WO2021120815A1 - 车辆的热管理***和车辆 - Google Patents

车辆的热管理***和车辆 Download PDF

Info

Publication number
WO2021120815A1
WO2021120815A1 PCT/CN2020/121584 CN2020121584W WO2021120815A1 WO 2021120815 A1 WO2021120815 A1 WO 2021120815A1 CN 2020121584 W CN2020121584 W CN 2020121584W WO 2021120815 A1 WO2021120815 A1 WO 2021120815A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
vehicle
cooling
liquid
constant temperature
Prior art date
Application number
PCT/CN2020/121584
Other languages
English (en)
French (fr)
Inventor
吕杨
梁统胜
王伟
张东斌
Original Assignee
广东小鹏汽车科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东小鹏汽车科技有限公司 filed Critical 广东小鹏汽车科技有限公司
Priority to EP20901192.3A priority Critical patent/EP3915814B1/en
Publication of WO2021120815A1 publication Critical patent/WO2021120815A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00507Details, e.g. mounting arrangements, desaeration devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to the technical field of thermal management, and more specifically, to a thermal management system of a vehicle and a vehicle.
  • the electric vehicle thermal management system includes three circuits, which are a warm air heating circuit, an electric drive cooling circuit, and a battery constant temperature circuit. These three circuits generally use liquid circuit systems and are independent of each other. Since each circuit requires an expansion kettle for filling coolant and exhausting air, existing vehicles need to be equipped with three expansion kettles. At the same time, the vehicle production line needs to set up three filling equipment to fill the three expansion kettles with coolant at the same time, which makes the production cost of the vehicle high, and the filling efficiency is low, and the waterway structure on the vehicle is complicated and the waterway layout is difficult. And limited, the efficiency of vehicle after-sales maintenance is low.
  • the embodiments of the present invention provide a thermal management system for a vehicle and a vehicle.
  • the thermal management system of the vehicle includes a cooling circuit, a constant temperature circuit, a heating circuit, and an expansion kettle.
  • the cooling circuit, the constant temperature circuit, and the heating circuit are all connected to the expansion kettle.
  • the constant temperature circuit and the heating circuit are all connected to the expansion kettle.
  • an expansion kettle is used to connect the cooling circuit, the constant temperature circuit, and the heating circuit. This can reduce the cost of the vehicle and increase the efficiency and production of filling the expansion kettle with coolant on the vehicle production line. Cycle time, and improve the efficiency of vehicle after-sales maintenance.
  • the thermal management system of the vehicle includes a first reversing valve connected to the expansion kettle, the cooling circuit, and the constant temperature circuit, and the vehicle is in the heating mode.
  • the first reversing valve is used to connect the cooling circuit and the thermostatic circuit in series.
  • the thermal management system of the vehicle includes a first liquid-gas separator connected to the expansion kettle, the first reversing valve and the cooling circuit, so The first liquid-gas separator is used to separate the liquid and gas in the cooling circuit and the thermostatic circuit and introduce the separated gas into the expansion kettle.
  • the vehicle includes a target cooling element connected to the cooling circuit and a target thermostat connected to the constant temperature circuit, when the cooling circuit and the constant temperature circuit are in the series state Next, the cooling circuit is configured to use the liquid to absorb the heat of the target cooling element, and the constant temperature circuit is configured to use the liquid that has absorbed the heat of the target cooling element to heat the target constant temperature element.
  • the target cooling element includes a vehicle motor drive system connected to the cooling circuit
  • the target thermal insulation element includes a vehicle power battery connected to the constant temperature circuit
  • the cooling circuit is connected with a heat dissipation device, a second reversing valve, and a first water pump, and the first water pump is used to drive the liquid to flow in the cooling circuit, and the heat dissipation device is connected to the cooling circuit.
  • the second reversing valve, the heat dissipation device is used to dissipate the heat of the liquid; when the cooling circuit and the thermostatic circuit are in the serial state, the second reversing valve is used to make the The heat dissipation device is not connected to the cooling circuit.
  • the thermal management system includes an air conditioning circuit, and the air conditioning circuit is used for heat exchange with the constant temperature circuit.
  • the thermostat circuit is connected with a heat exchange device and a second water pump, and the second water pump is used to drive the liquid to flow in the thermostat circuit, and the heat exchange device is used to communicate with the air conditioner.
  • the loop performs heat exchange.
  • the thermal management system includes a cooling water supply pipe and a cooling exhaust pipe, the cooling water supply pipe is connected to the expansion kettle and the first liquid-gas separator, and the cooling exhaust pipe is connected to the first liquid-gas separator.
  • the expansion kettle and the first liquid-gas separator, the cooling water supply pipe is used to provide the liquid to the cooling circuit, and the cooling exhaust pipe is used to guide the gas of the cooling circuit into the expansion kettle .
  • the constant temperature circuit includes a constant temperature water supply pipe, which connects the expansion kettle and the constant temperature circuit, and is used to provide the liquid for the constant temperature circuit, in the cooling circuit and When the constant temperature circuit is in a series connection state, the cooling exhaust pipe is used to introduce the gas of the cooling circuit and the constant temperature circuit into the expansion kettle.
  • the thermal management system of the vehicle includes a second liquid-gas separator, the second liquid-gas separator is connected to the heating circuit and the expansion kettle, and the second liquid-gas separator is used for The liquid and gas of the heating circuit are separated and the separated gas is introduced into the expansion kettle.
  • the heating circuit includes a heating water supply pipe and a heating exhaust pipe, and the heating water supply pipe is connected to the expansion kettle and the second liquid-gas separator, and is used to provide the heating circuit with all the components.
  • the heating exhaust pipe is connected to the expansion kettle and the second liquid-gas separator, and is used to guide the gas of the heating circuit into the expansion kettle.
  • An embodiment of the present invention provides a vehicle including a vehicle body and a vehicle thermal management system of any one of the above embodiments, and the vehicle thermal management system is installed in the vehicle body.
  • an expansion kettle is used to connect the cooling circuit, the constant temperature circuit, and the heating circuit. This can reduce the cost of the vehicle, and can improve the efficiency and production cycle of filling the expansion kettle with coolant on the vehicle production line, and improve The efficiency of vehicle after-sales maintenance.
  • FIG. 1 is a schematic diagram of flow path connections of a thermal management system for a vehicle according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of another flow path connection of the thermal management system of the vehicle according to the embodiment of the present invention.
  • FIG. 3 is a schematic diagram of another flow path connection of the thermal management system of the vehicle according to the embodiment of the present invention.
  • Fig. 4 is a schematic structural diagram of a vehicle according to an embodiment of the present invention.
  • Thermal management system 100 cooling circuit 10, target cooling element 12, heat dissipation device 14, first water pump 16, second reversing valve 18, fifth valve port 182, sixth valve port 184, seventh valve port 186, thermostatic circuit 20.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of the features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • connection should be interpreted in a broad sense, for example, it may be a fixed connection or It is a detachable connection or an integral connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two elements or the interaction relationship between two elements.
  • installation e.g., it may be a fixed connection or It is a detachable connection or an integral connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two elements or the interaction relationship between two elements.
  • the following disclosure provides many different embodiments or examples to realize the different structures of the embodiments of the present invention.
  • the components and settings of specific examples are described below. Of course, they are only examples, and the purpose is not to limit the present invention.
  • the embodiments of the present invention may repeat reference numbers and/or reference letters in different examples. This repetition is for the purpose of simplification and clarity, and does not indicate the relationship between the various embodiments and/or settings discussed. .
  • the embodiments of the present invention provide examples of various specific processes and materials, but those of ordinary skill in the art may be aware of the application of other processes and/or the use of other materials.
  • the thermal management system 100 of the vehicle 1000 according to the embodiment of the present invention can be applied to the vehicle 1000 according to the embodiment of the present invention (see FIG. 4 ).
  • the thermal management system 100 includes a cooling circuit 10, a constant temperature circuit 20, a heating circuit 30, and an expansion kettle 40.
  • the cooling circuit 10, the constant temperature circuit 20 and the heating circuit 30 are all connected to the expansion kettle 40.
  • the expansion kettle 40 is used to control the cooling circuit 10 and the constant temperature.
  • the circuit 20 and the heating circuit 30 perform liquid filling and exhausting.
  • an expansion kettle 40 is used to connect the cooling circuit 10, the constant temperature circuit 20, and the heating circuit 30. This can reduce the cost of the vehicle 1000 and increase the cost of the expansion kettle 40 on the production line of the vehicle 1000.
  • the efficiency of refilling coolant and the production cycle can improve the flexibility of the pipeline arrangement of the thermal management system 100 of the vehicle 1000, and improve the efficiency of the after-sales maintenance of the vehicle 1000.
  • the dotted arrows in FIGS. 1 to 3 indicate the flow directions of the liquid in the cooling circuit 10, the constant temperature circuit 20, and the heating circuit 30, respectively.
  • the solid arrows in FIGS. 1 to 3 respectively indicate the directions in which the expansion kettle fills the cooling circuit 10, the constant temperature circuit 20, and the heating circuit 30; and the gas in the cooling circuit 10, the constant temperature circuit 20 and the heating circuit 30 is introduced into the expansion kettle 40 Direction.
