WO2021124807A1 - Low-residue siloxane compound, and lubricating oil composition and lubricant using this - Google Patents

Low-residue siloxane compound, and lubricating oil composition and lubricant using this Download PDF

Info

Publication number
WO2021124807A1
WO2021124807A1 PCT/JP2020/043615 JP2020043615W WO2021124807A1 WO 2021124807 A1 WO2021124807 A1 WO 2021124807A1 JP 2020043615 W JP2020043615 W JP 2020043615W WO 2021124807 A1 WO2021124807 A1 WO 2021124807A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
silicone
group
siloxane compound
molecular weight
Prior art date
Application number
PCT/JP2020/043615
Other languages
French (fr)
Japanese (ja)
Inventor
真央 中垣
Original Assignee
株式会社Moresco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Moresco filed Critical 株式会社Moresco
Priority to JP2021565405A priority Critical patent/JPWO2021124807A1/ja
Publication of WO2021124807A1 publication Critical patent/WO2021124807A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/76Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing silicon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/50Lubricating compositions characterised by the base-material being a macromolecular compound containing silicon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/02Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a non-macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/04Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M175/00Working-up used lubricants to recover useful products ; Cleaning
    • C10M175/04Working-up used lubricants to recover useful products ; Cleaning aqueous emulsion based
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/02Well-defined hydrocarbons

Definitions

  • the present invention relates to a low-residue siloxane compound and a lubricating oil composition and a lubricant using the same.
  • Lubricating oils and lubricating oil compositions are used to reduce friction and wear between moving parts and moving surfaces of various mechanical devices.
  • a lubricating oil having a high viscosity index (VI) small change in viscosity with respect to temperature change
  • a lubricating oil having a high VI has a low viscosity at a low temperature, and the energy loss due to the viscous resistance of the lubricating oil itself is small, so that it is excellent in terms of energy saving (energy saving).
  • the viscosity does not become excessively low as compared with the lubricating oil having a low VI, so that the oil film necessary for lubrication can be retained on the lubricating surface, and the appropriate viscosity is maintained. Therefore, the scattering of lubricating oil is suppressed and the surroundings are less likely to be contaminated.
  • the siloxane compound has a problem that sludge (SiO 2 ) remains as a residue after oxidative deterioration, which causes pipe clogging and filter clogging. Therefore, existing lubricants containing a siloxane compound as a main component have restrictions on their uses. Therefore, in order to expand into a wider range of fields, it is required to further improve the lubricity and reduce the residue that becomes a bottleneck in the lubricant field.
  • polyalkylene glycol and ester oil are synthetic oils with less thickening and less sludge formation after deterioration, respectively. Therefore, it is considered that the lubricant composition also has a slight thickening and sludge formation after deterioration.
  • the VI of these mixed base oils is insufficient, and the VI improver (high molecular weight). Additives) need to be added.
  • the VI improver not only causes an increase in low-temperature viscosity, but also has a problem that it is affected by a shearing force in an environment in which the lubricating oil is used and impairs the initial lubricating oil characteristics (a decrease in viscosity occurs).
  • the object of the present invention is to solve the above-mentioned problems. That is, it is an object of the present invention to provide a siloxane compound having excellent lubricity and a high viscosity index (VI) and low residual property, and a lubricating oil composition using the same.
  • a siloxane compound having excellent lubricity and a high viscosity index (VI) and low residual property, and a lubricating oil composition using the same.
  • siloxane compound according to one aspect of the present invention is characterized by being represented by the following formula (1).
  • X 1 is the same or different, hydrogen, an alkyl group having 1 to 12 carbon atoms, or a polyoxyalkyl group represented by the following formula (2).
  • Y is an alkylene group having 2 to 12 carbon atoms.
  • Z 1 represents a divalent organic group bonded to an adjacent silicon atom by a carbon-silicon bond and to a polyoxyalkylene block by an oxygen atom.
  • p is an integer of 0 to 13
  • q and r are integers of 0 to 16, respectively
  • n is an integer of 2 to 4
  • a is an integer of 0 to 11.
  • Z 2 represents a divalent organic group bonded to an adjacent silicon atom by a carbon-silicon bond and to a polyoxyalkylene block by an oxygen atom.
  • X 2 is hydrogen or an alkyl group having 1 to 12 carbon atoms.
  • m is an integer of 2 to 4, and
  • b is an integer of 1 to 10.
  • FIG. 1 is NMR data of silicone A-2 synthesized in Examples.
  • FIG. 2 is the NMR data of the silicone A-4 synthesized in the example.
  • FIG. 3 is NMR data of the silicone A-5 synthesized in the examples.
  • FIG. 4 is the NMR data of the silicone A-9 synthesized in the example.
  • FIG. 5 is NMR data of the silicone A-10 synthesized in the example.
  • FIG. 6 is NMR data of the silicone molecule double-ended hydrodimethylsiloxy group-blocking dimethylsiloxane / hexylene copolymer synthesized in the examples.
  • FIG. 7 is the NMR data of the silicone A-13 synthesized in the example.
  • siloxane compound of the present embodiment is characterized by being represented by the following formula (1).
  • siloxane compound of the present embodiment has both a high viscosity index and low residue property, it can be used as a lubricant or the like in a wide range of fields.
  • X 1 is the same or different, hydrogen, an alkyl group having 1 to 12 carbon atoms, or a polyoxyalkyl group represented by the following formula (2).
  • X 2 represents hydrogen or an alkyl group having 1 to 12 carbon atoms.
  • the alkyl group having 1 to 12 carbon atoms in X 1 and X 2 may be cyclic or straight or branched. Specific examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an octyl group, a nonyl group and a dodecyl group. Alone or in these functional groups in the structure, it may contain a combination of two or more in X 1.
  • the carbon number of X 1 and X 2 is preferably 1 to 12, more preferably 1 to 10, and particularly preferably 1 to 8 from the viewpoint of maintaining a low viscosity at a low temperature. If the number of carbon atoms of X 1 and X 2 exceeds 12, the low temperature characteristics are significantly deteriorated, which makes it difficult to use the lubricating oil composition in a low temperature range.
  • Z 1 and Z 2 are divalent organic groups bonded to an adjacent silicon atom by a carbon-silicon bond and to a polyoxyalkylene block by an oxygen atom.
  • the structure of the divalent organic group in Z 1 and Z 2 is not particularly limited, and for example, -R-, -R-CO-, -R-NHCO-, -R-NHCONH-R 2- NHCO-,- R-OOCNH-R 2 -NHCO- (wherein R is, for example, ethylene, propylene, a divalent alkylene group such as butylene, R 2 is, for example -C 6 H 4 -, - C 6 H 4 -C 6 H 4 -, - C 6 H 4 -CH (CH 3) 2 -C 6 H 4 -. a divalent arylene group, such as suitably R 2 is a phenylene group). More preferably, Z 1 and Z 2 are divalent alkylene groups, especially
  • Y is an alkylene group having 2 to 12 carbon atoms.
  • the structure of Y is not particularly limited, and may be linear, branched, or cyclic.
  • an alkylene group such as an ethylene group, a propylene group, a butylene group, and a hexylene group can be mentioned.
  • These functional groups may be contained in the structure alone or in combination of two or more.
  • the number of carbon atoms of the alkylene group in Y is preferably 2 to 12, more preferably 2 to 10, and particularly preferably 2 to 8 from the viewpoint of maintaining a low viscosity at a low temperature. If the number of carbon atoms of the alkylene group in Y exceeds 12, the low temperature characteristics may be significantly deteriorated.
  • the number of repeating units of the polyoxyalkylene group is preferably 1 to 11 from the viewpoint of obtaining the viscosity required for the lubricating oil. If the number of repeating units exceeds 11, the proportion of the siloxane portion in the molecular structure may become small and the viscosity index may decrease.
  • p is an integer of 0 to 13. If the p exceeds 13, the amount of residue after thermal deterioration may increase.
  • q and r are the same or different integers of 0 to 16, respectively, but if these values exceed 16, the viscosity of the lubricating oil may become too high and energy saving may be lacking. ..
  • n is an integer of 2 to 4.
  • the polyoxyalkylene compound is polyoxyethylene, polyoxypropylene, polyoxybutylene, mixed polyoxyethylene-oxypropylene, etc.
  • m is an integer of 2 to 4.
  • b is an integer of 1 to 10. If b exceeds 10, the proportion of the siloxane portion in the molecular structure becomes small, and the viscosity index may decrease.
  • the mass average molecular weight of the siloxane compound of the present embodiment is not particularly limited, but is preferably 500 to 11000. If the mass average molecular weight is less than 500, the amount of evaporation may increase. Further, if the mass average molecular weight exceeds 11000, the viscosity of the lubricating oil becomes too high and energy saving is lacking, which is not preferable.
  • the mass average molecular weight of the siloxane compound in this embodiment is a value measured by 1 H-NMR as shown in Examples described later. In the following, the mass average molecular weight is also simply referred to as "average molecular weight”.
  • the siloxane compound of the present embodiment has a viscosity index of 200 or more, and the amount of residue after heating at 140 ° C. for 100 hours and then at 250 ° C. for 700 hours is 20% or less. Is preferable.
  • the viscosity index (VI) of the siloxane compound in this embodiment is preferably 200 or more in order to obtain a lubricating oil composition having a high VI. More preferably, it is 240 or more.
  • VI is a value measured and calculated based on JIS K 2283 (2000).
  • the method for synthesizing the siloxane compound as described above is not particularly limited, but some production examples show, for example, the presence of a platinum catalyst in a hydrodimethylsiloxy group-blocking dimethylsiloxane at both ends of the molecular chain and a divinyl ether of polyalkylene glycol.
  • the siloxane compound (silicone oil) of the present embodiment can be obtained by hydrosilylation reaction underneath.
  • a siloxane is obtained by hydrosilylating a hydrodimethylsiloxy group-blocking dimethylsiloxane at both ends of the molecular chain and a divinyl ether of a polyalkylene glycol in the presence of a platinum catalyst, and then hydrosilylating the olefin compound in the presence of a platinum catalyst.
  • a compound (silicone oil) can be obtained.
  • the siloxane compound of the present embodiment can be used as it is alone as various lubricants, but it is lubricated by combining a hydrocarbon-based lubricating oil as described later with at least one of an antioxidant and an extreme pressure agent. It may be used as an oil composition.
  • the lubricating oil composition of the present embodiment contains (A) the above-mentioned siloxane compound, (B) a hydrocarbon-based lubricating oil, (C) an extreme pressure agent, and (D) at least one of an antioxidant. Is characterized by containing at least.
  • the viscosity index (VI) of the lubricating oil composition of this embodiment is preferably 180 or more. More preferably, it is 200 or more, and further preferably 250 or more.
  • the content of the siloxane compound (A) with respect to the entire composition is 30 to 95% by mass from the viewpoint of viscosity index and lubricity. In particular, it is preferably 50 to 90% by mass, and more preferably 60 to 90% by mass. Even if the content of the component (A) is less than 30% by mass, it is possible to improve the viscosity index when the lubricating oil composition is used, but the effect of improving the viscosity index is poor, and the upper limit is set. There is no particular limitation, and as described above, 100% by mass may be a siloxane compound.
  • the lubricating oil composition of the present embodiment has a hydrocarbon-based lubricating oil.
  • the hydrocarbon-based lubricating oil that can be used is not particularly limited as long as it is compatible with the above-mentioned (A) siloxane compound (silicone oil), but specifically, for example, ester oil, ether oil, and the like. Examples thereof include poly ⁇ -olefin (PAO) oil and mineral oil.
  • ester oil examples include esters of monohydric alcohols or polyhydric alcohols with monobasic acids or polybasic acids.
  • Examples of the monohydric alcohol or polyhydric alcohol include monohydric alcohols or polyhydric alcohols having a hydrocarbon group having 1 to 30 carbon atoms, preferably 4 to 20 carbon atoms, and more preferably 6 to 18 carbon atoms. ..
  • Specific examples of the multivalent alcohols include trimethylolpropane, pentaerythritol, and dipentaerythritol.
  • Examples of the monobasic acid or polybasic acid include monobasic acids or polybasic acids having a hydrocarbon group having 1 to 30 carbon atoms, preferably 4 to 20 carbon atoms, and more preferably 6 to 18 carbon atoms. Be done.
  • the hydrocarbon group referred to here may be a straight chain or a branched chain, and for example, an alkyl group, an alkenyl group, a cycloalkyl group, an alkylcycloalkyl group, an aryl group, an alkylaryl group, or an arylalkyl group.
  • an alkyl group an alkenyl group
  • a cycloalkyl group an alkylcycloalkyl group
  • an alkylcycloalkyl group an alkylcycloalkyl group
  • an aryl group an alkylaryl group
  • arylalkyl group such as hydrocarbon groups.
  • ester oil when used as the component (B) in the present embodiment, the above-mentioned ester oil may be used alone or in combination of two or more.
  • ester oil a dibasic acid ester or a polyhydric alcohol fatty acid ester having a flash point of 200 ° C. or higher and a pour point of ⁇ 40 ° C. or lower can be used.
  • a polyhydric alcohol fatty acid ester such as a fatty acid ester of trimethylolpropane or a fatty acid ester of pentaerythritol is more preferable.
  • ether oil examples include polyoxy ether, dialkyl ether, aromatic ether and the like.
  • poly- ⁇ -olefin oil examples include polymers of ⁇ -olefins having 2 to 15 carbon atoms such as polybutene, 1-octene oligomer, and 1-decene oligomer, or hydrides thereof.
  • the mineral oil is an atmospheric residual oil obtained by atmospheric distillation of crude oils such as paraffinic, naphthenic and intermediate base oils; a distillate obtained by vacuum distillation of the atmospheric residual oil; the distillate.
  • Mineral oil refined by performing one or more treatments such as solvent removal, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, etc., for example, light neutral oil, medium neutral.
  • the above-mentioned hydrocarbon-based lubricating oil can be used alone, or two or more kinds can be used in combination.
  • the content of the (B) hydrocarbon-based lubricating oil in the lubricating oil composition of the present embodiment is 0 to 70% by mass with respect to the entire composition from the viewpoint of lubricity and viscosity index. In particular, it is preferably 10 to 50% by mass, and even more preferably 10 to 20% by mass. If the content of the hydrocarbon-based lubricating oil is less than 10% by mass, it becomes difficult to obtain sufficient lubricity, and if it exceeds 70% by mass, the content of the (A) siloxane compound in the lubricating oil composition is contained. This is not preferable because the amount is small and the viscosity index of the lubricating oil composition is low.
  • the lubricating oil composition of the present embodiment further improves the lubricity of the lubricating oil composition by containing 10% by mass or more of ester oil as the (B) hydrocarbon-based lubricating oil. That is, as a preferred embodiment, it is desirable that the (B) hydrocarbon-based lubricating oil contains 10 to 50% by mass of an ester oil.
  • the lubricating oil composition of the present embodiment contains at least one of (C) an extreme pressure agent and (D) an antioxidant described later.
  • the lubricating oil composition of the present embodiment contains (C) an extreme pressure agent
  • the lubricating oil composition of the present embodiment has an advantage that the lubricity and wear resistance can be further improved.
  • Examples of the (C) extreme pressure agent that can be used in the present embodiment include thiaxazole compounds, polysulfides, thiocarbamate compounds, sulfide fats and oils, sulfide olefins, sulfide esters, sulfide fatty acids, thiophosphate esters, thiophosphate, thiophosphite, and di.
  • Sulfur-based extreme pressure agents such as molybdenum alkylthiocarbamate, molybdenum dialkyldithiophosphate, zinc dialkylthiocarbamate, and zinc dialkylthiophosphate can be preferably used. These may be used alone or in combination of two or more.
  • At least one selected from thiophosphate ester, dithiocarbamate, olefin sulfide, and dimercaptothiadiazole-based compound is preferable to use at least one selected from thiophosphate ester, dithiocarbamate, olefin sulfide, and dimercaptothiadiazole-based compound as the (C) extreme pressure agent.
  • the content thereof is 0.5 to 10.0% by mass with respect to the entire composition from the viewpoint of obtaining sufficient wear resistance. Degree.
  • an antioxidant generally used for lubricating oil can be used without particular limitation.
  • phenolic compounds, amine compounds, phosphorus compounds and the like can be mentioned.
  • alkylphenols such as 2,6-di-tert-butyl-4-methylphenol, methylene-4,4-bisphenol (2,6-di-tert-butyl-4-methylphenol).
  • alkylphenols such as 2,6-di-tert-butyl-4-methylphenol, methylene-4,4-bisphenol (2,6-di-tert-butyl-4-methylphenol).
  • alkylphenols such as 2,6-di-tert-butyl-4-methylphenol, methylene-4,4-bisphenol (2,6-di-tert-butyl-4-methylphenol).
  • naphthylamines such as phenyl- ⁇ -naphthylamine, dialkyldiphenylamines, phosphite esters and the like.
  • phosphorus-based compounds such as phosphoric acid esters, phosphite esters, acidic phosphoric acid esters, and phosphonic acid esters.
  • the lubricating oil composition of the present embodiment uses two or more kinds of (D) antioxidants in combination.
  • D a phenol-based compound or an amine-based compound that functions as a primary antioxidant in combination with a secondary antioxidant such as a phosphorus-based compound.
  • the content of the (D) antioxidant in the entire composition is 0.5 to 10 from the viewpoint of suppressing oxidation and reducing evaporation. It is set to 0.0% by mass. More preferably, it is 2.0 to 7.0% by mass.
  • the lubricating oil composition of the present embodiment contains the metal inactivating agent, as long as the effects of the present invention are not impaired, in order to further improve its performance or, if necessary, to impart further performance.
  • Various additives such as defoaming agents, thickeners, and colorants may be blended alone or in combination of two or more.
  • metal inactivating agent examples include benzotriazole-based, tolyltriazole-based, and imidazole-based compounds.
  • defoaming agent examples include polysiloxane, polyacrylate, styrene ester polymer and the like.
  • thickener examples include metal soap (for example, lithium soap), silica, expanded graphite, polyurea, clay (for example, hectorite or bentonite) and the like.
  • the amount of the additives added is 0.0 to 10.0% by mass or 0 with respect to the entire lubricating oil composition (total mass). It can be used in an amount of about 1 to 5% by mass.
  • the thickener for producing grease using the lubricating oil composition of the present embodiment can be used in an amount of 5 to 25% by mass with respect to the entire lubricating grease composition (total mass).
  • the method for preparing the lubricating oil composition of the present embodiment is not particularly limited, and for example, (A) a siloxane compound, (B) a hydrocarbon-based oil, (C) an extreme pressure agent, and (D) an antioxidant. It can be adjusted by heating at least one of them or other additives to 100 ° C. and mixing them.
  • the lubricating oil composition of the present embodiment is stable for a long period of time and can be used at a wide range of temperatures, it can be used as various lubricants.
  • it is suitably used as a lubricant for turbo machines, a lubricant for compressors, a lubricant for hydraulic equipment, a lubricant for machine tools, a grease base oil, a refrigerating machine oil, a plasticizer and the like.
  • the amount of residue when heated and burned is smaller than before, it is less likely that pipe blockage or filter clogging due to the residue occurs, and it is suitable for applications in which a lubricant is used in a circulation system.
  • the siloxane compound according to one aspect of the present invention is characterized by being represented by the following formula (1).
  • X 1 is the same or different, hydrogen, an alkyl group having 1 to 12 carbon atoms, or a polyoxyalkyl group represented by the following formula (2).
  • Y is an alkylene group having 2 to 12 carbon atoms.
  • Z 1 represents a divalent organic group bonded to an adjacent silicon atom by a carbon-silicon bond and to a polyoxyalkylene block by an oxygen atom.
  • p is an integer of 0 to 13
  • q and r are integers of 0 to 16, respectively
  • n is an integer of 2 to 4
  • a is an integer of 0 to 11.
  • Z 2 represents a divalent organic group bonded to an adjacent silicon atom by a carbon-silicon bond and to a polyoxyalkylene block by an oxygen atom.
  • X 2 is hydrogen or an alkyl group having 1 to 12 carbon atoms.
  • m is an integer of 2 to 4, and
  • b is an integer of 1 to 10.
  • the siloxane compound has a viscosity index of 200 or more, and the amount of residue after heating at 140 ° C. for 100 hours and then at 250 ° C. for 700 hours is 20% or less. Thereby, it is considered that the above-mentioned effect can be obtained more reliably.
  • the lubricating oil composition according to another aspect of the present invention includes (A) the siloxane compound according to claim 1 or 2, (B) a hydrocarbon-based lubricating oil, (C) an extreme pressure agent, and (D). ) It is characterized by containing at least one of the antioxidants. With such a configuration, it is possible to provide a lubricating oil composition having very excellent lubricity and low residue property.
  • the lubricant according to still another aspect of the present invention is characterized by using the above-mentioned siloxane compound or lubricating oil composition. Further, the present invention includes the above-mentioned siloxane compound, a lubricating composition or lubricant using the same, greases and emulsions using them, and a lubrication method using them.
  • Silicone A-1 is 1,1,3,3-tetramethyldisiloxane manufactured by Tokyo Chemical Industry Co., Ltd. (average molecular weight 134, average number of dimethyl units (p in the above formula (1) is 0)). ..
  • the silicone A-2 has an average molecular weight of 529 and an average number of dimethyl units (p in the above formula (1)) of 5. It was found that the number of silicones A-3 was 1154, and the average number of dimethyl units (p in the above formula (1)) was 13.8.
  • FIG. 1 shows the NMR data of silicone A-2.
  • the 1 H-NMR analysis method for the hydrodimethylsiloxy group-blocked dimethylsiloxane at both ends of the molecular chain shown in Silicones A-2 to A-3 is as follows. a (chemical shift 0.05 to 0.10 ppm) indicates the peak of hydrogen derived from the methyl group of the repeating unit of dimethylsiloxane. b (chemical shift 0.17 to 0.22 ppm) indicates the peak of hydrogen derived from the methyl group of the hydrodimethylsiloxy group at both ends of the molecular chain.
  • the average molecular weight and the average number of dimethyl units were calculated from the following formulas based on the integrated values (ratio) of the peaks of the above a and b, respectively.
  • Average number of dimethyl units 2a ⁇ b
  • Average molecular weight average number of dimethyl units x molecular weight of dimethyl units + molecular weight of hydrodimethylsiloxy groups at both ends of the molecular chain
  • the filtrate was placed in a 200 mL separable flask, heated and depressurized to remove the residual hydrodimethylsiloxy group-blocked dimethylsiloxane at both ends of the molecular chain from the reaction product, and the hydrodimethylsiloxy group-blocked dimethylsiloxane at both ends of the molecule.
  • 51 g of a polyether copolymer (silicone A-4) was obtained.
  • the silicone A-4 has an average molecular weight of 3546, an average number of dimethyl units (p in the above formula (1)) of 4.6, and dimethyl. It was found that the number of repeating units of siloxane / polyether (r in the above formula (1)) was 3.1, and the number of repeating units of oxyethylene (a in the above formula (1)) was 10.1.
  • FIG. 2 shows the NMR data of silicone A-4.
  • the 1 H-NMR analysis method for silicone A-4 and the hydrodimethylsiloxy group-blocking dimethylsiloxane / polyether copolymer at both ends of the molecule shown in silicones A-7, A-8, and A-12, which will be described later, is as follows. It's a street. a (chemical shift 0.01 to 0.10 ppm) indicates a peak of hydrogen derived from the methyl group of the repeating unit of dimethylsiloxane and the methyl group of the dimethylsiloxane unit bonded to the polyether. b (chemical shift 0.16 to 0.21 ppm) indicates the peak of hydrogen derived from the methyl group of the hydrodimethylsiloxy group at both ends of the molecular chain.
  • c (chemical shift 0.40 to 1.10 ppm) indicates the peak of hydrogen derived from CH 2 next to silicon in the polyether portion bonded to silicon.
  • d (chemical shift 3.30 to 3.70 ppm) indicates the peak of hydrogen derived from CH 2 that binds to oxygen in the repeating portion of oxyethylene in the polyether portion, the repeating portion of oxyethylene, and the hydrocarbon portion connecting silicon.
  • the average molecular weight, the average number of dimethyl units, the average number of repeating units of dimethylsiloxane / polyether, and the average number of repeating units of oxyethylene are based on the integrated values (ratio) of the peaks of a, b, c, and d. In addition, it was calculated from the following formulas.
  • Average molecular weight (repeated number of oxyethylene x molecular weight of oxyethylene + average number of dimethyl units x molecular weight of dimethyl units + molecular weight of hydrocarbon part connecting polyether part and silicon + connecting via polyether part and hydrocarbon part (Molecular weight of silicon part) x average number of repeating units of dimethylsiloxane / polyether + average number of dimethyl units x molecular weight of dimethyl units + molecular weight of hydrocarbon siloxy groups at both ends of the molecular chain
  • the silicone A-5 has an average molecular weight of 739 and an average number of dimethyl units (p in the above formula (1)) of 5.1. I understood it.
  • FIG. 3 shows the NMR data of Silicone A-5.
  • the 1 H-NMR analysis method for silicone A-5 and the molecular double-ended alkyldimethylsiloki group-blocking dimethylsiloxane shown in silicone A-6 described later is as follows.
  • a (chemical shift 0.06 to 0.12 ppm) indicates the peak of hydrogen derived from the methyl group of the repeating unit of dimethylsiloxane.
  • b (chemical shift 0.45 to 0.72 ppm) indicates the peak of hydrogen derived from CH 2 next to the silicon of the alkyl group bonded to silicon.
  • the average molecular weight and the average number of dimethyl units were calculated from the following formulas based on the integrated values (ratio) of the peaks a and b.
  • Average number of dimethyl units 2a ⁇ 3b
  • Average molecular weight average number of dimethyl units x molecular weight of dimethyl units + molecular weight of alkyldimethylsiloxy groups at both ends of the molecular chain
  • the silicone A-6 has an average molecular weight of 677 and an average number of dimethyl units (p in the above formula (1)) of 5.1. I understood it.
  • the mixed solution was heated and aged at 60 ° C. for 5 hours. After completion of aging, 1 H-NMR was used to confirm the disappearance of the unsaturated double bond peak. Subsequently, after cooling to room temperature, the platinum catalyst was removed by filtration.
  • the silicone A-7 has an average molecular weight of 1470, an average number of dimethyl units (p in the above formula (1)) of 4.9, and dimethyl. It was found that the number of repeating units of siloxane / polyether (r in the above formula (1)) was 1.4, and the number of repeating units of oxyethylene (a in the above formula (1)) was 3.1.
  • the silicone A-8 has an average molecular weight of 2760, an average number of dimethyl units (p in the above formula (1)) of 4.6, and dimethyl. It was found that the number of repeating units of siloxane / polyether (r in the above formula (1)) was 3.5, and the number of repeating units of oxyethylene (a in the above formula (1)) was 3.0.
  • the dropping speed was adjusted so as to keep the liquid temperature at 65 to 75 ° C.
  • the mixed solution of 1-hexene and platinum catalyst it was aged at 65 ° C. for 5.5 hours. After completion of aging, 1 H-NMR was used to confirm the disappearance of the SiH group peak. Subsequently, the mixture was heated and depressurized to remove residual 1-hexene and toluene from the reaction product to obtain 52 g of a dimethylsiloxane-polyether copolymer (silicone A-9) having both ends of the molecule sealed with a hexyldimethylsiloki group.
  • the silicone A-9 has an average molecular weight of 2772, an average number of dimethyl units (p in the above formula (1)) of 4.4, and dimethyl. It was found that the number of repeating units of siloxane / polyether (r in the above formula (1)) was 3.3, and the number of repeating units of oxyethylene (a in the above formula (1)) was 3.1.
  • FIG. 4 shows the NMR data of Silicone A-9.
  • the 1 H-NMR analysis method for silicone A-9 and the molecular double-ended alkyldimethylsiloki group-blocking dimethylsiloxane / polyether copolymer shown in silicone A-11, which will be described later, is as follows.
  • a (chemical shift 0.01 to 0.15 ppm) is a peak of hydrogen derived from the methyl group of the dimethylsiloxane repeating unit, the methyl group of the dimethylsiloxane unit bonded to the polyether, and the methyl group of the dimethylsiloxane unit bonded to the alkyl group.
  • b (chemical shift 0.80 to 0.95 ppm) indicates the peak of hydrogen derived from CH 3 at the terminal of the alkyl group bonded to silicon.
  • c shows a peak of hydrogen from CH 2 next to the CH 2 next to the silicon polyether portion bonded to silicon.
  • d (chemical shift 3.30 to 3.75 ppm) indicates the peak of hydrogen derived from CH 2 that binds to oxygen in the repeating portion of oxyethylene in the polyether portion, the repeating portion of oxyethylene, and the hydrocarbon portion connecting silicon.
  • the average molecular weight, the average number of dimethyl units, the average number of repeating units of dimethylsiloxane / polyether, and the average number of repeating units of oxyethylene are also the integrated values (ratio) of the peaks of a, b, c, and d. And, each was calculated from the following formulas.
  • Silicone A-8 was heated, and after the liquid temperature reached 30 ° C., dropping of the mixed solution of the dropping funnel was started. After dropping all the mixed solution of the dropping funnel, it was aged at 80 ° C. for 22 hours. After completion of aging, 1 H-NMR was used to confirm the disappearance of the SiH group peak. Subsequently, the mixture was heated and depressurized to remove residual alphamethylstyrene (AMS) and toluene used as a solvent from the reaction product, and a 2-phenylpropyldimethylsiloki group-blocking dimethylsiloxane-polyether copolymer (silicone) at both ends of the molecule. A-10) 24 g was obtained.
  • AMS alphamethylstyrene
  • silicone 2-phenylpropyldimethylsiloki group-blocking dimethylsiloxane-polyether copolymer
  • the silicone A-10 has an average molecular weight of 3933, an average number of dimethyl units (p in the above formula (1)) of 4.7, and dimethyl. It was found that the number of repeating units of siloxane / polyether (r in the above formula (1)) was 4.8, and the number of repeating units of oxyethylene (a in the above formula (1)) was 2.9.
  • FIG. 5 shows the NMR data of Silicone A-10.
  • the 1 H-NMR analysis method of the 2-phenylpropyldimethylsiloki group-blocking dimethylsiloxane / polyether copolymer shown at both ends of the molecule shown in Silicone A-10 is as follows. a (chemical shift 0.01 to 0.15 ppm) indicates a peak of hydrogen derived from the methyl group of the repeating unit of dimethylsiloxane and the methyl group of the dimethylsiloxane unit bonded to the polyether. b (chemical shift 0.99 to 1.05 ppm) shows the peak of hydrogen derived from CH 2 next to silicon in the polyether portion bonded to silicon.
  • c (chemical shift 2.85 to 3.00 ppm) indicates the peak of hydrogen derived from CH of the aralkyl group bonded to silicon.
  • d (chemical shift 3.30 to 3.75 ppm) indicates the peak of hydrogen derived from CH 2 that binds to oxygen in the repeating portion of oxyethylene in the polyether portion, the repeating portion of oxyethylene, and the hydrocarbon portion connecting silicon.
  • the average molecular weight, the average number of dimethyl units, the average number of repeating units of dimethylsiloxane / polyether, and the average number of repeating units of oxyethylene are the integrated values (ratio) of the peaks of a, b, c, and d. Based on this, each was calculated from the following formulas.
  • the mixed solution was heated, and after the liquid temperature reached 30 ° C., dropping of the mixed solution of the dropping funnel was started. After dropping all the mixed solution of the dropping funnel, it was aged at 85 ° C. for 16 hours. After completion of aging, 1 H-NMR was used to confirm the disappearance of the SiH group peak. Subsequently, the mixture was heated and depressurized to remove residual 1-dodecene and toluene used as a solvent from the reaction product, and 27 g of a dimethylsiloxane-polyether copolymer (silicone A-11) with both ends of the molecule dodecene dimethylshiroki group-blocked Obtained.
  • a dimethylsiloxane-polyether copolymer silicone A-11
  • the silicone A-11 has an average molecular weight of 2865, an average number of dimethyl units (p in the above formula (1)) of 4.4, and dimethyl. It was found that the number of repeating units of siloxane / polyether (r in the above formula (1)) was 3.2, and the number of repeating units of oxyethylene (a in the above formula (1)) was 3.0.
  • the silicone A-12 has an average molecular weight of 10572, an average number of dimethyl units (p in the above formula (1)) of 4.1, and dimethyl. It was found that the number of repeating units of siloxane / polyether (r in the above formula (1)) was 16.2, and the number of repeating units of oxyethylene (a in the above formula (1)) was 3.0.
  • the mixed solution was heated and aged at 80 ° C. for 5 hours. After completion of aging, 1 H-NMR was used to confirm the disappearance of the unsaturated double bond peak. Subsequently, after cooling to room temperature, the platinum catalyst was removed by filtration.
  • the filtrate was placed in a 100 mL eggplant flask, heated and depressurized to remove the residual hydrodimethylsiloxy group-blocking dimethylsiloxane at both ends of the molecular chain and toluene used as a solvent, and the hydrodimethylsiloxy at both ends of the molecule. 14 g of a base-sealed dimethylsiloxane / hexylene copolymer was obtained. 1 As a result of analyzing the copolymer obtained by using H-NMR, the copolymer had an average molecular weight of 1201, an average number of dimethyl units (p in the above formula (1)) of 5.3, and dimethylsiloxane. It was found that the number of repeating units of hexylene (q in the above formula (1)) was 1.1.
  • FIG. 6 shows NMR data of the hydrodimethylsiloxy group-blocking dimethylsiloxane / hexylene copolymer at both ends of the molecule.
  • the 1 H-NMR analysis method of the hydrodimethylsiloxy group-blocked dimethylsiloxane / hexylene copolymer at both ends of the molecule is as follows.
  • a (chemical shift 0.01 to 0.11 ppm) indicates the peak of hydrogen derived from the methyl group of the dimethylsiloxane unit bonded to the hexylene group and the methyl group of the repeating unit of dimethylsiloxane.
  • b (chemical shift 0.17 to 0.21 ppm) indicates the peak of hydrogen derived from the methyl group of the hydrodimethylsiloxy group at both ends of the molecular chain.
  • c (chemical shift 0.45 to 0.60 ppm) indicates the peak of hydrogen derived from CH 2 next to the silicon of the hexylene group bonded to silicon.
  • the average molecular weight, the average number of dimethyl units, and the average number of repeating units of dimethylsiloxane / hexylene were calculated by the following formulas based on the integrated values (ratio) of the peaks a, b, and c above. ..
  • the mixed solution was heated, and after the liquid temperature reached 35 ° C., dropping of the mixed solution of the dropping funnel was started. After dropping all the mixed solution of the dropping funnel, it was aged at 75 ° C. for 23 hours. After completion of aging, 1 H-NMR was used to confirm the disappearance of the SiH group peak. Subsequently, distilled water and hexane were added to the obtained reaction solution, the hexane layer was recovered, hexane and toluene used as solvents were removed, and both ends of the molecule were polyoxyalkyldimethylsiloki group-blocked dimethylsiloxane / hexylene co-weight. 4 g of coalesced (silicone A-13) was obtained.
  • the silicone A-13 has an average molecular weight of 1897, an average number of dimethyl units (p in the above formula (1)) of 4.6, and dimethyl. It was found that the number of repeating units of siloxane / hexylene (q in the above formula (1)) was 1.4, and the number of repeating units of oxyethylene at the molecular terminal (b in the above formula (2)) was 6.0. ..
  • FIG. 7 shows the NMR data of Silicone A-13.
  • the 1 H-NMR analysis method of the molecular double-ended polyoxyalkyldimethylsiloxy group-blocking dimethylsiloxane / alkylene copolymer shown in Silicone A-13 is as follows.
  • a (chemical shift 0.01 to 0.15 ppm) is the peak of hydrogen derived from the methyl group of the dimethylsiloxane unit bonded to the methyl group of the dimethylsiloxane repeating unit and the methyl group of the dimethylsiloxane unit bonded to the polyether group.
  • b (chemical shift 1.20 to 1.40 ppm) shows the peak of hydrogen derived from CH 2 of the hexylene group not bonded to silicon.
  • c shows a peak of hydrogen from CH 2 next to the CH 2 next to the silicon polyoxyethylene alkyl group attached to silicon.
  • d shows the peak of hydrogen derived from the repeating portion of ethylene in the polyoxyalkyl moiety.
  • the average molecular weight, the average number of dimethyl units, the average number of repeating units of dimethylsiloxane / polyether, and the average number of repeating units of oxyethylene are the integrated values (ratio) of the peaks of a, b, c, and d. Based on this, each was calculated from the following formulas.
  • Average number of dimethyl units (4a-6b-18c) ⁇ 3b
  • Average number of repeating units of dimethylsiloxane / hexylene b / 2c
  • Number of repetitions of oxyethylene d ⁇ 2c
  • Average molecular weight (average number of dimethyl units x molecular weight of dimethyl units + molecular weight of hexylene + molecular weight of silicon part connected to hexylene part) x average number of repeating units of dimethylsiloxane / hexylene + average number of dimethyl units x dimethyl units
  • the amount of residue (% by weight) in the table was measured by the method described later.
  • silicone oils shown in Table 1 for silicone A-3, the value of p in the formula (1) exceeds 13, so it is considered that the amount of residue has increased.
  • -PAO oil poly- ⁇ -olefin manufactured by Chevron Phillips, product name: Synfluid PAO 6 cSt (40 ° C. kinematic viscosity: 30.5 mm 2 / s, 100 ° C. kinematic viscosity: 5.9 mm 2 / s, VI: 137)
  • -Ether oil Alkyl diphenyl ether "Moresco High Lube LB-100" manufactured by MORESCO Co., Ltd.
  • kinematic viscosity 12.6mm 2 / s, 100 °C kinematic viscosity: 2.9mm 2 / s, VI: 56) -PAG (Polyalkylene Glycol): "New Pole HB50-660" manufactured by Sanyo Chemical Industries, Ltd. (40 ° C. kinematic viscosity: 130.1 mm 2 / s, 100 ° C. kinematic viscosity: 20.1 mm 2 / s, VI: 178)
  • ((C) Extreme pressure agent) Sulfur-based extreme pressure agent: isobutylene sulfide, manufactured by Rhein Chemie, "RC 2545” -Sulfur-phosphorus extreme pressure agent: Thiophosphate ester, made by LUBRIZOL "LUBRIZOL IC9AW31” -Phosphorus-based extreme pressure agent: Amin salt of fatty acid phosphate, "NA-LUBE AW-6400FG” manufactured by Kingindustries
  • (D) Antioxidant) -Primary antioxidant BASF's aromatic amine compound, "IRGANOX L-57” -Primary antioxidant: BASF's phenolic compound, "IRGANOX L-135" -Secondary antioxidant: Johoku Chemical Industry "JP-310", a phosphite ester compound manufactured by Co., Ltd.
  • (Other) -Metal inactivating agent Vanderbilt's benzotriazole compound "CUVAN303" -Silicone used in the comparative test 1: Methylphenyl silicone, "SH-550” manufactured by Toray Dow Corning Co., Ltd. (40 ° C kinematic viscosity: 75.3 mm 2 / s, 100 ° C kinematic viscosity: 20.1 mm 2 / s , VI: 291) -Silicone used in the comparative test: Alkylic silicone, "KF-4917” manufactured by Shin-Etsu Chemical Co., Ltd. (40 ° C kinematic viscosity: 13.8 mm 2 / s, 100 ° C kinematic viscosity: 4.6 mm 2 / s, VI : 292)
  • Examples 1 to 22 and Comparative Examples 1 to 6 For Examples 1 to 10, various siloxane compounds (silicone oils) obtained in the above synthesis examples shown in Table 2 were used as they were. In Examples 11 to 22 and Comparative Examples 1 to 6, the respective components were blended in proportions (% by mass) shown in Tables 2 and 3 below, and (A) silicone oil and (B) hydrocarbons were blended. Each lubricating oil composition was prepared by heating the system oil, (C) extreme pressure agent, (D) antioxidant, and other additives to 100 ° C. and mixing them.
  • Viscosity index The viscosity index (VI) was measured and calculated according to JIS K 2283 (2000). The evaluation criteria are as follows.
  • Residue ratio (% by weight) is 10% or less ⁇ Residue ratio (% by weight) is more than 10% to 20% or less ⁇ Residue ratio (% by weight) exceeds 20% ⁇
  • the above results are shown in Tables 2 and 3.
  • Examples 11 to 22 it was shown that even if the siloxane compound of the present invention is used as a composition together with other components, a high viscosity index and a low residual property can be achieved at the same time.
  • the larger the amount of the siloxane compound blended the smaller the residue after heating.
  • the larger the amount of the siloxane compound blended the better the viscosity index.
  • the siloxane compound and the lubricating oil composition of the present invention can be used as a lubricating oil having excellent lubricity, they can be used as lubricants for various purposes, for example, lubricants for turbo machinery, lubricants for compressors, and hydraulic equipment. It can be suitably used as a lubricant, a lubricant for machine tools, a grease base oil, a refrigerating machine oil, a plasticizer and the like. Especially suitable for high load applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Silicon Polymers (AREA)
  • Lubricants (AREA)

