WO2021112092A1 - Polymer composition, liquid crystal aligining agent, liquid crystal alignment film, liquid crystal display element, and method for producing liquid crystal display element - Google Patents

Polymer composition, liquid crystal aligining agent, liquid crystal alignment film, liquid crystal display element, and method for producing liquid crystal display element Download PDF

Info

Publication number
WO2021112092A1
WO2021112092A1 PCT/JP2020/044726 JP2020044726W WO2021112092A1 WO 2021112092 A1 WO2021112092 A1 WO 2021112092A1 JP 2020044726 W JP2020044726 W JP 2020044726W WO 2021112092 A1 WO2021112092 A1 WO 2021112092A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
carbon atoms
polymer
polymer composition
Prior art date
Application number
PCT/JP2020/044726
Other languages
French (fr)
Japanese (ja)
Inventor
大輝 山極
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to CN202080084129.9A priority Critical patent/CN114761487B/en
Priority to JP2021562664A priority patent/JPWO2021112092A1/ja
Priority to KR1020227016625A priority patent/KR20220112753A/en
Publication of WO2021112092A1 publication Critical patent/WO2021112092A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/04Homopolymers or copolymers of nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/36Amides or imides
    • C08F222/40Imides, e.g. cyclic imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a polymer composition, a liquid crystal alignment agent, a liquid crystal alignment film, a liquid crystal display element, and a method for manufacturing a liquid crystal display element.
  • Liquid crystal display elements are widely used in personal computers, mobile phones, smartphones, televisions, etc. In recent years, there have been increasing opportunities for liquid crystal display elements to be used under high temperature and high humidity, such as car navigation systems and meters mounted on vehicles, and display units of industrial equipment and measuring equipment installed outdoors.
  • This type of liquid crystal display element generally controls the orientation of the liquid crystal layer sandwiched between the element substrate and the color filter substrate, the pixel electrodes and common electrodes that apply an electric field to the liquid crystal layer, and the liquid crystal molecules of the liquid crystal layer. It is equipped with a liquid crystal alignment film, a thin film transistor (TFT) for switching an electric signal supplied to a pixel electrode, and the like.
  • TFT thin film transistor
  • the liquid crystal display element In the liquid crystal display element, a liquid crystal layer sandwiched between a pixel electrode and a common electrode functions as a liquid crystal cell.
  • VHR Voltage Holding Ratio
  • the display becomes difficult to see due to a decrease in display contrast or flicker (flicker) in the display due to use under high temperature and high humidity or long-term use.
  • the VA type liquid crystal display element is used in televisions and in-vehicle displays because of its features of high contrast and wide viewing angle.
  • liquid crystal display elements use a backlight that generates a large amount of heat in order to obtain high brightness, and may be used or left in a high temperature environment for a long time in in-vehicle applications such as car navigation systems and instrument panels. , The decrease in voltage retention is more remarkable.
  • a photopolymerizable compound is added to the liquid crystal composition in advance, and a vertically oriented film such as a polyimide-based film is used to apply a voltage to the liquid crystal cell.
  • a technique PSA (Polymer Sustained Alignment) method element, for example, see Patent Document 1 and Non-Patent Document 1) of increasing the response speed of the liquid crystal by irradiating the liquid crystal with ultraviolet rays while applying the above.
  • the touch panel type liquid crystal display has high durability against external pressure such as pressing by a finger or a pointing device such as a pen, that is, poor orientation and bright spots are unlikely to occur even when external pressure is applied. Is required. Further, in tablet terminals and mobile terminals, weight reduction and thinning are progressing, and in the panel assembly process at the time of manufacturing a liquid crystal display, the panel is easily distorted or stress is easily applied to the inside of the panel. Such distortion and stress of the panel cause peeling of the alignment film from the substrate, and also cause poor bright spots and poor alignment. Therefore, the liquid crystal alignment film is required to be less prone to peeling of the substrate.
  • Patent Document 2 describes a polymer having a structural unit containing a maleic anhydride skeleton, but this polymer has a structure different from that of the polymer (P) of the present invention described later. .. Further, in Patent Document 2, the above-mentioned problems such as obtaining a liquid crystal alignment film in which the substrate is less likely to peel off have not been studied.
  • the inventors have found that the above-mentioned problems can be achieved by a polymer composition containing a polymer (P) having a specific structural unit and an organic solvent, and have completed the present invention.
  • a polymer composition comprising a polymer (P) having at least one structural unit selected from the group consisting of the following formulas (m-1) and (m-2) and an organic solvent.
  • R 1 and R 2 independently represent a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 3 carbon atoms.
  • R represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • Rs is.
  • X is a group containing an oxazoline ring structure, and a partial structure "-NR a R b " (however, Ra and R b are independently hydrogen.
  • a polymer composition capable of obtaining a liquid crystal alignment film in which the substrate is less likely to peel off and a liquid crystal display element having high durability against external pressure. Further, there is provided a polymer composition capable of obtaining a liquid crystal alignment film having high adhesiveness between the liquid crystal alignment film and the sealant and increasing the strength of the liquid crystal display element. Further, there is provided a polymer composition capable of obtaining a liquid crystal alignment film having a high voltage retention even when used in a high temperature environment.
  • the polymer composition of the present invention contains a polymer (P) and an organic solvent.
  • the polymer composition of the present invention can be prepared, for example, by dispersing or dissolving the polymer (P) and, if necessary, other components in an organic solvent.
  • the polymer (P) of the present invention has at least one structural unit selected from the group consisting of the following formulas (m-1) and (m-2). That is, the polymer (P) is a maleimide-based polymer.
  • R 1 and R 2 independently represent a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 3 carbon atoms.
  • R represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • Rs is. Represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • X is a group containing an oxazoline ring structure and a partial structure "-NR a R b " (however, Ra and R b are independent hydrogen atoms, respectively. , A monovalent hydrocarbon group or a protective group having 1 to 10 carbon atoms, and at least one of Ra and R b represents a protective group), a group containing an oxetane ring, and a cyclic carbonate group.
  • R 1 and R 2 are preferably hydrogen atoms or alkyl groups having 1 to 3 carbon atoms, respectively, and R 1 is a hydrogen atom. It is more preferable that R 2 is a hydrogen atom or a methyl group, and it is more preferable that R 1 and R 2 are hydrogen atoms. R is preferably a hydrogen atom. Rs is preferably a hydrogen atom.
  • X preferably represents a structure selected from the following formulas (mx-1) to (mx-6), and more preferably represents a structure selected from the following formulas (mx-1) to (mx-2).
  • R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • D represents a protecting group.
  • Q 1 and Q 4 independently represent 1 to 3 carbon atoms, respectively.
  • 20 represents an alkylene group or an aryl group
  • Q 2 represents a single bond or an alkylene group having 1 to 20 carbon atoms
  • Q 3 and Q 6 represent a single bond
  • Q 5 represents an alkylene group having 1 to 20 carbon atoms.
  • R and R' independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • the hydrogen atom bonded to the alkyl group having 1 to 3 carbon atoms is independently a hydroxy group, -CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms, and a carbon number of carbon atoms. It may be substituted with an alkylcarbonyl group of 1 to 5 or an alkyloxy group having 1 to 5 carbon atoms. * Indicates a bond.
  • the "protecting group” means a group that is desorbed by heating and replaced with a hydrogen atom.
  • protecting groups include carbamate-based protecting groups, amide-based protecting groups, imide-based protecting groups, and sulfonamide-based protecting groups.
  • carbamate-based protecting groups are preferable, and specific examples thereof include a tert-butoxycarbonyl group, a benzyloxycarbonyl group, a 1,1-dimethyl-2-haloethyloxycarbonyl group, and a 1,1-dimethyl-2-cyanoethyloxycarbonyl group.
  • 9-Fluorenylmethyloxycarbonyl group 9-Fluorenylmethyloxycarbonyl group, allyloxycarbonyl group, 2- (trimethylsilyl) ethoxycarbonyl group and the like.
  • the tert-butoxycarbonyl group is preferable because it has high heat-removability and the residual amount in the film of the deprotected portion can be reduced.
  • Preferred specific examples of the group represented by the above formula (mx-1) include the following formula (1x-1) and the like. (* Indicates a bond.)
  • Specific examples of the group represented by the above formula (mx-2) include an organic group obtained by removing -NH 2 from Boc-hydrazine (tert-butoxycarbonylhydrazine).
  • Specific examples of the group represented by the above formula (mx-5) include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane and the like. Examples of the organic group obtained by removing -NH 2 from the compound of.
  • the polymer (P) of the present invention may contain one type of each of the structural units represented by the formulas (m-1) and (m-2) alone, or may contain two or more types.
  • the total content of the structural units represented by the formulas (m-1) and (m-2) is preferably 5 to 80 mol%, preferably 10 to 50 mol%, based on the total structural units of the polymer (P). Is more preferable.
  • the polymer having a structural unit represented by the above formula (m-1) is, for example, a primary or secondary polymer having a structural unit containing a maleic anhydride skeleton (maleic anhydride-based polymer). It can be obtained by reacting one or more amine compounds. In this reaction, the amino group of the primary or secondary amine compound is added to the carbonyl group of the maleic anhydride skeleton, and the ring-opening reaction proceeds, so that the structural unit represented by the formula (m-1) is formed. can get.
  • the polymer having a structural unit containing the maleic anhydride skeleton is preferably a maleic anhydride-based polymer containing a structural unit represented by the following formula (m) (hereinafter, also referred to as a structural unit (m)). , And more preferably, a maleic anhydride-based copolymer (hereinafter, also referred to as structural unit (v)) containing a structural unit (m) and a structural unit represented by the following formula (v) (hereinafter, also referred to as structural unit (v)). It is also called a copolymer (Mp)).
  • R 1 and R 2 each independently represent a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 3 carbon atoms.
  • R 3 , R 4 , R 5 and R 6 each independently represent hydrogen.
  • the structural unit (v) is, for example, ethylene, propylene, n-butene, isobutylene, n-pentene, n-hexene, alkyl acrylates and methacrylates having 1 to 4 carbon atoms, vinyl acetate, methyl vinyl ether, and the like.
  • R is hydrogen or an alkyl group having 1 to 6 carbon atoms, and the benzene ring may be optionally substituted with an alkyl group or a hydroxy group having 1 to 4 carbon atoms.
  • alkyl acrylates having 1 to 4 carbon atoms include methyl acrylate, ethyl acrylate, isopropyl acrylate, n-propyl acrylate, n-butyl acrylate, and mixtures thereof.
  • alkyl methacrylates having 1 to 4 carbon atoms include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, and mixtures thereof.
  • a mixture of alkyl methacrylates having 1 to 4 carbon atoms and alkyl acrylates having 1 to 4 carbon atoms may be used.
  • styrene compound examples include styrene, ⁇ -methylstyrene, p-methylstyrene, t-butylstyrene, and mixtures thereof.
  • a styrene compound ethylene, propylene, n-butene, isobutylene, n-pentene, n-hexene, alkyl acrylates having 1 to 4 carbon atoms and / or A mixture with methacrylates may be used.
  • ethylene propylene, n-butene, isobutylene, n-pentene and n-hexene, isobutylene or a mixture with isobutylene, 1-butene and 2-butene is preferably used.
  • the structural unit (m) is preferably 10 to 50 mol%, more preferably 30 to 50 mol%, of all the structural units constituting the copolymer (Mp).
  • the molecular weight of the copolymer (Mp) is preferably 3,000 to 500,000, more preferably 8,000 to 150,000, with a weight average molecular weight.
  • the method for obtaining a polymer having a structural unit containing the maleic anhydride skeleton is not particularly limited, but for example, a compound (monomer) forming a structural unit represented by the structural unit (m), and in some cases (v). ) Is formed by polymerizing a compound (monomer) forming a structural unit and another compound (monomer) forming a structural unit. Further, a commercially available product may be used, such as ISOBAM in the examples described later.
  • Examples of the primary or secondary amine compound include a specific amine compound (A) represented by "HN (Rs) (X)".
  • Rs and X are synonymous with the definitions in the above formula (m-1).
  • Specific examples of the specific amine compound (A) include compounds represented by the following formulas (a-1) to (a-6).
  • R 1 , R 2 , D, Q 1 , Q 2 , Q 3 , Q 4 , Q 5 , Q 6 , R, R', m, m' are the above formulas (mx-1) to ( It is synonymous with the definition in mx-6).
  • Rs is synonymous with the definition in the above equation (m-1).
  • the reaction of the polymer having a structural unit containing a maleic anhydride skeleton with a primary or secondary amine compound is preferably carried out in an organic solvent.
  • the organic solvent used include alcohols, ethers, ketones, amides, esters, hydrocarbon compounds and the like.
  • the reaction temperature is preferably 30 to 120 ° C.
  • the reaction time is preferably 1 to 24 hours.
  • the reaction solution obtained by dissolving the polymer may be used as it is, or a method of pouring the reaction solution into a large amount of a poor solvent and drying the precipitate under reduced pressure, or distilling off the reaction solution under reduced pressure with an evaporator.
  • the polymer contained in the reaction solution may be isolated and then subjected to the preparation of the polymer composition by using a known isolation method such as the above-mentioned method.
  • the reaction amount of the primary or secondary amine compound is preferably 0.01 to 1.2 equivalents, preferably 0.1 to 1.2 equivalents, with respect to the anhydride group of the structural unit (m). More preferably, 0.1 to 1.0 equivalent is even more preferable.
  • a polymer having a structural unit represented by the above formula (m-1) in which R is an alkyl group having 1 to 10 carbon atoms has, for example, a structure represented by the above formula (m-1) in which R is hydrogen. It can be obtained by esterifying a polymer having units. Esterification can be carried out in the same manner as the method for obtaining a polyamic acid ester from a polyamic acid described later.
  • the polymer having the structural unit represented by the above formula (m-2) is obtained by ring-closing the polymer having the structural unit represented by the above formula (m-1).
  • the polymer (P) of the present invention may contain a structural unit represented by the above formula (m-1) in addition to the structural unit represented by the above formula (m-2).
  • thermal imidization in which a solution of the polymer having the structural unit represented by the above formula (m-1) is heated as it is, or a catalyst is used. Catalytic imidization to be added can be mentioned.
  • the temperature for thermal imidization in the solution is 100 to 400 ° C., preferably 120 to 250 ° C., and it is preferable to remove the water produced by the imidization reaction from the outside of the system.
  • a basic catalyst and, if necessary, an acid anhydride are added to a polymer solution having a structural unit represented by the above formula (m-1), and the temperature is ⁇ 20 to 250 ° C., preferably 0. This can be done by stirring at ⁇ 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times, that of the amic acid group, and the amount of acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times that of the amic acid group. It is double.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine trioctylamine, N, N-dimethyl-4-aminopyridine and the like.
  • the substrate peels off as specifically illustrated in the examples described later.
  • the effects of the present invention are exhibited, such as the ability to obtain a difficult liquid crystal alignment film and the ability to obtain a liquid crystal display element having high durability against external pressure.
  • the mechanism is not always clear, but it is thought that the following is one of the causes.
  • the polymer (P) of the present invention has structural units represented by the formulas (m) and (v) in addition to the structural units represented by the formulas (m-1) and (m-2). May be good. Further, the polymer (P) of the present invention may further have a structural unit other than the structural units represented by the formulas (m), (m-1), (m-2) and (v). Examples of the structural unit other than the structural unit represented by the formulas (m), (m-1), (m-2) and (v) include the following formulas (m-3) to (m-4) or Structural units derived from other compounds having an ethylenic double bond can be mentioned.
  • R 1 , R 2 , R, Rs are synonymous with the definitions in the above formulas (m-1) to (m-2).
  • Y is a hydrogen atom or the above formulas (m-1) to (m-2).
  • Specific examples of the monovalent organic group of Y in the formulas (m-3) to (m-4) include carboxyl group-containing monoamines such as p-aminobenzoic acid; alicyclic group-containing monoamines such as cyclohexylamine; n.
  • Examples of the other compounds having an ethylenic double bond include carboxyl group-containing compounds such as acrylic acid, methacrylic acid, ⁇ -ethylacrylic acid, 2-hydroxyethyl (meth) acrylic acid, 4-vinylbenzoic acid, and maleic acid.
  • carboxyl group-containing compounds such as acrylic acid, methacrylic acid, ⁇ -ethylacrylic acid, 2-hydroxyethyl (meth) acrylic acid, 4-vinylbenzoic acid, and maleic acid.
  • Hydroxy group-containing compounds such as 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, N-methylol (meth) acrylamide; isooctyl acrylate, isodecyl acrylate, Long-chain alkyl group-containing compounds such as lauryl acrylate, decyl methacrylate and stearyl acrylate; alicyclic group-containing compounds such as cyclohexyl (meth) acrylate; benzene ring-containing compounds such as 2-phenoxyethyl acrylate and nonylphenyl acrylate ethoxylated; glycidyl Oxylanyl group-containing compounds such as (meth) acrylate, methylglycidyl (meth) acrylate, 4- (glycidyloxy) butyl (meth) acrylate, 2-methacryloyloxyethyl is
  • the polymer (P) of the present invention may contain one type of structural unit represented by the formula (m) alone, or may contain two or more types.
  • the content of the structural unit represented by the formula (m) is preferably 5 to 90 mol%, more preferably 10 to 50 mol%, based on the total structural unit of the polymer (P).
  • the polymer (P) of the present invention may contain one type of structural unit represented by the formula (v) alone, or may contain two or more types.
  • the content of the structural unit represented by the formula (v) is preferably 50 to 90 mol%, more preferably 30 to 70 mol%, based on the total structural unit of the polymer (P).
  • the structural unit represented by the formula (m), the structural unit represented by the above formula (m-1) and the structural unit represented by the above formula (m-2) in the polymer (P) of the present invention are the same as the content of the structural unit represented by the formula (m) of the maleic anhydride-based polymer used to obtain the polymer (P) of the present invention.
  • the content of the polymer (P) used in the present invention is preferably 1 to 100% by mass, more preferably 5 to 70% by mass, and 10 to 50% by mass, based on the total amount of the polymer components contained in the polymer composition. Mass% is more preferred.
  • the polymer (P) may be used alone or in combination of two or more.
  • the total content of the polymer components contained in the polymer composition of the present invention can be appropriately changed by setting the thickness of the coating film to be formed, but it is said that a uniform and defect-free coating film is formed. From the point of view, 1% by mass or more is preferable, and from the point of view of storage stability of the solution, 10% by mass or less is preferable.
  • the polymer composition of the present invention is at least one selected from the group consisting of polyamic acid, polyamic acid ester, polyamic acid-polyamic acid ester copolymer, polyimide, polyamide, polyorganosiloxane, poly (meth) acrylate and polyester.
  • the coalescence (Q) may be further contained.
  • the polymer (Q) is preferably contained in terms of improving the solution characteristics of the liquid crystal alignment agent and the electrical characteristics of the liquid crystal alignment film.
  • the polyimide is an imidized polyamic acid, polyamic acid ester, or polyamic acid-polyamic acid ester copolymer.
  • the polyamic acid, polyamic acid ester, or polyamic acid-polyamic acid ester copolymer is preferably obtained by polymerizing a diamine component and a tetracarboxylic acid component.
  • diamine component examples include p-phenylenediamine, m-phenylenediamine, 4- (2- (methylamino) ethyl) aniline, diamine having a carboxyl group such as 3,5-diaminobenzoic acid, and 4,4'.
  • Diamines having an oxazoline structure such as the following formulas (Ox-1) to (Ox-2), and structures expressing the vertical orientation of liquid crystals such as the following formulas (V2-1) to (V2-13).
  • Examples thereof include diamines having a side chain of 1,3-bis (3-aminopropyl) -tetramethyldisiloxane and other organosiloxane-containing diamines. The diamine may be used alone or in combination of two or more.
  • n is an integer of 2 to 6.
  • X v1 to X v4 and X p1 to X p8 are independently- (CH 2 ) a- (a is an integer of 1 to 15), -CONH-, -NHCO-, and -CON (CH 3).
  • X v5 is -O -, - CH 2 O - , - CH 2- OCO-, -COO-, or -OCO-
  • X V6 to X V7 and X s1 to X s4 are independently -O-,-(CH 2 ) n O- (n is 1 to 1 to). (Integer of 6), -COO- or -OCO-.
  • X a to X f are single-coupled, -O-, -NH-, or -O- (CH 2 ) m- O- (m is 1 to 1 to).
  • 8 is an integer of.) represent, R v1 ⁇ R v4, R 1a to ⁇ R 1h each independently, -C n H 2n + 1 ( n is an integer of 1 to 20), or -O-C n H 2n + 1 ( n represents an integer from 2 to 20).
  • diamine component examples include aliphatic diamines such as m-xylylenediamine, alicyclic diamines such as 4,4-methylenebis (cyclohexylamine), and diamines described in International Publication No. 2016/125870. ..
  • the tetracarboxylic acid component refers to a component containing at least one selected from a tetracarboxylic acid and a tetracarboxylic acid derivative.
  • the tetracarboxylic acid derivative include tetracarboxylic acid dihalide, tetracarboxylic dianhydride, tetracarboxylic acid diester dichloride, and tetracarboxylic acid diester.
  • the tetracarboxylic acid component examples include aromatic tetracarboxylic dianhydrides, acyclic aliphatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, and derivatives thereof.
  • the aromatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to the aromatic ring.
  • the acyclic aliphatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups bonded to a chain hydrocarbon structure.
  • the alicyclic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to the alicyclic structure. However, none of these four carboxy groups are bonded to the aromatic ring. Further, it is not necessary to have only an alicyclic structure, and a chain hydrocarbon structure or an aromatic ring structure may be partially provided.
  • the tetracarboxylic dianhydride or a derivative thereof may be used alone or in combination of two or more.
  • the tetracarboxylic acid component preferably contains a tetracarboxylic dianhydride represented by the following formula (3) or a derivative thereof.
  • X represents a structure selected from the following (x-1) to (x-13).
  • R 1 to R 4 independently represent a hydrogen atom, a methyl group, an ethyl group, a propyl group, a chlorine atom or a phenyl group.
  • R 5 and R 6 independently represent a hydrogen atom or a methyl group, respectively.
  • J and k each independently represent 0 or 1.
  • a 1 and A 2 independently represent a single bond, -O-, -CO-, -COO-, phenylene, sulfonyl group or an amide group.
  • * 1 represents a bond that binds to one of the anhydride groups
  • * 2 .2 one a 2 which represents a bond that binds to the other acid anhydride groups be the same or different May be.
  • X is the above formulas (x-1) to (x-7) and (x-11) to (x-13). ),
  • the tetracarboxylic dianhydride represented by the formula (3) or a derivative thereof can be mentioned.
  • polyimide precursor (polyamic acid)
  • examples of the polyimide precursor used in the present invention include polyamic acid, polyamic acid ester, and polyamic acid-polyamic acid ester copolymer.
  • a polyimide precursor or polyimide is generically also referred to as a polyimide-based polymer.
  • the polyamic acid which is a polyimide precursor used in the present invention, can be produced, for example, by the following method. Specifically, the diamine component and the tetracarboxylic acid component are reacted in the presence of an organic solvent at ⁇ 20 to 150 ° C., preferably 0 to 80 ° C. for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized by.
  • the reaction between the diamine component and the tetracarboxylic acid component is usually carried out in an organic solvent.
  • the organic solvent used at that time is not particularly limited as long as it dissolves the produced polyimide precursor. Specific examples of the organic solvent used in the reaction are given below, but the present invention is not limited to these examples.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl-2-imidazolidinone.
  • N-methyl-2-pyrrolidone N-ethyl-2-pyrrolidone or ⁇ -butyrolactone
  • N, N-dimethylformamide N, N-dimethylacetamide
  • dimethyl sulfoxide or 1,3-dimethyl-2-imidazolidinone can be mentioned.
  • the polyimide precursor When the polyimide precursor has high solubility, it is represented by methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone or the following formulas [D-1] to [D-3].
  • Organic solvent can be used.
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • the formula [D-3] Among them, D 3 represents an alkyl group having 1 to 4 carbon atoms.
  • These organic solvents may be used alone or in combination. Further, even if the solvent does not dissolve the polyimide precursor, it may be mixed with the above solvent and used as long as the produced polyimide precursor does not precipitate.
  • the concentration of the polyamic acid polymer in the reaction system is preferably 1 to 30% by mass, more preferably 5 to 20% by mass, from the viewpoint that precipitation of the polymer is unlikely to occur and a high molecular weight polymer is easily obtained.
  • the polyamic acid obtained as described above can be recovered by precipitating a polymer by injecting the reaction solution into a poor solvent while stirring well. Further, the purified polyamic acid powder can be obtained by performing precipitation several times, washing with a poor solvent, and then drying at room temperature or by heating.
  • the poor solvent is not particularly limited, and examples thereof include water, methanol, ethanol, hexane, butyl cellosolve, acetone, and toluene.
  • the polyamic acid ester and polyamic acid-polyamic acid ester copolymer which are polyimide precursors used in the present invention are, for example, with (1) esterification reaction of polyamic acid using an esterifying agent and (2) tetracarboxylic acid diester dichloride. It can be produced by a reaction with a diamine or (3) a polycondensation reaction of a tetracarboxylic acid diester and a diamine.
  • the above-mentioned production method (1) or (2) is particularly preferable because a high molecular weight polyamic acid ester or polyamic acid-polyamic acid ester copolymer can be obtained.
  • the solution of the polyamic acid ester and the polyamic acid-polyamic acid ester copolymer obtained as described above can be injected into a poor solvent with good stirring to precipitate a polymer. Precipitation is carried out several times, the mixture is washed with a poor solvent, and then dried at room temperature or by heating to obtain a purified polyamic acid ester or polyamic acid-polyamic acid ester copolymer powder.
  • the poor solvent is not particularly limited, and examples thereof include water, methanol, ethanol, hexane, butyl cellosolve, acetone, and toluene.
  • the polyimide used in the present invention can be produced by imidizing the above-mentioned polyimide precursor.
  • Imidization can be performed by stirring the polyamic acid to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride.
  • a basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Among them, pyridine is preferable because it has an appropriate basicity for advancing the reaction.
  • the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Among them, acetic anhydride is preferable because it facilitates purification after completion of the reaction.
  • the temperature at which the imidization reaction is carried out is ⁇ 20 to 140 ° C., preferably 0 to 100 ° C., and the reaction time can be 0.5 to 100 hours, preferably 1 to 80 hours.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times, that of the amic acid, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times that of the amic acid. It is double.
  • the imidization rate of the obtained polymer can be controlled by adjusting the amount of catalyst, the temperature, and the reaction time.
  • the imidization ratio does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose.
  • the obtained imidized polymer is recovered by the means described below and redissolved in an organic solvent. It is preferable to use it as a component of the polymer composition of the present invention.
  • the polyimide solution obtained as described above can be injected into a poor solvent with good stirring to precipitate a polymer.
  • Purified polyimide powder can be obtained by precipitating several times, washing with a poor solvent, and then drying at room temperature or by heating.
  • the poor solvent is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellsolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
  • the content of the polymer (Q) used in the present invention is preferably 30 to 95% by mass, more preferably 50 to 90% by mass, based on the total amount of the polymer components contained in the polymer composition.
  • the polymer (Q) one type can be used alone or two or more types can be used in combination.
  • Organic solvent contained in the polymer composition of the present invention examples include lactone solvents such as ⁇ -valerolactone and ⁇ -butyrolactone; ⁇ -butylolactam, N-methyl-2-pyrrolidone and N-ethyl-2-pyrrolidone.
  • Lactam solvents such as, amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide; 4-hydroxy-4-methyl-2-pentanone, methyl lactate, ethyl lactate, n-propyl lactate, n-butyl lactate.
  • Preferred solvent combinations include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone and ⁇ -butyrolactone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone and ⁇ -butyrolactone and propylene.
  • the content of the organic solvent used in the present invention is preferably 90 to 99% by mass, more preferably 91 to 99% by mass, still more preferably 92 to 99% by mass, based on the total mass of the polymer composition.
  • the liquid crystal alignment agent of the present invention contains the polymer composition of the present invention.
  • the liquid crystal alignment agent of the present invention is preferably prepared as a coating liquid so as to be suitable for forming a liquid crystal alignment film.
  • the liquid crystal alignment agent of the present invention can be prepared, for example, by dispersing or dissolving the polymer composition of the present invention and, if necessary, other components in an organic solvent.
  • the organic solvent include the same organic solvents contained in the polymer composition described above.
  • examples of other components include crosslinkable compounds, functional silane compounds, surfactants, compounds having a photopolymerizable group, and the like.
  • the crosslinkable compound can be used for the purpose of increasing the strength of the liquid crystal alignment film.
  • crosslinkable compounds include compounds having an epoxy group, an isocyanate group, an oxetane group, or a cyclocarbonate group, or hydroxy groups and hydroxyalkyls described in paragraphs [0109] to [0113] of WO2016 / 047771.
  • a compound having at least one group selected from the group consisting of a group and a lower alkoxyalkyl group a compound having a blocked isocyanate group and the like can be mentioned.
  • Blocked isocyanate compounds are available as commercial products, for example, Coronate AP Stable M, Coronate 2503, 2515, 2507, 2513, 2555, Millionate MS-50 (all manufactured by Nippon Polyurethane Industry Co., Ltd.), Takenate B. -830, B-815N, B-820NSU, B-842N, B-846N, B-870N, B-874N, B-882N (all manufactured by Mitsui Chemicals, Inc.) and the like can be preferably used.
  • preferable crosslinkable compound examples include compounds represented by the following formulas (CL-1) to (CL-11).
  • crosslinkable compound used in the liquid crystal alignment agent of the present invention may be one kind or a combination of two or more kinds.
  • the content of the other crosslinkable compound in the liquid crystal alignment agent of the present invention is 0.1 to 150 parts by mass, 0.1 to 100 parts by mass, or 1 to 1 to 100 parts by mass with respect to 100 parts by mass of all the polymer components. It is 50 parts by mass.
  • the functional silane compound can be used for the purpose of improving the adhesion between the liquid crystal alignment film and the underlying substrate.
  • the silane compound described in paragraph [0019] of International Publication 2014/119682 can be mentioned.
  • the content of the functional silane compound is preferably 0.1 to 30 parts by mass, and more preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of all the polymer components.
  • the surfactant can be used for the purpose of improving the uniformity of the film thickness and the surface smoothness of the liquid crystal alignment film.
  • the surfactant include a fluorine-based surfactant, a silicone-based surfactant, a nonion-based surfactant, and the like. Specific examples of these include the surfactants described in paragraph [0117] of WO2016 / 047771.
  • the amount of the surfactant used is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass, based on 100 parts by mass of all the polymer components contained in the liquid crystal alignment agent.
  • the compound having a photopolymerizable group is a compound having one or more polymerizable unsaturated groups such as an acrylate group and a methacrylate group in the molecule, for example, as represented by the following formulas (M-1) to (M-7). Compounds can be mentioned.
  • the liquid crystal alignment agent of the present invention is a compound that promotes charge transfer in the liquid crystal alignment film and promotes charge loss of the device, as described in Paragraph of International Publication No. WO2011 / 132751 (Published 2011.10.27)
  • the nitrogen-containing heterocyclic amine compounds represented by the formulas [M1] to [M156], which are listed in 0194] to [0200], more preferably 3-picorylamine and 4-picorylamine can be added.
  • This amine compound may be added directly to the liquid crystal alignment agent, but it is preferably added after making a solution having a concentration of 0.1 to 10% by mass, preferably 1 to 7% by mass.
  • This solvent is not particularly limited as long as it dissolves the specific polymer (P).
  • liquid crystal alignment agent of the present invention contains a polyamic acid or a polyamic acid ester
  • an imidization accelerator or the like may be added for the purpose of efficiently advancing imidization by heating when firing the coating film.
  • the solid content concentration in the liquid crystal alignment agent or polymer composition of the present invention is It is appropriately selected in consideration of viscosity, volatility and the like, but is preferably in the range of 1 to 10% by mass, more preferably 1 to 9% by mass, and further preferably 1 to 8% by mass.
  • the range of particularly preferable solid content concentration varies depending on the method used when applying the liquid crystal alignment agent or the polymer composition to the substrate. For example, in the case of the spin coating method, the solid content concentration is particularly preferably in the range of 1.5 to 4.5% by mass.
  • the solid content concentration is in the range of 3 to 9% by mass, and the solution viscosity is in the range of 12 to 50 mPa ⁇ s.
  • the solid content concentration is in the range of 1 to 5% by mass and the solution viscosity is in the range of 3 to 15 mPa ⁇ s.
  • the liquid crystal alignment film of the present invention is obtained from the above liquid crystal alignment agent or polymer composition.
  • the liquid crystal alignment film of the present invention can be used for a horizontally oriented type or a vertically oriented type liquid crystal alignment film, and is particularly suitable for a vertically oriented type liquid crystal display element such as a VA method or a PSA mode.
  • the liquid crystal display element of the present invention includes the liquid crystal alignment film.
  • the liquid crystal display element of the present invention can be manufactured, for example, by a method including the following steps (1) to (3) or steps (1) to (4).
  • the liquid crystal alignment agent or polymer composition of the present invention is applied to one surface of a substrate provided with a patterned transparent conductive film, for example, a roll coater. It is applied by an appropriate coating method such as a method, a spin coating method, a printing method, or an inkjet method.
  • the substrate is not particularly limited as long as it is a highly transparent substrate, and a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used together with the glass substrate and the silicon nitride substrate.
  • an opaque object such as a silicon wafer can be used, and in this case, a material that reflects light such as aluminum can also be used for the electrode.
  • the pre-baking temperature is preferably 30 to 200 ° C., more preferably 40 to 150 ° C., particularly preferably 40 to 100 ° C., and the pre-baking time is preferably 0.25 to 10 minutes, more preferably 0. .5-5 minutes.
  • a heating (post-baking) step is further carried out.
  • the post-bake temperature is preferably 80 to 300 ° C, more preferably 120 to 250 ° C.
  • the post-bake time is preferably 5 to 200 minutes, more preferably 10 to 100 minutes.
  • the film thickness of the film thus formed is preferably 5 to 300 nm, more preferably 10 to 200 nm.
  • the coating film formed in the above step (1) can be used as it is as a liquid crystal alignment film, but the coating film may be subjected to an alignment ability imparting treatment.
  • the alignment ability-imparting treatment includes a rubbing treatment in which the coating film is rubbed in a certain direction with a roll wrapped with a cloth made of fibers such as nylon, rayon, and cotton, and photoalignment in which the coating film is irradiated with polarized or unpolarized radiation. Processing etc. can be mentioned.
  • the photo-alignment treatment as the radiation to irradiate the coating film, for example, ultraviolet rays including light having a wavelength of 150 to 800 nm and visible light can be used.
  • the radiation When the radiation is polarized, it may be linearly polarized or partially polarized.
  • the irradiation may be performed from a direction perpendicular to the substrate surface, may be performed from an oblique direction, or may be performed in combination thereof.
  • the direction of irradiation is diagonal.
  • Step of forming a liquid crystal layer (3-1) In the case of a VA type liquid crystal display element Two substrates on which a liquid crystal alignment film is formed as described above are prepared, and a liquid crystal is formed between the two substrates arranged to face each other. To place. Specifically, the following two methods can be mentioned.
  • the first method is a conventionally known method. First, two substrates are arranged facing each other with a gap (cell gap) so that the liquid crystal alignment films face each other. Next, the peripheral portions of the two substrates are bonded together using a sealant, and the liquid crystal composition is injected and filled into the surface of the substrate and the cell gap partitioned by the sealant to contact the film surface, and then the injection holes are sealed. Stop.
  • the second method is a method called the ODF (One Drop Fill) method.
  • ODF One Drop Fill
  • an ultraviolet photocurable sealant is applied to a predetermined place on one of the two substrates on which the liquid crystal alignment film is formed, and the liquid crystal composition is further applied to a predetermined number of places on the liquid crystal alignment film surface. Is dropped. After that, the other substrate is bonded so that the liquid crystal alignment films face each other, and the liquid crystal composition is spread over the entire surface of the substrate and brought into contact with the film surface. Next, the entire surface of the substrate is irradiated with ultraviolet light to cure the sealant. Regardless of which method is used, it is desirable to remove the flow orientation during liquid crystal filling by further heating the liquid crystal composition used to a temperature at which it takes an isotropic phase and then slowly cooling it to room temperature.
  • the compound having a polymerizable group is a compound having one or more polymerizable unsaturated groups in the molecule such as an acrylate group and a methacrylate group as represented by the above formulas (M-1) to (M-7).
  • the content thereof is preferably 0.1 to 30 parts by mass, and more preferably 1 to 20 parts by mass with respect to 100 parts by mass of all the polymer components.
  • the above-mentioned polymerizable group may be contained in the polymer used in the polymer composition, and as such a polymer, for example, a diamine component containing a diamine having the above-mentioned photopolymerizable group at the terminal is used in the reaction. Examples thereof include the obtained polymer.
  • the liquid crystal cell is irradiated with light in a state where a voltage is applied between the conductive films of the pair of substrates obtained in (3-2) or (3-3) above.
  • the voltage applied here can be, for example, a direct current or an alternating current of 5 to 50 V.
  • the light to be irradiated for example, ultraviolet rays containing light having a wavelength of 150 to 800 nm and visible light can be used, but ultraviolet rays containing light having a wavelength of 300 to 400 nm are preferable.
  • the light source of the irradiation light for example, a low-pressure mercury lamp, a high-pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, or the like can be used.
  • the irradiation amount of light is preferably 1,000 to 200,000 J / m 2 , and more preferably 1,000 to 100,000 J / m 2 .
  • a liquid crystal display element can be obtained by attaching a polarizing plate to the outer surface of the liquid crystal cell.
  • a polarizing plate attached to the outer surface of the liquid crystal cell a polarizing plate called "H film” in which polyvinyl alcohol is stretch-oriented and iodine is absorbed is sandwiched between cellulose acetate protective films or the H film itself.
  • a polarizing plate made of the above can be mentioned.
  • the liquid crystal display element of the present invention can be effectively applied to various devices, for example, a clock, a portable game, a word processor, a notebook computer, a car navigation system, a cam coder, a PDA, a digital camera, a mobile phone, a smartphone, and the like. It can be used for various display devices such as various monitors, LCD TVs, and information displays.
  • the molecular weight of the polyimide in the synthesis example was as follows using a room temperature gel permeation chromatography (GPC) apparatus (SSC-7200) manufactured by Senshu Kagaku Co., Ltd. and columns (KD-803, KD-805) manufactured by Shodex. It was measured.
  • GPC room temperature gel permeation chromatography
  • N N-dimethylformamide (as an additive, lithium bromide monohydrate (LiBr ⁇ H 2 O) is 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphate) is 30 mmol / L, tetrahydrofuran (THF) is 10 mL / L)
  • the imidization rate of the polymer in the synthetic example was measured as follows. 20 mg of sample powder is placed in an NMR sample tube (NMR sampling tube standard ⁇ 5 manufactured by Kusano Kagaku ), 0.53 mL of deuterated dimethyl sulfoxide (DMSO-d 6 , 0.05% TMS mixture) is added, and ultrasonic waves are applied. Was completely dissolved. This solution was measured for 400 MHz proton NMR with a Varian NMR measuring instrument (Varian NMR System 400 NB).
  • the imidization rate is determined by using a proton derived from a structure that does not change before and after imidization as a reference proton, and the peak integrated value of this proton and the proton peak derived from the NH group of the amic acid appearing in the vicinity of 9.5 to 10.0 ppm. It was calculated by the following formula using the integrated value.
  • Imidization rate (%) (1- ⁇ ⁇ x / y) ⁇ 100 (X is the integrated proton peak value derived from the NH group of the amic acid, y is the integrated peak value of the reference proton, and ⁇ is the reference proton for one NH group proton of the amic acid in the case of polyamic acid (imidization rate is 0%). It is the number ratio of.)
  • ⁇ Synthesis example 2> MA-1 (1.87 g, 9.1 mmol) was added to NMP (48.33 g) and stirred at 25 ° C. for 10 minutes. When dissolution was confirmed, DMAP (0.139 g, 1.14 mmol) was added as a reaction catalyst, and the mixture was further stirred for 30 minutes. ISOBAM (3.50 g, 22.7 mmol) is added to this reaction solution, dissolved well under strong stirring for 60 minutes, and after confirming the dissolution, the reaction is carried out at 80 ° C. for 18 hours, and is represented by the following formula (m2). A maleimide-based polymer solution (IBM-2) having a structural unit was obtained.
  • IBM-2 A maleimide-based polymer solution having a structural unit was obtained.
  • NMP (124.62 g) was added to this polyamic acid solution (60.0 g), diluted to 6.5% by mass, and then acetic anhydride (21.30 g) and pyridine (3.30 g) were added as imidization catalysts. The reaction was carried out at 80 ° C. for 5 hours. This reaction solution was put into methanol (732.28 g), and the obtained precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 60 ° C. to obtain a polyimide powder. The imidization ratio of this polyimide powder was 72%, the number average molecular weight was 10,800, and the weight average molecular weight was 41,800. NMP was added to this polyimide powder so that the solid content concentration became 20% by mass, and the mixture was stirred at 70 ° C. for 12 hours to obtain a polyimide solution (SPI-1).
  • SPI-1 polyimide solution
  • polyimide powder The imidization ratio of this polyimide powder was 75%, the number average molecular weight was 11,840, and the weight average molecular weight was 37,800. NMP was added to this polyimide powder so that the solid content concentration became 20% by mass, and the mixture was stirred at 70 ° C. for 12 hours to obtain a polyimide solution (SPI-2).
  • reaction solution is diluted with an NMP solvent so that the concentration of the reaction solution is 20% by mass.
  • concentration of the reaction solution is 20% by mass.
  • the number average molecular weight of this polyamic acid was 10,240, and the weight average molecular weight was 32,800.
  • the components and the like of Synthesis Examples 3 to 6 are shown in Table 2 below.
  • Example 1 The maleimide polymer solution IBM-1 (4.80 g) obtained in Synthesis Example 1 was weighed into a 20 mL sample tube containing a stirrer, and NMP (2.40 g) and BCS (4.80 g) were added. Later, the mixture was stirred with a magnetic stirrer for 30 minutes to obtain a polymer composition (A-1) which is a maleimide-based polymer solution.
  • A-1 was stored at ⁇ 20 ° C. for 1 week, no precipitation of solid matter was observed, and the solution was uniform.
  • Example 2 The polymer composition (A-2), which is a maleimide-based polymer solution, was prepared by the same procedure as in Example 1 except that the maleimide-based polymer solution IBM-2 was used instead of the maleimide-based polymer solution IBM-1. Obtained. When A-2 was stored at ⁇ 20 ° C. for 1 week, no precipitation of solid matter was observed, and the solution was uniform.
  • Example 3 The polyimide solution SPI-1 (0.90 g) obtained in Synthesis Example 3 and the polyimide solution SPI-2 (2.10 g) obtained in Synthesis Example 4 were weighed into a 20 mL sample tube containing a stirrer. After adding NMP (6.00 g) and BCS (6.00 g), the mixture was stirred with a magnetic stirrer for 30 minutes to obtain a polymer composition (A-3) which is a polyimide mixed solution. When A-3 was stored at ⁇ 20 ° C. for 1 week, no precipitation of solid matter was observed, and the solution was uniform.
  • Example 4 A polyamic acid mixed solution was prepared by the same procedure as in Example 3 except that the polyamic acid solution PAA-3 was used instead of the polyimide solution SPI-1 and the polyamic acid solution PAA-4 was used instead of the polyimide solution SPI-2.
  • a polymer composition (A-4) was obtained. When A-4 was stored at ⁇ 20 ° C. for 1 week, no precipitation of solids was observed, and the solution was uniform.
  • Example 5 The solution IBM-3 (6.00 g) obtained in Comparative Synthesis Example 1 was weighed into a 20 mL sample tube containing a stirrer, NMP (4.80 g) and BCS (7.20 g) were added, and then a magnetic stirrer was added.
  • Example 6 A magnetic stirrer after weighing 3.00 g of the solution (A-1) obtained in Example 1 and 7.00 g of the polyimide solution (A-3) obtained in Example 3 in a 20 mL sample tube containing a stirrer. The mixture was stirred for 30 minutes to prepare a polymer composition (C-1). When C-1 was stored at ⁇ 20 ° C. for 1 week, no precipitation of solid matter was observed, and the solution was uniform. (Examples 7 to 11) Polymer compositions (C-2) to (C-4) and (D-1) to (D-2) were prepared in the same procedure as in Example 6. Table 4 below lists the types of polymer solutions used for preparation and the mixing ratio.
  • Examples 12 to 19 A liquid crystal alignment film and a liquid crystal cell were prepared as described below, and the characteristics of each of the prepared liquid crystal cells were evaluated. The results are shown in the table below. In the following examples, Examples 12 to 15 are examples of the present invention, and Examples 16 to 19 are comparative examples.
  • thermosetting sealant (XN-1500T manufactured by Kyoritsu Kagaku Sangyo Co., Ltd.) is applied on the bead spacers. I printed it.
  • the surface of the other substrate on which the liquid crystal alignment film was formed was turned inside, and after bonding with the previous substrate, the sealant was cured to prepare an empty cell.
  • a liquid crystal cell containing a polymerizable compound for PSA MLC-3023 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method to prepare a liquid crystal cell.
  • the photochemical reaction chemical lamp FHF14UV32A-H (manufactured by Toshiba Lighting & Technology Corporation) was irradiated for 70 seconds from the outside of the liquid crystal cell (also referred to as primary PSA treatment). ..
  • UV UV lamp: FLR40SUV32 /
  • A-1) was irradiated for 30 minutes (also referred to as secondary PSA treatment).
  • the two substrates thus obtained were prepared, a 4 ⁇ m bead spacer was applied onto the liquid crystal alignment film surface of one of the substrates, and then a sealant (723K1 manufactured by Kyoritsu Kagaku Sangyo Co., Ltd.) was applied. Next, the substrates were bonded so that the liquid crystal alignment film surfaces of these substrates faced each other and the overlapping width of the substrates was 1 cm. At that time, the amount of the sealant dropped was adjusted so that the diameter of the sealant after bonding was 3 mm. After fixing the two bonded substrates with clips, they were irradiated with ultraviolet rays of 4 J / cm 2 in terms of wavelength of 365 nm and thermoset at 120 ° C. for 1 hour to prepare a sample for adhesion evaluation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Liquid Crystal (AREA)

