WO2021120858A1 - Suspension de céramique d'alumine à cycle long et mouillage élevé et procédé pour sa préparation, et membrane de batterie au lithium - Google Patents

Suspension de céramique d'alumine à cycle long et mouillage élevé et procédé pour sa préparation, et membrane de batterie au lithium Download PDF

Info

Publication number
WO2021120858A1
WO2021120858A1 PCT/CN2020/123947 CN2020123947W WO2021120858A1 WO 2021120858 A1 WO2021120858 A1 WO 2021120858A1 CN 2020123947 W CN2020123947 W CN 2020123947W WO 2021120858 A1 WO2021120858 A1 WO 2021120858A1
Authority
WO
WIPO (PCT)
Prior art keywords
alumina
ceramic slurry
alumina ceramic
pore volume
dispersant
Prior art date
Application number
PCT/CN2020/123947
Other languages
English (en)
Chinese (zh)
Inventor
王成豪
贡晶晶
尚文滨
张立斌
Original Assignee
江苏厚生新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏厚生新能源科技有限公司 filed Critical 江苏厚生新能源科技有限公司
Publication of WO2021120858A1 publication Critical patent/WO2021120858A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium battery diaphragms, and specifically relates to a high-wetting long-cycle alumina ceramic slurry and a preparation method thereof, and a lithium battery diaphragm.
  • the purpose of the present invention is to provide an alumina ceramic slurry and a preparation method, and a lithium battery diaphragm.
  • the present invention provides an alumina ceramic slurry, which includes the following raw materials: solid alumina, dispersant, wetting agent, binder, thickener, defoamer, and pure water.
  • the solid alumina includes: high pore volume alumina and/or low pore diameter alumina; wherein
  • the pore volume distribution of the high pore volume alumina is 0.4-3.0 ml/g;
  • the pore size distribution of the low pore size alumina is 0.1-5nm.
  • the mass ratio of high pore volume alumina and low pore diameter alumina is 1:0.1-10.
  • the mass ratio of the solid alumina, dispersant, wetting agent, binder, thickener, defoamer, and pure water is 1:0.001-0.01:0.003-0.009:0.01-0.08:0.005. -0.015: 0-0.06: 1-2.5.
  • the dispersant includes one or more of silicates, alkali metal phosphates, organic dispersants, sodium salt dispersants, and ammonium salt dispersants; wherein the silicates include water glass;
  • the alkali metal phosphates include at least one of sodium tripolyphosphate, sodium hexametaphosphate, and sodium pyrophosphate;
  • the organic dispersant includes triethylhexyl phosphoric acid, sodium lauryl sulfate, and methylpentanol , Cellulose derivatives, polyacrylamide, Guer gum, fatty acid polyethylene glycol ester, one or more of them.
  • the wetting agent includes at least one of anionic surfactants, nonionic surfactants, and neutral surfactants.
  • the binder includes an aqueous binder.
  • the thickener includes sodium carboxymethacrylate.
  • the defoamer includes isopropanol.
  • the present invention also provides a method for preparing alumina ceramic slurry, which is to stir and mix solid alumina, dispersant, wetting agent, binder, thickener, defoamer, and pure water. Dispersed to form the alumina ceramic slurry.
  • the present invention also provides a lithium battery separator, which includes a PE film and an alumina ceramic slurry coated on the PE film.
  • the beneficial effect of the present invention is that the alumina ceramic slurry of the present invention and the preparation method thereof, the lithium battery diaphragm adopts solid alumina and other components to be mixed and dispersed to form alumina ceramic slurry for the preparation of lithium battery diaphragm, greatly reducing The wetting time of the separator is improved, and the production efficiency of the battery is improved.
  • Figure 1 is a comparison diagram of the cycle capacity of a doped alumina battery and a conventional alumina battery; the ordinate is the battery capacity holding rate, and the abscissa is the number of cycles;
  • Figure 2 is a comparison diagram of the wetting time of a doped alumina battery and a conventional alumina battery
  • Figure 3 is a comparison diagram of the cycle capacity of a high pore volume alumina battery and a conventional alumina battery; the ordinate is the battery capacity retention rate, and the abscissa is the number of cycles;
  • Figure 4 is a comparison diagram of the wetting time of a low pore size alumina battery and a conventional alumina battery.
  • high pore volume alumina and low pore diameter alumina on cycle capacity and diaphragm wetting time is as follows: high pore volume can increase the porosity of alumina and store more electrolyte, while low pore volume can increase the capillary effect and enhance alumina absorption The speed of the electrolyte improves the wetting efficiency.
