WO2021114606A1 - 一种带吊挂结构的空水冷大功率永磁牵引电机 - Google Patents

一种带吊挂结构的空水冷大功率永磁牵引电机 Download PDF

Info

Publication number
WO2021114606A1
WO2021114606A1 PCT/CN2020/098008 CN2020098008W WO2021114606A1 WO 2021114606 A1 WO2021114606 A1 WO 2021114606A1 CN 2020098008 W CN2020098008 W CN 2020098008W WO 2021114606 A1 WO2021114606 A1 WO 2021114606A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
channel
water
cooling
permanent magnet
Prior art date
Application number
PCT/CN2020/098008
Other languages
English (en)
French (fr)
Inventor
许勇
贾喜勤
李广
刘永强
徐萌
苏晓伟
姬春霞
Original Assignee
中车永济电机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车永济电机有限公司 filed Critical 中车永济电机有限公司
Publication of WO2021114606A1 publication Critical patent/WO2021114606A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/10Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft

Definitions

  • the invention relates to the technical field of electric motors, in particular to a high-power permanent magnet traction motor.
  • the motor includes a casing, a stator, a rotor, and a main shaft.
  • the stator is arranged on the inner wall of the casing, the rotor is connected to the main shaft in transmission, and the rotor is arranged inside the stator; When energized, the rotor rotates, which in turn drives the main shaft to rotate, and a large amount of heat is generated inside the motor during operation.
  • a cooling channel is often provided between the inner wall and the outer wall of the housing, and the first opening of the cooling channel is provided on the outer wall of the housing Above, the second opening of the cooling channel is arranged at the front end of the housing along the direction parallel to the axis of the main shaft.
  • a ventilation device is arranged on the outside of the motor housing. When the motor is working, the ventilation device drives air to enter the cooling air duct from the first opening and flow out from the second opening to cool the motor.
  • the embodiment of the present invention provides an air-water-cooled high-power permanent magnet traction motor with a hanging structure to solve the uneven heat distribution inside the existing motor.
  • the existing cooling method is adopted, and the entire motor cannot be uniformly cooled. technical problem.
  • the embodiment of the present invention provides an air-water-cooled high-power permanent magnet traction motor with a hanging structure, which includes a casing, a stator assembly and a rotor assembly; In the installation space, the casing is also formed with an air-cooled channel that penetrates the installation space; the rotor assembly includes a rotating shaft provided with blades that drive the air in the installation space to flow to the air-cooled channel.
  • the permanent magnet traction motor as described above, wherein the cross section of the casing perpendicular to the extending direction of the rotating shaft is a regular polygon, and the air-cooled channel is arranged at four corners outside the water-cooled channel.
  • the permanent magnet traction motor as described above wherein both ends of the rotating shaft are mounted on the casing through bearings, the rotating shaft is mounted with a sealing cover that isolates the bearing from the mounting space, and the sealing cover is connected to the mounting space.
  • the casing constitutes a cooling space surrounding the bearing, and the casing is provided with an air inlet channel and an air outlet channel that communicate with the cooling space.
  • the air-water-cooled permanent magnet traction motor with a hanging structure includes a casing, a stator assembly and a rotor assembly.
  • the casing surrounds and forms an installation space for installing the stator assembly and the rotor assembly, and the casing is formed with and installed The air-cooled channel through the space.
  • the rotor assembly includes a rotating shaft. When the rotating shaft rotates, the blades on the rotating shaft rotate, and then drive the air in the installation space to flow into the air-cooled channel. During the air flow, the high temperature in the installation channel is absorbed. The heat of the area is released to the low temperature area, thereby balancing the heat distribution of each area in the installation channel.
  • the air flows in the air-cooled channel and exchanges heat with the cabinet, and the heat carried by the air is transferred and dissipated through the cabinet Into the outside atmosphere, so as to achieve uniform cooling of the inside of the motor.
  • FIG. 1 is a schematic structural diagram of a permanent magnet traction motor provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a stator assembly provided by an embodiment of the present invention.
  • Figure 3 is a schematic structural diagram of a rotor assembly provided by an embodiment of the present invention.
  • Figure 4 is a quarter cross-sectional view of a casing provided by an embodiment of the present invention.
  • Figure 5 is a schematic structural diagram of a rotor punch provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram 1 of the installation of the suspension provided by the embodiment of the present invention.
  • Figure 7 is a second schematic diagram of the installation of the suspension provided by the embodiment of the present invention.
  • Figure 8 is a third schematic diagram of the installation of the suspension provided by the embodiment of the present invention.
  • Fig. 9 is a partial schematic diagram of a bearing provided by an embodiment of the present invention.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be interpreted broadly. For example, it may be a fixed connection or a detachable connection. Or integrally formed, which can be mechanically connected, or electrically connected, or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components or the interaction between the two components, unless There are other clear restrictions. For those of ordinary skill in the art, the specific meanings of the above-mentioned terms in the present invention can be understood according to specific situations.
  • FIG. 1 is a schematic structural diagram of a permanent magnet traction motor provided by an embodiment of the present invention
  • Fig. 2 is a schematic structural diagram of a stator assembly provided by an embodiment of the present invention
  • Fig. 3 is a schematic structural diagram of a rotor assembly provided by an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a rotor punch provided by an embodiment of the present invention
  • FIG. 6 is a schematic diagram 1 of the installation of a hanger provided by an embodiment of the present invention
  • FIG. 7 is The second schematic diagram of the installation of the suspension provided by the embodiment of the present invention
  • FIG. 8 is the third schematic diagram of the installation of the suspension provided by the embodiment of the present invention
  • FIG. 9 is a partial schematic diagram of the bearing provided by the embodiment of the present invention.
  • This embodiment provides an air-water-cooled high-power permanent magnet traction motor with a hanging structure, which includes a casing 1, a stator assembly 2 and a rotor assembly 3; the casing 1 is enclosed to form an installation for installing the stator assembly 2 and the rotor assembly 3.
  • the casing 1 is also formed with an air-cooled channel 11 passing through the installation space;
  • the rotor assembly 3 includes a rotating shaft 31 provided with blades 311 that drive the air in the installation space to flow to the air-cooled channel 11.
  • the high-power permanent magnet traction motor provided in this embodiment is mainly used in the field of electric trains.
  • High-speed electric trains equipped with high-power permanent magnet traction motors have lower energy consumption, lower operating costs, higher traction power, and significantly reduced vehicle noise. The pollution to the environment is greatly reduced.
  • the housing 1 of the high-power permanent magnet traction motor is firstly enclosed as an installation channel with two ends open, and a first end cover 12 is installed at one end of the installation channel, and a first end cover 12 is installed at the other end of the opening.
  • the two end covers 13 further close the installation channel to form an installation space.
  • the first end cover 12 and the second end cover 13 can be connected to the casing 1 by bolts.
  • the stator assembly 2 and the rotor assembly 3 are installed in the installation space.