Abstract

Provided is a polymer composition from which a liquid crystal alignment film, with which a substrate is less likely to peel off, can be obtained, and a liquid crystal display element having high durability against an external pressure can be obtained. This polymer composition contains a polymer (P) having at least one structural unit selected from the group consisting of formulae (m-1) and (m-2), and an organic solvent. (R1 and R2 each independently represent a hydrogen atom, a fluorine atom, or an alkyl group having 1-3 carbon atoms. R represents a hydrogen atom or an alkyl group having 1-10 carbon atoms. Rs represents a hydrogen atom or an alkyl group having 1-3 carbon atoms. X represents: a group including an oxazoline ring structure; a group including a partial structure "-NRaRb" (where, Ra and Rb each independently represent a hydrogen atom, a C1-C10 monovalent hydrocarbon group, or protective group, and at least one among Ra and Rb represents a protective group); a group including an oxetane ring; a group including a cyclic carbonate group; a group including -SiRm(OR')m' (R and R' each independently represent a hydrogen atom, or an alkyl group having 1-5 carbon atoms, m and m' each represent an integer satisfying m+m'=3, and m' represents an integer of at least 1.); or a group including a benzene ring substituted with a methylol group.)

Description

重合体組成物、液晶配向剤、液晶配向膜、液晶表示素子及び液晶表示素子の製造方法Method for manufacturing polymer composition, liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element and liquid crystal display element
 本発明は、重合体組成物、液晶配向剤、液晶配向膜、液晶表示素子及び液晶表示素子の製造方法に関する。 The present invention relates to a polymer composition, a liquid crystal alignment agent, a liquid crystal alignment film, a liquid crystal display element, and a method for manufacturing a liquid crystal display element.
 液晶表示素子は、パソコン、携帯電話、スマートフォン、テレビ等に幅広く用いられている。近年、車両に搭載されるカーナビやメーター、屋外に設置される産業機器や計測機器の表示部等、高温・高湿下で液晶表示素子が使用される機会も多くなっている。 Liquid crystal display elements are widely used in personal computers, mobile phones, smartphones, televisions, etc. In recent years, there have been increasing opportunities for liquid crystal display elements to be used under high temperature and high humidity, such as car navigation systems and meters mounted on vehicles, and display units of industrial equipment and measuring equipment installed outdoors.
 この種の液晶表示素子は、一般に、素子基板とカラーフィルタ基板との間に挟持された液晶層、液晶層に電界を印加する画素電極及び共通電極、液晶層の液晶分子の配向性を制御する液晶配向膜、画素電極に供給される電気信号をスイッチングする薄膜トランジスタ(TFT)等を備えている。 This type of liquid crystal display element generally controls the orientation of the liquid crystal layer sandwiched between the element substrate and the color filter substrate, the pixel electrodes and common electrodes that apply an electric field to the liquid crystal layer, and the liquid crystal molecules of the liquid crystal layer. It is equipped with a liquid crystal alignment film, a thin film transistor (TFT) for switching an electric signal supplied to a pixel electrode, and the like.
 液晶表示素子では、液晶層を画素電極及び共通電極で挟持させたものが液晶セルとして機能する。液晶セルでは、その電圧保持率(VHR:Voltage Holding Ratio)が低いと、電圧を印加しても液晶分子に十分な電圧がかかり難くなる。そのため、高温・高湿下での使用や長期使用等により、表示コントラストが低下したり、表示にフリッカー(ちらつき)が生じたりして表示が見難くなる。
 特に、VA方式の液晶表示素子はコントラストが高い、視野角が広いという特長から、テレビや車載ディスプレイに使用されている。これら液晶表示素子は高輝度を得るために発熱量が大きいバックライトが使用されており、カーナビゲーションシステムやメーターパネルなどの車載用途では、長時間高温環境下で使用あるいは放置される場合があるため、電圧保持率の低下がより顕著である。
In the liquid crystal display element, a liquid crystal layer sandwiched between a pixel electrode and a common electrode functions as a liquid crystal cell. In a liquid crystal cell, if the voltage holding ratio (VHR: Voltage Holding Ratio) is low, it becomes difficult to apply a sufficient voltage to the liquid crystal molecules even if a voltage is applied. Therefore, the display becomes difficult to see due to a decrease in display contrast or flicker (flicker) in the display due to use under high temperature and high humidity or long-term use.
In particular, the VA type liquid crystal display element is used in televisions and in-vehicle displays because of its features of high contrast and wide viewing angle. These liquid crystal display elements use a backlight that generates a large amount of heat in order to obtain high brightness, and may be used or left in a high temperature environment for a long time in in-vehicle applications such as car navigation systems and instrument panels. , The decrease in voltage retention is more remarkable.
 基板に対して垂直に配向している液晶分子を電界によって応答させるVA方式では、予め液晶組成物中に光重合性化合物を添加し、かつポリイミド系などの垂直配向膜を用い、液晶セルに電圧を印加しながら紫外線を照射することで、液晶の応答速度を速くする技術(PSA(Polymer Sustained Alignment)方式素子、例えば、特許文献1及び非特許文献1参照)が知られている。 In the VA method in which liquid crystal molecules oriented perpendicular to the substrate are made to respond by an electric field, a photopolymerizable compound is added to the liquid crystal composition in advance, and a vertically oriented film such as a polyimide-based film is used to apply a voltage to the liquid crystal cell. There is known a technique (PSA (Polymer Sustained Alignment) method element, for example, see Patent Document 1 and Non-Patent Document 1) of increasing the response speed of the liquid crystal by irradiating the liquid crystal with ultraviolet rays while applying the above.
日本特開2003-307720号公報Japanese Patent Application Laid-Open No. 2003-307720 日本特開昭58―68722号公報Japanese Patent Application Laid-Open No. 58-68722
 タッチパネル方式の液晶ディスプレイでは、指や、ペンなどのポインティングデバイスによる押圧等の外部圧力に対して耐久性が高いこと、つまり外部圧力が付与された場合にも配向不良や輝点不良が生じにくいことが求められる。また、タブレット型端末やモバイル端末では、軽量化及び薄型化が進み、液晶ディスプレイ製造時のパネル組み立て工程において、パネルの歪みが生じたりパネル内部に応力がかかりやすくなっている。こうしたパネルの歪みや応力は、配向膜の基板からの剥がれの原因となり、輝点不良や配向不良が発生する原因にもなる。そのため、液晶配向膜には、基板剥がれが生じにくいことが要求される。また、タブレット型端末やモバイル端末では、できるだけ多くの表示面を確保するため、液晶表示素子の基板間を接着させるために用いるシール剤の幅を、従来に比べて狭くする必要がある。このような場合、液晶表示素子の破損を防ぐため、液晶配向膜とシール剤との接着性(密着性ともいう)を、従来に比べて高くする必要がある。 The touch panel type liquid crystal display has high durability against external pressure such as pressing by a finger or a pointing device such as a pen, that is, poor orientation and bright spots are unlikely to occur even when external pressure is applied. Is required. Further, in tablet terminals and mobile terminals, weight reduction and thinning are progressing, and in the panel assembly process at the time of manufacturing a liquid crystal display, the panel is easily distorted or stress is easily applied to the inside of the panel. Such distortion and stress of the panel cause peeling of the alignment film from the substrate, and also cause poor bright spots and poor alignment. Therefore, the liquid crystal alignment film is required to be less prone to peeling of the substrate. Further, in a tablet terminal or a mobile terminal, in order to secure as many display surfaces as possible, it is necessary to narrow the width of the sealant used for adhering the substrates of the liquid crystal display element as compared with the conventional one. In such a case, in order to prevent damage to the liquid crystal display element, it is necessary to increase the adhesiveness (also referred to as adhesion) between the liquid crystal alignment film and the sealant as compared with the conventional case.
 一方、特許文献2では、無水マレイン酸骨格を含有する構造単位を有する重合体に関する記載があるが、この重合体は、後述する本発明の重合体(P)とは、構造が異なるものである。また、特許文献2では、基板剥がれが生じにくい液晶配向膜を得る等の上記課題については検討がなされていない。 On the other hand, Patent Document 2 describes a polymer having a structural unit containing a maleic anhydride skeleton, but this polymer has a structure different from that of the polymer (P) of the present invention described later. .. Further, in Patent Document 2, the above-mentioned problems such as obtaining a liquid crystal alignment film in which the substrate is less likely to peel off have not been studied.
 本発明は、基板剥がれが生じにくい液晶配向膜を得ることができ、かつ外部圧力に対する耐久性が高い液晶表示素子を得ることができる重合体組成物を提供することを一つの目的とする。また、液晶配向膜とシール剤との接着性が高く、液晶表示素子の強度を高くする液晶配向膜を得ることができる重合体組成物を提供することを他の一つの目的とする。さらに、高温環境下で使用した場合においても、高い電圧保持率を有する液晶配向膜を得ることができる重合体組成物を提供することを他の一つの目的とする。 One object of the present invention is to provide a polymer composition capable of obtaining a liquid crystal alignment film in which the substrate is less likely to peel off and a liquid crystal display element having high durability against external pressure. Another object of the present invention is to provide a polymer composition capable of obtaining a liquid crystal alignment film having high adhesiveness between the liquid crystal alignment film and the sealant and increasing the strength of the liquid crystal display element. Another object of the present invention is to provide a polymer composition capable of obtaining a liquid crystal alignment film having a high voltage retention even when used in a high temperature environment.
 発明者らは、特定の構造単位を有する重合体(P)と有機溶媒とを含有する重合体組成物により上記課題を達成できることを見出し、本発明を完成させた。 The inventors have found that the above-mentioned problems can be achieved by a polymer composition containing a polymer (P) having a specific structural unit and an organic solvent, and have completed the present invention.
 本発明は、かかる知見に基づくものであり、下記を要旨とするものである。
 下記の式(m-1)及び(m-2)からなる群から選ばれる少なくとも1種の構造単位を有する重合体(P)と有機溶媒とを含有することを特徴とする重合体組成物。
Figure JPOXMLDOC01-appb-C000006
(R及びRは、それぞれ独立して、水素原子、フッ素原子、又は炭素数1~3のアルキル基を表す。Rは、水素原子又は炭素数1~10のアルキル基を表す。Rsは、水素原子又は炭素数1~3のアルキル基を表す。Xは、オキサゾリン環構造を含む基、部分構造「-NR」(ただし、R及びRは、それぞれ独立して、水素原子、炭素数1~10の1価の炭化水素基又は保護基を表し、R及びRの少なくとも一つは保護基を表す。)を含む基、オキセタン環を含む基、環状カーボネート基を含む基、-SiR(OR’)m’(R及びR’は、それぞれ独立して、水素原子又は炭素数1~5のアルキル基を表し、m及びm’は、m+m’=3を満たす整数を表し、m’は1以上の整数を表す。)を含む基、又はメチロール基で置換されたベンゼン環を含む基を表す。)
The present invention is based on such findings, and the gist of the present invention is as follows.
A polymer composition comprising a polymer (P) having at least one structural unit selected from the group consisting of the following formulas (m-1) and (m-2) and an organic solvent.
Figure JPOXMLDOC01-appb-C000006
(R 1 and R 2 independently represent a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 3 carbon atoms. R represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. Rs is. , A hydrogen atom or an alkyl group having 1 to 3 carbon atoms. X is a group containing an oxazoline ring structure, and a partial structure "-NR a R b " (however, Ra and R b are independently hydrogen. A group containing an atom, a monovalent hydrocarbon group having 1 to 10 carbon atoms or a protective group, and at least one of Ra and R b represents a protective group), a group containing an oxetane ring, and a cyclic carbonate group. The group containing, -SiR m (OR') m' (R and R'independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and m and m'satisfy m + m'= 3. Represents an integer, and m'represents an integer of 1 or more.) Or a group containing a benzene ring substituted with a methylol group.)
 本発明によれば、基板剥がれが生じにくい液晶配向膜を得ることができ、かつ外部圧力に対する耐久性が高い液晶表示素子を得ることができる重合体組成物が提供される。また、液晶配向膜とシール剤との接着性が高く、液晶表示素子の強度を高くする液晶配向膜を得ることができる重合体組成物が提供される。さらに、高温環境下で使用した場合においても、高い電圧保持率を有する液晶配向膜を得ることができる重合体組成物が提供される。 According to the present invention, there is provided a polymer composition capable of obtaining a liquid crystal alignment film in which the substrate is less likely to peel off and a liquid crystal display element having high durability against external pressure. Further, there is provided a polymer composition capable of obtaining a liquid crystal alignment film having high adhesiveness between the liquid crystal alignment film and the sealant and increasing the strength of the liquid crystal display element. Further, there is provided a polymer composition capable of obtaining a liquid crystal alignment film having a high voltage retention even when used in a high temperature environment.
<重合体組成物>
 本発明の重合体組成物は、重合体(P)と有機溶媒とを含有するものである。本発明の重合体組成物は、例えば、重合体(P)及び必要に応じてその他の成分を有機溶媒中に分散又は溶解させることによって、調製することができる。
<Polymer composition>
The polymer composition of the present invention contains a polymer (P) and an organic solvent. The polymer composition of the present invention can be prepared, for example, by dispersing or dissolving the polymer (P) and, if necessary, other components in an organic solvent.
<重合体(P)>
 本発明の重合体(P)は、下記式(m-1)及び(m-2)からなる群から選ばれる少なくとも1種の構造単位を有する。すなわち、重合体(P)は、マレイミド系重合体である。
Figure JPOXMLDOC01-appb-C000007
(R及びRは、それぞれ独立して、水素原子、フッ素原子、又は炭素数1~3のアルキル基を表す。Rは水素原子又は炭素数1~10のアルキル基を表す。Rsは、水素原子又は炭素数1~3のアルキル基を表す。Xは、オキサゾリン環構造を含む基、部分構造「-NR」(ただし、R及びRは、それぞれ独立して、水素原子、炭素数1~10の1価の炭化水素基又は保護基を表し、R及びRの少なくとも一つは保護基を表す。)を含む基、オキセタン環を含む基、環状カーボネート基を含む基、-SiR(OR’)m’(R及びR’は、それぞれ独立して、水素原子又は炭素数1~5のアルキル基を表し、m及びm’は、m+m’=3を満たす整数を表し、m’は1以上の整数を表す。)を含む基、又はメチロール基で置換されたベンゼン環を含む基を表す。)
<Polymer (P)>
The polymer (P) of the present invention has at least one structural unit selected from the group consisting of the following formulas (m-1) and (m-2). That is, the polymer (P) is a maleimide-based polymer.
Figure JPOXMLDOC01-appb-C000007
(R 1 and R 2 independently represent a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 3 carbon atoms. R represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. Rs is. Represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. X is a group containing an oxazoline ring structure and a partial structure "-NR a R b " (however, Ra and R b are independent hydrogen atoms, respectively. , A monovalent hydrocarbon group or a protective group having 1 to 10 carbon atoms, and at least one of Ra and R b represents a protective group), a group containing an oxetane ring, and a cyclic carbonate group. Group, -SiR m (OR') m' (R and R'independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and m and m'are integers satisfying m + m'= 3. , And m'represents an integer of 1 or more.) Or a group containing a benzene ring substituted with a methylol group.)
 上記式(m-1)及び(m-2)において、R及びRは、それぞれ独立して、水素原子又は炭素数1~3のアルキル基であることが好ましく、Rが水素原子かつRが水素原子又はメチル基であることが更に好ましく、RとRが水素原子であることが一層好ましい。
 Rは、好ましくは、水素原子である。
 Rsは、好ましくは、水素原子である。
In the above formulas (m-1) and (m-2), R 1 and R 2 are preferably hydrogen atoms or alkyl groups having 1 to 3 carbon atoms, respectively, and R 1 is a hydrogen atom. It is more preferable that R 2 is a hydrogen atom or a methyl group, and it is more preferable that R 1 and R 2 are hydrogen atoms.
R is preferably a hydrogen atom.
Rs is preferably a hydrogen atom.
 Xは、好ましくは、下記式(mx-1)~(mx-6)から選ばれる構造を表し、より好ましくは、下記式(mx-1)~(mx-2)から選ばれる構造を表す。
Figure JPOXMLDOC01-appb-C000008
(R及びRは、それぞれ独立して、水素原子又は炭素数1~3のアルキル基を表す。Dは保護基を表す。Q及びQは、それぞれ独立して、炭素数1~20のアルキレン基又はアリール基を表し、Qは単結合又は炭素数1~20のアルキレン基を表す。Q及びQは単結合を表し、Qは炭素数1~20のアルキレン基を表す。R及びR’は、それぞれ独立して、水素原子又は炭素数1~5のアルキル基を表す。m及びm’は、m+m’=3を満たす整数を表し、m’は1以上の整数を表す。R及びRにおいて、炭素数1~3のアルキル基に結合する水素原子は、それぞれ独立して、ヒドロキシ基、-CN、ハロゲン原子、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基、又は炭素数1~5のアルキルオキシ基で置換されてもよい。*は結合手を表す。)
X preferably represents a structure selected from the following formulas (mx-1) to (mx-6), and more preferably represents a structure selected from the following formulas (mx-1) to (mx-2).
Figure JPOXMLDOC01-appb-C000008
(R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. D represents a protecting group. Q 1 and Q 4 independently represent 1 to 3 carbon atoms, respectively. 20 represents an alkylene group or an aryl group, Q 2 represents a single bond or an alkylene group having 1 to 20 carbon atoms, Q 3 and Q 6 represent a single bond, and Q 5 represents an alkylene group having 1 to 20 carbon atoms. R and R'independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. M and m'represent an integer satisfying m + m'= 3, and m'is an integer of 1 or more. In R 1 and R 2 , the hydrogen atom bonded to the alkyl group having 1 to 3 carbon atoms is independently a hydroxy group, -CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms, and a carbon number of carbon atoms. It may be substituted with an alkylcarbonyl group of 1 to 5 or an alkyloxy group having 1 to 5 carbon atoms. * Indicates a bond.)
 なお、上記式(m-1)及び(m-2)において、「保護基」とは、加熱により脱離して水素原子に置き換わる基を言う。かかる保護基としては、カルバメート系保護基、アミド系保護基、イミド系保護基、スルホンアミド系保護基が挙げられる。中でもカルバメート系保護基が好ましく、具体例としては、tert-ブトキシカルボニル基、ベンジルオキシカルボニル基、1,1-ジメチル-2-ハロエチルオキシカルボニル基、1,1-ジメチル-2-シアノエチルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、アリルオキシカルボニル基、2-(トリメチルシリル)エトキシカルボニル基などが挙げられる。これらのうち、熱による脱離性が高い点や、脱保護された部分の膜中での残存量を少なくできる点でtert-ブトキシカルボニル基が好ましい。 In the above formulas (m-1) and (m-2), the "protecting group" means a group that is desorbed by heating and replaced with a hydrogen atom. Examples of such protecting groups include carbamate-based protecting groups, amide-based protecting groups, imide-based protecting groups, and sulfonamide-based protecting groups. Of these, carbamate-based protecting groups are preferable, and specific examples thereof include a tert-butoxycarbonyl group, a benzyloxycarbonyl group, a 1,1-dimethyl-2-haloethyloxycarbonyl group, and a 1,1-dimethyl-2-cyanoethyloxycarbonyl group. , 9-Fluorenylmethyloxycarbonyl group, allyloxycarbonyl group, 2- (trimethylsilyl) ethoxycarbonyl group and the like. Of these, the tert-butoxycarbonyl group is preferable because it has high heat-removability and the residual amount in the film of the deprotected portion can be reduced.
 上記式(mx-1)で表される基の好ましい具体例としては、下記式(1x-1)等が挙げられる。
Figure JPOXMLDOC01-appb-C000009
(*は結合手を表す。)
 上記式(mx-2)で表される基の具体例としては、Boc-ヒドラジン(tert-ブトキシカルボニルヒドラジン)から-NHを除いた有機基が挙げられる。
 上記式(mx-5)で表される基の具体例としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン等の化合物から-NHを除いた有機基が挙げられる。
Preferred specific examples of the group represented by the above formula (mx-1) include the following formula (1x-1) and the like.
Figure JPOXMLDOC01-appb-C000009
(* Indicates a bond.)
Specific examples of the group represented by the above formula (mx-2) include an organic group obtained by removing -NH 2 from Boc-hydrazine (tert-butoxycarbonylhydrazine).
Specific examples of the group represented by the above formula (mx-5) include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane and the like. Examples of the organic group obtained by removing -NH 2 from the compound of.
 本発明の重合体(P)は、式(m-1)及び(m-2)で表される構造単位をそれぞれ1種単独で含んでもよいし、2種以上含んでもよい。式(m-1)及び(m-2)で表される構造単位の合計含有量は、重合体(P)の全構造単位に対して、5~80モル%が好ましく、10~50モル%がより好ましい。 The polymer (P) of the present invention may contain one type of each of the structural units represented by the formulas (m-1) and (m-2) alone, or may contain two or more types. The total content of the structural units represented by the formulas (m-1) and (m-2) is preferably 5 to 80 mol%, preferably 10 to 50 mol%, based on the total structural units of the polymer (P). Is more preferable.
 上記式(m-1)で表される構造単位を有する重合体は、例えば、無水マレイン酸骨格を含有する構造単位を有する重合体(無水マレイン酸系重合体)に、第一級又は二級アミン化合物を1種以上反応させて得ることができる。この反応では、無水マレイン酸骨格のカルボニル基に、第一級又は二級アミン化合物のアミノ基が付加し、開環反応が進行することによって、式(m-1)で表される構造単位が得られる。 The polymer having a structural unit represented by the above formula (m-1) is, for example, a primary or secondary polymer having a structural unit containing a maleic anhydride skeleton (maleic anhydride-based polymer). It can be obtained by reacting one or more amine compounds. In this reaction, the amino group of the primary or secondary amine compound is added to the carbonyl group of the maleic anhydride skeleton, and the ring-opening reaction proceeds, so that the structural unit represented by the formula (m-1) is formed. can get.
 上記無水マレイン酸骨格を含有する構造単位を有する重合体は、好ましくは、下記式(m)で表される構造単位(以下、構造単位(m)とも言う。)を含む無水マレイン酸系重合体であり、より好ましくは、構造単位(m)と、下記式(v)で表される構造単位(以下、構造単位(v)とも言う。)とを含む無水マレイン酸系共重合体(以下、共重合体(Mp)とも言う。)である。
Figure JPOXMLDOC01-appb-C000010
(R及びRは、それぞれ独立して、水素原子、フッ素原子、又は炭素数1~3のアルキル基を表す。R、R、R及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、-OC(=O)-R(Rは炭素数1~6のアルキル基を表す。)、-C(=O)-OR(Rは炭素数1~6のアルキル基を表す。)、-OR(Rは炭素数1~6のアルキル基を表す。)、又はフェニル基を表す。)
The polymer having a structural unit containing the maleic anhydride skeleton is preferably a maleic anhydride-based polymer containing a structural unit represented by the following formula (m) (hereinafter, also referred to as a structural unit (m)). , And more preferably, a maleic anhydride-based copolymer (hereinafter, also referred to as structural unit (v)) containing a structural unit (m) and a structural unit represented by the following formula (v) (hereinafter, also referred to as structural unit (v)). It is also called a copolymer (Mp)).
Figure JPOXMLDOC01-appb-C000010
(R 1 and R 2 each independently represent a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 3 carbon atoms. R 3 , R 4 , R 5 and R 6 each independently represent hydrogen. Atom, alkyl group with 1 to 6 carbon atoms, -OC (= O) -R (R represents an alkyl group with 1 to 6 carbon atoms), -C (= O) -OR (R is 1 to 6 carbon atoms) Represents an alkyl group of 6), -OR (R represents an alkyl group having 1 to 6 carbon atoms), or a phenyl group.)
 上記構造単位(v)は、例えば、エチレン、プロピレン、n-ブテン、イソブチレン、n-ペンテン、n-ヘキセン、炭素数1~4のアルキルアクリレート類及びメタクリレート類、酢酸ビニル、メチルビニルエーテル、並びに
Figure JPOXMLDOC01-appb-C000011
(Rは、水素または炭素数1~6のアルキル基であり、ベンゼン環は、任意に、炭素数1~4のアルキル基またはヒドロキシ基で置換されていてもよい。)で表されるスチレン性化合物から選択されるモノマーを重合して得られる。
The structural unit (v) is, for example, ethylene, propylene, n-butene, isobutylene, n-pentene, n-hexene, alkyl acrylates and methacrylates having 1 to 4 carbon atoms, vinyl acetate, methyl vinyl ether, and the like.
Figure JPOXMLDOC01-appb-C000011
(R is hydrogen or an alkyl group having 1 to 6 carbon atoms, and the benzene ring may be optionally substituted with an alkyl group or a hydroxy group having 1 to 4 carbon atoms.) It is obtained by polymerizing a monomer selected from the compounds.
