限定,上述反应参数和组分比例仅为举例说明,并非对本发明具体实施方案的限定。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本发明的保护范围。

Claims (14)

  1. 一种MOF包覆的单晶三元正极材料的制备方法,其特征在于,包括以下步骤:
    步骤1、按照摩尔比为x:y:1-x-y的比例配置镍钴锰金属盐的A溶液,其中x表示镍的比例,y表示钴的比例,1-x-y表示锰的比例;配置氨水络合剂溶液和液碱;
    步骤2、将所述镍钴锰金属盐的A溶液、氨水络合剂溶液和液碱以一定的进料速度加入到反应釜中反应,得到一种类球形的前驱体内核;
    步骤3、将有机羧酸盐溶于一定量的有机溶剂中得到一定浓度的B溶液;将B溶液与一定浓度的锰金属盐溶液以一定的进料速度加入到步骤1中生成前驱体内核的反应釜中反应,陈化后得到MOF包覆的核壳结构前驱体,核壳结构前驱体的结构式为MOF-Ni xCo yMn 1-x(OH) 2,该核壳结构前驱体前驱体的内核为高镍,外壳为Mn-MOF单晶包覆的纯锰核壳材料;
    步骤4、将步骤3中得到的核壳结构前驱体进行低温预烧得到具有单晶结构的镍钴锰氧化物;将该单晶结构的镍钴锰氧化物与LiOH·H 2O按照化学计量比在研钵中均匀混合进行高温煅烧,得到MOF包覆的单晶三元正极材料。
  2. 如权利要求1所述MOF包覆的单晶三元正极材料的制备方法,其特征在于:步骤1中,所述摩尔比的范围为0.6≤x≤0.98,0.01≤y≤0.2。
  3. 如权利要求1所述MOF包覆的单晶三元正极材料的制备方法,其特征在于:所述液碱为氢氧化钠、碳酸钠和氢氧化钾中的任意一种或几种组合。
  4. 如权利要求1所述MOF包覆的单晶三元正极材料的制备方法,其特征在于:步骤2中,所述反应釜的反应温度为40-70℃,反应时间为60-120h。
  5. 如权利要求1所述MOF包覆的单晶三元正极材料的制备方法,其特征在于:所述步骤2中得到的前驱体内核即为Ni xCo yMn 1-x-y(OH) 2,前驱体内核的平均粒径为3-8μm。
  6. 如权利要求1所述MOF包覆的单晶三元正极材料的制备方法,其特征在于:所述步骤3中,所述核壳结构前驱体MOF-Ni xCo yMn 1-x(OH) 2的粒径为4-9μm。
  7. 如权利要求1所述MOF包覆的单晶三元正极材料的制备方法,其特征在于:步骤2中,所述溶液A的浓度为2-5mol/L,溶液A的进料流量为6-9L/h,所述氨水络合剂溶液为浓度是7-14g/L的氨水,氨水的进料流量1-1.5L/h,液碱的进料流量为2.5-3.5L/h,反应釜内搅拌速度为250-500r/min。
  8. 如权利要求1所述MOF包覆的单晶三元正极材料的制备方法,其特征在于:步骤3中,所述机羧酸盐为5-羟基间苯二甲酸、均苯三甲酸和1,2,4,5-苯四羧酸中任意一种或几种组合。
  9. 如权利要求1所述MOF包覆的单晶三元正极材料的制备方法,其特征在于:步骤3中,所述机溶剂为醇类有机溶剂,得到的B溶液浓度为1.5-2.5mol/L。
  10. 如权利要求1所述MOF包覆的单晶三元正极材料的制备方法,其特征在于:步骤3中,所述反应釜内的反应条件为:温度25-40℃,搅拌速度为300-400r/min,时间3-6h,陈化时间为2-5小时。
