WO2021117146A1 - 電力変換器の制御装置 - Google Patents

電力変換器の制御装置 Download PDF

Info

Publication number
WO2021117146A1
WO2021117146A1 PCT/JP2019/048333 JP2019048333W WO2021117146A1 WO 2021117146 A1 WO2021117146 A1 WO 2021117146A1 JP 2019048333 W JP2019048333 W JP 2019048333W WO 2021117146 A1 WO2021117146 A1 WO 2021117146A1
Authority
WO
WIPO (PCT)
Prior art keywords
power converter
overvoltage
voltage
control device
detector
Prior art date
Application number
PCT/JP2019/048333
Other languages
English (en)
French (fr)
Inventor
一誠 深澤
雅博 木下
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to PCT/JP2019/048333 priority Critical patent/WO2021117146A1/ja
Priority to JP2021563500A priority patent/JP7156555B2/ja
Priority to US17/416,878 priority patent/US11817774B2/en
Publication of WO2021117146A1 publication Critical patent/WO2021117146A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • H02H7/1227Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters responsive to abnormalities in the output circuit, e.g. short circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control

Definitions

  • the present invention relates to a control device for a power converter.
  • Patent Document 1 discloses a power conversion system. According to the power conversion system, it can be connected to the grid while suppressing the inrush current.
  • An object of the present invention is to provide a control device for a power converter capable of suppressing vibration of the output voltage of the power converter.
  • the control device of the power converter according to the present invention includes an overvoltage detector that detects an overvoltage on the output side of the power converter, and the overvoltage detector when the overvoltage on the output side of the power converter is detected. It is equipped with a controller that performs gate block after narrowing down the current command value for the power converter.
  • the control device performs gate blocking after narrowing down the current command value for the power converter when an overvoltage on the output side of the power converter is detected. Therefore, it is possible to suppress the vibration of the output voltage of the power converter.
  • FIG. 1 It is a block diagram of the electric power system to which the control device of the electric power converter according to Embodiment 1 is applied. It is a block diagram which shows the mounting example of the overvoltage detector provided in the control device of the power converter in Embodiment 1. FIG. It is a hardware block diagram of the control device of the power converter in Embodiment 1. FIG.
  • FIG. 1 is a configuration diagram of a power system to which the control device of the power converter according to the first embodiment is applied.
  • the DC power supply 1 is a photovoltaic power generation facility.
  • the AC power supply 2 has three phases and is operated by an electric power company or the like.
  • the transformer 3 is connected between the DC power supply 1 and the AC power supply 2.
  • the power conversion system 4 includes a power converter 5, a DC capacitor 6, a DC switch 7, an AC reactor 8, an AC capacitor 9, an AC switch 10, a DC voltage detector 11, a first AC current detector 12, and a second AC current detection.
  • a device 13, an AC voltage detector 14, and a control device 15 are provided.
  • the power converter 5 is connected between the DC power supply 1 and the transformer 3.
  • the DC capacitor 6 is connected between the DC power supply 1 and the power converter 5.
  • the DC switch 7 is connected between the DC power supply 1 and the DC capacitor 6.
  • the AC reactor 8 is connected between the power converter 5 and the transformer 3.
  • the AC capacitor 9 is connected between the transformer 3 and the AC reactor 8.
  • the AC switch 10 is connected between the transformer 3 and the AC capacitor 9.
  • the DC voltage detector 11 is connected between the power converter 5 and the DC capacitor 6.
  • the first alternating current detector 12 is provided between the power converter 5 and the alternating current reactor 8.
  • the second alternating current detector 13 is provided between the transformer 3 and the alternating current switch 10.
  • the AC voltage detector 14 is provided between the transformer 3 and the AC switch 10.
  • the control device 15 includes a power controller 16, a current controller 17, a PWM controller 18, and an overvoltage detector 19.
  • the power controller 16 outputs a current command value based on the current measured value from the second current detector 13 and the voltage measured value from the AC voltage detector 14.
  • the current controller 17 outputs a voltage command value based on the deviation between the current command value from the power controller 16 and the current measurement value from the first AC current detector 12.
  • the PWM controller 18 controls the power converter 5 based on the voltage command value from the current controller 17.
  • the overvoltage detector 19 compares the voltage measurement value from the AC voltage detection unit with the preset overvoltage detection threshold value. When the voltage measurement value from the AC voltage detection unit is larger than the preset overvoltage detection threshold value, the overvoltage detector 19 outputs the information of the overvoltage detection flag that sets the current command value to 0. As a result, the current command value is narrowed down to 0. After that, when a certain period of time elapses, the overvoltage detection unit outputs the gate block signal GB toward the PWM controller 18. The PWM controller 18 performs a gate block based on the gate block signal GB.
  • FIG. 2 is a block diagram showing an implementation example of an overvoltage detector provided in the control device of the power converter according to the first embodiment.
  • the first absolute value calculation unit 20 the second absolute value calculation unit 21, the third absolute value calculation unit 22, the fourth absolute value calculation unit 23, the fifth absolute value calculation unit 24, and the sixth OR calculation with absolute value calculation unit 25, first comparison unit 26, second comparison unit 27, third comparison unit 28, fourth comparison unit 29, fifth comparison unit 30, sixth comparison unit 31, seventh comparison unit 32, and OR calculation.