  • the alumina ceramic slurry of Example 1 includes the following raw materials: solid alumina, dispersant, wetting agent, binder, thickener, defoamer, and pure water.
  • the solid content of the alumina ceramic slurry is 10-60%, preferably 30-40%.
  • the mass ratio of the solid alumina, dispersant, wetting agent, binder, thickener, defoamer, and pure water is 1:0.001-0.01:0.003-0.009:0.01-0.08. : 0.005-0.015: 0-0.06: 1-2.5.
  • the mass ratio of the solid alumina, dispersant, wetting agent, binder, thickener, defoamer, and pure water is 1:0.001-0.01:0.003-0.009:0.01-0.08 in order: 0.005-0.015: 0-0.06: 1-2.5.
  • the solid alumina includes: high pore volume alumina and/or low pore diameter alumina; the pore volume distribution of the high pore volume alumina is 0.4-3.0 ml/g; the pore volume distribution of the low pore volume alumina is 0.1 -5nm; and the mass ratio of alumina with high pore volume and alumina with low pore volume is 1:0.1-10.
  • the pore volume distribution of the high pore volume alumina is 0.5-1.5 ml/g, more preferably 1 ml/g; and the pore volume distribution of the low pore volume alumina is 0.1-1 nm, more preferably 0.6 nm.
  • the pore volume and pore size distribution range of this alumina can not only store more electrolyte and improve the wetting efficiency, but also facilitate industrial production.
  • the mass ratio of high pore volume alumina and low pore diameter alumina is 1:0.5-8, preferably 1:1-5, so that the liquid storage capacity and wetting capacity of the alumina ceramic slurry can be balanced.
  • the alumina ceramic slurry of Example 1 mixes solid alumina with low pore size alumina and/or high pore volume alumina, and mixes and disperses with other components to form alumina ceramic slurry, which can be enlarged by using low pore size alumina.
  • Capillary effect increases the rate at which alumina absorbs electrolyte and improves wetting efficiency; using high pore volume alumina can increase the porosity of alumina and store more electrolyte to increase the cycle life of lithium batteries, thereby ensuring alumina ceramic slurry
  • the liquid storage capacity and wetting capacity of the material are taken into account, which greatly reduces the wetting time of the separator and improves the production efficiency of the battery.
  • the dispersant includes, but is not limited to, one or more of silicates, alkali metal phosphates, organic dispersants, sodium salt dispersants, and ammonium salt dispersants; wherein the dispersants are silicates.
  • Types include but are not limited to water glass;
  • the alkali metal phosphates include but are not limited to at least one of sodium tripolyphosphate, sodium hexametaphosphate, and sodium pyrophosphate;
  • the organic dispersant includes, but is not limited to, triethyl One or more of hexyl phosphoric acid, sodium lauryl sulfate, methylpentanol, cellulose derivatives, polyacrylamide, Guer gum, and fatty acid polyethylene glycol esters.
  • the function of the dispersant is mainly to uniformly disperse the solid alumina in the solvent. There are some residual functional groups (such as -OH) during the production of solid alumina, which will cause side reactions with part of the dispersant and cause agglomeration.
  • the wetting agent includes but is not limited to at least one of anionic surfactants, nonionic surfactants, and neutral surfactants.
  • the main function of the wetting agent is to reduce the surface tension of the alumina ceramic slurry without affecting the circulation capacity and wetting time, so that the alumina ceramic slurry can be coated on the diaphragm.
  • the adhesive includes but is not limited to an aqueous adhesive, such as but not limited to an acrylic adhesive.
  • the main function of the binder is to bond the alumina ceramic slurry to the diaphragm without affecting the cycle capacity and wetting time, to prevent the alumina ceramic slurry from falling off, and to improve the stability of the diaphragm.
  • the thickener includes, but is not limited to, sodium carboxymethacrylate.
  • the role of the thickener is mainly to adjust the viscosity of the alumina ceramic slurry, to ensure the smoothness of the slurry and to avoid the slurry from settling too fast.
  • the thixotropic index of the thickener should be high, and the viscosity will become thin under high shearing force. . At the same time, it must be ensured that the circulation capacity and wetting time are not affected.