  • the vehicle 1000 may be a hybrid vehicle or an electric vehicle, that is, the thermal management system 100 of the vehicle 1000 in the embodiment of the present invention may be used for a hybrid vehicle or an electric vehicle.
  • the thermal management system 100 of the vehicle 1000 can be applied to a three-circuit series-parallel hybrid system, a three-circuit parallel system, a two-circuit series-parallel hybrid system, and a two-circuit parallel system.
  • the cooling circuit 10 can be used to cool the motor drive system of the vehicle 1000.
  • the thermostat circuit 20 can be used to maintain the temperature of the power battery of the vehicle 1000.
  • the heating circuit 30 can be used to provide heat to the heating system of the vehicle 1000.
  • the expansion kettle 40 of this embodiment is a three-in-one integrated expansion kettle 40, which is an important component of the thermal management system 100 of the vehicle 1000.
  • the exhaust and liquid filling of the cooling circuit 10, the constant temperature circuit 20 and the heating circuit 30 are all completed by the three-in-one integrated expansion kettle 40.
  • the liquid existing in the cooling circuit 10, the constant temperature circuit 20, and the heating circuit 30 circulates continuously and flows through the expansion kettle 40 in the middle. If the pressure of the cooling circuit 10, the constant temperature circuit 20, or the heating circuit 30 is too high or the amount of liquid is too high, the excess gas and liquid will flow out of the bypass channel of the expansion kettle 40 to prevent the thermal management system 100 of the vehicle 1000 from over-pressure High and cause pipe burst in the loop pipeline.
  • the liquid to be filled into the expansion kettle 40 includes water or other cooling liquid for cooling.
  • the thermal management system 100 uses one expansion kettle 40 to connect the cooling circuit 10, the constant temperature circuit 20, and the heating circuit 30.
  • three expansion kettles 40 are used to connect the cooling circuit 10 and the constant temperature circuit 20, respectively.
  • the manufacturing cost of the vehicle 1000 is reduced.
  • only one expansion kettle 40 is used to connect the cooling circuit 10, the constant temperature circuit 20, and the heating circuit 30 in this embodiment, only one filling device is needed when filling the expansion kettle 40 with liquid, which can improve The efficiency and production tempo of filling the expansion kettle 40 with liquid on the vehicle 1000 production line. Further, when the vehicle 1000 is undergoing after-sales maintenance, the liquid filling efficiency of an expansion kettle 40 is high, and the operation is convenient.
  • the thermal management system 100 of the vehicle 1000 includes a first reversing valve 50, the first reversing valve 50 is connected to the expansion kettle 40, the cooling circuit 10 and the thermostatic circuit 20, and the vehicle 1000 is in In the case of the filling and exhaust mode, the first reversing valve 50 is used to make the cooling circuit 10 and the thermostatic circuit 20 in a serial state. In this way, when the vehicle 1000 is in the filling and exhaust mode, the cooling circuit 10 and the thermostatic circuit 20 are connected in series through the function of the first reversing valve 50, which can greatly improve the thermal management system 100 plus The efficiency of liquid injection and exhaust.
  • the first reversing valve 50 needs to be passed to make the cooling circuit 10 and the thermostatic circuit 20 in a serial state.
  • the filling and exhaust mode of this embodiment can be understood as: after the user activates the one-key filling and exhaust mode of the vehicle 1000, the cooling circuit 10, the thermostat circuit 20, and the heating circuit 30 are all activated, and the first reversing valve 50 adjusts the position In order to make the cooling circuit 10 and the constant temperature circuit 20 in a serial state, on this basis, the expansion kettle 40 is filled with liquid.
  • the first reversing valve 50 may be a four-way valve.
  • the first reversing valve 50 includes a first valve port 52, a second valve port 54, a third valve port 56 and a fourth valve port 58.
  • the first valve port 52 and the fourth valve port 58 are connected to the cooling circuit 10.
  • the second valve port 54 and the third valve port 56 are connected to the thermostatic circuit 20.
  • the first reversing valve 50 can be used to connect the cooling circuit 10 and the thermostatic circuit 20 in parallel.
  • the cooling circuit 10 and the thermostatic circuit 20 are in a parallel state, the liquid passing through the first valve port 52 from the cooling circuit 10 enters the cooling circuit 10 through the fourth valve port 58.
  • the liquid passing through the third valve port 56 from the thermostatic circuit 20 enters the thermostatic circuit 20 through the second valve port 54.
  • the thermal management system 100 of the vehicle 1000 includes a first liquid-gas separator 60, and the first liquid-gas separator 60 is connected to the expansion kettle 40, the first reversing valve 50, and the cooling circuit 10.
  • the first liquid-gas separator 60 is used to separate the liquid and gas in the cooling circuit 10 and the thermostatic circuit 20 and introduce the separated gas into the expansion kettle 40. In this way, this is beneficial to quickly introduce the gas of the cooling circuit 10 and the constant temperature circuit 20 into the expansion kettle 40, and can improve the flexibility of the management arrangement of the thermal management system 100 of the vehicle 1000.
  • the first liquid-gas separator 60 is an element that can realize liquid-gas separation.
  • the first liquid-gas separator 60 communicates with the cooling circuit 10.
  • the cooling circuit 10 and the thermostatic circuit 20 are in series, the liquid and gas in the cooling circuit 10 and the thermostatic circuit 20 are all connected to the first liquid-gas separator 60, and the first liquid-gas separator 60 can connect the cooling circuit 10
  • the separated gas is separated from the liquid and gas in the constant temperature circuit 20, and the separated gas is introduced into the expansion kettle 40 to balance the pressure of the cooling circuit 10 and the constant temperature circuit 20, and the liquid continuously circulates in the cooling circuit 10 and the constant temperature circuit 20.
  • the vehicle 1000 includes a target cooling element 12 connected to the cooling circuit 10 and a target thermostat 22 connected to the constant temperature circuit 20.
  • the cooling circuit 10 is used for absorbing the heat of the target cooling element 12 with liquid
  • the thermostatic circuit 20 is used for heating the target thermostat 22 with the liquid that has absorbed the heat of the target cooling element 12. In this way, the waste heat in the cooling circuit 10 can be recovered and provided to the constant temperature circuit 20 for utilization.
  • the target cooling element 12 includes a motor drive system of the vehicle 1000 connected to the cooling circuit 10.
  • the motor drive system of the vehicle 1000 is used to provide power for the operation of the vehicle 1000
  • the target thermal insulation member includes the power battery of the vehicle 1000 connected to the constant temperature circuit 20.
  • the power battery of the vehicle 1000 is used to provide power to the vehicle 1000.
  • the liquid in the cooling circuit 10 can absorb the heat of the target cooling element 12, and the heat can be transferred to the constant temperature circuit 20 to supply the power battery of the vehicle 1000 in the constant temperature circuit 20 .
  • the cooling circuit 10 is connected with a heat dissipation device 14 and a first water pump 16, and the cooling circuit 10 is connected with a heat dissipation device 14, a second reversing valve 18, and a first water pump 16, and the first water pump 16 is used to drive the liquid to flow in the cooling circuit 10, the heat dissipating device 14 is connected to the second reversing valve 18, and the heat dissipating device 14 is used to dissipate the heat of the liquid; when the cooling circuit 10 and the thermostatic circuit 20 are in series, the second change The valve 18 is used to prevent the heat dissipation device 14 from being connected to the cooling circuit 10.
  • the first water pump 16 can accelerate the flow of liquid in the cooling circuit 10.
  • the heat dissipation device 14 may be a heat dissipation fan or other components with heat dissipation function.
  • the second reversing valve 18 includes a fifth valve port 182, a sixth valve port 184, and a seventh valve port 186.
  • the liquid in the cooling circuit 10 can flow from the fifth valve port 182 to the seventh valve port 186, and the heat sink 14 is not connected to the cooling circuit 10.
  • the liquid of the cooling circuit 10 can flow from the fifth valve port 182 to the sixth valve port 184 and to the heat sink 14.
  • the thermostat circuit 20 is connected with a heat exchange device 24 and a second water pump 26.
  • the second water pump 26 is used to drive the liquid to flow in the thermostat circuit 20, and the heat exchange device 24 can play a role in heat exchange. .
  • the first water pump 16 drives the liquid to flow in the cooling circuit 10.
  • the second water pump 26 drives the liquid to flow in the constant temperature circuit 20.
  • the flow direction of the liquid of the cooling circuit 10 and the liquid of the thermostatic circuit 20 is: target cooling element 12 ⁇ fifth valve port 182 ⁇ seventh valve port 186 ⁇ first liquid gas Separator 60 ⁇ first valve port 52 ⁇ second valve port 54 ⁇ second water pump 26 ⁇ heat exchanger 24 ⁇ target thermostat 22 ⁇ third valve port 56 ⁇ fourth valve port 58 ⁇ first water pump 16 ⁇ target cooling Piece 12.
  • the liquid flow direction of the cooling circuit 10 is: target cooling element 12 ⁇ fifth valve port 182 ⁇ sixth valve port 184 ⁇ first liquid-gas separator 60 ⁇ first Valve port 52 ⁇ fourth valve port 58 ⁇ first water pump 16 ⁇ target cooling member 12.
  • the flow direction of the liquid in the thermostatic circuit 20 is: target thermostat 22 ⁇ third valve port 56 ⁇ first valve port 52 ⁇ second water pump 26 ⁇ heat exchange device 24 ⁇ target thermostat 22.
  • the thermal management system 100 includes an air conditioning circuit 80, and the air conditioning circuit 80 is used to exchange heat with the constant temperature circuit 20. In this way, through the heat exchange between the air conditioning circuit 80 and the constant temperature circuit 20, the temperature of the power battery of the vehicle 1000 in the constant temperature circuit 20 can be maintained within a preset range.
  • the air conditioning circuit 80 includes a cooling mode and a heating mode. When the temperature of the power battery of the vehicle 1000 is high, the air conditioning circuit 80 starts the cooling mode.
  • the air conditioning circuit 80 includes a condensing device 82 and a compression device 84.
  • the condensing device 82 is connected to the compression device 84.
  • the condensing device 82 can be used to reduce the temperature of the air conditioning circuit 50.
  • the compression device 84 functions to compress and drive the refrigerant in the air conditioning circuit 80.
  • the heat exchange device 24 exchanges heat with the air conditioning circuit 80 to reduce the temperature of the power battery of the vehicle 1000. When the temperature of the power battery of the vehicle 1000 is low, the air conditioning circuit 80 starts the heating mode, and the heat exchange device 24 exchanges heat with the air conditioning circuit 80, so that the temperature of the power battery of the vehicle 1000 rises.