  • a unit 33 and a delay unit 34 are provided.
  • the first absolute value calculation unit 20 calculates the absolute value of the voltage difference (system voltage UV phase) between the U phase and V phase of the system.
  • the second absolute value calculation unit 21 calculates the absolute value of the voltage difference (system voltage VW phase) between the V phase and the W phase of the system.
  • the third absolute value calculation unit 22 calculates the absolute value of the voltage difference (system voltage WU phase) between the W phase and the U phase of the system.
  • the fourth absolute value calculation unit 23 calculates the absolute value of the voltage (system voltage U phase) in the U phase of the system.
  • the second absolute value calculation unit 21 calculates the absolute value of the voltage (system voltage V phase) in the V phase of the system.
  • the third absolute value calculation unit 22 calculates the absolute value of the voltage (system voltage W phase) in the W phase of the system.
  • the first comparison unit 26 compares the calculated value of the first absolute value calculation unit 20 with the preset overvoltage detection threshold value.
  • the second comparison unit 27 compares the calculated value of the second absolute value calculation unit 21 with the preset overvoltage detection threshold value.
  • the third comparison unit 28 compares the calculated value of the third absolute value calculation unit 22 with the preset overvoltage detection threshold value.
  • the fourth comparison unit 29 compares the calculated value of the fourth absolute value calculation unit 23 with the preset overvoltage detection threshold value.
  • the fifth comparison unit 30 compares the calculated value of the fifth absolute value calculation unit 24 with the preset overvoltage detection threshold value.
  • the sixth comparison unit 31 compares the calculated value of the sixth absolute value calculation unit 25 with the preset overvoltage detection threshold value.
  • the seventh comparison unit 32 compares the absolute value of the voltage vector of the system with the preset overvoltage detection threshold value.
  • the OR calculation unit 33 sets the overvoltage detection flag OV that sets the current command value to 0 when a value larger than the preset overvoltage detection threshold value is detected by any of the first comparison unit 26 to the seventh comparison unit 32. Output.
  • the phase or line having the highest voltage even when the output voltage becomes unbalanced.
  • the overvoltage of the inter-voltage can be detected quickly.
  • the delay unit 34 outputs the gate block signal GB after a certain period of time has elapsed after receiving the input of the overvoltage detection flag OV from the OR calculation unit 33.
  • the gate block is performed after the current command value is narrowed down to 0.
  • the control device 15 performs gate blocking after narrowing down the current command value for the power converter 5 when an overvoltage on the output side of the power converter 5 is detected. Therefore, when the current becomes a value close to 0, the current is cut off, so that the vibration of the output voltage of the power converter 5 is suppressed as compared with the case where the gate block is performed without narrowing down the current command value. be able to.
  • the current command value for the power converter 5 is narrowed down when the overvoltage detector detects an overvoltage on the output side of the power converter 5 in the control device 15.
  • the cutoff frequency of the low bus filter of the DC voltage detector 11 may be temporarily increased until the gate block is performed later. In this case, even if the DC current from the photovoltaic power generation facility suddenly decreases and the DC voltage suddenly rises, it is possible to suppress the rise in the AC voltage due to the delay of the low-pass filter of the DC voltage detector 11.
  • control device 15 of the first embodiment may be applied to the electric power system in which the power storage equipment is used as the DC power source 1. Also in this case, the vibration of the output voltage of the power converter 5 can be suppressed.
  • FIG. 3 is a hardware configuration diagram of the control device of the power converter according to the first embodiment.
  • Each function of the control device 15 can be realized by a processing circuit.
  • the processing circuit includes at least one processor 100a and at least one memory 100b.
  • the processing circuit comprises at least one dedicated hardware 200.
  • each function of the control device 15 is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. At least one of the software and firmware is stored in at least one memory 100b. At least one processor 100a realizes each function of the control device 15 by reading and executing a program stored in at least one memory 100b. At least one processor 100a is also referred to as a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, and a DSP.
  • at least one memory 100b is a non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD or the like.
  • the processing circuit comprises at least one dedicated hardware 200
  • the processing circuit may be implemented, for example, as a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • each function of the control device 15 is realized by a processing circuit.
  • each function of the control device 15 is collectively realized by a processing circuit.
  • a part may be realized by the dedicated hardware 200, and the other part may be realized by software or firmware.
  • the function of the overvoltage detection unit is realized by a processing circuit as dedicated hardware 200, and for the functions other than the function of the overvoltage detection unit, at least one processor 100a reads a program stored in at least one memory 100b. It may be realized by executing.
  • the processing circuit realizes each function of the control device 15 by hardware 200, software, firmware, or a combination thereof.
  • the power converter control device can be used in a system that suppresses vibration of the output voltage of the power converter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