  11. 如权利要求1所述MOF包覆的单晶三元正极材料的制备方法,其特征在于:步骤3中,所述MOF-Ni xCo yMn 1-x(OH) 2前驱体的的高镍内核中,镍占总金属的摩尔百分比为70-90%,钴占总金属的摩尔百分比为5-20%,锰占总金属的摩尔百分比为10-30%。
  12. 如权利要求1所述MOF包覆的单晶三元正极材料的制备方法,其特征在于:步骤4中,所述低温预烧指在300-600℃下煅烧3-6h。
  13. 如权利要求1所述MOF包覆的单晶三元正极材料的制备方法,其特征在于:步骤4中,所述高温煅烧是指700-800℃下煅烧10-20h。
  14. 一种MOF包覆的单晶三元正极材料前驱体的制备方法,其特征在于,包括以下步骤:
    步骤1、按照摩尔比为x:y:1-x-y的比例配置镍钴锰金属盐的A溶液,其中x表示镍的比例,y表示钴的比例,1-x-y表示锰的比例;配置氨水络合剂溶液和液碱;
    步骤2、将所述镍钴锰金属盐的A溶液、氨水络合剂溶液和液碱以一定的进料速度加入到反应釜中反应,得到一种类球形的前驱体内核;
    步骤3、将有机羧酸盐溶于一定量的有机溶剂中得到一定浓度的B溶液;将B溶液与一定浓度的锰金属盐溶液以一定的进料速度加入到步骤1中生成前驱体内核的反应釜中反应,陈化后得到核壳结构前驱体,即MOF包覆的单晶三元正极材料前驱体,核壳结构前驱体结构为MOF-Ni xCo yMn 1-x(OH) 2
PCT/CN2019/129254 2019-12-26 2019-12-27 一种mof包覆的单晶三元正极材料及其前驱体的制备方法 WO2021128290A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022539409A JP7265096B2 (ja) 2019-12-26 2019-12-27 Mofで被覆された単結晶三元系正極材料及びその前駆体の製造方法
EP19957734.7A EP4084136A4 (en) 2019-12-26 2019-12-27 METHOD OF MAKING A MOF-COATED TERNARY POSITIVE ELECTRODE MATERIAL AND PRECURSOR THEREFOR
KR1020227025496A KR102487642B1 (ko) 2019-12-26 2019-12-27 Mof 코팅된 단결정 삼원계 양극재 및 이의 전구체의 제조 방법
US17/848,405 US11708280B2 (en) 2019-12-26 2022-06-24 Method of preparing MOF-coated monocrystal ternary positive electrode material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911369792.9A CN111129463B (zh) 2019-12-26 2019-12-26 一种mof包覆的单晶三元正极材料及其前驱体的制备方法
CN201911369792.9 2019-12-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/848,405 Continuation US11708280B2 (en) 2019-12-26 2022-06-24 Method of preparing MOF-coated monocrystal ternary positive electrode material