  • the stator assembly 2 includes a stator core 21 arranged around the rotor assembly 3 and a stator winding 22 arranged on the stator core 21.
  • the stator core 21 consists of multiple Layers of silicon steel sheets are superimposed and are installed on the inner wall of the casing 1 by means of a thermal sleeve, and the stator winding 22 is connected in a Y-shape.
  • the rotor assembly 3 includes a rotor punch 32, a permanent magnet, a rotating shaft 31, a rotor pressing ring, and a permanent magnet pressing plate.
  • the rotor punch 32 is provided with a first mounting hole 321, a second mounting hole 322, and a shaft mounting hole 323.
  • the rotor punch 32 passes through the shaft mounting hole 323 and passes through the shaft 31 of the motor.
  • a plurality of rotor punching pieces 32 are superimposed to form a rotor core.
  • the rotor punching pieces 32 may also be silicon steel sheets.
  • the first mounting hole 321 and the second mounting hole 322 are symmetrically arranged along the diameter of the rotor core to form a group of "V"-shaped mounting holes, the "V"-shaped mounting holes are evenly distributed along the circumference of the rotor core, and each first Permanent magnets are installed in the mounting holes 321 and each of the second mounting holes 322.
  • the permanent magnets can be made of ferrite permanent magnetic materials, such as barium ferrite, strontium ferrite, etc.; alternatively, it can also be used Alloy permanent magnet materials, such as Ru-Fe-B permanent magnet alloy, Al-Ni-Co permanent magnet alloy, Samarium-Cobalt permanent magnet alloy, etc., which are not limited in this embodiment.
  • the magnetic poles between each adjacent permanent magnet need to be opposite, which is the basic condition of forming a permanent magnet motor.
  • the heat dissipation and cooling process consists of two parts.
  • the first part is to evenly distribute the heat in the installation space, which specifically includes: the stator assembly 2, the rotor assembly 3 and the first end cover 12 enclosing the first cavity 14, the stator assembly 2,
  • the rotor assembly 3 and the second end cover 13 enclose a second cavity 15.
  • the rotor core is provided with ventilation holes distributed along the circumference of the rotor core. One end of the ventilation hole communicates with the first cavity 14, and the other end In communication with the second cavity 15, an air cooling channel 11 is provided on the casing 1, one end of the air cooling channel 11 is in communication with the first cavity 14, and the other end is in communication with the second cavity 15.
  • the blades 311 arranged on the rotating shaft 31 drive the air to flow in the first cavity 14.
  • the air in the first cavity 14 flows into the ventilation holes on the rotor core, and then flows into the second cavity 15 through the ventilation holes.
  • the air in the second cavity 15 then flows into the air-cooled channel 11, and finally flows into the first cavity 14 from the air-cooled channel 11, and circulates continuously. During the cycle, the air contacts with high-temperature components and absorbs heat.
  • Cooling specifically includes: during the circulation process, whenever air passes through the air-cooled channel 11 on the cabinet 1, it will exchange heat with the inner wall of the cabinet 1, and then transfer the heat through the cabinet 1 and release it to the outside atmosphere.
  • a plurality of heat sinks may be provided outside the casing 1 to increase the heat dissipation area of the casing 1 and thereby improve the effect of heat dissipation and cooling.
  • the high-power permanent magnet traction motor provided by this embodiment includes a housing 1, a stator assembly 2 and a rotor assembly 3.
  • the housing 1 surrounds and forms an installation space for installing the stator assembly 2 and the rotor assembly 3, and the housing 1 is formed with
  • the installation space passes through the air-cooled channel 11,
  • the rotor assembly 3 includes a rotating shaft 31, and the rotating shaft 31 drives the blades 311 on the rotating shaft 31 to rotate when rotating, and then drives the air in the installation space to flow into the air-cooled channel 11 during the air flow process. It absorbs heat in the high-temperature area in the installation channel and releases heat to the low-temperature area, thereby balancing the heat distribution in each area in the installation channel.
  • the air flows in the air-cooled channel 11, it exchanges heat with the casing 1.
  • the heat carried by the air is transferred through the casing 1 and radiated to the outside atmosphere, thereby achieving uniform cooling of the inside of the motor.
  • the casing 1 in this embodiment is provided with a water-cooled channel 16 that can exchange heat with the air-cooled channel 11, and is also provided with a water inlet 161 and a water outlet 162 that communicate with the water-cooled channel 16 to enter and exit the cooling water.
  • a water-cooled channel 16 that can exchange heat with the air-cooled channel 11, and is also provided with a water inlet 161 and a water outlet 162 that communicate with the water-cooled channel 16 to enter and exit the cooling water.
  • the water inlet 161 and the water outlet 162 are both arranged on the outer wall of the casing 1.
  • the water outlet 161 is connected to the water cooling channel 16 through the water outlet pipe, and the water inlet 162 is connected to the water cooling channel 16 through the water inlet pipe.
  • a water-cooled channel 16 is installed on the inner wall of the casing 1.
  • the water-cooled channel 16 and the air-cooled channel 11 are separated by a part of the inner wall of the casing 1.
  • the casing is located in the air-cooled channel 11
  • the inner wall of 1 absorbs the heat of the air and transfers it to the cooling water in the water cooling channel 16.
  • the cooling water enters the water cooling channel 16 through the water inlet 161, and carries the heat out of the water outlet 162.
  • the water cooling channel 16 is provided with water channel ribs 163 that extend the cooling water circulation path.
  • the flow path of the cooling water in the water-cooling channel 16 is effectively increased. The longer the flow path, the more heat the cooling water absorbs, thereby improving the cooling effect of the water-cooling channel 16.
  • the water cooling channel 16 is an annular channel surrounding the rotating shaft 31, and the air cooling channel 11 is arranged outside the water cooling channel 16.
  • the water-cooled channel 16 and the air-cooled channel 11 are both arranged inside the motor casing 1. The noise generated by the water-cooled channel 16 and the air-cooled channel 11 is blocked by the casing 1, thereby reducing the noise of the high-power permanent magnet traction motor during ventilation and heat dissipation .
  • the inner wall of the casing 1 is provided with an annular channel, which is arranged around the rotating shaft 31, and the annular channel is respectively communicated with the water inlet 161 and the water outlet 162 of the cooling water, thereby forming the water cooling channel 16, through which the stator core 21 passes
  • the connection method of the heating jacket is installed on the side of the annular channel facing the rotating shaft 31.
  • the water channel ribs 163 may be arranged along the center line of the annular channel to form a zigzag cooling circuit.
  • the number of water channel ribs 163 is set to three, and the center line of the water-cooled channel 16 is set parallel to the horizontal plane: at this time, the water-cooled channel 16 is equivalent to a ring-shaped column placed horizontally, and the ring-mounted column is divided along its centerline. There are three parts, and each part is a water-cooled cavity. The adjacent water-cooled cavities are separated by water channel ribs 163. The water channel ribs 163 are provided with openings so that the adjacent water-cooled cavities communicate with each other.
  • the openings are far away from each other.
  • the cooling water flows into the right end of the first water-cooling cavity from the water inlet 161, it flows in the direction of the center line of the water-cooling channel 16 inside the first water-cooling cavity, that is, flows from right to left toward the first water-cooling cavity.