  • the defoamer includes but is not limited to isopropanol.
  • the main function of the defoamer is to reduce the number of bubbles in the alumina ceramic slurry to avoid reaction with other components in the slurry.
  • this Example 2 also provides a preparation method of alumina ceramic slurry, that is, solid alumina, dispersant, wetting agent, binder, thickener, defoamer, Pure water is stirred and mixed for dispersion to form the alumina ceramic slurry.
  • alumina ceramic slurry that is, solid alumina, dispersant, wetting agent, binder, thickener, defoamer, Pure water is stirred and mixed for dispersion to form the alumina ceramic slurry.
  • the dispersion method includes high-speed dispersion using a double planetary or sand mill.
  • this Embodiment 3 also provides a lithium battery separator, which includes a PE film and an alumina ceramic slurry coated on the PE film.
  • the PE film is 12 ⁇ m
  • the coating thickness of the alumina ceramic slurry is 2 ⁇ m
  • two layers are coated, that is, a doped alumina battery or a high-porosity alumina battery or a low-volume alumina battery with a specification of 12 ⁇ m+2 ⁇ m+2 ⁇ m.
  • Alumina cell with pore size is 12 ⁇ m
  • the coating thickness of the alumina ceramic slurry is 2 ⁇ m
  • two layers are coated, that is, a doped alumina battery or a high-porosity alumina battery or a low-volume alumina battery with a specification of 12 ⁇ m+2 ⁇ m+2 ⁇ m.
  • a high pore volume alumina with a pore volume of 1.0 ml/g and a low pore diameter alumina with a pore diameter of 1 nm are selected through specific detection equipment, and 50 kg of doped alumina ceramic slurry is configured.
  • a high pore volume alumina with a pore volume of 0.4 ml/g and a low pore diameter alumina with a pore volume of 0.1 nm are selected to configure the doped alumina ceramic slurry.
  • a high pore volume alumina with a pore volume of 3 ml/g and a low pore diameter alumina with a pore volume of 5 nm are selected to configure the doped alumina ceramic slurry.
  • a high pore volume alumina with a pore volume of 1.5 ml/g and a low pore diameter alumina with a pore volume of 3 nm are selected to configure the doped alumina ceramic slurry.
  • a conventional alumina with a pore volume of 0.3ml/g and a pore diameter of 8nm is selected, and 50kg of conventional alumina ceramic slurry is configured.
  • a PE film of 12 ⁇ m is used, and a conventional alumina ceramic slurry of 2 ⁇ m is coated to form a conventional alumina battery with a specification of 12 ⁇ m + 2 ⁇ m + 2 ⁇ m.
  • a PE film of 12 ⁇ m is used, and a conventional alumina ceramic slurry of 2 ⁇ m is coated to form a conventional alumina battery with a specification of 12 ⁇ m + 2 ⁇ m + 2 ⁇ m.
  • Example 10 the batteries prepared by coating the slurry in Examples 4-6 and Comparative Examples 1-3 were tested to detect the cycle capacity and wetting time of the separator. The results are shown in Table 1.
  • Figure 1 is a comparison diagram of the cycle capacity of a doped alumina battery and a conventional alumina battery.
  • Figure 2 is a comparison chart of the wetting time of a doped alumina battery and a conventional alumina battery.
  • Figure 3 is a comparison diagram of the cycle capacity of a high pore volume alumina battery and a conventional alumina battery.
  • Figure 4 is a comparison diagram of the wetting time of a low pore size alumina battery and a conventional alumina battery.
  • the wetting time of the low-pore alumina battery in this case is 10S, which is much lower than the 30S of the conventional alumina battery.
  • the main reason is that the use of low-pore alumina can increase the capillary effect, increase the rate at which the alumina absorbs the electrolyte, and improve the wetting efficiency.
  • the lithium battery separator is mixed with low-pore alumina and/or high-porosity alumina through solid alumina, and mixed and dispersed with other components to form Alumina ceramic slurry
  • high pore volume alumina can increase the porosity of alumina and store more electrolyte to increase the cycle life of lithium batteries
  • low pore alumina can increase the capillary effect and increase the rate at which alumina absorbs electrolyte
  • Improve the wetting efficiency greatly reduce the wetting time of the separator, thereby improving the production efficiency of the battery.
  • the battery's liquid storage capacity and wetting ability can also be taken into account. , To achieve the effect of high wetting and long circulation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