Abstract

The present invention relates to the siloxane compound represented by formula (1). 

Description

低残渣シロキサン化合物並びにそれを用いた潤滑油組成物及び潤滑剤Low-residue siloxane compound and lubricating oil composition and lubricant using it
 本発明は、低残渣シロキサン化合物並びにそれを用いた潤滑油組成物及び潤滑剤に関する。 The present invention relates to a low-residue siloxane compound and a lubricating oil composition and a lubricant using the same.
 潤滑油や潤滑油組成物は、様々な機械装置などの可動部や可動面間の摩擦や摩耗を低減するために用いられる。 Lubricating oils and lubricating oil compositions are used to reduce friction and wear between moving parts and moving surfaces of various mechanical devices.
 最近では、輸送機器の使用環境の拡大、過酷化により、機械装置の高度化、小型化が進んでいる。機械装置の高度化、小型化に伴い、幅広い温度範囲で使用できる粘度指数(VI)が高い(温度変化に対する粘度変化が小さい)潤滑油が求められている。VIが高い潤滑油は、低温での粘度が低く、潤滑油自体の粘性抵抗によるエネルギー損失が小さいことから省エネルギー性(省エネ性)の点で優れている。また、高温環境下においては、VIの低い潤滑油と比較し、過度に低粘度化することがないため、潤滑面で潤滑に必要な油膜を保持することができ、また適度な粘性を保持することから潤滑油の飛散が抑えられ周囲を汚染することが少ない。 Recently, due to the expansion and harshness of the usage environment of transportation equipment, the sophistication and miniaturization of mechanical devices are progressing. With the sophistication and miniaturization of mechanical devices, there is a demand for a lubricating oil having a high viscosity index (VI) (small change in viscosity with respect to temperature change) that can be used in a wide temperature range. A lubricating oil having a high VI has a low viscosity at a low temperature, and the energy loss due to the viscous resistance of the lubricating oil itself is small, so that it is excellent in terms of energy saving (energy saving). Further, in a high temperature environment, the viscosity does not become excessively low as compared with the lubricating oil having a low VI, so that the oil film necessary for lubrication can be retained on the lubricating surface, and the appropriate viscosity is maintained. Therefore, the scattering of lubricating oil is suppressed and the surroundings are less likely to be contaminated.
 これまでは、一般に炭化水素系の潤滑油の粘度指数を高くする方法として、ポリメタクリル酸エステルやポリブテンなどの高分子化合物がVI向上剤として使用されてきた(特許文献1および2)。 Until now, polymer compounds such as polymethacrylic acid ester and polybutene have been generally used as VI improvers as a method for increasing the viscosity index of hydrocarbon-based lubricating oils (Patent Documents 1 and 2).
 近年では、VIが高い潤滑油として知られるシリコーン油(以下、Si油とも称す)等のシロキサン化合物を潤滑油基材とした潤滑油組成物が提案されている(特許文献3および4)。 In recent years, lubricating oil compositions using a siloxane compound such as silicone oil (hereinafter, also referred to as Si oil) known as a lubricating oil having a high VI as a lubricating oil base material have been proposed (Patent Documents 3 and 4).
 しかし、シロキサン化合物は、酸化劣化後にスラッジ(SiO)が残渣として残る問題があり、配管閉塞やフィルター詰まりの原因となるため、既存のシロキサン化合物を主剤とする潤滑剤は用途に制約がある。よって、更に幅広い分野に展開するためには、更なる潤滑性の向上や潤滑剤分野でネックとなる残渣を少なくすることが求められている。 However, the siloxane compound has a problem that sludge (SiO 2 ) remains as a residue after oxidative deterioration, which causes pipe clogging and filter clogging. Therefore, existing lubricants containing a siloxane compound as a main component have restrictions on their uses. Therefore, in order to expand into a wider range of fields, it is required to further improve the lubricity and reduce the residue that becomes a bottleneck in the lubricant field.
 これまでに、耐熱性に優れる潤滑油に使用可能な共重合体として、ポリシロキサンとビスフェノール構造を含有するポリエーテルとからなるポリシロキサン・ポリエーテルブロック共重合体が報告されている(特許文献5)。また、低残渣性(スラッジ抑制効果が高い)を有するポリアルキレングリコールとポリオールエステルとを基油とリン系およびアミン系の酸化防止剤からなる潤滑油組成物も報告されている(特許文献6)。 So far, as a copolymer that can be used for a lubricating oil having excellent heat resistance, a polysiloxane / polyether block copolymer composed of a polysiloxane and a polyether containing a bisphenol structure has been reported (Patent Document 5). ). Further, a lubricating oil composition containing a polyalkylene glycol having a low residual property (high sludge suppressing effect) and a polyol ester as a base oil and a phosphorus-based and amine-based antioxidant is also reported (Patent Document 6). ..
 しかしながら、特許文献5記載の共重合体は、ポリシロキサンを含む構造であるため、劣化に伴う増粘、スラッジの生成が問題となる。 However, since the copolymer described in Patent Document 5 has a structure containing polysiloxane, thickening and sludge formation due to deterioration become problems.
 また、特許文献6記載の技術においては、ポリアルキレングリコールやエステル油はそれぞれ劣化後の増粘、スラッジの生成が少ない合成油である。そのため、潤滑剤組成物としても劣化後に増粘、スラッジの生成は軽微であると考えられる。しかし、昨今の潤滑剤のトレンドである幅広い温度域で使用できる(粘度指数が高い)組成物とするためには、これらの混合基油ではVIが不十分であり、VI向上剤(高分子の添加剤)の添加が必要となる。VI向上剤は、低温粘度の上昇を引き起こすのみでなく、潤滑油の使用環境下において、せん断力の影響を受け、初期の潤滑油特性を損なう(粘度低下が起こる)問題がある。 Further, in the technique described in Patent Document 6, polyalkylene glycol and ester oil are synthetic oils with less thickening and less sludge formation after deterioration, respectively. Therefore, it is considered that the lubricant composition also has a slight thickening and sludge formation after deterioration. However, in order to obtain a composition that can be used in a wide temperature range (high viscosity index), which is the trend of lubricants in recent years, the VI of these mixed base oils is insufficient, and the VI improver (high molecular weight). Additives) need to be added. The VI improver not only causes an increase in low-temperature viscosity, but also has a problem that it is affected by a shearing force in an environment in which the lubricating oil is used and impairs the initial lubricating oil characteristics (a decrease in viscosity occurs).
 本発明の課題は、上述したような問題点を解決することにある。すなわち、優れた潤滑性と高い粘度指数(VI)を兼ね備え、かつ、低残渣性を有する、シロキサン化合物並びにそれを用いた潤滑油組成物を提供することを目的とする。 The object of the present invention is to solve the above-mentioned problems. That is, it is an object of the present invention to provide a siloxane compound having excellent lubricity and a high viscosity index (VI) and low residual property, and a lubricating oil composition using the same.
特開2015-172165号公報Japanese Unexamined Patent Publication No. 2015-172165 特開2017-155193号公報Japanese Unexamined Patent Publication No. 2017-155193 特開2012-207082号公報Japanese Unexamined Patent Publication No. 2012-207882 特開2003-261892号公報Japanese Unexamined Patent Publication No. 2003-261892 特開平9-286230号公報Japanese Unexamined Patent Publication No. 9-286230 特開2018-28024号公報JP-A-2018-28024
 本発明者は、上記課題を解決すべく鋭意研究した結果、下記構成によって、上記目的を達することを見出し、この知見に基づいて更に検討を重ねることによって本発明を完成した。 As a result of diligent research to solve the above problems, the present inventor has found that the above object is achieved by the following configuration, and has completed the present invention by further studies based on this finding.
 すなわち、本発明の一局面に係るシロキサン化合物は、下記式(1)で示されることを特徴とする。 That is, the siloxane compound according to one aspect of the present invention is characterized by being represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
[式(1)中、
 Xは、同一または異なって、水素、炭素数1~12のアルキル基または下記式(2)で示されるポリオキシアルキル基であり、
 Yは、炭素数2~12のアルキレン基であり、
 Zは、炭素-ケイ素結合によって隣接ケイ素原子に、かつ、酸素原子によってポリオキシアルキレンブロックに結合している2価の有機基を表し、
 pは0~13の整数、qおよびrはそれぞれ0~16の整数、nは2~4の整数、aは0~11の整数である。
Figure JPOXMLDOC01-appb-C000004
 (式(2)中、
 Zは、炭素-ケイ素結合によって隣接ケイ素原子に、かつ、酸素原子によってポリオキシアルキレンブロックに結合している2価の有機基を表し、
 Xは、水素もしくは炭素数1~12のアルキル基であり、
 mは2~4の整数、bは1~10の整数である。)]
[In equation (1),
X 1 is the same or different, hydrogen, an alkyl group having 1 to 12 carbon atoms, or a polyoxyalkyl group represented by the following formula (2).
Y is an alkylene group having 2 to 12 carbon atoms.
Z 1 represents a divalent organic group bonded to an adjacent silicon atom by a carbon-silicon bond and to a polyoxyalkylene block by an oxygen atom.
p is an integer of 0 to 13, q and r are integers of 0 to 16, respectively, n is an integer of 2 to 4, and a is an integer of 0 to 11.
Figure JPOXMLDOC01-appb-C000004
(In equation (2),
Z 2 represents a divalent organic group bonded to an adjacent silicon atom by a carbon-silicon bond and to a polyoxyalkylene block by an oxygen atom.
X 2 is hydrogen or an alkyl group having 1 to 12 carbon atoms.
m is an integer of 2 to 4, and b is an integer of 1 to 10. )]
図1は、実施例で合成したシリコーンA-2のNMRデータである。FIG. 1 is NMR data of silicone A-2 synthesized in Examples. 図2は、実施例で合成したシリコーンA-4のNMRデータである。FIG. 2 is the NMR data of the silicone A-4 synthesized in the example. 図3は、実施例で合成したシリコーンA-5のNMRデータである。FIG. 3 is NMR data of the silicone A-5 synthesized in the examples. 図4は、実施例で合成したシリコーンA-9のNMRデータである。FIG. 4 is the NMR data of the silicone A-9 synthesized in the example. 図5は、実施例で合成したシリコーンA-10のNMRデータである。FIG. 5 is NMR data of the silicone A-10 synthesized in the example. 図6は、実施例で合成したシリコーン分子両末端ハイドロジメチルシロキシ基封鎖ジメチルシロキサン・へキシレン共重合体のNMRデータである。FIG. 6 is NMR data of the silicone molecule double-ended hydrodimethylsiloxy group-blocking dimethylsiloxane / hexylene copolymer synthesized in the examples. 図7は、実施例で合成したシリコーンA-13のNMRデータである。FIG. 7 is the NMR data of the silicone A-13 synthesized in the example.
 以下、本発明の実施形態について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited thereto.
 ((A)シロキサン化合物)
 本実施形態のシロキサン化合物は、下記式(1)で示されることを特徴とする。
((A) Siloxane compound)
The siloxane compound of the present embodiment is characterized by being represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 このような本実施形態のシロキサン化合物は、高い粘度指数と、低残渣性を兼ね備えるため、幅広い分野で潤滑剤などとして使用することが可能である。 Since such a siloxane compound of the present embodiment has both a high viscosity index and low residue property, it can be used as a lubricant or the like in a wide range of fields.
 すなわち、上記構成によれば、非常に優れた潤滑性を有し、かつ、低残渣性を有する、シロキサン化合物並びにそれを用いた潤滑油組成物を提供することができる。 That is, according to the above configuration, it is possible to provide a siloxane compound having very excellent lubricity and low residual property, and a lubricating oil composition using the same.
 上記式(1)において、Xは、同一または異なって、水素、炭素数1~12のアルキル基または下記式(2)で示されるポリオキシアルキル基である。
Figure JPOXMLDOC01-appb-C000006
 上記式(2)において、Xは、水素または炭素数1~12のアルキル基を示す。
In the above formula (1), X 1 is the same or different, hydrogen, an alkyl group having 1 to 12 carbon atoms, or a polyoxyalkyl group represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000006
In the above formula (2), X 2 represents hydrogen or an alkyl group having 1 to 12 carbon atoms.
 上記式(1)および式(2)において、XおよびXにおける炭素数1~12のアルキル基の構造については特に限定はなく、直鎖でも分枝鎖でも環状でもよい。具体的には、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、オクチル基、ノニル基、ドデシル基などが挙げられる。これらの官能基を構造中に1種単独または、Xにおいては2種以上を組み合わせて含んでいてもよい。 In the above formula (1) and (2), no particular limitation is imposed upon the structure of the alkyl group having 1 to 12 carbon atoms in X 1 and X 2, may be cyclic or straight or branched. Specific examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an octyl group, a nonyl group and a dodecyl group. Alone or in these functional groups in the structure, it may contain a combination of two or more in X 1.
 XおよびXの炭素数としては、低温で低粘度を維持するという観点から1~12が好ましく、1~10がより好ましく、1~8が特に好ましい。XおよびXの炭素数が12を超えると、低温特性が著しく悪化するため、潤滑油組成物とした場合に低温度域での使用が困難となる。 The carbon number of X 1 and X 2 is preferably 1 to 12, more preferably 1 to 10, and particularly preferably 1 to 8 from the viewpoint of maintaining a low viscosity at a low temperature. If the number of carbon atoms of X 1 and X 2 exceeds 12, the low temperature characteristics are significantly deteriorated, which makes it difficult to use the lubricating oil composition in a low temperature range.
 また、上記式(1)および式(2)において、ZおよびZは、炭素-ケイ素結合によって隣接ケイ素原子に、かつ、酸素原子によってポリオキシアルキレンブロックに結合している2価の有機基を表す。ZおよびZにおける2価の有機基の構造については特に限定はなく、例えば、-R-、-R-CO-、-R-NHCO-、-R-NHCONH-R-NHCO-、-R-OOCNH-R-NHCO-(式中Rは、例えばエチレン、プロピレン、ブチレンなどの2価のアルキレン基であり、Rは、例えば-C-、-C-C-、-C-CH(CH-C-などの2価のアリレン基である。好適にはRはフェニレン基である)などが挙げられる。より好ましくは、ZおよびZは、2価のアルキレン基、特にエチレン、プロピレンである。 Further, in the above formulas (1) and (2), Z 1 and Z 2 are divalent organic groups bonded to an adjacent silicon atom by a carbon-silicon bond and to a polyoxyalkylene block by an oxygen atom. Represents. The structure of the divalent organic group in Z 1 and Z 2 is not particularly limited, and for example, -R-, -R-CO-, -R-NHCO-, -R-NHCONH-R 2- NHCO-,- R-OOCNH-R 2 -NHCO- (wherein R is, for example, ethylene, propylene, a divalent alkylene group such as butylene, R 2 is, for example -C 6 H 4 -, - C 6 H 4 -C 6 H 4 -, - C 6 H 4 -CH (CH 3) 2 -C 6 H 4 -. a divalent arylene group, such as suitably R 2 is a phenylene group). More preferably, Z 1 and Z 2 are divalent alkylene groups, especially ethylene and propylene.
 上記式(1)において、Yは、炭素数2~12のアルキレン基である。Yの構造は特に限定はなく、直鎖でも分枝鎖でも環状でもよい。 In the above formula (1), Y is an alkylene group having 2 to 12 carbon atoms. The structure of Y is not particularly limited, and may be linear, branched, or cyclic.
 具体的には、例えば、エチレン基、プロピレン基、ブチレン基、へキシレン基等のアルキレン基が挙げられる。これらの官能基を構造中に1種単独または2種以上を組み合わせて含んでいてもよい。 Specifically, for example, an alkylene group such as an ethylene group, a propylene group, a butylene group, and a hexylene group can be mentioned. These functional groups may be contained in the structure alone or in combination of two or more.
 Yにおけるアルキレン基の炭素数としては、低温で低粘度を維持するという観点から2~12が好ましく、2~10がより好ましく2~8が特に好ましい。Yにおけるアルキレン基の炭素数が12を超えると、低温特性が著しく悪化する可能性がある。 The number of carbon atoms of the alkylene group in Y is preferably 2 to 12, more preferably 2 to 10, and particularly preferably 2 to 8 from the viewpoint of maintaining a low viscosity at a low temperature. If the number of carbon atoms of the alkylene group in Y exceeds 12, the low temperature characteristics may be significantly deteriorated.
 また、ポリオキシアルキレン基の繰り返しユニット数としては、潤滑油として必要な粘性を得るという観点から1~11が好ましい。前記繰り返しユニット数が11を超えると、分子構造中のシロキサン部が占める割合が小さくなり粘度指数が低下するおそれがある。 The number of repeating units of the polyoxyalkylene group is preferably 1 to 11 from the viewpoint of obtaining the viscosity required for the lubricating oil. If the number of repeating units exceeds 11, the proportion of the siloxane portion in the molecular structure may become small and the viscosity index may decrease.
 また、上記式(1)において、pは0~13の整数である。前記pが13を超えると、熱劣化後の残渣量が多くなるおそれがある。 Further, in the above equation (1), p is an integer of 0 to 13. If the p exceeds 13, the amount of residue after thermal deterioration may increase.
 上記式(1)において、qおよびrはそれぞれ同一または異なって0~16の整数であるが、これらの値が16を超えると、潤滑油として粘性が高くなりすぎて省エネルギー性に欠けるおそれがある。 In the above formula (1), q and r are the same or different integers of 0 to 16, respectively, but if these values exceed 16, the viscosity of the lubricating oil may become too high and energy saving may be lacking. ..
 さらに、上記式(1)において、ポリオキシアルキレン化合物はポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、混合ポリオキシエチレン-オキシプロピレン等であるため、nは2~4の整数である。 Further, in the above formula (1), since the polyoxyalkylene compound is polyoxyethylene, polyoxypropylene, polyoxybutylene, mixed polyoxyethylene-oxypropylene and the like, n is an integer of 2 to 4.
 また、上記式(2)において、ポリオキシアルキレン化合物はポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、混合ポリオキシエチレン-オキシプロピレン等であるため、mは2~4の整数である。 Further, in the above formula (2), since the polyoxyalkylene compound is polyoxyethylene, polyoxypropylene, polyoxybutylene, mixed polyoxyethylene-oxypropylene, etc., m is an integer of 2 to 4.
 さらに、上記式(2)において、bは1~10の整数である。bが10を超えると、分子構造中のシロキサン部が占める割合が小さくなり粘度指数が低下するおそれがある。 Further, in the above equation (2), b is an integer of 1 to 10. If b exceeds 10, the proportion of the siloxane portion in the molecular structure becomes small, and the viscosity index may decrease.
 本実施形態のシロキサン化合物の質量平均分子量は、特に限定はされないが、500~11000であることが好ましい。質量平均分子量が500を下回ると、蒸発量が多くなるおそれがある。また、質量平均分子量が11000を超えると、潤滑油として粘性が高くなりすぎて省エネルギー性に欠けるので好ましくない。 The mass average molecular weight of the siloxane compound of the present embodiment is not particularly limited, but is preferably 500 to 11000. If the mass average molecular weight is less than 500, the amount of evaporation may increase. Further, if the mass average molecular weight exceeds 11000, the viscosity of the lubricating oil becomes too high and energy saving is lacking, which is not preferable.
 なお、本実施形態におけるシロキサン化合物の質量平均分子量とは、後述の実施例に示すように、H-NMRを用いて測定した値である。なお、以下では質量平均分子量を単に「平均分子量」とも称す。 The mass average molecular weight of the siloxane compound in this embodiment is a value measured by 1 H-NMR as shown in Examples described later. In the following, the mass average molecular weight is also simply referred to as "average molecular weight".
 具体的には、本実施形態のシロキサン化合物は、その粘度指数が200以上であり、かつ、140℃で100時間加熱後、250℃で700時間加熱した後の残渣量が20%以下であることが好ましい。 Specifically, the siloxane compound of the present embodiment has a viscosity index of 200 or more, and the amount of residue after heating at 140 ° C. for 100 hours and then at 250 ° C. for 700 hours is 20% or less. Is preferable.
 本実施形態におけるシロキサン化合物の粘度指数(VI)は、VIが高い潤滑油組成物を得るために、200以上であることが好ましい。より好ましくは240以上であることが好ましい。本明細書において、VIとは、JIS K 2283(2000年)に基づいて測定・算出した値である。 The viscosity index (VI) of the siloxane compound in this embodiment is preferably 200 or more in order to obtain a lubricating oil composition having a high VI. More preferably, it is 240 or more. In the present specification, VI is a value measured and calculated based on JIS K 2283 (2000).
 上述したようなシロキサン化合物を合成する方法は特に限定されないが、いくつかの製造例を示すと、例えば、分子鎖両末端ハイドロジメチルシロキシ基封鎖ジメチルシロキサンとポリアルキレングリコールのジビニルエーテルとを白金触媒存在下でヒドロシリル化反応することによって、本実施形態のシロキサン化合物(シリコーン油)を得ることができる。あるいは、分子鎖両末端ハイドロジメチルシロキシ基封鎖ジメチルシロキサンとポリアルキレングリコールのジビニルエーテルとを白金触媒存在下でヒドロシリル化反応させた後に、オレフィン化合物と白金触媒存在下でヒドロシリル化反応することによって、シロキサン化合物(シリコーン油)を得ることができる。 The method for synthesizing the siloxane compound as described above is not particularly limited, but some production examples show, for example, the presence of a platinum catalyst in a hydrodimethylsiloxy group-blocking dimethylsiloxane at both ends of the molecular chain and a divinyl ether of polyalkylene glycol. The siloxane compound (silicone oil) of the present embodiment can be obtained by hydrosilylation reaction underneath. Alternatively, a siloxane is obtained by hydrosilylating a hydrodimethylsiloxy group-blocking dimethylsiloxane at both ends of the molecular chain and a divinyl ether of a polyalkylene glycol in the presence of a platinum catalyst, and then hydrosilylating the olefin compound in the presence of a platinum catalyst. A compound (silicone oil) can be obtained.
 本実施形態のシロキサン化合物は、そのまま単独で、各種潤滑剤として使用することもできるが、後述するような炭化水素系潤滑油と、酸化防止剤および極圧剤のうち少なくとも一つと、組み合わせて潤滑油組成物として使用してもよい。 The siloxane compound of the present embodiment can be used as it is alone as various lubricants, but it is lubricated by combining a hydrocarbon-based lubricating oil as described later with at least one of an antioxidant and an extreme pressure agent. It may be used as an oil composition.
 すなわち、本実施形態の潤滑油組成物は、(A)上述のシロキサン化合物と、(B)炭化水素系潤滑油と、(C)極圧剤および(D)酸化防止剤のうち少なくとも一つと、を少なくとも含むことを特徴とする。 That is, the lubricating oil composition of the present embodiment contains (A) the above-mentioned siloxane compound, (B) a hydrocarbon-based lubricating oil, (C) an extreme pressure agent, and (D) at least one of an antioxidant. Is characterized by containing at least.
 本実施形態の潤滑油組成物の粘度指数(VI)は、180以上であることが好ましい。より好ましくは200以上、さらには250以上であることが好ましい。 The viscosity index (VI) of the lubricating oil composition of this embodiment is preferably 180 or more. More preferably, it is 200 or more, and further preferably 250 or more.