  • the left end flows into the second water cooling cavity through the opening on the first water channel rib 163, flows from left to right in the second water cooling cavity to the right end of the second water cooling cavity, and flows into the third water cooling cavity through the opening on the second water channel rib 163 Inside the cavity, it flows from right to left in the third water-cooled cavity, and finally flows out from the water outlet 162, so that the cooling water continuously moves left and right in the water-cooled channel, forming a zigzag cooling circuit.
  • the number of water channel ribs 163 in this embodiment can be set more, so as to further subdivide the water cooling channel 16 to increase the flow path of the cooling water and improve the water cooling effect.
  • a hanger 4 is connected to the outside of the air-cooled channel 11 in this embodiment.
  • the hanger 4 can be used to install the motor.
  • the high-power permanent magnet traction motor provided in this embodiment can be firmly installed on the motor car through the hanger 4, and in this embodiment, the hanger 4 is located outside the air-cooled aisle 11.
  • the cold aisle 11 is located outside the water-cooled aisle 16, and the casing 1 is divided into a three-layer welded structure as a whole, so that the motor has better strength and rigidity to meet the vibration requirements of the high-power permanent magnet traction motor in actual operation.
  • the suspension 4 described in this embodiment is not limited to the structure described in FIGS. 6 to 8, and other installation forms may also be used.
  • the suspension 4 may also include two motors and motors.
  • the vertical ribs fixed by the shell 1 are fixed with clamping plates between the vertical ribs. During installation, the clamping plates are clamped on the corresponding parts of the locomotive and fastened by bolts, so as to realize the suspension positioning of the motor.
  • the cross section of the casing 1 perpendicular to the extending direction of the rotating shaft 31 is a regular polygon, and the air-cooling channel 11 is arranged at the four corners outside the water-cooling channel 16.
  • the interface of the casing 1 perpendicular to the extending direction of the rotating shaft 31 may be a regular octagon, or may also be other regular polygons, which is not limited in this embodiment.
  • the rotor assembly 3 in this embodiment includes a rotating shaft 31 and a rotor body 33 disposed on the rotating shaft 31.
  • the rotor body 33 is provided with a first air duct penetrating along the extending direction of the rotating shaft 31, and the first air duct is evenly arranged around the rotating shaft 31 There are multiple.
  • the first cavity 14 and the second cavity 15 located on both sides of the rotor assembly 3 inside the motor are connected.
  • the first cavity is balanced. The heat distribution between the cavity 14 and the second cavity 15.
  • the rotor body 33 can include a rotor core and a rotor winding.
  • the motor is a permanent magnet motor
  • the rotor winding can be replaced by permanent magnets, which are mounted on the rotor core.
  • the permanent magnets can be built-in Type magnetic pole type structure, alternatively, an external magnetic pole type structure can also be used.
  • the first air duct is arranged on the rotor core.
  • the first air duct may be a straight air duct or a curved air duct, which is not limited in this embodiment.
  • the blade 311 in this embodiment is an axial flow blade, and a guide ring 312 is provided behind the airflow direction of the axial flow blade, and the guide ring 312 guides the airflow toward the air-cooling channel 11.
  • the air flow direction is effectively limited, so that the air in the installation space flows to the inside of the air-cooled channel 11 in a concentrated manner, and the air flow efficiency is improved.
  • the air flow direction of the axial flow blade is specifically: the axial flow blade rotates to form a rotating plane, and the air flows along the axial direction of the rotating plane.
  • the guide ring 312 may be welded and connected with the axial flow blades, so as to limit the outflow direction of the air.
  • both ends of the rotating shaft 31 are installed in the casing 1 through the bearings 5, and the rotating shaft 31 is installed with a sealing cover 6 that isolates the bearing 5 from the installation space.
  • the sealing cover 6 and the casing 1 form a cooling space 51 surrounding the bearing 5.
  • the casing 1 is provided with an air inlet channel 52 and an air outlet channel 53 that communicate with the cooling space 51.
  • the first end cover 12 on the casing 1 is provided with a shaft hole, part of the rotating shaft 31 extends from the shaft hole, and a bearing 5 is provided near the shaft hole.
  • a surrounding shaft may be provided near the shaft hole.
  • the annular groove of the hole, the bearing 5 is thermally sleeved in the annular groove.
  • a sealing cover 6 is arranged inside the first end cover 12, the sealing cover 6 is sleeved on the rotating shaft 31, the inner wall of the first end cover 12 is recessed, and the recessed opening is sealed by the sealing cover 6, thereby forming a cooling space 51.
  • An air inlet channel 52 communicating with the cooling space is opened on the outer wall of the first end cover 12, and an air outlet channel 53 communicating with the cooling space 51 is also opened on the outer wall of the first end cover.
  • the cooling space 51, the air inlet channel 52, and the air outlet channel 53 together form a bearing air-cooling channel.
  • the air outlet channel 53 or the air inlet channel 52 is arranged close to the bearing 5, and the bearing air cooling channel is close to the bearing 5, so that the bearing 5
  • the heat can be transferred to the bearing cooling air duct more quickly, and the cooling effect on the bearing 5 can be improved.
  • the second end cover 13 may be provided with a bearing cooling air duct similar to the first end cover 12, and the inner side of the second end cover 13 may also be provided with a sealing cover 6, which will not be repeated in this embodiment.
  • an air drive device may be provided on the outer side of the first end cover 12 and the second end cover 13, for example, a cooling fan may be provided, and the cooling fan may drive air to flow in the bearing cooling duct when the cooling fan is working.
  • the rotating shaft 31 is connected in transmission; alternatively, an independent energy supply can also be used.
  • air inlet passages 52 There may be multiple air inlet passages 52, and multiple air outlet passages 52 are distributed around the rotating shaft 31 to increase the amount of air; the air outlet passage 53 may also be provided with multiple, and multiple air outlet passages 53 are distributed around the rotating shaft 31, increasing Air volume.
  • the sealing cover 6 rotates with the rotating shaft 31 and has a sheet-shaped protrusion 61 that drives the air flow in the cooling space 51.
  • the power and energy of the motor itself are used to drive the air to flow in the cooling space 51, and no additional energy supply structure is required.
  • the flaky protrusion 61 in this embodiment may be a centrifugal fan blade, which forms a rotating plane when rotating, and absorbs air in the axial direction of the rotating plane, and discharges it in the circumferential direction of the rotating plane. Therefore, the axial direction of the rotation plane can be regarded as the intake end of the centrifugal fan blade, and the circumferential direction of the rotation plane can be regarded as the exhaust end of the centrifugal fan blade.
  • the end of the air inlet channel 52 is aligned with the air inlet end of the centrifugal fan blade, and the end of the air outlet channel 53 is aligned with the air outlet end of the centrifugal fan blade, thereby realizing air flow.
  • the axial flow blades in this embodiment can also be arranged on the side of the sealing cover 6 in the installation space, and the guide ring 312 is arranged on the side of the sealing cover 6 facing the installation space.
  • An annular cavity is formed in which an axial flow blade is installed.
  • One end of the axial flow blade is connected to the side wall of the sealing cover 6 in the installation space, and the other end is connected to the guide ring 312 facing the side wall of the sealing cover 6, and the shaft
  • the high-power permanent magnet traction motor provided by this embodiment further provides the heat dissipation and cooling effect inside the motor through air-water cooling combined with cooling, thereby effectively providing the power density of the high-power permanent magnet traction motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