Publications (1)

Publication Number Publication Date
WO2021128290A1 true WO2021128290A1 (zh) 2021-07-01

Family

ID=70503488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129254 WO2021128290A1 (zh) 2019-12-26 2019-12-27 一种mof包覆的单晶三元正极材料及其前驱体的制备方法

Country Status (6)

Country Link
US (1) US11708280B2 (zh)
EP (1) EP4084136A4 (zh)
JP (1) JP7265096B2 (zh)
KR (1) KR102487642B1 (zh)
CN (1) CN111129463B (zh)
WO (1) WO2021128290A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023224447A1 (ko) * 2022-05-20 2023-11-23 주식회사 엘지화학 양극 활물질 전구체, 이를 이용한 양극 활물질의 제조방법 및 양극 활물질

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220013166A (ko) * 2020-07-24 2022-02-04 주식회사 엘지화학 양극 활물질 전구체 및 이의 제조 방법
CN112310387A (zh) * 2020-10-26 2021-02-02 中科(马鞍山)新材料科创园有限公司 一种正极前驱体材料及其制备方法和用途
CN112608488B (zh) * 2020-12-15 2023-06-02 荆门市格林美新材料有限公司 一种无钴锂电池用MOFs基前驱体、正极材料及其制备方法
CN112993229B (zh) * 2021-05-13 2021-07-23 浙江帕瓦新能源股份有限公司 一种多金属mof梯度包覆改性三元前驱体的制备方法
CN114057238B (zh) * 2021-11-05 2022-12-27 广东佳纳能源科技有限公司 复合三元材料及其制备方法和应用
CN114373638B (zh) * 2022-01-19 2023-06-27 桂林电子科技大学 一种珊瑚状NiCoMn-MOF材料及其制备方法和应用
CN114773617B (zh) * 2022-05-09 2023-09-01 荆门市格林美新材料有限公司 一种核壳梯度三元前驱体及其制备方法和应用
CN115472798A (zh) * 2022-09-27 2022-12-13 天津巴莫科技有限责任公司 高镍三元正极材料及其制备方法、应用和锂电池
CN116477673A (zh) * 2023-05-24 2023-07-25 荆门市格林美新材料有限公司 一种钠电正极前驱体及其制备方法和应用
CN117913344A (zh) * 2024-03-19 2024-04-19 苏州大学 一种可控构筑快离子导体包覆层的方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103794778A (zh) * 2014-02-18 2014-05-14 湖南桑顿新能源有限公司 一种高密度镍钴锰酸锂正极材料的制备方法
CN106159251A (zh) * 2015-03-31 2016-11-23 河南科隆新能源有限公司 一种类单晶锂电池三元正极材料及其制备方法
CN107528060A (zh) * 2017-09-05 2017-12-29 国联汽车动力电池研究院有限责任公司 一种梯度高镍正极材料及其制备方法和锂离子电池
CN108336316A (zh) * 2017-12-12 2018-07-27 浙江天能能源科技股份有限公司 一种基于MOFs表面改性的富锂正极材料及其制备方法
KR102054142B1 (ko) * 2018-04-23 2020-01-22 인천대학교 산학협력단 금속-유기 구조체를 포함하는 리튬 이차전지용 양극

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103199238B (zh) * 2013-04-12 2015-08-12 哈尔滨工业大学 锂离子电池正极材料及其制备方法
CN104993113B (zh) * 2015-07-08 2017-12-08 中国科学院大学 锰酸锂包覆锂离子电池三元层状正极材料的制备方法
EP3437149B1 (en) * 2017-02-22 2019-10-02 Lionano Inc. Core-shell electroactive materials
CN109728375A (zh) * 2017-10-30 2019-05-07 微宏动力***(湖州)有限公司 一种回收并修复正极材料的方法、修复的正极材料及锂离子电池
CN107910529A (zh) * 2017-11-18 2018-04-13 桂林电子科技大学 一种锰基金属有机框架化合物包覆的锂离子电池三元正极材料及其制备方法
CN109244447B (zh) * 2018-09-26 2020-06-05 合肥国轩高科动力能源有限公司 一种包覆型镍钴锰酸锂三元正极材料及其制备方法和应用
CN109208030B (zh) * 2018-11-16 2020-04-17 北京师范大学 一种金属氢氧化物-金属有机框架复合材料及其制备方法
CN109830663B (zh) 2019-01-31 2020-12-15 王东升 一种核壳结构三元前驱体的制备方法
CN110085828A (zh) * 2019-04-24 2019-08-02 华中科技大学 一种锂离子电池正极材料及其制备方法
CN110289405A (zh) * 2019-06-13 2019-09-27 浙江天能能源科技股份有限公司 一种MOFs衍生氧化物包覆高镍三元正极材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103794778A (zh) * 2014-02-18 2014-05-14 湖南桑顿新能源有限公司 一种高密度镍钴锰酸锂正极材料的制备方法
CN106159251A (zh) * 2015-03-31 2016-11-23 河南科隆新能源有限公司 一种类单晶锂电池三元正极材料及其制备方法
CN107528060A (zh) * 2017-09-05 2017-12-29 国联汽车动力电池研究院有限责任公司 一种梯度高镍正极材料及其制备方法和锂离子电池
CN108336316A (zh) * 2017-12-12 2018-07-27 浙江天能能源科技股份有限公司 一种基于MOFs表面改性的富锂正极材料及其制备方法
KR102054142B1 (ko) * 2018-04-23 2020-01-22 인천대학교 산학협력단 금속-유기 구조체를 포함하는 리튬 이차전지용 양극