 本実施形態の潤滑油組成物において、組成物全体に対する前記(A)シロキサン化合物の含有量は、粘度指数及び潤滑性の観点から30~95質量%である。特に50~90質量%であることが好ましく、60~90質量%であることがさらに好ましい。(A)成分の含有量が30質量%未満であっても潤滑油組成物とした場合に粘度指数を向上させることは可能であるが、粘度指数を向上させる効果が乏しく、また、上限については特に限定はなく、上記したように100質量%がシロキサン化合物であってもよい。 In the lubricating oil composition of the present embodiment, the content of the siloxane compound (A) with respect to the entire composition is 30 to 95% by mass from the viewpoint of viscosity index and lubricity. In particular, it is preferably 50 to 90% by mass, and more preferably 60 to 90% by mass. Even if the content of the component (A) is less than 30% by mass, it is possible to improve the viscosity index when the lubricating oil composition is used, but the effect of improving the viscosity index is poor, and the upper limit is set. There is no particular limitation, and as described above, 100% by mass may be a siloxane compound.
 以下、本実施形態の潤滑油組成物における、シロキサン化合物以外の成分について説明する。 Hereinafter, components other than the siloxane compound in the lubricating oil composition of the present embodiment will be described.
 ((B)炭化水素系潤滑油)
 本実施形態の潤滑油組成物は、炭化水素系潤滑油を有する。使用できる炭化水素系潤滑油としては、上述した(A)シロキサン化合物(シリコーン油)との相溶性があるものであれば特に限定はされないが、具体的には、例えば、エステル油、エーテル油、ポリαオレフィン(PAO)油、鉱油等が挙げられる。
((B) Hydrocarbon-based lubricating oil)
The lubricating oil composition of the present embodiment has a hydrocarbon-based lubricating oil. The hydrocarbon-based lubricating oil that can be used is not particularly limited as long as it is compatible with the above-mentioned (A) siloxane compound (silicone oil), but specifically, for example, ester oil, ether oil, and the like. Examples thereof include poly α-olefin (PAO) oil and mineral oil.
 前記エステル油としては、具体的には、1価アルコール類または多価アルコールと1塩基酸または多塩基酸とのエステルが挙げられる。 Specific examples of the ester oil include esters of monohydric alcohols or polyhydric alcohols with monobasic acids or polybasic acids.
 前記1価アルコールまたは多価アルコールとしては、炭素数1~30、好ましくは炭素数4~20、より好ましくは炭素数6~18の炭化水素基を有する1価アルコールまたは多価アルコール類が挙げられる。前記多価アルコール類としては、具体的には、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等が挙げられる。 Examples of the monohydric alcohol or polyhydric alcohol include monohydric alcohols or polyhydric alcohols having a hydrocarbon group having 1 to 30 carbon atoms, preferably 4 to 20 carbon atoms, and more preferably 6 to 18 carbon atoms. .. Specific examples of the multivalent alcohols include trimethylolpropane, pentaerythritol, and dipentaerythritol.
 また、前記1塩基酸または多塩基酸としては、炭素数1~30、好ましくは炭素数4~20、より好ましくは炭素数6~18の炭化水素基を有する1塩基酸または多塩基酸類が挙げられる。 Examples of the monobasic acid or polybasic acid include monobasic acids or polybasic acids having a hydrocarbon group having 1 to 30 carbon atoms, preferably 4 to 20 carbon atoms, and more preferably 6 to 18 carbon atoms. Be done.
 ここでいう炭化水素基は、直鎖であっても分枝鎖であってもよく、例えば、アルキル基、アルケニル基、シクロアルキル基、アルキルシクロアルキル基、アリール基、アルキルアリール基、アリールアルキル基等の炭化水素基が挙げられる。 The hydrocarbon group referred to here may be a straight chain or a branched chain, and for example, an alkyl group, an alkenyl group, a cycloalkyl group, an alkylcycloalkyl group, an aryl group, an alkylaryl group, or an arylalkyl group. Such as hydrocarbon groups.
 本実施形態において(B)成分としてエステル油を使用する場合、上記したようなエステル油を単独で用いても、2種以上を混合して用いてもよい。 When an ester oil is used as the component (B) in the present embodiment, the above-mentioned ester oil may be used alone or in combination of two or more.
 好ましい実施形態では、エステル油として、引火点が200℃以上であり、流動点が-40℃以下の二塩基酸エステルまたは多価アルコール脂肪酸エステルを使用できる。特に、蒸発性が低いという観点より、トリメチロールプロパンの脂肪酸エステルやペンタエリスリトールの脂肪酸エステルといった多価アルコール脂肪酸エステルであることがより好ましい。 In a preferred embodiment, as the ester oil, a dibasic acid ester or a polyhydric alcohol fatty acid ester having a flash point of 200 ° C. or higher and a pour point of −40 ° C. or lower can be used. In particular, from the viewpoint of low evaporability, a polyhydric alcohol fatty acid ester such as a fatty acid ester of trimethylolpropane or a fatty acid ester of pentaerythritol is more preferable.
 前記エーテル油としては、具体的には、ポリオキシエーテルやジアルキルエーテル、芳香族系エーテル等が挙げられる。 Specific examples of the ether oil include polyoxy ether, dialkyl ether, aromatic ether and the like.
 また、前記ポリαオレフィン油としては、ポリブテン、1-オクテンオリゴマー、1-デセンオリゴマー等の炭素数2~15までのαオレフィンの重合物またはその水素化物が挙げられる。 Examples of the poly-α-olefin oil include polymers of α-olefins having 2 to 15 carbon atoms such as polybutene, 1-octene oligomer, and 1-decene oligomer, or hydrides thereof.
 前記鉱油としては、パラフィン系、ナフテン系、中間基系等の原油を常圧蒸留して得られる常圧残油;該常圧残油を減圧蒸留して得られた留出油;該留出油を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製等のうちの1つ以上の処理を行って精製した鉱油、例えば、軽質ニュートラル油、中質ニュートラル油、重質ニュートラル油、ブライトストック等、フィッシャー・トロプシュ法等により製造されるワックス(GTLワックス(Gas To Liquids WAX))を異性化することで得られる鉱油等が挙げられる。 The mineral oil is an atmospheric residual oil obtained by atmospheric distillation of crude oils such as paraffinic, naphthenic and intermediate base oils; a distillate obtained by vacuum distillation of the atmospheric residual oil; the distillate. Mineral oil refined by performing one or more treatments such as solvent removal, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, etc., for example, light neutral oil, medium neutral. Examples thereof include oils, heavy neutral oils, bright stocks, and mineral oils obtained by isomerizing waxes (GTL wax (Gas To Liquids WAX)) produced by the Fisher-Tropsch method or the like.
 本実施形態では、(B)成分として、上述したような炭化水素系潤滑油を単独で用いることもできるし、2種以上を組み合わせて使用することもできる。 In the present embodiment, as the component (B), the above-mentioned hydrocarbon-based lubricating oil can be used alone, or two or more kinds can be used in combination.
 本実施形態の潤滑油組成物における(B)炭化水素系潤滑油の含有量は、潤滑性、粘度指数の観点から、組成物全体に対して0~70質量%である。特に10~50質量%であることが好ましく、10~20質量%であることがさらに好ましい。炭化水素系潤滑油の含有量が10質量%未満となると、十分な潤滑性を得ることが困難となり、また、70質量%を超える場合は、潤滑油組成物中の(A)シロキサン化合物の含有量が少なくなり、潤滑油組成物の粘度指数が低くなるため好ましくない。 The content of the (B) hydrocarbon-based lubricating oil in the lubricating oil composition of the present embodiment is 0 to 70% by mass with respect to the entire composition from the viewpoint of lubricity and viscosity index. In particular, it is preferably 10 to 50% by mass, and even more preferably 10 to 20% by mass. If the content of the hydrocarbon-based lubricating oil is less than 10% by mass, it becomes difficult to obtain sufficient lubricity, and if it exceeds 70% by mass, the content of the (A) siloxane compound in the lubricating oil composition is contained. This is not preferable because the amount is small and the viscosity index of the lubricating oil composition is low.
 さらに、本実施形態の潤滑油組成物は、(B)炭化水素系潤滑油として、エステル油を10質量%以上含むことによって、潤滑油組成物の潤滑性がさらに向上する。つまり、好ましい実施形態としては、前記(B)炭化水素系潤滑油として、エステル油を10~50質量%含んでいることが望ましい。 Further, the lubricating oil composition of the present embodiment further improves the lubricity of the lubricating oil composition by containing 10% by mass or more of ester oil as the (B) hydrocarbon-based lubricating oil. That is, as a preferred embodiment, it is desirable that the (B) hydrocarbon-based lubricating oil contains 10 to 50% by mass of an ester oil.
 ((C)極圧剤)
 本実施形態の潤滑油組成物は、(C)極圧剤か、後述する(D)酸化防止剤のうち少なくとも一方を含む。
((C) Extreme pressure agent)
The lubricating oil composition of the present embodiment contains at least one of (C) an extreme pressure agent and (D) an antioxidant described later.
 本実施形態の潤滑油組成物が(C)極圧剤を含む場合、本実施形態の潤滑油組成物は、潤滑性・耐摩耗性をより向上させることができるという利点がある。 When the lubricating oil composition of the present embodiment contains (C) an extreme pressure agent, the lubricating oil composition of the present embodiment has an advantage that the lubricity and wear resistance can be further improved.
 本実施形態で使用できる(C)極圧剤としては、チアジアゾール系化合物、ポリサルファイド、チオカーバメート系化合物、硫化油脂、硫化オレフィン、硫化エステル、硫化脂肪酸、チオリン酸エステル、チオフォスフェート、チオフォスファイト、ジアルキルチオカルバミン酸モリブデン、ジアルキルジチオリン酸モリブデン、ジアルキルチオカルバミン酸亜鉛、ジアルキルチオリン酸亜鉛等の硫黄系極圧剤を好ましく使用できる。これらは単独で使用してもよいし、2種以上を組み合わせて使用することもできる。 Examples of the (C) extreme pressure agent that can be used in the present embodiment include thiaxazole compounds, polysulfides, thiocarbamate compounds, sulfide fats and oils, sulfide olefins, sulfide esters, sulfide fatty acids, thiophosphate esters, thiophosphate, thiophosphite, and di. Sulfur-based extreme pressure agents such as molybdenum alkylthiocarbamate, molybdenum dialkyldithiophosphate, zinc dialkylthiocarbamate, and zinc dialkylthiophosphate can be preferably used. These may be used alone or in combination of two or more.
 なかでも、チオリン酸エステル、ジチオカーバメート、硫化オレフィン、及びジメルカプトチアジアゾール系化合物から選択される少なくとも1つを(C)極圧剤として使用することが好ましい。 Among them, it is preferable to use at least one selected from thiophosphate ester, dithiocarbamate, olefin sulfide, and dimercaptothiadiazole-based compound as the (C) extreme pressure agent.
 本実施形態の潤滑油組成物が(C)極圧剤を含有する場合、その含有量は、十分な耐摩耗性を得るという観点、組成物全体に対して0.5~10.0質量%程度である。このような含有量で(C)極圧剤を含有することにより、極圧効果と極圧剤自体の蒸発による潤滑油組成物の蒸発量増加を両立できるという利点がある。 When the lubricating oil composition of the present embodiment contains (C) an extreme pressure agent, the content thereof is 0.5 to 10.0% by mass with respect to the entire composition from the viewpoint of obtaining sufficient wear resistance. Degree. By containing the (C) extreme pressure agent at such a content, there is an advantage that the extreme pressure effect and the increase in the evaporation amount of the lubricating oil composition due to the evaporation of the extreme pressure agent itself can be achieved at the same time.
 ((D)酸化防止剤)
 本実施形態の潤滑油組成物が(D)酸化防止剤を含む場合、それにより、潤滑油組成物の寿命を延長できるという利点がある。
((D) Antioxidant)
When the lubricating oil composition of the present embodiment contains (D) an antioxidant, there is an advantage that the life of the lubricating oil composition can be extended.
 本実施形態に用いられる(D)酸化防止剤としては、一般的に潤滑油に使用される酸化防止剤を特に限定なく使用することができる。例えば、フェノール系化合物やアミン系化合物、リン系化合物等が挙げられる。 As the (D) antioxidant used in the present embodiment, an antioxidant generally used for lubricating oil can be used without particular limitation. For example, phenolic compounds, amine compounds, phosphorus compounds and the like can be mentioned.
 より具体的には、例えば、2,6-ジ-tert-ブチル-4-メチルフェノールなどのアルキルフェノール類、メチレン-4,4-ビスフェノール(2,6-ジ-tert-ブチル-4-メチルフェノール)等のビスフェノール類、フェニル-α-ナフチルアミン等のナフチルアミン類、ジアルキルジフェニルアミン類、亜リン酸エステル類等が挙げられる。 More specifically, for example, alkylphenols such as 2,6-di-tert-butyl-4-methylphenol, methylene-4,4-bisphenol (2,6-di-tert-butyl-4-methylphenol). Such as bisphenols, naphthylamines such as phenyl-α-naphthylamine, dialkyldiphenylamines, phosphite esters and the like.
 これらの中でも、潤滑性のさらなる向上という観点から、リン酸エステル、亜リン酸エステル類、酸性リン酸エステル、ホスホン酸エステル等のリン系化合物を含むことが好ましい。 Among these, from the viewpoint of further improving lubricity, it is preferable to contain phosphorus-based compounds such as phosphoric acid esters, phosphite esters, acidic phosphoric acid esters, and phosphonic acid esters.
 さらに、本実施形態の潤滑油組成物は2種以上の(D)酸化防止剤を併用することが好ましい。例えば、一次酸化防止剤として機能するフェノール系化合物やアミン系化合物と、リン系化合物といった二次酸化防止剤を併用することが特に好ましい。 Further, it is preferable that the lubricating oil composition of the present embodiment uses two or more kinds of (D) antioxidants in combination. For example, it is particularly preferable to use a phenol-based compound or an amine-based compound that functions as a primary antioxidant in combination with a secondary antioxidant such as a phosphorus-based compound.
 本実施形態の潤滑油組成物が(D)酸化防止剤を含む場合、組成物全体に対する前記(D)酸化防止剤の含有量は、酸化抑制と蒸発量低減の観点から、0.5~10.0質量%とする。より好ましくは、2.0~7.0質量%である。このような含有量で(D)酸化防止剤を含有することにより、酸化防止効果と酸化防止剤自体の蒸発による潤滑油組成物の蒸発量増加を両立できるという利点がある。 When the lubricating oil composition of the present embodiment contains (D) an antioxidant, the content of the (D) antioxidant in the entire composition is 0.5 to 10 from the viewpoint of suppressing oxidation and reducing evaporation. It is set to 0.0% by mass. More preferably, it is 2.0 to 7.0% by mass. By containing the (D) antioxidant in such a content, there is an advantage that the antioxidant effect and the increase in the evaporation amount of the lubricating oil composition due to the evaporation of the antioxidant itself can be achieved at the same time.
 より潤滑性を高めるという観点からは、上記(C)極圧剤と(D)酸化防止剤とを両方含むことが好ましく、その場合、それらの合計量が、組成物全体に対して、0.5~10.0質量%程度であることが好ましい。 From the viewpoint of further enhancing lubricity, it is preferable to contain both the above-mentioned (C) extreme pressure agent and (D) antioxidant, in which case the total amount thereof is 0. It is preferably about 5 to 10.0% by mass.
 (その他の添加剤)
 本実施形態の潤滑油組成物には、その性能をさらに向上させる目的で、または、必要に応じてさらなる性能を付与するために、本発明の効果を損なわない範囲で、金属不活性化剤、消泡剤、増粘剤、着色剤等の各種添加剤を単独でまたは複数を組み合わせて配合しても良い。
(Other additives)
The lubricating oil composition of the present embodiment contains the metal inactivating agent, as long as the effects of the present invention are not impaired, in order to further improve its performance or, if necessary, to impart further performance. Various additives such as defoaming agents, thickeners, and colorants may be blended alone or in combination of two or more.
 金属不活性化剤としては、例えば、ベンゾトリアゾール系、トリルトリアゾール系、及びイミダゾール系化合物等が挙げられる。 Examples of the metal inactivating agent include benzotriazole-based, tolyltriazole-based, and imidazole-based compounds.
 消泡剤としては、例えば、ポリシロキサン、ポリアクリレート、及びスチレンエステルポリマー等が挙げられる。 Examples of the defoaming agent include polysiloxane, polyacrylate, styrene ester polymer and the like.
 増粘剤としては、例えば、金属石鹸(例えば、リチウム石鹸)、シリカ、膨張黒鉛、ポリ尿素、粘土(例えば、ヘクトライトまたはベントナイト)等が挙げられる。 Examples of the thickener include metal soap (for example, lithium soap), silica, expanded graphite, polyurea, clay (for example, hectorite or bentonite) and the like.
 本実施形態に潤滑油組成物に上記したような添加剤を配合する場合、その添加量は、潤滑剤組成物全体(総質量)に対して、0.0~10.0質量%、あるいは0.1~5質量%程度の量で使用され得る。本実施形態の潤滑油組成物を用いてグリースを生成するための増粘剤は、潤滑剤グリース組成物全体(総質量)に対して、5~25質量%の量で使用され得る。 When the above-mentioned additives are added to the lubricating oil composition in the present embodiment, the amount of the additives added is 0.0 to 10.0% by mass or 0 with respect to the entire lubricating oil composition (total mass). It can be used in an amount of about 1 to 5% by mass. The thickener for producing grease using the lubricating oil composition of the present embodiment can be used in an amount of 5 to 25% by mass with respect to the entire lubricating grease composition (total mass).
 (調製方法)
 本実施形態の潤滑油組成物を調製する方法としては、特に限定はなく、例えば、(A)シロキサン化合物と(B)炭化水素系油、及び(C)極圧剤と(D)酸化防止剤のうち少なくとも一つやその他添加剤を100℃に加熱して混合することによって調整することができる。
(Preparation method)
The method for preparing the lubricating oil composition of the present embodiment is not particularly limited, and for example, (A) a siloxane compound, (B) a hydrocarbon-based oil, (C) an extreme pressure agent, and (D) an antioxidant. It can be adjusted by heating at least one of them or other additives to 100 ° C. and mixing them.
 (用途)
 本実施形態の潤滑油組成物は、長期間安定して、幅広い温度で使用することが可能であるため、各種潤滑剤として使用することができる。例えば、ターボ機械用潤滑剤、圧縮機用の潤滑剤、油圧機器用の潤滑剤、工作機械用の潤滑剤、グリース基油、冷凍機油、可塑剤等として好適に使用される。特に、加熱・燃焼した時の残渣が従来より少ないため、残渣が原因となる配管閉塞やフィルター詰まりが起こりにくく、循環方式で潤滑剤が使用される用途に好適である。
(Use)
Since the lubricating oil composition of the present embodiment is stable for a long period of time and can be used at a wide range of temperatures, it can be used as various lubricants. For example, it is suitably used as a lubricant for turbo machines, a lubricant for compressors, a lubricant for hydraulic equipment, a lubricant for machine tools, a grease base oil, a refrigerating machine oil, a plasticizer and the like. In particular, since the amount of residue when heated and burned is smaller than before, it is less likely that pipe blockage or filter clogging due to the residue occurs, and it is suitable for applications in which a lubricant is used in a circulation system.
 本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 本発明の一局面に係るシロキサン化合物は、下記式(1)で示されることを特徴とする。 The siloxane compound according to one aspect of the present invention is characterized by being represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
[式(1)中、
 Xは、同一または異なって、水素、炭素数1~12のアルキル基または下記式(2)で示されるポリオキシアルキル基であり、
 Yは、炭素数2~12のアルキレン基であり、
 Zは、炭素-ケイ素結合によって隣接ケイ素原子に、かつ、酸素原子によってポリオキシアルキレンブロックに結合している2価の有機基を表し、
 pは0~13の整数、qおよびrはそれぞれ0~16の整数、nは2~4の整数、aは0~11の整数である。
Figure JPOXMLDOC01-appb-C000008
 (式(2)中、
 Zは、炭素-ケイ素結合によって隣接ケイ素原子に、かつ、酸素原子によってポリオキシアルキレンブロックに結合している2価の有機基を表し、
 Xは、水素もしくは炭素数1~12のアルキル基であり、
 mは2~4の整数、bは1~10の整数である。)]
[In equation (1),
X 1 is the same or different, hydrogen, an alkyl group having 1 to 12 carbon atoms, or a polyoxyalkyl group represented by the following formula (2).
Y is an alkylene group having 2 to 12 carbon atoms.
Z 1 represents a divalent organic group bonded to an adjacent silicon atom by a carbon-silicon bond and to a polyoxyalkylene block by an oxygen atom.
p is an integer of 0 to 13, q and r are integers of 0 to 16, respectively, n is an integer of 2 to 4, and a is an integer of 0 to 11.
Figure JPOXMLDOC01-appb-C000008
(In equation (2),
Z 2 represents a divalent organic group bonded to an adjacent silicon atom by a carbon-silicon bond and to a polyoxyalkylene block by an oxygen atom.
X 2 is hydrogen or an alkyl group having 1 to 12 carbon atoms.
m is an integer of 2 to 4, and b is an integer of 1 to 10. )]
 このような構成により、非常に優れた潤滑性を有し、かつ、低残渣性を有する、シロキサン化合物を提供することができる。 With such a configuration, it is possible to provide a siloxane compound having very excellent lubricity and low residue property.
 また、前記シロキサン化合物は、その粘度指数が200以上であり、かつ、140℃で100時間加熱後、250℃で700時間加熱した後の残渣量が20%以下であることが好ましい。それにより、上述した効果をより確実に得ることができると考えられる。 Further, it is preferable that the siloxane compound has a viscosity index of 200 or more, and the amount of residue after heating at 140 ° C. for 100 hours and then at 250 ° C. for 700 hours is 20% or less. Thereby, it is considered that the above-mentioned effect can be obtained more reliably.
 さらに、本発明の他の局面に係る潤滑油組成物は、(A)請求項1または2に記載のシロキサン化合物と、(B)炭化水素系潤滑油と、(C)極圧剤および(D)酸化防止剤のうち少なくとも一つと、を少なくとも含むことを特徴とする。このような構成により、非常に優れた潤滑性を有し、かつ、低残渣性を有する、潤滑油組成物を提供することができる。 Further, the lubricating oil composition according to another aspect of the present invention includes (A) the siloxane compound according to claim 1 or 2, (B) a hydrocarbon-based lubricating oil, (C) an extreme pressure agent, and (D). ) It is characterized by containing at least one of the antioxidants. With such a configuration, it is possible to provide a lubricating oil composition having very excellent lubricity and low residue property.
 本発明のさらに他の局面に関する潤滑剤は、上述のシロキサン化合物または潤滑油組成物を用いることを特徴とする。また、本発明には、上記シロキサン化合物、それを用いた潤滑組成物や潤滑剤、それらを用いたグリース及びエマルション、並びに、それらを使用した潤滑方法が包含される。 The lubricant according to still another aspect of the present invention is characterized by using the above-mentioned siloxane compound or lubricating oil composition. Further, the present invention includes the above-mentioned siloxane compound, a lubricating composition or lubricant using the same, greases and emulsions using them, and a lubrication method using them.
 以下、本発明の実施例について説明するが、本発明はこれらに限定されるものではない。
 まず、本実施例で使用した各原料を以下に示す。
Examples of the present invention will be described below, but the present invention is not limited thereto.
First, each raw material used in this example is shown below.
