WO2021117352A1 - Window glass system and window glass apparatus - Google Patents

Window glass system and window glass apparatus Download PDF

Info

Publication number
WO2021117352A1
WO2021117352A1 PCT/JP2020/039571 JP2020039571W WO2021117352A1 WO 2021117352 A1 WO2021117352 A1 WO 2021117352A1 JP 2020039571 W JP2020039571 W JP 2020039571W WO 2021117352 A1 WO2021117352 A1 WO 2021117352A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
glass
window glass
heating wire
film
Prior art date
Application number
PCT/JP2020/039571
Other languages
French (fr)
Japanese (ja)
Inventor
哲司 入江
匠 御法川
林 英明
さよこ 森永
駿介 定金
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2021563773A priority Critical patent/JP7511129B2/en
Priority to DE112020006068.3T priority patent/DE112020006068T5/en
Publication of WO2021117352A1 publication Critical patent/WO2021117352A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/84Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • H05B1/0236Industrial applications for vehicles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/014Heaters using resistive wires or cables not provided for in H05B3/54

Definitions

  • the present invention relates to a window glass system and a window glass device.
  • a first synthetic resin window material (glazing), a first laminated intermediate layer made of a polymer material, a second laminated intermediate layer made of a polymer material, and a flexible OLED (Organic Light).
  • a window structure for a transport vehicle in which an Emitting Diode) element or screen, a third laminated intermediate layer made of a polymer material, and a second synthetic resin window material are laminated (see, for example, Patent Document 1).
  • the OLED element included in the conventional window structure for a transportation vehicle may be difficult for the OLED element included in the conventional window structure for a transportation vehicle to obtain element characteristics such as stable display in a high temperature environment where the temperature is high to some extent.
  • the conventional window structure for transport vehicles has a means for heating the window glass, the temperature is not particularly controlled.
  • the problem in such a high temperature environment is the same not only for OLEDs but also for organic elements made of organic materials.
  • the window glass system includes a window glass attached to a moving body, a device provided on the window glass and including an organic element made of an organic material, and a temperature sensor for detecting the temperature of the window glass. Based on the temperature and humidity sensor that detects the temperature and humidity in the vehicle interior of the moving body, the glass temperature detected by the temperature sensor, and the temperature and humidity in the vehicle interior detected by the temperature and humidity sensor. When it is determined whether the glass temperature exceeds the dew point temperature and it is determined that the glass temperature is equal to or lower than the dew point temperature, the heating wire or the heating film or the defroster attached to the window glass is energized and detected by the temperature sensor.
  • the glass includes a control unit having a circuit for turning off the heating wire or the heating film or turning off the defroster when the temperature of the glass exceeds a predetermined temperature.
  • FIG. It is a figure which shows the vehicle which mounted the window glass system of Embodiment 1.
  • FIG. It is a figure which shows the window glass system of Embodiment 1.
  • FIG. It is a figure which shows the flowchart which shows the process which a control part executes.
  • It is a figure which shows the arrangement of a HUD It is a figure which shows the arrangement of a HUD.
  • FIG. 1 is a diagram showing an example of a vehicle 10 equipped with the window glass system 100 of the first embodiment.
  • the window glass system 100 is attached to the vehicle 10 as a windshield as an example.
  • the vehicle 10 includes a defroster 20 as an example.
  • the defroster 20 is a device that, when activated, blows air that has been dehumidified and heated by the air conditioner toward the window glass system 100 to remove fogging.
  • the vehicle 10 is, for example, an vehicle such as an EV (Electric Vehicle) vehicle, a PHV (Plug-in Hybrid Vehicle) vehicle, an HV (Hybrid Vehicle) vehicle, a gasoline vehicle, or a diesel vehicle. Further, the vehicle 10 may be a train or a train.
  • the vehicle 10 is an example of a moving body that carries and moves an occupant.
  • the window glass system 100 may be attached to a moving body (for example, an aircraft, a helicopter, etc.) other than the vehicle 10.
  • a moving body for example, an aircraft, a helicopter, etc.
  • FIG. 2 is a diagram showing an example of the window glass system 100 of the first embodiment.
  • FIG. 2 shows a configuration in which the window glass system 100 is viewed from the vehicle 10 (see FIG. 1) side.
  • the window glass system 100 includes a window glass 110, an OLED display 120, a heating wire 130, a switch 140, and a control unit 150 (temperature sensor 150A, temperature / humidity sensor 150B, control unit 150C).
  • a power supply 160H is connected to the heating wire 130, and a power supply 160L and an ECU (Electronic Control Unit) 170 are connected to the control unit 150.
  • the window glass system 100 excluding the control unit 150 is an example of the window glass device.
  • the window glass system 100 includes the window glass 110
  • the window glass system 100 may include a glass other than the window glass 110 instead of the window glass 110.
  • the window glass 110 has a glass body 111.
  • the window glass 110 may further have a ceramic layer 112.
  • the glass body 111 may be a laminated glass in which an interlayer film is sealed.
  • the ceramic layer 112 is preferably provided along the periphery of the glass body 111 on the surface of the glass body 111 on the vehicle interior (inside the vehicle 10) side.
  • the ceramic layer 112 is, for example, a fired body of a dark ceramic paste, for the purpose of preventing the adhesive from being deteriorated by ultraviolet rays while the glass body 111 is adhered to the vehicle 10, and the glass body from the outside of the vehicle 10. It is formed to improve the appearance so that the connecting portion between the 111 and the vehicle body cannot be seen.
  • the central portion 111A of the glass body 111 not provided with the ceramic layer 112 is a transparent portion.
  • the ceramic layer is preferably provided so as to be in contact with the interlayer film or on the surface of the glass body 111 on the vehicle interior side.
  • the OLED display 120 is provided so as to be located below the front of the driver's seat.
  • the OLED display 120 since the vehicle 10 (see FIG. 1) is a right-hand drive vehicle, the OLED display 120 is located on the lower left side of the glass body 111 when the vehicle 10 is viewed from the front. The left side of the vehicle 10 as seen from the front is the right side of the vehicle 10 in the traveling direction.
  • the OLED display 120 may be provided on the lower right side of the glass body 111 when the vehicle 10 is viewed from the front.
  • the OLED display 120 is preferably provided so as to be sandwiched between interlayer films.
  • the OLED display 120 displays information indicating the vehicle speed and the state of the vehicle 10 to the driver.
  • the OLED display 120 is not limited to such a form, and may display various images, for example.
  • the position and size of the OLED display 120 are not limited to those shown in FIG. 2, and may be located at any position on the glass body 111, or may be provided on substantially the entire surface of the glass body 111.
  • the heating wire 130 is preferably provided on the surface of the central portion 111A of the glass body 111 on the vehicle interior side.
  • the heating wire 130 is, for example, a tungsten wire, and is connected to the terminal 131.
  • the heating wire 130 may be a silver conducting wire.
  • the terminal 131 is, for example, a bus bar made of silver foil printed with silver (Ag).
  • the heating wire 130 is provided over the entire range shown by the broken line in FIG.
  • the range in which the heating wire 130 shown by the broken line in FIG. 2 is provided is an example of a heating region heated by the heating wire 130.
  • One terminal 131 (left in the figure) is connected to the switch 140, and the other terminal 131 (right in the figure) is connected to the power supply 160H.
  • the heating wire 130 exists between two pieces of glass and is sandwiched between an interlayer film for adhering the two pieces of glass.
  • the heating wire 130 may be provided on the ceramic layer 112.
  • the heating wire 130 may be replaced with a heating film.
  • the electric heating film is preferably provided at the central portion 111A of the glass body 111.
  • the electric heating film is an ITO (Indium Tin Oxide) film as an example, and may be connected to the terminal 131.
  • the switch 140 may be provided on the ceramic layer 112 on the surface of the glass body 111 on the vehicle interior side.
  • the switch 140 is inserted in series between the heating wire 130 or one terminal connected to the heating film and the ground potential point of the vehicle 10.
  • the on / off of the switch 140 is switched by the control unit 150.
  • the switch 140 may not be provided, and the control unit 150 may put the heating wire 130 or the heating film attached to the window glass 110 into an energized state (on) or a non-energized state (off).
  • the control unit 150 may be provided on the surface of the central portion 111A of the glass body 111 on the vehicle interior side.
  • the control unit 150 includes a control unit 150C, a temperature sensor 150A, and a temperature / humidity sensor 150B.
  • the control unit 150C turns the heating wire 130 or the heating film attached to the window glass 110 into an energized state (on) or a non-energized state (off).
  • the temperature sensor 150A and the temperature / humidity sensor 150B are preferably provided on one surface of the window glass 110.
  • the temperature sensor 150A and the temperature / humidity sensor 150B are preferably provided on the ceramic layer 112 provided on one surface of the window glass 110.
  • the temperature sensor 150A and the temperature / humidity sensor 150B are preferably provided at the lower part of the glass body 111.
  • the temperature sensor 150A and the temperature / humidity sensor 150B are preferably provided on the lower side of the central portion 111A of the glass body 111 near the boundary with the ceramic layer 112. Further, the temperature sensor 150A is preferably provided within the range (heating region) where the heating wire 130 shown by the broken line in FIG. 2 is provided. This is to measure the temperature of the glass body 111 being heated by the heating wire 130.
  • the control unit 150 may further have a housing 151.
  • the housing 151 houses the control unit 150C, the temperature sensor 150A, and the temperature / humidity sensor 150B inside. Power is supplied from the power supply 160L to the control unit 150C, the temperature sensor 150A, and the temperature / humidity sensor 150B.
  • the control unit 150 may be fixed on the ceramic layer 112. In this case, the housing 151 may be fixed on the ceramic layer 112.
  • the control unit 150C is realized by a computer (circuit) including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an internal bus, and the like.
  • the control unit 150C determines whether or not the temperature of the glass body 111 has reached the dew point temperature based on the temperature of the glass body 111 detected by the temperature sensor 150A and the temperature and humidity in the vehicle interior detected by the temperature / humidity sensor 150B.
  • the heating wire 130 or the heating film is turned on (on), and when the temperature of the glass body 111 exceeds a predetermined temperature, the heating wire 130 is turned off (off).
  • the temperature of the glass body 111 detected by the temperature sensor 150A will be referred to as a glass temperature.
  • the contents of control by the control unit 150C will be described later.
  • the control unit 150C may be connected to any one of a plurality of ECUs (Electronic Control Units) mounted on the vehicle 10 via a network via the ECU 170.
  • ECUs Electronic Control Units
  • the window glass system 100 can be operated in cooperation with the air conditioner. Further, the power of the entire window glass system 100 may be turned on / off by an operation unit such as an air conditioner.
  • the temperature sensor 150A detects the glass temperature.
  • the temperature sensor 150A is preferably in contact with the glass body 111.
  • the temperature / humidity sensor 150B detects the temperature and humidity in the vehicle interior of the moving body.
  • the temperature / humidity sensor 150B may be provided on the glass main body 111, but it is more preferable that the temperature / humidity sensor 150B is separated from the glass main body 111.
  • As the temperature / humidity sensor 150B a temperature sensor and a humidity sensor integrated as one chip can be used.
  • the temperature sensor 150A and the temperature / humidity sensor 150B are connected to the control unit 150C, and output data representing the detected glass temperature, the temperature inside the vehicle interior, and the humidity inside the vehicle interior to the control unit 150C.
  • a separate temperature sensor and humidity sensor may be used instead of the temperature / humidity sensor 150B.
  • a temperature sensor that detects the temperature inside the vehicle interior for example, a thermocouple can be used.
  • a humidity sensor that detects the humidity in the vehicle interior for example, a sensor that outputs the resistance value of the element that changes according to the change in humidity or a sensor that outputs the capacitance of the element that changes according to the change in humidity is used. be able to.
  • the power supply 160H is connected between the other terminal 131 connected to the heating wire 130 and the battery and / or generator of the vehicle 10, and the electric power supplied from the battery and / or the generator is supplied to the heating wire 130. Alternatively, it is supplied to the electric heating film.
  • the output voltage of the power supply 160H is higher than the output voltage of the power supply 160L.
  • the power supply 160H supplies electric power having a voltage of 12V to the heating wire 130 as an example.
  • the power supply 160L is connected between the control unit 150 and the battery and / or generator of the vehicle 10, and supplies the electric power supplied from the battery and / or the generator to the control unit 150.
  • the output voltage of the power supply 160L is lower than the output voltage of the power supply 160H, and is 5V as an example.
  • control of the energized state (on) / non-energized state (off) of the heating wire 130 or the heating film by the control unit 150C will be described.
  • FIG. 3 is a diagram showing an example of a flowchart showing the processing executed by the control unit 150C.
  • the control unit 150C starts processing when the power is turned on by the ECU 170.
  • the control unit 150C determines whether or not the glass temperature exceeds the dew point temperature based on the glass temperature, the temperature and humidity in the vehicle interior detected by the temperature sensor 150A and the temperature / humidity sensor 150B (step S1).
  • Whether or not the glass temperature exceeds the dew point temperature is determined by storing data representing a curve showing the relationship between the glass temperature and the saturated water vapor pressure in the internal memory of the control unit 150C, and storing the glass temperature and the temperature and humidity in the vehicle interior. It may be determined whether or not the glass temperature exceeds the dew point temperature based on the saturated water vapor pressure obtained from.
  • control unit 150C determines that the glass temperature exceeds the dew point temperature (S1: YES)
  • the control unit 150C repeatedly executes the process of step S1.
  • the control unit 150C determines that the glass temperature does not exceed the dew point temperature (S1: NO)
  • the heating wire 130 or the heating film is energized, or the defroster 20 is turned on (step S2). This is to remove fogging of the glass body 111 to improve the visibility and to improve the visibility of the OLED display 120.
  • the control unit 150C determines whether or not the glass temperature detected by the temperature sensor 150A exceeds the temperature T ⁇ (step S3). The control unit 150C repeats the determination in step S3 until the glass temperature exceeds the temperature T ⁇ .
  • the temperature T ⁇ is 40 ° C. as an example.
  • the temperature T ⁇ is the upper limit of the glass temperature for protecting the OLED from heat, and is the upper limit temperature to which the OLED is exposed. Since the OLED display 120 includes an OLED, which is an organic element made of an organic material, in the light emitting portion, the glass temperature is controlled so as not to exceed 40 ° C. in order to obtain stable element characteristics.
  • control unit 150C determines that the glass temperature exceeds the temperature T ⁇ (S3: YES)
  • the heating wire 130 or the heating film is de-energized, or the defroster 20 is turned off (step S4).
  • the heating wire 130, the heating film, or the defroster 20 is turned off.
  • control unit 150C determines that the glass temperature does not exceed the temperature T ⁇ (S3: NO)
  • the control unit 150C repeatedly executes the process of step S3 until the glass temperature exceeds the temperature T ⁇ .
  • control unit 150C While the power of the window glass system 100 is turned on, the control unit 150C repeatedly executes the processes of steps S1 to S4 in a predetermined control cycle.
  • the temperature of the glass body 111 it is determined whether or not the temperature of the glass body 111 has reached the dew point temperature based on the glass temperature, the temperature in the vehicle interior, and the humidity, and the temperature of the glass body 111 becomes the dew point temperature.
  • the heating wire 130 or the heating film is turned on, or the defroster 20 is turned on, and when the temperature of the glass body 111 exceeds a predetermined temperature, the heating wire 130 or the heating film is turned off or turned off.
  • a window glass system 100 capable of obtaining stable element characteristics of an OLED display 120 including an OLED, which is an example of an organic element.
  • the heating wire 130 or the heating film is energized, or the defroster is turned on to suppress the occurrence of fogging of the glass body 111 and prevent the glass body 111 from becoming cloudy.
  • the visibility of the OLED display 120 can be improved and the visibility of the OLED display 120 can be improved.
  • a voltage conversion unit may be provided between the heating wire 130 and the power supply 160H to suppress the voltage supplied to the heating wire 130 to 10 V or less. This is because the increase in the glass temperature is moderated so that the glass temperature tends to decrease when the glass temperature reaches, for example, 40 ° C. and the heating wire 130 is turned off. This also applies when a heating film is used instead of the heating wire 130. In the case of an electric heating film, the supplied voltage may be suppressed to 40 V or less.
  • the power density of the heating wire 130 may be suppressed to 400 W / m 2 or less. This is because the increase in the glass temperature is moderated so that the glass temperature tends to decrease when the glass temperature reaches, for example, 40 ° C. and the heating wire 130 is turned off. This also applies when a heating film is used instead of the heating wire 130.
  • the power density of the heating wire 130 is the power supplied to the heating wire 130 per unit area. In the case of an electric heating film, it is the electric power supplied to the electric heating film per unit area.
  • the window glass system 100 includes an OLED display 120 or an optical device of a HUD (Head Up Display) as a device including an organic element
  • the voltage applied to the heating wire 130 is set to 7 V or less, and the voltage is set to 7 V or less.
  • the power density of the heating wire 130 may be suppressed to 400 W / m 2 or less. This is because the increase in the glass temperature is moderated so that the glass temperature tends to decrease when the glass temperature reaches, for example, 40 ° C. and the heating wire 130 is turned off. This also applies when a heating film is used instead of the heating wire 130.
  • the distance between the heating wires 130 may be set to 3 mm or more. This is to prevent the glass temperature from rising too much by widening the distance between the heating wires 130.
  • the line width of the heating wire 130 may be set to 25 ⁇ m or more. This is because the wire width of the heating wire 130 is increased to reduce the electric resistance of the heating wire 130 so that the glass temperature does not rise too much.
  • the current flowing through the heating wire 130 or the heating film may fluctuate periodically.
  • the rise in the glass temperature is moderated, and when the glass temperature reaches, for example, 40 ° C., the heating wire 130 or the heating film is turned off.
  • the glass temperature tends to drop.
  • the current is periodically de-energized.
  • the current may be periodically de-energized by repeating the energized state (on) and the non-energized state (off) every 5 seconds.
  • the OLED display 120 is not limited to the windshield, and may be configured to be attached to a side glass, a rear glass, a glass roof panel, a glass sunroof, or the like for display or the like.
  • the window glass system 100 includes the OLED as an example of the organic element
  • the organic element included in the window glass system 100 is not limited to the OLED, and may be, for example, a liquid crystal element, a dimming element, a hologram, an LED film, or the like. That is, instead of the OLED display 120, an LCD (Liquid Crystal Display) including a display unit made of an organic material, a dimming display, a HUD, a transparent screen, or the like may be used.
  • LCD Liquid Crystal Display
  • the LCD can be used as a display device including a liquid crystal element instead of the OLED, and may be provided on a part of the glass body 111, a side glass, a rear glass, a glass roof panel, a glass sunroof, or the like.
  • the dimming display may include a dimming element that can adjust the amount of light transmitted from the outside of the vehicle to the inside of the vehicle by changing the transmittance by applying a voltage. It may be provided on the rear glass, a glass roof panel, a glass sunroof, or the like. Examples of the dimming element include a suspended particle element and a liquid crystal element.
  • the HUD can be provided on a part of the glass body 111 or the like as a display device including an organic element.
  • the material constituting the organic element include potassium dichromate and photopolymer used as holograms, liquid crystal elements, resin laminated films using PET and PEN, and polyvinyl butyral resin films having a substantially reduced thickness. ..
  • the organic element may be provided on a part of the glass body 111, a side glass, a rear glass, a glass roof panel, a glass sunroof, or the like. Further, the organic element may be a resin laminated film using PET or PEN, or a polyvinyl butyral resin film whose thickness is substantially gradually reduced.
  • the transparent screen is provided on a part of the glass body 111, the side glass, the rear glass, the roof panel made of glass, the sunroof made of glass, or the like, and the image is output from the projector or the like with the transmittance lowered to some extent.
  • the organic element for a transparent screen include a photocurable resin, a thermoplastic resin, a thermosetting resin, silica obtained by a sol-gel method, and an organic-inorganic hybrid material.
  • polyester resin PET, polyethylene naphthalate, etc.
  • polycarbonate resin a polycarbonate resin
  • triacetyl cellulose resin a triacetyl cellulose resin
  • cycloolefin polymer resin a cycloolefin polymer resin having an uneven structure.
  • the LED film can be provided on a part of the glass body 111 or the like as a light emitting device including an organic element.
  • An example is a configuration in which an LED is fixed to a resin laminated film using PET or PEN with a UV curable resin or the like.
  • the OLED display 120 is not limited to the form provided so as to be located below the front of the driver's seat as shown in FIG. 2, and may be provided at the position shown in FIGS. 4 to 6. 4 to 6 are views showing a modified example of the position of the OLED display 120.
  • the central portion 111A of the glass body 111 is divided into three regions 50A to 50C in the vertical direction.
  • the region 50A is located in the center of the three regions 50A to 50C in the vertical direction, the region 50B is located on the upper side, and the region 50C is located on the lower side.
  • the combined region of the region 50A and the region 50C is a region that becomes the driver's driving field of view region.
  • the driving field of view is a range of the central portion 111A of the glass body 111 that is included in the field of view of the average driver while the vehicle 10 is running, and the line of sight is intentionally deflected. The range to be viewed is not included.
  • the region 50A corresponds to a portion of the central portion 111A of the glass body 111 excluding the region 50B which is rarely seen during operation and the lowermost strip-shaped region 50C in the driving field of view region.
  • the area 50B is a band-shaped area extending in the left-right direction at the uppermost side of the central portion 111A of the glass body 111.
  • the area 50B is, for example, an area that can be visually recognized by the driver intentionally turning his / her field of view upward when the vehicle 10 is running.
  • the region 50B has a recess 51B.
  • the recess 51B is provided corresponding to the recess 111A0 of the central portion 111A.
  • the recess 111A0 is provided at the upper end of the central portion 111A in the central portion in the left-right direction, and is provided in the central portion 111A in order to avoid a rearview mirror and a camera that acquires an image of the front of the vehicle 10 for automatic braking or automatic driving.
  • the upper end of the is a part that is recessed downward.
  • the recess 51B is a region provided in the central portion in the left-right direction on the upper side of the region 50B, and the upper end of the region
  • the region 50C is a strip-shaped region extending in the left-right direction at the lowermost side of the central portion 111A of the glass body 111.
  • the area 50C is, for example, an area that can be visually recognized by the driver intentionally turning the field of view downward when the vehicle 10 is running.
  • the size of the glass body 111 in the vertical direction and the horizontal direction differs depending on the type of the vehicle 10. Further, the positional relationship between the glass body 111 and the driver's seat differs depending on the type of vehicle 10. Therefore, the areas 50A to 50C are arranged in the order of the area 50B, the area 50A, and the area 50C from the upper side to the lower side, although the areas 50A to 50C differ depending on the type of the vehicle 10.
  • the region 50A is a region located in the center of the regions 50A to 50C in the vertical direction.
  • the OLED display 120 is provided in the upper region 50B of the glass body 111.
  • the OLED display 120 is preferably provided so as to be sandwiched between interlayer films.
  • the OLED display 120 provided in the area 50B includes, for example, traffic signs, signal displays, information such as mountain names and altitudes that can be seen by the occupants through the glass body 111, or information such as altitude for the occupants including the driver. Information about the current position can be displayed. Further, when the OLED display 120 is provided in the area 50B so that it can be displayed outside the vehicle 10, a message for pedestrians such as "please cross" may be displayed.
  • the OLED display 120 is provided in the area 50C below the glass body 111.
  • the OLED display 120 is preferably provided so as to be sandwiched between interlayer films.
  • On the OLED display 120 provided in the area 50C for example, for the occupants including the driver, at least a part of the display such as the traveling direction of the navigation system, a traffic sign, a signal display, information on the current position, etc. Can be displayed.
  • FIG. 6 shows four OLED displays 120.
  • the four OLED displays 120 are provided along the edge of the central portion 111A of the glass body 111. More specifically, in FIG. 6, the lower end portion 111A1 of the central portion 111A, the lower portion 111A2 of the right end, the right portion 111A3 of the upper end portion, and the outer portion 111E of the central portion 111A are provided. .. The portion 111E is located outside the central portion 111A and corresponds to the recess 111A0 of the central portion 111A.
  • the four OLED displays 120 are preferably provided so as to be sandwiched between interlayer films.
  • the four OLED displays 120 display, for example, at least a part of the direction of travel of the navigation system, traffic signs, signal displays, information on the current position, and the like for occupants including the driver. be able to. It is not necessary to provide the four OLED displays 120 in the portions 111A1 to 111A3 and 111E, and the OLED display 120 may be provided in at least one of the portions 111A1 to 111A3 and 111E.
  • the four portions 111A1 to 111A3 and 111E may be line-symmetrical with the axis penetrating the center in the width direction of the vehicle 10 in the front-rear direction as the axis of symmetry in the right-hand steering wheel vehicle and the left-handling vehicle, or at the same position. It may be provided.
  • the OLED display 120 has been described with reference to FIGS. 4 to 6, a transparent screen may be provided instead of the OLED display 120. Further, the OLED display 120 and the transparent screen may be provided in the plurality of portions 111A1 to 111A3 and 111E as shown in FIG. Further, in FIGS. 4 and 5, the OLED display 120 or the transparent screen may be provided so as to straddle the regions 50A to 50C, and the same applies to FIG.
  • FIGS. 7 and 8 are diagrams showing the arrangement of the HUD 180. 7 and 8 will be described with reference to regions 50B and 50D.
  • the area 50B is the same as the area 50B shown in FIGS. 4 to 6.
  • the region 50D is a region in which the regions 50A and the regions 50C shown in FIGS. 4 to 6 are combined. That is, the area 50D is a driving field of view area.
  • the HUD 180 may be provided in the entire region 50D, or may be provided in about half of the region 50D in the left-right direction as shown in FIG. Since the HUD 180 is located in front of the driver's seat, the HUD 180 shown in FIG. 8 is, for example, an arrangement for a left-hand steering wheel vehicle. As an example, the HUD 180 can display at least a part of the direction of travel of the navigation system, a traffic sign, a signal display, information on the current position, and the like for the occupants including the driver. ..
  • control unit 150 is provided on the surface of the glass body 111 on the vehicle interior side, but the control unit 150 is provided on the ceramic layer 112 on the vehicle interior side of the glass body 111. It may have been.
  • the temperature detected by the temperature / humidity sensor 150B is affected by the black ceramic layer 112, the detected temperature may be converted into the value of the central portion 111A in which the ceramic layer 112 does not exist.
  • a conversion formula may be used for conversion.
  • control unit 150C is included in the control unit 150 and is provided on the surface of the central portion 111A of the glass body 111 on the vehicle interior side. It is not limited to any position.
  • the control unit 150C may be connected to the temperature / humidity sensor 150B via a cable and may not be provided on the glass body 111. Further, the control unit 150C may be provided in the middle of the cable connecting the temperature / humidity sensor 150B or the switch 140 and the ECU of the vehicle 10.
  • control unit 150C turns on the heating wire 130 based on the temperature and humidity detected by the temperature / humidity sensor 150B has been described.
  • the defroster 20 of the vehicle 10 may be operated.
  • FIG. 9 is a diagram showing an example of the window glass system 200 of the second embodiment.
  • the window glass system 200 includes a window glass 110, an OLED display 120, a heating wire 130, a switch 140, a control unit 250 (temperature sensor 150A, temperature / humidity sensor 150B, control unit 250C), and an antifogging film 220.
  • the window glass system 200 of the second embodiment has a configuration in which the antifogging film 220 is added to the window glass system 100 of the first embodiment and the control unit 250 is included instead of the control unit 150. Therefore, the same components as those of the window glass system 100 of the first embodiment will be described by using the same reference numerals. In addition, the differences will be mainly described below.
  • the antifogging film 220 is provided on one surface of the window glass 110.
  • the antifogging film 220 is preferably provided on the surface of the central portion 111A of the glass body 111 on the vehicle interior (inside the vehicle 10) side.
  • the antifogging film 220 has water absorption.
  • the antifogging film 220 preferably contains a water-absorbing polymer or a hydrophilic polymer in order to realize high water absorption.
  • the antifogging film 220 may be attached to the window glass 110 via a film having an adhesive layer.
  • the antifogging film 220 is provided at a position where it overlaps with the OLED display 120 and the heating wire 130 in a plan view.
  • the control unit 250 may be provided on the surface of the central portion 111A of the glass body 111 on the vehicle interior side.
  • the control unit 250 includes a control unit 250C, a temperature sensor 150A, and a temperature / humidity sensor 150B.
  • the control unit 250C turns the heating wire 130 or the heating film attached to the window glass 110 into an energized state (on) or a non-energized state (off).
  • the temperature sensor 150A and the temperature / humidity sensor 150B are preferably provided on one surface of the window glass 110.
  • the temperature sensor 150A and the temperature / humidity sensor 150B are preferably provided on the ceramic layer 112 provided on one surface of the window glass 110.
  • the temperature sensor 150A and the temperature / humidity sensor 150B are preferably provided at the lower part of the glass body 111.
  • the temperature sensor 150A and the temperature / humidity sensor 150B are provided outside the antifogging film 220 in a plan view.
  • the temperature sensor 150A and the temperature / humidity sensor 150B are preferably provided on the lower side of the central portion 111A of the glass body 111 near the boundary with the ceramic layer 112.
  • the control unit 250 may further have a housing 151 fixed on the ceramic layer 112.
  • the housing 151 houses the control unit 250C, the temperature sensor 150A, and the temperature / humidity sensor 150B inside. Power is supplied from the power supply 160L to the control unit 250C, the temperature sensor 150A, and the temperature / humidity sensor 150B.
  • the control unit 250C is realized by a computer (circuit) including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an internal bus, and the like.
  • a computer circuit including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an internal bus, and the like.
  • control unit 250C determines whether or not the temperature of the glass body 111 has reached the dew point temperature, and when the temperature of the glass body 111 reaches the dew point temperature, the heating wire 130 or the electric heat Control is performed so that the film is energized (on) and is de-energized (off) when the temperature of the glass body 111 exceeds a predetermined temperature.
  • control unit 250C further performs the following control.
  • the control unit 250C turns on the heating wire 130 or the heating film based on the temperature of the glass body 111 detected by the temperature sensor 150A and the temperature and humidity in the vehicle interior detected by the temperature / humidity sensor 150B. , Controls to turn off the power after a predetermined time has elapsed.
  • the amount of water that can be absorbed by the antifogging film 220 (the amount that saturates the water absorption performance (saturated water absorption amount)) varies depending on the temperature and humidity.
  • the antifogging film 220 begins to become cloudy when the amount of water absorption exceeds the saturated amount of water absorption. That is, the anti-fog film 220 can delay the timing of fogging as compared with the window glass not provided with the anti-fog film 220.
  • control unit 250C controls to turn off the heating wire 130 or the heating film when a predetermined time elapses after the heating wire 130 or the heating film is turned on.
  • the heating wire 130 or the heating film is turned on to raise the glass temperature, the water contained in the antifogging film 220 evaporates and the amount of water absorbed by the antifogging film 220 decreases.
  • the amount of water absorbed by the antifogging film 220 causes the heating wire 130 to absorb water.
  • the time can be set so that the time becomes equal to or less than a predetermined ratio (for example, 70% or less) before the energized state (ON) is turned on.
  • the time may be set so that the heating wire 130 becomes a predetermined ratio or less (for example, 70% or less) before the energized state (ON). Regardless of the amount of water absorption, it is possible to make the anti-fog film 220 not fogged for the time being.
  • the moisture diffusion coefficient in the material of the antifogging film 220 is a function of temperature, and the diffusion coefficient becomes smaller as the glass substrate becomes colder.
  • the water diffusion coefficient is a function of the activation energy of water in the material, and the diffusion coefficient at a plurality of different temperatures is obtained by a measurement method such as JIS7209-2000 (ISO62-1999) plastic-water absorption rate. Can be done.
  • the moisture absorption rate on the outermost surface of the antifogging film 220 is determined by the difference between the water vapor pressure of air having a certain temperature and humidity and the water vapor pressure on the outermost surface of the antifogging film 220 having a certain temperature and water absorption rate.
  • the relative water absorption FRH on the outermost surface of the antifogging film 220 reaches almost 100%, but the relative water absorption FRH in the film does not reach 100%. Generally, there is room for absorption of water. Further, in the process of drying the antifogging film 220, the outermost surface of the antifogging film 220 is in a dry state, but the relative water absorption FRH in the film of the antifogging film 220 is higher than the relative water absorption FRH on the outermost surface. It is generally in a high state.
  • the outermost surface of the antifogging film 220 becomes cloudy. Even if the above occurs, the relative water absorption rate FRH in the membrane may be about 70%.
  • the relative water absorption FRH of the antifogging film 220 is in equilibrium with the humidity of the air in the vehicle interior. That is, the water vapor pressure of the antifogging film 220 is equal to the water vapor pressure in the vehicle interior. Further, the water vapor pressure is the same from the outermost surface to the deepest part of the antifogging film 220. Even if the glass temperature and the temperature inside the vehicle are different, the water vapor pressure in the film at the glass temperature is equal to the water vapor pressure at room temperature and is in equilibrium.
  • the water concentration distribution after ⁇ t time on the outermost surface, in the film (inside the film), and in the deepest part of the antifogging film 220 is predicted by Fick's law (diffusion equation of concentration gradient).
  • Fick's law diffusion equation of concentration gradient
  • the relative water absorption rate FRH on the outermost surface of the antifogging film 220 is monitored, and when it reaches 100%, it is judged that fogging has occurred.
  • the relative water absorption rate FRH on the outermost surface of the antifogging film 220 is obtained by dividing the water absorption mass concentration FD by the saturated water absorption mass concentration FW.
  • the remaining time until the time when cloudiness is expected to occur is set to a preset remaining time (for example, 30 seconds), and when the remaining time becomes zero, the heating wire 130 or the heating film is turned on. Or by introducing the outside air of the air conditioner, the anti-fog film 220 is set to the drying mode.
  • a preset remaining time for example, 30 seconds
  • the relative water absorption rate FRH on the outermost surface of the antifogging film 220 is a preset relative water absorption rate (for example, 80%).
  • the heating wire 130 or the heating film is turned on (on) until the temperature becomes low, and when the relative water absorption rate FRH on the outermost surface becomes less than 80%, the heating wire 130 or the heating film is turned off (off). This also applies when the outside air of the air conditioner is introduced.
  • the flow of water vapor at the interface between the air in the vehicle interior and the outermost surface of the antifogging film 220 is calculated by the following procedure.
  • the gas constant per mole of water vapor 8.3144598 [J / K / mol]
  • the gas constant R 461.5149 [J / K / kg].
  • the specific heat Cw of water is 1007 [J / K / kg]
  • the heat transfer coefficient H of water vapor in a natural convection state with no wind at room temperature is 4.2 [W / m 2 / K], room temperature Troom [° C], and the atmosphere inside the vehicle.
  • the water vapor pressure ES [Pa] be inside.
  • the thermal diffusivity TDair of air is expressed by the following equation.
  • TDair (0.1356 x Troom + 18.51) x 10-6 [m 2 / s]
  • Hwater H ⁇ (Dair / TDair) (2/3) / (R ⁇ Cw ⁇ (Troom + 273.15) ⁇ Dair) [kg / s / m 2 / Pa]
  • the relative water absorption FRH of the antifogging film 220 in equilibrium with air at a certain relative humidity is approximately equal to the relative humidity of the air.
  • the saturated water vapor pressure of air decreases significantly at low temperatures, but the saturated water absorption mass concentration FW of the antifogging film 220 is substantially constant and decreases by the water vapor pressure.
  • the water vapor pressure ES [Pa] of the air in the vehicle interior is expressed by the following equation.
  • ES EW x RH
  • water mass concentration FD [kg / m3] of the antifogging film 220, the use of saturated water mass concentration FW of antifogging film 220 [kg / m 3], the relative water absorption of the outermost surface of the antifogging film 220 FRH [ %] Is expressed by the following equation.
  • FD (x, t) U (x, t) x C [kg / m 3 ] Further, the unsteady analysis is performed in the range where the film thickness x is 0 [m] to d [m].
  • the antifogging film 220 is equally divided in the thickness direction and handled. For example, when the film thickness of the antifogging film 220 is 20 ⁇ m, the film is divided into 10 layers from the top layer to the bottom layer every 2 ⁇ m in the thickness direction.
  • the non-stationary analysis is continuously performed after the analysis is first started.
  • the boundary conditions are a change U (0, t) in the water absorption volume concentration in the uppermost layer and a change U (d, t) in the water absorption volume concentration in the lowermost layer.
  • U0 is the initial uniform equilibrium water absorption volume concentration [kg / m 3 ] in the membrane.
  • the limit range of dt of the time forward difference is as follows. dt ⁇ dx 2/2 / ( Hwater ⁇ dx + D) ⁇ C ⁇ ⁇ [s]
  • dx thickness dividing the film thickness [m]
  • Hwater water evaporation rate [kg / s / m 2 / Pa]
  • D diffusion coefficient in film [m 2 / s]
  • C water density 1000 [Kg / m 3 ]
  • Specific heat of water [J / kg / K].
  • U (0, t + dt) Hwater / C / ⁇ ⁇ (ES-FW) ⁇ dt ⁇ dx + (1-D / C / ⁇ ⁇ (dt / dx 2 )) ⁇ U (0, t) + D / C / ⁇ ⁇ (dt / dx 2 ) ⁇ U (dx, t)
  • U (x, t + dt) at time t + dt of the water absorption volume concentration in the film of the antifogging film 220 (position of depth x from the surface) is expressed by the following equation.
  • U (x, t + dt) D / C / ⁇ ⁇ (dt / dx 2 ) ⁇ U (x ⁇ dx, t) + (1-2 ⁇ D / C / ⁇ ⁇ (dt / dx 2 )) ⁇ U ( x, t) + D / C / ⁇ ⁇ (dt / dx 2 ) ⁇ U (x + dx, t)
  • control unit 250 may be used for control as follows.
  • the required time Ts is, for example, 30 seconds or less (Ts ⁇ 30 [s]), preferably the required time Ts is 10 seconds or less (Ts ⁇ 10 [s]).
  • the switch 140 is turned on so that the drying mode is started when the time becomes low, and the control unit 250C turns on the heating wire 130.
  • the control unit 250C sends the heating wire 130.
  • the electric heating film is turned off.
  • the heating wire 130 or the heating film is energized (on) in order to dry the antifogging film 220
  • the heating wire 130 or the heating film is energized (on).
  • the heating wire 130 or the heating film is energized (on).
  • the time Ts required for the antifogging film 220 to become cloudy is calculated every predetermined period after the analysis is first started.
  • the predetermined period may be a period that is an integral multiple of the control cycle. That is, it is preferable that the required time Ts is calculated in a predetermined cycle after the analysis is first started.
  • FIG. 10 is a diagram showing an example of a flowchart showing the processing executed by the control unit 250C.
  • steps S1 to S3 are the same as steps S1 to S3 of the first embodiment shown in FIG.
  • the control unit 250C starts processing when the power is turned on by the ECU.
  • the control unit 250C determines whether or not the glass temperature exceeds the dew point temperature based on the glass temperature, the temperature and humidity in the vehicle interior detected by the temperature sensor 150A and the temperature / humidity sensor 150B (step S1).
  • control unit 250C determines that the glass temperature does not exceed the dew point temperature (S1: NO), the heating wire 130, the heating film, or the defroster 20 is turned on (step S2).
  • control unit 250C determines whether or not the glass temperature detected by the temperature sensor 150A exceeds the temperature T ⁇ (step S3).
  • the control unit 250C repeats the determination in step S3 until the glass temperature exceeds the temperature T ⁇ .
  • the temperature T ⁇ is, for example, 40 ° C.
  • step S19 When the control unit 250C determines that the glass temperature exceeds the temperature T ⁇ (S3: YES), the heating wire 130 or the heating film is de-energized, or the defroster 20 is turned off (step S19). In order to prevent the glass temperature from exceeding the temperature T ⁇ , the heating wire 130 or the heating film is de-energized, or the defroster 20 is turned off.
  • the process of step S19 is the same as the process of step S4 in the first embodiment.
  • control unit 250C determines that the glass temperature does not exceed the temperature T ⁇ (S3: NO)
  • the control unit 250C repeatedly executes the process of step S3 until the glass temperature exceeds the temperature T ⁇ .
  • the control unit 250C determines that the glass temperature exceeds the dew point temperature (S1: YES), the water absorption mass concentration FD (x) specified by the glass temperature, the temperature in the vehicle interior, and the humidity, for example, up to 10 minutes later. Is started (step S13). The 10-minute count is performed from the time when the water absorption mass concentration FD (x) is calculated.
  • the required time Ts may be obtained by the control unit 250C by the method described above.
  • the control unit 250C determines whether or not the required time Ts obtained in step S15 is equal to or less than the preset time (step S16).
  • control unit 250C does not proceed to step S17 and repeatedly executes the process of step S16.
  • control unit 250C determines that the required time Ts is equal to or less than the preset time (S16: YES), the heating wire 130 or the heating film is energized, or the defroster 20 is turned on (step S17). ..
  • the state (off) is set (step S19).
  • control unit 250C While the power supply of the window glass system 200 is energized (on), the control unit 250C repeatedly executes the processes of steps S1 to S19 in a predetermined control cycle.
  • the drying mode is started to start the heating wire 130.
  • the electric heating film is energized, or the defroster 20 is turned on.
  • step S1 when it is determined in step S1 that the glass temperature exceeds the dew point temperature (S1: YES), the processes of steps S13 to S18 are performed, and the glass temperature is equal to or lower than the dew point temperature in step S1 (S1). : NO) has been described, and a mode in which the processes of steps S2 and S3 are performed has been described.
  • step S18 the same determination process as in step S3 may be performed.
  • step S3 the same determination process as in step S3 is performed after the process in step S17, and if the glass temperature exceeds the temperature T ⁇ , the flow is advanced to step S19, and the glass temperature is below the temperature T ⁇ . If so, the flow may proceed to step S18. In this case, if NO is determined in step S18, the flow may be returned to the same determination process as in step S3 inserted after step S17.
  • step S18 If NO is determined in step S18 and the same determination process as in step S3 is performed, the flow is advanced to step S19 if the glass temperature exceeds the temperature T ⁇ , and the flow is performed if the glass temperature is below the temperature T ⁇ . The flow may be returned to step S18 in order to repeat the process of step S18.
  • the window glass 110 may be provided with an information acquisition device 270 that acquires information outside the moving body.
  • 11 to 13 are views showing the structures of the bracket 280 and the housing 290 for attaching the information acquisition device 270 to the glass body 111.
  • FIG. 11 is a view showing a cross section taken along the line AA in FIG. 12, and
  • FIG. 12 is a front view.
  • the information acquisition device 270, the bracket 280, and the housing 290 will be described using the vertical direction in a state of being attached to the glass body 111.
  • the left direction in FIG. 11 is the front of the vehicle
  • the right direction is the rear of the vehicle.
  • the direction of penetrating the drawing is the lateral direction (side)
  • the direction of penetrating the drawing from the front to the back is the right direction
  • the direction of penetrating the drawing from the back to the front is the left direction.
  • Left and right are left and right with respect to the traveling direction of the vehicle 10 (see FIG. 1).
  • the description will be made using the front-rear direction and the lateral direction (lateral direction).
  • 11 and 13 show the front-back and left-right directions
  • FIG. 12 shows the left-right directions.
  • the glass body 111 is a laminated glass in which an interlayer film 111C is sealed between the glass plates 111B and 111D.
  • a ceramic layer 112, an antifogging film 220, a temperature sensor 150A, a temperature / humidity sensor 150B, and a wind speed sensor 250D are attached to the surface of the glass plate 111B on the vehicle interior side.
  • the ceramic layer 112 is attached to the portion where the bracket 280 is attached in a rectangular ring shape when the glass body 111 is viewed from the front.
  • the antifogging film 220 is formed on the surface of the glass plate 111B of the glass body 111 on the vehicle interior side, except for the upper end side in the region surrounded by the ceramic layer 112.
  • the antifogging film 220 is located in front of the information acquisition unit 271 of the information acquisition device 270, and is provided to suppress the occurrence of fogging of the glass body 111 in front of the information acquisition unit 271.
  • the temperature sensor 150A, the temperature / humidity sensor 150B, and the wind speed sensor 250D are provided on the surface of the glass plate 111B of the glass body 111 on the vehicle interior side in a region surrounded by the ceramic layer 112, avoiding the antifogging film 220. ing.
  • the temperature sensor 150A, the temperature / humidity sensor 150B, and the wind speed sensor 250D are provided above the antifogging film 220.
  • the wind speed sensor for example, a hot wire type anemometer or an ultrasonic type anemometer may be used.
  • Examples of the information acquisition device 270 include an image pickup device such as a camera, a light receiving device for receiving a signal such as a radar or an optical beacon, and the like.
  • the information acquisition device 270 is fixed to the window glass 110 via the bracket 280 and the housing 290.
  • the bracket 280 and the housing 290 are examples of mounting members.
  • the information acquisition device 270 has an information acquisition unit 271 and acquires information in front of the vehicle 10 by acquiring an image or a signal such as a radar or an optical beacon by the information acquisition unit 271.
  • the area in front of the information acquisition unit 271 is an example of the information acquisition area.
  • the antifogging film 220 will be provided at least in the information acquisition region of the window glass 110.
  • the bracket 280 is a rectangular ring-shaped frame-shaped member, and has a recess 281 on the front upper surface side.
  • the thickness of the bracket 280 is thin in the portion of the recess 281.
  • the thickness of the portion of the bracket 280 other than the recess 281 is substantially constant.
  • the bracket 280 is made of resin as an example.
  • the housing 290 has a rectangular plate-shaped bottom portion 291 and a triangular plate-shaped side wall 292, and a rectangular plate-shaped back wall 293.
  • the side wall 292 extends upward from the side of the bottom 291 and the back wall 293 extends upward from the rear of the bottom 291.
  • the space surrounded by the bottom portion 291 and the side wall 292 and the back wall 293 is the storage portion 294, and the information acquisition device 270 fixed to the front surface of the back wall 293 is located in the storage portion 294.
  • the housing 290 is made of resin as an example.
  • the front end of the bottom portion 291 and the upper ends of the side wall 292 and the back wall 293 are adhered to the lower surface of the bracket 280, and the bracket 280 is further attached to the glass plate 111B of the glass body 111 via the adhesive layer 285. It is attached to the ceramic layer 112 on the surface on the vehicle interior side.
  • the adhesive layer 285 is divided along the rectangular ring shape of the bracket 280, and is not provided in the portion of the recess 281 of the bracket 280.
  • a gap is created between the recess 281 of the bracket 280 and the surface of the glass plate 111B on the vehicle interior side. .. Further, a gap is generated between the portion of the bracket 280 other than the recess 281 and the surface of the glass plate 111B on the vehicle interior side in a section not adhered by the adhesive layer 285.
  • the gap of the recess 281 is large and faces diagonally downward in the front direction, when the defroster 20 is turned on, the air dehumidified by the defroster 20 flows into the storage portion 294.
  • the wind speed sensor 250D can detect the wind speed of the wind by the defroster 20 or the wind speed of the wind by the air conditioner.
  • the temperature sensor 150A can detect the temperature near the glass body 111
  • the temperature / humidity sensor 150B can detect the temperature and humidity near the glass body 111.
  • the air dehumidified by the defroster 20 flows into the storage portion 294 from the recess 281 and is sprayed onto the antifogging film 220 and flows out from the gaps other than the recess 281. Therefore, the water absorption mass of the uppermost layer of the antifogging film 220.
  • the position where the temperature sensor 150A and the temperature / humidity sensor 150B are provided is preferably within a radius of 50 mm, more preferably within 40 mm, and particularly preferably within 30 mm in a plan view from the gap.
  • the formula for obtaining the heat transfer coefficient H is replaced with the following formula for obtaining the heat transfer coefficient H in consideration of the wind speed V [m / s] in the vehicle interior, and the antifogging film 220 is used.
  • the time required until cloudiness occurs Ts can be calculated.
  • H 5.8 + 4.2V [W / m 2 / K]
  • the wind speed sensor 250D is preferably provided in a portion through which the air dehumidified by the defroster 20 or the air regulated by the air conditioner passes. Therefore, here, as an example, the wind speed sensor 250D is provided closer to the recess 281 of the bracket 280 than the temperature sensor 150A and the temperature / humidity sensor 150B. Further, the wind speed sensor 250D is provided in the vicinity of the gap in the section where the adhesive layer 285 is divided.
  • the position where the wind speed sensor is provided is preferably within a radius of 100 mm, more preferably within 80 mm, and particularly preferably within 50 mm in a plan view from the gap in the section where the adhesive layer 285 is divided.
  • FIG. 14 is a diagram showing a bracket 280M according to a modified example of the second embodiment.
  • the bracket 280M has an opening 281M.
  • the air dried by the defroster 20 flows into the space surrounded by the bracket 280M and the housing 290. Therefore, as in the case of using the bracket 280 shown in FIGS. 11 to 13, the same as when the bracket 280 shown in FIGS. 11 to 13 is used.
  • the formula for obtaining the heat transfer coefficient H is replaced with the following formula for obtaining the heat transfer coefficient H in consideration of the wind speed V [m / s] in the vehicle interior, and the antifogging film 220 is used.
  • the time required until cloudiness occurs Ts can be calculated.