L'invention concerne une suspension de céramique d'alumine à cycle long et mouillage élevé et un procédé pour sa préparation. La suspension de céramique d'alumine comprend les matières premières suivantes : de l'alumine solide, un dispersant, un agent mouillant, un liant, un épaississant, un agent antimousse et de l'eau pure. L'alumine solide comprend : de l'alumine à volume poreux élevé et/ou de l'alumine à faible diamètre de pore ; la distribution de volume poreux de l'alumine à volume poreux élevé variant de 0,4 à 3,0 ml/g, et la distribution des diamètres de pore de l'alumine à faible diamètre de pore variant de 0,1 à 5 nm. Une membrane de batterie au lithium comprend un film de PE et la suspension de céramique d'alumine appliquée sur le film de PE. L'utilisation de l'alumine solide réduit considérablement le temps de mouillage de la membrane et améliore l'efficacité de production des batteries.
PCT/CN2020/123947 2019-12-20 2020-10-27 Suspension de céramique d'alumine à cycle long et mouillage élevé et procédé pour sa préparation, et membrane de batterie au lithium WO2021120858A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911323395.8 2019-12-20
CN201911323395.8A CN111019409A (zh) 2019-12-20 2019-12-20 高润湿长循环的氧化铝陶瓷浆料及制备方法、锂电池隔膜