  • the thermal management system 100 includes a cooling water supply pipe 110 and a cooling exhaust pipe 120.
  • the cooling water supply pipe 110 is connected to the expansion kettle 40 and the first liquid-gas separator 60 to cool the exhaust gas.
  • the pipe 120 connects the expansion kettle 40 and the first liquid-gas separator 60, the cooling water supply pipe 110 is used to provide liquid to the cooling circuit 10, and the cooling exhaust pipe 120 is used to introduce the gas of the cooling circuit 10 into the expansion kettle 40.
  • the liquid can be quickly replenished from the expansion kettle 40 to the cooling circuit 10 through the cooling water supply pipe 110, and the gas of the cooling circuit 10 can be quickly introduced to the expansion kettle 40 through the cooling exhaust pipe 120.
  • the cooling water supply pipe 110 and the cooling exhaust pipe 120 are both connected to the first liquid-gas separator 60.
  • the number of cooling water supply pipes 110 can be set to one or more according to actual requirements, and the number of cooling exhaust pipes 120 can also be set to one or more according to actual requirements.
  • the constant temperature circuit 20 includes a constant temperature water supply pipe 130, which is connected to the expansion kettle 40 and the constant temperature circuit 20, and is used to provide liquid for the constant temperature circuit 20, in the cooling circuit 10 and When the constant temperature circuit 20 is connected in series, the cooling exhaust pipe 120 is used to introduce the gas of the cooling circuit 10 and the constant temperature circuit 20 into the expansion kettle 40.
  • the constant temperature water supply pipe 130 is connected to the constant temperature circuit 20, and the liquid of the expansion kettle 40 can be filled into the constant temperature circuit 20 through the constant temperature water supply pipe 130.
  • the number of constant temperature water supply pipes 130 can be set to one or more according to actual needs.
  • the cooling circuit 10 and the constant temperature circuit 20 are switched to a serial state, that is, the cooling circuit 10 and the constant temperature circuit 20 are in a connected state at this time.
  • the cooling exhaust pipe 120 can introduce the gas of the cooling circuit 10 and the constant temperature circuit 20 into the expansion kettle 40 at the same time.
  • the liquid in the expansion kettle 40 can be added to the cooling circuit 10 through the cooling water supply pipe 110 and the constant temperature circuit 20 through the constant temperature water supply pipe 130.
  • the constant temperature circuit 20 when the cooling circuit 10 and the constant temperature circuit 20 are in series, if the constant temperature circuit 20 is provided with an exhaust pipe, this will cause the constant temperature circuit 20 to have a small liquid circulation, and the small liquid circulation will This results in an increase in energy consumption of the vehicle 1000 and a loss of liquid flow. Therefore, in the present embodiment, an exhaust pipe is not separately provided on the thermostat circuit 20, and the cooling exhaust pipe 120 is shared with the cooling circuit 10 for exhausting.
  • the thermal management system 100 of the vehicle 1000 includes a second liquid-gas separator 90, the second liquid-gas separator 90 is connected to the heating circuit 30 and the expansion kettle 40, and the second liquid-gas separator 90 is used to separate the liquid and gas in the heating circuit 30 and introduce the separated gas into the expansion kettle 40.
  • this is beneficial for quickly introducing the gas of the heating circuit 30 into the expansion kettle 40, and can improve the flexibility of the management arrangement of the thermal management system 100 of the vehicle 1000.
  • the heating circuit 30 includes a target heating element 32, a heating device 34 and a third water pump 36.
  • the flow direction of the liquid in the heating circuit 30 is: target heating element 32 ⁇ heating device 34 ⁇ third water pump 36.
  • the target heating element 32 includes a warm air core, which can provide warm air to the vehicle 1000 and the like.
  • the heating device 34 may be a PTC (Positive Temperature Coefficient) heating device 34 element.
  • the PTC heating device 34 element can provide heat to the heating circuit 30.
  • the third water pump 36 is used to drive the liquid to flow in the heating circuit 30.
  • the second liquid-gas separator 90 can separate the liquid and gas in the heating circuit 30, and the separated gas is introduced into the expansion kettle 40 to balance the pressure of the heating circuit 30, and the liquid is in the heating circuit 30 and the constant temperature.
  • the loop 20 continuously circulates.
  • the heating circuit 30 includes a heating water supply pipe 140 and a heating exhaust pipe 150.
  • the heating water supply pipe 140 is connected to the expansion kettle 40 and the second liquid-gas separator 90, and is used for heating
  • the circuit 30 provides liquid
  • the heating exhaust pipe 150 connects the expansion kettle 40 and the second liquid-gas separator 90, and is used to guide the gas of the heating circuit 30 into the expansion kettle 40.
  • the liquid can be quickly replenished from the expansion kettle 40 to the heating circuit 30 by heating the water supply pipe 140, and the gas of the heating circuit 30 can be quickly introduced to the expansion kettle 40 by heating the exhaust pipe 150.
  • both the heating water supply pipe 140 and the heating exhaust pipe 150 are connected to the second liquid-gas separator 90.
  • the number of heating water supply pipes 140 can be set to one or more according to actual requirements, and the number of heating exhaust pipes 150 can also be set to one or more according to actual requirements.
  • the first directional valve 50 is used to switch the cooling circuit 10 and the thermostatic circuit 20 into a series state, that is, the cooling circuit 10 and the thermostatic circuit 20 form a large Series loop.
  • the cooling water supply pipe 110, the constant temperature water supply pipe 130, and the cooling exhaust pipe 120 are connected to the large series circuit. This arrangement can effectively ensure the normal filling and exhaust of the coolant.
  • the cooling circuit 10 and the thermostatic circuit 20 are connected to a first liquid-gas separator 60 in a large series circuit, the first liquid-gas separator 60 can effectively remove the vehicle during the filling and exhausting process.
  • the air in the thermal management system 100 of 1000 is quickly discharged into the three-in-one integrated expansion kettle 40 of this embodiment, so that the efficiency of filling and exhausting can be improved.
  • the cooling circuit 10 and the thermostatic circuit 20 form a large series circuit.
  • the large series circuit and the heating circuit 30 form a parallel circuit.
  • the heating circuit 30 has a heating water supply pipe 140 and a heating exhaust pipe 150, which can effectively ensure the normal filling and exhaust of the coolant.
  • a second liquid-gas separator 90 is connected to the heating circuit 30. During the filling and exhausting process, the second liquid-gas separator 90 can effectively exhaust the air in the thermal management system 100 of the vehicle 1000 quickly to three. In the integrated expansion kettle 40, the efficiency of filling and exhausting can be improved.
  • the cooling circuit 10, the constant temperature circuit 20, and the heating circuit 30 of this embodiment are all filled and exhausted through the three-in-one integrated expansion kettle 40.
  • the cooling circuit 10, the constant temperature circuit 20 and the heating circuit 30 constitute a system (water capacity 20 (About liter) can be filled and exhausted within 3-5 minutes.
  • the first reversing valve 50 is used to switch the cooling circuit 10 and the thermostatic circuit 20 to a parallel state.
  • the cooling circuit 10, the constant temperature circuit 20, and the heating circuit 30 are parallel parallel circuits.
  • a vehicle 1000 includes a vehicle body 200 and a thermal management system 100 of the vehicle 1000 of any of the above embodiments, and the thermal management system 100 of the vehicle 1000 is installed on the vehicle body 200.
  • the aforementioned vehicle 1000 may be a hybrid vehicle 1000 or an electric vehicle 1000, which is not specifically limited.
  • an expansion kettle 40 is used to connect the cooling circuit 10, the constant temperature circuit 20 and the heating circuit 30, which can reduce the cost of the vehicle 1000 and increase the filling of the expansion kettle 40 on the production line of the vehicle 1000.
  • the efficiency of the coolant and the production cycle can improve the flexibility of the pipeline arrangement of the thermal management system 100 of the vehicle 1000, and improve the efficiency of the after-sales maintenance of the vehicle 1000.
  • a "computer-readable medium” can be any device that can contain, store, communicate, propagate, or transmit a program for use by an instruction execution system, device, or device or in combination with these instruction execution systems, devices, or devices.
  • computer readable media include the following: electrical connections with one or more wiring (control method), portable computer disk cases (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable and editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because it can be used, for example, by optically scanning the paper or other medium, followed by editing, interpretation, or other suitable media if necessary.
  • the program is processed in a manner to obtain the program electronically, and then stored in the computer memory.
  • each part of the embodiments of the present invention can be implemented by hardware, software, firmware, or a combination thereof.
  • multiple steps or methods can be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if it is implemented by hardware, as in another embodiment, it can be implemented by any one or a combination of the following technologies known in the art: Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate array (PGA), field programmable gate array (FPGA), etc.
  • a person of ordinary skill in the art can understand that all or part of the steps carried in the method of the foregoing embodiments can be implemented by a program instructing relevant hardware to complete.
  • the program can be stored in a computer-readable storage medium, and the program can be stored in a computer-readable storage medium. When executed, it includes one of the steps of the method embodiment or a combination thereof.
  • the functional units in the various embodiments of the present invention may be integrated into one processing module, or each unit may exist alone physically, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. If the integrated module is implemented in the form of a software function module and sold or used as an independent product, it can also be stored in a computer readable storage medium.
  • the aforementioned storage medium may be a read-only memory, a magnetic disk or an optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种车辆的热管理***和车辆。热管理***包括冷却回路(10)、恒温回路(20)、加热回路(30)和一个膨胀水壶(40),冷却回路(10)、恒温回路(20)及加热回路(30)均连接膨胀水壶(40),膨胀水壶(40)用于对冷却回路(10)、恒温回路(20)和加热回路(30)进行液体加注和排气。该车辆的热管理***中,使用一个膨胀水壶(40)连接冷却回路(10)、恒温回路(20)及加热回路(30),这样可以降低车车辆的成本,及提高车辆生产线上对膨胀水壶加注冷却液的效率及生产节拍,及提高车辆售后维修保养的效率。