一种带吊挂结构的空水冷大功率永磁牵引电机,包括机壳、定子组件和转子组件,机壳包围形成用于安装定子组件和转子组件的安装空间,机壳成型有与安装空间贯通的风冷通道,转子组件包括转轴,转轴在旋转时带动转轴上的叶片转动,进而驱动安装空间内的空气向风冷通道内流动,在空气的流动过程中,吸收安装通道内的高温区域的热量,并向低温区域释放热量,从而平衡了安装通道内各区域的热量分布,同时空气在风冷通道内流动时与机壳产生热交换,空气携带的热量通过机壳传递并发散到外界大气中,从而实现了对大功率永磁牵引电机内部均匀的冷却降温,避免电机内部的热量分布不均匀。

Description

一种带吊挂结构的空水冷大功率永磁牵引电机 技术领域
本发明涉及电机技术领域,尤其涉及一种大功率永磁牵引电机。
背景技术
传统的大功率永磁牵引电机多用于轨道车辆的运行中,电机包括壳体、定子、转子以及主轴,定子设置在壳体的内壁上,转子与主轴传动连接,并且转子设置在定子内部;电机通电时转子转动,进而驱动主轴转动,电机在运行过程中内部会产生大量的热量。
相关技术中,为了避免大功率永磁牵引电机工作时产生的热量积累,导致温度过高,常在壳体的内壁和外壁之间设置冷却通道,冷却通道的第一开口设置在壳体的外壁上,冷却通道的第二开口设置在壳体沿平行于主轴轴线方向的前端。电机壳体的外部设置有通风装置,在电机工作时,通风装置驱动空气由第一开口进入到冷却风道内,并由第二开口流出,以对电机进行冷却。
然而,电机内部的热量分布不均匀,采用现有的冷却方式,无法使电机整体均匀的降温。
发明内容
本发明实施例提供一种带吊挂结构的空水冷大功率永磁牵引电机,用以解决现有的电机内部的热量分布不均匀,采用现有的冷却方式,无法使电机整体均匀的降温的技术问题。
本发明实施例提供一种带吊挂结构的空水冷大功率永磁牵引电机,包括机壳、定子组件和转子组件;所述机壳包围形成用于安装所述定子组件和所述转子组件的安装空间,所述机壳还成型有与所述安装空间贯通的风冷通道;所述转子组件包括转轴,所述转轴设置有驱动所述安装空间内空气向所述风冷通道流动的叶片。
如上所述的永磁牵引电机,其中,所述机壳设置有可与所述风冷通道道进行热交换的水冷通道,还设置有与所述水冷通道连通以进出冷却水的 进水口和出水口。
如上所述的永磁牵引电机,其中,所述水冷通道内部设置延长冷却水循环路径的水道筋。
如上所述的永磁牵引电机,其中,所述水冷通道为环绕所述转轴的环形通道,所述风冷通道设置于所述水冷通道外侧。
如上所述的永磁牵引电机,其中,所述风冷通道外侧连接有吊挂。
如上所述的永磁牵引电机,其中,所述机壳垂直于所述转轴延伸方向的截面为正多边形,所述风冷通道设置于所述水冷通道外侧的四角位置。
如上所述的永磁牵引电机,其中,所述转子组件包括所述转轴和设置于所述转轴的转子本体,所述转子本体设置有沿所述转轴延伸方向贯通的第一风道,所述第一风道环绕所述转轴均匀设置有多个。
如上所述的永磁牵引电机,其中,所述叶片为轴流叶片,对应所述轴流叶片气流方向的后方设置导向环,所述导向环引导气流朝向所述风冷通道流动。
如上所述的永磁牵引电机,其中,所述转轴两端通过轴承安装于所述机壳,所述转轴安装有将所述轴承与所述安装空间隔离的密封盖,所述密封盖与所述机壳组成包围所述轴承的冷却空间,所述机壳开设有与所述冷却空间贯通的进风通道和出风通道。
如上所述的永磁牵引电机,其中,所述密封盖随所述转轴转动,具有驱动所述冷却空间内空气流动的片状凸起。
本发明实施例提供的带吊挂结构的空水冷永磁牵引电机,包括机壳、定子组件和转子组件,机壳包围形成用于安装定子组件和转子组件的安装空间,机壳成型有与安装空间贯通的风冷通道,转子组件包括转轴,转轴在旋转时带动转轴上的叶片转动,进而驱动安装空间内的空气向风冷通道内流动,在空气的流动过程中,吸收安装通道内的高温区域的热量,并向低温区域释放热量,从而平衡了安装通道内各区域的热量分布,同时空气在风冷通道内流动时与与机壳产生热交换,空气携带的热量通过机壳传递并发散到外界大气中,从而实现了对电动机内部均匀的冷却降温。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的永磁牵引电机的结构示意图;
图2为本发明实施例提供的定子组件的结构示意图;
图3为本发明实施例提供的转子组件的结构示意图;
图4为本发明实施例提供的机壳的四分之一剖视图;
图5为本发明实施例提供的转子冲片的结构示意图;
图6为本发明实施例提供的吊挂的安装示意图一;
图7为本发明实施例提供的吊挂的安装示意图二;
图8为本发明实施例提供的吊挂的安装示意图三;
图9为本发明实施例提供的轴承的局部示意图。
附图标记说明:
1:机壳;
11:风冷通道;
12:第一端盖;
13:第二端盖;
14:第一腔体;
15:第二腔体;
16:水冷通道;
161:进水口;
162:出水口;
163:水道筋;
2:定子组件;
21:定子铁芯;
22:定子绕组;
3:转子组件;
31:转轴;
311:叶片;
312:导向环;
32:转子冲片;
321:第一安装孔;
322:第二安装孔;
323:转轴安装孔;
33:转子本体;
4:吊挂;
5:轴承;
51:冷却空间;
52:进风通道;
53:出风通道;
6:密封盖;
61:片状凸起。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
在本发明中,除非另有明确的规定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸的连接,或一体成型,可以是机械连接,也可以是电连接或者彼此可通讯;可以是直接相连,也可以通过中间媒体间接连接,可以是两个元件内部的连通或者两个元件的互相作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
图1为本发明实施例提供的永磁牵引电机的结构示意图;图2为本发 明实施例提供的定子组件的结构示意图;图3为本发明实施例提供的转子组件的结构示意图;图4为本发明实施例提供的机壳的四分之一剖视图;图5为本发明实施例提供的转子冲片的结构示意图;图6为本发明实施例提供的吊挂的安装示意图一;图7为本发明实施例提供的吊挂的安装示意图二;图8为本发明实施例提供的吊挂的安装示意图三;图9为本发明实施例提供的轴承的局部示意图。
请参照图1至图9。本实施例提供一种带吊挂结构的空水冷大功率永磁牵引电机,包括机壳1、定子组件2和转子组件3;机壳1包围形成用于安装定子组件2和转子组件3的安装空间,机壳1还成型有与安装空间贯通的风冷通道11;转子组件3包括转轴31,转轴31设置有驱动安装空间内空气向风冷通道11流动的叶片311。
本实施例提供的大功率永磁牵引电机,主要用于动车领域中,装载大功率永磁牵引电机的高速动车能耗更低,运营成本更低,牵引功率更高,整车噪声明显降低,对环境的污染大大减少。
示例性的,大功率永磁牵引电机的机壳1首先围设成一两端开口的安装通道,并在该安装通道的一端开口处安装有第一端盖12,另一端开口处安装有第二端盖13,进而将该安装通道封闭形成安装空间,第一端盖12和第二端盖13可以通过螺栓与机壳1连接。