 炭素数1~4のアルキルアクリレート類の好ましい例としては、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、およびそれらの混合物が挙げられる。炭素数1~4のアルキルメタクリレート類の好ましい例としては、メチルメタクリレート、エチルメタクリレート、イソプロピルメタクリレート、n-プロピルメタクリレート、n-ブチルメタクリレート、およびそれらの混合物が挙げられる。炭素数1~4のアルキルメタクリレート類と炭素数1~4のアルキルアクリレート類との混合物を使用してもよい。スチレン性化合物の好ましい例としては、スチレン、α-メチルスチレン、p-メチルスチレン、t-ブチルスチレン、およびそれらの混合物が挙げられる。
 上記無水マレイン酸系共重合体を得るためのモノマー成分として、スチレン性化合物、エチレン、プロピレン、n-ブテン、イソブチレン、n-ペンテン、n-ヘキセン、炭素数1~4のアルキルアクリレート類及び/又はメタクリレート類との混合物を使用してもよい。エチレン、プロピレン、n-ブテン、イソブチレン、n-ペンテン、n-ヘキセン、の中でも特に、イソブチレン、又はイソブチレン、1-ブテン及び2-ブテンとの混合物が好ましく使用される。
Preferred examples of alkyl acrylates having 1 to 4 carbon atoms include methyl acrylate, ethyl acrylate, isopropyl acrylate, n-propyl acrylate, n-butyl acrylate, and mixtures thereof. Preferred examples of alkyl methacrylates having 1 to 4 carbon atoms include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, and mixtures thereof. A mixture of alkyl methacrylates having 1 to 4 carbon atoms and alkyl acrylates having 1 to 4 carbon atoms may be used. Preferred examples of the styrene compound include styrene, α-methylstyrene, p-methylstyrene, t-butylstyrene, and mixtures thereof.
As the monomer component for obtaining the maleic anhydride-based copolymer, a styrene compound, ethylene, propylene, n-butene, isobutylene, n-pentene, n-hexene, alkyl acrylates having 1 to 4 carbon atoms and / or A mixture with methacrylates may be used. Among ethylene, propylene, n-butene, isobutylene, n-pentene and n-hexene, isobutylene or a mixture with isobutylene, 1-butene and 2-butene is preferably used.
 上記構造単位(m)は、共重合体(Mp)を構成する全構造単位において、10~50mol%が好ましく、さらには30~50mol%が特に好ましい。 The structural unit (m) is preferably 10 to 50 mol%, more preferably 30 to 50 mol%, of all the structural units constituting the copolymer (Mp).
 上記共重合体(Mp)の分子量は、重量平均分子量が3,000~500,000であることが好ましく、より好ましくは8,000~150,000であることが好ましい。 The molecular weight of the copolymer (Mp) is preferably 3,000 to 500,000, more preferably 8,000 to 150,000, with a weight average molecular weight.
 上記無水マレイン酸骨格を含有する構造単位を有する重合体を得る方法は特に限定されないが、例えば、構造単位(m)で表される構造単位を形成する化合物(モノマー)、並びに場合によっては(v)で表される構造単位を形成する化合物(モノマー)及びその他の構造単位を形成する化合物(モノマー)を重合反応させることにより得られる。また、後述する実施例におけるISOBAMのように、市販のものを用いてもよい。 The method for obtaining a polymer having a structural unit containing the maleic anhydride skeleton is not particularly limited, but for example, a compound (monomer) forming a structural unit represented by the structural unit (m), and in some cases (v). ) Is formed by polymerizing a compound (monomer) forming a structural unit and another compound (monomer) forming a structural unit. Further, a commercially available product may be used, such as ISOBAM in the examples described later.
 上記第一級又は二級アミン化合物としては、例えば、「HN(Rs)(X)」で表される特定アミン化合物(A)が挙げられる。ここで、Rs及びXは、上記式(m-1)における定義と同義である。特定アミン化合物(A)の具体例としては、下記式(a-1)~(a-6)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000012
(式中、R、R、D、Q、Q、Q、Q、Q、Q、R、R’、m、m’は、上記式(mx-1)~(mx-6)における定義と同義である。Rsは、上記式(m-1)における定義と同義である。)
Examples of the primary or secondary amine compound include a specific amine compound (A) represented by "HN (Rs) (X)". Here, Rs and X are synonymous with the definitions in the above formula (m-1). Specific examples of the specific amine compound (A) include compounds represented by the following formulas (a-1) to (a-6).
Figure JPOXMLDOC01-appb-C000012
(In the formula, R 1 , R 2 , D, Q 1 , Q 2 , Q 3 , Q 4 , Q 5 , Q 6 , R, R', m, m'are the above formulas (mx-1) to ( It is synonymous with the definition in mx-6). Rs is synonymous with the definition in the above equation (m-1).)
 上記無水マレイン酸骨格を含有する構造単位を有する重合体と、第一級又は二級アミン化合物との反応は、好ましくは有機溶媒中で行われる。使用する有機溶媒としては、例えばアルコール、エーテル、ケトン、アミド、エステル、炭化水素化合物等が挙げられる。上記反応において、反応温度は30~120℃とすることが好ましく、反応時間は1~24時間とすることが好ましい。
 重合体を溶解してなる反応溶液は、そのまま用いてもよいし、あるいは、反応溶液を大量の貧溶媒中に注いで得られる析出物を減圧下乾燥する方法、反応溶液をエバポレーターで減圧留去する方法等の公知の単離方法を用いて、反応溶液中に含まれる重合体を単離したうえで重合体組成物の調製に供してもよい。
The reaction of the polymer having a structural unit containing a maleic anhydride skeleton with a primary or secondary amine compound is preferably carried out in an organic solvent. Examples of the organic solvent used include alcohols, ethers, ketones, amides, esters, hydrocarbon compounds and the like. In the above reaction, the reaction temperature is preferably 30 to 120 ° C., and the reaction time is preferably 1 to 24 hours.
The reaction solution obtained by dissolving the polymer may be used as it is, or a method of pouring the reaction solution into a large amount of a poor solvent and drying the precipitate under reduced pressure, or distilling off the reaction solution under reduced pressure with an evaporator. The polymer contained in the reaction solution may be isolated and then subjected to the preparation of the polymer composition by using a known isolation method such as the above-mentioned method.
 上記第一級又は二級アミン化合物の反応量としては、上記構造単位(m)の有する無水物基に対して、0.01~1.2当量が好ましく、0.1~1.2当量であることがより好ましく、0.1~1.0当量がさらに好ましい。 The reaction amount of the primary or secondary amine compound is preferably 0.01 to 1.2 equivalents, preferably 0.1 to 1.2 equivalents, with respect to the anhydride group of the structural unit (m). More preferably, 0.1 to 1.0 equivalent is even more preferable.
 Rが炭素数1~10のアルキル基である上記式(m-1)で表される構造単位を有する重合体は、例えば、Rが水素である上記式(m-1)で表される構造単位を有する重合体をエステル化することによって、得ることができる。エステル化は、後述するポリアミック酸からポリアミック酸エステルを得る方法と同様にして、行うことができる。 A polymer having a structural unit represented by the above formula (m-1) in which R is an alkyl group having 1 to 10 carbon atoms has, for example, a structure represented by the above formula (m-1) in which R is hydrogen. It can be obtained by esterifying a polymer having units. Esterification can be carried out in the same manner as the method for obtaining a polyamic acid ester from a polyamic acid described later.
 上記式(m-2)で表される構造単位を有する重合体は、上記式(m-1)で表される構造単位を有する重合体を閉環させて得られる。本発明の重合体(P)は、上記式(m-2)で表される構造単位以外に、上記式(m-1)で表される構造単位を含んでいてもよい。上記式(m-2)で表される構造単位を有する重合体を得る方法としては、上記式(m-1)の構造単位を有する重合体の溶液をそのまま加熱する熱イミド化、又は触媒を添加する触媒イミド化が挙げられる。溶液中で熱イミド化させる場合の温度は、100~400℃、好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。 The polymer having the structural unit represented by the above formula (m-2) is obtained by ring-closing the polymer having the structural unit represented by the above formula (m-1). The polymer (P) of the present invention may contain a structural unit represented by the above formula (m-1) in addition to the structural unit represented by the above formula (m-2). As a method for obtaining a polymer having a structural unit represented by the above formula (m-2), thermal imidization in which a solution of the polymer having the structural unit represented by the above formula (m-1) is heated as it is, or a catalyst is used. Catalytic imidization to be added can be mentioned. The temperature for thermal imidization in the solution is 100 to 400 ° C., preferably 120 to 250 ° C., and it is preferable to remove the water produced by the imidization reaction from the outside of the system.
 上記触媒イミド化は、上記式(m-1)で表される構造単位を有する重合体溶液に、塩基性触媒、必要に応じて酸無水物を添加し、-20~250℃、好ましくは0~180℃で撹拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミド酸基の1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミントリオクチルアミン、N,N-ジメチル-4-アミノピリジン等を挙げることができる。 In the above catalyst imidization, a basic catalyst and, if necessary, an acid anhydride are added to a polymer solution having a structural unit represented by the above formula (m-1), and the temperature is −20 to 250 ° C., preferably 0. This can be done by stirring at ~ 180 ° C. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times, that of the amic acid group, and the amount of acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times that of the amic acid group. It is double. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine trioctylamine, N, N-dimethyl-4-aminopyridine and the like.
 本発明では、上記特定の構造単位を有する重合体(P)と有機溶媒とを含有する重合体組成物を使用することによって、後記する実施例において具体的に例証するように、基板剥がれが生じにくい液晶配向膜を得ることができ、かつ外部圧力に対する耐久性が高い液晶表示素子を得ることができる等の本発明の効果を発揮する。そのメカニズムが必ずしも明らかではないが、以下に述べることが一因と考えられる。
 重合体(P)に含有されるカルボキシ基やその他の重合体若しくは基板が有するヒドロキシ基、カルボキシ基などの極性基と、上記式(m-1)に含まれる部位とが加熱縮合することにより、重合体(P)の分子内やその他の重合体若しくは基板との間で化学結合が生成すると考えられる。フレキシブルな構造を有する重合体(P)の架橋により膜自体の硬度、靭性が向上するとともに、未架橋のカルボキシ基が基材との密着性なども向上させると考えられる。
In the present invention, by using the polymer composition containing the polymer (P) having the specific structural unit and the organic solvent, the substrate peels off as specifically illustrated in the examples described later. The effects of the present invention are exhibited, such as the ability to obtain a difficult liquid crystal alignment film and the ability to obtain a liquid crystal display element having high durability against external pressure. The mechanism is not always clear, but it is thought that the following is one of the causes.
By heat-condensing the carboxy group contained in the polymer (P) and the polar groups such as the hydroxy group and the carboxy group of the polymer or the substrate and the site contained in the above formula (m-1), they are heat-condensed. It is considered that a chemical bond is formed in the molecule of the polymer (P) and with other polymers or substrates. It is considered that the cross-linking of the polymer (P) having a flexible structure improves the hardness and toughness of the film itself, and the uncross-linked carboxy group also improves the adhesion to the substrate.
 本発明の重合体(P)は、式(m-1)及び(m-2)で表される構造単位に加えて、式(m)及び(v)で表される構造単位を有してもよい。また、本発明の重合体(P)は、式(m)、(m-1)、(m-2)及び(v)で表される構造単位以外の構造単位をさらに有してもよい。式(m)、(m-1)、(m-2)及び(v)で表される構造単位以外の構造単位としては、例えば、下記式(m-3)~(m-4)、又はその他のエチレン性二重結合を有する化合物に由来する構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000013
(R、R、R、Rsは、上記式(m-1)~(m-2)における定義と同義である。Yは、水素原子又は上記式(m-1)~(m-2)におけるX以外の1価の有機基を表す。)
The polymer (P) of the present invention has structural units represented by the formulas (m) and (v) in addition to the structural units represented by the formulas (m-1) and (m-2). May be good. Further, the polymer (P) of the present invention may further have a structural unit other than the structural units represented by the formulas (m), (m-1), (m-2) and (v). Examples of the structural unit other than the structural unit represented by the formulas (m), (m-1), (m-2) and (v) include the following formulas (m-3) to (m-4) or Structural units derived from other compounds having an ethylenic double bond can be mentioned.
Figure JPOXMLDOC01-appb-C000013
(R 1 , R 2 , R, Rs are synonymous with the definitions in the above formulas (m-1) to (m-2). Y is a hydrogen atom or the above formulas (m-1) to (m-2). ) Represents a monovalent organic group other than X.)
 式(m-3)~(m-4)におけるYの1価の有機基の具体例としては、p-アミノ安息香酸などのカルボキシル基含有モノアミン;シクロヘキシルアミンなどの脂環式基含有モノアミン;n-ブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミン、n-ノニルアミン、n-デシルアミン、n-ウンデシルアミン、n-ドデシルアミン、n-トリデシルアミン、n-テトラデシルアミン、n-ペンタデシルアミン、n-ヘキサデシルアミン、n-ヘプタデシルアミン、n-オクタデシルアミン、n-エイコシルアミンなどのアルキル基含有モノアミン;又はアニリンに由来する1価の有機基が挙げられる。 Specific examples of the monovalent organic group of Y in the formulas (m-3) to (m-4) include carboxyl group-containing monoamines such as p-aminobenzoic acid; alicyclic group-containing monoamines such as cyclohexylamine; n. -Butylamine, n-pentylamine, n-hexylamine, n-heptylamine, n-octylamine, n-nonylamine, n-decylamine, n-undecylamine, n-dodecylamine, n-tridecylamine, n- Alkyl group-containing monoamines such as tetradecylamine, n-pentadecylamine, n-hexadecylamine, n-heptadecylamine, n-octadecylamine, n-eicosylamine; or monovalent organic groups derived from aniline. Can be mentioned.
 上記その他のエチレン性二重結合を有する化合物としては、アクリル酸、メタクリル酸、α-エチルアクリル酸、2-ヒドロキシエチル(メタ)アクリル酸、4-ビニル安息香酸、マレイン酸等のカルボキシル基含有化合物;2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド等のヒドロキシ基含有化合物;イソオクチルアクリレート、イソデシルアクリレート、ラウリルアクリレート、デシルメタクリレート、ステアリルアクリレート等の長鎖アルキル基含有化合物;シクロヘキシル(メタ)アクリレートなどの脂環式基含有化合物;2-フェノキシエチルアクリレート、エトキシ化ノニルフェニルアクリレート等のベンゼン環含有化合物;グリシジル(メタ)アクリレート、メチルグリシジル(メタ)アクリレート、4-(グリシジルオキシ)ブチル(メタ)アクリレートなどのオキシラニル基含有化合物、2-メタクリロイルオキシエチルイソシアネート(昭和電工社製 カレンズMOI)、2-[(3,5-ジメチルピラゾイル)カルボニルアミノ]エチルメタクリレート(昭和電工社製 カレンズMOI-BP)等のイソシアネート基又は保護イソシアネート基を有する化合物;テトラヒドロフルフリルメタクリレートなどのテトラヒドロピラニル基を有する化合物等が挙げられる。 Examples of the other compounds having an ethylenic double bond include carboxyl group-containing compounds such as acrylic acid, methacrylic acid, α-ethylacrylic acid, 2-hydroxyethyl (meth) acrylic acid, 4-vinylbenzoic acid, and maleic acid. Hydroxy group-containing compounds such as 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, N-methylol (meth) acrylamide; isooctyl acrylate, isodecyl acrylate, Long-chain alkyl group-containing compounds such as lauryl acrylate, decyl methacrylate and stearyl acrylate; alicyclic group-containing compounds such as cyclohexyl (meth) acrylate; benzene ring-containing compounds such as 2-phenoxyethyl acrylate and nonylphenyl acrylate ethoxylated; glycidyl Oxylanyl group-containing compounds such as (meth) acrylate, methylglycidyl (meth) acrylate, 4- (glycidyloxy) butyl (meth) acrylate, 2-methacryloyloxyethyl isocyanate (Karens MOI manufactured by Showa Denko Co., Ltd.), 2-[(3) , 5-Dimethylpyrazoyl) carbonylamino] ethyl methacrylate (Kalens MOI-BP manufactured by Showa Denko Co., Ltd.) and other compounds having an isocyanate group or a protected isocyanate group; compounds having a tetrahydropyranyl group such as tetrahydrofurfuryl methacrylate and the like can be mentioned. Be done.
 本発明の重合体(P)は、式(m)で表される構造単位を1種単独で含んでもよいし、2種以上含んでもよい。式(m)で表される構造単位の含有量は、重合体(P)の全構造単位に対して、5~90モル%が好ましく、10~50モル%がより好ましい。
 本発明の重合体(P)は、式(v)で表される構造単位を1種単独で含んでもよいし、2種以上含んでもよい。式(v)で表される構造単位の含有量は、重合体(P)の全構造単位に対して、50~90モル%が好ましく、30~70モル%がより好ましい。
 但し、本発明の重合体(P)における式(m)で表される構造単位、上記式(m-1)で表される構造単位及び上記式(m-2)で表される構造単位の含有量の合計は、本発明の重合体(P)を得るために用いる上記無水マレイン酸系重合体が有する式(m)で表される構造単位の含有量と同じである。
The polymer (P) of the present invention may contain one type of structural unit represented by the formula (m) alone, or may contain two or more types. The content of the structural unit represented by the formula (m) is preferably 5 to 90 mol%, more preferably 10 to 50 mol%, based on the total structural unit of the polymer (P).
The polymer (P) of the present invention may contain one type of structural unit represented by the formula (v) alone, or may contain two or more types. The content of the structural unit represented by the formula (v) is preferably 50 to 90 mol%, more preferably 30 to 70 mol%, based on the total structural unit of the polymer (P).
However, the structural unit represented by the formula (m), the structural unit represented by the above formula (m-1) and the structural unit represented by the above formula (m-2) in the polymer (P) of the present invention. The total content is the same as the content of the structural unit represented by the formula (m) of the maleic anhydride-based polymer used to obtain the polymer (P) of the present invention.
 本発明に用いられる重合体(P)の含有量は、重合体組成物に含まれる重合体成分の合計に対し、1~100質量%が好ましく、5~70質量%がより好ましく、10~50質量%がさらに好ましい。重合体(P)は、1種を単独で又は2種以上を組み合わせて使用できる。
 なお、本発明の重合体組成物に含まれる重合体成分の合計含有量は、形成させようとする塗膜の厚みの設定によっても適宜変更できるが、均一で欠陥のない塗膜を形成させるという点から1質量%以上が好ましく、溶液の保存安定性の点からは10質量%以下が好ましい。
The content of the polymer (P) used in the present invention is preferably 1 to 100% by mass, more preferably 5 to 70% by mass, and 10 to 50% by mass, based on the total amount of the polymer components contained in the polymer composition. Mass% is more preferred. The polymer (P) may be used alone or in combination of two or more.
The total content of the polymer components contained in the polymer composition of the present invention can be appropriately changed by setting the thickness of the coating film to be formed, but it is said that a uniform and defect-free coating film is formed. From the point of view, 1% by mass or more is preferable, and from the point of view of storage stability of the solution, 10% by mass or less is preferable.
<重合体(Q)>
 本発明の重合体組成物は、ポリアミック酸、ポリアミック酸エステル、ポリアミック酸-ポリアミック酸エステルコポリマー、ポリイミド、ポリアミド、ポリオルガノシロキサン、ポリ(メタ)アクリレート及びポリエステルよりなる群から選ばれる少なくとも一種である重合体(Q)をさらに含有してもよい。重合体(Q)は、液晶配向剤の溶液特性や液晶配向膜の電気特性を改善する点で含有することが好ましい。なお、ポリイミドは、該ポリアミック酸、ポリアミック酸エステル、又はポリアミック酸-ポリアミック酸エステルコポリマーをイミド化したものである。上記ポリアミック酸、ポリアミック酸エステル、又はポリアミック酸-ポリアミック酸エステルコポリマーは、好ましくは、ジアミン成分とテトラカルボン酸成分とを重合反応させることにより得られる。
<Polymer (Q)>
The polymer composition of the present invention is at least one selected from the group consisting of polyamic acid, polyamic acid ester, polyamic acid-polyamic acid ester copolymer, polyimide, polyamide, polyorganosiloxane, poly (meth) acrylate and polyester. The coalescence (Q) may be further contained. The polymer (Q) is preferably contained in terms of improving the solution characteristics of the liquid crystal alignment agent and the electrical characteristics of the liquid crystal alignment film. The polyimide is an imidized polyamic acid, polyamic acid ester, or polyamic acid-polyamic acid ester copolymer. The polyamic acid, polyamic acid ester, or polyamic acid-polyamic acid ester copolymer is preferably obtained by polymerizing a diamine component and a tetracarboxylic acid component.
<ジアミン成分>
 上記ジアミン成分としては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、4-(2-(メチルアミノ)エチル)アニリン、3,5-ジアミノ安息香酸などのカルボキシル基を有するジアミン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、1,2-ビス(4-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,2-ビス(4-アミノフェノキシ)エタン、1,2-ビス(4-アミノ-2-メチルフェノキシ)エタン、1,3-ビス(4-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、4-(2-(4-アミノフェノキシ)エトキシ)-3-フルオロアニリン、ジ(2-(4-アミノフェノキシ)エチル)エーテル、4-アミノ-4’-(2-(4-アミノフェノキシ)エトキシ)ビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、1,4-ジアミノナフタレン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,7-ジアミノナフタレン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、1,3-ビス(4-アミノフェネチル)ウレアなどのウレア結合を有するジアミン、メタクリル酸2-(2,4-ジアミノフェノキシ)エチル、2,4-ジアミノ-N,N-ジアリルアニリンなどの光重合性基を末端に有するジアミン、下記式(R1)~(R5)などのラジカル開始機能を有するジアミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、9,9-ビス(4-アミノフェニル)フルオレンなどの光照射により増感作用を示す光増感機能を有するジアミン、2,6-ジアミノピリジン、3,4-ジアミノピリジン、2,4-ジアミノピリミジン、3,6-ジアミノカルバゾール、N-メチル-3,6-ジアミノカルバゾール、下記式(z-1)~(z-18)などの複素環を有するジアミン、下記式(Dp-1)~(Dp-3)などのジフェニルアミン骨格を有するジアミン、下記式(5-1)~(5-11)などの基「-N(D)-」(Dは加熱によって脱離し水素原子に置き換わる保護基を表し、好ましくはtert-ブトキシカルボニル基である。)を有するジアミン、下記式(Ox-1)~(Ox-2)などのオキサゾリン構造を有するジアミン、下記式(V2-1)~(V2-13)などの液晶の垂直配向性を発現させる構造を側鎖に有するジアミン、1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサンなどのオルガノシロキサン含有ジアミン等が挙げられる。
 該ジアミンは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
<Diamine component>
Examples of the diamine component include p-phenylenediamine, m-phenylenediamine, 4- (2- (methylamino) ethyl) aniline, diamine having a carboxyl group such as 3,5-diaminobenzoic acid, and 4,4'. -Diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 1,2-bis (4-aminophenyl) ethane, 1,3-bis (4-amino) Phenyl) propane, 1,4-bis (4-aminophenyl) butane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,2-bis (4) -Aminophenoxy) ethane, 1,2-bis (4-amino-2-methylphenoxy) ethane, 1,3-bis (4-aminophenoxy) propane, 1,4-bis (4-aminophenoxy) butane, 1, , 5-bis (4-aminophenoxy) pentane, 1,6-bis (4-aminophenoxy) hexane, 4- (2- (4-aminophenoxy) ethoxy) -3-fluoroaniline, di (2-( 4-Aminophenoxy) ethyl) ether, 4-amino-4'-(2- (4-aminophenoxy) ethoxy) biphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl -4,4'-diaminobiphenyl, 4,4'-diamino-2,2'-bis (trifluoromethyl) biphenyl, 1,4-diaminonaphthalene, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,7-Diaminonaphthalene, 2,2'-bis [4- (4-aminophenoxy) phenyl] propane, 2,2'-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2 Diamines with urea bonds such as'-bis (4-aminophenyl) propane, 1,3-bis (4-aminophenethyl) urea, 2- (2,4-diaminophenoxy) ethyl methacrylate, 2,4-diamino Diamines having a photopolymerizable group at the end such as -N, N-diallylaniline, diamines having a radical initiation function such as the following formulas (R1) to (R5), 4,4'-diaminobenzophenone, 3,3'- Diaminobenzophenone, diamine having a photosensitizing function showing a sensitizing effect by light irradiation such as 9,9-bis (4-aminophenyl) fluorene, 2,6-diaminopyridine, 3,4-diaminopyridine, 2,4 -Diaminopyrimidine, 3,6-diaminocarbazole, N-methyl-3,6-diaminocarbazole, diamine having a heterocycle such as the following formulas (z-1) to (z-18), the following formula (Dp-1) A diamine having a diphenylamine skeleton such as (Dp-3), and a group "-N (D)-" such as the following formulas (5-1) to (5-11) (D is a protection that is desorbed by heating and replaced with a hydrogen atom. It represents a group, preferably a tert-butoxycarbonyl group. ), Diamines having an oxazoline structure such as the following formulas (Ox-1) to (Ox-2), and structures expressing the vertical orientation of liquid crystals such as the following formulas (V2-1) to (V2-13). Examples thereof include diamines having a side chain of 1,3-bis (3-aminopropyl) -tetramethyldisiloxane and other organosiloxane-containing diamines.
The diamine may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
(式(R3)~(R5)において、nは2~6の整数である。)
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
(In equations (R3) to (R5), n is an integer of 2 to 6.)
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
(Bocはtert-ブトキシカルボニル基を表す。)
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
(Boc represents a tert-butoxycarbonyl group.)
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021