Description

车辆的热管理***和车辆 技术领域
本发明涉及热管理技术领域,更具体而言,涉及一种车辆的热管理***和车辆。
背景技术
目前,电动汽车热管理***包括三个回路,分别为暖风加热回路、电驱冷却回路及电池恒温回路。这三个回路一般都采用液态回路***且相互独立。由于每个回路都需要一个膨胀水壶进行加注冷却液和排气,因此,现有车辆需要设置三个膨胀水壶。同时,车辆生产线上需要设置三台加注设备同时对三个膨胀水壶进行加注冷却液,这样使得车辆的生产成本较高,并且加注效率较低,车辆上的水路结构复杂且水路布置困难且受限,车辆售后维修保养效率低。
发明内容
本发明实施方式提供一种车辆的热管理***及车辆。
本发明实施方式的车辆的热管理***包括冷却回路、恒温回路、加热回路和一个膨胀水壶,所述冷却回路、所述恒温回路及所述加热回路均连接所述膨胀水壶,所述膨胀水壶用于对所述冷却回路、所述恒温回路和所述加热回路进行液体加注和排气。
上述实施方式的车辆的热管理***中,使用一个膨胀水壶连接冷却回路、恒温回路及加热回路,这样可以降低车车辆的成本,及可以提高车辆生产线上对膨胀水壶加注冷却液的效率及生产节拍,及提高车辆售后维修保养的效率。
在某些实施方式中,所述车辆的热管理***包括第一换向阀,所述第一换向阀连接所述膨胀水壶、所述冷却回路和所述恒温回路,在所述车辆处于加注排气模式的情况下,所述第一换向阀用于使所述冷却回路和所述恒温回路处于串联状态。
在某些实施方式中,所述车辆的热管理***包括第一液气分离器,所述第一液气分离器连接所述膨胀水壶、所述第一换向阀和所述冷却回路,所述第一液气分离器用于分离所述冷却回路和所述恒温回路的液体和气体并将分离出的所述气体导入所述膨胀水壶。
在某些实施方式中,所述车辆包括连接在所述冷却回路的目标冷却件和连接在所述恒温回路的目标恒温件,在所述冷却回路和所述恒温回路处于所述串联状态的情况下, 所述冷却回路用于利用所述液体吸收所述目标冷却件热量,所述恒温回路用于利用吸收了所述目标冷却件热量的所述液体加热所述目标恒温件。
在某些实施方式中,所述目标冷却件包括连接在所述冷却回路的车辆电机驱动***,所述目标保温件包括连接在所述恒温回路的车辆动力电池。
在某些实施方式中,所述冷却回路连接有散热装置、第二换向阀和第一水泵,所述第一水泵用于驱动所述液体在所述冷却回路流动,所述散热装置连接所述第二换向阀,所述散热装置用于散发所述液体的热量;在所述冷却回路和所述恒温回路处于所述串联状态的情况下,所述第二换向阀用于使所述散热装置不接入所述冷却回路。
在某些实施方式中,所述热管理***包括空调回路,所述空调回路用于与所述恒温回路进行热交换。
在某些实施方式中,所述恒温回路连接有换热装置和第二水泵,所述第二水泵用于驱动所述液体在所述恒温回路流动,所述换热装置用于与所述空调回路进行热交换。
在某些实施方式中,所述热管理***包括冷却补水管和冷却排气管,所述冷却补水管连接所述膨胀水壶和所述第一液气分离器,所述冷却排气管连接所述膨胀水壶和所述第一液气分离器,所述冷却补水管用于给所述冷却回路提供所述液体,所述冷却排气管用于将所述冷却回路的所述气体导入所述膨胀水壶。
在某些实施方式中,所述恒温回路包括恒温补水管,所述恒温补水管连接所述膨胀水壶和所述恒温回路,并用于为所述恒温回路提供所述液体,在所述冷却回路和所述恒温回路处于串联状态的情况下,所述冷却排气管用于将所述冷却回路和所述恒温回路的所述气体导入所述膨胀水壶。在某些实施方式中,所述车辆的热管理***包括第二液气分离器,所述第二液气分离器连接所述加热回路和所述膨胀水壶,所述第二液气分离器用于分离所述加热回路的液体和气体并将分离出的所述气体导入所述膨胀水壶。
在某些实施方式中,所述加热回路包括加热补水管和加热排气管,所述加热补水管连接所述膨胀水壶和所述第二液气分离器,并用于给所述加热回路提供所述液体,所述加热排气管连接所述膨胀水壶和所述第二液气分离器,并用于将所述加热回路的所述气体导入所述膨胀水壶。
本发明实施方式提供一种车辆,其包括车体和上述任一实施方式的车辆的热管理***,所述车辆的热管理***安装在所述车体。
上述实施方式的车辆中,使用一个膨胀水壶连接冷却回路、恒温回路及加热回路,这样可以降低车车辆的成本,及可以提高车辆生产线上对膨胀水壶加注冷却液的效率及生产节拍,及提高车辆售后维修保养的效率。
本发明的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的 描述中变得明显,或通过本发明的实施方式的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明实施方式的车辆的热管理***的流路连接示意图。
图2是本发明实施方式的车辆的热管理***的另一流路连接示意图。
图3是本发明实施方式的车辆的热管理***的又一流路连接示意图。
图4是本发明实施方式的车辆的结构示意图。
主要元件符号说明:
热管理***100、冷却回路10、目标冷却件12、散热装置14、第一水泵16、第二换向阀18、第五阀口182、第六阀口184、第七阀口186、恒温回路20、目标恒温件22、换热装置24、第二水泵26、加热回路30、目标加热件32、加热装置34、第三水泵36、膨胀水壶40、第一换向阀50、第一阀口52、第二阀口54、第三阀口56、第四阀口58、第一液气分离器60、空调回路80、第二液气分离器90、冷却补水管110、冷却排气管120、恒温补水管130、加热补水管140、加热排气管150、车辆1000、车体200。
具体实施方式
下面详细描述本发明的实施方式,实施方式的示例在附图中示出,其中,相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的实施方式的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的实施方式的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的实施方式的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明的实施方式中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的实施方式的不同 结构。为了简化本发明的实施方式的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明的实施方式可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明的实施方式提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1,本发明实施方式的车辆1000的热管理***100可应用于本发明实施方式的车辆1000(见图4)。热管理***100包括冷却回路10、恒温回路20、加热回路30和一个膨胀水壶40,冷却回路10、恒温回路20及加热回路30均连接膨胀水壶40,膨胀水壶40用于对冷却回路10、恒温回路20和加热回路30进行液体加注和排气。
上述实施方式的车辆1000的热管理***100中,使用一个膨胀水壶40连接冷却回路10、恒温回路20及加热回路30,这样可以降低车辆1000的成本,及可以提高车辆1000生产线上对膨胀水壶40加注冷却液的效率及生产节拍,及可提高车辆1000的热管理***100的管路布置的灵活性,以及提高车辆1000售后维修保养的效率。
本实施方式中,图1至图3的虚线箭头分别表示冷却回路10、恒温回路20和加热回路30中的液体的流动方向。图1至图3的实线箭头分别表示膨胀水壶向冷却回路10、恒温回路20和加热回路30加注液体的方向;以及冷却回路10、恒温回路20和加热回路30中的气体导入膨胀水壶40的方向。