 〔(A)シロキサン化合物(シリコーン油)の合成〕
 ・シリコーンA-1
 シリコーンA-1は、東京化成工業(株)製の1,1,3,3-テトラメチルジシロキサン(平均分子量134、ジメチルユニット(上記式(1)におけるp)の平均個数0個)である。
[(A) Synthesis of siloxane compound (silicone oil)]
・ Silicone A-1
Silicone A-1 is 1,1,3,3-tetramethyldisiloxane manufactured by Tokyo Chemical Industry Co., Ltd. (average molecular weight 134, average number of dimethyl units (p in the above formula (1) is 0)). ..
 (合成例1:シリコーンA-2とA-3)
 500mLセパラブルフラスコに、前記シリコーンA-1を150g(1.1mol)と、信越化学工業(株)製のデカメチルシクロペンタシロキサン(商品名:KF-995)416g(0.9mol)と、活性白土3gとを入れ、65℃で7時間撹拌した。室温に冷却した後、ろ過によって活性白土を取り除いた。続いて、ろ液を500mLのセパラブルフラスコに入れ、加熱・減圧し、留出物として、低分子量の分子鎖両末端ハイドロジメチルシロキシ基封鎖ジメチルシロキサン(シリコーンA-2)191gと釜に残った高分子量の分子鎖両末端ハイドロジメチルシロキシ基封鎖ジメチルシロキサン(シリコーンA-3)343gを得た。
(Synthesis Example 1: Silicone A-2 and A-3)
150 g (1.1 mol) of the silicone A-1 and 416 g (0.9 mol) of decamethylcyclopentasiloxane (trade name: KF-995) manufactured by Shin-Etsu Chemical Co., Ltd. in a 500 mL separable flask. 3 g of white clay was added, and the mixture was stirred at 65 ° C. for 7 hours. After cooling to room temperature, the activated clay was removed by filtration. Subsequently, the filtrate was placed in a 500 mL separable flask, heated and depressurized, and remained in a kettle with 191 g of low molecular weight molecular chain both-terminal hydrodimethylsiloxy group-sealed dimethylsiloxane (silicone A-2) as a distillate. 343 g of high molecular weight molecular chain biterminal hydrodimethylsiloxy group-blocking dimethylsiloxane (silicone A-3) was obtained.
 H-NMRを使用して得られたシリコーンA-2とシリコーンA-3を解析した結果、シリコーンA-2は、平均分子量529、ジメチルユニット(上記式(1)におけるp)の平均個数5.3個であり、シリコーンA-3は、平均分子量1154、ジメチルユニット(上記式(1)におけるp)の平均個数13.8個であることがわかった。 1 As a result of analyzing silicone A-2 and silicone A-3 obtained by using H-NMR, the silicone A-2 has an average molecular weight of 529 and an average number of dimethyl units (p in the above formula (1)) of 5. It was found that the number of silicones A-3 was 1154, and the average number of dimethyl units (p in the above formula (1)) was 13.8.
 図1に、シリコーンA-2のNMRデータを示す。 FIG. 1 shows the NMR data of silicone A-2.
 なお、シリコーンA-2~A-3に示す分子鎖両末端ハイドロジメチルシロキシ基封鎖ジメチルシロキサンのH-NMR解析方法は以下の通りである。
a(ケミカルシフト0.05~0.10ppm)はジメチルシロキサンの繰り返しユニットのメチル基由来の水素のピークを示す。
b(ケミカルシフト0.17~0.22ppm)は分子鎖両末端のハイドロジメチルシロキシ基のメチル基由来の水素のピークを示す。
The 1 H-NMR analysis method for the hydrodimethylsiloxy group-blocked dimethylsiloxane at both ends of the molecular chain shown in Silicones A-2 to A-3 is as follows.
a (chemical shift 0.05 to 0.10 ppm) indicates the peak of hydrogen derived from the methyl group of the repeating unit of dimethylsiloxane.
b (chemical shift 0.17 to 0.22 ppm) indicates the peak of hydrogen derived from the methyl group of the hydrodimethylsiloxy group at both ends of the molecular chain.
 そして、平均分子量、並びに、ジメチルユニット(上記式(1)におけるp)の平均個数は上記a、bのピークの積分値(比)をもとに、次の計算式よりそれぞれ算出した。
ジメチルユニットの平均個数=2a÷b
平均分子量=ジメチルユニットの平均個数×ジメチルユニットの分子量+分子鎖両末端のハイドロジメチルシロキシ基の分子量
Then, the average molecular weight and the average number of dimethyl units (p in the above formula (1)) were calculated from the following formulas based on the integrated values (ratio) of the peaks of the above a and b, respectively.
Average number of dimethyl units = 2a ÷ b
Average molecular weight = average number of dimethyl units x molecular weight of dimethyl units + molecular weight of hydrodimethylsiloxy groups at both ends of the molecular chain
 シリコーンA-2のNMRデータは以下の通りであった。
H-NMR(溶媒:重クロロホルム、基準物質:TMS)
δ=0.05~0.10ppmの積分値を10.0とすると、
δ=0.17~0.22ppmの積分値は3.8。
The NMR data of Silicone A-2 was as follows.
1 1 H-NMR (solvent: deuterated chloroform, reference substance: TMS)
Assuming that the integral value of δ = 0.05 to 0.10 ppm is 10.0,
The integral value of δ = 0.17 to 0.22 ppm is 3.8.
 (合成例2:シリコーンA-4)
 200mLのセパラブルフラスコに、前記合成例1と同様の方法で得られた分子鎖両末端ハイドロジメチルシロキシ基封鎖ジメチルシロキサン(平均分子量522、ジメチルユニット(上記式(1)におけるp)の平均個数5.2個)40g(77mmol)とエヌ・イー・ケムキャット(株)製の白金触媒であるPtアルミナ粉末25mg(Pt換算:21ppm)を入れ、滴下ロートに日油(株)製のポリエチレングリコールジアリルエーテル(商品名:ユニオックス AA-480R)19g(38mmol)を入れ、窒素置換を行った。分子鎖両末端ハイドロジメチルシロキシ基封鎖ジメチルシロキサンと白金触媒の混合液を加熱し、液温が85℃に到達した後、ポリエチレングリコールジアリルエーテルの滴下を開始した。ポリエチレングリコールジアリルエーテルをすべて滴下した後、125℃で6時間熟成した。熟成終了後、H-NMRを使用して不飽和二重結合のピークの消失を確認した。室温に冷却した後、ろ過によって白金触媒を取り除いた。続いて、ろ液を200mLのセパラブルフラスコに入れ、加熱・減圧し、反応物から残存する分子鎖両末端ハイドロジメチルシロキシ基封鎖ジメチルシロキサンを除去し、分子両末端ハイドロジメチルシロキシ基封鎖ジメチルシロキサン・ポリエーテル共重合体(シリコーンA-4)51gを得た。
(Synthesis Example 2: Silicone A-4)
In a 200 mL separable flask, the average number of hydrodimethylsiloxy group-sealed dimethylsiloxanes (average molecular weight 522, dimethyl units (p in the above formula (1)) obtained by the same method as in Synthesis Example 1 is 5 .2 pieces) 40 g (77 mmol) and 25 mg (Pt equivalent: 21 ppm) of Pt alumina powder, which is a platinum catalyst manufactured by NE Chemcat Co., Ltd., were added, and polyethylene glycol diallyl ether manufactured by Nichiyu Co., Ltd. was added to the dropping funnel. (Product name: Uniox AA-480R) 19 g (38 mmol) was added, and nitrogen substitution was performed. A mixed solution of hydrodimethylsiloxy group-blocking dimethylsiloxane at both ends of the molecular chain and a platinum catalyst was heated, and after the solution temperature reached 85 ° C., polyethylene glycol diallyl ether was started to be added dropwise. After all the polyethylene glycol diallyl ether was added dropwise, the mixture was aged at 125 ° C. for 6 hours. After completion of aging, 1 H-NMR was used to confirm the disappearance of the unsaturated double bond peak. After cooling to room temperature, the platinum catalyst was removed by filtration. Subsequently, the filtrate was placed in a 200 mL separable flask, heated and depressurized to remove the residual hydrodimethylsiloxy group-blocked dimethylsiloxane at both ends of the molecular chain from the reaction product, and the hydrodimethylsiloxy group-blocked dimethylsiloxane at both ends of the molecule. 51 g of a polyether copolymer (silicone A-4) was obtained.
 H-NMRを使用して得られたシリコーンA-4を解析した結果、シリコーンA-4は、平均分子量3546、ジメチルユニット(上記式(1)におけるp)の平均個数4.6個、ジメチルシロキサン・ポリエーテルの繰り返しユニット(上記式(1)におけるr)が3.1個、オキシエチレンの繰り返し数(上記式(1)におけるa)が10.1個であることがわかった。 1 As a result of analyzing the silicone A-4 obtained using 1 H-NMR, the silicone A-4 has an average molecular weight of 3546, an average number of dimethyl units (p in the above formula (1)) of 4.6, and dimethyl. It was found that the number of repeating units of siloxane / polyether (r in the above formula (1)) was 3.1, and the number of repeating units of oxyethylene (a in the above formula (1)) was 10.1.
 図2に、シリコーンA-4のNMRデータを示す。 FIG. 2 shows the NMR data of silicone A-4.
 なお、シリコーンA-4、及び後述するシリコーンA-7、A-8、A-12に示す分子両末端ハイドロジメチルシロキシ基封鎖ジメチルシロキサン・ポリエーテル共重合体のH-NMR解析方法は以下の通りである。
a(ケミカルシフト0.01~0.10ppm)はジメチルシロキサンの繰り返しユニットのメチル基とポリエーテルと結合したジメチルシロキサンユニットのメチル基由来の水素のピークを示す。
b(ケミカルシフト0.16~0.21ppm)は分子鎖両末端のハイドロジメチルシロキシ基のメチル基由来の水素のピークを示す。
c(ケミカルシフト0.40~1.10ppm)はケイ素に結合したポリエーテル部のケイ素の隣のCH由来の水素のピークを示す。
d(ケミカルシフト3.30~3.70ppm)はポリエーテル部のオキシエチレンの繰り返し部分とオキシエチレンの繰り返し部とケイ素を繋ぐ炭化水素部の酸素と結合するCH由来の水素のピークを示す。
The 1 H-NMR analysis method for silicone A-4 and the hydrodimethylsiloxy group-blocking dimethylsiloxane / polyether copolymer at both ends of the molecule shown in silicones A-7, A-8, and A-12, which will be described later, is as follows. It's a street.
a (chemical shift 0.01 to 0.10 ppm) indicates a peak of hydrogen derived from the methyl group of the repeating unit of dimethylsiloxane and the methyl group of the dimethylsiloxane unit bonded to the polyether.
b (chemical shift 0.16 to 0.21 ppm) indicates the peak of hydrogen derived from the methyl group of the hydrodimethylsiloxy group at both ends of the molecular chain.
c (chemical shift 0.40 to 1.10 ppm) indicates the peak of hydrogen derived from CH 2 next to silicon in the polyether portion bonded to silicon.
d (chemical shift 3.30 to 3.70 ppm) indicates the peak of hydrogen derived from CH 2 that binds to oxygen in the repeating portion of oxyethylene in the polyether portion, the repeating portion of oxyethylene, and the hydrocarbon portion connecting silicon.
 平均分子量、ジメチルユニットの平均個数、並びに、ジメチルシロキサン・ポリエーテルの繰り返しユニットの平均個数、オキシエチレンの繰り返しの平均個数は上記a、b、c、dのピークの積分値(比)をもとに、次の計算式よりそれぞれ算出した。
ジメチルユニットの平均個数=(2a-6b-c)÷3b
ジメチルシロキサン・ポリエーテルの繰り返しユニットの平均個数=
3b÷c
オキシエチレンの繰り返し数=d÷b-1
平均分子量=(オキシエチレンの繰り返し数×オキシエチレンの分子量+ジメチルユニットの平均個数×ジメチルユニットの分子量+ポリエーテル部とケイ素を繋ぐ炭化水素部の分子量+ポリエーテル部と炭化水素部を介して繋がったケイ素部の分子量)×ジメチルシロキサン・ポリエーテルの繰り返しユニットの平均個数+ジメチルユニットの平均個数×ジメチルユニットの分子量+分子鎖両末端のハイドロジメチルシロキシ基の分子量
The average molecular weight, the average number of dimethyl units, the average number of repeating units of dimethylsiloxane / polyether, and the average number of repeating units of oxyethylene are based on the integrated values (ratio) of the peaks of a, b, c, and d. In addition, it was calculated from the following formulas.
Average number of dimethyl units = (2a-6bc) ÷ 3b
Average number of repeating units of dimethylsiloxane / polyether =
3b ÷ c
Number of repetitions of oxyethylene = d ÷ b-1
Average molecular weight = (repeated number of oxyethylene x molecular weight of oxyethylene + average number of dimethyl units x molecular weight of dimethyl units + molecular weight of hydrocarbon part connecting polyether part and silicon + connecting via polyether part and hydrocarbon part (Molecular weight of silicon part) x average number of repeating units of dimethylsiloxane / polyether + average number of dimethyl units x molecular weight of dimethyl units + molecular weight of hydrocarbon siloxy groups at both ends of the molecular chain
 シリコーンA-4のNMRデータは以下の通りであった。
H-NMR(溶媒:重クロロホルム、基準物質:TMS)
δ=0.01~0.10ppmの積分値を10.0とすると、
δ=0.16~0.21ppmの積分値は1.0
δ=0.40~1.10ppmの積分値は0.9
δ=3.30~3.70ppmの積分値は10.6。
The NMR data of Silicone A-4 was as follows.
1 1 H-NMR (solvent: deuterated chloroform, reference substance: TMS)
Assuming that the integral value of δ = 0.01 to 0.10 ppm is 10.0,
The integral value of δ = 0.16 to 0.21 ppm is 1.0
The integral value of δ = 0.40 to 1.10 ppm is 0.9
The integral value of δ = 3.30 to 3.70 ppm is 10.6.
 (合成例3:シリコーンA-5)
 200mLのセパラブルフラスコに、前記合成例1と同様の方法で得られた分子鎖両末端ハイドロジメチルシロキシ基封鎖ジメチルシロキサン(平均分子量558、ジメチルユニット(上記式(1)におけるp)の平均個数5.7個)20g(36mmol)とトルエン70gを入れ、滴下ロートに出光興産(株)製のジイソブチレン24g(214mmol)とエヌ・イー・ケムキャット(株)製の白金触媒であるPt-CTS-トルエン溶液3μL(Pt換算:2ppm)を入れ、窒素置換を行った。分子鎖両末端ハイドロジメチルシロキシ基封鎖ジメチルシロキサンとトルエンの混合溶液を加熱し、液温が60℃に到達した後、ジイソブチレンと白金触媒の混合液の滴下を開始した。ジイソブチレンと白金触媒の混合液をすべて滴下した後、95℃で4.5時間熟成した。熟成終了後、H-NMRを使用してSiH基のピークの消失を確認した。続いて、加熱・減圧し、反応物から残存するジイソブチレンと溶剤として使用したトルエンを除去し、分子両末端イソオクチルジメチルシロキ基封鎖ジメチルシロキサン(シリコーンA-5)28gを得た。
(Synthesis Example 3: Silicone A-5)
In a 200 mL separable flask, the average number of hydrodimethylsiloxy group-sealed dimethylsiloxanes (average molecular weight 558, dimethyl units (p in the above formula (1)) obtained by the same method as in Synthesis Example 1 is 5 .7 pieces) 20 g (36 mmol) and 70 g of toluene were added, and 24 g (214 mmol) of diisobutylene manufactured by Idemitsu Kosan Co., Ltd. and Pt-CTS-toluene, which is a platinum catalyst manufactured by NE Chemcat Co., Ltd., were added to the dropping funnel. 3 μL of the solution (Pt equivalent: 2 ppm) was added, and nitrogen substitution was performed. The mixed solution of hydrodimethylsiloxy group-blocking dimethylsiloxane and toluene at both ends of the molecular chain was heated, and after the liquid temperature reached 60 ° C., the mixed solution of diisobutylene and a platinum catalyst was started to be added dropwise. After dropping all the mixed solution of diisobutylene and platinum catalyst, it was aged at 95 ° C. for 4.5 hours. After completion of aging, 1 H-NMR was used to confirm the disappearance of the SiH group peak. Subsequently, the mixture was heated and depressurized to remove residual diisobutylene and toluene used as a solvent from the reaction product to obtain 28 g of isooctyldimethylsiloki group-blocking dimethylsiloxane (silicone A-5) at both ends of the molecule.
 H-NMRを使用して得られたシリコーンA-5を解析した結果、シリコーンA-5は、平均分子量739、ジメチルユニット(上記式(1)におけるp)の平均個数5.1個であることがわかった。 1 As a result of analyzing the silicone A-5 obtained by using 1 H-NMR, the silicone A-5 has an average molecular weight of 739 and an average number of dimethyl units (p in the above formula (1)) of 5.1. I understood it.
 図3に、シリコーンA-5のNMRデータを示す。 FIG. 3 shows the NMR data of Silicone A-5.
 なお、シリコーンA-5、並びに後述するシリコーンA-6に示す分子両末端アルキルジメチルシロキ基封鎖ジメチルシロキサンのH-NMR解析方法は以下の通りである。
a(ケミカルシフト0.06~0.12ppm)はジメチルシロキサンの繰り返しユニットのメチル基由来の水素のピークを示す。
b(ケミカルシフト0.45~0.72ppm)はケイ素に結合したアルキル基のケイ素の隣のCH由来の水素のピークを示す。
The 1 H-NMR analysis method for silicone A-5 and the molecular double-ended alkyldimethylsiloki group-blocking dimethylsiloxane shown in silicone A-6 described later is as follows.
a (chemical shift 0.06 to 0.12 ppm) indicates the peak of hydrogen derived from the methyl group of the repeating unit of dimethylsiloxane.
b (chemical shift 0.45 to 0.72 ppm) indicates the peak of hydrogen derived from CH 2 next to the silicon of the alkyl group bonded to silicon.
 そして、平均分子量、並びに、ジメチルユニットの平均個数は上記a、bのピークの積分値(比)をもとに、次の計算式よりそれぞれ算出した。
ジメチルユニットの平均個数=2a÷3b
平均分子量=ジメチルユニットの平均個数×ジメチルユニットの分子量+分子鎖両末端のアルキルジメチルシロキシ基の分子量
Then, the average molecular weight and the average number of dimethyl units were calculated from the following formulas based on the integrated values (ratio) of the peaks a and b.
Average number of dimethyl units = 2a ÷ 3b
Average molecular weight = average number of dimethyl units x molecular weight of dimethyl units + molecular weight of alkyldimethylsiloxy groups at both ends of the molecular chain
 シリコーンA-5のNMRデータは以下の通りであった。
H-NMR(溶媒:重クロロホルム、基準物質:TMS)
δ=0.06~0.12ppmの積分値を10.0とすると、
δ=0.45~0.72ppmの積分値は1.3。
The NMR data of Silicone A-5 was as follows.
1 1 H-NMR (solvent: deuterated chloroform, reference substance: TMS)
Assuming that the integral value of δ = 0.06 to 0.12 ppm is 10.0,
The integral value of δ = 0.45 to 0.72 ppm is 1.3.
 (合成例4:シリコーンA-6)
 200mLのセパラブルフラスコに、前記合成例1と同様の方法で得られた分子鎖両末端ハイドロジメチルシロキシ基封鎖ジメチルシロキサン(平均分子量558、ジメチルユニット(p)の平均個数5.7個)23g(41mmol)とトルエン71gを入れ、滴下ロートに出光興産(株)製の1-ヘキセン(商品名:リニアレン6)18g(214mol)とエヌ・イー・ケムキャット(株)製の白金触媒であるPt-CTS-トルエン溶液3μL(Pt換算:2ppm)を入れ、窒素置換を行った。分子鎖両末端ハイドロジメチルシロキシ基封鎖ジメチルシロキサンとトルエンの混合溶液を加熱し、液温が60℃に到達した後、1-ヘキセンと白金触媒の混合液の滴下を開始した。1-ヘキセンと白金触媒の混合液をすべて滴下した後、80℃で6時間熟成した。熟成終了後、H-NMRを使用してSiH基のピークの消失を確認した。続いて、加熱・減圧し、反応物から残存する1-ヘキセンと溶剤として使用したトルエンを除去し、分子両末端ヘキシルジメチルシロキ基封鎖ジメチルシロキサン(シリコーンA-6)30gを得た。
(Synthesis Example 4: Silicone A-6)
In a 200 mL separable flask, 23 g (average molecular weight 558, average number of dimethyl units (p) 5.7) obtained by the same method as in Synthesis Example 1 and hydrodimethylsiloxy group-sealed dimethylsiloxane (average molecular weight 558) 41 mmol) and 71 g of toluene were added, and 18 g (214 mol) of 1-hexene (trade name: Linearene 6) manufactured by Idemitsu Kosan Co., Ltd. and Pt-CTS, a platinum catalyst manufactured by NE Chemcat Co., Ltd., were added to the dropping funnel. -Toluene solution 3 μL (Pt equivalent: 2 ppm) was added and nitrogen substitution was performed. The mixed solution of hydrodimethylsiloxy group-blocking dimethylsiloxane and toluene at both ends of the molecular chain was heated, and after the liquid temperature reached 60 ° C., the mixed solution of 1-hexene and a platinum catalyst was started to be added dropwise. After dropping all the mixed solution of 1-hexene and platinum catalyst, it was aged at 80 ° C. for 6 hours. After completion of aging, 1 H-NMR was used to confirm the disappearance of the SiH group peak. Subsequently, the mixture was heated and depressurized to remove residual 1-hexene and toluene used as a solvent from the reaction product to obtain 30 g of hexyldimethylsiloki group-blocking dimethylsiloxane (silicone A-6) at both ends of the molecule.
 H-NMRを使用して得られたシリコーンA-6を解析した結果、シリコーンA-6は、平均分子量677、ジメチルユニット(上記式(1)におけるp)の平均個数5.1個であることがわかった。 1 As a result of analyzing the silicone A-6 obtained by using 1 H-NMR, the silicone A-6 has an average molecular weight of 677 and an average number of dimethyl units (p in the above formula (1)) of 5.1. I understood it.
 (合成例5:シリコーンA-7)
 200mLのセパラブルフラスコに、前記合成例1と同様の方法で得られた分子鎖両末端ハイドロジメチルシロキシ基封鎖ジメチルシロキサン(平均分子量522、ジメチルユニット(上記式(1)におけるp)の平均個数5.2個)25g(48mmol)とトルエン31g、東京化成工業(株)製のトリエチレングリコールジビニルエーテル5g(25mmol)、エヌ・イー・ケムキャット(株)製の白金触媒であるPtアルミナ粉末12mg(Pt換算:20ppm)を入れ、窒素置換を行った。混合溶液を加熱し、60℃で5時間熟成した。熟成終了後、H-NMRを使用して不飽和二重結合のピークの消失を確認した。続いて、室温に冷却した後、ろ過によって白金触媒を取り除いた。
(Synthesis Example 5: Silicone A-7)
In a 200 mL separable flask, the average number of hydrodimethylsiloxy group-sealed dimethylsiloxanes (average molecular weight 522, dimethyl units (p in the above formula (1)) obtained by the same method as in Synthesis Example 1 is 5 .2) 25 g (48 mmol) and 31 g of toluene, 5 g (25 mmol) of triethylene glycol divinyl ether manufactured by Tokyo Chemical Industry Co., Ltd., and 12 mg (Pt) of Pt alumina powder, which is a platinum catalyst manufactured by NE Chemcat Co., Ltd. Conversion: 20 ppm) was added, and nitrogen substitution was performed. The mixed solution was heated and aged at 60 ° C. for 5 hours. After completion of aging, 1 H-NMR was used to confirm the disappearance of the unsaturated double bond peak. Subsequently, after cooling to room temperature, the platinum catalyst was removed by filtration.
 続いて、ろ液を200mLのナスフラスコに入れ、加熱・減圧し、反応物から残存する分子鎖両末端ハイドロジメチルシロキシ基封鎖ジメチルシロキサンと溶剤として使用したトルエンを除去し、分子両末端ハイドロジメチルシロキシ基封鎖ジメチルシロキサン・ポリエーテル共重合体(シリコーンA-7)20gを得た。 Subsequently, the filtrate was placed in a 200 mL eggplant flask, heated and depressurized to remove the residual hydrodimethylsiloxy group-blocking dimethylsiloxane at both ends of the molecular chain and toluene used as a solvent, and the hydrodimethylsiloxy at both ends of the molecule. 20 g of a base-sealed dimethylsiloxane / polyether copolymer (silicone A-7) was obtained.
 H-NMRを使用して得られたシリコーンA-7を解析した結果、シリコーンA-7は、平均分子量1470、ジメチルユニット(上記式(1)におけるp)の平均個数4.9個、ジメチルシロキサン・ポリエーテルの繰り返しユニット(上記式(1)におけるr)が1.4個、オキシエチレンの繰り返し数(上記式(1)におけるa)が3.1個であることがわかった。 1 As a result of analyzing the silicone A-7 obtained using 1 H-NMR, the silicone A-7 has an average molecular weight of 1470, an average number of dimethyl units (p in the above formula (1)) of 4.9, and dimethyl. It was found that the number of repeating units of siloxane / polyether (r in the above formula (1)) was 1.4, and the number of repeating units of oxyethylene (a in the above formula (1)) was 3.1.
 (合成例6:シリコーンA-8)
 500mLのセパラブルフラスコに、前記合成例1で得られたシリコーンA-2を150g(287mmol)とトルエン150g、東京化成工業(株)製のトリエチレングリコールジビニルエーテル45g(22mmol)、エヌ・イー・ケムキャット(株)製の白金触媒であるPtアルミナ粉末81mg(Pt換算:20ppm)を入れ、窒素置換を行った。混合溶液を加熱し、75℃で4.5時間熟成した。熟成終了後、H-NMRを使用して不飽和二重結合のピークの消失を確認した。続いて、室温に冷却した後、ろ過によって白金触媒を取り除いた。
(Synthesis Example 6: Silicone A-8)
In a 500 mL separable flask, 150 g (287 mmol) and 150 g of toluene of the silicone A-2 obtained in Synthesis Example 1, 45 g (22 mmol) of triethylene glycol divinyl ether manufactured by Tokyo Chemical Industry Co., Ltd., NE.E. 81 mg (Pt equivalent: 20 ppm) of Pt alumina powder, which is a platinum catalyst manufactured by Chemcat Co., Ltd., was added and nitrogen substitution was performed. The mixed solution was heated and aged at 75 ° C. for 4.5 hours. After completion of aging, 1 H-NMR was used to confirm the disappearance of the unsaturated double bond peak. Subsequently, after cooling to room temperature, the platinum catalyst was removed by filtration.