電力変換器の出力電圧の振動を抑制することができる電力変換器の制御装置を提供する。電力変換器の制御装置は、電力変換器の出力側における過電圧を検出する過電圧検出器と、前記過電圧検出器により前記電力変換器の出力側における過電圧が検出された際に、前記電力変換器に対する電流指令値を絞った後にゲートブロックを行う制御器と、を備えた。当該構成によれば、制御装置は、電力変換器の出力側における過電圧が検出された際に電力変換器に対する電流指令値を絞った後にゲートブロックを行う。このため、電力変換器の出力電圧の振動を抑制することができる。

Description

電力変換器の制御装置
 この発明は、電力変換器の制御装置に関する。
 特許文献1は、電力変換システムを開示する。当該電力変換システムによれば、突入電流を抑えながら、系統と連系し得る。
日本特開平9-28040号公報
 しかしながら、特許文献1に記載の電力変換システムにおいて、電力変換器の運転中に系統事故が発生すると、電力変換器の出力側において過電圧が発生する場合がある。当該過電圧の印加による故障を抑制する方法として、電力変換器の過電圧検出機能で過電圧を検出して、ゲートブロックを行って電力変換器の運転を停止する方法がある。当該方法において、過電圧の検出直後にゲートブロックを行うと、電力変換器の出力電圧が振動する場合もある。この場合、過電圧をさらに誘発させることもある。
 この発明は、上述の課題を解決するためになされた。この発明の目的は、電力変換器の出力電圧の振動を抑制することができる電力変換器の制御装置を提供することである。
 この発明に係る電力変換器の制御装置は、電力変換器の出力側における過電圧を検出する過電圧検出器と、前記過電圧検出器により前記電力変換器の出力側における過電圧が検出された際に、前記電力変換器に対する電流指令値を絞った後にゲートブロックを行う制御器と、を備えた。
 この発明によれば、制御装置は、電力変換器の出力側における過電圧が検出された際に電力変換器に対する電流指令値を絞った後にゲートブロックを行う。このため、電力変換器の出力電圧の振動を抑制することができる。
実施の形態1における電力変換器の制御装置が適用される電力システムの構成図である。 実施の形態1における電力変換器の制御装置に設けられた過電圧検出器の実装例を示すブロック図である。 実施の形態1における電力変換器の制御装置のハードウェア構成図である。
 この発明を実施するための形態について添付の図面に従って説明する。なお、各図中、同一または相当する部分には同一の符号が付される。当該部分の重複説明は適宜に簡略化ないし省略する。
実施の形態1.
 図1は実施の形態1における電力変換器の制御装置が適用される電力システムの構成図である。
 図1において、直流電源1は、太陽光発電設備である。交流電源2は三相で、電力会社等に運用される。変圧器3は、直流電源1と交流電源2との間に接続される。
 電力変換システム4は、電力変換器5と直流コンデンサ6と直流スイッチ7と交流リアクトル8と交流コンデンサ9と交流スイッチ10と直流電圧検出器11と第1交流電流検出器12と第2交流電流検出器13と交流電圧検出器14と制御装置15とを備える。
 電力変換器5は、直流電源1と変圧器3との間に接続される。直流コンデンサ6は、直流電源1と電力変換器5との間に接続される。直流スイッチ7は、直流電源1と直流コンデンサ6との間に接続される。交流リアクトル8は、電力変換器5と変圧器3との間に接続される。交流コンデンサ9は、変圧器3と交流リアクトル8との間に接続される。交流スイッチ10は、変圧器3と交流コンデンサ9との間に接続される。
 直流電圧検出器11は、電力変換器5と直流コンデンサ6との間に接続される。第1交流電流検出器12は、電力変換器5と交流リアクトル8との間に設けられる。第2交流電流検出器13は、変圧器3と交流スイッチ10との間に設けられる。交流電圧検出器14は、変圧器3と交流スイッチ10との間に設けられる。
 制御装置15は、電力制御器16と電流制御器17とPWM制御器18と過電圧検出器19とを備える。