本实施方式中,车辆1000可以为混合动力车辆或电动车辆,也就是说,本发明实施方式的车辆1000的热管理***100可以用于混合动力车辆或电动车辆。车辆1000的热管理***100可以应用于三回路串并联混合***,三回路并联***,两回路串并联混合***及两回路并联***。
本实施方式中,冷却回路10可用于冷却车辆1000电机驱动***。恒温回路20可用于维持车辆1000的动力电池的温度。加热回路30可用于给车辆1000的暖风***提供热量。
本实施方式的膨胀水壶40为三合一集成式的膨胀水壶40,是车辆1000的热管理***100的一个重要组成部件。冷却回路10、恒温回路20及加热回路30的排气及加注液体均通过三合一集成式的膨胀水壶40完成。当车辆1000的发动机运转时,存在于冷却回路10、恒温回路20及加热回路30的液体不停循环,中途会流经膨胀水壶40。如果冷却回路10或恒温回路20或加热回路30的压力过高或液体的量过多,多余的气体及液体将从膨胀水壶40的旁通水道流出,避免车辆1000的热管理***100出现压力过高而造成回路管道出现爆管的情况。
本实施方式中,向膨胀水壶40加注的液体包括水或者其它用于冷却的冷却液。
本实施方式中,热管理***100使用一个膨胀水壶40连接冷却回路10、恒温回路20及加热回路30,这样相比于现有技术中使用三个膨胀水壶40分别连接冷却回路10、恒温回路20及加热回路30而言,降低车辆1000的制作成本。另外,由于本实施的只使用一个膨胀水壶40连接冷却回路10及恒温回路20及加热回路30,这样在对该一个膨胀水壶40进行液体加注时,只需要一台加注设备,这样可以提高车辆1000生产线上对膨胀水壶40加注液体的效率及生产节拍。进一步地,在车辆1000进行售后维修保养时,对一个膨胀水壶40进行液体的加注效率高,方便操作。
请参阅图2,在某些实施方式中,车辆1000的热管理***100包括第一换向阀50,第一换向阀50连接膨胀水壶40、冷却回路10和恒温回路20,在车辆1000处于加注排气模式的情况下,第一换向阀50用于使冷却回路10和恒温回路20处于串联状态。如此,在车辆1000处于加注排气模式的情况下,通过第一换向阀50的作用,以使冷却回路10和恒温回路20处于串联状态,这样可以极大的提高这个热管理***100加注液体和排气的效率。
具体地,在车辆1000处于加注排气模式、电机余热回收模式、冷却电池模式的情况下,则需要通过第一换向阀50以使冷却回路10和恒温回路20处于串联状态。
本实施方式的加注排气模式可以理解为:用户启动开启车辆1000的一键加注排气模式后,冷却回路10、恒温回路20、加热回路30均启动,第一换向阀50调整位置以使冷却回路10和恒温回路20处于串联的状态,在此基础上,再对膨胀水壶40进行液体的加注。
在一个实施例中,第一换向阀50可为四通阀。第一换向阀50包括第一阀口52、第二阀口54、第三阀口56和第四阀口58。第一阀口52和第四阀口58连接冷却回路10。第二阀口54和第三阀口56连接恒温回路20。在冷却回路10和恒温回路20处于串联状态的情况下,从冷却回路10经过第一阀口52的液体由第二阀口54进入恒温回路20,由恒温回路20经过第三阀口56的液体由第四阀口58进入冷却回路10。
在其他的实施方式中,第一换向阀50可用于使冷却回路10和恒温回路20处于并联状态。在冷却回路10和恒温回路20处于并联状态的情况下,从冷却回路10经过第一阀口52的液体由第四阀口58进入冷却回路10。由恒温回路20经过第三阀口56的液体由第二阀口54进入恒温回路20。
请参阅图2,在某些实施方式中,车辆1000的热管理***100包括第一液气分离器60,第一液气分离器60连接膨胀水壶40、第一换向阀50和冷却回路10,第一液气分离器60用于分离冷却回路10和恒温回路20的液体和气体并将分离出的气体导入膨胀 水壶40。如此,这样有利于快速将冷却回路10和恒温回路20的气体导入膨胀水壶40,并且可提高车辆1000的热管理***100的管理布置的灵活性。
具体地,第一液气分离器60为可以实现液气分离的一个元件。第一液气分离器60连通冷却回路10。在冷却回路10和恒温回路20处于串联状态的情况下,冷却回路10和恒温回路20中的液体及气体均与第一液气分离器60连通,第一液气分离器60可以将冷却回路10和恒温回路20中的液体及气体进行分离,分离后的气体则导入膨胀水壶40以平衡冷却回路10和恒温回路20的压力,液体则在冷却回路10和恒温回路20不断循环流动。
请参阅图2,在某些实施方式中,车辆1000包括连接在冷却回路10的目标冷却件12和连接在恒温回路20的目标恒温件22,在冷却回路10和恒温回路20处于串联状态的情况下,冷却回路10用于利用液体吸收目标冷却件12热量,恒温回路20用于利用吸收了目标冷却件12热量的液体加热目标恒温件22。如此,这样可将冷却回路10中的余热进行回收,以提供给恒温回路20利用。
具体地,在本实施方式中,目标冷却件12包括连接在冷却回路10的车辆1000电机驱动***。车辆1000电机驱动***用于给车辆1000的运行提供动力、目标保温件包括连接在恒温回路20的车辆1000动力电池。车辆1000动力电池用于给车辆1000提供电源。
在冷却回路10和恒温回路20处于串联状态的情况下,冷却回路10的液体可吸收目标冷却件12的热量,而该热量可传输至恒温回路20,以供给恒温回路20的车辆1000的动力电池。
请参阅图3,在某些实施方式中,冷却回路10连接有散热装置14和第一水泵16,冷却回路10连接有散热装置14、第二换向阀18和第一水泵16,第一水泵16用于驱动液体在冷却回路10流动,散热装置14连接第二换向阀18,散热装置14用于散发液体的热量;在冷却回路10和恒温回路20处于串联状态的情况下,第二换向阀18用于使散热装置14不接入冷却回路10。
具体地,第一水泵16可以加速冷却回路10中的液体的流动。散热装置14可为散热风扇或者其他具有散热功能的元件。
第二换向阀18包括第五阀口182、第六阀口184和第七阀口186。在一个实施方式中,冷却回路10的液体可从第五阀口182流至第七阀口186,散热装置14不接入冷却回路10。在另一个实施方式中,冷却回路10的液体可从第五阀口182流至第六阀口184,并流至散热装置14。
请参阅图3,本实施方式中,恒温回路20连接有换热装置24和第二水泵26,第二 水泵26用于驱动液体在恒温回路20流动,换热装置24可起到换热的作用。
请参阅图3,本实施方式中,第一水泵16驱动液体在冷却回路10流动。第二水泵26驱动液体在恒温回路20流动。在冷却回路10和恒温回路20处于串联状态的情况下,冷却回路10的液体和恒温回路20的液体流向为:目标冷却件12→第五阀口182→第七阀口186→第一液气分离器60→第一阀口52→第二阀口54→第二水泵26→换热装置24→目标恒温件22→第三阀口56→第四阀口58→第一水泵16→目标冷却件12。
在冷却回路10和恒温回路20处于并联状态的情况下,冷却回路10的液体流向为:目标冷却件12→第五阀口182→第六阀口184→第一液气分离器60→第一阀口52→第四阀口58→第一水泵16→目标冷却件12。恒温回路20的液体的流向为:目标恒温件22→第三阀口56→第一阀口52→第二水泵26→换热装置24→目标恒温件22。
请参阅图3,在某些实施方式中,热管理***100包括空调回路80,空调回路80用于与恒温回路20进行热交换。如此,通过空调回路80和恒温回路20进行的热交换,可以使得恒温回路20中的车辆1000动力电池的温度能够维持在预设范围。