Landscapes

  • Surface Heating Bodies (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Provided are a window glass system and a window glass apparatus such that the stable element characteristics of organic elements can be obtained. This window glass system includes: a window glass that is attached to a mobile unit; a device that is disposed on the window glass and contains an organic element comprising organic material; a temperature sensor that detects the temperature of the window glass; a temperature/humidity sensor that detects the temperature and humidity inside the passenger compartment of the mobile unit; and a control unit having a circuit which determines whether or not the glass temperature detected by the temperature sensor exceeds a dew-point temperature on the basis of the glass temperature and the temperature and humidity in the passenger compartment detected by the temperature/humidity sensor, energizes the electric heating wire or the electric heating film attached to the window glass, or the defroster, if the glass temperature is determined to be less than or equal to the dew-point temperature, and de-energizes the electric heating wire or the electric heating film or turns off the defroster when the glass temperature detected by the temperature sensor exceeds a predetermined temperature.

Description

窓ガラスシステム、及び、窓ガラス装置Window glass system and window glass device
 本発明は、窓ガラスシステム、及び、窓ガラス装置に関する。 The present invention relates to a window glass system and a window glass device.
 従来より、第1の合成樹脂製の窓材(グレージング)、ポリマー材料から作製された第1の積層中間層、ポリマー材料から作製された第2の積層中間層、可撓性のOLED(Organic Light Emitting Diode)要素又はスクリーン、ポリマー材料から作製された第3の積層中間層、及び第2の合成樹脂製の窓材を積層した輸送乗物用の窓構造がある(例えば、特許文献1参照)。 Conventionally, a first synthetic resin window material (glazing), a first laminated intermediate layer made of a polymer material, a second laminated intermediate layer made of a polymer material, and a flexible OLED (Organic Light). There is a window structure for a transport vehicle in which an Emitting Diode) element or screen, a third laminated intermediate layer made of a polymer material, and a second synthetic resin window material are laminated (see, for example, Patent Document 1).
 また、厳冬期や寒冷地などにおいて、汽車、電車、トラック、乗用車などの車両の窓ガラス、あるいは建物の窓ガラスに、積雪、着氷、着霜あるいは曇りなどが生じ、視界が妨げられるなどの問題がある。そのため、窓ガラスの加熱手段として、通電加熱ガラスや加熱された空気を送風するデフロスタが採用されている。 In addition, in severe winters and cold regions, snow, icing, frost, or cloudiness may occur on the windowpanes of vehicles such as trains, trains, trucks, and passenger cars, or on the windowpanes of buildings, obstructing visibility. There's a problem. Therefore, as a means for heating the window glass, an energized heating glass or a defroster that blows heated air is adopted.
特表2019-509957号公報Special Table 2019-509957
 ところで、従来の輸送乗物用の窓構造に含まれるOLED要素は、ある程度温度が高い高温環境下では安定的な表示等の素子特性を得ることが難しくなるおそれがある。 By the way, it may be difficult for the OLED element included in the conventional window structure for a transportation vehicle to obtain element characteristics such as stable display in a high temperature environment where the temperature is high to some extent.
 しかしながら、従来の輸送乗物用の窓構造は、窓ガラスの加熱手段を有しているものの、特に温度の管理を行っていない。なお、このような高温環境下での問題は、OLEDに限らずに有機材料製の有機素子についても同様である。 However, although the conventional window structure for transport vehicles has a means for heating the window glass, the temperature is not particularly controlled. The problem in such a high temperature environment is the same not only for OLEDs but also for organic elements made of organic materials.
 そこで、窓ガラスの加熱手段を有していても有機素子の安定的な素子特性が得られる窓ガラスシステム、及び、窓ガラス装置を提供することを目的とする。 Therefore, it is an object of the present invention to provide a window glass system and a window glass device capable of obtaining stable element characteristics of an organic element even if it has a window glass heating means.
 本発明の実施の形態の窓ガラスシステムは、移動体に取り付けられる窓ガラスと、前記窓ガラスに設けられ、有機材料製の有機素子を含むデバイスと、前記窓ガラスの温度を検出する温度センサと、前記移動体の車室内の温度及び湿度を検出する温湿度センサと、前記温度センサによって検出されるガラス温度と、前記温湿度センサによって検出される車室内の温度及び湿度とに基づいて、前記ガラス温度が露点温度を超えているかどうかを判定し、前記ガラス温度が露点温度以下であると判定すると、前記窓ガラスに取り付けられる電熱線もしくは電熱膜又はデフロスタを通電状態にし、前記温度センサによって検出されるガラス温度が所定温度を超えると、前記電熱線もしくは前記電熱膜を非通電状態にする、又は前記デフロスタをオフにする回路を有する制御部とを含む。 The window glass system according to the embodiment of the present invention includes a window glass attached to a moving body, a device provided on the window glass and including an organic element made of an organic material, and a temperature sensor for detecting the temperature of the window glass. Based on the temperature and humidity sensor that detects the temperature and humidity in the vehicle interior of the moving body, the glass temperature detected by the temperature sensor, and the temperature and humidity in the vehicle interior detected by the temperature and humidity sensor. When it is determined whether the glass temperature exceeds the dew point temperature and it is determined that the glass temperature is equal to or lower than the dew point temperature, the heating wire or the heating film or the defroster attached to the window glass is energized and detected by the temperature sensor. The glass includes a control unit having a circuit for turning off the heating wire or the heating film or turning off the defroster when the temperature of the glass exceeds a predetermined temperature.
 窓ガラスの加熱手段を有していても有機素子の安定的な素子特性が得られる窓ガラスシステム、及び、窓ガラス装置を提供することができる。 It is possible to provide a window glass system and a window glass device that can obtain stable element characteristics of an organic element even if the window glass has a heating means.
実施の形態1の窓ガラスシステムを搭載した車両を示す図である。It is a figure which shows the vehicle which mounted the window glass system of Embodiment 1. FIG. 実施の形態1の窓ガラスシステムを示す図である。It is a figure which shows the window glass system of Embodiment 1. FIG. 制御部が実行する処理を表すフローチャートを示す図である。It is a figure which shows the flowchart which shows the process which a control part executes. OLEDディスプレイの位置の変形例を示す図である。It is a figure which shows the modification of the position of an OLED display. OLEDディスプレイの位置の変形例を示す図である。It is a figure which shows the modification of the position of an OLED display. OLEDディスプレイの位置の変形例を示す図である。It is a figure which shows the modification of the position of an OLED display. HUDの配置を示す図である。It is a figure which shows the arrangement of a HUD. HUDの配置を示す図である。It is a figure which shows the arrangement of a HUD. 実施の形態2の窓ガラスシステムの一例を示す図である。It is a figure which shows an example of the window glass system of Embodiment 2. 制御部が実行する処理を表すフローチャートの一例を示す図である。It is a figure which shows an example of the flowchart which shows the process which a control part executes. 情報取得装置をガラス本体に取り付けるブラケット及び筐体の構造を示す図である。It is a figure which shows the structure of the bracket and the housing which attaches an information acquisition apparatus to a glass body. 情報取得装置をガラス本体に取り付けるブラケット及び筐体の構造を示す図である。It is a figure which shows the structure of the bracket and the housing which attaches an information acquisition apparatus to a glass body. 情報取得装置をガラス本体に取り付けるブラケット及び筐体の構造を示す図である。It is a figure which shows the structure of the bracket and the housing which attaches an information acquisition apparatus to a glass body. 実施の形態2の変形例によるブラケットを示す図である。It is a figure which shows the bracket by the modification of Embodiment 2.
 以下、本発明の窓ガラスシステム、及び、窓ガラス装置を適用した実施の形態について説明する。 Hereinafter, the window glass system of the present invention and the embodiment to which the window glass device is applied will be described.
 <実施の形態1>
 図1は、実施の形態1の窓ガラスシステム100を搭載した車両10の一例を示す図である。窓ガラスシステム100は、一例としてフロントガラスとして車両10に取り付けられる。車両10は、一例としてデフロスタ20を含む。デフロスタ20は、作動状態にされると、エアコンによって除湿されるとともに加熱された空気を窓ガラスシステム100に向かって送風し、曇りを除去する装置である。
<Embodiment 1>
FIG. 1 is a diagram showing an example of a vehicle 10 equipped with the window glass system 100 of the first embodiment. The window glass system 100 is attached to the vehicle 10 as a windshield as an example. The vehicle 10 includes a defroster 20 as an example. The defroster 20 is a device that, when activated, blows air that has been dehumidified and heated by the air conditioner toward the window glass system 100 to remove fogging.
 ここで、車両10は、例えば、EV(Electric Vehicle)車、PHV(Plug-in Hybrid Vehicle)車、HV(Hybrid Vehicle)車、ガソリン車、又はディーゼル車等の自動車である。また、車両10は、電車や汽車であってもよい。車両10は、乗員を運んで移動する移動体の一例である。 Here, the vehicle 10 is, for example, an vehicle such as an EV (Electric Vehicle) vehicle, a PHV (Plug-in Hybrid Vehicle) vehicle, an HV (Hybrid Vehicle) vehicle, a gasoline vehicle, or a diesel vehicle. Further, the vehicle 10 may be a train or a train. The vehicle 10 is an example of a moving body that carries and moves an occupant.
 また、ここでは、窓ガラスシステム100が車両10に取り付けられる形態について説明するが、窓ガラスシステム100は、車両10以外の移動体(例えば、航空機やヘリコプター等)に取り付けてもよい。 Further, although the form in which the window glass system 100 is attached to the vehicle 10 will be described here, the window glass system 100 may be attached to a moving body (for example, an aircraft, a helicopter, etc.) other than the vehicle 10.
 図2は、実施の形態1の窓ガラスシステム100の一例を示す図である。図2は、窓ガラスシステム100を車両10(図1参照)側から見た構成を示す。窓ガラスシステム100は、窓ガラス110、OLEDディスプレイ120、電熱線130、スイッチ140、制御ユニット150(温度センサ150A、温湿度センサ150B、制御部150C)を含む。電熱線130には電源160Hが接続されており、制御ユニット150には電源160LとECU(Electronic Control Unit:電子制御装置)170が接続されている。また、窓ガラスシステム100から制御ユニット150(温度センサ150A、温湿度センサ150B、制御部150C)を除いたものは、窓ガラス装置の一例である。 FIG. 2 is a diagram showing an example of the window glass system 100 of the first embodiment. FIG. 2 shows a configuration in which the window glass system 100 is viewed from the vehicle 10 (see FIG. 1) side. The window glass system 100 includes a window glass 110, an OLED display 120, a heating wire 130, a switch 140, and a control unit 150 (temperature sensor 150A, temperature / humidity sensor 150B, control unit 150C). A power supply 160H is connected to the heating wire 130, and a power supply 160L and an ECU (Electronic Control Unit) 170 are connected to the control unit 150. Further, the window glass system 100 excluding the control unit 150 (temperature sensor 150A, temperature / humidity sensor 150B, control unit 150C) is an example of the window glass device.
 ここでは、窓ガラスシステム100が窓ガラス110を含む形態について説明する。しかしながら、窓ガラスシステム100は、窓ガラス110の代わりに窓ガラス110以外のガラスを含んでいてもよい。 Here, a form in which the window glass system 100 includes the window glass 110 will be described. However, the window glass system 100 may include a glass other than the window glass 110 instead of the window glass 110.
 以下では、車両10に取り付けられた状態における窓ガラスシステム100の上下の関係を用いて説明する。 In the following, the vertical relationship of the window glass system 100 in the state of being attached to the vehicle 10 will be described.
 窓ガラス110は、ガラス本体111を有する。窓ガラス110は、さらにセラミック層112を有していてもよい。ガラス本体111は、中間膜が封入された合わせガラスであってもよい。セラミック層112は、ガラス本体111の車室内(車両10の室内)側の表面において、ガラス本体111の周囲に沿って設けられていることが好ましい。 The window glass 110 has a glass body 111. The window glass 110 may further have a ceramic layer 112. The glass body 111 may be a laminated glass in which an interlayer film is sealed. The ceramic layer 112 is preferably provided along the periphery of the glass body 111 on the surface of the glass body 111 on the vehicle interior (inside the vehicle 10) side.
 セラミック層112は、一例として、暗色セラミックペーストの焼成体であり、ガラス本体111が車両10に接着された状態で接着剤が紫外線により劣化するのを防止する目的と、車両10の外側からガラス本体111と車体との接続部分が見えないよう見栄えを良くするために形成されている。なお、セラミック層112が設けられていないガラス本体111の中央部111Aは、透明な部分である。また、ガラス本体111が合わせガラスである場合、セラミックス層は、中間膜と接するように設けられるか、ガラス本体111の車室内側の表面に設けられることが好ましい。 The ceramic layer 112 is, for example, a fired body of a dark ceramic paste, for the purpose of preventing the adhesive from being deteriorated by ultraviolet rays while the glass body 111 is adhered to the vehicle 10, and the glass body from the outside of the vehicle 10. It is formed to improve the appearance so that the connecting portion between the 111 and the vehicle body cannot be seen. The central portion 111A of the glass body 111 not provided with the ceramic layer 112 is a transparent portion. When the glass body 111 is laminated glass, the ceramic layer is preferably provided so as to be in contact with the interlayer film or on the surface of the glass body 111 on the vehicle interior side.
 OLEDディスプレイ120は、一例として、運転席の正面の下側に位置するように設けられている。ここでは一例として、車両10(図1参照)が右ハンドル車であることとするため、OLEDディスプレイ120は、車両10を前から見てガラス本体111の左側の下側に位置する。前から見た車両10の左側は、進行方向における車両10の右側である。車両10が左ハンドル車である場合には、車両10を前から見てガラス本体111の右側の下側にOLEDディスプレイ120を設ければよい。ガラス本体111が合わせガラスである場合、OLEDディスプレイ120は、中間膜に挟まれて設けられることが好ましい。OLEDディスプレイ120は、一例として、運転手に車速や車両10の状態を表す情報を表示する。なお、OLEDディスプレイ120はこのような形態に限られず、例えば、種々の画像を表示するものであってもよい。また、OLEDディスプレイ120の位置及びサイズは、図2に示すものに限られず、ガラス本体111のどの位置にあってもよく、ガラス本体111の略全面に設けられていてもよい。 As an example, the OLED display 120 is provided so as to be located below the front of the driver's seat. Here, as an example, since the vehicle 10 (see FIG. 1) is a right-hand drive vehicle, the OLED display 120 is located on the lower left side of the glass body 111 when the vehicle 10 is viewed from the front. The left side of the vehicle 10 as seen from the front is the right side of the vehicle 10 in the traveling direction. When the vehicle 10 is a left-hand steering wheel vehicle, the OLED display 120 may be provided on the lower right side of the glass body 111 when the vehicle 10 is viewed from the front. When the glass body 111 is laminated glass, the OLED display 120 is preferably provided so as to be sandwiched between interlayer films. As an example, the OLED display 120 displays information indicating the vehicle speed and the state of the vehicle 10 to the driver. The OLED display 120 is not limited to such a form, and may display various images, for example. The position and size of the OLED display 120 are not limited to those shown in FIG. 2, and may be located at any position on the glass body 111, or may be provided on substantially the entire surface of the glass body 111.
 電熱線130は、ガラス本体111の中央部111Aの車室内側の表面に設けられていることが好ましい。電熱線130は、一例としてタングステン製の導線であり、端子131に接続される。電熱線130は、銀製の導線であってもよい。端子131は、一例として銀(Ag)を印刷した銀箔製のバスバーである。電熱線130は、図2において破線で示す範囲の全体にわたって設けられている。図2に破線で示す電熱線130が設けられる範囲は、電熱線130によって加熱される加熱領域の一例である。 The heating wire 130 is preferably provided on the surface of the central portion 111A of the glass body 111 on the vehicle interior side. The heating wire 130 is, for example, a tungsten wire, and is connected to the terminal 131. The heating wire 130 may be a silver conducting wire. The terminal 131 is, for example, a bus bar made of silver foil printed with silver (Ag). The heating wire 130 is provided over the entire range shown by the broken line in FIG. The range in which the heating wire 130 shown by the broken line in FIG. 2 is provided is an example of a heating region heated by the heating wire 130.
 一方の端子131(図中左)はスイッチ140に接続され、他方の端子131(図中右)は電源160Hに接続されている。 One terminal 131 (left in the figure) is connected to the switch 140, and the other terminal 131 (right in the figure) is connected to the power supply 160H.
 ガラス本体111が合わせガラスである場合、電熱線130は、2枚のガラスの間に存在し、両ガラスを接着する中間膜に挟まれて設けられることが好ましい。電熱線130は、セラミック層112の上に設けられていてもよい。 When the glass body 111 is laminated glass, it is preferable that the heating wire 130 exists between two pieces of glass and is sandwiched between an interlayer film for adhering the two pieces of glass. The heating wire 130 may be provided on the ceramic layer 112.
 実施の形態1の窓ガラスシステム100において、電熱線130を電熱膜に代えてもよい。電熱膜は、ガラス本体111の中央部111Aに設けられることが好ましい。電熱膜は、一例としてITO(Indium Tin Oxide)膜であり、端子131に接続すればよい。 In the window glass system 100 of the first embodiment, the heating wire 130 may be replaced with a heating film. The electric heating film is preferably provided at the central portion 111A of the glass body 111. The electric heating film is an ITO (Indium Tin Oxide) film as an example, and may be connected to the terminal 131.
 スイッチ140は、ガラス本体111の車室内側の表面において、セラミック層112の上に設けられていてもよい。スイッチ140は、電熱線130又は電熱膜に接続される一方の端子と車両10のグランド電位点との間に直列に挿入される。スイッチ140のオン/オフは、制御ユニット150によって切り替えられる。なお、スイッチ140を設けず、制御ユニット150が、窓ガラス110に取り付けられる電熱線130又は電熱膜を、通電状態(オン)又は非通電状態(オフ)にしてもよい。 The switch 140 may be provided on the ceramic layer 112 on the surface of the glass body 111 on the vehicle interior side. The switch 140 is inserted in series between the heating wire 130 or one terminal connected to the heating film and the ground potential point of the vehicle 10. The on / off of the switch 140 is switched by the control unit 150. The switch 140 may not be provided, and the control unit 150 may put the heating wire 130 or the heating film attached to the window glass 110 into an energized state (on) or a non-energized state (off).
 制御ユニット150は、ガラス本体111の中央部111Aの車室内側の表面に設けられていてもよい。制御ユニット150は、制御部150Cと温度センサ150Aと温湿度センサ150Bとを有する。制御部150Cは、窓ガラス110に取り付けられる電熱線130又は電熱膜を通電状態(オン)又は非通電状態(オフ)にする。温度センサ150A及び温湿度センサ150Bは、窓ガラス110の一方の面に設けられることが好ましい。温度センサ150A及び温湿度センサ150Bは、窓ガラス110の一方の面に施されているセラミック層112の上に設けられることが好ましい。温度センサ150A及び温湿度センサ150Bは、ガラス本体111の下部に設けられることが好ましい。また、温度センサ150A及び温湿度センサ150Bは、ガラス本体111の中央部111Aのうち下部側でセラミック層112との境界の近くに設けられることが好ましい。また、温度センサ150Aについては、図2に破線で示す電熱線130が設けられる範囲(加熱領域)内に設けられることが好ましい。電熱線130によって加熱されているガラス本体111の温度を測定するためである。 The control unit 150 may be provided on the surface of the central portion 111A of the glass body 111 on the vehicle interior side. The control unit 150 includes a control unit 150C, a temperature sensor 150A, and a temperature / humidity sensor 150B. The control unit 150C turns the heating wire 130 or the heating film attached to the window glass 110 into an energized state (on) or a non-energized state (off). The temperature sensor 150A and the temperature / humidity sensor 150B are preferably provided on one surface of the window glass 110. The temperature sensor 150A and the temperature / humidity sensor 150B are preferably provided on the ceramic layer 112 provided on one surface of the window glass 110. The temperature sensor 150A and the temperature / humidity sensor 150B are preferably provided at the lower part of the glass body 111. Further, the temperature sensor 150A and the temperature / humidity sensor 150B are preferably provided on the lower side of the central portion 111A of the glass body 111 near the boundary with the ceramic layer 112. Further, the temperature sensor 150A is preferably provided within the range (heating region) where the heating wire 130 shown by the broken line in FIG. 2 is provided. This is to measure the temperature of the glass body 111 being heated by the heating wire 130.
 制御ユニット150は、筐体151をさらに有していてもよい。筐体151は、制御部150C、温度センサ150A及び温湿度センサ150Bを、内部に収納する。制御部150C、温度センサ150A及び温湿度センサ150Bには、電源160Lから電力が供給される。なお、制御ユニット150は、セラミック層112の上に固定されていてもよい。この場合には筐体151をセラミック層112の上に固定すればよい。 The control unit 150 may further have a housing 151. The housing 151 houses the control unit 150C, the temperature sensor 150A, and the temperature / humidity sensor 150B inside. Power is supplied from the power supply 160L to the control unit 150C, the temperature sensor 150A, and the temperature / humidity sensor 150B. The control unit 150 may be fixed on the ceramic layer 112. In this case, the housing 151 may be fixed on the ceramic layer 112.
 制御部150Cは、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及び内部バス等を含むコンピュータ(回路)によって実現される。制御部150Cは、温度センサ150Aによって検出されるガラス本体111の温度と、温湿度センサ150Bによって検出される車室内の温度及び湿度に基づいて、ガラス本体111の温度が露点温度に達しているかどうかを判定し、ガラス本体111の温度が露点温度に達すると電熱線130又は電熱膜を通電状態(オン)にし、ガラス本体111の温度が所定温度を超えると非通電状態(オフ)にする制御を行う。なお、以下では、温度センサ150Aによって検出されるガラス本体111の温度をガラス温度と称す。また、制御部150Cによる制御の内容等については後述する。 The control unit 150C is realized by a computer (circuit) including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an internal bus, and the like. The control unit 150C determines whether or not the temperature of the glass body 111 has reached the dew point temperature based on the temperature of the glass body 111 detected by the temperature sensor 150A and the temperature and humidity in the vehicle interior detected by the temperature / humidity sensor 150B. When the temperature of the glass body 111 reaches the dew point temperature, the heating wire 130 or the heating film is turned on (on), and when the temperature of the glass body 111 exceeds a predetermined temperature, the heating wire 130 is turned off (off). Do. In the following, the temperature of the glass body 111 detected by the temperature sensor 150A will be referred to as a glass temperature. The contents of control by the control unit 150C will be described later.
 制御部150Cは、ECU170を介して、車両10に搭載される複数のECU(Electronic Control Unit:電子制御装置)のうちのいずれかにネットワークを介して接続されていてもよい。例えば、制御部150CをECU170を介してエアコン用のECUに接続しておけば、エアコンと連携して窓ガラスシステム100を作動させることができる。また、窓ガラスシステム100全体の電源のオン/オフは、エアコン等の操作部で行えるようになっていてもよい。 The control unit 150C may be connected to any one of a plurality of ECUs (Electronic Control Units) mounted on the vehicle 10 via a network via the ECU 170. For example, if the control unit 150C is connected to the ECU for the air conditioner via the ECU 170, the window glass system 100 can be operated in cooperation with the air conditioner. Further, the power of the entire window glass system 100 may be turned on / off by an operation unit such as an air conditioner.