(Xv1~Xv4、Xp1~Xp8は、それぞれ独立に、-(CH-(aは1~15の整数である)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CHO-、-CH-OCO-、-COO-、又は-OCO-を表し、Xv5は-O-、-CHO-、-CH-OCO-、-COO-、又は-OCO-を表し、XV6~XV7、Xs1~Xs4は、それぞれ独立に、-O-、-(CHO-(nは1~6の整数)、-COO-又は-OCO-を表す。X~Xは、単結合、-O-、-NH-、又は-O-(CH-O-(mは1~8の整数である。)を表し、Rv1~Rv4、R1a~R1hはそれぞれ独立に、-C2n+1(nは1~20の整数)、又は-O-C2n+1(nは2~20の整数)を表す。)
Figure JPOXMLDOC01-appb-C000021

(X v1 to X v4 and X p1 to X p8 are independently- (CH 2 ) a- (a is an integer of 1 to 15), -CONH-, -NHCO-, and -CON (CH 3). ) -, - NH -, - O -, - CH 2 O -, - CH 2 -OCO -, - COO-, or -OCO- represent, X v5 is -O -, - CH 2 O - , - CH 2- OCO-, -COO-, or -OCO-, and X V6 to X V7 and X s1 to X s4 are independently -O-,-(CH 2 ) n O- (n is 1 to 1 to). (Integer of 6), -COO- or -OCO-. X a to X f are single-coupled, -O-, -NH-, or -O- (CH 2 ) m- O- (m is 1 to 1 to). 8 is an integer of.) represent, R v1 ~ R v4, R 1a to ~ R 1h each independently, -C n H 2n + 1 ( n is an integer of 1 to 20), or -O-C n H 2n + 1 ( n represents an integer from 2 to 20).
 また、上記ジアミン成分としては、メタキシレンジアミン等の脂肪族ジアミン、4,4-メチレンビス(シクロヘキシルアミン)等の脂環式ジアミン、国際公開第2016/125870号に記載のジアミン等も挙げることができる。 Examples of the diamine component include aliphatic diamines such as m-xylylenediamine, alicyclic diamines such as 4,4-methylenebis (cyclohexylamine), and diamines described in International Publication No. 2016/125870. ..
<テトラカルボン酸成分>
 テトラカルボン酸成分とは、テトラカルボン酸及びテトラカルボン酸誘導体から選択される少なくとも一種を含む成分をいう。テトラカルボン酸誘導体としては、テトラカルボン酸ジハライド、テトラカルボン酸二無水物、テトラカルボン酸ジエステルジクロリド、テトラカルボン酸ジエステル等が挙げられる。
 テトラカルボン酸成分は、芳香族テトラカルボン酸二無水物、非環式脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、又はこれらの誘導体が挙げられる。ここで、芳香族テトラカルボン酸二無水物は、芳香環に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。非環式脂肪族テトラカルボン酸二無水物は、鎖状炭化水素構造に結合する4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、鎖状炭化水素構造のみで構成されている必要はなく、その一部に脂環式構造や芳香環構造を有していてもよい。脂環式テトラカルボン酸二無水物は、脂環式構造に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、これら4つのカルボキシ基はいずれも芳香環には結合していない。また、脂環式構造のみで構成されている必要はなく、その一部に鎖状炭化水素構造や芳香環構造を有していてもよい。
 該テトラカルボン酸二無水物又はその誘導体は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
<Tetracarboxylic acid component>
The tetracarboxylic acid component refers to a component containing at least one selected from a tetracarboxylic acid and a tetracarboxylic acid derivative. Examples of the tetracarboxylic acid derivative include tetracarboxylic acid dihalide, tetracarboxylic dianhydride, tetracarboxylic acid diester dichloride, and tetracarboxylic acid diester.
Examples of the tetracarboxylic acid component include aromatic tetracarboxylic dianhydrides, acyclic aliphatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, and derivatives thereof. Here, the aromatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to the aromatic ring. The acyclic aliphatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups bonded to a chain hydrocarbon structure. However, it does not have to be composed of only a chain hydrocarbon structure, and a part thereof may have an alicyclic structure or an aromatic ring structure. The alicyclic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to the alicyclic structure. However, none of these four carboxy groups are bonded to the aromatic ring. Further, it is not necessary to have only an alicyclic structure, and a chain hydrocarbon structure or an aromatic ring structure may be partially provided.
The tetracarboxylic dianhydride or a derivative thereof may be used alone or in combination of two or more.
 上記テトラカルボン酸成分は、好ましくは、下記式(3)で表されるテトラカルボン酸二無水物またはその誘導体を含む。
Figure JPOXMLDOC01-appb-C000022
Xは下記(x-1)~(x-13)から選ばれる構造を表す。
Figure JPOXMLDOC01-appb-C000023

(R~Rは、それぞれ独立して、水素原子、メチル基、エチル基、プロピル基、塩素原子又はフェニル基を表す。R及びRは、それぞれ独立して、水素原子またはメチル基を表す。j及びkは、それぞれ独立に、0又は1を表す。A及びAは、それぞれ独立して、単結合、-O-、-CO-、-COO-、フェニレン、スルホニル基又はアミド基を表す。*1は一方の酸無水物基に結合する結合手を表し、*2は他方の酸無水物基に結合する結合手を表す。2つのAは同一であっても異なっていてもよい。)
The tetracarboxylic acid component preferably contains a tetracarboxylic dianhydride represented by the following formula (3) or a derivative thereof.
Figure JPOXMLDOC01-appb-C000022
X represents a structure selected from the following (x-1) to (x-13).
Figure JPOXMLDOC01-appb-C000023