在该安装空间内安装有定子组件2和转子组件3,其中,定子组件2包括环绕转子组件3设置的定子铁芯21和设置在定子铁芯21上的定子绕组22,定子铁芯21由多层硅钢片叠加而成,通过热套的方式安装在机壳1内壁上,定子绕组22采用Y型连接。
转子组件3包括转子冲片32、永磁体、转轴31、转子压圈以及永磁体压板。如图5所示,转子冲片32上设置有第一安装孔321、第二安装孔322以及转轴安装孔323,转子冲片32通过转轴安装孔323穿设在电动机的转轴31上,并通过多个转子冲片32叠加形成转子铁芯,可选地,转子冲片32也可以采用硅钢片。第一安装孔321和第二安装孔322沿转子铁芯的直径对称设置构成一组“V”型安装孔,该“V”型安装孔沿转子铁芯的周向均匀分布,每个第一安装孔321和每个第二安装孔322内均安装有永磁体,可选地,永磁体可以采用铁氧体永磁材料,例如钡铁氧体、锶铁 氧体等;或者,也可以采用合金永磁材料,例如汝铁硼永磁合金、铝镍钴永磁合金、钐钴永磁合金等,本实施例对此不作限制。每个相邻的永磁体之间的磁极需要相反,这是构成永磁电机的基本条件。
本实施例对电动机内部进行均匀散热冷却的具体原理为:
散热冷却过程由两部分组成,首先第一部分是将安装空间内的热量均匀分布,具体包括:定子组件2、转子组件3以及第一端盖12围设成第一腔体14,定子组件2、转子组件3以及第二端盖13围设成第二腔体15,在转子铁芯上设置有沿转子铁芯周向分布的通风孔,通风孔的一端与第一腔体14连通,另一端与第二腔体15连通,在机壳上1设置有风冷通道11,该风冷通道11的一端与第一腔体14连通,另一端与第二腔体15连通。设置在转轴31上的叶片311驱动空气在第一腔体14内流动,第一腔体14内的空气流入转子铁芯上的通风孔内,再由通风孔流入第二腔体15内部,第二腔体15内的空气接着流入风冷通道11内,最后再由风冷通道11流入第一腔体14内部,并不断的循环下去,在循环过程中,空气和高温部件接触并吸收热量,当空气经过低温区域时将释放吸收的热量,进而将电动机内部各处的热量通过不断进行自循环的空气流动重新分配,平衡温度差异;在完成热量平衡后,还包括第二部分,对电动机内部进行降温,具体包括:在循环过程中,每当空气经过机壳1上的风冷通道11时,均会与机壳1内壁产生热交换,进而将热量通过机壳1传递并释放到外界大气中,实现散热降温,可选地,在机壳1外部还可以设置多个散热片,增大机壳1的散热面积进而提高散热降温的效果。
本实施例提供的大功率永磁牵引电机,包括机壳1、定子组件2和转子组件3,机壳1包围形成用于安装定子组件2和转子组件3的安装空间,机壳1成型有与安装空间贯通的风冷通道11,转子组件3包括转轴31,转轴31在旋转时带动转轴31上的叶片311转动,进而驱动安装空间内的空气向风冷通道11内流动,在空气的流动过程中,吸收安装通道内的高温区域的热量,并向低温区域释放热量,从而平衡了安装通道内各区域的热量分布,同时空气在风冷通道11内流动时与与机壳1产生热交换,空气携带的热量通过机壳1传递并发散到外界大气中,从而实现了对电动机内部均匀的冷却降温。
本实施例中的机壳1设置有可与风冷通道11进行热交换的水冷通道16,还设置有与水冷通道16连通以进出冷却水的进水口161和出水口162。通过设置水冷通道16,每当电动机内部的循环空气经过机壳1上的风冷通道11时,空气除了与位于风冷通道11内的机壳1内壁产生热交换,通过机壳1将热量传递到外界大气中以外,还能够与水冷通道16之间产生热交换,进而将热量传递给水冷通道16内的冷却水中,冷却水携带热量从出水口161流出,进一步地提高了电动机内部的冷却降温的效率。
具体实现时,如图1所示,进水口161和出水口162均设置在机壳1的外壁上,出水口161通过出水管道与水冷通道16连通,进水口162通过进水管道与水冷通道16连通。机壳1的内壁上安装有水冷通道16,水冷通道16与风冷通道11通过一部分的机壳1的内壁隔开,空气在流经风冷通道11时,位于风冷通道11内的机壳1的内壁吸收空气热量,并将其传递给水冷通道16内的冷却水中,冷却水由进水口161进入水冷通道16内部,并携带热量由出水口162流出。
在本实施例中,水冷通道16内部设置有延长冷却水循环路径的水道筋163。通过设置水道筋163,有效的增加了冷却水在水冷通道16内的流动路径,流动路径越长,冷却水吸收的热量越多,进而提高了水冷通道16的冷却效果。
水冷通道16为环绕转轴31的环形通道,风冷通道11设置于水冷通道16外侧。水冷通道16和风冷通道11均设置在电动机机壳1的内部,水冷通道16和风冷通道11产生的噪声由机壳1阻挡,从而降低了大功率永磁牵引电机在通风散热时的噪声。
具体实现时,机壳1的内壁上设置有环形通道,环形通道环绕转轴31设置,该环形通道分别与冷却水的进水口161和出水口162连通,从而构成水冷通道16,定子铁芯21通过热套的连接方式安装于该环形通道朝向转轴31的一侧,当冷却水在水冷通道16内流动时,定子铁芯21的热量还可以通过该圆形通道的内壁传递到水冷通道16中,进而实现对定子铁芯的冷却降温作用。
当水冷通道16为环绕转轴31的环形通道时,水道筋163可以沿环形通道的中心线方向设置从而形成“之”字型冷却回路。为了便于说明,将 水道筋163数量设置为三个,且水冷通道16的中心线平行于水平面设置:此时水冷通道16相当于水平放置的环状立柱,将该环装立柱沿其中心线方向分割为三份,每一份即是一个水冷腔体,相邻水冷腔体通过水道筋163隔开,水道筋163上设置有开口从而使相邻的水冷腔体之间连通,且相邻水道筋163上的开口互相远离。示例性的,冷却水由进水口161流入第一水冷腔体的右端时,在第一水冷腔体内部沿水冷通道16的中心线方向流动,也就是从右向左流向第一水冷腔体的左端,并通过第一水道筋163上的开口流入第二水冷腔体内,在第二水冷腔体内从左向右流向第二水冷腔体的右端,并通过第二水道筋163上的开口流入第三水冷腔体内,在第三水冷腔体内从右向左流动,最后由出水口162流出,使冷却水在水冷通道内不断左右移动,构成“之”字型冷却回路。
需要说明的是,本实施例中的水道筋163的数量还可以设置更多,从而进一步细分水冷通道16,增加冷却水的流动路径,提高水冷效果。
具体地,如图6至图8所示,本实施中的风冷通道11外侧连接有吊挂4。吊挂4可用于安装电动机,通过吊挂4可以牢固的将本实施例提供的大功率永磁牵引电机安装于动车上,并且本实施例中,吊挂4位于风冷通道11的外侧,风冷通道11位于水冷通道16的外侧,机壳1整体分为三层焊接结构,使电动机具有更好的强度和刚度以满足大功率永磁牵引电机实际运行中的振动要求。可以理解的是,本实施例所描述的吊挂4,并不局限于图6至图8所描述的结构,也可以采用其他的安装形式,例如,吊挂4也可以包括两个与电机机壳1固定的立筋,在立筋之间固定有卡板,安装时,卡板卡于机车的相应部件上并采用螺栓紧固,从而实现电机的架悬定位。
具体地,本实施例中的机壳1垂直于转轴31延伸方向的截面为正多边形,风冷通道11设置于水冷通道16外侧的四角位置。通过前述的设置方式,在不改变电动机机壳的体积的情况下,充分利用了电动机内部的空间进行散热,同时通过采用内部水冷通道和外部风冷通道,在有限的空间内最大限度的提高了大功率永磁牵引电机的散热能力。