 温度センサ150Aは、ガラス温度を検出する。温度センサ150Aは、ガラス本体111に接触していることが好ましい。温湿度センサ150Bは、移動体の車室内の温度及び湿度を検出する。温湿度センサ150Bは、ガラス本体111上に設けられていてもよいが、ガラス本体111から離れていることがより好ましい。温湿度センサ150Bとしては、温度センサと湿度センサとが1つのチップとして一体化されたものを用いることができる。温度センサ150A及び温湿度センサ150Bは制御部150Cに接続されており、検出したガラス温度、車室内の温度、及び車室内の湿度を表すデータを制御部150Cに出力する。 The temperature sensor 150A detects the glass temperature. The temperature sensor 150A is preferably in contact with the glass body 111. The temperature / humidity sensor 150B detects the temperature and humidity in the vehicle interior of the moving body. The temperature / humidity sensor 150B may be provided on the glass main body 111, but it is more preferable that the temperature / humidity sensor 150B is separated from the glass main body 111. As the temperature / humidity sensor 150B, a temperature sensor and a humidity sensor integrated as one chip can be used. The temperature sensor 150A and the temperature / humidity sensor 150B are connected to the control unit 150C, and output data representing the detected glass temperature, the temperature inside the vehicle interior, and the humidity inside the vehicle interior to the control unit 150C.
 なお、温湿度センサ150Bの代わりに別々の温度センサと湿度センサを用いてもよい。車室内の温度を検出する温度センサとしては、例えば熱電対を用いることができる。車室内の湿度を検出する湿度センサとしては、例えば、湿度の変化に応じて変化する素子の抵抗値を出力するセンサ、又は、湿度の変化により変化する素子の静電容量を出力するセンサを用いることができる。 Note that a separate temperature sensor and humidity sensor may be used instead of the temperature / humidity sensor 150B. As a temperature sensor that detects the temperature inside the vehicle interior, for example, a thermocouple can be used. As the humidity sensor that detects the humidity in the vehicle interior, for example, a sensor that outputs the resistance value of the element that changes according to the change in humidity or a sensor that outputs the capacitance of the element that changes according to the change in humidity is used. be able to.
 電源160Hは、電熱線130に接続される他方の端子131と、車両10のバッテリ及び/又は発電機との間に接続されており、バッテリ及び/又は発電機から供給される電力を電熱線130又は電熱膜に供給する。電源160Hの出力電圧は、電源160Lの出力電圧よりも高い。電源160Hは、一例として電圧が12Vの電力を電熱線130に供給する。 The power supply 160H is connected between the other terminal 131 connected to the heating wire 130 and the battery and / or generator of the vehicle 10, and the electric power supplied from the battery and / or the generator is supplied to the heating wire 130. Alternatively, it is supplied to the electric heating film. The output voltage of the power supply 160H is higher than the output voltage of the power supply 160L. The power supply 160H supplies electric power having a voltage of 12V to the heating wire 130 as an example.
 電源160Lは、制御ユニット150と、車両10のバッテリ及び/又は発電機との間に接続されており、バッテリ及び/又は発電機から供給される電力を制御ユニット150に供給する。電源160Lの出力電圧は、電源160Hの出力電圧よりも低く、一例として5Vである。 The power supply 160L is connected between the control unit 150 and the battery and / or generator of the vehicle 10, and supplies the electric power supplied from the battery and / or the generator to the control unit 150. The output voltage of the power supply 160L is lower than the output voltage of the power supply 160H, and is 5V as an example.
 次に、制御部150Cによる電熱線130又は電熱膜の通電状態(オン)/非通電状態(オフ)の制御について説明する。 Next, the control of the energized state (on) / non-energized state (off) of the heating wire 130 or the heating film by the control unit 150C will be described.
 図3は、制御部150Cが実行する処理を表すフローチャートの一例を示す図である。 FIG. 3 is a diagram showing an example of a flowchart showing the processing executed by the control unit 150C.
 制御部150Cは、ECU170によって電源が投入されると処理をスタートする。 The control unit 150C starts processing when the power is turned on by the ECU 170.
 制御部150Cは、温度センサ150A及び温湿度センサ150Bによって検出されるガラス温度、車室内の温度及び湿度に基づいて、ガラス温度が露点温度を超えているかどうかを判定する(ステップS1)。 The control unit 150C determines whether or not the glass temperature exceeds the dew point temperature based on the glass temperature, the temperature and humidity in the vehicle interior detected by the temperature sensor 150A and the temperature / humidity sensor 150B (step S1).
 ガラス温度が露点温度を超えているかどうかは、ガラス温度と飽和水蒸気圧との関係を示す曲線を表すデータを制御部150Cの内部メモリに格納しておき、ガラス温度と、車室内の温度及び湿度から求まる飽和水蒸気圧とに基づいて、ガラス温度が露点温度を超えているかどうかを判定すればよい。 Whether or not the glass temperature exceeds the dew point temperature is determined by storing data representing a curve showing the relationship between the glass temperature and the saturated water vapor pressure in the internal memory of the control unit 150C, and storing the glass temperature and the temperature and humidity in the vehicle interior. It may be determined whether or not the glass temperature exceeds the dew point temperature based on the saturated water vapor pressure obtained from.
 制御部150Cは、ガラス温度が露点温度を超えている(S1:YES)と判定すると、ステップS1の処理を繰り返し実行する。制御部150Cは、ガラス温度が露点温度を超えていない(S1:NO)と判定すると、電熱線130もしくは電熱膜を通電状態にする、又はデフロスタ20をオンにする(ステップS2)。ガラス本体111の曇りを除去して視界が良好な状態にするとともに、OLEDディスプレイ120の視認性を良好な状態にするためである。 When the control unit 150C determines that the glass temperature exceeds the dew point temperature (S1: YES), the control unit 150C repeatedly executes the process of step S1. When the control unit 150C determines that the glass temperature does not exceed the dew point temperature (S1: NO), the heating wire 130 or the heating film is energized, or the defroster 20 is turned on (step S2). This is to remove fogging of the glass body 111 to improve the visibility and to improve the visibility of the OLED display 120.
 制御部150Cは、温度センサ150Aによって検出されるガラス温度が温度Tαを超えたかどうかを判定する(ステップS3)。制御部150Cは、ガラス温度が温度Tαを超えるまでステップS3の判定を繰り返し行う。 The control unit 150C determines whether or not the glass temperature detected by the temperature sensor 150A exceeds the temperature Tα (step S3). The control unit 150C repeats the determination in step S3 until the glass temperature exceeds the temperature Tα.
 温度Tαは、一例として40℃である。温度Tαは、OLEDを熱から保護するためのガラス温度の上限であり、OLEDが晒される上限温度である。OLEDディスプレイ120は、有機材料製の有機素子であるOLEDを発光部に含むので、安定的な素子特性を得るためにガラス温度が40℃を超えないように制御することとしたものである。 The temperature Tα is 40 ° C. as an example. The temperature Tα is the upper limit of the glass temperature for protecting the OLED from heat, and is the upper limit temperature to which the OLED is exposed. Since the OLED display 120 includes an OLED, which is an organic element made of an organic material, in the light emitting portion, the glass temperature is controlled so as not to exceed 40 ° C. in order to obtain stable element characteristics.
 制御部150Cは、ガラス温度が温度Tαを超えた(S3:YES)と判定すると、電熱線130もしくは電熱膜を非通電状態にする、又はデフロスタ20をオフにする(ステップS4)。ガラス温度が温度Tαを超えないようにするために、電熱線130、電熱膜又はデフロスタ20を非通電状態(オフ)にすることとしたものである。 When the control unit 150C determines that the glass temperature exceeds the temperature Tα (S3: YES), the heating wire 130 or the heating film is de-energized, or the defroster 20 is turned off (step S4). In order to prevent the glass temperature from exceeding the temperature Tα, the heating wire 130, the heating film, or the defroster 20 is turned off.
 なお、制御部150Cは、ガラス温度が温度Tαを超えていない(S3:NO)と判定すると、ガラス温度が温度Tαを超えるまでステップS3の処理を繰り返し実行する。 When the control unit 150C determines that the glass temperature does not exceed the temperature Tα (S3: NO), the control unit 150C repeatedly executes the process of step S3 until the glass temperature exceeds the temperature Tα.
 以上で一連の処理が終了する。窓ガラスシステム100の電源がオンにされている間は、制御部150Cは、ステップS1からS4の処理を所定の制御周期で繰り返し実行する。 This completes the series of processing. While the power of the window glass system 100 is turned on, the control unit 150C repeatedly executes the processes of steps S1 to S4 in a predetermined control cycle.
 以上のように、実施の形態によれば、ガラス温度、車室内の温度及び湿度に基づき、ガラス本体111の温度が露点温度に達しているかどうかを判定し、ガラス本体111の温度が露点温度に達すると電熱線130もしくは電熱膜を通電状態にする、又はデフロスタ20をオンにし、ガラス本体111の温度が所定温度を超えると非通電状態又はオフにする制御を行う。 As described above, according to the embodiment, it is determined whether or not the temperature of the glass body 111 has reached the dew point temperature based on the glass temperature, the temperature in the vehicle interior, and the humidity, and the temperature of the glass body 111 becomes the dew point temperature. When it reaches, the heating wire 130 or the heating film is turned on, or the defroster 20 is turned on, and when the temperature of the glass body 111 exceeds a predetermined temperature, the heating wire 130 or the heating film is turned off or turned off.
 このため、OLEDディスプレイ120の安定的な素子特性が得られるようにガラス温度の上昇を抑制することができる。 Therefore, it is possible to suppress an increase in the glass temperature so that stable element characteristics of the OLED display 120 can be obtained.
 したがって、有機素子の一例であるOLEDを含むOLEDディスプレイ120の安定的な素子特性が得られる窓ガラスシステム100を提供することができる。 Therefore, it is possible to provide a window glass system 100 capable of obtaining stable element characteristics of an OLED display 120 including an OLED, which is an example of an organic element.
 また、ガラス本体111の温度が露点温度に達すると電熱線130もしくは電熱膜を通電状態にする、又はデフロスタをオンにすることにより、ガラス本体111の曇りの発生を未然に抑制してガラス本体111の視界が良好で、かつ、OLEDディスプレイ120の視認性が良好な状態にすることができる。 Further, when the temperature of the glass body 111 reaches the dew point temperature, the heating wire 130 or the heating film is energized, or the defroster is turned on to suppress the occurrence of fogging of the glass body 111 and prevent the glass body 111 from becoming cloudy. The visibility of the OLED display 120 can be improved and the visibility of the OLED display 120 can be improved.
 なお、電熱線130と電源160Hとの間に電圧変換部を設け、電熱線130に供給される電圧を10V以下に抑えてもよい。ガラス温度の上昇を緩やかにして、ガラス温度が例えば40℃に達して電熱線130を非通電状態(オフ)にする際に、ガラス温度が下がりやすくするためである。これは、電熱線130の代わりに電熱膜を用いる場合も同様である。電熱膜の場合は、供給される電圧を40V以下に抑えてもよい。 A voltage conversion unit may be provided between the heating wire 130 and the power supply 160H to suppress the voltage supplied to the heating wire 130 to 10 V or less. This is because the increase in the glass temperature is moderated so that the glass temperature tends to decrease when the glass temperature reaches, for example, 40 ° C. and the heating wire 130 is turned off. This also applies when a heating film is used instead of the heating wire 130. In the case of an electric heating film, the supplied voltage may be suppressed to 40 V or less.
 また、電熱線130の電力密度を400W/m以下に抑えてもよい。ガラス温度の上昇を緩やかにして、ガラス温度が例えば40℃に達して電熱線130を非通電状態(オフ)にする際に、ガラス温度が下がりやすくするためである。これは、電熱線130の代わりに電熱膜を用いる場合も同様である。なお、電熱線130の電力密度とは、単位面積あたりの電熱線130に供給される電力である。電熱膜の場合は、単位面積あたりの電熱膜に供給される電力である。 Further, the power density of the heating wire 130 may be suppressed to 400 W / m 2 or less. This is because the increase in the glass temperature is moderated so that the glass temperature tends to decrease when the glass temperature reaches, for example, 40 ° C. and the heating wire 130 is turned off. This also applies when a heating film is used instead of the heating wire 130. The power density of the heating wire 130 is the power supplied to the heating wire 130 per unit area. In the case of an electric heating film, it is the electric power supplied to the electric heating film per unit area.
 また、窓ガラスシステム100が有機素子を含むデバイスとしてOLEDディスプレイ120又はHUD(Head Up Display:ヘッドアップディスプレイ)の光学装置を含む場合、電熱線130に印加される電圧を7V以下にして、かつ、電熱線130の電力密度を400W/m以下に抑えてもよい。ガラス温度の上昇を緩やかにして、ガラス温度が例えば40℃に達して電熱線130を非通電状態(オフ)にする際に、ガラス温度が下がりやすくするためである。これは、電熱線130の代わりに電熱膜を用いる場合も同様である。 When the window glass system 100 includes an OLED display 120 or an optical device of a HUD (Head Up Display) as a device including an organic element, the voltage applied to the heating wire 130 is set to 7 V or less, and the voltage is set to 7 V or less. The power density of the heating wire 130 may be suppressed to 400 W / m 2 or less. This is because the increase in the glass temperature is moderated so that the glass temperature tends to decrease when the glass temperature reaches, for example, 40 ° C. and the heating wire 130 is turned off. This also applies when a heating film is used instead of the heating wire 130.
 また、ガラス本体111に電熱線130が設けられている場合、電熱線130同士の間隔は3mm以上に設定してもよい。電熱線130同士の間隔を広めに取ることにより、ガラス温度が上昇しすぎないようにするためである。 Further, when the heating wire 130 is provided on the glass body 111, the distance between the heating wires 130 may be set to 3 mm or more. This is to prevent the glass temperature from rising too much by widening the distance between the heating wires 130.
 ガラス本体111に電熱線130が設けられている場合は、電熱線130の線幅は、25μm以上に設定してもよい。電熱線130の線幅を太めにすることにより、電熱線130の電気抵抗を小さくしてガラス温度が上昇しすぎないようにするためである。 When the heating wire 130 is provided on the glass body 111, the line width of the heating wire 130 may be set to 25 μm or more. This is because the wire width of the heating wire 130 is increased to reduce the electric resistance of the heating wire 130 so that the glass temperature does not rise too much.
 さらに、ガラス本体111に設けられた電熱線130又は電熱膜が通電状態(オン)である場合、電熱線130又は電熱膜に流れる電流が周期的に変動してもよい。電流が所定時間比率で周期的に変動することにより、ガラス温度の上昇を緩やかにして、ガラス温度が例えば40℃に達して電熱線130又は電熱膜を非通電状態(オフ)にする際に、ガラス温度が下がりやすくなる。特に、電流が周期的に非通電状態となることが好ましい。一例として、5秒毎に通電状態(オン)と非通電状態(オフ)を繰り返すようにすることで、電流が周期的に非通電状態になるようにすればよい。 Further, when the heating wire 130 or the heating film provided on the glass body 111 is in the energized state (ON), the current flowing through the heating wire 130 or the heating film may fluctuate periodically. By periodically fluctuating the current at a predetermined time ratio, the rise in the glass temperature is moderated, and when the glass temperature reaches, for example, 40 ° C., the heating wire 130 or the heating film is turned off. The glass temperature tends to drop. In particular, it is preferable that the current is periodically de-energized. As an example, the current may be periodically de-energized by repeating the energized state (on) and the non-energized state (off) every 5 seconds.
 また、以上では、車両10のフロントガラスとして用いられる窓ガラスシステム100にOLEDディスプレイ120が含まれる形態について説明した。しかしながら、OLEDディスプレイ120は、フロントガラスに限られず、サイドガラス、リアガラス、ガラス製のルーフパネル、又は、ガラス製のサンルーフ等に取り付けられて表示等を行うように構成されていてもよい。 Further, in the above, the mode in which the OLED display 120 is included in the window glass system 100 used as the windshield of the vehicle 10 has been described. However, the OLED display 120 is not limited to the windshield, and may be configured to be attached to a side glass, a rear glass, a glass roof panel, a glass sunroof, or the like for display or the like.
 また、以上では、窓ガラスシステム100が有機素子の一例としてOLEDを含む形態について説明した。しかしながら、窓ガラスシステム100に含まれる有機素子は、OLEDに限られず、例えば、液晶素子、調光素子、ホログラム、LEDフィルム等であってもよい。すなわち、OLEDディスプレイ120の代わりに、有機材料製のディスプレイ部等を含むLCD(Liquid Crystal Display:液晶ディスプレイ)、調光ディスプレイ、HUD、透明スクリーン等を用いてもよい。 Further, in the above, the form in which the window glass system 100 includes the OLED as an example of the organic element has been described. However, the organic element included in the window glass system 100 is not limited to the OLED, and may be, for example, a liquid crystal element, a dimming element, a hologram, an LED film, or the like. That is, instead of the OLED display 120, an LCD (Liquid Crystal Display) including a display unit made of an organic material, a dimming display, a HUD, a transparent screen, or the like may be used.
 LCDは、OLEDの代わりに液晶素子を含む表示装置として用いることができ、ガラス本体111の一部や、サイドガラス、リアガラス、ガラス製のルーフパネル、又は、ガラス製のサンルーフ等に設けてもよい。 The LCD can be used as a display device including a liquid crystal element instead of the OLED, and may be provided on a part of the glass body 111, a side glass, a rear glass, a glass roof panel, a glass sunroof, or the like.
 調光ディスプレイは、電圧の印加によって透過率を変更することで、車外の光の車内への透過量を調整可能な調光素子を含んでいればよく、ガラス本体111の一部や、サイドガラス、リアガラス、ガラス製のルーフパネル、又は、ガラス製のサンルーフ等に設けてもよい。調光素子としては、懸濁粒子素子や液晶素子が挙げられる。 The dimming display may include a dimming element that can adjust the amount of light transmitted from the outside of the vehicle to the inside of the vehicle by changing the transmittance by applying a voltage. It may be provided on the rear glass, a glass roof panel, a glass sunroof, or the like. Examples of the dimming element include a suspended particle element and a liquid crystal element.
 また、HUDは、有機素子を含む表示装置としてガラス本体111の一部等に設けることができる。有機素子を構成する材料としては、ホログラムとして用いられる重クロム酸ゼラチン、フォトポリマ―の他、液晶素子、PETやPENを用いた樹脂積層膜、厚さが略漸減したポリビニルブチラール樹脂膜が挙げられる。有機素子は、ガラス本体111の一部や、サイドガラス、リアガラス、ガラス製のルーフパネル、又は、ガラス製のサンルーフ等に設けてもよい。また、有機素子は、PETやPENを用いた樹脂積層膜、厚さが略漸減したポリビニルブチラール樹脂膜であってもよい。 Further, the HUD can be provided on a part of the glass body 111 or the like as a display device including an organic element. Examples of the material constituting the organic element include potassium dichromate and photopolymer used as holograms, liquid crystal elements, resin laminated films using PET and PEN, and polyvinyl butyral resin films having a substantially reduced thickness. .. The organic element may be provided on a part of the glass body 111, a side glass, a rear glass, a glass roof panel, a glass sunroof, or the like. Further, the organic element may be a resin laminated film using PET or PEN, or a polyvinyl butyral resin film whose thickness is substantially gradually reduced.
 また、透明スクリーンは、ガラス本体111の一部や、サイドガラス、リアガラス、ガラス製のルーフパネル、又は、ガラス製のサンルーフ等に設け、透過率をある程度低くした状態で、プロジェクタ等から出力される画像を投影できるように構成されていればよい。透明スクリーン用有機素子としては、光硬化性樹脂、熱可塑性樹脂、熱硬化性樹脂、ゾルゲル法により得られるシリカや有機無機ハイブリッド材料が挙げられる。具体的には、ポリエステル樹脂(PET、ポリエチレンナフタレート等)、ポリカーボネート樹脂、トリアセチルセルロース樹脂、シクロオレフィンポリマー樹脂、凹凸構造を有するアクリル樹脂である。 Further, the transparent screen is provided on a part of the glass body 111, the side glass, the rear glass, the roof panel made of glass, the sunroof made of glass, or the like, and the image is output from the projector or the like with the transmittance lowered to some extent. It suffices if it is configured so that Examples of the organic element for a transparent screen include a photocurable resin, a thermoplastic resin, a thermosetting resin, silica obtained by a sol-gel method, and an organic-inorganic hybrid material. Specifically, it is a polyester resin (PET, polyethylene naphthalate, etc.), a polycarbonate resin, a triacetyl cellulose resin, a cycloolefin polymer resin, and an acrylic resin having an uneven structure.
 また、LEDフィルムは有機素子を含む発光装置としてガラス本体111の一部等に設けることができる。PETやPENを用いた樹脂積層膜等にUV硬化樹脂等でLEDを固定構成が例として挙げられる。 Further, the LED film can be provided on a part of the glass body 111 or the like as a light emitting device including an organic element. An example is a configuration in which an LED is fixed to a resin laminated film using PET or PEN with a UV curable resin or the like.
 また、OLEDディスプレイ120は、図2に示すように運転席の正面の下側に位置するように設ける形態に限らず、図4乃至図6に示す位置に設けてもよい。図4乃至図6は、OLEDディスプレイ120の位置の変形例を示す図である。 Further, the OLED display 120 is not limited to the form provided so as to be located below the front of the driver's seat as shown in FIG. 2, and may be provided at the position shown in FIGS. 4 to 6. 4 to 6 are views showing a modified example of the position of the OLED display 120.
 図4乃至図6では、一例として、ガラス本体111の中央部111Aを上下方向において3つの領域50A~50Cに分割している。領域50Aは、3つの領域50A~50Cのうちの上下方向における中央に位置し、領域50Bは上側に位置し、領域50Cは下側に位置する。領域50Aと領域50Cを合わせた領域は、運転者の運転視界領域になる領域である。ここで、一例として、運転視界領域は、ガラス本体111の中央部111Aのうち、平均的な運転者の車両10の走行中における視界に含まれる範囲にある領域であり、意図的に視線を逸らして見る範囲は含まれない。 In FIGS. 4 to 6, as an example, the central portion 111A of the glass body 111 is divided into three regions 50A to 50C in the vertical direction. The region 50A is located in the center of the three regions 50A to 50C in the vertical direction, the region 50B is located on the upper side, and the region 50C is located on the lower side. The combined region of the region 50A and the region 50C is a region that becomes the driver's driving field of view region. Here, as an example, the driving field of view is a range of the central portion 111A of the glass body 111 that is included in the field of view of the average driver while the vehicle 10 is running, and the line of sight is intentionally deflected. The range to be viewed is not included.
 領域50Aは、ガラス本体111の中央部111Aから、運転中には殆ど見ることがない領域50Bと、運転視界領域のうち、最も下方の帯状の領域50Cとを除いた部分に相当する。 The region 50A corresponds to a portion of the central portion 111A of the glass body 111 excluding the region 50B which is rarely seen during operation and the lowermost strip-shaped region 50C in the driving field of view region.
 領域50Bは、ガラス本体111の中央部111Aのうちの最も上側において左右方向に延在する帯状の領域である。領域50Bは、一例として車両10が走行中の場合には運転者が意図的に視野を上方に向けることで視認できる領域である。領域50Bは、凹部51Bを有する。凹部51Bは、中央部111Aの凹部111A0に対応して設けられている。凹部111A0は、中央部111Aの上端で左右方向における中央部に設けられ、ルームミラーや、自動ブレーキ又は自動運転等のために車両10の前方の画像を取得するカメラを避けるために、中央部111Aの上端が下方に凹んだ部分である。凹部51Bは、領域50Bの上側において、左右方向の中央部に設けられ、領域50Bの上端が下側に凹んだ領域である。 The area 50B is a band-shaped area extending in the left-right direction at the uppermost side of the central portion 111A of the glass body 111. The area 50B is, for example, an area that can be visually recognized by the driver intentionally turning his / her field of view upward when the vehicle 10 is running. The region 50B has a recess 51B. The recess 51B is provided corresponding to the recess 111A0 of the central portion 111A. The recess 111A0 is provided at the upper end of the central portion 111A in the central portion in the left-right direction, and is provided in the central portion 111A in order to avoid a rearview mirror and a camera that acquires an image of the front of the vehicle 10 for automatic braking or automatic driving. The upper end of the is a part that is recessed downward. The recess 51B is a region provided in the central portion in the left-right direction on the upper side of the region 50B, and the upper end of the region 50B is recessed downward.
 また、領域50Cは、ガラス本体111の中央部111Aのうちの最も下側において左右方向に延在する帯状の領域である。領域50Cは、一例として車両10が走行中の場合には運転者が意図的に視野を下方に向けることで視認できる領域である。なお、車両10の種類によってガラス本体111の上下方向と左右方向のサイズは異なる。また、車両10の種類によってガラス本体111と運転席の位置関係は異なる。このため、領域50A~50Cは、車両10の種類によって異なるが、上側から下側にかけて領域50B、領域50A、領域50Cの順に並んでいる。領域50Aは、領域50A~50Cのうち上下方向における真ん中に位置する領域である。 Further, the region 50C is a strip-shaped region extending in the left-right direction at the lowermost side of the central portion 111A of the glass body 111. The area 50C is, for example, an area that can be visually recognized by the driver intentionally turning the field of view downward when the vehicle 10 is running. The size of the glass body 111 in the vertical direction and the horizontal direction differs depending on the type of the vehicle 10. Further, the positional relationship between the glass body 111 and the driver's seat differs depending on the type of vehicle 10. Therefore, the areas 50A to 50C are arranged in the order of the area 50B, the area 50A, and the area 50C from the upper side to the lower side, although the areas 50A to 50C differ depending on the type of the vehicle 10. The region 50A is a region located in the center of the regions 50A to 50C in the vertical direction.