(R 1 to R 4 independently represent a hydrogen atom, a methyl group, an ethyl group, a propyl group, a chlorine atom or a phenyl group. R 5 and R 6 independently represent a hydrogen atom or a methyl group, respectively. J and k each independently represent 0 or 1. A 1 and A 2 independently represent a single bond, -O-, -CO-, -COO-, phenylene, sulfonyl group or an amide group. * 1 represents a bond that binds to one of the anhydride groups, * 2 .2 one a 2 which represents a bond that binds to the other acid anhydride groups be the same or different May be.)
 上記(x-12)及び(x-13)の好ましい具体例としては、下記式(x-14)~(x-29)が挙げられる。尚、式中「*」は結合手を表す。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Preferred specific examples of the above (x-12) and (x-13) include the following formulas (x-14) to (x-29). In the formula, "*" represents a bond.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 上記式(3)で表されるテトラカルボン酸二無水物又はその誘導体の好ましい例としては、Xが上記式(x-1)~(x-7)及び(x-11)~(x-13)である式(3)で表されるテトラカルボン酸二無水物又はその誘導体が挙げられる。 As a preferable example of the tetracarboxylic dianhydride represented by the above formula (3) or a derivative thereof, X is the above formulas (x-1) to (x-7) and (x-11) to (x-13). ), The tetracarboxylic dianhydride represented by the formula (3) or a derivative thereof can be mentioned.
<ポリイミド前駆体(ポリアミック酸)の製造>
 本発明に用いられるポリイミド前駆体は、ポリアミック酸やポリアミック酸エステル、ポリアミック酸-ポリアミック酸エステルコポリマー等が挙げられる。なお、本明細書においては、ポリイミド前駆体又はポリイミドを総称してポリイミド系重合体ともいう。
 本発明に用いられるポリイミド前駆体であるポリアミック酸は、例えば、以下の方法により製造することができる。具体的には、ジアミン成分とテトラカルボン酸成分とを、有機溶媒の存在下で、-20~150℃、好ましくは0~80℃において、30分~24時間、好ましくは1~12時間反応させることによって合成できる。
<Manufacturing of polyimide precursor (polyamic acid)>
Examples of the polyimide precursor used in the present invention include polyamic acid, polyamic acid ester, and polyamic acid-polyamic acid ester copolymer. In addition, in this specification, a polyimide precursor or polyimide is generically also referred to as a polyimide-based polymer.
The polyamic acid, which is a polyimide precursor used in the present invention, can be produced, for example, by the following method. Specifically, the diamine component and the tetracarboxylic acid component are reacted in the presence of an organic solvent at −20 to 150 ° C., preferably 0 to 80 ° C. for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized by.
 ジアミン成分とテトラカルボン酸成分との反応は、通常、有機溶媒中で行う。その際に用いる有機溶媒としては、生成したポリイミド前駆体が溶解するものであれば特に限定されない。下記に、反応に用いる有機溶媒の具体例を挙げるが、これらの例に限定されるものではない。例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン又はγ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド又は1,3-ジメチル-2-イミダゾリジノンが挙げられる。
 また、ポリイミド前駆体の溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン又は下記の式[D-1]~式[D-3]で示される有機溶媒を用いることができる。
Figure JPOXMLDOC01-appb-C000026
 式[D-1]中、Dは炭素数1~3のアルキル基を示し、式[D-2]中、Dは炭素数1~3のアルキル基を示し、式[D-3]中、Dは炭素数1~4のアルキル基を示す。
 これらの有機溶媒は単独で使用しても、混合して使用してもよい。更に、ポリイミド前駆体を溶解しない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、上記溶媒に混合して使用してもよい。
The reaction between the diamine component and the tetracarboxylic acid component is usually carried out in an organic solvent. The organic solvent used at that time is not particularly limited as long as it dissolves the produced polyimide precursor. Specific examples of the organic solvent used in the reaction are given below, but the present invention is not limited to these examples. For example, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl-2-imidazolidinone. Can be mentioned.
When the polyimide precursor has high solubility, it is represented by methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone or the following formulas [D-1] to [D-3]. Organic solvent can be used.
Figure JPOXMLDOC01-appb-C000026
In the formula [D-1], D 1 represents an alkyl group having 1 to 3 carbon atoms, and in the formula [D-2], D 2 represents an alkyl group having 1 to 3 carbon atoms, and the formula [D-3]. Among them, D 3 represents an alkyl group having 1 to 4 carbon atoms.
These organic solvents may be used alone or in combination. Further, even if the solvent does not dissolve the polyimide precursor, it may be mixed with the above solvent and used as long as the produced polyimide precursor does not precipitate.
 反応系中におけるポリアミック酸ポリマーの濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという点から、1~30質量%が好ましく、5~20質量%がより好ましい。 The concentration of the polyamic acid polymer in the reaction system is preferably 1 to 30% by mass, more preferably 5 to 20% by mass, from the viewpoint that precipitation of the polymer is unlikely to occur and a high molecular weight polymer is easily obtained.
 上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、ポリマーを析出させて回収できる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで、精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。 The polyamic acid obtained as described above can be recovered by precipitating a polymer by injecting the reaction solution into a poor solvent while stirring well. Further, the purified polyamic acid powder can be obtained by performing precipitation several times, washing with a poor solvent, and then drying at room temperature or by heating. The poor solvent is not particularly limited, and examples thereof include water, methanol, ethanol, hexane, butyl cellosolve, acetone, and toluene.
<ポリイミド前駆体(ポリアミック酸エステル、ポリアミック酸-ポリアミック酸エステルコポリマー)の製造>
 本発明に用いられるポリイミド前駆体であるポリアミック酸エステル、ポリアミック酸-ポリアミック酸エステルコポリマーは、例えば、(1)エステル化剤を用いたポリアミック酸のエステル化反応、(2)テトラカルボン酸ジエステルジクロリドとジアミンとの反応、又は(3)テトラカルボン酸ジエステルとジアミンとの重縮合反応で製造することができる。
<Manufacturing of polyimide precursors (polyamic acid ester, polyamic acid-polyamic acid ester copolymer)>
The polyamic acid ester and polyamic acid-polyamic acid ester copolymer which are polyimide precursors used in the present invention are, for example, with (1) esterification reaction of polyamic acid using an esterifying agent and (2) tetracarboxylic acid diester dichloride. It can be produced by a reaction with a diamine or (3) a polycondensation reaction of a tetracarboxylic acid diester and a diamine.
 上記3つの製造方法の中でも、高分子量のポリアミック酸エステル、ポリアミック酸-ポリアミック酸エステルコポリマーが得られるため、上記(1)又は(2)の製法が特に好ましい。
 上記のようにして得られるポリアミック酸エステル、ポリアミック酸-ポリアミック酸エステルコポリマーの溶液は、よく撹拌させながら貧溶媒に注入することで、ポリマーを析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して、精製されたポリアミック酸エステル、ポリアミック酸-ポリアミック酸エステルコポリマーの粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
Among the above three production methods, the above-mentioned production method (1) or (2) is particularly preferable because a high molecular weight polyamic acid ester or polyamic acid-polyamic acid ester copolymer can be obtained.
The solution of the polyamic acid ester and the polyamic acid-polyamic acid ester copolymer obtained as described above can be injected into a poor solvent with good stirring to precipitate a polymer. Precipitation is carried out several times, the mixture is washed with a poor solvent, and then dried at room temperature or by heating to obtain a purified polyamic acid ester or polyamic acid-polyamic acid ester copolymer powder. The poor solvent is not particularly limited, and examples thereof include water, methanol, ethanol, hexane, butyl cellosolve, acetone, and toluene.
<ポリイミドの製造>
 本発明に用いられるポリイミドは、上記したポリイミド前駆体をイミド化することにより製造できる。
<Manufacturing of polyimide>
The polyimide used in the present invention can be produced by imidizing the above-mentioned polyimide precursor.
 イミド化は、イミド化させたいポリアミック酸を、有機溶媒中、塩基性触媒と酸無水物の存在下で、撹拌することにより行うことができる。有機溶媒としては、前述した重合反応時に用いる有機溶媒を使用できる。塩基性触媒としては、ピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でも、ピリジンは、反応を進行させるのに適度な塩基性を持つので好ましい。また、酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも、無水酢酸を用いると、反応終了後の精製が容易となるので好ましい。 Imidization can be performed by stirring the polyamic acid to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride. As the organic solvent, the organic solvent used in the above-mentioned polymerization reaction can be used. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Among them, pyridine is preferable because it has an appropriate basicity for advancing the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Among them, acetic anhydride is preferable because it facilitates purification after completion of the reaction.
 上記イミド化反応を行うときの温度は、-20~140℃、好ましくは0~100℃であり、反応時間は0.5~100時間、好ましくは1~80時間で行うことができる。塩基性触媒の量は、アミック酸の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量は、アミック酸の1~50モル倍、好ましくは3~30モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御できる。イミド化率は、必ずしも100%である必要はなく、用途や目的に応じて任意に調整できる。 The temperature at which the imidization reaction is carried out is −20 to 140 ° C., preferably 0 to 100 ° C., and the reaction time can be 0.5 to 100 hours, preferably 1 to 80 hours. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times, that of the amic acid, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times that of the amic acid. It is double. The imidization rate of the obtained polymer can be controlled by adjusting the amount of catalyst, the temperature, and the reaction time. The imidization ratio does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose.
 上記ポリイミド前駆体のイミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の重合体組成物の成分として用いることが好ましい。
 上記のようにして得られるポリイミドの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して、精製されたポリイミドの粉末を得ることができる。
 上記貧溶媒は、特に限定されないが、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられる。
Since the added catalyst and the like remain in the solution after the imidization reaction of the polyimide precursor, the obtained imidized polymer is recovered by the means described below and redissolved in an organic solvent. It is preferable to use it as a component of the polymer composition of the present invention.
The polyimide solution obtained as described above can be injected into a poor solvent with good stirring to precipitate a polymer. Purified polyimide powder can be obtained by precipitating several times, washing with a poor solvent, and then drying at room temperature or by heating.
The poor solvent is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellsolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
 本発明に用いられる重合体(Q)の含有量は、重合体組成物に含まれる重合体成分の合計に対し、30~95質量%が好ましく、50~90質量%がより好ましい。なお、重合体(Q)は、1種を単独で又は2種以上を組み合わせて使用できる。 The content of the polymer (Q) used in the present invention is preferably 30 to 95% by mass, more preferably 50 to 90% by mass, based on the total amount of the polymer components contained in the polymer composition. As the polymer (Q), one type can be used alone or two or more types can be used in combination.
<有機溶媒>
 本発明の重合体組成物に含有される有機溶媒としては、例えば、γ-バレロラクトン、γ-ブチロラクトンなどのラクトン溶媒;γ-ブチロラクタム、N-メチル-2-ピロリドン、N-エチル-2-ピロリドンなどのラクタム溶媒、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド溶媒;4-ヒドロキシ-4-メチル-2-ペンタノン、乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸n-ブチル、乳酸イソアミル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、メチルメトキシプロピオネ-ト、エチルエトキシプロピオネ-ト、エチレングリコールモノメチルエーテル、エチレングリコールエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコール-n-プロピルエーテル、エチレングリコール-i-プロピルエーテル、エチレングリコール-n-ブチルエーテル(ブチルセロソルブ)、エチレングリコールジメチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセタート、プロピレングリコールモノブチルエーテル、プロピレングリコールジアセテート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジイソブチルケトン、イソアミルプロピオネート、イソアミルイソブチレート、ジイソプロピルエーテル、ジイソペンチルエーテル;エチレンカーボネート、プロピレンカーボネートなどのカーボネート溶媒、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、ジイソブチルカルビノール(2,6-ジメチル-4-ヘプタノール)等を挙げることができる。これらは、単独で又は2種以上を混合して使用できる。
<Organic solvent>
Examples of the organic solvent contained in the polymer composition of the present invention include lactone solvents such as γ-valerolactone and γ-butyrolactone; γ-butylolactam, N-methyl-2-pyrrolidone and N-ethyl-2-pyrrolidone. Lactam solvents such as, amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide; 4-hydroxy-4-methyl-2-pentanone, methyl lactate, ethyl lactate, n-propyl lactate, n-butyl lactate. , Isoamyl lactate, n-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate, ethyl pyruvate, methyl methoxypropionate, ethyl ethoxypropionate, ethylene glycol monomethyl ether, ethylene glycol ethyl ether, ethylene glycol Monobutyl ether, ethylene glycol-n-propyl ether, ethylene glycol-i-propyl ether, ethylene glycol-n-butyl ether (butyl cellosolve), ethylene glycol dimethyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol Diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monobutyl ether, propylene glycol diacetate, dipropylene glycol, dipropylene glycol monomethyl ether, Dipropylene glycol monoethyl ether, dipropylene glycol dimethyl ether, tripropylene glycol monomethyl ether, diisobutyl ketone, isoamyl propionate, isoamyl isobutyrate, diisopropyl ether, diisopentyl ether; carbonate solvents such as ethylene carbonate and propylene carbonate, 1 -Hexanol, cyclohexanol, 1,2-ethanediol, diisobutylcarbinol (2,6-dimethyl-4-heptanol) and the like can be mentioned. These can be used alone or in admixture of two or more.
 好ましい溶媒の組み合わせとしては、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジエチレングリコールジエチルエーテル、N-エチル-2-ピロリドンとN-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノン、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとジイソブチルケトン、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとジプロピレングリコールモノメチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールジアセテート、γ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジイソブチルケトン、γ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールジアセテート、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソブチルケトン、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソプロピルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソブチルカルビノール、N-メチル-2-ピロリドンとγ-ブチロラクトンとジプロピレングリコールジメチルエーテル、N-メチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジプロピレングリコールジメチルエーテル、などを挙げることができる。このような溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境などに応じて適宜選択される。 Preferred solvent combinations include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone and γ-butyrolactone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone and γ-butyrolactone and propylene. Glycol monobutyl ether, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether, N-methyl-2-pyrrolidone, γ-butyrolactone, 4-hydroxy-4-methyl-2-pentanone and diethylene glycol diethyl ether, N-ethyl-2 -Pyrrolidone and N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone, N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and diisobutylketone, N-methyl- 2-pyrrolidone, 4-hydroxy-4-methyl-2-pentanone and dipropylene glycol monomethyl ether, N-methyl-2-pyrrolidone, 4-hydroxy-4-methyl-2-pentanone and propylene glycol monobutyl ether, N-methyl -2-pyrrolidone, 4-hydroxy-4-methyl-2-pentanone and propylene glycol diacetate, γ-butyrolactone and 4-hydroxy-4-methyl-2-pentanone and diisobutylketone, γ-butyrolactone and 4-hydroxy-4. -Methyl-2-pentanone and propylene glycol diacetate, N-methyl-2-pyrrolidone, γ-butyrolactone, propylene glycol monobutyl ether and diisobutyl ketone, N-methyl-2-pyrrolidone, γ-butyrolactone, propylene glycol monobutyl ether and diisopropyl Ether, N-methyl-2-pyrrolidone, γ-butyrolactone and propylene glycol Monobutyl ether and diisobutylcarbinol, N-methyl-2-pyrrolidone, γ-butyrolactone and dipropylene glycol dimethyl ether, N-methyl-2-pyrrolidone and propylene glycol Examples thereof include monobutyl ether and dipropylene glycol dimethyl ether. The type and content of such a solvent are appropriately selected according to the coating apparatus for the liquid crystal alignment agent, coating conditions, coating environment, and the like.
 本発明に用いられる有機溶媒の含有量は、重合体組成物の全質量に対し、90~99質量%が好ましく、91~99質量%がより好ましく、92~99質量%がさらに好ましい。 The content of the organic solvent used in the present invention is preferably 90 to 99% by mass, more preferably 91 to 99% by mass, still more preferably 92 to 99% by mass, based on the total mass of the polymer composition.
<液晶配向剤>
 本発明の液晶配向剤は、本発明の重合体組成物を含有するものである。本発明の液晶配向剤は、液晶配向膜の形成に好適となるように塗布液として調製されることが好ましい。本発明の液晶配向剤は、例えば、本発明の重合体組成物及び必要に応じてその他の成分を有機溶媒中に分散又は溶解させることによって、調製することができる。
 有機溶媒としては、例えば、上述した重合体組成物に含有される有機溶媒と同じものを挙げることができる。その他の成分としては、例えば、架橋性化合物、官能性シラン化合物、界面活性剤、光重合性基を有する化合物等を挙げることができる。
<Liquid crystal alignment agent>
The liquid crystal alignment agent of the present invention contains the polymer composition of the present invention. The liquid crystal alignment agent of the present invention is preferably prepared as a coating liquid so as to be suitable for forming a liquid crystal alignment film. The liquid crystal alignment agent of the present invention can be prepared, for example, by dispersing or dissolving the polymer composition of the present invention and, if necessary, other components in an organic solvent.
Examples of the organic solvent include the same organic solvents contained in the polymer composition described above. Examples of other components include crosslinkable compounds, functional silane compounds, surfactants, compounds having a photopolymerizable group, and the like.
 架橋性化合物は、液晶配向膜の強度を高めることを目的として使用できる。かかる架橋性化合物としては、国際公開公報WO2016/047771の段落[0109]~[0113]に記載の、エポキシ基、イソシアネート基、オキセタン基、若しくはシクロカーボネート基を有する化合物、又は、ヒドロキシ基、ヒドロキシアルキル基及び低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の基を有する化合物の他、ブロックイソシアネート基を有する化合物等が挙げられる。 The crosslinkable compound can be used for the purpose of increasing the strength of the liquid crystal alignment film. Examples of such crosslinkable compounds include compounds having an epoxy group, an isocyanate group, an oxetane group, or a cyclocarbonate group, or hydroxy groups and hydroxyalkyls described in paragraphs [0109] to [0113] of WO2016 / 047771. In addition to a compound having at least one group selected from the group consisting of a group and a lower alkoxyalkyl group, a compound having a blocked isocyanate group and the like can be mentioned.
 ブロックイソシアネート化合物は、市販品として入手可能であり、例えば、コロネートAPステーブルM、コロネート2503、2515、2507、2513、2555、ミリオネートMS-50(以上、日本ポリウレタン工業(株)製)、タケネートB-830、B-815N、B-820NSU、B-842N、B-846N、B-870N、B-874N、B-882N(以上、三井化学(株)製)等を好ましく使用できる。 Blocked isocyanate compounds are available as commercial products, for example, Coronate AP Stable M, Coronate 2503, 2515, 2507, 2513, 2555, Millionate MS-50 (all manufactured by Nippon Polyurethane Industry Co., Ltd.), Takenate B. -830, B-815N, B-820NSU, B-842N, B-846N, B-870N, B-874N, B-882N (all manufactured by Mitsui Chemicals, Inc.) and the like can be preferably used.
 好ましい架橋性化合物の具体例としては、下記式(CL-1)~(CL-11)で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000027
Specific examples of the preferable crosslinkable compound include compounds represented by the following formulas (CL-1) to (CL-11).
Figure JPOXMLDOC01-appb-C000027
 上記は架橋性化合物の一例であり、これらに限定されない。また、本発明の液晶配向剤に用いる架橋性化合物は、1種類でも、2種類以上組み合わせても良い。 The above is an example of a crosslinkable compound, and is not limited to these. Further, the crosslinkable compound used in the liquid crystal alignment agent of the present invention may be one kind or a combination of two or more kinds.
 本発明の液晶配向剤における、その他の架橋性化合物の含有量は、全ての重合体成分100質量部に対して、0.1~150質量部、又は0.1~100質量部、又は1~50質量部である。 The content of the other crosslinkable compound in the liquid crystal alignment agent of the present invention is 0.1 to 150 parts by mass, 0.1 to 100 parts by mass, or 1 to 1 to 100 parts by mass with respect to 100 parts by mass of all the polymer components. It is 50 parts by mass.
 官能性シラン化合物は、液晶配向膜と下地基板との密着性を向上することを目的として使用できる。具体例としては、国際公開公報2014/119682の段落[0019]に記載のシラン化合物を挙げることができる。官能性シラン化合物の含有量は、全ての重合体成分100質量部に対して、好ましくは0.1~30質量部、より好ましくは0.5~20質量部である。 The functional silane compound can be used for the purpose of improving the adhesion between the liquid crystal alignment film and the underlying substrate. As a specific example, the silane compound described in paragraph [0019] of International Publication 2014/119682 can be mentioned. The content of the functional silane compound is preferably 0.1 to 30 parts by mass, and more preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of all the polymer components.
 界面活性剤は、液晶配向膜の膜厚の均一性や表面平滑性を向上させることを目的として使用できる。界面活性剤の例としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。これらの具体例は、国際公開公報WO2016/047771の段落[0117]に記載の界面活性剤が挙げられる。界面活性剤の使用量は、液晶配向剤に含有される全ての重合体成分100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。 The surfactant can be used for the purpose of improving the uniformity of the film thickness and the surface smoothness of the liquid crystal alignment film. Examples of the surfactant include a fluorine-based surfactant, a silicone-based surfactant, a nonion-based surfactant, and the like. Specific examples of these include the surfactants described in paragraph [0117] of WO2016 / 047771. The amount of the surfactant used is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass, based on 100 parts by mass of all the polymer components contained in the liquid crystal alignment agent.
 光重合性基を有する化合物は、アクリレート基やメタクリレート基などの重合性不飽和基を分子内に1個以上有する化合物、例えば下記式(M-1)~(M-7)で表されるような化合物を挙げることができる。 The compound having a photopolymerizable group is a compound having one or more polymerizable unsaturated groups such as an acrylate group and a methacrylate group in the molecule, for example, as represented by the following formulas (M-1) to (M-7). Compounds can be mentioned.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 更に、本発明の液晶配向剤には、液晶配向膜中の電荷移動を促進して素子の電荷抜けを促進させる化合物として、国際公開公報WO2011/132751号(2011.10.27公開)の段落[0194]~[0200]に掲載される、式[M1]~式[M156]で示される窒素含有複素環アミン化合物、より好ましくは3-ピコリルアミン、4-ピコリルアミンを添加できる。このアミン化合物は、液晶配向剤に直接添加しても構わないが、濃度0.1~10質量%、好ましくは1~7質量%の溶液にしてから添加することが好ましい。この溶媒は、特定重合体(P)を溶解させるならば特に限定されない。 Further, the liquid crystal alignment agent of the present invention is a compound that promotes charge transfer in the liquid crystal alignment film and promotes charge loss of the device, as described in Paragraph of International Publication No. WO2011 / 132751 (Published 2011.10.27) [ The nitrogen-containing heterocyclic amine compounds represented by the formulas [M1] to [M156], which are listed in 0194] to [0200], more preferably 3-picorylamine and 4-picorylamine can be added. This amine compound may be added directly to the liquid crystal alignment agent, but it is preferably added after making a solution having a concentration of 0.1 to 10% by mass, preferably 1 to 7% by mass. This solvent is not particularly limited as long as it dissolves the specific polymer (P).