 電力制御器16は、第2電流検出器13からの電流測定値と交流電圧検出器14からの電圧測定値とに基づいて電流指令値を出力する。電流制御器17は、電力制御器16からの電流指令値と第1交流電流検出器12からの電流測定値との偏差に基づいて電圧指令値を出力する。PWM制御器18は、電流制御器17からの電圧指令値に基づいて電力変換器5を制御する。
 過電圧検出器19は、交流電圧検出部からの電圧測定値と予め設定された過電圧検出閾値とを比較する。交流電圧検出部からの電圧測定値が予め設定された過電圧検出閾値よりも大きい場合、過電圧検出器19は、電流指令値を0とする過電圧検出フラグの情報を出力する。その結果、電流指令値が0に絞られる。その後、一定時間が経過すると、過電圧検出部は、ゲートブロック信号GBをPWM制御器18に向けて出力する。PWM制御器18は、当該ゲートブロック信号GBに基づいてゲートブロックを行う。
 次に、図2を用いて、過電圧検出器19の実装例を説明する。
 図2は実施の形態1における電力変換器の制御装置に設けられた過電圧検出器の実装例を示すブロック図である。
 図2に示されるように、第1絶対値算出部20と第2絶対値算出部21と第3絶対値算出部22と第4絶対値算出部23と第5絶対値算出部24と第6絶対値算出部25と第1比較部26と第2比較部27と第3比較部28と第4比較部29と第5比較部30と第6比較部31と第7比較部32とOR算出部33と遅延部34とを備える。
 第1絶対値算出部20は、系統のU相とV相とにおける電圧の差(系統電圧UV相)の絶対値を算出する。第2絶対値算出部21は、系統のV相とW相とにおける電圧の差(系統電圧VW相)の絶対値を算出する。第3絶対値算出部22は、系統のW相とU相とにおける電圧の差(系統電圧WU相)の絶対値を算出する。
 第4絶対値算出部23は、系統のU相における電圧(系統電圧U相)の絶対値を算出する。第2絶対値算出部21は、系統のV相における電圧(系統電圧V相)の絶対値を算出する。第3絶対値算出部22は、系統のW相における電圧(系統電圧W相)の絶対値を算出する。
 第1比較部26は、第1絶対値算出部20の算出値と予め設定された過電圧検出閾値とを比較する。第2比較部27は、第2絶対値算出部21の算出値と予め設定された過電圧検出閾値とを比較する。第3比較部28は、第3絶対値算出部22の算出値と予め設定された過電圧検出閾値とを比較する。
 第4比較部29は、第4絶対値算出部23の算出値と予め設定された過電圧検出閾値とを比較する。第5比較部30は、第5絶対値算出部24の算出値と予め設定された過電圧検出閾値とを比較する。第6比較部31は、第6絶対値算出部25の算出値と予め設定された過電圧検出閾値とを比較する。
 第7比較部32は、系統の電圧ベクトルの絶対値と予め設定された過電圧検出閾値とを比較する。
 OR算出部33は、第1比較部26から第7比較部32のいずれかにより予め設定された過電圧検出閾値よりも大きい値が検出された際に電流指令値を0とする過電圧検出フラグOVを出力する。
 ここで、電圧ベクトルの絶対値だけではなく、各線間電圧および、各相電圧も、閾値と比較することで、出力電圧が不平衡となった場合にも、最も電圧が高くなった相または線間電圧の過電圧を素早く検出できる。
 また、各線間および相電圧の両方を閾値と比較することで、出力に接続された三相トランスが、Δ-Δ結線であった場合と、Δ-Y結線であった場合のいずれにおいても、そのトランスの2次側の過電圧を素早く検出できる。
 三相平衡の場合は、電圧ベクトルの絶対値を閾値と比較することで、出力に接続された三相トランスが、Δ-Δ結線であった場合と、Δ-Y結線であった場合のいずれにおいても、そのトランスの2次側の過電圧を素早く検出できる。
 遅延部34は、OR算出部33から過電圧検出フラグOVの入力を受け付けてから一定時間経過した後にゲートブロック信号GBを出力する。
 その結果、電流指令値が0に絞られた後、ゲートブロックが行われる。
 以上で説明した実施の形態1によれば、制御装置15は、電力変換器5の出力側における過電圧が検出された際に電力変換器5に対する電流指令値を絞った後にゲートブロックを行う。このため、電流が0に近い値となったときに、電流が遮断されるため、電流指令値を絞らずにゲートブロックした場合と比較して、電力変換器5の出力電圧の振動を抑制することができる。