 図4では、OLEDディスプレイ120は、ガラス本体111の上側の領域50B内に設けられている。ガラス本体111が合わせガラスである場合、OLEDディスプレイ120は、中間膜に挟まれて設けられることが好ましい。領域50Bに設けられるOLEDディスプレイ120には、例えば、運転者を含む乗員のために、交通標識、信号の表示、ガラス本体111を通じて乗員が見ることができる山の名称や標高等の情報、又は、現在位置に関する情報等を表示することができる。また、車両10の外部に抜けて表示可能なように領域50BにOLEDディスプレイ120を設ける場合には、「どうぞわたってください」等の歩行者向けのメッセージを表示してもよい。 In FIG. 4, the OLED display 120 is provided in the upper region 50B of the glass body 111. When the glass body 111 is laminated glass, the OLED display 120 is preferably provided so as to be sandwiched between interlayer films. The OLED display 120 provided in the area 50B includes, for example, traffic signs, signal displays, information such as mountain names and altitudes that can be seen by the occupants through the glass body 111, or information such as altitude for the occupants including the driver. Information about the current position can be displayed. Further, when the OLED display 120 is provided in the area 50B so that it can be displayed outside the vehicle 10, a message for pedestrians such as "please cross" may be displayed.
 図5では、OLEDディスプレイ120は、ガラス本体111の下側の領域50C内に設けられている。ガラス本体111が合わせガラスである場合、OLEDディスプレイ120は、中間膜に挟まれて設けられることが好ましい。領域50Cに設けられるOLEDディスプレイ120には、例えば、運転者を含む乗員のために、ナビゲーションシステムの進行方向等の少なくとも一部の表示や、交通標識、信号の表示、又は、現在位置に関する情報等を表示することができる。 In FIG. 5, the OLED display 120 is provided in the area 50C below the glass body 111. When the glass body 111 is laminated glass, the OLED display 120 is preferably provided so as to be sandwiched between interlayer films. On the OLED display 120 provided in the area 50C, for example, for the occupants including the driver, at least a part of the display such as the traveling direction of the navigation system, a traffic sign, a signal display, information on the current position, etc. Can be displayed.
 図6には、4つのOLEDディスプレイ120を示す。4つのOLEDディスプレイ120は、ガラス本体111の中央部111Aの端に沿って設けられている。より具体的には、図6では、中央部111Aの下端の部分111A1、右端のうちの下方の部分111A2、上端のうちの右側の部分111A3、中央部111Aの外側の部分111Eに設けられている。部分111Eは、中央部111Aの外側に位置し、中央部111Aの凹部111A0に相当する部分である。4つのOLEDディスプレイ120は、ガラス本体111が合わせガラスである場合、中間膜に挟まれて設けられることが好ましい。 FIG. 6 shows four OLED displays 120. The four OLED displays 120 are provided along the edge of the central portion 111A of the glass body 111. More specifically, in FIG. 6, the lower end portion 111A1 of the central portion 111A, the lower portion 111A2 of the right end, the right portion 111A3 of the upper end portion, and the outer portion 111E of the central portion 111A are provided. .. The portion 111E is located outside the central portion 111A and corresponds to the recess 111A0 of the central portion 111A. When the glass body 111 is laminated glass, the four OLED displays 120 are preferably provided so as to be sandwiched between interlayer films.
 4つのOLEDディスプレイ120には、例えば、運転者を含む乗員のために、ナビゲーションシステムの進行方向等の少なくとも一部の表示や、交通標識、信号の表示、又は、現在位置に関する情報等を表示することができる。なお、部分111A1~111A3及び111Eに、4つのOLEDディスプレイ120を設けなくてもよく、部分111A1~111A3及び111Eのうちの少なくとも1つにOLEDディスプレイ120を設ける構成であってもよい。また、4つの部分111A1~111A3及び111Eは、右ハンドル車と左ハンドル車で車両10の幅方向における中心を前後方向に貫く軸を対称軸として線対称であってもよいし、同一の位置に設けられていてもよい。 The four OLED displays 120 display, for example, at least a part of the direction of travel of the navigation system, traffic signs, signal displays, information on the current position, and the like for occupants including the driver. be able to. It is not necessary to provide the four OLED displays 120 in the portions 111A1 to 111A3 and 111E, and the OLED display 120 may be provided in at least one of the portions 111A1 to 111A3 and 111E. Further, the four portions 111A1 to 111A3 and 111E may be line-symmetrical with the axis penetrating the center in the width direction of the vehicle 10 in the front-rear direction as the axis of symmetry in the right-hand steering wheel vehicle and the left-handling vehicle, or at the same position. It may be provided.
 また、図4乃至図6では、OLEDディスプレイ120の配置について説明したが、OLEDディスプレイ120の代わりに透明スクリーンを設けてもよい。また、図6のような複数の部分111A1~111A3及び111EにOLEDディスプレイ120と透明スクリーンを設けてもよい。また、図4及び図5において、OLEDディスプレイ120又は透明スクリーンは、領域50A~50Cを跨いで設けられていてもよく、図6においても同様である。 Further, although the arrangement of the OLED display 120 has been described with reference to FIGS. 4 to 6, a transparent screen may be provided instead of the OLED display 120. Further, the OLED display 120 and the transparent screen may be provided in the plurality of portions 111A1 to 111A3 and 111E as shown in FIG. Further, in FIGS. 4 and 5, the OLED display 120 or the transparent screen may be provided so as to straddle the regions 50A to 50C, and the same applies to FIG.
 図7及び図8は、HUD180の配置を示す図である。図7及び図8では、領域50B及び50Dを用いて説明する。領域50Bは、図4乃至図6に示す領域50Bと同一である。領域50Dは、図4乃至図6に示す領域50Aと領域50Cとを合わせた領域である。すなわち、領域50Dは、運転視界領域である。 7 and 8 are diagrams showing the arrangement of the HUD 180. 7 and 8 will be described with reference to regions 50B and 50D. The area 50B is the same as the area 50B shown in FIGS. 4 to 6. The region 50D is a region in which the regions 50A and the regions 50C shown in FIGS. 4 to 6 are combined. That is, the area 50D is a driving field of view area.
 図7に示すように、HUD180は、領域50Dの全体に設けられてもよく、図8に示すように、領域50Dのうちの左右方向における約半分の領域に設けてもよい。HUD180は、運転者の座席の前方に位置するため、図8に示すHUD180は、一例として左ハンドル車のための配置である。HUD180には、一例として、運転者を含む乗員のために、ナビゲーションシステムの進行方向等の少なくとも一部の表示や、交通標識、信号の表示、又は、現在位置に関する情報等を表示することができる。 As shown in FIG. 7, the HUD 180 may be provided in the entire region 50D, or may be provided in about half of the region 50D in the left-right direction as shown in FIG. Since the HUD 180 is located in front of the driver's seat, the HUD 180 shown in FIG. 8 is, for example, an arrangement for a left-hand steering wheel vehicle. As an example, the HUD 180 can display at least a part of the direction of travel of the navigation system, a traffic sign, a signal display, information on the current position, and the like for the occupants including the driver. ..
 また、以上では、制御ユニット150は、ガラス本体111の車室内側の表面に設けられている形態について説明したが、制御ユニット150は、ガラス本体111の車室内側のセラミック層112の上に設けられていてもよい。この場合は、温湿度センサ150Bによって検出される温度が黒いセラミック層112の影響を受けるので、検出される温度をセラミック層112が存在しない中央部111Aの値に換算すればよい。換算には、例えば換算式を用いればよい。 Further, in the above, the form in which the control unit 150 is provided on the surface of the glass body 111 on the vehicle interior side has been described, but the control unit 150 is provided on the ceramic layer 112 on the vehicle interior side of the glass body 111. It may have been. In this case, since the temperature detected by the temperature / humidity sensor 150B is affected by the black ceramic layer 112, the detected temperature may be converted into the value of the central portion 111A in which the ceramic layer 112 does not exist. For conversion, for example, a conversion formula may be used.
 また、以上では、制御部150Cが制御ユニット150に含まれ、ガラス本体111の中央部111Aの車室内側の表面に設けられている形態について説明したが、制御部150Cが設けられる位置はこのような位置に限られるものではない。例えば、制御部150Cは、温湿度センサ150Bにケーブルを介して接続されていて、ガラス本体111には設けられていなくてもよい。また、制御部150Cは、温湿度センサ150B又はスイッチ140と、車両10のECUとを接続するケーブルの途中に設けられていてもよい。 Further, in the above description, the mode in which the control unit 150C is included in the control unit 150 and is provided on the surface of the central portion 111A of the glass body 111 on the vehicle interior side has been described. It is not limited to any position. For example, the control unit 150C may be connected to the temperature / humidity sensor 150B via a cable and may not be provided on the glass body 111. Further, the control unit 150C may be provided in the middle of the cable connecting the temperature / humidity sensor 150B or the switch 140 and the ECU of the vehicle 10.
 また、以上では、制御部150Cが温湿度センサ150Bによって検出される温度及び湿度に基づいて電熱線130を通電状態(オン)にする形態について説明したが、電熱線130の代わりに、又は、電熱線130に加えて車両10のデフロスタ20を作動させてもよい。 Further, in the above description, the mode in which the control unit 150C turns on the heating wire 130 based on the temperature and humidity detected by the temperature / humidity sensor 150B has been described. In addition to the heat ray 130, the defroster 20 of the vehicle 10 may be operated.
 <実施の形態2>
 図9は、実施の形態2の窓ガラスシステム200の一例を示す図である。窓ガラスシステム200は、窓ガラス110、OLEDディスプレイ120、電熱線130、スイッチ140、制御ユニット250(温度センサ150A、温湿度センサ150B、制御部250C)、防曇膜220を含む。
<Embodiment 2>
FIG. 9 is a diagram showing an example of the window glass system 200 of the second embodiment. The window glass system 200 includes a window glass 110, an OLED display 120, a heating wire 130, a switch 140, a control unit 250 (temperature sensor 150A, temperature / humidity sensor 150B, control unit 250C), and an antifogging film 220.
 実施の形態2の窓ガラスシステム200は、実施の形態1の窓ガラスシステム100に防曇膜220を追加するとともに、制御ユニット150の代わりに制御ユニット250を含む構成を有する。このため、実施の形態1の窓ガラスシステム100の構成要素と同様の構成要素については同一符号を用いて説明を省略する。また、以下では相違点を中心に説明する。 The window glass system 200 of the second embodiment has a configuration in which the antifogging film 220 is added to the window glass system 100 of the first embodiment and the control unit 250 is included instead of the control unit 150. Therefore, the same components as those of the window glass system 100 of the first embodiment will be described by using the same reference numerals. In addition, the differences will be mainly described below.
 防曇膜220は、窓ガラス110の一方の面に設けられる。防曇膜220は、ガラス本体111の中央部111Aの車室内(車両10の室内)側の表面に設けられていることが好ましい。防曇膜220は、吸水性を有する。防曇膜220は、高い吸水性を実現するため、吸水性高分子又は親水性高分子を含むことが好ましい。防曇膜220は、粘着剤層を有するフィルムを介して窓ガラス110に取り付けられていてもよい。防曇膜220は、一例として、平面視で、OLEDディスプレイ120および電熱線130と重なる位置に設けられている。 The antifogging film 220 is provided on one surface of the window glass 110. The antifogging film 220 is preferably provided on the surface of the central portion 111A of the glass body 111 on the vehicle interior (inside the vehicle 10) side. The antifogging film 220 has water absorption. The antifogging film 220 preferably contains a water-absorbing polymer or a hydrophilic polymer in order to realize high water absorption. The antifogging film 220 may be attached to the window glass 110 via a film having an adhesive layer. As an example, the antifogging film 220 is provided at a position where it overlaps with the OLED display 120 and the heating wire 130 in a plan view.
 制御ユニット250は、ガラス本体111の中央部111Aの車室内側の表面に設けられていてもよい。制御ユニット250は、制御部250Cと温度センサ150Aと温湿度センサ150Bとを有する。制御部250Cは、窓ガラス110に取り付けられる電熱線130又は電熱膜を通電状態(オン)又は非通電状態(オフ)にする。温度センサ150A及び温湿度センサ150Bは、窓ガラス110の一方の面に設けられることが好ましい。温度センサ150A及び温湿度センサ150Bは、窓ガラス110の一方の面に施されているセラミック層112の上に設けられることが好ましい。温度センサ150A及び温湿度センサ150Bは、ガラス本体111の下部に設けられることが好ましい。また、温度センサ150A及び温湿度センサ150Bは、平面視で、防曇膜220の外側に設けられていることが好ましい。例えば、温度センサ150A及び温湿度センサ150Bは、ガラス本体111の中央部111Aのうち下部側でセラミック層112との境界の近くに設けられることが好ましい。 The control unit 250 may be provided on the surface of the central portion 111A of the glass body 111 on the vehicle interior side. The control unit 250 includes a control unit 250C, a temperature sensor 150A, and a temperature / humidity sensor 150B. The control unit 250C turns the heating wire 130 or the heating film attached to the window glass 110 into an energized state (on) or a non-energized state (off). The temperature sensor 150A and the temperature / humidity sensor 150B are preferably provided on one surface of the window glass 110. The temperature sensor 150A and the temperature / humidity sensor 150B are preferably provided on the ceramic layer 112 provided on one surface of the window glass 110. The temperature sensor 150A and the temperature / humidity sensor 150B are preferably provided at the lower part of the glass body 111. Further, it is preferable that the temperature sensor 150A and the temperature / humidity sensor 150B are provided outside the antifogging film 220 in a plan view. For example, the temperature sensor 150A and the temperature / humidity sensor 150B are preferably provided on the lower side of the central portion 111A of the glass body 111 near the boundary with the ceramic layer 112.
 制御ユニット250は、セラミック層112の上に固定される筐体151をさらに有していてもよい。筐体151は、制御部250C、温度センサ150A及び温湿度センサ150Bを、内部に収納する。制御部250C、温度センサ150A及び温湿度センサ150Bには、電源160Lから電力が供給される。 The control unit 250 may further have a housing 151 fixed on the ceramic layer 112. The housing 151 houses the control unit 250C, the temperature sensor 150A, and the temperature / humidity sensor 150B inside. Power is supplied from the power supply 160L to the control unit 250C, the temperature sensor 150A, and the temperature / humidity sensor 150B.
 制御部250Cは、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及び内部バス等を含むコンピュータ(回路)によって実現される。 The control unit 250C is realized by a computer (circuit) including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an internal bus, and the like.
 制御部250Cは、実施の形態1の制御部150Cと同様に、ガラス本体111の温度が露点温度に達しているかどうかを判定し、ガラス本体111の温度が露点温度に達すると電熱線130又は電熱膜を通電状態(オン)にし、ガラス本体111の温度が所定温度を超えると非通電状態(オフ)にする制御を行う。 Similar to the control unit 150C of the first embodiment, the control unit 250C determines whether or not the temperature of the glass body 111 has reached the dew point temperature, and when the temperature of the glass body 111 reaches the dew point temperature, the heating wire 130 or the electric heat Control is performed so that the film is energized (on) and is de-energized (off) when the temperature of the glass body 111 exceeds a predetermined temperature.
 また、制御部250Cは、上述の制御に加えて、さらに以下の制御を行う。制御部250Cは、温度センサ150Aによって検出されるガラス本体111の温度と、温湿度センサ150Bによって検出される車室内の温度及び湿度に基づいて、電熱線130又は電熱膜を通電状態(オン)にし、所定時間経過後に非通電状態(オフ)にする制御を行う。 In addition to the above-mentioned control, the control unit 250C further performs the following control. The control unit 250C turns on the heating wire 130 or the heating film based on the temperature of the glass body 111 detected by the temperature sensor 150A and the temperature and humidity in the vehicle interior detected by the temperature / humidity sensor 150B. , Controls to turn off the power after a predetermined time has elapsed.
 次に、制御部250Cが電熱線130又は電熱膜を通電状態(オン)にするタイミングを求める方法について説明する。 Next, a method of determining the timing at which the control unit 250C turns on the heating wire 130 or the heating film will be described.
 防曇膜220は、温度と湿度に応じて吸水できる量(吸水性能が飽和する量(飽和吸水量))が変動する。防曇膜220は、吸水量が飽和吸水量を超えると曇り始める。すなわち、防曇膜220は、防曇膜220が設けられていない窓ガラスに比べて、曇りが生じるタイミングを遅らせることができる。 The amount of water that can be absorbed by the antifogging film 220 (the amount that saturates the water absorption performance (saturated water absorption amount)) varies depending on the temperature and humidity. The antifogging film 220 begins to become cloudy when the amount of water absorption exceeds the saturated amount of water absorption. That is, the anti-fog film 220 can delay the timing of fogging as compared with the window glass not provided with the anti-fog film 220.
 また、制御部250Cは、電熱線130又は電熱膜を通電状態(オン)にしてから所定の時間が経過すると、電熱線130又は電熱膜を非通電状態(オフ)にする制御を行う。電熱線130又は電熱膜を通電状態(オン)にしてガラス温度を上昇させると、防曇膜220に含まれる水分が蒸発して防曇膜220の吸水量が低下する。 Further, the control unit 250C controls to turn off the heating wire 130 or the heating film when a predetermined time elapses after the heating wire 130 or the heating film is turned on. When the heating wire 130 or the heating film is turned on to raise the glass temperature, the water contained in the antifogging film 220 evaporates and the amount of water absorbed by the antifogging film 220 decreases.
 このため、制御部250Cが電熱線130又は電熱膜を通電状態(オン)にしてから非通電状態(オフ)にするまでの所定時間は、例えば、防曇膜220の吸水量が電熱線130を通電状態(オン)にする前の所定割合以下(例えば70%以下)になるような時間に設定することができる。 Therefore, for a predetermined time from when the control unit 250C turns on the heating wire 130 or the heating film to the non-energized state (off), for example, the amount of water absorbed by the antifogging film 220 causes the heating wire 130 to absorb water. The time can be set so that the time becomes equal to or less than a predetermined ratio (for example, 70% or less) before the energized state (ON) is turned on.
 また、例えば、防曇膜220の吸水量が最大量である場合に、電熱線130を通電状態(オン)にする前の所定割合以下(例えば70%以下)になるような時間に設定すれば、どのような吸水量である場合においても、当分の間防曇膜220に曇りが生じない状況にすることができる。 Further, for example, when the amount of water absorption of the antifogging film 220 is the maximum amount, the time may be set so that the heating wire 130 becomes a predetermined ratio or less (for example, 70% or less) before the energized state (ON). Regardless of the amount of water absorption, it is possible to make the anti-fog film 220 not fogged for the time being.
 次に、防曇膜220の曇りの発生を推測する方法について説明する。防曇膜220の曇りの発生を推測するには、防曇膜220全体の吸水状態を指標とするよりも、防曇膜220の最表面における相対吸水率FRHを指標とした方が、急激な温度及び湿度の変化による過渡応答条件や、低温下で水分吸収速度が遅くなっている条件でも、曇りが生じるタイミングをより正確に推測できる。 Next, a method of estimating the occurrence of fogging of the antifogging film 220 will be described. In order to estimate the occurrence of fogging of the antifogging film 220, it is more rapid to use the relative water absorption rate FRH on the outermost surface of the antifogging film 220 as an index than to use the water absorption state of the entire antifogging film 220 as an index. Even under transient response conditions due to changes in temperature and humidity, or under conditions where the water absorption rate is slow at low temperatures, the timing of fogging can be estimated more accurately.
 防曇膜220の材料中の水分拡散係数は、温度の関数であり、ガラス基板が低温になると拡散係数は小さくなる。 The moisture diffusion coefficient in the material of the antifogging film 220 is a function of temperature, and the diffusion coefficient becomes smaller as the glass substrate becomes colder.
 水分拡散係数は、材料中の水分の活性化エネルギーの関数であり、JIS7209-2000(ISO62-1999)プラスチック-吸水率の求め方などの計測方法により、複数の異なる温度での拡散係数を求めることができる。 The water diffusion coefficient is a function of the activation energy of water in the material, and the diffusion coefficient at a plurality of different temperatures is obtained by a measurement method such as JIS7209-2000 (ISO62-1999) plastic-water absorption rate. Can be done.
 防曇膜220の最表面における水分吸収速度は、ある温度と湿度とを有する空気の水蒸気圧と、ある温度と吸水率とを有する防曇膜220の最表面の水蒸気圧との差によって決まる。 The moisture absorption rate on the outermost surface of the antifogging film 220 is determined by the difference between the water vapor pressure of air having a certain temperature and humidity and the water vapor pressure on the outermost surface of the antifogging film 220 having a certain temperature and water absorption rate.
 防曇膜220を備えない通常のガラスでは、単純に、ガラス温度が、ある温度と湿度とを有する空気の露点以下になると曇りが生じる。これに対して、防曇膜220では、車室内の空気から防曇膜220の最表面に向かう水分吸収速度の方が、防曇膜220の最表面から内部に向かう水分拡散速度より大きい場合は、防曇膜220が吸水飽和していなくても表の最表面が飽和してしまうことで曇りが生じる。 In ordinary glass without an antifogging film 220, fogging simply occurs when the glass temperature falls below the dew point of air having a certain temperature and humidity. On the other hand, in the antifogging film 220, when the moisture absorption rate from the air in the vehicle interior toward the outermost surface of the antifogging film 220 is higher than the moisture diffusion rate from the outermost surface of the antifogging film 220 toward the inside. Even if the antifogging film 220 is not saturated with water absorption, fogging occurs because the outermost surface of the surface is saturated.
 防曇膜220が曇っている状態では、防曇膜220の最表面の相対吸水率FRHがほぼ100%に到達しているものの、膜内の相対吸水率FRHが100%に達しておらず、水分を吸収する余地が残っていることが一般的である。また、防曇膜220が乾燥する過程では、防曇膜220の最表面が乾燥状態になっているが、防曇膜220の膜内の相対吸水率FRHが最表面の相対吸水率FRHよりも高い状態であることが一般的である。 When the antifogging film 220 is cloudy, the relative water absorption FRH on the outermost surface of the antifogging film 220 reaches almost 100%, but the relative water absorption FRH in the film does not reach 100%. Generally, there is room for absorption of water. Further, in the process of drying the antifogging film 220, the outermost surface of the antifogging film 220 is in a dry state, but the relative water absorption FRH in the film of the antifogging film 220 is higher than the relative water absorption FRH on the outermost surface. It is generally in a high state.
 車両10に多人数が乗り込んで車内の湿度が急激に上昇した条件や、低温のため飽和水蒸気圧が低くて防曇膜220の水分吸収速度が低い条件では、防曇膜220の最表面に曇りが生じても、膜内の相対吸水率FRHが70%程度である場合がある。 Under the condition that a large number of people get into the vehicle 10 and the humidity inside the vehicle rises sharply, or under the condition that the saturated water vapor pressure is low due to the low temperature and the water absorption rate of the antifogging film 220 is low, the outermost surface of the antifogging film 220 becomes cloudy. Even if the above occurs, the relative water absorption rate FRH in the membrane may be about 70%.
 車両10に乗員が乗り込む直前は、防曇膜220の相対吸水率FRHは、車室内の空気の湿度と平衡状態になっている。すなわち防曇膜220の水蒸気圧は、車室内の水蒸気圧と等しい。また、防曇膜220の最表面から最深部まで等しい水蒸気圧になっている。ガラス温度と車室内の温度とが異なる場合でも、そのガラス温度における膜内水蒸気圧は、室温での水蒸気圧と等しく平衡になっている。 Immediately before the occupant gets into the vehicle 10, the relative water absorption FRH of the antifogging film 220 is in equilibrium with the humidity of the air in the vehicle interior. That is, the water vapor pressure of the antifogging film 220 is equal to the water vapor pressure in the vehicle interior. Further, the water vapor pressure is the same from the outermost surface to the deepest part of the antifogging film 220. Even if the glass temperature and the temperature inside the vehicle are different, the water vapor pressure in the film at the glass temperature is equal to the water vapor pressure at room temperature and is in equilibrium.