 本発明の液晶配向剤にポリアミック酸やポリアミック酸エステルを含有する場合は、塗膜を焼成する際に加熱によるイミド化を効率よく進行させる目的でイミド化促進剤等を添加しても良い。 When the liquid crystal alignment agent of the present invention contains a polyamic acid or a polyamic acid ester, an imidization accelerator or the like may be added for the purpose of efficiently advancing imidization by heating when firing the coating film.
 本発明の液晶配向剤又は重合体組成物における固形分濃度(液晶配向剤又は重合体組成物の有機溶媒以外の成分の合計質量が液晶配向剤又は重合体組成物の全質量に占める割合)は、粘性、揮発性などを考慮して適宜に選択されるが、好ましくは1~10質量%、より好ましくは1~9質量%、更に好ましくは1~8質量%の範囲である。
 特に好ましい固形分濃度の範囲は、基板に液晶配向剤又は重合体組成物を塗布する際に用いる方法によって異なる。例えばスピンコート法による場合、固形分濃度は1.5~4.5質量%の範囲が特に好ましい。印刷法による場合には、固形分濃度を3~9質量%の範囲とし、それにより溶液粘度を12~50mPa・sの範囲とすることが特に好ましい。インクジェット法による場合には、固形分濃度を1~5質量%の範囲とし、それにより、溶液粘度を3~15mPa・sの範囲とすることが特に好ましい。
The solid content concentration in the liquid crystal alignment agent or polymer composition of the present invention (the ratio of the total mass of the components other than the organic solvent of the liquid crystal alignment agent or polymer composition to the total mass of the liquid crystal alignment agent or polymer composition) is It is appropriately selected in consideration of viscosity, volatility and the like, but is preferably in the range of 1 to 10% by mass, more preferably 1 to 9% by mass, and further preferably 1 to 8% by mass.
The range of particularly preferable solid content concentration varies depending on the method used when applying the liquid crystal alignment agent or the polymer composition to the substrate. For example, in the case of the spin coating method, the solid content concentration is particularly preferably in the range of 1.5 to 4.5% by mass. In the case of the printing method, it is particularly preferable that the solid content concentration is in the range of 3 to 9% by mass, and the solution viscosity is in the range of 12 to 50 mPa · s. In the case of the inkjet method, it is particularly preferable that the solid content concentration is in the range of 1 to 5% by mass and the solution viscosity is in the range of 3 to 15 mPa · s.
<液晶配向膜・液晶表示素子>
 本発明の液晶配向膜は、上記液晶配向剤又は重合体組成物から得られる。本発明の液晶配向膜は、水平配向型若しくは垂直配向型の液晶配向膜に用いることができるが、中でもVA方式又はPSAモード等の垂直配向型の液晶表示素子に好適な液晶配向膜である。本発明の液晶表示素子は、上記液晶配向膜を具備するものである。本発明の液晶表示素子は、例えば以下の工程(1)~(3)又は工程(1)~(4)を含む方法により製造することができる。
<Liquid crystal alignment film / liquid crystal display element>
The liquid crystal alignment film of the present invention is obtained from the above liquid crystal alignment agent or polymer composition. The liquid crystal alignment film of the present invention can be used for a horizontally oriented type or a vertically oriented type liquid crystal alignment film, and is particularly suitable for a vertically oriented type liquid crystal display element such as a VA method or a PSA mode. The liquid crystal display element of the present invention includes the liquid crystal alignment film. The liquid crystal display element of the present invention can be manufactured, for example, by a method including the following steps (1) to (3) or steps (1) to (4).
(1)液晶配向剤又は重合体組成物を基板上に塗布する工程
 パターニングされた透明導電膜が設けられている基板の一面に、本発明の液晶配向剤又は重合体組成物を、例えばロールコーター法、スピンコート法、印刷法、インクジェット法などの適宜の塗布方法により塗布する。ここで基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板とともに、アクリル基板やポリカーボネート基板等のプラスチック基板等を用いることもできる。また、反射型の液晶表示素子では、片側の基板のみにならば、シリコンウエハー等の不透明な物でも使用でき、この場合の電極にはアルミニウム等の光を反射する材料も使用できる。
(1) Step of Applying Liquid Liquid Alignment Agent or Polymer Composition on Substrate The liquid crystal alignment agent or polymer composition of the present invention is applied to one surface of a substrate provided with a patterned transparent conductive film, for example, a roll coater. It is applied by an appropriate coating method such as a method, a spin coating method, a printing method, or an inkjet method. Here, the substrate is not particularly limited as long as it is a highly transparent substrate, and a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used together with the glass substrate and the silicon nitride substrate. Further, in the reflective liquid crystal display element, if only one side of the substrate is used, an opaque object such as a silicon wafer can be used, and in this case, a material that reflects light such as aluminum can also be used for the electrode.
(2)塗膜を焼成する工程
 液晶配向剤又は重合体組成物塗布後、塗布した配向剤の液垂れ防止等の目的で、好ましくは先ず予備加熱(プレベーク)が実施される。プレベーク温度は、好ましくは30~200℃であり、より好ましくは40~150℃であり、特に好ましくは40~100℃であるプレベーク時間は好ましくは0.25~10分であり、より好ましくは0.5~5分である。そして溶剤を完全に除去した後、さらに加熱(ポストベーク)工程が実施されることが好ましい。
 このポストベーク温度は好ましくは80~300℃であり、より好ましくは120~250℃である。ポストベーク時間は好ましくは5~200分であり、より好ましくは10~100分である。このようにして形成される膜の膜厚は、5~300nmが好ましく、10~200nmがより好ましい。
(2) Step of firing the coating film After the liquid crystal alignment agent or the polymer composition is applied, preheating is preferably performed first for the purpose of preventing the applied alignment agent from dripping. The pre-baking temperature is preferably 30 to 200 ° C., more preferably 40 to 150 ° C., particularly preferably 40 to 100 ° C., and the pre-baking time is preferably 0.25 to 10 minutes, more preferably 0. .5-5 minutes. Then, after completely removing the solvent, it is preferable that a heating (post-baking) step is further carried out.
The post-bake temperature is preferably 80 to 300 ° C, more preferably 120 to 250 ° C. The post-bake time is preferably 5 to 200 minutes, more preferably 10 to 100 minutes. The film thickness of the film thus formed is preferably 5 to 300 nm, more preferably 10 to 200 nm.
 上記工程(1)で形成した塗膜をそのまま液晶配向膜として使用することができるが、該塗膜に対し配向能付与処理を施してもよい。配向能付与処理としては、塗膜を例えばナイロン、レーヨン、コットンなどの繊維からなる布を巻き付けたロールで一定方向に擦るラビング処理、塗膜に対して偏光又は非偏光の放射線を照射する光配向処理などが挙げられる。
 光配向処理において、塗膜に照射する放射線としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができる。放射線が偏光である場合、直線偏光であっても部分偏光であってもよい。また、用いる放射線が直線偏光又は部分偏光である場合には、照射は基板面に垂直の方向から行ってもよく、斜め方向から行ってもよく、又はこれらを組み合わせて行ってもよい。非偏光の放射線を照射する場合には、照射の方向は斜め方向とする。
The coating film formed in the above step (1) can be used as it is as a liquid crystal alignment film, but the coating film may be subjected to an alignment ability imparting treatment. The alignment ability-imparting treatment includes a rubbing treatment in which the coating film is rubbed in a certain direction with a roll wrapped with a cloth made of fibers such as nylon, rayon, and cotton, and photoalignment in which the coating film is irradiated with polarized or unpolarized radiation. Processing etc. can be mentioned.
In the photo-alignment treatment, as the radiation to irradiate the coating film, for example, ultraviolet rays including light having a wavelength of 150 to 800 nm and visible light can be used. When the radiation is polarized, it may be linearly polarized or partially polarized. When the radiation to be used is linearly polarized light or partially polarized light, the irradiation may be performed from a direction perpendicular to the substrate surface, may be performed from an oblique direction, or may be performed in combination thereof. When irradiating unpolarized radiation, the direction of irradiation is diagonal.
(3)液晶層を形成する工程
(3-1)VA型液晶表示素子の場合
 上記のようにして液晶配向膜が形成された基板を2枚準備し、対向配置した2枚の基板間に液晶を配置する。具体的には以下の2つの方法が挙げられる。第一の方法は、従来から知られている方法である。先ず、それぞれの液晶配向膜が対向するように間隙(セルギャップ)を介して2枚の基板を対向配置する。次いで、2枚の基板の周辺部をシール剤を用いて貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶組成物を注入充填して膜面に接触した後、注入孔を封止する。
 また、第二の方法は、ODF(One Drop Fill)方式と呼ばれる手法である。液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に、例えば紫外光硬化性のシール剤を塗布し、更に液晶配向膜面上の所定の数箇所に液晶組成物を滴下する。その後、液晶配向膜が対向するように他方の基板を貼り合わせて液晶組成物を基板の全面に押し広げて膜面に接触させる。次いで、基板の全面に紫外光を照射してシール剤を硬化する。いずれの方法による場合でも、更に、用いた液晶組成物が等方相をとる温度まで加熱した後、室温まで徐冷することにより、液晶充填時の流動配向を除去することが望ましい。
(3) Step of forming a liquid crystal layer (3-1) In the case of a VA type liquid crystal display element Two substrates on which a liquid crystal alignment film is formed as described above are prepared, and a liquid crystal is formed between the two substrates arranged to face each other. To place. Specifically, the following two methods can be mentioned. The first method is a conventionally known method. First, two substrates are arranged facing each other with a gap (cell gap) so that the liquid crystal alignment films face each other. Next, the peripheral portions of the two substrates are bonded together using a sealant, and the liquid crystal composition is injected and filled into the surface of the substrate and the cell gap partitioned by the sealant to contact the film surface, and then the injection holes are sealed. Stop.
The second method is a method called the ODF (One Drop Fill) method. For example, an ultraviolet photocurable sealant is applied to a predetermined place on one of the two substrates on which the liquid crystal alignment film is formed, and the liquid crystal composition is further applied to a predetermined number of places on the liquid crystal alignment film surface. Is dropped. After that, the other substrate is bonded so that the liquid crystal alignment films face each other, and the liquid crystal composition is spread over the entire surface of the substrate and brought into contact with the film surface. Next, the entire surface of the substrate is irradiated with ultraviolet light to cure the sealant. Regardless of which method is used, it is desirable to remove the flow orientation during liquid crystal filling by further heating the liquid crystal composition used to a temperature at which it takes an isotropic phase and then slowly cooling it to room temperature.
(3-2)PSA型液晶表示素子を製造する場合
 重合性化合物を含有する液晶組成物を注入又は滴下する点以外は上記(3-1)と同様にする。重合性化合物としては、例えば上記式(M-1)~(M-7)で表されるような重合性化合物を挙げることができる。
(3-3)重合性基を有する化合物を含む液晶配向剤又は重合体組成物を用いて基板上に塗膜を形成した場合
 上記(3-1)と同様にした後、後述する紫外線を照射する工程を経て液晶表示素子を製造する方法を採用してもよい。この方法によれば、上記PSA型液晶表示素子を製造する場合と同様に、少ない光照射量で応答速度に優れた液晶表示素子を得ることができる。重合性基を有する化合物は、上記式(M-1)~(M-7)で表されるようなアクリレート基やメタクリレート基などの重合性不飽和基を分子内に1個以上有する化合物であってもよく、その含有量は、全ての重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。また、上記重合性基は重合体組成物に用いる重合体が有していてもよく、このような重合体としては、例えば上記光重合性基を末端に有するジアミンを含むジアミン成分を反応に用いて得られる重合体が挙げられる。
(3-2) When manufacturing a PSA type liquid crystal display element The same applies to (3-1) above except that a liquid crystal composition containing a polymerizable compound is injected or dropped. Examples of the polymerizable compound include polymerizable compounds represented by the above formulas (M-1) to (M-7).
(3-3) When a coating film is formed on a substrate using a liquid crystal alignment agent or a polymer composition containing a compound having a polymerizable group The same procedure as in (3-1) above is followed by irradiation with ultraviolet rays, which will be described later. A method of manufacturing a liquid crystal display element may be adopted through the steps of making the liquid crystal display element. According to this method, a liquid crystal display element having an excellent response speed can be obtained with a small amount of light irradiation, as in the case of manufacturing the PSA type liquid crystal display element. The compound having a polymerizable group is a compound having one or more polymerizable unsaturated groups in the molecule such as an acrylate group and a methacrylate group as represented by the above formulas (M-1) to (M-7). The content thereof is preferably 0.1 to 30 parts by mass, and more preferably 1 to 20 parts by mass with respect to 100 parts by mass of all the polymer components. Further, the above-mentioned polymerizable group may be contained in the polymer used in the polymer composition, and as such a polymer, for example, a diamine component containing a diamine having the above-mentioned photopolymerizable group at the terminal is used in the reaction. Examples thereof include the obtained polymer.
(4)紫外線を照射する工程
 上記(3-2)又は(3-3)で得られた一対の基板の有する導電膜間に電圧を印加した状態で液晶セルに光照射する。ここで印加する電圧は、例えば5~50Vの直流又は交流とすることができる。また、照射する光としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができるが、300~400nmの波長の光を含む紫外線が好ましい。照射光の光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマレーザーなどを使用することができる。光の照射量としては、好ましくは1,000~200,000J/mであり、より好ましくは1,000~100,000J/mである。
(4) Step of Irradiating Ultraviolet Light The liquid crystal cell is irradiated with light in a state where a voltage is applied between the conductive films of the pair of substrates obtained in (3-2) or (3-3) above. The voltage applied here can be, for example, a direct current or an alternating current of 5 to 50 V. Further, as the light to be irradiated, for example, ultraviolet rays containing light having a wavelength of 150 to 800 nm and visible light can be used, but ultraviolet rays containing light having a wavelength of 300 to 400 nm are preferable. As the light source of the irradiation light, for example, a low-pressure mercury lamp, a high-pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, or the like can be used. The irradiation amount of light is preferably 1,000 to 200,000 J / m 2 , and more preferably 1,000 to 100,000 J / m 2 .
 そして、液晶セルの外側表面に偏光板を貼り合わせることにより液晶表示素子を得ることができる。液晶セルの外表面に貼り合わされる偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板又はH膜そのものからなる偏光板を挙げることができる。 Then, a liquid crystal display element can be obtained by attaching a polarizing plate to the outer surface of the liquid crystal cell. As the polarizing plate attached to the outer surface of the liquid crystal cell, a polarizing plate called "H film" in which polyvinyl alcohol is stretch-oriented and iodine is absorbed is sandwiched between cellulose acetate protective films or the H film itself. A polarizing plate made of the above can be mentioned.
 本発明の液晶表示素子は、種々の装置に有効に適用することができ、例えば、時計、携帯型ゲーム、ワープロ、ノート型パソコン、カーナビゲーションシステム、カムコーダー、PDA、デジタルカメラ、携帯電話、スマートフォン、各種モニター、液晶テレビ、インフォメーションディスプレイなどの各種表示装置に用いることができる。 The liquid crystal display element of the present invention can be effectively applied to various devices, for example, a clock, a portable game, a word processor, a notebook computer, a car navigation system, a cam coder, a PDA, a digital camera, a mobile phone, a smartphone, and the like. It can be used for various display devices such as various monitors, LCD TVs, and information displays.
 以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。実施例において使用した化合物の略号の意味を以下に示す。
<ポリマー>
 ISOBAM:ポリ(イソブチレン-o-マレイン酸無水物) Mn:160,000~170,000(クラレ社製、ISOBAM-10)
<モノマー>
(ジアミン)
 DBA:3,5-ジアミノ安息香酸
 3AMPDA:3,5-ジアミノ-N-(ピリジン-3-イルメチル)ベンズアミド
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. The meanings of the abbreviations of the compounds used in the examples are shown below.
<Polymer>
ISOBAM: Poly (isobutylene-o-maleic anhydride) Mn: 160,000-170,000 (manufactured by Kuraray, ISOBAM-10)
<Monomer>
(Diamine)
DBA: 3,5-diaminobenzoic acid 3AMPDA: 3,5-diamino-N- (pyridin-3-ylmethyl) benzamide
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
(テトラカルボン酸成分)
 PMDA:ピロメリット酸無水物
 D1:1,2,3,4-シクロブタンテトラカルボン酸二無水物
 D2:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
 D3:2,3,5-トリカルボキシシクロペンチル酢酸二無水物
(モノアミン)(修飾剤)
 Bocヒドラジン:Tert-ButylCarbazate
Figure JPOXMLDOC01-appb-C000030
(Tetracarboxylic acid component)
PMDA: pyromellitic acid anhydride D1: 1,2,3,4-cyclobutanetetracarboxylic dianhydride D2: bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride D3: 2,3,5-tricarboxycyclopentyl acetate dianhydride (monoamine) (modifier)
Boc Hydrazine: Tert-Butyl Carbazete
Figure JPOXMLDOC01-appb-C000030
(溶媒)
 NMP:N-メチル-2-ピロリドン
 BCS:エチレングリコールモノブチルエーテル
(触媒)
 DMAP:N,N-ジメチル-4-アミノピリジン
(solvent)
NMP: N-methyl-2-pyrrolidone BCS: Ethylene glycol monobutyl ether (catalyst)
DMAP: N, N-dimethyl-4-aminopyridine
<ポリイミドの分子量測定>
 合成例におけるポリイミドの分子量は、(株)センシュー科学社製 常温ゲル浸透クロマトグラフィー(GPC)装置(SSC-7200)、Shodex社製カラム(KD-803、KD-805)を用い以下のようにして測定した。
カラム温度:50℃
溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム一水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10mL/L)
流速:1.0ml/分
検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量 約900,000、150,000、100,000、30,000)、および、ポリマーラボラトリー社製 ポリエチレングリコール(分子量 約12,000、4,000、1,000)。
<Measurement of molecular weight of polyimide>
The molecular weight of the polyimide in the synthesis example was as follows using a room temperature gel permeation chromatography (GPC) apparatus (SSC-7200) manufactured by Senshu Kagaku Co., Ltd. and columns (KD-803, KD-805) manufactured by Shodex. It was measured.
Column temperature: 50 ° C
Eluent: N, N-dimethylformamide (as an additive, lithium bromide monohydrate (LiBr · H 2 O) is 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphate) is 30 mmol / L, tetrahydrofuran (THF) is 10 mL / L)
Flow velocity: 1.0 ml / standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight: about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polyethylene glycol manufactured by Polymer Laboratory (molecular weight: about 900,000, 150,000, 100,000, 30,000). Molecular weight of about 12,000, 4,000, 1,000).
<イミド化率の測定>
 合成例における重合体のイミド化率は次のようにして測定した。試料粉末20mgをNMRサンプル管(草野科学製 NMRサンプリングチューブスタンダード φ5)に入れ、重水素化ジメチルスルホキシド(DMSO-d、0.05%TMS混合品)0.53mLを添加し、超音波をかけて完全に溶解させた。
 この溶液をVarian社製NMR測定器(Varian NMR System 400 NB)にて400MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミック酸のNH基に由来するプロトンピーク積算値とを用い、以下の計算式によって求めた。
イミド化率(%)=(1-α・x/y)×100
(xはアミック酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミック酸(イミド化率が0%)の場合におけるアミック酸のNH基プロトン1個に対する基準プロトンの個数割合である。)
<Measurement of imidization rate>
The imidization rate of the polymer in the synthetic example was measured as follows. 20 mg of sample powder is placed in an NMR sample tube (NMR sampling tube standard φ5 manufactured by Kusano Kagaku ), 0.53 mL of deuterated dimethyl sulfoxide (DMSO-d 6 , 0.05% TMS mixture) is added, and ultrasonic waves are applied. Was completely dissolved.
This solution was measured for 400 MHz proton NMR with a Varian NMR measuring instrument (Varian NMR System 400 NB). The imidization rate is determined by using a proton derived from a structure that does not change before and after imidization as a reference proton, and the peak integrated value of this proton and the proton peak derived from the NH group of the amic acid appearing in the vicinity of 9.5 to 10.0 ppm. It was calculated by the following formula using the integrated value.
Imidization rate (%) = (1-α · x / y) × 100
(X is the integrated proton peak value derived from the NH group of the amic acid, y is the integrated peak value of the reference proton, and α is the reference proton for one NH group proton of the amic acid in the case of polyamic acid (imidization rate is 0%). It is the number ratio of.)
<モノマー合成例1> MA―1の合成
Figure JPOXMLDOC01-appb-C000031
<Monomer synthesis example 1> Synthesis of MA-1
Figure JPOXMLDOC01-appb-C000031
<MA-1-1の合成>
 四口ナスフラスコに、メタノール(320g)、p-ニトロベンゾニトリル(40.0g,270mmol)、2-アミノ-2-メチル-プロパン-1,3-ジオール(142.3g,1.35mol)及び炭酸ナトリウム(28.6g,270mmol)を仕込み、窒素雰囲気還流条件下にて22時間反応させた。反応終了後、反応溶液を純水(960g)に注ぎ込み結晶を析出させ、ろ過し、メタノールで洗浄した。続いて、得られた粗物を酢酸エチル(260g)及びヘキサン(40g)の混合溶媒でスラリー洗浄を行い、ろ過、乾燥することでMA-1-1を白色結晶として得た(収量:46.8g,199mmol、収率:74%)。
H-NMR(400MHz) in DMSO-d: 8.29-8.33ppm(m,2H), 8.07-8.11ppm(m,2H) 4.97ppm(t,1H), 4.46ppm(d,1H), 4.07ppm(d,1H), 3.36-3.47ppm(m,2H), 1.25ppm(s,3H)
<Synthesis of MA-1-1>
Methanol (320 g), p-nitrobenzonitrile (40.0 g, 270 mmol), 2-amino-2-methyl-propane-1,3-diol (142.3 g, 1.35 mol) and carbonate in a four-necked eggplant flask. Sodium (28.6 g, 270 mmol) was charged and reacted under reflux conditions in a nitrogen atmosphere for 22 hours. After completion of the reaction, the reaction solution was poured into pure water (960 g) to precipitate crystals, filtered, and washed with methanol. Subsequently, the obtained crude product was subjected to slurry washing with a mixed solvent of ethyl acetate (260 g) and hexane (40 g), filtered and dried to obtain MA-1-1 as white crystals (yield: 46. 8 g, 199 mmol, yield: 74%).
1 1 H-NMR (400 MHz) in DMSO-d 6 : 8.29-8.33 ppm (m, 2H), 8.07-8.11 ppm (m, 2H) 4.97 ppm (t, 1H), 4.46 ppm (D, 1H), 4.07 ppm (d, 1H), 3.36-3.47 ppm (m, 2H), 1.25 ppm (s, 3H)
<MA-1の合成>
 四口ナスフラスコに、N,N-ジメチルホルムアミド(224.5g)、MA-1-1(28.1g,119mmol)及び5%パラジウム-炭素(約50%水湿潤品)(2.44g)を仕込み、水素雰囲気室温条件下で約2日間反応させた。反応終了後、ろ過することで5%パラジウム-炭素を除去し、減圧濃縮することでN,N-ジメチルホルムアミドを除去した。続いて、テトラヒドロフラン(60.0g)を加えて室温条件下で一晩撹拌した。撹拌後、ろ過し、テトラヒドロフランで洗浄後、乾燥する事でMA-1を薄紫色結晶として得た(収量:19.1g,92.6mmol,収率:78%)。
H-NMR(400MHz) in DMSO-d:7.48-7.51ppm(m,2H),6.51-6.55ppm(m,2H),5.66ppm(s,2H),4.82ppm(t,1H),4.26ppm(d,1H), 3.85ppm(d,1H),3.34ppm(d,2H),1.17ppm(s,3H)
<Synthesis of MA-1>
N, N-dimethylformamide (224.5 g), MA-1-1 (28.1 g, 119 mmol) and 5% palladium-carbon (about 50% water-wet product) (2.44 g) are placed in a four-necked eggplant flask. The mixture was charged and reacted in a hydrogen atmosphere at room temperature for about 2 days. After completion of the reaction, 5% palladium-carbon was removed by filtration, and N, N-dimethylformamide was removed by concentration under reduced pressure. Subsequently, tetrahydrofuran (60.0 g) was added, and the mixture was stirred overnight under room temperature conditions. After stirring, the mixture was filtered, washed with tetrahydrofuran, and dried to obtain MA-1 as lilac crystals (yield: 19.1 g, 92.6 mmol, yield: 78%).
1 1 H-NMR (400 MHz) in DMSO-d 6 : 7.48-7.51 ppm (m, 2H), 6.51-6.55 ppm (m, 2H), 5.66 ppm (s, 2H), 4. 82 ppm (t, 1H), 4.26 ppm (d, 1H), 3.85 ppm (d, 1H), 3.34 ppm (d, 2H), 1.17 ppm (s, 3H)
<マレイミド系重合体及び無水マレイン酸系重合体の合成>
<合成例1>
 Bocヒドラジン(1.20g、9.1mmol)をNMP(42.3g)中に添加し、25℃で10分撹拌した。溶解が確認出来たら、反応触媒としてDMAP(0.139g、1.14mmol)を添加しさらに30分撹拌した。この反応溶液にISOBAM(3.50g、22.7mmol)を添加し、強撹拌下で60分間よく溶解させ、溶解を確認後、80℃で18時間反応させて、下記式(m1)で表される構造単位を有するマレイミド系重合体溶液(IBM-1)を得た。
Figure JPOXMLDOC01-appb-C000032
(Bocは、tert-ブトキシカルボニル基を表す。)
<Synthesis of maleimide-based polymer and maleic anhydride-based polymer>
<Synthesis example 1>