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4084136A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023224447A1 (ko) * 2022-05-20 2023-11-23 주식회사 엘지화학 양극 활물질 전구체, 이를 이용한 양극 활물질의 제조방법 및 양극 활물질

Also Published As

Publication number Publication date
EP4084136A1 (en) 2022-11-02
CN111129463B (zh) 2020-11-17
US11708280B2 (en) 2023-07-25
KR20220119141A (ko) 2022-08-26
EP4084136A4 (en) 2023-06-21
JP7265096B2 (ja) 2023-04-25
KR102487642B1 (ko) 2023-01-11
CN111129463A (zh) 2020-05-08
JP2023502547A (ja) 2023-01-24
US20220356075A1 (en) 2022-11-10

Similar Documents

Publication Publication Date Title
WO2021128290A1 (zh) 一种mof包覆的单晶三元正极材料及其前驱体的制备方法
US20220416236A1 (en) W-containing high-nickel ternary cathode material and preparation method thereof
WO2021136243A1 (zh) 改性镍钴铝酸锂正极材料及其制备方法与应用
WO2020134048A1 (zh) 一种无钴富锂三元正极材料nma及其制备方法
CN107546383B (zh) 一种高性能核壳结构高镍系材料、其制备方法及在锂离子电池的用途
WO2018113506A1 (zh) 一种三元材料及其制备方法以及电池浆料和正极与锂电池
CN111509214B (zh) 一种高镍层状复合材料及其制备的锂离子电池正极材料
CN109244436A (zh) 一种高镍正极材料及其制备方法以及一种锂离子电池
CN103441265B (zh) 一种共掺杂富锂复合正极材料及其制备方法
WO2022207008A1 (zh) 单晶型多元正极材料及其制备方法与应用
WO2021143375A1 (zh) 无钴层状正极材料及其制备方法和锂离子电池
ES2956478A2 (es) Material catódico de níquel-manganeso sin cobalto y preparación y aplicación del mismo.
WO2015039490A1 (zh) 富锂正极材料及其制备方法
WO2023130779A1 (zh) 一种具有核壳结构的高电压三元正极材料及其制备方法
CN102074679A (zh) 一种锂离子电池正极材料球形掺铝镍钴酸锂的制备方法
CN110034274B (zh) 改性三元正极材料、其制备方法及锂离子电池
CN104681805A (zh) 三元高电压锂离子电池正极材料及其制备方法
WO2023077911A1 (zh) 镍锰铝核壳结构前驱体和无钴锂离子正极材料的制备方法
WO2021146893A1 (zh) 高镍正极材料、镍钴前驱体材料及制备方法、锂离子电池
CN111785960A (zh) 五氧化二钒/rGO包覆镍钴锰酸锂正极材料及制备方法
WO2022134617A1 (zh) 锂离子电池用正极材料及其制备方法和锂离子电池
WO2022089205A1 (zh) 一种掺杂型高镍三元材料及其制备方法
CN111029561A (zh) 三元锂电正极材料前驱体及其制备方法、三元锂电正极材料及制备方法和用途
CN113845153A (zh) 一种多元高熵固溶体正极材料以及制备方法和用途
WO2023178900A1 (zh) 一种镍钴锰酸锂梯度正极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957734

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022539409

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227025496

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019957734

Country of ref document: EP

Effective date: 20220726