 以上の考え方により、防曇膜220の最表面、膜中(膜内)、最深部における、Δt時間後の水分濃度分布をフィックの法則(濃度勾配の拡散方程式)で予測する。同条件(ガラス温度と車室内の温度及び湿度とが変化しない状態)が例えば10分間続いた場合の10分先までの水分濃度分布を計算する。 Based on the above idea, the water concentration distribution after Δt time on the outermost surface, in the film (inside the film), and in the deepest part of the antifogging film 220 is predicted by Fick's law (diffusion equation of concentration gradient). When the same conditions (a state in which the glass temperature and the temperature and humidity in the vehicle interior do not change) continue for 10 minutes, for example, the water concentration distribution up to 10 minutes ahead is calculated.
 防曇膜220の最表面の相対吸水率FRHをモニターして100%になったところを曇り発生と判断する。ここで、防曇膜220の最表面の相対吸水率FRHは、吸水質量濃度FDを飽和吸水質量濃度FWで除算することで得られる。 The relative water absorption rate FRH on the outermost surface of the antifogging film 220 is monitored, and when it reaches 100%, it is judged that fogging has occurred. Here, the relative water absorption rate FRH on the outermost surface of the antifogging film 220 is obtained by dividing the water absorption mass concentration FD by the saturated water absorption mass concentration FW.
 曇りが発生すると予想される時点までの残り時間をあらかじめ設定した残り時間(例えば30秒)に設定し、残り時間がゼロになった時点で、電熱線130又は電熱膜を通電状態(オン)にする、又は、エアコンの外気導入を行うことで、防曇膜220を乾燥するモードにする。 The remaining time until the time when cloudiness is expected to occur is set to a preset remaining time (for example, 30 seconds), and when the remaining time becomes zero, the heating wire 130 or the heating film is turned on. Or by introducing the outside air of the air conditioner, the anti-fog film 220 is set to the drying mode.
 電熱線130又は電熱膜を通電状態(オン)にすると、残り時間は例えば10分以上になるので、防曇膜220の最表面の相対吸水率FRHがあらかじめ設定した相対吸水率(例えば80%)になるまで電熱線130又は電熱膜を通電状態(オン)にし、最表面の相対吸水率FRHが80%未満になった時点で電熱線130又は電熱膜を非通電状態(オフ)にする。これは、エアコンの外気導入を行う場合も同様である。 When the heating wire 130 or the heating film is energized (on), the remaining time is, for example, 10 minutes or more. Therefore, the relative water absorption rate FRH on the outermost surface of the antifogging film 220 is a preset relative water absorption rate (for example, 80%). The heating wire 130 or the heating film is turned on (on) until the temperature becomes low, and when the relative water absorption rate FRH on the outermost surface becomes less than 80%, the heating wire 130 or the heating film is turned off (off). This also applies when the outside air of the air conditioner is introduced.
 次に、車室内の空気と防曇膜220の最表面との界面における曇りの発生について説明する。車室内の空気と防曇膜220の最表面との界面での水蒸気の流れは次の手順で計算する。 Next, the occurrence of fogging at the interface between the air in the vehicle interior and the outermost surface of the antifogging film 220 will be described. The flow of water vapor at the interface between the air in the vehicle interior and the outermost surface of the antifogging film 220 is calculated by the following procedure.
 ここで、水蒸気の分子量を18として、水蒸気の1モルあたりの気体定数(8.3144598[J/K/mol])を1キログラムあたりに換算すると、気体定数Rは461.5149[J/K/kg]である。水の比熱Cwを1007[J/K/kg]、室温で無風の自然対流状態における水蒸気の熱伝達係数Hを4.2[W/m/K]、室温Troom[℃]、車内の雰囲気中の水蒸気圧ES[Pa]とする。 Here, assuming that the molecular weight of water vapor is 18, and the gas constant per mole of water vapor (8.3144598 [J / K / mol]) is converted per kilogram, the gas constant R is 461.5149 [J / K / kg]. The specific heat Cw of water is 1007 [J / K / kg], the heat transfer coefficient H of water vapor in a natural convection state with no wind at room temperature is 4.2 [W / m 2 / K], room temperature Troom [° C], and the atmosphere inside the vehicle. Let the water vapor pressure ES [Pa] be inside.
 空気密度ρairは次式で表される。
ρair=(1.2923/(1+0.00366×T))×((101325-0.378×ES)/101325)[kg/m
 大気圧における空気の水拡散係数Dairの実験式は次式で表される。
Dair=0.241×((Troom+273.15)/288)1.75×10-4[m/s]
 空気の熱拡散係数TDairは次式で表される。
TDair=(0.1356×Troom+18.51)×10-6[m/s]
 熱伝達率から換算した無風状態の水面上の蒸気圧差に応じた水分蒸発速度Hwaterは次式で表される。
Hwater=H×(Dair/TDair)(2/3)/(R×Cw×(Troom+273.15)×Dair)[kg/s/m/Pa]
 ある相対湿度の空気と平衡状態にある防曇膜220の相対吸水率FRHは、空気の相対湿度とほぼ等しい。空気の飽和水蒸気圧は、低温になると大幅に低下するが、防曇膜220の飽和吸水質量濃度FWはほぼ一定で水蒸気圧だけ低下する。
The air density ρair is expressed by the following equation.
ρair = (1.2923 / (1 + 0.00366 × T)) × ((101325-0.378 × ES) / 101325) [kg / m 3 ]
The empirical formula of the water diffusion coefficient of air at atmospheric pressure is expressed by the following formula.
Dair = 0.241 x ((Troom + 273.15) / 288) 1.75 x 10 -4 [m 2 / s]
The thermal diffusivity TDair of air is expressed by the following equation.
TDair = (0.1356 x Troom + 18.51) x 10-6 [m 2 / s]
The water evaporation rate Hwater according to the difference in steam pressure on the water surface in a windless state converted from the heat transfer coefficient is expressed by the following equation.
Hwater = H × (Dair / TDair) (2/3) / (R × Cw × (Troom + 273.15) × Dair) [kg / s / m 2 / Pa]
The relative water absorption FRH of the antifogging film 220 in equilibrium with air at a certain relative humidity is approximately equal to the relative humidity of the air. The saturated water vapor pressure of air decreases significantly at low temperatures, but the saturated water absorption mass concentration FW of the antifogging film 220 is substantially constant and decreases by the water vapor pressure.
 ここで、空気の相対湿度RH[%]、飽和水蒸気圧EW[Pa]を用いると、車室内の空気の水蒸気圧ES[Pa]は次式で表される。
ES=EW×RH
 また、防曇膜220の吸水質量濃度FD[kg/m3]、防曇膜220の飽和吸水質量濃度FW[kg/m]を用いると、防曇膜220の最表面の相対吸水率FRH[%]は次式で表される。
FRH=FD/FW
 また、ガラス本体111のある温度における空気の飽和水蒸気圧EWF[Pa]とすると、防曇膜220の水蒸気圧Fsは次式で表される。
Fs=EWF×FRH[Pa]
 防曇膜220の最表面での水分移動量FWS(Flow Water Surface)[kg/m/s]は次式で表される。
FWS=(ES-FS)×Hwater
 防曇膜220の膜内の水分拡散吸収D[m/s]は次のように求めることができる。防曇膜220の最表面での水蒸気の拡散活性化係数α、気体定数R(=461.5149)[J/K/kg]、膜内の水分活性化エネルギーeFilm(=2.8×10)[J]、ガラス温度Tg[K]とすると、水分拡散係数Dは次式で表される。
D=α×Exp(-eFilm/R/(Tg+273.15))
 防曇膜220の吸水質量濃度分布FD(x,t)[kg/m]の非定常解析を、以下の拡散方程式を用いて差分法で解析する。
∂FD(x)/∂t=D×∂2FD(x)/∂x+FWS (x=0)
∂FD(x)/∂t=D×∂2FD(x)/∂x (0<x<d)
∂FD(x)/∂x=0 (x=d)
 非定常解析は、無次元の吸水体積濃度U(x,t)で解く。防曇膜220の吸水質量濃度FD(x,t)は、下式で与えられる。ここでCは水の密度であり1000[kg/m]とする。
FD(x,t)=U(x,t)×C[kg/m
 また、非定常解析は、膜厚xが0[m]~d[m]の範囲で行う。防曇膜220を厚さ方向に等分割して取り扱う。例えば、防曇膜220の膜厚が20μmである場合、厚さ方向に最上層~最下層まで2μmおきに10分割する。FD(x=0,t)は、防曇膜220の空気と接する最上層における吸水質量濃度である。FD(x=d,t)は、防曇膜220のガラス本体111と接する最下層における吸水質量濃度である。差分解析では、例えば、防曇膜220の最上層における吸水質量濃度FD(x=0,t)について、一定時間評価する。また、時間t=0[s]は、防曇膜220の最上層における吸水質量濃度を予測する時刻を表す。
Here, using the relative humidity RH [%] of air and the saturated water vapor pressure EW [Pa], the water vapor pressure ES [Pa] of the air in the vehicle interior is expressed by the following equation.
ES = EW x RH
Further, water mass concentration FD [kg / m3] of the antifogging film 220, the use of saturated water mass concentration FW of antifogging film 220 [kg / m 3], the relative water absorption of the outermost surface of the antifogging film 220 FRH [ %] Is expressed by the following equation.
FRH = FD / FW
Further, assuming that the saturated water vapor pressure EWF [Pa] of air at a certain temperature of the glass body 111, the water vapor pressure Fs of the antifogging film 220 is expressed by the following equation.
Fs = EWF x FRH [Pa]
The amount of water transfer on the outermost surface of the antifogging film 220 FWS (Flow Water Surface) [kg / m 2 / s] is expressed by the following equation.
FWS = (ES-FS) x Hwater
The moisture diffusion absorption D [m 2 / s] in the antifogging film 220 can be determined as follows. Diffusion activation coefficient α of water vapor on the outermost surface of the antifogging film 220, gas constant R (= 461.5149) [J / K / kg], water activation energy eFilm (= 2.8 × 10 6) in the film ) [J] and the glass temperature Tg [K], the water diffusion coefficient D is expressed by the following equation.
D = α × Exp (-eFilm / R / (Tg + 273.15))
The unsteady analysis of the water absorption mass concentration distribution FD (x, t) [kg / m 3 ] of the antifogging film 220 is analyzed by the difference method using the following diffusion equation.
∂FD (x) / ∂t = D × ∂2FD (x) / ∂x 2 + FWS (x = 0)
∂FD (x) / ∂t = D × ∂2FD (x) / ∂x 2 (0 <x <d)
∂FD (x) / ∂x = 0 (x = d)
The unsteady analysis is solved with a dimensionless water absorption volume concentration U (x, t). The water absorption mass concentration FD (x, t) of the antifogging film 220 is given by the following equation. Here, C is the density of water, which is 1000 [kg / m 3 ].
FD (x, t) = U (x, t) x C [kg / m 3 ]
Further, the unsteady analysis is performed in the range where the film thickness x is 0 [m] to d [m]. The antifogging film 220 is equally divided in the thickness direction and handled. For example, when the film thickness of the antifogging film 220 is 20 μm, the film is divided into 10 layers from the top layer to the bottom layer every 2 μm in the thickness direction. FD (x = 0, t) is the water absorption mass concentration in the uppermost layer of the antifogging film 220 in contact with air. FD (x = d, t) is the water absorption mass concentration in the lowermost layer of the antifogging film 220 in contact with the glass body 111. In the differential analysis, for example, the water absorption mass concentration FD (x = 0, t) in the uppermost layer of the antifogging film 220 is evaluated for a certain period of time. Further, the time t = 0 [s] represents a time for predicting the water absorption mass concentration in the uppermost layer of the antifogging film 220.
 非定常解析は、最初に解析を開始した後、継続的に実施することが好ましい。 It is preferable that the non-stationary analysis is continuously performed after the analysis is first started.
 この偏微分方程式である拡散方程式を解くには、途中で膜の吸水飽和によって最上層に曇りが発生する、解析的に不連続なポイントがあるため、時間に関して前進差分、空間に関して中心差分で、陽解法で計算するのが適切である。 In order to solve the diffusion equation, which is a partial differential equation, there is an analytically discontinuous point where cloudiness occurs in the uppermost layer due to water absorption saturation of the film. It is appropriate to calculate by the explicit method.
 時刻t=0における初期条件の吸水体積濃度U(x,0)[kg/m]はU(x,0)=U0(0≦x≦d)である。また、境界条件は、最上層での吸水体積濃度の変化U(0,t)、最下層での吸水体積濃度の変化U(d,t)である。なお、U0は膜中の初期の均一な平衡吸水体積濃度[kg/m]である。 The water absorption volume concentration U (x, 0) [kg / m 3 ] under the initial condition at time t = 0 is U (x, 0) = U0 (0 ≦ x ≦ d). The boundary conditions are a change U (0, t) in the water absorption volume concentration in the uppermost layer and a change U (d, t) in the water absorption volume concentration in the lowermost layer. U0 is the initial uniform equilibrium water absorption volume concentration [kg / m 3 ] in the membrane.
 陽解法の解の安定性の公式から時間前進差分のdtの制限範囲は下記となる。
dt<dx/2/(Hwater×dx+D)×C×ρ[s]
 なお、dx:膜厚を分割する厚さ[m]、Hwater:水分蒸発速度[kg/s/m/Pa]、D:膜中拡散係数[m/s]、C:水の密度1000[kg/m]、ρ:水の比熱[J/kg/K]である。
From the formula of the stability of the solution of the explicit method, the limit range of dt of the time forward difference is as follows.
dt <dx 2/2 / ( Hwater × dx + D) × C × ρ [s]
In addition, dx: thickness dividing the film thickness [m], Hwater: water evaporation rate [kg / s / m 2 / Pa], D: diffusion coefficient in film [m 2 / s], C: water density 1000 [Kg / m 3 ], ρ: Specific heat of water [J / kg / K].
 防曇膜220の最表面における吸水体積濃度の時刻t+dtにおけるU(x=0,t+dt)は次式で表される。
U(0,t+dt)=Hwater/C/ρ×(ES-FW)×dt×dx+(1-D/C/ρ×(dt/dx))×U(0,t)+D/C/ρ×(dt/dx)×U(dx,t)
 防曇膜220の膜中(表面から深さxの位置)における吸水体積濃度の時刻t+dtにおけるU(x,t+dt)は次式で表される。
U(x,t+dt)=D/C/ρ×(dt/dx)×U(x-dx,t)+(1-2×D/C/ρ×(dt/dx))×U(x,t)+D/C/ρ×(dt/dx)×U(x+dx,t)
 防曇膜220の最下層(x=d)における吸水体積濃度の時刻t+dtにおけるU(x=d,t+dt)は次式で表される。
U(x=d,t+dt)=D/C/ρ×(dt/dx)×U(d-dx,t)+(1-D/C/ρ×(dt/dx))×U(dt)
 以上より、防曇膜220に曇りが生じないようにするために、次のように制御ユニット250で制御すればよい。
U (x = 0, t + dt) at time t + dt of the water absorption volume concentration on the outermost surface of the antifogging film 220 is expressed by the following equation.
U (0, t + dt) = Hwater / C / ρ × (ES-FW) × dt × dx + (1-D / C / ρ × (dt / dx 2 )) × U (0, t) + D / C / ρ × (dt / dx 2 ) × U (dx, t)
U (x, t + dt) at time t + dt of the water absorption volume concentration in the film of the antifogging film 220 (position of depth x from the surface) is expressed by the following equation.
U (x, t + dt) = D / C / ρ × (dt / dx 2 ) × U (x−dx, t) + (1-2 × D / C / ρ × (dt / dx 2 )) × U ( x, t) + D / C / ρ × (dt / dx 2 ) × U (x + dx, t)
U (x = d, t + dt) at time t + dt of the water absorption volume concentration in the lowermost layer (x = d) of the antifogging film 220 is expressed by the following equation.
U (x = d, t + dt) = D / C / ρ × (dt / dx 2 ) × U (d−dx, t) + (1-D / C / ρ × (dt / dx 2 )) × U ( dt)
Based on the above, in order to prevent fogging on the antifogging film 220, the control unit 250 may be used for control as follows.
 防曇膜220の飽和吸水質量濃度FW[kg/m]と、防曇膜220の最上層の吸水質量濃度FD(x=0)との比較で、FD(x=0)<FWである場合、曇りは生じない。FD(x=0)≧FWになった段階で、防曇膜220の飽和吸水質量濃度FW以上の凝縮水は曇りとなって表面に析出する。 Comparing the saturated water absorption mass concentration FW [kg / m 3 ] of the antifogging film 220 with the water absorption mass concentration FD (x = 0) of the uppermost layer of the antifogging film 220, FD (x = 0) <FW. In that case, cloudiness does not occur. When FD (x = 0) ≥ FW, the condensed water having a saturated water absorption mass concentration of FW or more of the antifogging film 220 becomes cloudy and precipitates on the surface.
 FD(x=0)≧FWとなって、防曇膜220に曇りが生じるまでの所要時間Ts(防曇膜220の最上層の吸水質量濃度FD(x=0)を予測した時刻から、曇りが発生すると予想される時刻までの所要時間)を求め、所要時間Tsが例えば30秒以下(Ts≦30[s])、好ましくは所要時間Tsが10秒以下(Ts≦10[s])になったときに乾燥モードを始動させるようにスイッチ140をオンにして制御部250Cが電熱線130を通電状態(オン)にする。 It becomes cloudy from the time when FD (x = 0) ≧ FW and the time required until the antifogging film 220 becomes cloudy Ts (the water absorption mass concentration FD (x = 0) of the uppermost layer of the antifogging film 220 is predicted). The required time Ts is, for example, 30 seconds or less (Ts ≦ 30 [s]), preferably the required time Ts is 10 seconds or less (Ts ≦ 10 [s]). The switch 140 is turned on so that the drying mode is started when the time becomes low, and the control unit 250C turns on the heating wire 130.
 F(x=0)≧FWとなって、防曇膜220に曇りが生じるまでの所要時間Tsは、以下のように所定時間(例えば10分)に至るまでの防曇膜220の最表面の吸水質量濃度を予測することにより、算出する。 The time required until F (x = 0) ≥ FW and fogging occurs on the antifogging film 220 is the outermost surface of the antifogging film 220 up to a predetermined time (for example, 10 minutes) as shown below. Calculated by predicting the water absorption mass concentration.
 算出時点から10分(600[s])先までの吸水質量濃度FD(x=0)を予測する計算の、i番目の計算ステップにおける時間ステップdtは可変であるが、ここでは説明の便宜上一定であることとする。 The time step dt i in the i-th calculation step of the calculation for predicting the water absorption mass concentration FD (x = 0) from the calculation time point to 10 minutes (600 [s]) ahead is variable, but here, for convenience of explanation. It shall be constant.
 各時刻ステップt=0、1×dt、2×dt、3×dt、4×dt、5×dt、…、(n-1)×dt、n×dt、(n+1)×dt、…、600[s]において、逐次、防曇膜220の最上層の吸水質量濃度FD(x=0)[kg/m]を算出する。 Each time step t = 0, 1 × dt, 2 × dt, 3 × dt, 4 × dt, 5 × dt, ..., (N-1) × dt, n × dt, (n + 1) × dt, ..., 600 In [s], the water absorption mass concentration FD (x = 0) [kg / m 3 ] of the uppermost layer of the antifogging film 220 is sequentially calculated.
 (n-1)ステップの時刻Tn-1=Σdt(Ii=1~n-1)において、防曇膜220の最上層の吸水質量濃度FD(0,Tn-1)と飽和吸水質量濃度FWには次の関係が成り立つ。
FD(0,Tn-1)[kg/m]<FW[kg/m
 nステップの時刻T=Σdt(i=1~n)において、防曇膜220の最上層の吸水質量濃度FD(0,T)と飽和吸水質量濃度FWに次式が成り立つ。防曇膜220の最上層の吸水質量濃度(x=0)を予測した時刻から、時刻Tまでの所要時間を、防曇膜220に曇りが生じるまでの所要時間Tsとする。
FD(0,T)[kg/m]≧FW[kg/m
 すなわち、Tsが例えば30秒以下(Ts≦30[s])、好ましくは所要時間Tsが10秒以下(Ts≦10[s])となった時に、制御部250Cが電熱線130又は電熱膜を通電状態(オン)にする。
(N-1) At the time T n-1 = Σdt i (Ii = 1 to n-1) of the step, the water absorption mass concentration FD (0, T n-1 ) and the saturated water absorption mass of the uppermost layer of the antifogging film 220. The following relationship holds for the concentration FW.
FD (0, T n-1 ) [kg / m 3 ] <FW [kg / m 3 ]
At the time of n steps T n = Σdt i (i = 1 to n), the following equation holds for the water absorption mass concentration FD (0, T n ) and the saturated water absorption mass concentration FW of the uppermost layer of the antifogging film 220. From the time predicted water absorption mass concentration of the top layer (x = 0) of the antifogging film 220, the time required until time T n, and required time Ts until the cloud the antifogging film 220.
FD (0, T n ) [kg / m 3 ] ≧ FW [kg / m 3 ]
That is, when Ts is, for example, 30 seconds or less (Ts ≦ 30 [s]), preferably the required time Ts is 10 seconds or less (Ts ≦ 10 [s]), the control unit 250C presses the heating wire 130 or the heating film. Turn on the power.
 そして、計算上、防曇膜220の最表面の相対吸水率FRH(x=0)が例えば80%以下(FRH(x=0)≦80%)になった時点で制御部250Cが電熱線130又は電熱膜を非通電状態(オフ)にする。 Then, in calculation, when the relative water absorption rate FRH (x = 0) on the outermost surface of the antifogging film 220 becomes, for example, 80% or less (FRH (x = 0) ≤ 80%), the control unit 250C sends the heating wire 130. Alternatively, the electric heating film is turned off.
 なお、ここでは、一例として防曇膜220を乾燥させるために、電熱線130又は電熱膜を通電状態(オン)にする形態について説明したが、電熱線130又は電熱膜を通電状態(オン)にすることの代わりに、又は、電熱線130又は電熱膜を通電状態(オン)にすることに加えて、デフロスタ20をオンにすること、エアコンの内気循環モードを外気導入モードに切り替えること、又は、加湿器を停止させること等を行ってもよい。 Here, as an example, a mode in which the heating wire 130 or the heating film is energized (on) in order to dry the antifogging film 220 has been described, but the heating wire 130 or the heating film is energized (on). Instead of doing, or in addition to turning on the heating wire 130 or the heating membrane, turning on the defroster 20, switching the inside air circulation mode of the air conditioner to the outside air introduction mode, or The humidifier may be stopped or the like.
 また、防曇膜220に曇りが発生するまでの所要時間Tsは、最初に解析を開始した後、所定期間毎に算出されることが好ましい。所定期間は、制御周期の整数倍の期間であればよい。すなわち、所要時間Tsは、最初に解析を開始した後、所定の周期で算出されることが好ましい。 Further, it is preferable that the time Ts required for the antifogging film 220 to become cloudy is calculated every predetermined period after the analysis is first started. The predetermined period may be a period that is an integral multiple of the control cycle. That is, it is preferable that the required time Ts is calculated in a predetermined cycle after the analysis is first started.
 図10は、制御部250Cが実行する処理を表すフローチャートの一例を示す図である。図10に示すフローのうち、ステップS1~S3は、図3に示す実施の形態1のステップS1~S3と同様である。 FIG. 10 is a diagram showing an example of a flowchart showing the processing executed by the control unit 250C. Of the flows shown in FIG. 10, steps S1 to S3 are the same as steps S1 to S3 of the first embodiment shown in FIG.
 制御部250Cは、ECUによって電源が投入されると処理をスタートする。 The control unit 250C starts processing when the power is turned on by the ECU.
 制御部250Cは、温度センサ150A及び温湿度センサ150Bによって検出されるガラス温度、車室内の温度及び湿度に基づいて、ガラス温度が露点温度を超えているかどうかを判定する(ステップS1)。 The control unit 250C determines whether or not the glass temperature exceeds the dew point temperature based on the glass temperature, the temperature and humidity in the vehicle interior detected by the temperature sensor 150A and the temperature / humidity sensor 150B (step S1).
 制御部250Cは、ガラス温度が露点温度を超える条件ではない(S1:NO)と判定すると、電熱線130、電熱膜又はデフロスタ20を通電状態(オン)にする(ステップS2)。 When the control unit 250C determines that the glass temperature does not exceed the dew point temperature (S1: NO), the heating wire 130, the heating film, or the defroster 20 is turned on (step S2).
 次いで、制御部250Cは、温度センサ150Aによって検出されるガラス温度が温度Tαを超えたかどうかを判定する(ステップS3)。制御部250Cは、ガラス温度が温度Tαを超えるまでステップS3の判定を繰り返し行う。温度Tαは、一例として40℃である。 Next, the control unit 250C determines whether or not the glass temperature detected by the temperature sensor 150A exceeds the temperature Tα (step S3). The control unit 250C repeats the determination in step S3 until the glass temperature exceeds the temperature Tα. The temperature Tα is, for example, 40 ° C.
 制御部250Cは、ガラス温度が温度Tαを超えた(S3:YES)と判定すると、電熱線130もしくは電熱膜を非通電状態にする、又はデフロスタ20をオフにする(ステップS19)。ガラス温度が温度Tαを超えないようにするために、電熱線130もしくは電熱膜を非通電状態にする、又はデフロスタ20をオフにすることとしたものである。ステップS19の処理は、実施の形態1におけるステップS4の処理と同様である。 When the control unit 250C determines that the glass temperature exceeds the temperature Tα (S3: YES), the heating wire 130 or the heating film is de-energized, or the defroster 20 is turned off (step S19). In order to prevent the glass temperature from exceeding the temperature Tα, the heating wire 130 or the heating film is de-energized, or the defroster 20 is turned off. The process of step S19 is the same as the process of step S4 in the first embodiment.
 なお、制御部250Cは、ガラス温度が温度Tαを超えていない(S3:NO)と判定すると、ガラス温度が温度Tαを超えるまでステップS3の処理を繰り返し実行する。 When the control unit 250C determines that the glass temperature does not exceed the temperature Tα (S3: NO), the control unit 250C repeatedly executes the process of step S3 until the glass temperature exceeds the temperature Tα.
 制御部250Cは、ガラス温度が露点温度を超える条件である(S1:YES)と判定すると、ガラス温度、車室内の温度及び湿度によって特定される例えば10分後までの吸水質量濃度FD(x)の算出を開始する(ステップS13)。10分のカウントは、吸水質量濃度FD(x)を算出した時刻から行う。 When the control unit 250C determines that the glass temperature exceeds the dew point temperature (S1: YES), the water absorption mass concentration FD (x) specified by the glass temperature, the temperature in the vehicle interior, and the humidity, for example, up to 10 minutes later. Is started (step S13). The 10-minute count is performed from the time when the water absorption mass concentration FD (x) is calculated.
 制御部250Cは、10分後までの防曇膜220の最上層の吸水質量濃度FD(x=0)が、予め設定した値以上であるかどうかを判定する(ステップS14)。 The control unit 250C determines whether or not the water absorption mass concentration FD (x = 0) of the uppermost layer of the antifogging film 220 up to 10 minutes later is equal to or higher than a preset value (step S14).