Boc hydrazine (1.20 g, 9.1 mmol) was added to NMP (42.3 g) and stirred at 25 ° C. for 10 minutes. When dissolution was confirmed, DMAP (0.139 g, 1.14 mmol) was added as a reaction catalyst, and the mixture was further stirred for 30 minutes. ISOBAM (3.50 g, 22.7 mmol) was added to this reaction solution, dissolved well under strong stirring for 60 minutes, and after confirming the dissolution, the reaction was carried out at 80 ° C. for 18 hours and represented by the following formula (m1). A maleimide-based polymer solution (IBM-1) having a structural unit was obtained.
Figure JPOXMLDOC01-appb-C000032
(Boc represents a tert-butoxycarbonyl group.)
<合成例2>
 MA-1(1.87g、9.1mmol)をNMP(48.33g)中に添加し、25℃で10分撹拌した。溶解が確認出来たら、反応触媒としてDMAP(0.139g、1.14mmol)を添加し、さらに30分撹拌した。この反応溶液にISOBAM(3.50g、22.7mmol)を添加し、強撹拌下で60分間よく溶解させ、溶解を確認後、80℃で18時間反応させて、下記式(m2)で表される構造単位を有するマレイミド系重合体溶液(IBM-2)を得た。
Figure JPOXMLDOC01-appb-C000033
<Synthesis example 2>
MA-1 (1.87 g, 9.1 mmol) was added to NMP (48.33 g) and stirred at 25 ° C. for 10 minutes. When dissolution was confirmed, DMAP (0.139 g, 1.14 mmol) was added as a reaction catalyst, and the mixture was further stirred for 30 minutes. ISOBAM (3.50 g, 22.7 mmol) is added to this reaction solution, dissolved well under strong stirring for 60 minutes, and after confirming the dissolution, the reaction is carried out at 80 ° C. for 18 hours, and is represented by the following formula (m2). A maleimide-based polymer solution (IBM-2) having a structural unit was obtained.
Figure JPOXMLDOC01-appb-C000033
<比較合成例1>
 NMP(25.6g)中にISOBAM(3.50g)を添加し、強撹拌化で60分間よく溶解させた。溶解を確認した後、反応系を80℃で18時間加熱して、無水マレイン酸基が未修飾である無水マレイン酸系重合体溶液(IBM-3)を得た。
 合成例1~2および比較合成例1の成分等を下記表1に示す。
Figure JPOXMLDOC01-appb-T000034
<Comparative synthesis example 1>
ISOBAM (3.50 g) was added to NMP (25.6 g) and dissolved well with strong stirring for 60 minutes. After confirming the dissolution, the reaction system was heated at 80 ° C. for 18 hours to obtain a maleic anhydride-based polymer solution (IBM-3) in which the maleic anhydride group was unmodified.
The components and the like of Synthesis Examples 1 and 2 and Comparative Synthesis Example 1 are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000034
<ポリイミド系重合体の合成>
<合成例3>
 テトラカルボン酸二無水物であるD3(384.45g、1715mmol)、ジアミン成分であるDA-5(144.54g、437.5mmol)、DA-4(265.00g、350.0mmol)、DA-8(121.44g、612.5mmol)、及びDA-9(83.06g、350.0mmol)を、NMP(2456.1g)中で混合し、60℃で12時間反応させて、ポリアミック酸溶液(PAA-1)を得た。
 このポリアミック酸溶液(60.0g)にNMP(124.62g)を加え、6.5質量%に希釈した後、イミド化触媒として無水酢酸(21.30g)及びピリジン(3.30g)を加え、80℃で5時間反応させた。この反応溶液をメタノール(732.28g)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥し、ポリイミド粉末を得た。このポリイミド粉末のイミド化率は72%であり、数平均分子量は10,800、重量平均分子量は41,800であった。
 このポリイミド粉末に、固形分濃度が20質量%濃度になるようにNMPを加え、70℃で12時間撹拌することによりポリイミド溶液(SPI-1)を得た。
<Synthesis of polyimide polymer>
<Synthesis example 3>
D3 (384.45 g, 1715 mmol), which is a tetracarboxylic dianhydride, DA-5 (144.54 g, 437.5 mmol), which is a diamine component, DA-4 (265.00 g, 350.0 mmol), DA-8. (121.44 g, 612.5 mmol) and DA-9 (83.06 g, 350.0 mmol) were mixed in NMP (2456.1 g) and reacted at 60 ° C. for 12 hours to give a polyamic acid solution (PAA). -1) was obtained.
NMP (124.62 g) was added to this polyamic acid solution (60.0 g), diluted to 6.5% by mass, and then acetic anhydride (21.30 g) and pyridine (3.30 g) were added as imidization catalysts. The reaction was carried out at 80 ° C. for 5 hours. This reaction solution was put into methanol (732.28 g), and the obtained precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 60 ° C. to obtain a polyimide powder. The imidization ratio of this polyimide powder was 72%, the number average molecular weight was 10,800, and the weight average molecular weight was 41,800.
NMP was added to this polyimide powder so that the solid content concentration became 20% by mass, and the mixture was stirred at 70 ° C. for 12 hours to obtain a polyimide solution (SPI-1).
<合成例4>
 ジアミン成分であるDBA(2.74g、18.0mmol)、3AMPDA(3.27g、13.5mmol)及びDA-1(5.14g、13.5mmol)を、NMP(44.59g)中で混合し溶解させた。この溶液にD2(2.25g、9.0mmol)を添加し、60℃で4時間反応させた後、反応液を水冷し、D1(5.12g、26.1mmol)を加えて1時間撹拌した。最後にPMDA(1.96g、9.0mmol)を添加して室温で12時間撹拌し、ポリアミック酸溶液(PAA-2)を得た。なお全ての工程は反応液濃度が20質量%濃度になるようにNMP溶媒で希釈して行っている。
 このポリアミック酸溶液(30.0g)にNMP(30.00g)を加え、10質量%に希釈した後、イミド化触媒として無水酢酸(4.00g)及びピリジン(1.55g)を加え、70℃で3時間反応させた。この反応溶液をメタノール(229.44g)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥し、ポリイミド粉末を得た。このポリイミド粉末のイミド化率は75%であり、数平均分子量は11,840、重量平均分子量は37,800であった。
 このポリイミド粉末に、固形分濃度が20質量%濃度になるようにNMPを加え、70℃で12時間撹拌することによりポリイミド溶液(SPI-2)を得た。
<Synthesis example 4>
The diamine components DBA (2.74 g, 18.0 mmol), 3AMPDA (3.27 g, 13.5 mmol) and DA-1 (5.14 g, 13.5 mmol) were mixed in NMP (44.59 g). It was dissolved. D2 (2.25 g, 9.0 mmol) was added to this solution, and the mixture was reacted at 60 ° C. for 4 hours. After that, the reaction solution was cooled with water, D1 (5.12 g, 26.1 mmol) was added, and the mixture was stirred for 1 hour. .. Finally, PMDA (1.96 g, 9.0 mmol) was added and stirred at room temperature for 12 hours to obtain a polyamic acid solution (PAA-2). All steps are performed by diluting with an NMP solvent so that the concentration of the reaction solution becomes 20% by mass.
NMP (30.00 g) is added to this polyamic acid solution (30.0 g), diluted to 10% by mass, acetic anhydride (4.00 g) and pyridine (1.55 g) are added as imidization catalysts, and the temperature is 70 ° C. Was reacted for 3 hours. This reaction solution was put into methanol (229.44 g), and the obtained precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 60 ° C. to obtain a polyimide powder. The imidization ratio of this polyimide powder was 75%, the number average molecular weight was 11,840, and the weight average molecular weight was 37,800.
NMP was added to this polyimide powder so that the solid content concentration became 20% by mass, and the mixture was stirred at 70 ° C. for 12 hours to obtain a polyimide solution (SPI-2).
<合成例5>
 ジアミン成分であるDA-6(5.20g、17.5mmol)、DA-5(1.73g、5.20mmol)及びDA-2(5.32g、12.2mmol)を、NMP(49.10g)中で混合し溶解させた。この溶液にD2(4.38g、17.5mmol)を添加し、60℃で4時間反応させた後、反応液を水冷し、D1(3.29g、16.8mmol)を加えて12時間撹拌することにより、ポリアミック酸溶液(PAA-3)を得た。なお全ての工程では反応液濃度が20質量%濃度になるようにNMP溶媒で希釈している。このポリアミック酸の数平均分子量は12,540、重量平均分子量は41,800であった。
<Synthesis example 5>
The diamine components DA-6 (5.20 g, 17.5 mmol), DA-5 (1.73 g, 5.20 mmol) and DA-2 (5.32 g, 12.2 mmol) were added to NMP (49.10 g). It was mixed and dissolved in. D2 (4.38 g, 17.5 mmol) is added to this solution, and the mixture is reacted at 60 ° C. for 4 hours, then the reaction solution is cooled with water, D1 (3.29 g, 16.8 mmol) is added, and the mixture is stirred for 12 hours. As a result, a polyamic acid solution (PAA-3) was obtained. In all steps, the reaction solution is diluted with an NMP solvent so that the concentration of the reaction solution is 20% by mass. The number average molecular weight of this polyamic acid was 12,540, and the weight average molecular weight was 41,800.
<合成例6>
 ジアミン成分である3AMPDA(3.88g、16.0mmol)、DA-3(3.48g、8.8mmol)及びDA-7(3.41g、16.0mmol)を、NMP(43.06g)中で混合し溶解させた。この溶液にD2(5.00g、20.0mmol)を添加し、60℃で4時間反応させた後、反応液を水冷し、D1(3.77g、19.2mmol)を加えて12時間撹拌することにより、ポリアミック酸溶液(PAA-4)を得た。なお全ての工程では反応液濃度が20質量%濃度になるようにNMP溶媒で希釈している。このポリアミック酸の数平均分子量は10,240、重量平均分子量は32,800であった。
 合成例3~6の成分等を下記表2に示す。
<Synthesis example 6>
The diamine components 3AMPDA (3.88 g, 16.0 mmol), DA-3 (3.48 g, 8.8 mmol) and DA-7 (3.41 g, 16.0 mmol) were added in NMP (43.06 g). It was mixed and dissolved. D2 (5.00 g, 20.0 mmol) is added to this solution, and the mixture is reacted at 60 ° C. for 4 hours, then the reaction solution is cooled with water, D1 (3.77 g, 19.2 mmol) is added, and the mixture is stirred for 12 hours. As a result, a polyamic acid solution (PAA-4) was obtained. In all steps, the reaction solution is diluted with an NMP solvent so that the concentration of the reaction solution is 20% by mass. The number average molecular weight of this polyamic acid was 10,240, and the weight average molecular weight was 32,800.
The components and the like of Synthesis Examples 3 to 6 are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
[重合体組成物の調製]
(例1)
 撹拌子を入れた20mLサンプル管に、合成例1で得られたマレイミド系重合体溶液IBM-1(4.80g)を量り取り、NMP(2.40g)及びBCS(4.80g)を添加した後に、マグネチックスターラーで30分間撹拌し、マレイミド系重合体溶液である重合体組成物(A-1)を得た。A-1を-20℃で1週間保管したところ、固形物の析出が見られず、均一な溶液であった。
(例2)
 マレイミド系重合体溶液IBM-1の代わりにマレイミド系重合体溶液IBM-2を用いた以外は全て例1と同様の手順により、マレイミド系重合体溶液である重合体組成物(A-2)を得た。A-2を-20℃で1週間保管したところ、固形物の析出が見られず、均一な溶液であった。
[Preparation of polymer composition]
(Example 1)
The maleimide polymer solution IBM-1 (4.80 g) obtained in Synthesis Example 1 was weighed into a 20 mL sample tube containing a stirrer, and NMP (2.40 g) and BCS (4.80 g) were added. Later, the mixture was stirred with a magnetic stirrer for 30 minutes to obtain a polymer composition (A-1) which is a maleimide-based polymer solution. When A-1 was stored at −20 ° C. for 1 week, no precipitation of solid matter was observed, and the solution was uniform.
(Example 2)
The polymer composition (A-2), which is a maleimide-based polymer solution, was prepared by the same procedure as in Example 1 except that the maleimide-based polymer solution IBM-2 was used instead of the maleimide-based polymer solution IBM-1. Obtained. When A-2 was stored at −20 ° C. for 1 week, no precipitation of solid matter was observed, and the solution was uniform.
(例3)
 撹拌子を入れた20mLサンプル管に、合成例3で得られたポリイミド溶液SPI-1(0.90g)と合成例4で得られたポリイミド溶液SPI-2(2.10g)とを量り取り、NMP(6.00g)及びBCS(6.00g)を添加した後に、マグネチックスターラーで30分間撹拌し、ポリイミド混合溶液である重合体組成物(A-3)を得た。A-3を-20℃で1週間保管したところ、固形物の析出が見られず、均一な溶液であった。
(例4)
 ポリイミド溶液SPI-1の代わりにポリアミック酸溶液PAA-3を、ポリイミド溶液SPI-2の代わりにポリアミック酸溶液PAA-4を用いた以外は全て例3と同様の手順により、ポリアミック酸混合溶液である重合体組成物(A-4)を得た。A-4を-20℃で1週間保管したところ、固形物の析出が見られず、均一な溶液であった。
(例5)
 撹拌子を入れた20mLサンプル管に、比較合成例1で得られた溶液IBM-3(6.00g)を量り取り、NMP(4.80g)及びBCS(7.20g)を添加した後に、マグネチックスターラーで30分間撹拌し、マレイン酸系重合体溶液である重合体組成物(B-1)を得た。B-1を-20℃で1週間保管したところ、固形物の析出が見られず、均一な溶液であった。
 例1~5の成分等を下記表3に示す。
(Example 3)
The polyimide solution SPI-1 (0.90 g) obtained in Synthesis Example 3 and the polyimide solution SPI-2 (2.10 g) obtained in Synthesis Example 4 were weighed into a 20 mL sample tube containing a stirrer. After adding NMP (6.00 g) and BCS (6.00 g), the mixture was stirred with a magnetic stirrer for 30 minutes to obtain a polymer composition (A-3) which is a polyimide mixed solution. When A-3 was stored at −20 ° C. for 1 week, no precipitation of solid matter was observed, and the solution was uniform.
(Example 4)
A polyamic acid mixed solution was prepared by the same procedure as in Example 3 except that the polyamic acid solution PAA-3 was used instead of the polyimide solution SPI-1 and the polyamic acid solution PAA-4 was used instead of the polyimide solution SPI-2. A polymer composition (A-4) was obtained. When A-4 was stored at −20 ° C. for 1 week, no precipitation of solids was observed, and the solution was uniform.
(Example 5)
The solution IBM-3 (6.00 g) obtained in Comparative Synthesis Example 1 was weighed into a 20 mL sample tube containing a stirrer, NMP (4.80 g) and BCS (7.20 g) were added, and then a magnetic stirrer was added. The mixture was stirred with a stirrer for 30 minutes to obtain a polymer composition (B-1) which is a maleic acid-based polymer solution. When B-1 was stored at −20 ° C. for 1 week, no solid matter was observed and the solution was uniform.
The components of Examples 1 to 5 are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
(例6)
 撹拌子を入れた20mLサンプル管に例1で得られた溶液(A-1)3.00gと例3で得られたポリイミド溶液(A-3)7.00gとを量り取った後にマグネチックスターラーで30分間撹拌し、重合体組成物(C-1)を作成した。C-1を-20℃で1週間保管したところ、固形物の析出が見られず、均一な溶液であった。
(例7~11)
 例6と同様の手順にて重合体組成物(C-2)~(C-4)、(D-1)~(D-2)を調製した。調製に用いた重合体溶液の種類と混合比率の一覧は下記表4の通りである。
(Example 6)
A magnetic stirrer after weighing 3.00 g of the solution (A-1) obtained in Example 1 and 7.00 g of the polyimide solution (A-3) obtained in Example 3 in a 20 mL sample tube containing a stirrer. The mixture was stirred for 30 minutes to prepare a polymer composition (C-1). When C-1 was stored at −20 ° C. for 1 week, no precipitation of solid matter was observed, and the solution was uniform.
(Examples 7 to 11)
Polymer compositions (C-2) to (C-4) and (D-1) to (D-2) were prepared in the same procedure as in Example 6. Table 4 below lists the types of polymer solutions used for preparation and the mixing ratio.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
<例12~19>
 下記のようにして、液晶配向膜及び液晶セルを作製し、作製した各液晶セルの特性を評価した。それらの結果を下記表に示す。なお、下記の例において、例12~15は本発明の実施例であり、例16~19は比較例である。
<Examples 12 to 19>
A liquid crystal alignment film and a liquid crystal cell were prepared as described below, and the characteristics of each of the prepared liquid crystal cells were evaluated. The results are shown in the table below. In the following examples, Examples 12 to 15 are examples of the present invention, and Examples 16 to 19 are comparative examples.
<液晶セルの作製>
 上記例3~4、6~11で得た重合体組成物を、それぞれ、純水及びIPA(イソプロピルアルコール)で洗浄したITO付き無アルカリガラス基板(縦30mm、横40mm、厚み0.7mm)のITO面にスピンコートし、70℃で90秒間ホットプレートにて焼成した後、230℃の赤外線加熱炉で20分間焼成を行い、膜厚100nmの塗布基板を作製した。
 上記方法で塗布基板を二枚作製し、一方の基板の液晶配向膜面上に4μmのビーズスペーサーを散布した後、その上から熱硬化性シール剤(協立化学産業社製 XN-1500T)を印刷した。次いで、もう一方の基板の液晶配向膜が形成された側の面を内側にして、先の基板と貼り合せた後、シール剤を硬化させて空セルを作製した。この空セルにPSA用重合性化合物含有液晶MLC-3023(メルク社製)を減圧注入法によって注入し、液晶セルを作製した。
<Manufacturing of liquid crystal cell>
The polymer compositions obtained in Examples 3 to 4 and 6 to 11 above were washed with pure water and IPA (isopropyl alcohol), respectively, on a non-alkali glass substrate with ITO (length 30 mm, width 40 mm, thickness 0.7 mm). The ITO surface was spin-coated and fired on a hot plate at 70 ° C. for 90 seconds, and then fired in an infrared heating furnace at 230 ° C. for 20 minutes to prepare a coated substrate having a film thickness of 100 nm.
Two coated substrates are prepared by the above method, a 4 μm bead spacer is sprayed on the liquid crystal alignment film surface of one substrate, and then a thermosetting sealant (XN-1500T manufactured by Kyoritsu Kagaku Sangyo Co., Ltd.) is applied on the bead spacers. I printed it. Next, the surface of the other substrate on which the liquid crystal alignment film was formed was turned inside, and after bonding with the previous substrate, the sealant was cured to prepare an empty cell. A liquid crystal cell containing a polymerizable compound for PSA MLC-3023 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method to prepare a liquid crystal cell.
 次に、この液晶セルに15VのDC電圧を印加した状態で、この液晶セルの外側から光化学反応用ケミカルランプFHF14UV32A-H(東芝ライテック社製)を70秒間照射(1次PSA処理とも称する)した。
 その後、液晶セル中に残存している未反応の重合性化合物を失活させる目的で、電圧を印加していない状態で東芝ライテック社製UV-FL照射装置を用いてUV(UVランプ:FLR40SUV32/A-1)を30分間照射(2次PSA処理とも称する)した。
Next, with a DC voltage of 15 V applied to the liquid crystal cell, the photochemical reaction chemical lamp FHF14UV32A-H (manufactured by Toshiba Lighting & Technology Corporation) was irradiated for 70 seconds from the outside of the liquid crystal cell (also referred to as primary PSA treatment). ..
After that, for the purpose of inactivating the unreacted polymerizable compound remaining in the liquid crystal cell, UV (UV lamp: FLR40SUV32 /) was used using a UV-FL irradiation device manufactured by Toshiba Litec Co., Ltd. in a state where no voltage was applied. A-1) was irradiated for 30 minutes (also referred to as secondary PSA treatment).
<電圧保持率の評価>
 上記で作製した液晶セルを用い、60℃の熱風循環オーブン中で1Vの電圧を60μs間印加した後、16.67msec後と1667msec後の電圧をそれぞれ測定し、電圧がどのくらい保持できているかを電圧保持率として計算した。電圧保持率の測定には、東陽テクニカ社製のVHR-1を使用した。各材料における電圧保持率を下記表5にまとめる。
<Evaluation of voltage retention rate>
Using the liquid crystal cell produced above, after applying a voltage of 1 V for 60 μs in a hot air circulation oven at 60 ° C., measure the voltage after 16.67 msec and after 1667 msec, respectively, and determine how much the voltage can be maintained. Calculated as retention rate. VHR-1 manufactured by Toyo Corporation was used for measuring the voltage holding ratio. The voltage retention rates for each material are summarized in Table 5 below.
<シール密着性評価サンプルの作製>
 上記例3~4、6~11で得た重合体組成物を、縦30mm×横40mm×厚み1.1mmの長方形の透明電極付きガラス基板にスピンコートし、70℃のホットプレート上で90秒間乾燥した後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmの液晶配向膜を形成した。
 このようにして得られた2枚の基板を用意し、一方の基板の液晶配向膜面上に4μmビーズスペーサーを塗布した後、シール剤(協立化学産業社製 723K1)を塗布した。次いで、これらの基板の液晶配向膜面が向き合い、基板の重なり幅が1cmになるように、貼り合わせを行った。その際、貼り合わせ後のシール剤の直径が3mmとなるようにシール剤滴下量を調整した。貼り合わせた2枚の基板をクリップにて固定した後、365nmの波長換算で4J/cmの紫外線を照射し、120℃で1時間熱硬化させて、密着性評価用のサンプルを作製した。
<Preparation of seal adhesion evaluation sample>
The polymer compositions obtained in Examples 3 to 4 and 6 to 11 above are spin-coated on a rectangular glass substrate with a transparent electrode having a length of 30 mm, a width of 40 mm and a thickness of 1.1 mm, and placed on a hot plate at 70 ° C. for 90 seconds. After drying, it was baked in a hot air circulation oven at 230 ° C. for 20 minutes to form a liquid crystal alignment film having a film thickness of 100 nm.
The two substrates thus obtained were prepared, a 4 μm bead spacer was applied onto the liquid crystal alignment film surface of one of the substrates, and then a sealant (723K1 manufactured by Kyoritsu Kagaku Sangyo Co., Ltd.) was applied. Next, the substrates were bonded so that the liquid crystal alignment film surfaces of these substrates faced each other and the overlapping width of the substrates was 1 cm. At that time, the amount of the sealant dropped was adjusted so that the diameter of the sealant after bonding was 3 mm. After fixing the two bonded substrates with clips, they were irradiated with ultraviolet rays of 4 J / cm 2 in terms of wavelength of 365 nm and thermoset at 120 ° C. for 1 hour to prepare a sample for adhesion evaluation.
<シール密着性の評価>
 上記密着性評価用サンプルを卓上形精密万能試験機(島津製作所社製、AGS-X 500N)の三点曲げ治具の下部(64cm)に上下基板の端の部分を固定した後、基板中央部の上部から押し込みを行い、剥離する際の力(N)と塗布シール直径(mm)から剥離強度(N/mm)を算出した。評価結果を下記表5に示す。
<Evaluation of seal adhesion>
After fixing the above sample for adhesion evaluation to the lower part (64 cm) of the three-point bending jig of a desktop precision universal testing machine (manufactured by Shimadzu Corporation, AGS-X 500N), the edges of the upper and lower substrates are fixed, and then the central portion of the substrate. The peeling strength (N / mm) was calculated from the force (N) at the time of peeling and the coating seal diameter (mm). The evaluation results are shown in Table 5 below.
<膜硬度の評価>
 上記で得た重合体組成物(C-1)~(C-4)(実施例)並びに重合体組成物(D-1)、(D-2)、(A-3)及び(A-4)(比較例)をITO付き無アルカリガラス基板(縦30mm、横40mm、厚み0.7mm)のITO面にスピンコートし、70℃で90秒間ホットプレートにて焼成した後、230℃の赤外線加熱炉で20分間焼成を行い、膜厚100nmの配向剤塗布基板を作製した。この塗布基板表面を所定のラビング方向で、レーヨン布によりラビング(ロール系120mm、回転数1000rpm、移動速度20mm/sec、押し込み量0.6mm)した後、光学顕微鏡観察を行い、膜の擦傷を確認した。この時、目視で擦傷が確認されたものを「×」とし、擦傷が確認されなかったものを「○」として評価した。評価結果を下記表5に示す。
<Evaluation of film hardness>
The polymer compositions (C-1) to (C-4) (Examples) obtained above and the polymer compositions (D-1), (D-2), (A-3) and (A-4). ) (Comparative example) is spin-coated on the ITO surface of a non-alkali glass substrate with ITO (length 30 mm, width 40 mm, thickness 0.7 mm), fired on a hot plate at 70 ° C. for 90 seconds, and then heated by infrared rays at 230 ° C. Baking was carried out in a furnace for 20 minutes to prepare an alignment agent-coated substrate having a film thickness of 100 nm. After rubbing the surface of this coated substrate with a rayon cloth in a predetermined rubbing direction (roll system 120 mm, rotation speed 1000 rpm, moving speed 20 mm / sec, pushing amount 0.6 mm), optical microscope observation is performed to confirm scratches on the film. did. At this time, those in which scratches were visually confirmed were evaluated as "x", and those in which no scratches were confirmed were evaluated as "◯". The evaluation results are shown in Table 5 below.
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 表5中に示すように、実施例の重合体組成物(C-1)~(C-4)を用いた場合は、比較例の重合体組成物(D-1)、(D-2)、(A-3)、及び(A-4)を用いた場合に比べて良好な電圧保持率を示した。
 表5中に示すように、実施例の重合体組成物(C-1)~(C-4)を用いた場合は、比較例の重合体組成物(D-1)、(D-2)、(A-3)、及び(A-4)を用いた場合に比べて良好なシール密着性および膜硬度を示した。
As shown in Table 5, when the polymer compositions (C-1) to (C-4) of Examples were used, the polymer compositions (D-1) and (D-2) of Comparative Examples were used. , (A-3), and (A-4) showed better voltage retention as compared with the case of using.
As shown in Table 5, when the polymer compositions (C-1) to (C-4) of Examples were used, the polymer compositions (D-1) and (D-2) of Comparative Examples were used. , (A-3), and (A-4) showed better seal adhesion and film hardness as compared with the case of using.
<液晶配向性の評価>
 上記例6~例9で得られた重合体組成物(C-1)~(C-4)を用いて、液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜上に4μmのスペーサーを散布した。その上からシール剤を印刷し、もう1枚の基板を液晶配向膜面が向き合い光配向方向が直行するようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶ML-3023(メルク・ジャパン製)を注入し、注入口を封止し、VA液晶セルを得た。この液晶セルを120℃で30分熱処理して、その後室温まで除冷してセルの観察を行ったところ、面内で配向不良は見られず、いずれも液晶配向性は良好であった。
<Evaluation of liquid crystal orientation>
Using the polymer compositions (C-1) to (C-4) obtained in Examples 6 to 9 above, two substrates with a liquid crystal alignment film were prepared, and 4 μm was placed on the one liquid crystal alignment film. Spacer was sprayed. A sealant was printed on the substrate, and the other substrate was bonded so that the liquid crystal alignment film surfaces faced each other and the photoalignment direction was orthogonal, and then the sealant was cured to prepare an empty cell. Liquid crystal ML-3023 (manufactured by Merck Japan) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain a VA liquid crystal cell. When this liquid crystal cell was heat-treated at 120 ° C. for 30 minutes and then cooled to room temperature to observe the cell, no in-plane orientation defect was observed, and the liquid crystal orientation was good in all cases.
 なお、2019年12月6日に出願された日本特許出願2019-221597号の明細書、特許請求の範囲及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 The entire contents of the specification, claims and abstract of Japanese Patent Application No. 2019-221597 filed on December 6, 2019 are cited here and incorporated as disclosure of the specification of the present invention. Is.