机壳1垂直与转轴31延伸方向的界面可以是正八边形,或者,也可以是其他的正多边形,本实施例对此不作限制。
具体地,本实施例中的转子组件3包括转轴31和设置于转轴31的转子本体33,转子本体33设置有沿转轴31延伸方向贯通的第一风道,第一风道环绕转轴31均匀设置有多个。通过第一风道贯穿转子本体33后,进而将电动机内部位于转子组件3两侧的第一腔体14和第二腔体15连通,空气在第一风道左右两端流动时,平衡第一腔体14和第二腔体15间的热量分布。
具体实现时,转子本体33可以包括转子铁芯和转子绕组,当电动机是永磁电机时,转子绕组可以用永磁体代替,永磁体安装与转子铁芯上,可选地,永磁体可以采用内置式磁极型结构,或者,也可以采用外置式磁极型结构。
第一风道设置在转子铁芯上,可选的,第一风道可以是笔直的风道,或者,也可以是弯曲的风道,本实施例对此不作限制。通过设置多个第一风道,还有助于减轻转子铁芯的重量,进而提高转子铁芯的转速上限。
具体地,本实施例中的叶片311为轴流叶片,对应轴流叶片气流方向的后方设置导向环312,导向环312引导气流朝向风冷通道11流动。通过设置轴流叶片和导向环312,有效的限定了空气的流动方向,从而使安装空间内的空气集中的流向风冷通道11内部,提高空气的流动效率。
轴流叶片的空气流动方向具体为:轴流叶片旋转形成一旋转平面,空气沿该旋转平面的轴向流动。导向环312可以与轴流叶片焊接连接,从而限定空气的流出方向。
在本实施例中,转轴31两端通过轴承5安装于机壳1,转轴31安装有将轴承5与安装空间隔离的密封盖6,密封盖6与机壳1组成包围轴承5的冷却空间51,机壳1开设有与冷却空间51贯通的进风通道52和出风通道53。通过设置冷却空间51,空气可以在冷却空间51内流动,进而实现对轴承的冷却降温作用,防止轴承因主轴转动时产生的热量累积导致温度过高,进而影响轴承的润滑性能。
具体实现时,机壳1上的第一端盖12上设置有轴孔,部分转轴31从轴孔内伸出,在轴孔附近设置有轴承5,具体地,可以在轴孔附近设置环绕轴孔的环形槽,将轴承5热套在环形槽内。在第一端盖12的内侧设置有密封盖6,密封盖6套设在转轴31上,第一端盖12的内壁凹陷,凹陷 的开口处通过密封盖6密封,进而形成冷却空间51。
在第一端盖12的外壁上开设有与冷却空间连通的进风通道52,在第一端盖的外壁上还开设有与冷却空间51连通的出风通道53。冷却空间51、进风通道52以及出风通道53共同构成轴承风冷通道,其中,出风通道53或者进风通道52靠近轴承5设置,进而使轴承风冷通道靠近轴承5,从而使轴承5的热量可以更快速的传递到轴承冷却风道内,提高对轴承5的冷却效果。在本实施例中,第二端盖13可以设置有与第一端盖12相似的轴承冷却风道,第二端盖13内侧也可以设置有密封盖6,本实施例对此不再赘述。
可选地,在第一端盖12和第二端盖13的外侧可以设置有空气驱动装置,例如,可以设置冷却风扇,冷却风扇工作时驱动空气在轴承冷却风道内流动,冷却风扇可以与电动机的转轴31传动连接;或者,也可以采用独立的能源供给。
进风通道52可以设置有多个,且多个出风通道52环绕转轴31分布,增加进风量;出风通道53也可以设置有多个,且多个出风通道53环绕转轴31分布,增加出风量。
密封盖6随转轴31转动,具有驱动冷却空间51内空气流动的片状凸起61。通过设置片状凸起61且密封盖6随转轴31转动,利用了电动机本身的动力以及能源驱动空气在冷却空间51内流动,不需要额外设置供能结构。
具体地,本实施例中的片状凸起61可以是离心扇叶,该离心扇叶在旋转时形成一旋转平面,并由该旋转平面的轴向吸收空气,由该旋转平面的周向排出空气,因而该旋转平面的轴向可视为离心扇叶的进气端,该旋转平面的周向可视为离心扇叶的排气端。进风通道52的末端对准离心扇叶的进气端,出风通道53的末端对准离心扇叶的排气端,进而实现空气的流动。
在一种可能的实现方式中,本实施例中的轴流叶片还可以设置在密封盖6位于安装空间内的一侧,导向环312设置在密封盖6朝向安装空间内的一侧,两者构成环形腔体,在该环形腔体内安装有轴流叶片,轴流叶片的一端与密封盖6位于安装空间内的侧壁连接,另一端与导向环312朝向 密封盖6的侧壁连接,轴流叶片设置有多个,多个轴流叶片环绕转轴31设置,当密封盖6随转轴31转动时,相应的多个轴流叶片随之转动,驱动空气流动,并通过导向环312限制控制的流动方向,使空气进入风冷通道11内。
本实施例所提供的大功率永磁牵引电机,通过空水冷结合冷却,进一步的提供了电动机内部的散热冷却效果,从而有效的提供了大功率永磁牵引电机的功率密度。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种带吊挂结构的空水冷大功率永磁牵引电机,其特征在于,包括机壳、定子组件和转子组件;所述机壳包围形成用于安装所述定子组件和所述转子组件的安装空间,所述机壳还成型有与所述安装空间贯通的风冷通道;所述转子组件包括转轴,所述转轴设置有驱动所述安装空间内空气向所述风冷通道流动的叶片。
  2. 根据权利要求1所述的永磁牵引电机,其特征在于,所述机壳设置有可与所述风冷通道进行热交换的水冷通道,还设置有与所述水冷通道连通以进出冷却水的进水口和出水口。
  3. 根据权利要求2所述的永磁牵引电机,其特征在于,所述水冷通道内部设置延长冷却水循环路径的水道筋。
  4. 根据权利要求2或3所述的永磁牵引电机,其特征在于,所述水冷通道为环绕所述转轴的环形通道,所述冷却风道设置于所述水冷通道外侧。
  5. 根据权利要求4所述的永磁牵引电机,其特征在于,所述风冷通道外侧连接有吊挂。
  6. 根据权利要求5所述的永磁牵引电机,其特征在于,所述机壳垂直于所述转轴延伸方向的截面为正多边形,所述风冷通道设置于所述水冷通道外侧的四角位置。
  7. 根据权利要求1所述的永磁牵引电机,其特征在于,所述转子组件包括所述转轴和设置于所述转轴的转子本体,所述转子本体设置有沿所述转轴延伸方向贯通的第一风道,所述第一风道环绕所述转轴均匀设置有多个。
  8. 根据权利要求1所述的永磁牵引电机,其特征在于,所述叶片为轴流叶片,对应所述轴流叶片气流方向的后方设置导向环,所述导向环引导气流朝向所述风冷通道流动。
  9. 根据权利要求1所述的永磁牵引电机,其特征在于,所述转轴两端通过轴承安装于所述机壳,所述转轴安装有将所述轴承与所述安装空间隔离的密封盖,所述密封盖与所述机壳组成包围所述轴承的冷却空间,所述机壳开设有与所述冷却空间贯通的进风通道和出风通道。
  10. 根据权利要求9所述的永磁牵引电机,其特征在于,所述密封盖随所述转轴转动,具有驱动所述冷却空间内空气流动的片状凸起。
PCT/CN2020/098008 2019-12-12 2020-06-24 一种带吊挂结构的空水冷大功率永磁牵引电机 WO2021114606A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911271502.7A CN112994355A (zh) 2019-12-12 2019-12-12 一种带吊挂结构的空水冷大功率永磁牵引电机
CN201911271502.7 2019-12-12