 続いて、ろ液を500mLのナスフラスコに入れ、加熱・減圧し、反応物から残存する分子鎖両末端ハイドロジメチルシロキシ基封鎖ジメチルシロキサンと溶剤として使用したトルエンを除去し、分子両末端ハイドロジメチルシロキシ基封鎖ジメチルシロキサン・ポリエーテル共重合体(シリコーンA-8)160gを得た。 Subsequently, the filtrate was placed in a 500 mL eggplant flask, heated and depressurized to remove the residual hydrodimethylsiloxy group-blocking dimethylsiloxane at both ends of the molecular chain and toluene used as a solvent, and the hydrodimethylsiloxy at both ends of the molecule. 160 g of a base-sealed dimethylsiloxane / polyether copolymer (silicone A-8) was obtained.
 H-NMRを使用して得られたシリコーンA-8を解析した結果、シリコーンA-8は、平均分子量2760、ジメチルユニット(上記式(1)におけるp)の平均個数4.6個、ジメチルシロキサン・ポリエーテルの繰り返しユニット(上記式(1)におけるr)が3.5個、オキシエチレンの繰り返し数(上記式(1)におけるa)が3.0個であることがわかった。 1 As a result of analyzing the silicone A-8 obtained using H-NMR, the silicone A-8 has an average molecular weight of 2760, an average number of dimethyl units (p in the above formula (1)) of 4.6, and dimethyl. It was found that the number of repeating units of siloxane / polyether (r in the above formula (1)) was 3.5, and the number of repeating units of oxyethylene (a in the above formula (1)) was 3.0.
 (合成例7:シリコーンA-9)
 200mLのセパラブルフラスコに、前記合成例7で得られたシリコーンA-8を50g(18mmol)を入れ、滴下ロートに出光興産(株)製の1-ヘキセン(商品名:リニアレン6)32g(0.4mol)とエヌ・イー・ケムキャット(株)製の白金触媒であるPt-CTS-トルエン溶液10μL(Pt換算:3ppm)を入れ、窒素置換を行った。シリコーンA-8を加熱し、液温が30℃に到達した後、1-ヘキセンと白金触媒の混合液の滴下を開始した。この時、液温を65~75℃に保つよう滴下の速度を調節した。1-ヘキセンと白金触媒の混合液をすべて滴下した後、65℃で5.5時間熟成した。熟成終了後、H-NMRを使用してSiH基のピークの消失を確認した。続いて、加熱・減圧し、反応物から残存する1-ヘキセンとトルエンを除去し、分子両末端ヘキシルジメチルシロキ基封鎖ジメチルシロキサン・ポリエーテル共重合体(シリコーンA-9)52gを得た。
(Synthesis Example 7: Silicone A-9)
50 g (18 mmol) of the silicone A-8 obtained in Synthesis Example 7 was placed in a 200 mL separable flask, and 1-hexene (trade name: Linearene 6) manufactured by Idemitsu Kosan Co., Ltd., 32 g (0) was placed in the dropping funnel. .4 mol) and 10 μL of Pt-CTS-toluene solution (Pt equivalent: 3 ppm), which is a platinum catalyst manufactured by NE Chemcat Co., Ltd., were added and nitrogen substitution was performed. Silicone A-8 was heated, and after the liquid temperature reached 30 ° C., dropping of a mixed liquid of 1-hexene and a platinum catalyst was started. At this time, the dropping speed was adjusted so as to keep the liquid temperature at 65 to 75 ° C. After dropping all the mixed solution of 1-hexene and platinum catalyst, it was aged at 65 ° C. for 5.5 hours. After completion of aging, 1 H-NMR was used to confirm the disappearance of the SiH group peak. Subsequently, the mixture was heated and depressurized to remove residual 1-hexene and toluene from the reaction product to obtain 52 g of a dimethylsiloxane-polyether copolymer (silicone A-9) having both ends of the molecule sealed with a hexyldimethylsiloki group.
 H-NMRを使用して得られたシリコーンA-9を解析した結果、シリコーンA-9は、平均分子量2772、ジメチルユニット(上記式(1)におけるp)の平均個数4.4個、ジメチルシロキサン・ポリエーテルの繰り返しユニット(上記式(1)におけるr)が3.3個、オキシエチレンの繰り返し数(上記式(1)におけるa)が3.1個であることがわかった。 1 As a result of analyzing the silicone A-9 obtained using 1 H-NMR, the silicone A-9 has an average molecular weight of 2772, an average number of dimethyl units (p in the above formula (1)) of 4.4, and dimethyl. It was found that the number of repeating units of siloxane / polyether (r in the above formula (1)) was 3.3, and the number of repeating units of oxyethylene (a in the above formula (1)) was 3.1.
 図4に、シリコーンA-9のNMRデータを示す。 FIG. 4 shows the NMR data of Silicone A-9.
 なお、シリコーンA-9、並びに後述するシリコーンA-11に示す分子両末端アルキルジメチルシロキ基封鎖ジメチルシロキサン・ポリエーテル共重合体のH-NMR解析方法は以下の通りである。
a(ケミカルシフト0.01~0.15ppm)はジメチルシロキサンの繰り返しユニットのメチル基とポリエーテルと結合したジメチルシロキサンユニットのメチル基とアルキル基と結合したジメチルシロキサンユニットのメチル基由来の水素のピークを示す。
b(ケミカルシフト0.80~0.95ppm)はケイ素に結合したアルキル基の末端のCH由来の水素のピークを示す。
c(ケミカルシフト0.95~1.10ppm)はケイ素に結合したポリエーテル部のケイ素の隣のCHの隣のCH由来の水素のピークを示す。
d(ケミカルシフト3.30~3.75ppm)はポリエーテル部のオキシエチレンの繰り返し部分とオキシエチレンの繰り返し部とケイ素を繋ぐ炭化水素部の酸素と結合するCH由来の水素のピークを示す。
The 1 H-NMR analysis method for silicone A-9 and the molecular double-ended alkyldimethylsiloki group-blocking dimethylsiloxane / polyether copolymer shown in silicone A-11, which will be described later, is as follows.
a (chemical shift 0.01 to 0.15 ppm) is a peak of hydrogen derived from the methyl group of the dimethylsiloxane repeating unit, the methyl group of the dimethylsiloxane unit bonded to the polyether, and the methyl group of the dimethylsiloxane unit bonded to the alkyl group. Is shown.
b (chemical shift 0.80 to 0.95 ppm) indicates the peak of hydrogen derived from CH 3 at the terminal of the alkyl group bonded to silicon.
c (chemical shift 0.95 ~ 1.10 ppm) shows a peak of hydrogen from CH 2 next to the CH 2 next to the silicon polyether portion bonded to silicon.
d (chemical shift 3.30 to 3.75 ppm) indicates the peak of hydrogen derived from CH 2 that binds to oxygen in the repeating portion of oxyethylene in the polyether portion, the repeating portion of oxyethylene, and the hydrocarbon portion connecting silicon.
 そして、平均分子量、ジメチルユニットの平均個数、ジメチルシロキサン・ポリエーテルの繰り返しユニットの平均個数、並びにオキシエチレンの繰り返しの平均個数は上記a、b、c、dのピークの積分値(比)をもとに、次の計算式よりそれぞれ算出した。
ジメチルユニットの平均個数=(2a-8b-6c)÷3c
ジメチルシロキサン・ポリエーテルの繰り返しユニットの平均個数
=3c÷2b
オキシエチレンの繰り返し数=d÷c-1
平均分子量=(オキシエチレンの繰り返し数×オキシエチレンの分子量+ジメチルユニットの平均個数×ジメチルユニットの分子量+ポリエーテル部とケイ素を繋ぐ炭化水素部の分子量+ポリエーテル部と炭化水素部を介して繋がったケイ素部の分子量)×ジメチルシロキサン・ポリエーテルの繰り返しユニットの平均個数+ジメチルユニットの平均個数×ジメチルユニットの分子量+分子鎖両末端のアルキルジメチルシロキシ基の分子量
The average molecular weight, the average number of dimethyl units, the average number of repeating units of dimethylsiloxane / polyether, and the average number of repeating units of oxyethylene are also the integrated values (ratio) of the peaks of a, b, c, and d. And, each was calculated from the following formulas.
Average number of dimethyl units = (2a-8b-6c) ÷ 3c
Average number of repeating units of dimethylsiloxane / polyether = 3c ÷ 2b
Number of repetitions of oxyethylene = d ÷ c-1
Average molecular weight = (repeated number of oxyethylene x molecular weight of oxyethylene + average number of dimethyl units x molecular weight of dimethyl units + molecular weight of hydrocarbon part connecting polyether part and silicon + connecting via polyether part and hydrocarbon part (Molecular weight of silicon part) x average number of repeating units of dimethylsiloxane / polyether + average number of dimethyl units x molecular weight of dimethyl units + molecular weight of alkyldimethylsiloxy groups at both ends of the molecular chain
 シリコーンA-9のNMRデータは以下の通りであった。
H-NMR(溶媒:重クロロホルム、基準物質:TMS)
δ=0.05~0.15ppmの積分値を10.0とすると、
δ=0.80~0.95ppmの積分値は0.4
δ=0.95~1.10ppmの積分値は0.9
δ=3.50~3.75ppmの積分値は3.6。
The NMR data of Silicone A-9 was as follows.
1 1 H-NMR (solvent: deuterated chloroform, reference substance: TMS)
Assuming that the integral value of δ = 0.05 to 0.15 ppm is 10.0,
The integral value of δ = 0.80 to 0.95 ppm is 0.4
The integral value of δ = 0.95 to 1.10 ppm is 0.9
The integral value of δ = 3.50 to 3.75 ppm is 3.6.
 (合成例8:シリコーンA-10)
 200mLのセパラブルフラスコに、前記合成例7で得られたシリコーンA-8を25g(9mmol)とトルエン53gを入れ、滴下ロートに三井化学(株)製のアルファメチルスチレン(AMS)5g(42mmol)とトルエン11gとエヌ・イー・ケムキャット(株)製の白金触媒であるPt-CTS-トルエン溶液55μL(Pt換算:47ppm)を入れ、窒素置換を行った。シリコーンA-8を加熱し、液温が30℃に到達した後、滴下ロートの混合溶液の滴下を開始した。滴下ロートの混合溶液をすべて滴下した後、80℃で22時間熟成した。熟成終了後、H-NMRを使用してSiH基のピークの消失を確認した。続いて、加熱・減圧し、反応物から残存するアルファメチルスチレン(AMS)と溶媒として使用したトルエンを除去し、分子両末端2-フェニルプロピルジメチルシロキ基封鎖ジメチルシロキサン・ポリエーテル共重合体(シリコーンA-10)24gを得た。
(Synthesis Example 8: Silicone A-10)
25 g (9 mmol) of the silicone A-8 obtained in Synthesis Example 7 and 53 g of toluene were placed in a 200 mL separable flask, and 5 g (42 mmol) of alpha-methylstyrene (AMS) manufactured by Mitsui Kagaku Co., Ltd. was added to the dropping funnel. Toluene (11 g) and 55 μL (Pt equivalent: 47 ppm) of Pt-CTS-toluene solution, which is a platinum catalyst manufactured by NE Chemcat Co., Ltd., were added and nitrogen substitution was performed. Silicone A-8 was heated, and after the liquid temperature reached 30 ° C., dropping of the mixed solution of the dropping funnel was started. After dropping all the mixed solution of the dropping funnel, it was aged at 80 ° C. for 22 hours. After completion of aging, 1 H-NMR was used to confirm the disappearance of the SiH group peak. Subsequently, the mixture was heated and depressurized to remove residual alphamethylstyrene (AMS) and toluene used as a solvent from the reaction product, and a 2-phenylpropyldimethylsiloki group-blocking dimethylsiloxane-polyether copolymer (silicone) at both ends of the molecule. A-10) 24 g was obtained.
 H-NMRを使用して得られたシリコーンA-10を解析した結果、シリコーンA-10は、平均分子量3933、ジメチルユニット(上記式(1)におけるp)の平均個数4.7個、ジメチルシロキサン・ポリエーテルの繰り返しユニット(上記式(1)におけるr)が4.8個、オキシエチレンの繰り返し数(上記式(1)におけるa)が2.9個であることがわかった。 1 As a result of analyzing the silicone A-10 obtained using 1 H-NMR, the silicone A-10 has an average molecular weight of 3933, an average number of dimethyl units (p in the above formula (1)) of 4.7, and dimethyl. It was found that the number of repeating units of siloxane / polyether (r in the above formula (1)) was 4.8, and the number of repeating units of oxyethylene (a in the above formula (1)) was 2.9.
 図5に、シリコーンA-10のNMRデータを示す。 FIG. 5 shows the NMR data of Silicone A-10.
 なお、シリコーンA-10に示す分子両末端2-フェニルプロピルジメチルシロキ基封鎖ジメチルシロキサン・ポリエーテル共重合体のH-NMR解析方法は以下の通りである。
a(ケミカルシフト0.01~0.15ppm)はジメチルシロキサンの繰り返しユニットのメチル基とポリエーテルと結合したジメチルシロキサンユニットのメチル基由来の水素のピークを示す。
b(ケミカルシフト0.99~1.05ppm)はケイ素に結合したポリエーテル部のケイ素の隣のCH由来の水素のピークを示す。
c(ケミカルシフト2.85~3.00ppm)はケイ素に結合したアラルキル基のCH由来の水素のピークを示す。
d(ケミカルシフト3.30~3.75ppm)はポリエーテル部のオキシエチレンの繰り返し部分とオキシエチレンの繰り返し部とケイ素を繋ぐ炭化水素部の酸素と結合するCH由来の水素のピークを示す。
The 1 H-NMR analysis method of the 2-phenylpropyldimethylsiloki group-blocking dimethylsiloxane / polyether copolymer shown at both ends of the molecule shown in Silicone A-10 is as follows.
a (chemical shift 0.01 to 0.15 ppm) indicates a peak of hydrogen derived from the methyl group of the repeating unit of dimethylsiloxane and the methyl group of the dimethylsiloxane unit bonded to the polyether.
b (chemical shift 0.99 to 1.05 ppm) shows the peak of hydrogen derived from CH 2 next to silicon in the polyether portion bonded to silicon.
c (chemical shift 2.85 to 3.00 ppm) indicates the peak of hydrogen derived from CH of the aralkyl group bonded to silicon.
d (chemical shift 3.30 to 3.75 ppm) indicates the peak of hydrogen derived from CH 2 that binds to oxygen in the repeating portion of oxyethylene in the polyether portion, the repeating portion of oxyethylene, and the hydrocarbon portion connecting silicon.
 そして、平均分子量、ジメチルユニットの平均個数、ジメチルシロキサン・ポリエーテルの繰り返しユニットの平均個数、並びに、オキシエチレンの繰り返しの平均個数は上記a、b、c、dのピークの積分値(比)をもとに、次の計算式よりそれぞれ算出した。
ジメチルユニットの平均個数=(2a-6b)÷3b
ジメチルシロキサン・ポリエーテルの繰り返しユニットの平均個数
=b÷2c
オキシエチレンの繰り返し数=d÷b-1
平均分子量=(オキシエチレンの繰り返し数×オキシエチレンの分子量+ジメチルユニットの平均個数×ジメチルユニットの分子量+ポリエーテル部とケイ素を繋ぐ炭化水素部の分子量+ポリエーテル部と炭化水素部を介して繋がったケイ素部の分子量)×ジメチルシロキサン・ポリエーテルの繰り返しユニットの平均個数+ジメチルユニットの平均個数×ジメチルユニットの分子量+分子両末端2-フェニルプロピルジメチルシロキ基の分子量
The average molecular weight, the average number of dimethyl units, the average number of repeating units of dimethylsiloxane / polyether, and the average number of repeating units of oxyethylene are the integrated values (ratio) of the peaks of a, b, c, and d. Based on this, each was calculated from the following formulas.
Average number of dimethyl units = (2a-6b) ÷ 3b
Average number of repeating units of dimethylsiloxane / polyether = b / 2c
Number of repetitions of oxyethylene = d ÷ b-1
Average molecular weight = (repeated number of oxyethylene x molecular weight of oxyethylene + average number of dimethyl units x molecular weight of dimethyl units + molecular weight of hydrocarbon part connecting polyether part and silicon + connecting via polyether part and hydrocarbon part (Molecular weight of silicon part) x average number of repeating units of dimethylsiloxane / polyether + average number of dimethyl units x molecular weight of dimethyl units + molecular weight of 2-phenylpropyldimethylshiroki groups at both ends
 シリコーンA-10のNMRデータは以下の通りであった。
H-NMR(溶媒:重クロロホルム、基準物質:TMS)
δ=0.01~0.15ppmの積分値を10.0とすると、
δ=0.99~1.05ppmの積分値は0.1
δ=2.85~3.00ppmの積分値は1.0
δ=3.30~3.75ppmの積分値は3.8。
The NMR data of Silicone A-10 was as follows.
1 1 H-NMR (solvent: deuterated chloroform, reference substance: TMS)
Assuming that the integral value of δ = 0.01 to 0.15 ppm is 10.0,
The integral value of δ = 0.99 to 1.05 ppm is 0.1
The integral value of δ = 2.85 to 3.00 ppm is 1.0
The integral value of δ = 3.30 to 3.75 ppm is 3.8.
 (合成例9:シリコーンA-11)
 200mLのセパラブルフラスコに、前記合成例7で得られたシリコーンA-8を25g(9mmol)とトルエン50gを入れ、滴下ロートに出光興産(株)製の1-ドデセン(商品名:リニアレン12)6g(36mmol)とトルエン10g、エヌ・イー・ケムキャット(株)製の白金触媒であるPt-CTS-トルエン溶液59μL(Pt換算:49ppm)を入れ、窒素置換を行った。混合溶液を加熱し、液温が30℃に到達した後、滴下ロートの混合溶液の滴下を開始した。滴下ロートの混合溶液をすべて滴下した後、85℃で16時間熟成した。熟成終了後、H-NMRを使用してSiH基のピークの消失を確認した。続いて、加熱・減圧し、反応物から残存する1-ドデセンと溶媒として使用したトルエンを除去し、分子両末端ドデシルジメチルシロキ基封鎖ジメチルシロキサン・ポリエーテル共重合体(シリコーンA-11)27gを得た。
(Synthetic Example 9: Silicone A-11)
25 g (9 mmol) of the silicone A-8 obtained in Synthesis Example 7 and 50 g of toluene were placed in a 200 mL separable flask, and 1-Dodecene manufactured by Idemitsu Kosan Co., Ltd. (trade name: Linearene 12) was placed in a dropping funnel. 6 g (36 mmol), 10 g of toluene, and 59 μL of a Pt-CTS-toluene solution (Pt equivalent: 49 ppm), which is a platinum catalyst manufactured by NE Chemcat Co., Ltd., were added to carry out nitrogen substitution. The mixed solution was heated, and after the liquid temperature reached 30 ° C., dropping of the mixed solution of the dropping funnel was started. After dropping all the mixed solution of the dropping funnel, it was aged at 85 ° C. for 16 hours. After completion of aging, 1 H-NMR was used to confirm the disappearance of the SiH group peak. Subsequently, the mixture was heated and depressurized to remove residual 1-dodecene and toluene used as a solvent from the reaction product, and 27 g of a dimethylsiloxane-polyether copolymer (silicone A-11) with both ends of the molecule dodecene dimethylshiroki group-blocked Obtained.
 H-NMRを使用して得られたシリコーンA-11を解析した結果、シリコーンA-11は、平均分子量2865、ジメチルユニット(上記式(1)におけるp)の平均個数4.4個、ジメチルシロキサン・ポリエーテルの繰り返しユニット(上記式(1)におけるr)が3.2個、オキシエチレンの繰り返し数(上記式(1)におけるa)が3.0個であることがわかった。 1 As a result of analyzing the silicone A-11 obtained using H-NMR, the silicone A-11 has an average molecular weight of 2865, an average number of dimethyl units (p in the above formula (1)) of 4.4, and dimethyl. It was found that the number of repeating units of siloxane / polyether (r in the above formula (1)) was 3.2, and the number of repeating units of oxyethylene (a in the above formula (1)) was 3.0.
 (合成例10:シリコーンA-12)
 200mLのセパラブルフラスコに、前記合成例1で得られたシリコーンA-2を35g(66mmol)と東京化成工業(株)製のトリエチレングリコールジビニルエーテル13g(64mmol)、エヌ・イー・ケムキャット(株)製の白金触媒であるPtアルミナ粉末22mg(Pt換算:23ppm)を入れ、窒素置換を行った。混合溶液を加熱し、75℃で3時間熟成した。熟成終了後、H-NMRを使用して不飽和二重結合のピークの消失を確認した。続いて、室温に冷却した後、ろ過によって白金触媒を取り除いた。
(Synthesis Example 10: Silicone A-12)
In a 200 mL separable flask, 35 g (66 mmol) of the silicone A-2 obtained in Synthesis Example 1 and 13 g (64 mmol) of triethylene glycol divinyl ether manufactured by Tokyo Chemical Industry Co., Ltd., NE Chemcat Co., Ltd. ), Which is a platinum catalyst, was added with 22 mg of Pt alumina powder (Pt equivalent: 23 ppm), and nitrogen substitution was performed. The mixed solution was heated and aged at 75 ° C. for 3 hours. After completion of aging, 1 H-NMR was used to confirm the disappearance of the unsaturated double bond peak. Subsequently, after cooling to room temperature, the platinum catalyst was removed by filtration.
 続いて、ろ液を100mLのナスフラスコに入れ、加熱・減圧し、反応物から残存するシリコーンA-2を除去し、分子両末端ハイドロジメチルシロキシ基封鎖ジメチルシロキサン・ポリエーテル共重合体(シリコーンA-12)32gを得た。 Subsequently, the filtrate was placed in a 100 mL eggplant flask, heated and depressurized to remove residual silicone A-2 from the reaction product, and a hydrodimethylsiloxy group-blocked dimethylsiloxane-polyether copolymer (silicone A) at both ends of the molecule was removed. -12) 32 g was obtained.
 H-NMRを使用して得られたシリコーンA-12を解析した結果、シリコーンA-12は、平均分子量10572、ジメチルユニット(上記式(1)におけるp)の平均個数4.1個、ジメチルシロキサン・ポリエーテルの繰り返しユニット(上記式(1)におけるr)が16.2個、オキシエチレンの繰り返し数(上記式(1)におけるa)が3.0個であることがわかった。 1 As a result of analyzing the silicone A-12 obtained using H-NMR, the silicone A-12 has an average molecular weight of 10572, an average number of dimethyl units (p in the above formula (1)) of 4.1, and dimethyl. It was found that the number of repeating units of siloxane / polyether (r in the above formula (1)) was 16.2, and the number of repeating units of oxyethylene (a in the above formula (1)) was 3.0.
 (合成例11:シリコーンA-13)
 200mLのセパラブルフラスコに、前記合成例1と同様の方法で得られた分子鎖両末端ハイドロジメチルシロキシ基封鎖ジメチルシロキサン(平均分子量522、ジメチルユニット(上記式(1)におけるp)の平均個数5.2個)25g(48mmol)とトルエン58g、東京化成工業(株)製の1,5-ヘキサジエン2g(24mmol)、エヌ・イー・ケムキャット(株)製の白金触媒であるPtアルミナ粉末10mg(Pt換算:19ppm)を入れ、窒素置換を行った。混合溶液を加熱し、80℃で5時間熟成した。熟成終了後、H-NMRを使用して不飽和二重結合ピークの消失を確認した。続いて、室温に冷却した後、ろ過によって白金触媒を取り除いた。
(Synthesis Example 11: Silicone A-13)
In a 200 mL separable flask, the average number of hydrodimethylsiloxy group-sealed dimethylsiloxanes (average molecular weight 522, dimethyl units (p in the above formula (1)) obtained by the same method as in Synthesis Example 1 is 5 .2) 25 g (48 mmol) and 58 g of toluene, 2 g (24 mmol) of 1,5-hexadien manufactured by Tokyo Chemical Industry Co., Ltd., and 10 mg (Pt) of Pt alumina powder, which is a platinum catalyst manufactured by NE Chemcat Co., Ltd. Conversion: 19 ppm) was added, and nitrogen substitution was performed. The mixed solution was heated and aged at 80 ° C. for 5 hours. After completion of aging, 1 H-NMR was used to confirm the disappearance of the unsaturated double bond peak. Subsequently, after cooling to room temperature, the platinum catalyst was removed by filtration.
 続いて、ろ液を100mLのナスフラスコに入れ、加熱・減圧し、反応物から残存する分子鎖両末端ハイドロジメチルシロキシ基封鎖ジメチルシロキサンと溶剤として使用したトルエンを除去し、分子両末端ハイドロジメチルシロキシ基封鎖ジメチルシロキサン・へキシレン共重合体14gを得た。H-NMRを使用して得られた共重合体を解析した結果、共重合体は、平均分子量1201、ジメチルユニット(上記式(1)におけるp)の平均個数5.3個、ジメチルシロキサン・へキシレンの繰り返しユニット(上記式(1)におけるq)が1.1個であることがわかった。 Subsequently, the filtrate was placed in a 100 mL eggplant flask, heated and depressurized to remove the residual hydrodimethylsiloxy group-blocking dimethylsiloxane at both ends of the molecular chain and toluene used as a solvent, and the hydrodimethylsiloxy at both ends of the molecule. 14 g of a base-sealed dimethylsiloxane / hexylene copolymer was obtained. 1 As a result of analyzing the copolymer obtained by using H-NMR, the copolymer had an average molecular weight of 1201, an average number of dimethyl units (p in the above formula (1)) of 5.3, and dimethylsiloxane. It was found that the number of repeating units of hexylene (q in the above formula (1)) was 1.1.
 図6に、分子両末端ハイドロジメチルシロキシ基封鎖ジメチルシロキサン・へキシレン共重合体のNMRデータを示す。 FIG. 6 shows NMR data of the hydrodimethylsiloxy group-blocking dimethylsiloxane / hexylene copolymer at both ends of the molecule.