Publications (1)

Publication Number Publication Date
WO2021120858A1 true WO2021120858A1 (fr) 2021-06-24

Family

ID=70212517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123947 WO2021120858A1 (fr) 2019-12-20 2020-10-27 Suspension de céramique d'alumine à cycle long et mouillage élevé et procédé pour sa préparation, et membrane de batterie au lithium

Country Status (2)

Country Link
CN (1) CN111019409A (fr)
WO (1) WO2021120858A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111019409A (zh) * 2019-12-20 2020-04-17 江苏厚生新能源科技有限公司 高润湿长循环的氧化铝陶瓷浆料及制备方法、锂电池隔膜

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104584267A (zh) * 2013-02-12 2015-04-29 三星Total株式会社 有机/无机复合涂覆多孔隔膜和利用所述有机/无机复合涂覆多孔隔膜的二次电池
CN105932210A (zh) * 2016-05-19 2016-09-07 湖南锂顺能源科技有限公司 锂离子电池一水合氧化铝涂覆隔膜及其制备方法
US20160351880A1 (en) * 2014-12-10 2016-12-01 Mitsubishi Plastics, Inc. Alumina slurry
CN106848152A (zh) * 2017-01-19 2017-06-13 宁德卓高新材料科技有限公司 氧化铝陶瓷涂覆隔膜的制备方法
CN107140649A (zh) * 2017-06-06 2017-09-08 福建远翔新材料股份有限公司 一种pe蓄电池隔膜用二氧化硅的生产方法
CN107240664A (zh) * 2017-06-14 2017-10-10 深圳市芯科众联科技有限公司 锂离子电池隔膜用涂覆浆料、其制备方法及锂离子电池隔膜
CN107381607A (zh) * 2017-06-28 2017-11-24 中航锂电(江苏)有限公司 一种锂离子电池隔膜用α‑氧化铝的制备方法
CN107867711A (zh) * 2017-11-06 2018-04-03 广州金凯新材料有限公司 一种介、微孔分级氧化铝的生产工艺和介孔氧化铝的生产工艺及应用
CN108336277A (zh) * 2017-12-29 2018-07-27 深圳中兴创新材料技术有限公司 一种具有陶瓷涂层的隔膜及其制备方法
CN108933219A (zh) * 2018-09-29 2018-12-04 杨晓丽 一种锂电池隔膜的制备方法
CN109320134A (zh) * 2018-09-26 2019-02-12 上海维凯光电新材料有限公司 具有高耐温性的锂电隔膜陶瓷浆料及其制备方法
CN109616605A (zh) * 2018-12-27 2019-04-12 江苏理士电池有限公司 一种锂离子电池隔膜及其制备方法
CN109888155A (zh) * 2018-12-29 2019-06-14 武汉中兴创新材料技术有限公司 一种陶瓷涂层隔膜及其制备方法
CN110416472A (zh) * 2019-06-28 2019-11-05 东莞市赛普克电子科技有限公司 一种介孔二氧化硅微球锂离子电池隔膜及锂离子电池
CN110444718A (zh) * 2019-08-15 2019-11-12 宁德卓高新材料科技有限公司 具有高粘结性聚合物涂膜的陶瓷复合隔膜的制备方法
CN111019409A (zh) * 2019-12-20 2020-04-17 江苏厚生新能源科技有限公司 高润湿长循环的氧化铝陶瓷浆料及制备方法、锂电池隔膜

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104584267A (zh) * 2013-02-12 2015-04-29 三星Total株式会社 有机/无机复合涂覆多孔隔膜和利用所述有机/无机复合涂覆多孔隔膜的二次电池
US20160351880A1 (en) * 2014-12-10 2016-12-01 Mitsubishi Plastics, Inc. Alumina slurry
CN105932210A (zh) * 2016-05-19 2016-09-07 湖南锂顺能源科技有限公司 锂离子电池一水合氧化铝涂覆隔膜及其制备方法
CN106848152A (zh) * 2017-01-19 2017-06-13 宁德卓高新材料科技有限公司 氧化铝陶瓷涂覆隔膜的制备方法
CN107140649A (zh) * 2017-06-06 2017-09-08 福建远翔新材料股份有限公司 一种pe蓄电池隔膜用二氧化硅的生产方法
CN107240664A (zh) * 2017-06-14 2017-10-10 深圳市芯科众联科技有限公司 锂离子电池隔膜用涂覆浆料、其制备方法及锂离子电池隔膜
CN107381607A (zh) * 2017-06-28 2017-11-24 中航锂电(江苏)有限公司 一种锂离子电池隔膜用α‑氧化铝的制备方法
CN107867711A (zh) * 2017-11-06 2018-04-03 广州金凯新材料有限公司 一种介、微孔分级氧化铝的生产工艺和介孔氧化铝的生产工艺及应用
CN108336277A (zh) * 2017-12-29 2018-07-27 深圳中兴创新材料技术有限公司 一种具有陶瓷涂层的隔膜及其制备方法
CN109320134A (zh) * 2018-09-26 2019-02-12 上海维凯光电新材料有限公司 具有高耐温性的锂电隔膜陶瓷浆料及其制备方法
CN108933219A (zh) * 2018-09-29 2018-12-04 杨晓丽 一种锂电池隔膜的制备方法
CN109616605A (zh) * 2018-12-27 2019-04-12 江苏理士电池有限公司 一种锂离子电池隔膜及其制备方法
CN109888155A (zh) * 2018-12-29 2019-06-14 武汉中兴创新材料技术有限公司 一种陶瓷涂层隔膜及其制备方法
CN110416472A (zh) * 2019-06-28 2019-11-05 东莞市赛普克电子科技有限公司 一种介孔二氧化硅微球锂离子电池隔膜及锂离子电池
CN110444718A (zh) * 2019-08-15 2019-11-12 宁德卓高新材料科技有限公司 具有高粘结性聚合物涂膜的陶瓷复合隔膜的制备方法
CN111019409A (zh) * 2019-12-20 2020-04-17 江苏厚生新能源科技有限公司 高润湿长循环的氧化铝陶瓷浆料及制备方法、锂电池隔膜