具体地,空调回路80包括制冷模式和制热模式。在车辆1000动力电池的温度较高时,空调回路80启动制冷模式。空调回路80包括冷凝装置82和压缩装置84。冷凝装置82连接压缩装置84。冷凝装置82可用于降低空调回路50的温度。压缩装置84在空调回路80中起到压缩驱动制冷剂的作用。换热装置24与空调回路80进行热交换,以使得车辆1000动力电池的温度下降。在车辆1000动力电池的温度较低时,空调回路80启动制热模式,换热装置24与空调回路80进行热交换,以使得车辆1000动力电池的温度上升。
请参阅图1-3,在某些实施方式中,热管理***100包括冷却补水管110和冷却排气管120,冷却补水管110连接膨胀水壶40和第一液气分离器60,冷却排气管120连接膨胀水壶40和第一液气分离器60,冷却补水管110用于给冷却回路10提供液体,冷却排气管120用于将冷却回路10的气体导入膨胀水壶40。如此,这样可通过冷却补水管110将液体从膨胀水壶40快速补充至冷却回路10,及通过冷却排气管120将冷却回路10的气体快速导入至膨胀水壶40。
具体地,在本实施方式中,冷却补水管110和冷却排气管120均连接第一液气分离器60。冷却补水管110的数量可以根据实际需求设置为一个或多个,冷却排气管120的数量也可以根据实际需求设置为一个或多个。
请参阅图1-3,在某些实施方式中,恒温回路20包括恒温补水管130,恒温补水管130连接膨胀水壶40和恒温回路20,并用于为恒温回路20提供液体,在冷却回路10和恒温回路20处于串联状态的情况下,冷却排气管120用于将冷却回路10和恒温回路 20的气体导入膨胀水壶40。
具体地,恒温补水管130连接恒温回路20,膨胀水壶40的液体可通过恒温补水管130加注至恒温回路20。恒温补水管130的数量可以根据实际需求设置为一个或多个。本实施方式中,在启动加注排气模式的情况下,冷却回路10和恒温回路20切换为串联状态,也就是说,此时冷却回路10和恒温回路20是处于连通的状态。冷却排气管120可将冷却回路10和恒温回路20的气体同时导入膨胀水壶40。膨胀水壶40中的液体可通过冷却补水管110加入冷却回路10和通过恒温补水管130加入恒温回路20。另外,在本实施方式,在冷却回路10和恒温回路20处于串联状态的情况下,若恒温回路20再设置排气管,这样会导致恒温回路20会出现液体小循环,而该液体小循环会导致车辆1000能耗上升及液体流量损失,因此,在本实施方式中,不在恒温回路20上另外设置排气管,而是与冷却回路10共用冷却排气管120进行排气。
请参阅图3,在某些实施方式中,车辆1000的热管理***100包括第二液气分离器90,第二液气分离器90连接加热回路30和膨胀水壶40,第二液气分离器90用于分离加热回路30的液体和气体并将分离出的气体导入膨胀水壶40。如此,这样有利于快速将加热回路30的气体导入膨胀水壶40,并且可提高车辆1000的热管理***100的管理布置的灵活性。
具体地,加热回路30包括目标加热件32、加热装置34和第三水泵36。加热回路30的液体的流向为:目标加热件32→加热装置34→第三水泵36。目标加热件32包括暖风芯体,暖风芯体可以给车辆1000提供暖风等。在本实施方式,加热装置34可为PTC(Positive Temperature Coefficient,正温度系数)加热装置34元件。PTC加热装置34元件可以给加热回路30提供热量。第三水泵36用于驱动液体在加热回路30流动。
本实施方式中,第二液气分离器90可以将加热回路30中的液体及气体进行分离,分离后的气体则导入膨胀水壶40以平衡加热回路30的压力,液体则在加热回路30和恒温回路20不断循环流动。
请参阅图1-3,在某些实施方式中,加热回路30包括加热补水管140和加热排气管150,加热补水管140连接膨胀水壶40和第二液气分离器90,并用于给加热回路30提供液体,加热排气管150连接膨胀水壶40和第二液气分离器90,并用于将加热回路30的气体导入膨胀水壶40。如此,这样可通过加热补水管140将液体从膨胀水壶40快速补充至加热回路30,及通过加热排气管150将加热回路30的气体快速导入至膨胀水壶40。
具体地,在本实施方式中,加热补水管140和加热排气管150均连接第二液气分离器90。加热补水管140的数量可以根据实际需求设置为一个或多个,加热排气管150 的数量也可以根据实际需求设置为一个或多个。
综上,在启动加注排气模式的情况下,第一换向阀50用于使冷却回路10与恒温回路20切换为串联状态,也就是说,冷却回路10和恒温回路20形成一个大的串联回路。该大的串联回路中连接冷却补水管110、恒温补水管130和冷却排气管120,这样的设置可以有效保证冷却液的正常加注与排气。另外,由于冷却回路10与恒温回路20组成的大的串联回路中连接一个第一液气分离器60,因此,在加注和排气过程中,第一液气分离器60可以有效的将车辆1000的热管理***100中的空气快速排到本实施方式的三合一集成式的膨胀水壶40中,从而可以提高加注和排气的效率。再有,冷却回路10和恒温回路20组成一个大的串联回路。该大的串联回路与,加热回路30组成并联回路。加热回路30有加热补水管140和加热排气管150,这样可以有效保证冷却液的正常加注与排气。同时,加热回路30中连接一个第二液气分离器90,在加注及排气过程中,第二液气分离器90可以有效的将车辆1000的热管理***100中的空气快速排到三合一集成式的膨胀水壶40中,从而可以提高加注和排气的效率。本实施方式的冷却回路10、恒温回路20及加热回路30均通过三合一集成式的膨胀水壶40进行加注和排气。通过实验验证,启动加注排气模式,在第一水泵16、第二水泵26及第三水泵36均开启的情况下,冷却回路10、恒温回路20及加热回路30组成的***(水容量20升左右)可以在3-5分钟内加注和排气完毕。
在其他的实施方式中,第一换向阀50用于使冷却回路10与恒温回路20切换为并联状态。也就是说,此时,冷却回路10、恒温回路20及加热回路30为平行并联回路。
请参阅图4,本发明实施方式的车辆1000包括车体200和上述任一实施方式的车辆1000的热管理***100,车辆1000的热管理***100安装在车体200。具体地,上述车辆1000可以为混合动力车辆1000或电动车辆1000,具体不作限制。
在本发明实施方式的车辆1000中,使用一个膨胀水壶40连接冷却回路10、恒温回路20及加热回路30,这样可以降低车车辆1000的成本,及可以提高车辆1000生产线上对膨胀水壶40加注冷却液的效率及生产节拍,及可提高车辆1000的热管理***100的管路布置的灵活性,以及提高车辆1000售后维修保养的效率。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行***、装置或设备(如基于计算机的***、包括处理模块的***或其他可以从指令执行***、装置或设备取指令并执行指令的***)使用,或结合这些指令执行***、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行***、装置或设备或结合这些指令执行***、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(控制方法),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的实施方式的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行***执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明的各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
尽管上面已经示出和描述了本发明的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施实施进行变化、修改、替换和变型。