 なお、分子両末端ハイドロジメチルシロキシ基封鎖ジメチルシロキサン・へキシレン共重合体のH-NMR解析方法は以下の通りである。
a(ケミカルシフト0.01~0.11ppm)はヘキシレン基と結合したジメチルシロキサンユニットのメチル基とジメチルシロキサンの繰り返しユニットのメチル基由来の水素のピークを示す。
b(ケミカルシフト0.17~0.21ppm)は分子鎖両末端のハイドロジメチルシロキシ基のメチル基由来の水素のピークを示す。
c(ケミカルシフト0.45~0.60ppm)はケイ素に結合したヘキシレン基のケイ素の隣のCH由来の水素のピークを示す。
The 1 H-NMR analysis method of the hydrodimethylsiloxy group-blocked dimethylsiloxane / hexylene copolymer at both ends of the molecule is as follows.
a (chemical shift 0.01 to 0.11 ppm) indicates the peak of hydrogen derived from the methyl group of the dimethylsiloxane unit bonded to the hexylene group and the methyl group of the repeating unit of dimethylsiloxane.
b (chemical shift 0.17 to 0.21 ppm) indicates the peak of hydrogen derived from the methyl group of the hydrodimethylsiloxy group at both ends of the molecular chain.
c (chemical shift 0.45 to 0.60 ppm) indicates the peak of hydrogen derived from CH 2 next to the silicon of the hexylene group bonded to silicon.
 そして、平均分子量、ジメチルユニットの平均個数、並びにジメチルシロキサン・ヘキシレンの繰り返しユニットの平均個数は上記a、b、cのピークの積分値(比)をもとに、次の計算式によりそれぞれ算出した。
ジメチルユニットの平均個数=(2a-b-6c)÷3c
ジメチルシロキサン・ヘキシレンの繰り返しユニットの平均個数=3c÷b
平均分子量=(ジメチルユニットの平均個数×ジメチルユニットの分子量+ヘキシレンの分子量+ヘキシレン部と繋がったケイ素部の分子量)×ジメチルシロキサン・ヘキシレンの繰り返しユニットの平均個数+ジメチルユニットの平均個数×ジメチルユニットの分子量+分子鎖両末端のハイドロジメチルシロキシ基の分子量
Then, the average molecular weight, the average number of dimethyl units, and the average number of repeating units of dimethylsiloxane / hexylene were calculated by the following formulas based on the integrated values (ratio) of the peaks a, b, and c above. ..
Average number of dimethyl units = (2ab-6c) ÷ 3c
Average number of repeating units of dimethylsiloxane / hexylene = 3c ÷ b
Average molecular weight = (average number of dimethyl units x molecular weight of dimethyl units + molecular weight of hexylene + molecular weight of silicon part connected to hexylene part) x average number of repeating units of dimethylsiloxane / hexylene + average number of dimethyl units x dimethyl units Molecular weight + molecular weight of hydrodimethylsiloxy groups at both ends of the molecular chain
 分子両末端ハイドロジメチルシロキシ基封鎖ジメチルシロキサン・へキシレン共重合体のNMRデータは以下の通りであった。
H-NMR(溶媒:重クロロホルム、基準物質:TMS)
δ=0.01~0.11ppmの積分値を10.0とすると、
δ=0.17~0.21ppmの積分値は2.2
δ=0.45~0.60ppmの積分値は0.8。
The NMR data of the hydrodimethylsiloxy group-blocking dimethylsiloxane / hexylene copolymer at both ends of the molecule was as follows.
1 1 H-NMR (solvent: deuterated chloroform, reference substance: TMS)
Assuming that the integral value of δ = 0.01 to 0.11 ppm is 10.0,
The integral value of δ = 0.17 to 0.21 ppm is 2.2
The integral value of δ = 0.45 to 0.60 ppm is 0.8.
 次に、200mLのセパラブルフラスコに、上記で得られた分子両末端ハイドロジメチルシロキシ基封鎖ジメチルシロキサン・へキシレン共重合体を9g(7mmol)とトルエン72gを入れ、滴下ロートに日油(株)製のメトキシポリエチレングリコールアリルエーテル(商品名:ユニオックス PKA-5007)24g(60mmol)とエヌ・イー・ケムキャット(株)製の白金触媒であるPt-CTS-トルエン溶液63μL(Pt換算:49ppm)を入れ、窒素置換を行った。混合溶液を加熱し、液温が35℃に到達した後、滴下ロートの混合溶液の滴下を開始した。滴下ロートの混合溶液をすべて滴下した後、75℃で23時間熟成した。熟成終了後、H-NMRを使用してSiH基のピークの消失を確認した。続いて、得られた反応液に蒸留水とヘキサンを加え、ヘキサン層を回収し、溶媒として使用したヘキサンとトルエンを除去し、分子両末端ポリオキシアルキルジメチルシロキ基封鎖ジメチルシロキサン・へキシレン共重合体(シリコーンA-13)4gを得た。 Next, 9 g (7 mmol) of the hydrodimethylsiloxy group-sealed dimethylsiloxane / hexylene copolymer obtained above at both ends of the molecule and 72 g of toluene were placed in a 200 mL separable flask, and Nichiyu Co., Ltd. was added to the dropping funnel. 24 g (60 mmol) of methoxypolyethylene glycol allyl ether (trade name: Uniox PKA-5007) and 63 μL of Pt-CTS-toluene solution (Pt conversion: 49 ppm), which is a platinum catalyst manufactured by NE Chemcat Co., Ltd. And nitrogen substitution was performed. The mixed solution was heated, and after the liquid temperature reached 35 ° C., dropping of the mixed solution of the dropping funnel was started. After dropping all the mixed solution of the dropping funnel, it was aged at 75 ° C. for 23 hours. After completion of aging, 1 H-NMR was used to confirm the disappearance of the SiH group peak. Subsequently, distilled water and hexane were added to the obtained reaction solution, the hexane layer was recovered, hexane and toluene used as solvents were removed, and both ends of the molecule were polyoxyalkyldimethylsiloki group-blocked dimethylsiloxane / hexylene co-weight. 4 g of coalesced (silicone A-13) was obtained.
 H-NMRを使用して得られたシリコーンA-13を解析した結果、シリコーンA-13は、平均分子量1897、ジメチルユニット(上記式(1)におけるp)の平均個数4.6個、ジメチルシロキサン・へキシレンの繰り返しユニット(上記式(1)におけるq)が1.4個、分子末端のオキシエチレンの繰り返し数(上記式(2)におけるb)が6.0個であることがわかった。 1 As a result of analyzing the silicone A-13 obtained by using 1 H-NMR, the silicone A-13 has an average molecular weight of 1897, an average number of dimethyl units (p in the above formula (1)) of 4.6, and dimethyl. It was found that the number of repeating units of siloxane / hexylene (q in the above formula (1)) was 1.4, and the number of repeating units of oxyethylene at the molecular terminal (b in the above formula (2)) was 6.0. ..
 図7に、シリコーンA-13のNMRデータを示す。 FIG. 7 shows the NMR data of Silicone A-13.
 なお、シリコーンA-13に示す分子両末端ポリオキシアルキルジメチルシロキシ基封鎖ジメチルシロキサン・アルキレン共重合体のH-NMR解析方法は以下の通りである。
a(ケミカルシフト0.01~0.15ppm)はジメチルシロキサンの繰り返しユニットのメチル基とポリエーテルと結合したジメチルシロキサンユニットのメチル基とヘキシレン基と結合したジメチルシロキサンユニットのメチル基由来の水素のピークを示す。
b(ケミカルシフト1.20~1.40ppm)はケイ素に結合していないヘキシレン基のCH由来の水素のピークを示す。
c(ケミカルシフト1.50~1.70ppm)はケイ素に結合したポリオキシアルキル基のケイ素の隣のCHの隣のCH由来の水素のピークを示す。
d(ケミカルシフト3.50~3.70ppm)はポリオキシアルキル部のエチレンの繰り返し部分由来の水素のピークを示す。
The 1 H-NMR analysis method of the molecular double-ended polyoxyalkyldimethylsiloxy group-blocking dimethylsiloxane / alkylene copolymer shown in Silicone A-13 is as follows.
a (chemical shift 0.01 to 0.15 ppm) is the peak of hydrogen derived from the methyl group of the dimethylsiloxane unit bonded to the methyl group of the dimethylsiloxane repeating unit and the methyl group of the dimethylsiloxane unit bonded to the polyether group. Is shown.
b (chemical shift 1.20 to 1.40 ppm) shows the peak of hydrogen derived from CH 2 of the hexylene group not bonded to silicon.
c (chemical shift 1.50 ~ 1.70ppm) shows a peak of hydrogen from CH 2 next to the CH 2 next to the silicon polyoxyethylene alkyl group attached to silicon.
d (chemical shift 3.50 to 3.70 ppm) indicates the peak of hydrogen derived from the repeating portion of ethylene in the polyoxyalkyl moiety.
 そして、平均分子量、ジメチルユニットの平均個数、ジメチルシロキサン・ポリエーテルの繰り返しユニットの平均個数、並びに、オキシエチレンの繰り返しの平均個数は上記a、b、c、dのピークの積分値(比)をもとに、次の計算式よりそれぞれ算出した。
ジメチルユニットの平均個数=(4a-6b-18c)÷3b
ジメチルシロキサン・ヘキシレンの繰り返しユニットの平均個数=b÷2c
オキシエチレンの繰り返し数=d÷2c
平均分子量=(ジメチルユニットの平均個数×ジメチルユニットの分子量+ヘキシレンの分子量+ヘキシレン部と繋がったケイ素部の分子量)×ジメチルシロキサン・ヘキシレンの繰り返しユニットの平均個数+ジメチルユニットの平均個数×ジメチルユニットの分子量+分子鎖両末端のポリオキシアルキルジメチルシロキシ基の分子量
The average molecular weight, the average number of dimethyl units, the average number of repeating units of dimethylsiloxane / polyether, and the average number of repeating units of oxyethylene are the integrated values (ratio) of the peaks of a, b, c, and d. Based on this, each was calculated from the following formulas.
Average number of dimethyl units = (4a-6b-18c) ÷ 3b
Average number of repeating units of dimethylsiloxane / hexylene = b / 2c
Number of repetitions of oxyethylene = d ÷ 2c
Average molecular weight = (average number of dimethyl units x molecular weight of dimethyl units + molecular weight of hexylene + molecular weight of silicon part connected to hexylene part) x average number of repeating units of dimethylsiloxane / hexylene + average number of dimethyl units x dimethyl units Molecular weight + molecular weight of polyoxyalkyldimethylsiloxy groups at both ends of the molecular chain
 シリコーンA-13のNMRデータは以下の通りであった。
H-NMR(溶媒:重クロロホルム、基準物質:TMS)
δ=0.05~0.15ppmの積分値を10.0とすると、
δ=1.20~1.40ppmの積分値は1.5
δ=1.50~1.70ppmの積分値は0.6
δ=3.50~3.70ppmの積分値は6.7。
The NMR data of Silicone A-13 was as follows.
1 1 H-NMR (solvent: deuterated chloroform, reference substance: TMS)
Assuming that the integral value of δ = 0.05 to 0.15 ppm is 10.0,
The integral value of δ = 1.20 to 1.40 ppm is 1.5
The integral value of δ = 1.50 to 1.70 ppm is 0.6
The integral value of δ = 3.50 to 3.70 ppm is 6.7.
 以上の(A)シロキサン化合物(シリコーン油)のデータを表1にまとめる。表1における、Xは上述の式(1)および式(2)におけるXおよびXを示し、並びに、Y、Z、p、q、r、a、n、Z、bおよびmは、それぞれ、上述の式(1)および式(2)におけるものと同じ意味である。 The data of the above (A) siloxane compound (silicone oil) are summarized in Table 1. In Table 1, X represents X 1 and X 2 in the above equations (1) and (2), and Y, Z 1 , p, q, r, a, n, Z 2 , b and m , They have the same meanings as those in the above equations (1) and (2), respectively.
 また、表中の残渣量(重量%)は、後述する方法によって測定した。なお、表1に示すシリコーン油のうち、シリコーンA-3については、式(1)におけるpの値が13を超えているため、残渣量が増えてしまったと考えられる。 The amount of residue (% by weight) in the table was measured by the method described later. Of the silicone oils shown in Table 1, for silicone A-3, the value of p in the formula (1) exceeds 13, so it is considered that the amount of residue has increased.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 ((B)炭化水素系潤滑油)
・エステル油:日油(株)製のペンタエリスリトール脂肪酸エステル、製品名:ユニスター HR-32(40℃動粘度:33.5:mm/s、100℃動粘度:5.8mm/s、VI:115、引火点:274℃、流動点:-50℃)
・エステル油:日油(株)製のトリメチロールプロパン脂肪酸エステル(C6-C12)、製品名:ユニスター H-334R(40℃動粘度:19.6mm/s、100℃動粘度:4.4mm/s、VI:138、流動点-40℃)
・PAG(ポリブチレングリコール):DOW株式会社製「UCON OSP-32」(40℃動粘度:32.0mm/s、100℃動粘度:6.5mm/s、VI:146)
・PAO油:Chevron Phillips製のポリαオレフィン、製品名:Synfluid PAO 6 cSt(40℃動粘度:30.5mm/s、100℃動粘度:5.9mm/s、VI:137)
・エーテル油:(株)MORESCO製のアルキルジフェニルエーテル「モレスコハイルーブ LB-100」(40℃動粘度:102.6mm/s、100℃動粘度:12.6mm/s、VI:117)
・鉱油:コスモ石油ルブリカンツ(株)製の鉱油、製品名:コスモピュアスピンTK(40℃動粘度:9.3mm/s、100℃動粘度:2.5mm/s、VI:94)
・流動パラフィン:(株)MORESCO製の「モレスコホワイト P-70」(40℃動粘度:12.6mm/s、100℃動粘度:2.9mm/s、VI:56)
・PAG(ポリアルキレングリコール):三洋化成株式会社製「ニューポール HB50-660」(40℃動粘度:130.1mm/s、100℃動粘度:20.1mm/s、VI:178)
((B) Hydrocarbon-based lubricating oil)
-Ester oil: Pentaerythritol fatty acid ester manufactured by Nichiyu Co., Ltd., Product name: Unistar HR-32 (40 ° C kinematic viscosity: 33.5: mm 2 / s, 100 ° C kinematic viscosity: 5.8 mm 2 / s, VI: 115, flash point: 274 ° C, pour point: -50 ° C)
-Ester oil: Trimethylolpropane fatty acid ester (C6-C12) manufactured by Nichiyu Co., Ltd., Product name: Unistar H-334R (40 ° C kinematic viscosity: 19.6 mm 2 / s, 100 ° C kinematic viscosity: 4.4 mm 2 / s, VI: 138, pour point -40 ° C)
-PAG (polybutylene glycol): "UCON OSP-32" manufactured by DOWN Co., Ltd. (40 ° C. kinematic viscosity: 32.0 mm 2 / s, 100 ° C. kinematic viscosity: 6.5 mm 2 / s, VI: 146)
-PAO oil: poly-α-olefin manufactured by Chevron Phillips, product name: Synfluid PAO 6 cSt (40 ° C. kinematic viscosity: 30.5 mm 2 / s, 100 ° C. kinematic viscosity: 5.9 mm 2 / s, VI: 137)
-Ether oil: Alkyl diphenyl ether "Moresco High Lube LB-100" manufactured by MORESCO Co., Ltd. (40 ° C kinematic viscosity: 102.6 mm 2 / s, 100 ° C kinematic viscosity: 12.6 mm 2 / s, VI: 117)
-Mineral oil: Mineral oil manufactured by Cosmo Oil Lubricants Co., Ltd., Product name: Cosmo Pure Spin TK (40 ° C kinematic viscosity: 9.3 mm 2 / s, 100 ° C kinematic viscosity: 2.5 mm 2 / s, VI: 94)
- Liquid paraffin: manufactured) MORESCO manufactured "Moresco White P-70" (40 ° C. kinematic viscosity: 12.6mm 2 / s, 100 ℃ kinematic viscosity: 2.9mm 2 / s, VI: 56)
-PAG (Polyalkylene Glycol): "New Pole HB50-660" manufactured by Sanyo Chemical Industries, Ltd. (40 ° C. kinematic viscosity: 130.1 mm 2 / s, 100 ° C. kinematic viscosity: 20.1 mm 2 / s, VI: 178)
 ((C)極圧剤)
・硫黄系極圧剤:イソブテン硫化物、RheinChemie製、「RC 2545」
・硫黄-リン系極圧剤:チオリン酸エステル、LUBRIZOL製「LUBRIZOL IC9AW31」
・リン系極圧剤:脂肪酸リン酸エステルのアミン塩、Kingindustries製「NA-LUBE AW-6400FG」
((C) Extreme pressure agent)
-Sulfur-based extreme pressure agent: isobutylene sulfide, manufactured by Rhein Chemie, "RC 2545"
-Sulfur-phosphorus extreme pressure agent: Thiophosphate ester, made by LUBRIZOL "LUBRIZOL IC9AW31"
-Phosphorus-based extreme pressure agent: Amin salt of fatty acid phosphate, "NA-LUBE AW-6400FG" manufactured by Kingindustries
 ((D)酸化防止剤)
・一次酸化防止剤:BASF製の芳香族アミン系化合物、「IRGANOX L-57」・一次酸化防止剤:BASF製のフェノール系化合物、「IRGANOX L-135」・二次酸化防止剤:城北化学工業(株)製の亜リン酸エステル系化合物、「JP-310」
((D) Antioxidant)
-Primary antioxidant: BASF's aromatic amine compound, "IRGANOX L-57" -Primary antioxidant: BASF's phenolic compound, "IRGANOX L-135" -Secondary antioxidant: Johoku Chemical Industry "JP-310", a phosphite ester compound manufactured by Co., Ltd.
 (その他)
・金属不活性剤:VANDERBILT製のベンゾトリアゾール化合物「CUVAN303」
・比較試験で使用したシリコーン1:メチルフェニルシリコーン、東レ・ダウコーニング(株)製「SH-550」(40℃動粘度:75.3mm/s、100℃動粘度:20.1mm/s、VI:291)
・比較試験で使用したシリコーン2:アルキルシリコーン、信越化学工業(株)製「KF-4917」(40℃動粘度:13.8mm/s、100℃動粘度:4.6mm/s、VI:292)
(Other)
-Metal inactivating agent: Vanderbilt's benzotriazole compound "CUVAN303"
-Silicone used in the comparative test 1: Methylphenyl silicone, "SH-550" manufactured by Toray Dow Corning Co., Ltd. (40 ° C kinematic viscosity: 75.3 mm 2 / s, 100 ° C kinematic viscosity: 20.1 mm 2 / s , VI: 291)
-Silicone used in the comparative test: Alkylic silicone, "KF-4917" manufactured by Shin-Etsu Chemical Co., Ltd. (40 ° C kinematic viscosity: 13.8 mm 2 / s, 100 ° C kinematic viscosity: 4.6 mm 2 / s, VI : 292)
 〔実施例1~22および比較例1~6〕
 実施例1~10については、表2に示す、上記合成例で得られた各種シロキサン化合物(シリコーン油)をそのまま使用した。実施例11~22及び比較例1~6については、それぞれの成分を、下記表2および3に示す割合(質量%)となるように配合して、(A)シリコーン油と(B)炭化水素系油、(C)極圧剤、及び(D)酸化防止剤、その他添加剤を100℃に加熱して混合することによってそれぞれの潤滑油組成物を調製した。
[Examples 1 to 22 and Comparative Examples 1 to 6]
For Examples 1 to 10, various siloxane compounds (silicone oils) obtained in the above synthesis examples shown in Table 2 were used as they were. In Examples 11 to 22 and Comparative Examples 1 to 6, the respective components were blended in proportions (% by mass) shown in Tables 2 and 3 below, and (A) silicone oil and (B) hydrocarbons were blended. Each lubricating oil composition was prepared by heating the system oil, (C) extreme pressure agent, (D) antioxidant, and other additives to 100 ° C. and mixing them.
 [評価方法]
 得られた各実施例および各比較例のシロキサン化合物及び潤滑油組成物について、潤滑性を以下の試験方法で評価した。
[Evaluation method]
The lubricity of each of the obtained siloxane compounds and lubricating oil compositions of Examples and Comparative Examples was evaluated by the following test method.
 (粘度指数)
 粘度指数(VI)は、JIS K 2283(2000年)に従って測定、算出した。評価基準は以下の通りとした。
(Viscosity index)
The viscosity index (VI) was measured and calculated according to JIS K 2283 (2000). The evaluation criteria are as follows.
 粘度指数(VI)250以上    ◎
 粘度指数(VI)180~250  ○
 粘度指数(VI)180未満    ×
Viscosity index (VI) 250 or more ◎
Viscosity index (VI) 180-250 ○
Viscosity index (VI) less than 180 ×
 (残渣量の測定)
 内径3cmのガラス製のシャーレに、各試料を0.2g秤量し、140℃の恒温槽で100時間加熱後、250℃の恒温槽で700時間加熱した。その後に、それぞれの残渣量を測定した。評価基準は以下の通りとした。
(Measurement of residue amount)
0.2 g of each sample was weighed in a glass petri dish having an inner diameter of 3 cm, heated in a constant temperature bath at 140 ° C. for 100 hours, and then heated in a constant temperature bath at 250 ° C. for 700 hours. After that, the amount of each residue was measured. The evaluation criteria are as follows.
 残渣の割合(重量%)が10%以下       ◎
 残渣の割合(重量%)が10%超~20%以下  ○
 残渣の割合(重量%)が20%超        ×
 以上の結果を表2および3に示す。
Residue ratio (% by weight) is 10% or less ◎
Residue ratio (% by weight) is more than 10% to 20% or less ○
Residue ratio (% by weight) exceeds 20% ×
The above results are shown in Tables 2 and 3.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 (考察)
 実施例1~10の結果より、本発明のシロキサン化合物は、単独で使用しても高い粘度指数と低残渣性を両立できることが示された。
(Discussion)
From the results of Examples 1 to 10, it was shown that the siloxane compound of the present invention can achieve both a high viscosity index and low residue property even when used alone.
 また、実施例11~22では、本発明のシロキサン化合物を他の成分と共に組成物として使用しても、同じく、高い粘度指数と低残渣性を両立できることが示された。特に、実施例2~3及び11~15の結果により、シロキサン化合物の配合量が多い方が、加熱後の残渣が非常に少ないことが示された。さらに、実施例16~17の結果により、シロキサン化合物の配合量が多い方が粘度指数においても優れていることがわかった。 Further, in Examples 11 to 22, it was shown that even if the siloxane compound of the present invention is used as a composition together with other components, a high viscosity index and a low residual property can be achieved at the same time. In particular, from the results of Examples 2 to 3 and 11 to 15, it was shown that the larger the amount of the siloxane compound blended, the smaller the residue after heating. Furthermore, from the results of Examples 16 to 17, it was found that the larger the amount of the siloxane compound blended, the better the viscosity index.
 一方、本発明のシロキサン化合物を使用していない比較例1~6では、粘度指数および低残渣性の少なくとも一方において実施例の結果より劣っていた。 On the other hand, in Comparative Examples 1 to 6 in which the siloxane compound of the present invention was not used, at least one of the viscosity index and the low residual property was inferior to the result of the example.
 特に、比較例1~2の結果から、従来から使用されている一般的なシリコーン油では粘度指数は高いものの、残渣量が多いことがわかった。また、比較例3~5で使用した合成油である、エステル油、PAG油については、残渣量は少なかったが、十分な粘度指数を示さなかった。比較的粘度指数が高い合成油として知られるPAG油であっても、粘度指数は180未満であった。比較例6では、従来のシリコーン油と残渣量が少ないエステル油を組み合わせてみたが、残渣量を抑えることができたものの粘度指数まで下がってしまうという結果になった。 In particular, from the results of Comparative Examples 1 and 2, it was found that the general silicone oil used conventionally has a high viscosity index but a large amount of residue. The synthetic oils used in Comparative Examples 3 to 5 such as ester oil and PAG oil did not show a sufficient viscosity index, although the amount of residue was small. Even PAG oil, known as a synthetic oil with a relatively high viscosity index, had a viscosity index of less than 180. In Comparative Example 6, a combination of a conventional silicone oil and an ester oil having a small amount of residue was tried, but the result was that the viscosity index was lowered even though the amount of residue could be suppressed.
 この出願は、2019年12月20日に出願された日本国特許出願特願2019-229833を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2019-229833 filed on December 20, 2019, the contents of which are included in the present application.
 本発明を表現するために、前述において具体例等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been appropriately and sufficiently described through the embodiments with reference to specific examples and the like, but those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that it can be done. Therefore, unless the modified or improved form implemented by a person skilled in the art is at a level that deviates from the scope of rights of the claims stated in the claims, the modified form or the improved form is the scope of rights of the claims. It is interpreted as being comprehensively included in.
 本発明のシロキサン化合物及び潤滑油組成物は、優れた潤滑性を有する潤滑油として使用できるため、各種用途の潤滑剤、例えば、ターボ機械用潤滑剤、圧縮機用の潤滑剤、油圧機器用の潤滑剤、工作機械用の潤滑剤、グリース基油、冷凍機油、可塑剤等として好適に用いることができる。特に高荷重の用途に好適である。 Since the siloxane compound and the lubricating oil composition of the present invention can be used as a lubricating oil having excellent lubricity, they can be used as lubricants for various purposes, for example, lubricants for turbo machinery, lubricants for compressors, and hydraulic equipment. It can be suitably used as a lubricant, a lubricant for machine tools, a grease base oil, a refrigerating machine oil, a plasticizer and the like. Especially suitable for high load applications.