Also Published As

Publication number Publication date
CN111019409A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
CN105552277B (zh) 一种pvdf涂覆锂离子电池隔膜及其制备方法
CN104124431B (zh) 一种锂离子电池用石墨负极材料及其制备方法
CN106450171B (zh) 锂离子电池正极浆料及其制备方法、极片锂离子电池
CN102790218A (zh) 一种锂离子电池负极浆料制备工艺
WO2017032154A1 (fr) Procédé de préparation d'une suspension de graphite de cathode pour accumulateur au lithium
WO2017032144A1 (fr) Procédé de préparation de suspension de cathode de phosphate de lithium-fer
WO2017031943A1 (fr) Procédé de préparation de pâte d'électrode négative pour pile au lithium dopée à la poudre de silice de haute capacité
WO2016169289A1 (fr) Procédé permettant de préparer une suspension épaisse d'électrode négative de batterie au lithium-ion
WO2021120858A1 (fr) Suspension de céramique d'alumine à cycle long et mouillage élevé et procédé pour sa préparation, et membrane de batterie au lithium
CN111525077A (zh) 超轻型陶瓷混涂隔膜浆料及其制备方法
CN108470884A (zh) 一种水基粘结剂制备的锂离子电池电极
CN111341982B (zh) 涂覆隔膜及制备方法、掺杂勃姆石、陶瓷浆料、锂电池
CN102044709A (zh) 一种蓄电池胶体电解质及其制备方法
WO2017032165A1 (fr) Procédé de préparation de suspension épaisse d'électrode positive à base de manganate de lithium
CN111463401B (zh) 一种锂离子电池负极及其制备方法
CN112186140A (zh) 应用于硅碳负极的硅基活性复合导电浆料及负极合浆方法
CN109742348B (zh) 一种调节铅炭电池容量寿命的正极铅膏及其制备方法
WO2021120857A1 (fr) Suspension de revêtement présentant une adhérence élevée et une conductivité ionique élevée, son procédé de préparation, et séparateur de batterie au lithium
CN110190245A (zh) 含稳定锂盐的负极浆料及制备方法、负极极片和锂离子电池
CN109411806A (zh) 一种低温锂离子电池及其制备方法
CN109638286A (zh) 一种羧甲基纤维素基粘结剂及其在锂电池中的应用
CN111370623B (zh) 氧化铝陶瓷隔膜及制备方法、粉体、陶瓷浆料、锂电池
CN102593531A (zh) 一种电瓶用胶体电解质及其制作方法
CN109148846B (zh) 一种管式电池正极铅膏及其制备方法
CN110970590A (zh) 陶瓷涂覆浆料及制备方法、锂电池隔膜、锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20903319

Country of ref document: EP

Kind code of ref document: A1