 この際、出力電圧の振幅が小さくなった分、電力変換器5の出力側に接続する機器において耐圧の低いものを選定できる。その結果、機器の設定の自由度が上がり、機器のコストを下げることができる。
 なお、直流電源1が太陽光発電設備である場合、制御装置15において、過電圧検出部により電力変換器5の出力側における過電圧が検出された際に、電力変換器5に対する電流指令値を絞った後にゲートブロックを行うまでの間において、直流電圧検出器11のローバスフィルタの遮断周波数を一時的に増加させてもよい。この場合、太陽光発電設備からの直流電流が急激に減少し、直流電圧が急上昇しても、直流電圧検出器11のローパスフィルタの遅れが原因で交流電圧が上昇することを抑制できる。
 また、直流電源1として蓄電設備が使用された電力システムに実施の形態1の制御装置15を適用してもよい。この場合も、電力変換器5の出力電圧の振動を抑制することができる。
 次に、図3を用いて、制御装置15の例を説明する。
 図3は実施の形態1における電力変換器の制御装置のハードウェア構成図である。
 制御装置15の各機能は、処理回路により実現し得る。例えば、処理回路は、少なくとも1つのプロセッサ100aと少なくとも1つのメモリ100bとを備える。例えば、処理回路は、少なくとも1つの専用のハードウェア200を備える。
 処理回路が少なくとも1つのプロセッサ100aと少なくとも1つのメモリ100bとを備える場合、制御装置15の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせで実現される。ソフトウェアおよびファームウェアの少なくとも一方は、プログラムとして記述される。ソフトウェアおよびファームウェアの少なくとも一方は、少なくとも1つのメモリ100bに格納される。少なくとも1つのプロセッサ100aは、少なくとも1つのメモリ100bに記憶されたプログラムを読み出して実行することにより、制御装置15の各機能を実現する。少なくとも1つのプロセッサ100aは、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSPともいう。例えば、少なくとも1つのメモリ100bは、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等である。
 処理回路が少なくとも1つの専用のハードウェア200を備える場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらの組み合わせで実現される。例えば、制御装置15の各機能は、それぞれ処理回路で実現される。例えば、制御装置15の各機能は、まとめて処理回路で実現される。
 制御装置15の各機能について、一部を専用のハードウェア200で実現し、他部をソフトウェアまたはファームウェアで実現してもよい。例えば、過電圧検出部の機能については専用のハードウェア200としての処理回路で実現し、過電圧検出部の機能以外の機能については少なくとも1つのプロセッサ100aが少なくとも1つのメモリ100bに格納されたプログラムを読み出して実行することにより実現してもよい。
 このように、処理回路は、ハードウェア200、ソフトウェア、ファームウェア、またはこれらの組み合わせで制御装置15の各機能を実現する。
 以上のように、この発明に係る電力変換器の制御装置は、電力変換器の出力電圧の振動を抑制するシステムに利用できる。
 1 直流電源、 2 交流電源、 3 変圧器、 4 電力変換システム、 5 電力変換器、 6 直流コンデンサ、 7 直流スイッチ、 8 交流リアクトル、 9 交流コンデンサ、 10 交流スイッチ、 11 直流電圧検出器、 12 第1交流電流検出器、 13 第2交流電流検出器、 14 交流電圧検出器、 15 制御装置、 16 電力制御器、 17 電流制御器、 18 PWM制御器、 19 過電圧検出器、 20 第1絶対値算出部、 21 第2絶対値算出部、 22 第3絶対値算出部、 23 第4絶対値算出部、 24 第5絶対値算出部、 25 第6絶対値算出部、 26 第1比較部、 27 第2比較部、 28 第3比較部、 29 第4比較部、 30 第5比較部、 31 第6比較部、 32 第7比較部、 33 OR算出部、 34 遅延部、 100a プロセッサ、 100b メモリ、 200 ハードウェア