 制御部250Cは、10分後までの吸水質量濃度FD(x=0)が、予め設定した値以上でない(S14:NO)と判定すると、ステップS15には進まず、ステップS14の処理を繰り返し実行する。 If the control unit 250C determines that the water absorption mass concentration FD (x = 0) up to 10 minutes later is not equal to or higher than the preset value (S14: NO), the control unit 250C does not proceed to step S15 and repeatedly executes the process of step S14. To do.
 制御部250Cは、10分後までの吸水質量濃度FD(x=0)が、予め設定した値以上である(S14:YES)と判定すると、防曇膜220に曇りが生じるまでの所要時間Ts(残り時間)を求める(ステップS15)。所要時間Tsは、制御部250Cが上述した方法で求めればよい。 When the control unit 250C determines that the water absorption mass concentration FD (x = 0) up to 10 minutes later is equal to or higher than a preset value (S14: YES), the time required for the antifogging film 220 to become cloudy Ts. (Remaining time) is obtained (step S15). The required time Ts may be obtained by the control unit 250C by the method described above.
 制御部250Cは、ステップS15で求めた所要時間Tsが、予め設定した時間以下であるかどうかを判定する(ステップS16)。 The control unit 250C determines whether or not the required time Ts obtained in step S15 is equal to or less than the preset time (step S16).
 制御部250Cは、所要時間Tsが、予め設定した時間を超えている場合は、ステップS17には進まず、ステップS16の処理を繰り返し実行する。 If the required time Ts exceeds the preset time, the control unit 250C does not proceed to step S17 and repeatedly executes the process of step S16.
 制御部250Cは、所要時間Tsが、予め設定した時間以下になった(S16:YES)と判定すると、電熱線130もしくは電熱膜を通電状態にする、又はデフロスタ20をオンにする(ステップS17)。 When the control unit 250C determines that the required time Ts is equal to or less than the preset time (S16: YES), the heating wire 130 or the heating film is energized, or the defroster 20 is turned on (step S17). ..
 制御部250Cは、継続して算出している10分後までの吸水質量濃度FD(x=0)が、予め設定した値以下であるかどうかを判定する(ステップS18)。制御部250Cは、例えば10分後までの吸水質量濃度FD(x=0)が、予め設定した値を超えている場合は、ステップS19には進まず、ステップS18の処理を繰り返し実行する。 The control unit 250C determines whether or not the continuously calculated water absorption mass concentration FD (x = 0) up to 10 minutes later is equal to or less than a preset value (step S18). If, for example, the water absorption mass concentration FD (x = 0) up to 10 minutes later exceeds a preset value, the control unit 250C does not proceed to step S19 and repeatedly executes the process of step S18.
 制御部250Cは、10分後までの吸水質量濃度FD(x=0)が、予め設定した値以下に到達した(S18:YES)と判定すると、電熱線130、電熱膜又はデフロスタ20を非通電状態(オフ)にする(ステップS19)。 When the control unit 250C determines that the water absorption mass concentration FD (x = 0) up to 10 minutes has reached a value equal to or lower than a preset value (S18: YES), the heating wire 130, the heating film or the defroster 20 is de-energized. The state (off) is set (step S19).
 以上で一連の処理が終了する。窓ガラスシステム200の電源が通電状態(オン)にされている間は、制御部250Cは、ステップS1からS19の処理を所定の制御周期で繰り返し実行する。 This completes the series of processing. While the power supply of the window glass system 200 is energized (on), the control unit 250C repeatedly executes the processes of steps S1 to S19 in a predetermined control cycle.
 以上のように、実施の形態によれば、ガラス温度、車室内の温度及び湿度に基づき、吸水質量濃度FD(x=0)を予測した時点から例えば10分後までの防曇膜220の最上層の吸水質量濃度FD(x=0)を算出し、防曇膜220の最上層に曇りが生じるまでの所要時間Tsを求める。 As described above, according to the embodiment, the antifogging film 220 is the most from the time when the water absorption mass concentration FD (x = 0) is predicted based on the glass temperature, the temperature in the vehicle interior, and the humidity, for example, 10 minutes later. The water absorption mass concentration FD (x = 0) of the upper layer is calculated, and the time required until fogging occurs on the uppermost layer of the antifogging film 220 is obtained.
 そして、所要時間Tsが例えば30秒以下(Ts≦30[s])、好ましくは所要時間Tsが10秒以下(Ts≦10[s])になったときに乾燥モードを始動させて電熱線130もしくは電熱膜を通電状態にする、又はデフロスタ20をオンにする。 Then, when the required time Ts becomes, for example, 30 seconds or less (Ts ≦ 30 [s]), preferably the required time Ts becomes 10 seconds or less (Ts ≦ 10 [s]), the drying mode is started to start the heating wire 130. Alternatively, the electric heating film is energized, or the defroster 20 is turned on.
 このため、窓ガラス110の防曇膜220に曇りが生じることを未然に抑制することができる。 Therefore, it is possible to prevent fogging of the antifogging film 220 of the window glass 110.
 また、実施の形態2では、実施の形態1と同様に、ガラス本体111の温度が露点温度に達しているかどうかを判定し、ガラス本体111の温度が露点温度に達すると電熱線130又は電熱膜を通電状態(オン)にし、ガラス本体111の温度が温度Tαを超えると非通電状態(オフ)にする制御を行う。 Further, in the second embodiment, as in the first embodiment, it is determined whether or not the temperature of the glass body 111 has reached the dew point temperature, and when the temperature of the glass body 111 reaches the dew point temperature, the heating wire 130 or the heating film Is turned on, and when the temperature of the glass body 111 exceeds the temperature Tα, it is turned off.
 したがって、有機素子の一例であるOLEDを含むOLEDディスプレイ120の安定的な素子特性が得られるとともに、防曇性能を改善した窓ガラスシステム200を提供することができる。 Therefore, it is possible to provide a window glass system 200 in which stable element characteristics of the OLED display 120 including OLED, which is an example of an organic element, can be obtained and anti-fog performance is improved.
 なお、以上では、ステップS1でガラス温度が露点温度を超えている(S1:YES)と判定された場合にステップS13~S18の処理を行い、ステップS1でガラス温度が露点温度以下である(S1:NO)と判定された場合にステップS2及びS3の処理を行う形態について説明した。 In the above, when it is determined in step S1 that the glass temperature exceeds the dew point temperature (S1: YES), the processes of steps S13 to S18 are performed, and the glass temperature is equal to or lower than the dew point temperature in step S1 (S1). : NO) has been described, and a mode in which the processes of steps S2 and S3 are performed has been described.
 しかしながら、ステップS17とS18の間において、又は、ステップS18でNOと判定した場合に、ステップS3と同様の判定処理を行ってもよい。 However, if NO is determined between steps S17 and S18 or in step S18, the same determination process as in step S3 may be performed.
 より具体的には、前者の場合は、ステップS17の処理の後にステップS3と同様の判定処理を行い、ガラス温度が温度Tαを超えていたらフローをステップS19に進行させ、ガラス温度が温度Tα以下であればフローをステップS18に進行させればよい。この場合に、ステップS18でNOと判定した場合には、ステップS17の次に挿入したステップS3と同様の判定処理にフローをリターンすればよい。 More specifically, in the former case, the same determination process as in step S3 is performed after the process in step S17, and if the glass temperature exceeds the temperature Tα, the flow is advanced to step S19, and the glass temperature is below the temperature Tα. If so, the flow may proceed to step S18. In this case, if NO is determined in step S18, the flow may be returned to the same determination process as in step S3 inserted after step S17.
 また、ステップS18でNOと判定し、ステップS3と同様の判定処理を行う場合は、ガラス温度が温度Tαを超えていたらフローをステップS19に進行させ、ガラス温度が温度Tα以下であれば、フローをステップS18の処理を繰り返すためにフローをステップS18にリターンすればよい。 If NO is determined in step S18 and the same determination process as in step S3 is performed, the flow is advanced to step S19 if the glass temperature exceeds the temperature Tα, and the flow is performed if the glass temperature is below the temperature Tα. The flow may be returned to step S18 in order to repeat the process of step S18.
 また、窓ガラス110は、図11乃至図13に示すように、移動体の外の情報を取得する情報取得装置270を備えてもよい。図11乃至図13は、情報取得装置270をガラス本体111に取り付けるブラケット280及び筐体290の構造を示す図である。図11は、図12におけるA-A矢視断面を示す図であり、図12は正面図である。ここでは、図11に示すように情報取得装置270、ブラケット280、及び筐体290がガラス本体111に取り付けられた状態における上下方向を用いて説明する。また、図11における左方向が車両の前方であり、右方向が車両の後方である。また、図面を貫通する方向が横方向(側方)であり、図面を表から裏に貫通する方向が右方向であり、図面を裏から表に貫通する方向が左方向である。左と右は、車両10(図1参照)の進行方向に対する左と右である。以下では、前後方向と横方向(側方)を用いて説明する。図11及び図13には、前後左右の方向を示し、図12には、左右の方向を示す。 Further, as shown in FIGS. 11 to 13, the window glass 110 may be provided with an information acquisition device 270 that acquires information outside the moving body. 11 to 13 are views showing the structures of the bracket 280 and the housing 290 for attaching the information acquisition device 270 to the glass body 111. FIG. 11 is a view showing a cross section taken along the line AA in FIG. 12, and FIG. 12 is a front view. Here, as shown in FIG. 11, the information acquisition device 270, the bracket 280, and the housing 290 will be described using the vertical direction in a state of being attached to the glass body 111. Further, the left direction in FIG. 11 is the front of the vehicle, and the right direction is the rear of the vehicle. Further, the direction of penetrating the drawing is the lateral direction (side), the direction of penetrating the drawing from the front to the back is the right direction, and the direction of penetrating the drawing from the back to the front is the left direction. Left and right are left and right with respect to the traveling direction of the vehicle 10 (see FIG. 1). In the following, the description will be made using the front-rear direction and the lateral direction (lateral direction). 11 and 13 show the front-back and left-right directions, and FIG. 12 shows the left-right directions.
 また、図11では、ガラス本体111は、ガラス板111B、111Dの間に中間膜111Cが封入された合わせガラスである。ガラス板111Bの車室内側の表面には、セラミック層112、防曇膜220、温度センサ150A、温湿度センサ150B、及び風速センサ250Dが取り付けられている。 Further, in FIG. 11, the glass body 111 is a laminated glass in which an interlayer film 111C is sealed between the glass plates 111B and 111D. A ceramic layer 112, an antifogging film 220, a temperature sensor 150A, a temperature / humidity sensor 150B, and a wind speed sensor 250D are attached to the surface of the glass plate 111B on the vehicle interior side.
 セラミック層112は、ブラケット280が取り付けられる部分に、ガラス本体111を正面から見て矩形環状に取り付けられている。 The ceramic layer 112 is attached to the portion where the bracket 280 is attached in a rectangular ring shape when the glass body 111 is viewed from the front.
 防曇膜220は、ガラス本体111のガラス板111Bの車室内側の表面における、セラミック層112で囲まれた領域内の上端側を除いた部分に形成されている。防曇膜220は、情報取得装置270の情報取得部271の正面に位置しており、情報取得部271の正面におけるガラス本体111の曇りの発生を抑制するために設けられている。 The antifogging film 220 is formed on the surface of the glass plate 111B of the glass body 111 on the vehicle interior side, except for the upper end side in the region surrounded by the ceramic layer 112. The antifogging film 220 is located in front of the information acquisition unit 271 of the information acquisition device 270, and is provided to suppress the occurrence of fogging of the glass body 111 in front of the information acquisition unit 271.
 温度センサ150A、温湿度センサ150B、及び風速センサ250Dは、ガラス本体111のガラス板111Bの車室内側の表面における、セラミック層112で囲まれた領域内で、防曇膜220を避けて設けられている。一例として、温度センサ150A、温湿度センサ150B、及び風速センサ250Dは、防曇膜220よりも上側に設けられている。風速センサとしては、例えば、熱線式風速計や超音波式風速計を用いればよい。 The temperature sensor 150A, the temperature / humidity sensor 150B, and the wind speed sensor 250D are provided on the surface of the glass plate 111B of the glass body 111 on the vehicle interior side in a region surrounded by the ceramic layer 112, avoiding the antifogging film 220. ing. As an example, the temperature sensor 150A, the temperature / humidity sensor 150B, and the wind speed sensor 250D are provided above the antifogging film 220. As the wind speed sensor, for example, a hot wire type anemometer or an ultrasonic type anemometer may be used.
 情報取得装置270としては、カメラなどの撮像装置、及び、レーダー又は光ビーコン等の信号を受信する受光装置等が挙げられる。情報取得装置270は、ブラケット280及び筐体290を介して窓ガラス110に固定される。ブラケット280及び筐体290は、取り付け部材の一例である。情報取得装置270は、情報取得部271を有し、情報取得部271で画像や、レーダー又は光ビーコン等の信号を取得することで、車両10の前方の情報を取得する。ガラス本体111のうち、情報取得部271の正面の領域は、情報取得領域の一例である。防曇膜220は、少なくとも窓ガラス110の情報取得領域に設けられることになる。 Examples of the information acquisition device 270 include an image pickup device such as a camera, a light receiving device for receiving a signal such as a radar or an optical beacon, and the like. The information acquisition device 270 is fixed to the window glass 110 via the bracket 280 and the housing 290. The bracket 280 and the housing 290 are examples of mounting members. The information acquisition device 270 has an information acquisition unit 271 and acquires information in front of the vehicle 10 by acquiring an image or a signal such as a radar or an optical beacon by the information acquisition unit 271. Of the glass body 111, the area in front of the information acquisition unit 271 is an example of the information acquisition area. The antifogging film 220 will be provided at least in the information acquisition region of the window glass 110.
 ブラケット280は、矩形環状の枠状の部材であり、前方の上面側に凹部281を有する。凹部281の部分は、ブラケット280の厚さが薄くなっている。ブラケット280は、凹部281以外の部分の厚さは略一定である。ブラケット280は、一例として樹脂製である。 The bracket 280 is a rectangular ring-shaped frame-shaped member, and has a recess 281 on the front upper surface side. The thickness of the bracket 280 is thin in the portion of the recess 281. The thickness of the portion of the bracket 280 other than the recess 281 is substantially constant. The bracket 280 is made of resin as an example.
 筐体290は、図13に示すように、矩形板状の底部291、三角板状の側壁292、及び矩形板状の背面壁293を有する。側壁292は、底部291の側方から上方向に延在しており、背面壁293は、底部291の後方から上方向に延在している。底部291、側壁292、及び背面壁293で囲まれた空間は、収納部294であり、背面壁293の前側の表面に固定される情報取得装置270は、収納部294内に位置する。筐体290は、一例として樹脂製である。 As shown in FIG. 13, the housing 290 has a rectangular plate-shaped bottom portion 291 and a triangular plate-shaped side wall 292, and a rectangular plate-shaped back wall 293. The side wall 292 extends upward from the side of the bottom 291 and the back wall 293 extends upward from the rear of the bottom 291. The space surrounded by the bottom portion 291 and the side wall 292 and the back wall 293 is the storage portion 294, and the information acquisition device 270 fixed to the front surface of the back wall 293 is located in the storage portion 294. The housing 290 is made of resin as an example.
 このような筐体290は、底部291の前端と、側壁292及び背面壁293の上端とがブラケット280の下面に接着され、さらにブラケット280が接着層285を介してガラス本体111のガラス板111Bの車室内側の表面にあるセラミック層112に貼り付けられている。接着層285は、ブラケット280の矩形環形状に沿って分断されており、また、ブラケット280の凹部281の部分には設けられていない。 In such a housing 290, the front end of the bottom portion 291 and the upper ends of the side wall 292 and the back wall 293 are adhered to the lower surface of the bracket 280, and the bracket 280 is further attached to the glass plate 111B of the glass body 111 via the adhesive layer 285. It is attached to the ceramic layer 112 on the surface on the vehicle interior side. The adhesive layer 285 is divided along the rectangular ring shape of the bracket 280, and is not provided in the portion of the recess 281 of the bracket 280.
 筐体290が接着されたブラケット280を接着層285でガラス板111Bの車室内側の表面に取り付けると、ブラケット280の凹部281とガラス板111Bの車室内側の表面との間には隙間が生じる。また、ブラケット280の凹部281以外の部分とガラス板111Bの車室内側の表面との間には、接着層285で接着されていない区間において、隙間が生じる。 When the bracket 280 to which the housing 290 is adhered is attached to the surface of the glass plate 111B on the vehicle interior side with the adhesive layer 285, a gap is created between the recess 281 of the bracket 280 and the surface of the glass plate 111B on the vehicle interior side. .. Further, a gap is generated between the portion of the bracket 280 other than the recess 281 and the surface of the glass plate 111B on the vehicle interior side in a section not adhered by the adhesive layer 285.
 このような隙間から筐体290の収納部294には、車室内側の空気が流入する。特に、凹部281の部分の隙間は大きく、前方の斜め下方向を向いているため、デフロスタ20をオンにすると、収納部294には、デフロスタ20で除湿された空気が流入する。 Air on the vehicle interior side flows into the storage portion 294 of the housing 290 through such a gap. In particular, since the gap of the recess 281 is large and faces diagonally downward in the front direction, when the defroster 20 is turned on, the air dehumidified by the defroster 20 flows into the storage portion 294.
 このため、風速センサ250Dで、デフロスタ20による風の風速又はエアコンによる風の風速を検出することができる。 Therefore, the wind speed sensor 250D can detect the wind speed of the wind by the defroster 20 or the wind speed of the wind by the air conditioner.
 また、温度センサ150Aで、ガラス本体111の近くにおける温度を検出でき、温湿度センサ150Bでガラス本体111の近くにおける温度及び湿度を検出できる。 Further, the temperature sensor 150A can detect the temperature near the glass body 111, and the temperature / humidity sensor 150B can detect the temperature and humidity near the glass body 111.
 また、デフロスタ20で除湿された空気は、凹部281から収納部294内に流入し、防曇膜220に吹き付けられ、凹部281以外の隙間から流出するため、防曇膜220の最上層の吸水質量濃度FD(x=0)が効率的に下がり、デフロスタ20の稼働時間を短くできる。 Further, the air dehumidified by the defroster 20 flows into the storage portion 294 from the recess 281 and is sprayed onto the antifogging film 220 and flows out from the gaps other than the recess 281. Therefore, the water absorption mass of the uppermost layer of the antifogging film 220. The concentration FD (x = 0) can be efficiently lowered, and the operating time of the defroster 20 can be shortened.
 温度センサ150A及び温湿度センサ150Bは、接着層285が分断された区間の隙間の近傍に設けられることが好ましい。温度センサ150A及び温湿度センサ150Bが接着層285が分断された区間の隙間の近傍に設けられることで、防曇膜220の最上層の吸水質量濃度FD(x=0)を正しく算出できる。温度センサ150A及び温湿度センサ150Bが設けられる位置は、隙間から平面視で半径50mm以内であることが好ましく、40mm以内であることがより好ましく、30mm以内であることが特に好ましい。 The temperature sensor 150A and the temperature / humidity sensor 150B are preferably provided in the vicinity of the gap in the section where the adhesive layer 285 is divided. By providing the temperature sensor 150A and the temperature / humidity sensor 150B near the gap in the section where the adhesive layer 285 is divided, the water absorption mass concentration FD (x = 0) of the uppermost layer of the antifogging film 220 can be calculated correctly. The position where the temperature sensor 150A and the temperature / humidity sensor 150B are provided is preferably within a radius of 50 mm, more preferably within 40 mm, and particularly preferably within 30 mm in a plan view from the gap.
 また、風速センサ250Dを用いれば、熱伝達率Hを求める式を、車室内の風速V[m/s]を考慮して熱伝達率Hを求める以下の式に置き換えて、防曇膜220に曇りが生じるまでの所要時間Tsを算出することができる。
H=5.8+4.2V [W/m/K]
 風速センサ250Dは、デフロスタ20で除湿された空気又はエアコンで調温された空気が通過する部分に設けられることが好ましい。このため、ここでは一例として、風速センサ250Dは、温度センサ150A及び温湿度センサ150Bよりもブラケット280の凹部281に近い側に設けられている。また、風速センサ250Dは、接着層285が分断された区間の隙間の近傍に設けられている。
Further, if the wind speed sensor 250D is used, the formula for obtaining the heat transfer coefficient H is replaced with the following formula for obtaining the heat transfer coefficient H in consideration of the wind speed V [m / s] in the vehicle interior, and the antifogging film 220 is used. The time required until cloudiness occurs Ts can be calculated.
H = 5.8 + 4.2V [W / m 2 / K]
The wind speed sensor 250D is preferably provided in a portion through which the air dehumidified by the defroster 20 or the air regulated by the air conditioner passes. Therefore, here, as an example, the wind speed sensor 250D is provided closer to the recess 281 of the bracket 280 than the temperature sensor 150A and the temperature / humidity sensor 150B. Further, the wind speed sensor 250D is provided in the vicinity of the gap in the section where the adhesive layer 285 is divided.
 風速センサが隙間の近傍に設けられることで、防曇膜220の最上層の吸水質量濃度FD(x=0)をさらに正しく算出できる。風速センサが設けられる位置は、接着層285が分断された区間の隙間から平面視で半径100mm以内であることが好ましく、80mm以内であることがより好ましく、50mm以内であることが特に好ましい。 By providing the wind speed sensor near the gap, the water absorption mass concentration FD (x = 0) of the uppermost layer of the antifogging film 220 can be calculated more accurately. The position where the wind speed sensor is provided is preferably within a radius of 100 mm, more preferably within 80 mm, and particularly preferably within 50 mm in a plan view from the gap in the section where the adhesive layer 285 is divided.
 なお、図11乃至図13に示すブラケット280の代わりに、図14に示すブラケット280Mを用いてもよい。図14は、実施の形態2の変形例によるブラケット280Mを示す図である。 Note that the bracket 280M shown in FIG. 14 may be used instead of the bracket 280 shown in FIGS. 11 to 13. FIG. 14 is a diagram showing a bracket 280M according to a modified example of the second embodiment.
 ブラケット280Mは、開口部281Mを有する。このようなブラケット280Mを用いれば、ブラケット280M及び筐体290で囲まれる空間内に、デフロスタ20で乾燥された空気が流入するので、図11乃至図13に示すブラケット280を用いる場合と同様に、防曇膜220の最上層の吸水質量濃度FD(x=0)が効率的に下がり、デフロスタ20の稼働時間を短くできる。また、風速センサ250Dを用いれば、熱伝達率Hを求める式を、車室内の風速V[m/s]を考慮して熱伝達率Hを求める以下の式に置き換えて、防曇膜220に曇りが生じるまでの所要時間Tsを算出することができる。 The bracket 280M has an opening 281M. When such a bracket 280M is used, the air dried by the defroster 20 flows into the space surrounded by the bracket 280M and the housing 290. Therefore, as in the case of using the bracket 280 shown in FIGS. 11 to 13, the same as when the bracket 280 shown in FIGS. 11 to 13 is used. The water absorption mass concentration FD (x = 0) of the uppermost layer of the antifogging film 220 is efficiently lowered, and the operating time of the defroster 20 can be shortened. Further, if the wind speed sensor 250D is used, the formula for obtaining the heat transfer coefficient H is replaced with the following formula for obtaining the heat transfer coefficient H in consideration of the wind speed V [m / s] in the vehicle interior, and the antifogging film 220 is used. The time required until cloudiness occurs Ts can be calculated.
 以上、本発明の例示的な実施の形態の窓ガラスシステム、及び、窓ガラス装置について説明したが、本発明は、具体的に開示された実施の形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。 Although the window glass system and the window glass device of the exemplary embodiment of the present invention have been described above, the present invention is not limited to the specifically disclosed embodiments, and claims for patent. Various modifications and changes are possible without departing from the range.
 本国際出願は2019年12月11日に出願した日本国特許出願2019-224052号に基づく優先権を主張するものであり、日本国特許出願2019-224052号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2019-224052 filed on December 11, 2019, and the entire contents of Japanese Patent Application No. 2019-224052 are incorporated into this international application. ..
 100、200 窓ガラスシステム
 110 窓ガラス
 111 ガラス本体
 111A 中央部
 112 セラミック層
 120 OLEDディスプレイ
 130 電熱線
 140 スイッチ
 150、250 制御ユニット
 150A 温度センサ
 150B 温湿度センサ
 150C、250C 制御部
 160H 電源
 160L 電源
 220 防曇膜
 250D 風速センサ
100, 200 Window glass system 110 Window glass 111 Glass body 111A Central part 112 Ceramic layer 120 OLED display 130 Heating wire 140 Switch 150, 250 Control unit 150A Temperature sensor 150B Temperature and humidity sensor 150C, 250C Control unit 160H Power supply 160L Power supply 220 Anti-fog Membrane 250D wind speed sensor