Claims (7)

  1.  下記式(1)で示される、シロキサン化合物。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、
     Xは、同一または異なって、水素、炭素数1~12のアルキル基または下記式(2)で示されるポリオキシアルキル基であり、
     Yは、炭素数2~12のアルキレン基であり、
     Zは、炭素-ケイ素結合によって隣接ケイ素原子に、かつ、酸素原子によってポリオキシアルキレンブロックに結合している2価の有機基を表し、
     pは0~13の整数、qおよびrはそれぞれ0~16の整数、nは2~4の整数、aは0~11の整数である。
    Figure JPOXMLDOC01-appb-C000002
     (式(2)中、
     Zは、炭素-ケイ素結合によって隣接ケイ素原子に、かつ、酸素原子によってポリオキシアルキレンブロックに結合している2価の有機基を表し、
     Xは、水素もしくは炭素数1~12のアルキル基であり、
     mは2~4の整数、bは1~10の整数である。)]
    A siloxane compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [In equation (1),
    X 1 is the same or different, hydrogen, an alkyl group having 1 to 12 carbon atoms, or a polyoxyalkyl group represented by the following formula (2).
    Y is an alkylene group having 2 to 12 carbon atoms.
    Z 1 represents a divalent organic group bonded to an adjacent silicon atom by a carbon-silicon bond and to a polyoxyalkylene block by an oxygen atom.
    p is an integer of 0 to 13, q and r are integers of 0 to 16, respectively, n is an integer of 2 to 4, and a is an integer of 0 to 11.
    Figure JPOXMLDOC01-appb-C000002
    (In equation (2),
    Z 2 represents a divalent organic group bonded to an adjacent silicon atom by a carbon-silicon bond and to a polyoxyalkylene block by an oxygen atom.
    X 2 is hydrogen or an alkyl group having 1 to 12 carbon atoms.
    m is an integer of 2 to 4, and b is an integer of 1 to 10. )]
  2.  粘度指数が200以上であり、かつ、140℃で100時間加熱後、250℃で700時間加熱した後の残渣量が20%以下である、請求項1に記載のシロキサン化合物。 The siloxane compound according to claim 1, wherein the viscosity index is 200 or more, and the amount of residue after heating at 140 ° C. for 100 hours and then at 250 ° C. for 700 hours is 20% or less.
  3.  (A)請求項1または2に記載のシロキサン化合物と、
     (B)炭化水素系潤滑油と、
     (C)極圧剤および(D)酸化防止剤のうち少なくとも一つと、
    を少なくとも含む、潤滑油組成物。
    (A) The siloxane compound according to claim 1 or 2,
    (B) Hydrocarbon-based lubricating oil and
    With at least one of (C) extreme pressure agent and (D) antioxidant,
    Lubricating oil composition containing at least.
  4.  請求項1もしくは2に記載のシロキサン化合物、または請求項3に記載の潤滑油組成物を用いる、潤滑剤。 A lubricant using the siloxane compound according to claim 1 or 2 or the lubricating oil composition according to claim 3.
  5.  請求項1もしくは2に記載のシロキサン化合物、請求項3に記載の潤滑油組成物又は請求項4に記載の潤滑剤を用いる、グリース。 A grease using the siloxane compound according to claim 1 or 2, the lubricating oil composition according to claim 3, or the lubricant according to claim 4.
  6.  請求項1もしくは2に記載のシロキサン化合物、請求項3に記載の潤滑油組成物又は請求項4に記載の潤滑剤を用いる、エマルション。 An emulsion using the siloxane compound according to claim 1 or 2, the lubricating oil composition according to claim 3, or the lubricant according to claim 4.
  7.  請求項1もしくは2に記載のシロキサン化合物、請求項3に記載の潤滑油組成物又は請求項4に記載の潤滑剤を使用する、潤滑方法。 A lubrication method using the siloxane compound according to claim 1 or 2, the lubricating oil composition according to claim 3, or the lubricant according to claim 4.
PCT/JP2020/043615 2019-12-20 2020-11-24 Low-residue siloxane compound, and lubricating oil composition and lubricant using this WO2021124807A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021565405A JPWO2021124807A1 (en) 2019-12-20 2020-11-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019229833 2019-12-20
JP2019-229833 2019-12-20