Claims (3)

  1.  電力変換器の出力側における過電圧を検出する過電圧検出器と、
     前記過電圧検出器により前記電力変換器の出力側における過電圧が検出された際に、前記電力変換器に対する電流指令値を絞った後にゲートブロックを行う制御器と、
    を備えた電力変換器の制御装置。
  2.  前記過電圧検出器は、太陽光発電設備と交流電源との間に接続された電力変換器の出力側における過電圧を検出し、
     前記制御器は、前記過電圧検出器により前記電力変換器の出力側における過電圧が検出された際に、前記電力変換器に対する電流指令値を絞る前に、前記太陽光発電設備と前記電力変換器との間に設けられた直流電圧検出器のローバスフィルタの遮断周波数を一時的に増加させる請求項1に記載の電力変換器の制御装置。
  3.  系統電圧の絶対値、相電圧、線間電圧のうち少なくとも2つを、予め定められた閾値と比較し、過電圧を検出する手段、
    を備えた請求項1または請求項2に記載の電力変換器の制御装置。
PCT/JP2019/048333 2019-12-10 2019-12-10 電力変換器の制御装置 WO2021117146A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/048333 WO2021117146A1 (ja) 2019-12-10 2019-12-10 電力変換器の制御装置
JP2021563500A JP7156555B2 (ja) 2019-12-10 2019-12-10 電力変換器の制御装置
US17/416,878 US11817774B2 (en) 2019-12-10 2019-12-10 Control device for power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/048333 WO2021117146A1 (ja) 2019-12-10 2019-12-10 電力変換器の制御装置