Claims (11)

  1.  移動体に取り付けられる窓ガラスと、
     前記窓ガラスに設けられ、有機材料製の有機素子を含むデバイスと、
     前記窓ガラスの温度を検出する温度センサと、
     前記移動体の車室内の温度及び湿度を検出する温湿度センサと、
     前記温度センサによって検出されるガラス温度と、前記温湿度センサによって検出される車室内の温度及び湿度とに基づいて、前記ガラス温度が露点温度を超えているかどうかを判定し、前記ガラス温度が露点温度以下であると判定すると、前記窓ガラスに取り付けられる電熱線もしくは電熱膜又はデフロスタを通電状態にし、前記温度センサによって検出されるガラス温度が所定温度を超えると、前記電熱線もしくは前記電熱膜を非通電状態にする、又は前記デフロスタをオフにする回路を有する制御部と
     を含む、窓ガラスシステム。
    A window glass that can be attached to a moving body,
    A device provided on the window glass and containing an organic element made of an organic material,
    A temperature sensor that detects the temperature of the window glass and
    A temperature / humidity sensor that detects the temperature and humidity inside the vehicle interior of the moving body, and
    Based on the glass temperature detected by the temperature sensor and the temperature and humidity in the vehicle interior detected by the temperature / humidity sensor, it is determined whether or not the glass temperature exceeds the dew point temperature, and the glass temperature is the dew point. When it is determined that the temperature is lower than the temperature, the heating wire or the heating film or the defroster attached to the window glass is energized, and when the glass temperature detected by the temperature sensor exceeds a predetermined temperature, the heating wire or the heating film is turned on. A window glass system including a control unit having a circuit for turning off the dew point or turning off the defroster.
  2.  前記所定温度は、40℃である、請求項1記載の窓ガラスシステム。 The window glass system according to claim 1, wherein the predetermined temperature is 40 ° C.
  3.  前記電熱線に印加される電圧は、10V以下である、請求項1又は2記載の窓ガラスシステム。 The window glass system according to claim 1 or 2, wherein the voltage applied to the heating wire is 10 V or less.
  4.  前記電熱線もしくは前記電熱膜の電力密度は、400W/m以下である、請求項1又は2記載の窓ガラスシステム。 The window glass system according to claim 1 or 2, wherein the power density of the heating wire or the heating film is 400 W / m 2 or less.
  5.  前記デバイスがOLED(Organic Light Emitting Diode)を含む場合、又は、前記デバイスがヘッドアップディスプレイの光学装置である場合、前記電熱線もしくは前記電熱膜に印加される電圧は、7V以下であり、かつ、前記電熱線もしくは前記電熱膜の電力密度は、400W/m以下である、請求項1又は2記載の窓ガラスシステム。 When the device includes an OLED (Organic Light Emitting Diode), or when the device is an optical device for a head-up display, the voltage applied to the heating wire or the heating film is 7 V or less, and the voltage is applied to the heating wire or the heating film. The window glass system according to claim 1 or 2, wherein the power density of the heating wire or the heating film is 400 W / m 2 or less.
  6.  前記電熱線もしくは前記電熱膜が通電状態である場合、前記電熱線もしくは前記電熱膜に流れる電流が周期的に変動する、請求項1乃至5のいずれか一項記載の窓ガラスシステム。 The window glass system according to any one of claims 1 to 5, wherein when the heating wire or the heating film is energized, the current flowing through the heating wire or the heating film periodically fluctuates.
  7.  前記電熱線もしくは前記電熱膜に流れる電流は、周期的に非通電状態となる、請求項6に記載の窓ガラスシステム。 The window glass system according to claim 6, wherein the current flowing through the heating wire or the heating film is periodically de-energized.
  8.  前記窓ガラスの一方の面に設けられる防曇膜をさらに含み、
     前記制御部は、前記ガラス温度が露点温度を超えていると判定すると、前記温度センサによって検出されるガラス温度と、前記温湿度センサによって検出される車室内の温度及び湿度とに基づいて前記防曇膜に曇りが生じるまでの所要時間Tsを推測し、推測した所要時間Tsに基づいて、前記窓ガラスに取り付けられる電熱線もしくは電熱膜を通電状態にするか又はデフロスタをオンにし、前記温度センサによって検出されるガラス温度が所定温度を超えると、前記電熱線もしくは前記電熱膜を非通電状態にする、又は前記デフロスタをオフにする回路を有する、請求項1乃至7のいずれか一項記載の窓ガラスシステム。
    Further including an antifogging film provided on one surface of the window glass,
    When the control unit determines that the glass temperature exceeds the dew point temperature, the control unit prevents the glass based on the glass temperature detected by the temperature sensor and the temperature and humidity in the vehicle interior detected by the temperature / humidity sensor. Estimate the required time Ts until the frost film becomes cloudy, and based on the estimated required time Ts, energize the heating wire or heating film attached to the window glass or turn on the defroster, and the temperature sensor The invention according to any one of claims 1 to 7, further comprising a circuit for turning off the heating wire or the heating film or turning off the defroster when the glass temperature detected by the glass exceeds a predetermined temperature. Window glass system.
  9.  前記移動体の外部の情報を取得する情報取得装置と、
     前記情報取得装置を前記窓ガラスに固定する取り付け部材と
     をさらに含み、
     前記窓ガラスと前記取り付け部材との間に隙間が存在する、又は、前記取り付け部材は開口部を有する、請求項1乃至8のいずれか一項記載の窓ガラスシステム。
    An information acquisition device that acquires information outside the moving body, and
    Further including a mounting member for fixing the information acquisition device to the window glass,
    The window glass system according to any one of claims 1 to 8, wherein there is a gap between the window glass and the mounting member, or the mounting member has an opening.
  10.  移動体に取り付けられる窓ガラスと、
     前記窓ガラスの室内側表面に設けられる電熱線又は電熱膜と、
     前記窓ガラスに設けられ、有機材料製の有機素子を含むデバイスと、
     前記窓ガラスの室内側表面の温度を検出する温度センサと、
     前記移動体の室内の温度及び湿度を検出する温湿度センサと、を含み、
     平面視で、前記電熱線又は電熱膜が設けられる領域と、前記デバイスの表示領域とが、重なる、窓ガラス装置。
    A window glass that can be attached to a moving body,
    A heating wire or a heating film provided on the indoor surface of the window glass,
    A device provided on the window glass and containing an organic element made of an organic material,
    A temperature sensor that detects the temperature of the indoor surface of the window glass, and
    Including a temperature / humidity sensor for detecting the temperature and humidity in the room of the moving body.
    A window glass device in which the area where the heating wire or the heating film is provided and the display area of the device overlap in a plan view.
  11.  前記温度センサは、平面視で、前記電熱線又は前記電熱膜によって加熱される加熱領域内で、前記デバイスの表示領域の外側に設けられる、請求項10に記載の窓ガラス装置。 The window glass device according to claim 10, wherein the temperature sensor is provided outside the display area of the device in a heating region heated by the heating wire or the heating film in a plan view.
PCT/JP2020/039571 2019-12-11 2020-10-21 Window glass system and window glass apparatus WO2021117352A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021563773A JP7511129B2 (en) 2019-12-11 2020-10-21 Window Glass Systems
DE112020006068.3T DE112020006068T5 (en) 2019-12-11 2020-10-21 WINDOW GLASS SYSTEM AND WINDOW GLASS DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-224052 2019-12-11
JP2019224052 2019-12-11