Publications (1)

Publication Number Publication Date
WO2021124807A1 true WO2021124807A1 (en) 2021-06-24

Family

ID=76477278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043615 WO2021124807A1 (en) 2019-12-20 2020-11-24 Low-residue siloxane compound, and lubricating oil composition and lubricant using this

Country Status (3)

Country Link
JP (1) JPWO2021124807A1 (en)
TW (1) TW202136385A (en)
WO (1) WO2021124807A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115850706A (en) * 2022-12-12 2023-03-28 上海东大化学有限公司 Silane modified polymer, synthesis method thereof and method for preparing waterproof coating by using silane modified polymer

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5534228A (en) * 1978-09-01 1980-03-10 Toray Silicone Co Ltd Polysiloxane composition
JPH0762102A (en) * 1993-08-25 1995-03-07 Kao Corp Organo(poly)siloxane modified with sulfuric acid ester and preparation thereof
JPH11217390A (en) * 1998-01-30 1999-08-10 Dow Corning Toray Silicone Co Ltd Production of organic functional organopentasiloxane, organic resin-modifying agent and organic resin
JP2004217866A (en) * 2003-01-17 2004-08-05 Daisan Kogyo Kk Undiluted lubricant solution for container carrying conveyer belt and lubricant
JP2006286509A (en) * 2005-04-04 2006-10-19 Shin Etsu Chem Co Ltd Nonaqueous electrolytic solution and secondary battery using the same
JP2011116701A (en) * 2009-12-03 2011-06-16 Dow Corning Toray Co Ltd Novel organopolysiloxane and cosmetic
JP2012207082A (en) * 2011-03-29 2012-10-25 Jx Nippon Oil & Energy Corp Lubricant oil composition
JP2017061613A (en) * 2015-09-25 2017-03-30 信越化学工業株式会社 Thermosoftening heat-conductive silicone grease composition, method for forming heat-conductive coating film, heat radiation structure and power module device
JP2018090732A (en) * 2016-12-06 2018-06-14 株式会社ニッペコ Grease composition and movable coupling

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5534228A (en) * 1978-09-01 1980-03-10 Toray Silicone Co Ltd Polysiloxane composition
JPH0762102A (en) * 1993-08-25 1995-03-07 Kao Corp Organo(poly)siloxane modified with sulfuric acid ester and preparation thereof
JPH11217390A (en) * 1998-01-30 1999-08-10 Dow Corning Toray Silicone Co Ltd Production of organic functional organopentasiloxane, organic resin-modifying agent and organic resin
JP2004217866A (en) * 2003-01-17 2004-08-05 Daisan Kogyo Kk Undiluted lubricant solution for container carrying conveyer belt and lubricant
JP2006286509A (en) * 2005-04-04 2006-10-19 Shin Etsu Chem Co Ltd Nonaqueous electrolytic solution and secondary battery using the same
JP2011116701A (en) * 2009-12-03 2011-06-16 Dow Corning Toray Co Ltd Novel organopolysiloxane and cosmetic
JP2012207082A (en) * 2011-03-29 2012-10-25 Jx Nippon Oil & Energy Corp Lubricant oil composition
JP2017061613A (en) * 2015-09-25 2017-03-30 信越化学工業株式会社 Thermosoftening heat-conductive silicone grease composition, method for forming heat-conductive coating film, heat radiation structure and power module device
JP2018090732A (en) * 2016-12-06 2018-06-14 株式会社ニッペコ Grease composition and movable coupling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
URYU, TOSHIZO ET AL.: "Molecular Weight of Silicones and its Measurements", KOBUNSHI KAGAKU, vol. 15, no. 153, 1958, pages 55 - 59, ISSN: 0023-2556 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115850706A (en) * 2022-12-12 2023-03-28 上海东大化学有限公司 Silane modified polymer, synthesis method thereof and method for preparing waterproof coating by using silane modified polymer

Also Published As

Publication number Publication date
JPWO2021124807A1 (en) 2021-06-24
TW202136385A (en) 2021-10-01

Similar Documents

Publication Publication Date Title
JP6549576B2 (en) Organosiloxane composition
EP2885383A1 (en) Lubricant compositions
JP2009511728A (en) Lubricating oil composition
WO1996001302A1 (en) Engine oil composition
JP5339861B2 (en) Lubricating oil composition having excellent defoaming property and method for defoaming lubricating oil
WO2021124807A1 (en) Low-residue siloxane compound, and lubricating oil composition and lubricant using this
GB2506975A (en) Lubricant compositions
CA2129657C (en) Automotive lubricant
JP6815463B2 (en) Lubricating oil composition
JP7282907B2 (en) Lubricating oil composition and lubricant using the same
JPH07252489A (en) Lubricating oil composition
JP6990299B2 (en) Lubricating oil composition and lubricant using it
JP7296711B2 (en) Lubricating oil composition, mechanical device provided with lubricating oil composition, and method for producing lubricating oil composition
US11434447B2 (en) Silicone modified lubricant
JP7312717B2 (en) lubricating oil composition
EP3760697A1 (en) Lubricant composition, mechanical device including lubricant composition, and method of producing lubricant composition
JP2017132987A (en) Lubricant composition
JP2018070845A (en) Lubricant composition
WO2022250017A1 (en) Lubricant composition for internal combustion engine
JP2021147521A (en) Lubricant composition
AU2022419155A1 (en) Use of a polyalkoxysiloxane-based oil as a lubricating agent
JP2023037865A (en) Lubricant composition
JP2023037855A (en) Lubricant composition
JP2007238775A (en) Antifoaming agent and lubricating oil composition
GB2506973A (en) Lubricant compositions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903463

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021565405

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20903463

Country of ref document: EP

Kind code of ref document: A1