Claims (13)

  1. 一种车辆的热管理***,其特征在于,所述车辆的热管理***包括冷却回路、恒温回路、加热回路和一个膨胀水壶,所述冷却回路、所述恒温回路及所述加热回路均连接所述膨胀水壶,所述膨胀水壶用于对所述冷却回路、所述恒温回路和所述加热回路进行液体加注和排气。
  2. 根据权利要求1所述的车辆的热管理***,其特征在于,所述车辆的热管理***包括第一换向阀,所述第一换向阀连接所述膨胀水壶、所述冷却回路和所述恒温回路,在所述车辆处于加注排气模式的情况下,所述第一换向阀用于使所述冷却回路和所述恒温回路处于串联状态。
  3. 根据权利要求2所述的车辆的热管理***,其特征在于,所述车辆的热管理***包括第一液气分离器,所述第一液气分离器连接所述膨胀水壶、所述第一换向阀和所述冷却回路,所述第一液气分离器用于分离所述冷却回路和所述恒温回路的液体和气体并将分离出的所述气体导入所述膨胀水壶。
  4. 根据权利要求3所述的车辆的热管理***,其特征在于,所述车辆包括连接在所述冷却回路的目标冷却件和连接在所述恒温回路的目标恒温件,在所述冷却回路和所述恒温回路处于所述串联状态的情况下,所述冷却回路用于利用所述液体吸收所述目标冷却件热量,所述恒温回路用于利用吸收了所述目标冷却件热量的所述液体加热所述目标恒温件。
  5. 根据权利要求4所述的车辆的热管理***,其特征在于,所述目标冷却件包括连接在所述冷却回路的车辆电机驱动***,所述目标保温件包括连接在所述恒温回路的车辆动力电池。
  6. 根据权利要求4所述的车辆的热管理***,其特征在于,所述冷却回路连接有散热装置、第二换向阀和第一水泵,所述第一水泵用于驱动所述液体在所述冷却回路流动,所述散热装置连接所述第二换向阀,所述散热装置用于散发所述液体的热量;在所述冷却回路和所述恒温回路处于所述串联状态的情况下,所述第二换向阀用于使所述散热装置不接入所述冷却回路。
  7. 根据权利要求4所述的车辆的热管理***,其特征在于,所述热管理***包括空调回路,所述空调回路用于与所述恒温回路进行热交换。
  8. 根据权利要求7所述的车辆的热管理***,其特征在于,所述恒温回路连接有换热装置和第二水泵,所述第二水泵用于驱动所述液体在所述恒温回路流动,所述换热装置用于与所述空调回路进行热交换。
  9. 根据权利要求3所述的车辆的热管理***,其特征在于,所述热管理***包括冷却补水管和冷却排气管,所述冷却补水管连接所述膨胀水壶和所述第一液气分离器,所述冷却排气管连接所述膨胀水壶和所述第一液气分离器,所述冷却补水管用于给所述冷却回路提供所述液体,所述冷却排气管用于将所述冷却回路的所述气体导入所述膨胀水壶。
  10. 根据权利要求9所述的车辆的热管理***,其特征在于,所述恒温回路包括恒温补水管,所述恒温补水管连接所述膨胀水壶和所述恒温回路,并用于为所述恒温回路提供所述液体,在所述冷却回路和所述恒温回路处于串联状态的情况下,所述冷却排气管用于将所述冷却回路和所述恒温回路的所述气体导入所述膨胀水壶。
  11. 根据权利要求1所述的车辆的热管理***,其特征在于,所述车辆的热管理***包括第二液气分离器,所述第二液气分离器连接所述加热回路和所述膨胀水壶,所述第二液气分离器用于分离所述加热回路的液体和气体并将分离出的所述气体导入所述膨胀水壶。
  12. 根据权利要求11所述的车辆的热管理***,其特征在于,所述加热回路包括加热补水管和加热排气管,所述加热补水管连接所述膨胀水壶和所述第二液气分离器,并用于给所述加热回路提供所述液体,所述加热排气管连接所述膨胀水壶和所述第二液气分离器,并用于将所述加热回路的所述气体导入所述膨胀水壶。
  13. 一种车辆,其特征在于,包括车体和权利要求1-12任一项所述的车辆的热管理***,所述车辆的热管理***安装在所述车体。
PCT/CN2020/121584 2019-12-18 2020-10-16 车辆的热管理***和车辆 WO2021120815A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20901192.3A EP3915814B1 (en) 2019-12-18 2020-10-16 Vehicle thermal management system and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911309782.6 2019-12-18
CN201911309782.6A CN110949093B (zh) 2019-12-18 2019-12-18 车辆的热管理***和车辆