Publications (1)

Publication Number Publication Date
WO2021114606A1 true WO2021114606A1 (zh) 2021-06-17

Family

ID=76329524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098008 WO2021114606A1 (zh) 2019-12-12 2020-06-24 一种带吊挂结构的空水冷大功率永磁牵引电机

Country Status (2)

Country Link
CN (1) CN112994355A (zh)
WO (1) WO2021114606A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113832358A (zh) * 2021-11-04 2021-12-24 江西水木机电设备有限公司 一种锌铝真空蒸馏分离装置
CN114024387A (zh) * 2021-11-05 2022-02-08 宁德时代电机科技有限公司 一种轮边桥高效高功率密度水冷永磁电机
CN114337112A (zh) * 2021-11-29 2022-04-12 中车永济电机有限公司 一种蒸发冷却定子两端独立密封冷却结构
CN114337057A (zh) * 2022-01-20 2022-04-12 上海大速科技有限公司 一种低压大功率电机
CN114337111A (zh) * 2021-11-29 2022-04-12 中车永济电机有限公司 一种内循环蒸发冷却电机冷却结构
CN114400820A (zh) * 2021-12-28 2022-04-26 北京交通大学 一种双介质混合的电机双向冷却结构及冷却方法
CN114465393A (zh) * 2021-12-24 2022-05-10 江苏航天动力机电有限公司 一种具有分体式可调节外部支架的永磁电机
WO2023115606A1 (zh) * 2021-12-21 2023-06-29 中车株洲电机有限公司 一种永磁牵引电机及电动轮车
US11787551B1 (en) 2022-10-06 2023-10-17 Archer Aviation, Inc. Vertical takeoff and landing aircraft electric engine configuration
CN116961319A (zh) * 2023-09-21 2023-10-27 中达电机股份有限公司 真空泵用永磁电机转子冷却***
CN117477858A (zh) * 2023-10-09 2024-01-30 无锡欧瑞京机电有限公司 一种对半拼接式机座的风水冷电机
CN117614186A (zh) * 2023-12-05 2024-02-27 江苏微特利电机股份有限公司 一种纯电物流车用的永磁电机***及其安装方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023231471A1 (zh) * 2023-02-24 2023-12-07 皖西学院 一种降低轴承温升的电机结构及其制作方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201113681Y (zh) * 2007-07-16 2008-09-10 南车株洲电力机车研究所有限公司 一种用于驱动电机的复合冷却结构
CN201238241Y (zh) * 2008-07-29 2009-05-13 上海南洋电机有限公司 一种水冷电机双冷却回路结构
CN101499702A (zh) * 2009-02-27 2009-08-05 山西防爆电机(集团)有限公司 紧凑型水冷三相异步电动机
KR20110117503A (ko) * 2010-04-21 2011-10-27 현대중공업 주식회사 워터 자켓형 발전기의 냉각시스템
CN202034857U (zh) * 2011-05-18 2011-11-09 三一电气有限责任公司 一种电机
CN102769356A (zh) * 2011-05-05 2012-11-07 株洲南车时代电气股份有限公司 具有空气冷却结构的永磁同步牵引电机及其空气冷却方法
KR101276065B1 (ko) * 2009-09-08 2013-06-14 현대중공업 주식회사 워터 자켓형 발전기의 냉각시스템
CN103280927A (zh) * 2013-06-18 2013-09-04 天津市隆诚泰铝业有限公司 水冷电机壳双冷却回路结构
CN105379080A (zh) * 2013-07-19 2016-03-02 株式会社东芝 液冷式电动机
CN108539889A (zh) * 2018-03-30 2018-09-14 合肥巨动力***有限公司 一种永磁同步电机转子风冷结构

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102983680A (zh) * 2012-11-28 2013-03-20 沈阳工业大学 一种风水混合冷却高速永磁电机
CN106712367A (zh) * 2016-11-29 2017-05-24 中车永济电机有限公司 高速列车全封闭式永磁牵引电动机