Claims (15)

  1.  下記の式(m-1)及び(m-2)からなる群から選ばれる少なくとも1種の構造単位を有する重合体(P)と有機溶媒とを含有することを特徴とする重合体組成物。
    Figure JPOXMLDOC01-appb-C000001
    (R及びRは、それぞれ独立して、水素原子、フッ素原子、又は炭素数1~3のアルキル基を表す。Rは、水素原子又は炭素数1~10のアルキル基を表す。Rsは、水素原子又は炭素数1~3のアルキル基を表す。Xは、オキサゾリン環構造を含む基、部分構造「-NR」(ただし、R及びRは、それぞれ独立して、水素原子、炭素数1~10の1価の炭化水素基又は保護基を表し、R及びRの少なくとも一つは保護基を表す。)を含む基、オキセタン環を含む基、環状カーボネート基を含む基、-SiR(OR’)m’(R及びR’は、それぞれ独立して、水素原子又は炭素数1~5のアルキル基を表し、m及びm’は、m+m’=3を満たす整数を表し、m’は1以上の整数を表す。)を含む基、又はメチロール基で置換されたベンゼン環を含む基を表す。)
    A polymer composition comprising a polymer (P) having at least one structural unit selected from the group consisting of the following formulas (m-1) and (m-2) and an organic solvent.
    Figure JPOXMLDOC01-appb-C000001
    (R 1 and R 2 independently represent a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 3 carbon atoms. R represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. Rs is. , A hydrogen atom or an alkyl group having 1 to 3 carbon atoms. X is a group containing an oxazoline ring structure, and a partial structure "-NR a R b " (however, Ra and R b are independently hydrogen. A group containing an atom, a monovalent hydrocarbon group having 1 to 10 carbon atoms or a protective group, and at least one of Ra and R b represents a protective group), a group containing an oxetane ring, and a cyclic carbonate group. The group containing, -SiR m (OR') m' (R and R'independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and m and m'satisfy m + m'= 3. Represents an integer, and m'represents an integer of 1 or more.) Or a group containing a benzene ring substituted with a methylol group.)
  2.  前記式(m-1)及び(m-2)において、R及びRが、それぞれ独立して、水素原子又は炭素数1~3のアルキル基を表す、請求項1に記載の重合体組成物。 The polymer composition according to claim 1, wherein in the formulas (m-1) and (m-2), R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. Stuff.
  3.  前記式(m-1)及び(m-2)において、Xが、下記式(mx-1)~(mx-6)から選ばれる構造を表す、請求項1又は2に記載の重合体組成物。
    Figure JPOXMLDOC01-appb-C000002
    (R及びRは、それぞれ独立して、水素原子又は炭素数1~3のアルキル基を表す。Dは保護基を表す。Q及びQは、それぞれ独立して、炭素数1~20のアルキレン基又はアリール基を表し、Qは単結合又は炭素数1~20のアルキレン基を表す。Q及びQは単結合を表し、Qは炭素数1~20のアルキレン基を表す。R及びR’は、それぞれ独立して、水素原子又は炭素数1~5のアルキル基を表す。m及びm’は、m+m’=3を満たす整数を表し、m’は1以上の整数を表す。R及びRにおいて、炭素数1~3のアルキル基に結合する水素原子は、それぞれ独立して、ヒドロキシ基、-CN、ハロゲン原子、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基、又は炭素数1~5のアルキルオキシ基で置換されてもよい。*は結合手を表す。)
    The polymer composition according to claim 1 or 2, wherein in the formulas (m-1) and (m-2), X represents a structure selected from the following formulas (mx-1) to (mx-6). ..
    Figure JPOXMLDOC01-appb-C000002
    (R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. D represents a protecting group. Q 1 and Q 4 independently represent 1 to 3 carbon atoms, respectively. 20 represents an alkylene group or an aryl group, Q 2 represents a single bond or an alkylene group having 1 to 20 carbon atoms, Q 3 and Q 6 represent a single bond, and Q 5 represents an alkylene group having 1 to 20 carbon atoms. R and R'independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. M and m'represent an integer satisfying m + m'= 3, and m'is an integer of 1 or more. In R 1 and R 2 , the hydrogen atom bonded to the alkyl group having 1 to 3 carbon atoms is independently a hydroxy group, -CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms, and a carbon number of carbon atoms. It may be substituted with an alkylcarbonyl group of 1 to 5 or an alkyloxy group having 1 to 5 carbon atoms. * Indicates a bond.)
  4.  式(m-1)及び(m-2)で表される構造単位の合計含有量は、重合体(P)の全構造単位に対して、5~80モル%である、請求項1~3のいずれか一項に記載の重合体組成物。 Claims 1 to 3 that the total content of the structural units represented by the formulas (m-1) and (m-2) is 5 to 80 mol% with respect to the total structural units of the polymer (P). The polymer composition according to any one of the above.
  5.  前記重合体(P)がさらに下記式(v)で表される構造単位を有する請求項1~4のいずれか一項に記載の重合体組成物。
    Figure JPOXMLDOC01-appb-C000003
    (R、R、R、及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、-OC(=O)-R(Rは炭素数1~6のアルキル基を表す。)、-C(=O)-OR(Rは炭素数1~6のアルキル基を表す。)、-OR(Rは炭素数1~6のアルキル基を表す。)、又はフェニル基を表す。)
    The polymer composition according to any one of claims 1 to 4, wherein the polymer (P) further has a structural unit represented by the following formula (v).
    Figure JPOXMLDOC01-appb-C000003
    (R 3 , R 4 , R 5 and R 6 are independent hydrogen atoms, alkyl groups having 1 to 6 carbon atoms, and -OC (= O) -R (R is an alkyl having 1 to 6 carbon atoms). (Represents a group), -C (= O) -OR (R represents an alkyl group having 1 to 6 carbon atoms), -OR (R represents an alkyl group having 1 to 6 carbon atoms), or phenyl. Represents a group.)
  6.  前記有機溶媒が、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-2-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、及び4-ヒドロキシ-4-メチル-2-ペンタノンからなる群から選ばれる少なくとも1種である、請求項1~5のいずれか一項に記載の重合体組成物。 The organic solvent is N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl-2- The weight according to any one of claims 1 to 5, which is at least one selected from the group consisting of imidazolidinone, methylethylketone, cyclohexanone, cyclopentanone, and 4-hydroxy-4-methyl-2-pentanone. Combined composition.
  7.  重合体組成物における固形分濃度が1~10質量%である、請求項1~6のいずれか一項に記載の重合体組成物。 The polymer composition according to any one of claims 1 to 6, wherein the solid content concentration in the polymer composition is 1 to 10% by mass.
  8.  ポリアミック酸、ポリアミック酸エステル、ポリアミック酸-ポリアミック酸エステルコポリマー、ポリイミド、ポリアミック、ポリオルガノシロキサン、ポリ(メタ)アクリレート及びポリエステルからなる群から選ばれる少なくとも1種である重合体(Q)をさらに含有する、請求項1~7のいずれか一項に記載の重合体組成物。 It further contains a polymer (Q) which is at least one selected from the group consisting of polyamic acid, polyamic acid ester, polyamic acid-polyamic acid ester copolymer, polyimide, polyamic, polyorganosiloxane, poly (meth) acrylate and polyester. , The polymer composition according to any one of claims 1 to 7.
  9.  前記ポリアミック酸、ポリアミック酸エステル、又はポリアミック酸-ポリアミック酸エステルコポリマーが、ジアミン成分とテトラカルボン酸成分とを重合反応させることにより得られる、請求項8に記載の重合体組成物。 The polymer composition according to claim 8, wherein the polyamic acid, polyamic acid ester, or polyamic acid-polyamic acid ester copolymer is obtained by polymerizing a diamine component and a tetracarboxylic acid component.
  10.  ジアミン成分が、p-フェニレンジアミン、m-フェニレンジアミン、カルボキシ基を有するジアミン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、1,2-ビス(4-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,2-ビス(4-アミノフェノキシ)エタン、1,2-ビス(4-アミノ-2-メチルフェノキシ)エタン、1,3-ビス(4-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、光重合性基を末端に有するジアミン、ラジカル開始機能を有するジアミン、光照射により増感作用を示す光増感機能を有するジアミン、複素環を有するジアミン、ジフェニルアミン骨格を有するジアミン、基「-N(D)-」(Dは加熱によって脱離し水素原子に置き換わる保護基を表す。)を有するジアミン、オキサゾリン構造を有するジアミン、及び液晶の垂直配向性を発現させる構造を側鎖に有するジアミンから選ばれる少なくとも1種のジアミンを含む、請求項9に記載の重合体組成物。 The diamine component is p-phenylenediamine, m-phenylenediamine, diamine having a carboxy group, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 3,3'-diamino. Diphenyl ether, 1,2-bis (4-aminophenyl) ethane, 1,3-bis (4-aminophenyl) propane, 1,4-bis (4-aminophenyl) butane, 1,4-bis (4-amino) Phenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,2-bis (4-aminophenoxy) ethane, 1,2-bis (4-amino-2-methylphenoxy) ethane, 1,3 -Bis (4-aminophenoxy) propane, 1,4-bis (4-aminophenoxy) butane, 1,5-bis (4-aminophenoxy) pentane, 1,6-bis (4-aminophenoxy) hexane, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 4,4'-diamino-2,2'-bis (trifluoromethyl) biphenyl, 2,2'-bis [4- (4-aminophenoxy) phenyl] propane, 2,2'-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2'-bis (4-amino) Phenyl) propane, diamine having a photopolymerizable group at the end, diamine having a radical initiation function, diamine having a photosensitizing function showing a sensitizing effect by light irradiation, diamine having a heterocycle, diamine having a diphenylamine skeleton, group The side chain has a diamine having "-N (D)-" (D represents a protective group desorbed by heating and replacing a hydrogen atom), a diamine having an oxazoline structure, and a structure for expressing the vertical orientation of the liquid crystal. The polymer composition according to claim 9, which comprises at least one diamine selected from diamines.
  11.  テトラカルボン酸成分が、下記式(3)で表されるテトラカルボン酸二無水物またはその誘導体を含む、請求項9又は10に記載の重合体組成物。
    Figure JPOXMLDOC01-appb-C000004
    Xは下記(x-1)~(x-13)から選ばれる構造を表す。
    Figure JPOXMLDOC01-appb-C000005
    (R~Rは、それぞれ独立して、水素原子、メチル基、エチル基、プロピル基、塩素原子又はフェニル基を表す。R及びRは、それぞれ独立して、水素原子またはメチル基を表す。j及びkは、それぞれ独立に、0又は1を表す。A及びAは、それぞれ独立して、単結合、-O-、-CO-、-COO-、フェニレン、スルホニル基又はアミド基を表す。*1は一方の酸無水物基に結合する結合手を表し、*2は他方の酸無水物基に結合する結合手を表す。2つのAは同一であっても異なっていてもよい。)
    The polymer composition according to claim 9 or 10, wherein the tetracarboxylic acid component contains a tetracarboxylic dianhydride represented by the following formula (3) or a derivative thereof.
    Figure JPOXMLDOC01-appb-C000004
    X represents a structure selected from the following (x-1) to (x-13).
    Figure JPOXMLDOC01-appb-C000005
    (R 1 to R 4 independently represent a hydrogen atom, a methyl group, an ethyl group, a propyl group, a chlorine atom or a phenyl group. R 5 and R 6 independently represent a hydrogen atom or a methyl group, respectively. J and k each independently represent 0 or 1. A 1 and A 2 independently represent a single bond, -O-, -CO-, -COO-, phenylene, sulfonyl group or an amide group. * 1 represents a bond that binds to one of the anhydride groups, * 2 .2 one a 2 which represents a bond that binds to the other acid anhydride groups be the same or different May be.)
  12.  請求項1~11のいずれか一項に記載の重合体組成物を含む液晶配向剤。 A liquid crystal alignment agent containing the polymer composition according to any one of claims 1 to 11.
  13.  請求項12に記載の液晶配向剤を用いて形成されてなる液晶配向膜。 A liquid crystal alignment film formed by using the liquid crystal alignment agent according to claim 12.
  14.  請求項13に記載の液晶配向膜を具備する液晶表示素子。 A liquid crystal display element including the liquid crystal alignment film according to claim 13.
  15.  請求項1~11のいずれか一項に記載の重合体組成物又は請求項12に記載の液晶配向剤を、導電膜を有する一対の基板上に塗布して塗膜を形成し、液晶分子の層を介して前記塗膜が相対するように対向配置して液晶セルを形成し、前記一対の基板の有する導電膜間に電圧を印加した状態で前記液晶セルに光照射する、液晶表示素子の製造方法。 The polymer composition according to any one of claims 1 to 11 or the liquid crystal aligning agent according to claim 12 is applied onto a pair of substrates having a conductive film to form a coating film, and the liquid crystal molecules are formed. A liquid crystal display element that forms a liquid crystal cell by arranging the coating films so as to face each other via a layer, and irradiates the liquid crystal cell with light in a state where a voltage is applied between the conductive films of the pair of substrates. Production method.
PCT/JP2020/044726 2019-12-06 2020-12-01 Polymer composition, liquid crystal aligining agent, liquid crystal alignment film, liquid crystal display element, and method for producing liquid crystal display element WO2021112092A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080084129.9A CN114761487B (en) 2019-12-06 2020-12-01 Polymer composition, liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and method for manufacturing liquid crystal display element
JP2021562664A JPWO2021112092A1 (en) 2019-12-06 2020-12-01
KR1020227016625A KR20220112753A (en) 2019-12-06 2020-12-01 Polymer composition, liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display element, and manufacturing method of a liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019221597 2019-12-06
JP2019-221597 2019-12-06

Publications (1)

Publication Number Publication Date
WO2021112092A1 true WO2021112092A1 (en) 2021-06-10

Family

ID=76221670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044726 WO2021112092A1 (en) 2019-12-06 2020-12-01 Polymer composition, liquid crystal aligining agent, liquid crystal alignment film, liquid crystal display element, and method for producing liquid crystal display element

Country Status (5)

Country Link
JP (1) JPWO2021112092A1 (en)
KR (1) KR20220112753A (en)
CN (1) CN114761487B (en)
TW (1) TW202134299A (en)
WO (1) WO2021112092A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008071A1 (en) * 2021-07-29 2023-02-02 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04159269A (en) * 1990-10-23 1992-06-02 Asahi Denka Kogyo Kk New oxazoline compound
JPH06287222A (en) * 1993-03-31 1994-10-11 Tonen Corp Production of modified polyolefin
JP2002003528A (en) * 2000-04-18 2002-01-09 Tosoh Corp Method for producing thermoplastic resin composition
JP2005042083A (en) * 2003-07-08 2005-02-17 Tosoh Corp Method for manufacturing succinimide copolymer
JP2009516012A (en) * 2005-11-14 2009-04-16 チバ ホールディング インコーポレーテッド Production of functional cationic polymers and their production and application in personal care
JP2009084729A (en) * 2007-09-28 2009-04-23 Asahi Kasei Fibers Corp Knitted lace
JP2010043272A (en) * 1996-08-20 2010-02-25 Chevron Chem Co Cross-linked succinimides from an acid derivative, a polyamine and a polycarboxylic acid derivative
JP2010116475A (en) * 2008-11-12 2010-05-27 Adeka Corp New polymer and nonaqueous electrolyte secondary battery using the same
JP2013203973A (en) * 2012-03-29 2013-10-07 Jx Nippon Oil & Energy Corp Succinimide compound, lubricant additive and lubricant composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868722A (en) 1981-10-21 1983-04-23 Hitachi Ltd Liquid crystal display element
JP4175826B2 (en) 2002-04-16 2008-11-05 シャープ株式会社 Liquid crystal display
TWI627217B (en) * 2013-09-16 2018-06-21 日商住友電木股份有限公司 Amine treated maleic anhydride polymers, compositions and applications thereof
WO2015060357A1 (en) * 2013-10-23 2015-04-30 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04159269A (en) * 1990-10-23 1992-06-02 Asahi Denka Kogyo Kk New oxazoline compound
JPH06287222A (en) * 1993-03-31 1994-10-11 Tonen Corp Production of modified polyolefin
JP2010043272A (en) * 1996-08-20 2010-02-25 Chevron Chem Co Cross-linked succinimides from an acid derivative, a polyamine and a polycarboxylic acid derivative
JP2002003528A (en) * 2000-04-18 2002-01-09 Tosoh Corp Method for producing thermoplastic resin composition
JP2005042083A (en) * 2003-07-08 2005-02-17 Tosoh Corp Method for manufacturing succinimide copolymer
JP2009516012A (en) * 2005-11-14 2009-04-16 チバ ホールディング インコーポレーテッド Production of functional cationic polymers and their production and application in personal care
JP2009084729A (en) * 2007-09-28 2009-04-23 Asahi Kasei Fibers Corp Knitted lace
JP2010116475A (en) * 2008-11-12 2010-05-27 Adeka Corp New polymer and nonaqueous electrolyte secondary battery using the same
JP2013203973A (en) * 2012-03-29 2013-10-07 Jx Nippon Oil & Energy Corp Succinimide compound, lubricant additive and lubricant composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008071A1 (en) * 2021-07-29 2023-02-02 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Also Published As

Publication number Publication date
CN114761487A (en) 2022-07-15
CN114761487B (en) 2024-02-20
TW202134299A (en) 2021-09-16
JPWO2021112092A1 (en) 2021-06-10
KR20220112753A (en) 2022-08-11

Similar Documents

Publication Publication Date Title
JP6070958B2 (en) Novel diamine, polymer, liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display device using the same
JP5874590B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display element, polymer and compound
JP6447815B2 (en) Novel diamine, polymer, liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display device using the same
TWI519569B (en) A coating solution for forming a polyimide film, a liquid crystal aligning agent, a polyimide film, a liquid crystal alignment film, and a liquid crystal display element
JP2016057605A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
JPWO2018097155A1 (en) Liquid crystal display element manufacturing method, liquid crystal display element substrate, and liquid crystal display element assembly
JP6897791B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
WO2021112092A1 (en) Polymer composition, liquid crystal aligining agent, liquid crystal alignment film, liquid crystal display element, and method for producing liquid crystal display element
WO2020148953A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal element
WO2021112095A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element and method for producing liquid crystal display element
TW202311504A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2014092170A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
TW201945526A (en) Novel liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
JP7497782B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
TWI830451B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2024111498A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2023032753A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2022191063A (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element, polymer and compound
WO2022250007A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, diamine, and polymer
TW202409152A (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2023074570A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2023074216A (en) Liquid crystal alignment agent, liquid crystal alignment film and manufacturing method thereof, and liquid crystal element
TW202200721A (en) Polyimide varnish
WO2022176713A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and polymer-dispersed liquid crystal element
TW202328410A (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20895188

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021562664

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20895188

Country of ref document: EP

Kind code of ref document: A1