Publications (1)

Publication Number Publication Date
WO2021117352A1 true WO2021117352A1 (en) 2021-06-17

Family

ID=76328885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039571 WO2021117352A1 (en) 2019-12-11 2020-10-21 Window glass system and window glass apparatus

Country Status (2)

Country Link
DE (1) DE112020006068T5 (en)
WO (1) WO2021117352A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113829847A (en) * 2021-10-29 2021-12-24 海信集团控股股份有限公司 Vehicle and vehicle window defogging method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6020449U (en) * 1983-07-20 1985-02-13 トヨタ自動車株式会社 Anti-fog transparent parts for automobiles
JPS626851A (en) * 1985-07-02 1987-01-13 Asahi Glass Co Ltd Defroster for vehicle window
JPH06320954A (en) * 1993-05-17 1994-11-22 Nissan Motor Co Ltd Rear window device for vehicle
JP2004025930A (en) * 2002-06-21 2004-01-29 Toyota Motor Corp Camera cover of on-vehicle camera
JP2008531376A (en) * 2005-02-24 2008-08-14 エクスアテック、エル.エル.シー. Pulse width modulation defroster
JP2013508112A (en) * 2009-12-24 2013-03-07 エルジー・ハウシス・リミテッド Fever glass system for preventing condensation and control method thereof
JP2017106983A (en) * 2015-12-07 2017-06-15 大日本印刷株式会社 Light control panel and window with light control panel
WO2017195295A1 (en) * 2016-05-11 2017-11-16 パイオニア株式会社 Light emission system and method for attaching light-emitting device to base

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3046382A1 (en) 2015-12-30 2017-07-07 Saint Gobain METHOD FOR MANUFACTURING LAMINATED VEHICLE GLAZING IN WHICH IS INCLUDED AN OLED SCREEN

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6020449U (en) * 1983-07-20 1985-02-13 トヨタ自動車株式会社 Anti-fog transparent parts for automobiles
JPS626851A (en) * 1985-07-02 1987-01-13 Asahi Glass Co Ltd Defroster for vehicle window
JPH06320954A (en) * 1993-05-17 1994-11-22 Nissan Motor Co Ltd Rear window device for vehicle
JP2004025930A (en) * 2002-06-21 2004-01-29 Toyota Motor Corp Camera cover of on-vehicle camera
JP2008531376A (en) * 2005-02-24 2008-08-14 エクスアテック、エル.エル.シー. Pulse width modulation defroster
JP2013508112A (en) * 2009-12-24 2013-03-07 エルジー・ハウシス・リミテッド Fever glass system for preventing condensation and control method thereof
JP2017106983A (en) * 2015-12-07 2017-06-15 大日本印刷株式会社 Light control panel and window with light control panel
WO2017195295A1 (en) * 2016-05-11 2017-11-16 パイオニア株式会社 Light emission system and method for attaching light-emitting device to base

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113829847A (en) * 2021-10-29 2021-12-24 海信集团控股股份有限公司 Vehicle and vehicle window defogging method thereof
CN113829847B (en) * 2021-10-29 2023-09-19 海信集团控股股份有限公司 Vehicle and vehicle window defogging method thereof

Also Published As

Publication number Publication date
JPWO2021117352A1 (en) 2021-06-17
DE112020006068T5 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
JP5753164B2 (en) Window glass with heatable light transmission sensor array
JP6377115B2 (en) Wind glass device provided with baffle plate capable of being electrically heated, method for manufacturing and using the wind glass device
WO2020189353A1 (en) Window glass system and window glass
US8809785B2 (en) Pane with optically transparent sensor field
CN109774602A (en) Bilateral transparence display component with nontransparent circuit
US10310553B2 (en) Display apparatus for vehicle and vehicle
JP5212367B2 (en) Temperature control device
US10067402B2 (en) Window system for a passenger compartment of a vehicle
RU2708101C1 (en) Multilayer glass with display device
RU2692299C1 (en) Condensate detection for vehicle surfaces through light transmitters and receivers
WO2021117352A1 (en) Window glass system and window glass apparatus
US20180272945A1 (en) Condensation detection for vehicle surfaces via ambient light
JP6607123B2 (en) Glass plate with heating electrode and vehicle
JP7511129B2 (en) Window Glass Systems
WO2022085559A1 (en) Window glass system and window glass
Schreiner Night vision: infrared takes to the road
RU192518U1 (en) DEVICE FOR DISPLAYING INFORMATION IN A METRO CAR
US20240157912A1 (en) Pane arrangement with a heatable sensor window
CN215627736U (en) Vehicle navigation rupture membrane
JP2002265239A (en) Laminated glass and cloudiness sensor using the same
KR20200029673A (en) Anti-condensation and fogging signs using carbon heating elements
CN112322214A (en) Vehicle navigation rupture membrane
CN115552219A (en) Glass assembly including moisture detector
CN115551706A (en) Composite sheet with functional membrane and current collector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898231

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021563773

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20898231

Country of ref document: EP

Kind code of ref document: A1