Publications (1)

Publication Number Publication Date
WO2021120815A1 true WO2021120815A1 (zh) 2021-06-24

Family

ID=69982417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121584 WO2021120815A1 (zh) 2019-12-18 2020-10-16 车辆的热管理***和车辆

Country Status (3)

Country Link
EP (1) EP3915814B1 (zh)
CN (1) CN110949093B (zh)
WO (1) WO2021120815A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110949093B (zh) * 2019-12-18 2021-09-03 广州小鹏汽车科技有限公司 车辆的热管理***和车辆
CN113733841B (zh) * 2020-05-29 2024-01-26 比亚迪股份有限公司 集成式水壶组件及热管理***
CN114393975B (zh) * 2022-01-27 2023-05-30 岚图汽车科技有限公司 车辆整车热管理回路的排气方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2557361A (en) * 2016-12-08 2018-06-20 Arrival Ltd Thermal Management test system
CN108482067A (zh) * 2018-05-21 2018-09-04 上海思致汽车工程技术有限公司 一种节能型多回路电动汽车热管理***
CN208232842U (zh) * 2018-02-12 2018-12-14 上海游侠汽车有限公司 一种电动汽车的热管理***及电动汽车
KR20190020353A (ko) * 2017-08-21 2019-03-04 현대자동차주식회사 차량용 히트 펌프 시스템
CN110281735A (zh) * 2019-06-24 2019-09-27 浙江吉利控股集团有限公司 一种新能源汽车热管理***及其控制方法
CN110315931A (zh) * 2018-03-30 2019-10-11 郑州宇通客车股份有限公司 一种混合动力汽车及其热管理***
CN110949093A (zh) * 2019-12-18 2020-04-03 广州小鹏汽车科技有限公司 车辆的热管理***和车辆

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6209573B1 (en) * 1998-06-02 2001-04-03 Chin Lye Chau Wet battery and vehicle-based water management system
US20100292855A1 (en) * 2009-05-14 2010-11-18 Michael Kintner-Meyer Battery Charging Control Methods, Electrical Vehicle Charging Methods, Battery Charging Control Apparatus, and Electrical Vehicles
JP6155907B2 (ja) * 2012-08-28 2017-07-05 株式会社デンソー 車両用熱管理システム
JP5983187B2 (ja) * 2012-08-28 2016-08-31 株式会社デンソー 車両用熱管理システム
CN107097664B (zh) * 2017-04-25 2024-03-19 上海思致汽车工程技术有限公司 一种智能化多回路电动汽车热管理***
CN107234941B (zh) * 2017-06-09 2024-03-19 上海加冷松芝汽车空调股份有限公司 一种客车集中热管理***
DE102018204333A1 (de) * 2018-03-21 2019-09-26 Bayerische Motoren Werke Aktiengesellschaft Temperierungseinrichtung und Verfahren zum Temperieren wenigstens einer Fahrzeugkomponente eines elektrisch betreibbaren Kraftfahrzeugs sowie Kraftfahrzeug
CN110481275A (zh) * 2019-09-02 2019-11-22 广州小鹏汽车科技有限公司 用于电动汽车的集成式膨胀水壶以及电动汽车

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2557361A (en) * 2016-12-08 2018-06-20 Arrival Ltd Thermal Management test system
KR20190020353A (ko) * 2017-08-21 2019-03-04 현대자동차주식회사 차량용 히트 펌프 시스템
CN208232842U (zh) * 2018-02-12 2018-12-14 上海游侠汽车有限公司 一种电动汽车的热管理***及电动汽车
CN110315931A (zh) * 2018-03-30 2019-10-11 郑州宇通客车股份有限公司 一种混合动力汽车及其热管理***
CN108482067A (zh) * 2018-05-21 2018-09-04 上海思致汽车工程技术有限公司 一种节能型多回路电动汽车热管理***
CN110281735A (zh) * 2019-06-24 2019-09-27 浙江吉利控股集团有限公司 一种新能源汽车热管理***及其控制方法
CN110949093A (zh) * 2019-12-18 2020-04-03 广州小鹏汽车科技有限公司 车辆的热管理***和车辆

Also Published As

Publication number Publication date
EP3915814A1 (en) 2021-12-01
EP3915814B1 (en) 2023-09-27
EP3915814A4 (en) 2022-05-04
CN110949093A (zh) 2020-04-03
CN110949093B (zh) 2021-09-03
EP3915814C0 (en) 2023-09-27

Similar Documents

Publication Publication Date Title
WO2021120815A1 (zh) 车辆的热管理***和车辆
KR102518177B1 (ko) 차량의 공조시스템
JP6916600B2 (ja) 車両用バッテリ冷却システム
US11192429B2 (en) Thermal management system for vehicle
JP6169225B1 (ja) 電池パック熱管理システム
CN108461777B (zh) 一种用于燃料电池堆的热处理***
CN105501071B (zh) 汽车热管理***
KR20200142617A (ko) 차량용 열관리시스템
WO2015139662A1 (zh) 增程序电动巴士的循环***
CN109383221A (zh) 车辆的hvac***
KR20200139878A (ko) 차량용 열관리시스템
JP6363289B2 (ja) 温度制御システム及びそれを用いた電動車両
CN210258100U (zh) 一种电动汽车热管理***
US11518273B2 (en) Cooling device for vehicle
KR20200125792A (ko) 차량의 공조장치
CN111231619A (zh) 车辆热管理***和车辆
CN109203909A (zh) 用于车辆的加热、通风和空调***
CN208842173U (zh) 车辆及其热管理***
KR102273464B1 (ko) 차량의 통합 열관리 회로
CN114435075A (zh) 一种纯电动商用车整车热管理***及方法
CN115320321A (zh) 热管理***的控制方法、热管理***、车辆及相关设备
KR20210027629A (ko) 차량용 열관리 시스템
CN213734670U (zh) 热管理***及车辆
CN110854474A (zh) 一种电动汽车温控***
CN110385963B (zh) 一种电动汽车空调***及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901192

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020901192

Country of ref document: EP

Effective date: 20210827

NENP Non-entry into the national phase

Ref country code: DE