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201113681Y (zh) * 2007-07-16 2008-09-10 南车株洲电力机车研究所有限公司 一种用于驱动电机的复合冷却结构
CN201238241Y (zh) * 2008-07-29 2009-05-13 上海南洋电机有限公司 一种水冷电机双冷却回路结构
CN101499702A (zh) * 2009-02-27 2009-08-05 山西防爆电机(集团)有限公司 紧凑型水冷三相异步电动机
KR101276065B1 (ko) * 2009-09-08 2013-06-14 현대중공업 주식회사 워터 자켓형 발전기의 냉각시스템
KR20110117503A (ko) * 2010-04-21 2011-10-27 현대중공업 주식회사 워터 자켓형 발전기의 냉각시스템
CN102769356A (zh) * 2011-05-05 2012-11-07 株洲南车时代电气股份有限公司 具有空气冷却结构的永磁同步牵引电机及其空气冷却方法
CN202034857U (zh) * 2011-05-18 2011-11-09 三一电气有限责任公司 一种电机
CN103280927A (zh) * 2013-06-18 2013-09-04 天津市隆诚泰铝业有限公司 水冷电机壳双冷却回路结构
CN105379080A (zh) * 2013-07-19 2016-03-02 株式会社东芝 液冷式电动机
CN108539889A (zh) * 2018-03-30 2018-09-14 合肥巨动力***有限公司 一种永磁同步电机转子风冷结构

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113832358A (zh) * 2021-11-04 2021-12-24 江西水木机电设备有限公司 一种锌铝真空蒸馏分离装置
CN114024387A (zh) * 2021-11-05 2022-02-08 宁德时代电机科技有限公司 一种轮边桥高效高功率密度水冷永磁电机
CN114024387B (zh) * 2021-11-05 2023-08-29 宁德时代电机科技有限公司 一种轮边桥高效高功率密度水冷永磁电机
WO2023092805A1 (zh) * 2021-11-29 2023-06-01 中车永济电机有限公司 一种内循环蒸发冷却电机的冷却方式及冷却结构
CN114337112A (zh) * 2021-11-29 2022-04-12 中车永济电机有限公司 一种蒸发冷却定子两端独立密封冷却结构
CN114337111A (zh) * 2021-11-29 2022-04-12 中车永济电机有限公司 一种内循环蒸发冷却电机冷却结构
CN114337112B (zh) * 2021-11-29 2024-06-14 中车永济电机有限公司 一种蒸发冷却定子两端独立密封冷却结构
WO2023115606A1 (zh) * 2021-12-21 2023-06-29 中车株洲电机有限公司 一种永磁牵引电机及电动轮车
CN114465393A (zh) * 2021-12-24 2022-05-10 江苏航天动力机电有限公司 一种具有分体式可调节外部支架的永磁电机
CN114465393B (zh) * 2021-12-24 2022-11-18 江苏航天动力机电有限公司 一种具有分体式可调节外部支架的永磁电机
CN114400820A (zh) * 2021-12-28 2022-04-26 北京交通大学 一种双介质混合的电机双向冷却结构及冷却方法
CN114337057B (zh) * 2022-01-20 2022-10-25 上海大速科技有限公司 一种低压大功率电机
CN114337057A (zh) * 2022-01-20 2022-04-12 上海大速科技有限公司 一种低压大功率电机
US11787551B1 (en) 2022-10-06 2023-10-17 Archer Aviation, Inc. Vertical takeoff and landing aircraft electric engine configuration
US11820523B1 (en) 2022-10-06 2023-11-21 Archer Aviation, Inc. Systems and methods for, and components of, gearboxes for eVTOL aircraft
US11912424B1 (en) 2022-10-06 2024-02-27 Archer Aviation Inc. Systems and methods for improved gearboxes for eVTOL aircraft
US11958621B1 (en) 2022-10-06 2024-04-16 Archer Aviation, Inc. Systems and methods for, and components of, gearboxes for eVTOL aircraft
US11975854B2 (en) 2022-10-06 2024-05-07 Archer Aviation, Inc. Systems, methods, and mechanical designs for inverters for eVTOL aircraft
US11975853B2 (en) 2022-10-06 2024-05-07 Archer Aviation, Inc. Systems for cooling an electrical engine for eVTOL aircraft using an end bell assembly connected to a thermal plate
CN116961319B (zh) * 2023-09-21 2023-11-21 中达电机股份有限公司 真空泵用永磁电机转子冷却***
CN116961319A (zh) * 2023-09-21 2023-10-27 中达电机股份有限公司 真空泵用永磁电机转子冷却***
CN117477858A (zh) * 2023-10-09 2024-01-30 无锡欧瑞京机电有限公司 一种对半拼接式机座的风水冷电机
CN117477858B (zh) * 2023-10-09 2024-05-17 无锡欧瑞京机电有限公司 一种对半拼接式机座的风水冷电机
CN117614186A (zh) * 2023-12-05 2024-02-27 江苏微特利电机股份有限公司 一种纯电物流车用的永磁电机***及其安装方法
CN117614186B (zh) * 2023-12-05 2024-05-14 江苏微特利电机股份有限公司 一种纯电物流车用的永磁电机***及其安装方法

Also Published As

Publication number Publication date
CN112994355A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
WO2021114606A1 (zh) 一种带吊挂结构的空水冷大功率永磁牵引电机
AU2017370503A1 (en) Motor rotor support frame and motor
WO2021027301A1 (zh) 定子分块、定子组件以及定子组件的冷却***
CN112186952B (zh) 一种永磁牵引电机
JP2009124829A (ja) 車両用の駆動装置
WO2023097845A1 (zh) 一种全封闭自通风式电机冷却结构
CN111969767A (zh) 一种电机冷却***和电机
CN113937953A (zh) 一种主动送风冷却永磁电机及电力机车
CN211508791U (zh) 一种电机机壳及其应用的电机
CN114629298A (zh) 一种电机油冷***及电机油冷方法
CN110429763B (zh) 一种转子挡板、转子组件、电机和车辆
CN115733325A (zh) 一种带离心风机内置式转子且定子油冷的轴向磁通电机
CN110768414A (zh) 一种永磁电机的冷却结构
CN218276240U (zh) 一种油冷电机
CN112713716B (zh) 一种设有内外冷却风路的封闭式电机及电机机座
WO2016079806A1 (ja) 回転電機
WO2021114607A1 (zh) 永磁电机通风冷却结构
CN113323908A (zh) 空压机、空调和汽车
CN113541382A (zh) 一种永磁电机及轨道机车
KR20140066880A (ko) 하이브리드 차량용 구동모터 방열장치
JPH07135747A (ja) 回転電機
CN116418147A (zh) 一种全封闭牵引电机及车辆
CN113541398A (zh) 一种永磁电机及轨道机车
CN220291818U (zh) 高速风冷电机
CN215171009U (zh) 空压机、空调和汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20898780

Country of ref document: EP

Kind code of ref document: A1