Publications (1)

Publication Number Publication Date
WO2021117146A1 true WO2021117146A1 (ja) 2021-06-17

Family

ID=76329985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048333 WO2021117146A1 (ja) 2019-12-10 2019-12-10 電力変換器の制御装置

Country Status (3)

Country Link
US (1) US11817774B2 (ja)
JP (1) JP7156555B2 (ja)
WO (1) WO2021117146A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022074716A1 (ja) * 2020-10-05 2022-04-14 東芝三菱電機産業システム株式会社 電力変換装置の制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003164166A (ja) * 2001-11-28 2003-06-06 Hitachi Ltd 電力変換装置
JP2005204485A (ja) * 2004-01-19 2005-07-28 Sanyo Electric Co Ltd 系統連系用インバータ装置
JP2007325333A (ja) * 2006-05-30 2007-12-13 Osaka Gas Co Ltd 分散型発電装置
JP2010246228A (ja) * 2009-04-03 2010-10-28 Panasonic Corp 燃料電池システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2783771B2 (ja) 1995-07-13 1998-08-06 株式会社東芝 系統連系インバータ装置の起動運転方法
KR20160047575A (ko) * 2013-10-04 2016-05-02 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 전원 장치
US9755537B2 (en) * 2015-03-04 2017-09-05 Infineon Technologies Austria Ag Multi-cell power conversion method with failure detection and multi-cell power converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003164166A (ja) * 2001-11-28 2003-06-06 Hitachi Ltd 電力変換装置
JP2005204485A (ja) * 2004-01-19 2005-07-28 Sanyo Electric Co Ltd 系統連系用インバータ装置
JP2007325333A (ja) * 2006-05-30 2007-12-13 Osaka Gas Co Ltd 分散型発電装置
JP2010246228A (ja) * 2009-04-03 2010-10-28 Panasonic Corp 燃料電池システム

Also Published As

Publication number Publication date
US11817774B2 (en) 2023-11-14
JP7156555B2 (ja) 2022-10-19
US20220140723A1 (en) 2022-05-05
JPWO2021117146A1 (ja) 2021-06-17

Similar Documents

Publication Publication Date Title
JP6403918B2 (ja) コンバータ装置
JP5689497B2 (ja) Dcリンク部異常検出機能を備えたモータ駆動装置
AU2019245978B2 (en) Power source quality management system and air conditioning apparatus
US20180212460A1 (en) Uninterruptible power supply
WO2017154334A1 (ja) インバータ装置
WO2021117146A1 (ja) 電力変換器の制御装置
JP6543872B2 (ja) 制御装置、制御方法及びプログラム
JP6710291B2 (ja) 高調波電流補償装置および空気調和システム
US10944336B2 (en) Power conversion apparatus
JP6895921B2 (ja) 電力変換装置、及び異常検出方法
JP2018121408A (ja) モータ駆動装置
JP2006304456A (ja) 電力変換装置
JP6602507B1 (ja) 電力変換システム
JPWO2016135889A1 (ja) モータ駆動制御装置及び空気調和機
JPWO2021117146A5 (ja)
US20220085733A1 (en) Multiple power conversion system
JP2003230275A (ja) Pwmサイクロコンバータの保護方法
WO2021049016A1 (ja) 電力変換装置
WO2020065857A1 (ja) 電力変換装置
WO2019111293A1 (ja) 電力変換装置および異常検知方法
JP7305056B2 (ja) 電力変換装置、車両用補助電源装置及び電力変換装置の停止方法
JP6365012B2 (ja) 分散型電源システム
JP6677316B2 (ja) 電力変換装置の制御装置
JP2013093949A (ja) 電力変換装置
JP6366339B2 (ja) パワーコンディショナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956154

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021563500

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956154

Country of ref document: EP

Kind code of ref document: A1