WO2021109435A1 - 一种低噪声保偏虚拟环形腔单频光纤激光器 - Google Patents

一种低噪声保偏虚拟环形腔单频光纤激光器 Download PDF

Info

Publication number
WO2021109435A1
WO2021109435A1 PCT/CN2020/087492 CN2020087492W WO2021109435A1 WO 2021109435 A1 WO2021109435 A1 WO 2021109435A1 CN 2020087492 W CN2020087492 W CN 2020087492W WO 2021109435 A1 WO2021109435 A1 WO 2021109435A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
maintaining
fiber
optical fiber
low
Prior art date
Application number
PCT/CN2020/087492
Other languages
English (en)
French (fr)
Inventor
路桥
杨润兰
张罗俊
Original Assignee
南京先进激光技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京先进激光技术研究院 filed Critical 南京先进激光技术研究院
Publication of WO2021109435A1 publication Critical patent/WO2021109435A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10061Polarization control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/136Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity
    • H01S3/137Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity for stabilising of frequency

Definitions

  • the invention relates to the technical field of fiber lasers, in particular to a low-noise polarization-maintaining virtual ring cavity single-frequency fiber laser.
  • Low-noise single-frequency lasers have broad application prospects in precision measurement fields such as lidars, atomic clocks, and gravitational wave detection due to their advantages of narrow line width and good coherence. With the continuous improvement of measurement accuracy requirements in the field of precision measurement, people continue to pursue single-frequency lasers with lower noise and better environmental stability.
  • Short-cavity fiber laser is one of the main solutions to achieve low-noise single-frequency laser output, and it has been widely used in engineering practice.
  • GA Ball and others of the United States Joint Technology Research Center reported for the first time the realization of a single-frequency short-cavity fiber laser and disclosed a cavity structure scheme [IEEE Photonics Technology Letters, 1991.3(7): p.613 -615.], but limited by the manufacturing process level of key components at this time, especially high-gain fibers, the stability, noise and power of the laser are all at a relatively low level.
  • fiber laser technology in 2004, Alexandria University and NP Photonics Co., Ltd.
  • the narrow linewidth single-frequency fiber lasers provided by the above documents and invention patents all have a spatial hole burning effect in their gain fibers, and can only achieve a linewidth output of the order of kHz.
  • South China University of Technology applied for an ultra-narrow linewidth, low-noise, high-power single-frequency fiber laser [Publication No.: CN 102306897 A], which imposed power requirements on its cavity structure.
  • the linearly polarized laser light becomes circularly polarized light after passing, thereby eliminating the cavity
  • the standing wave formed by the interference of the oppositely transmitted light in the inner optical fiber is constructive.
  • Polarized fiber laser has the advantages of environmental stability and high polarization contrast.
  • the technical problem to be solved by the present invention is to provide a low-noise polarization-maintaining virtual ring cavity single-frequency fiber laser, which can eliminate the polarization rotation of the laser in the fiber, so that the laser always maintains the linear polarization state in the fiber in the cavity, thereby improving the laser
  • the environment is stable, and at the same time, it can eliminate the noise introduced by the spatial hole burning of the standing wave cavity, and realize the stable low-noise single-frequency laser output.
  • the present invention provides a low-noise polarization-maintaining virtual ring cavity single-frequency fiber laser, including: a single-mode semiconductor laser pump source 1, a polarization-maintaining fiber isolator 2, a polarization-maintaining wavelength division multiplexer 3, Low reflection output polarization maintaining fiber grating 4, narrow linewidth polarization maintaining fiber grating 5, fiber launching collimator 6, Faraday rotator 7, fiber receiving collimator 8, high gain polarization maintaining fiber 9 and fiber end face high reflection film 10 ;
  • the single-mode semiconductor laser pump source 1 is connected to the pump input end of the polarization-maintaining wavelength division multiplexer 3, and the polarization-maintaining fiber isolator 2 and the polarization-maintaining wavelength division multiplexer 3 are connected through the ends to output single-frequency laser, low reflection
  • the output polarization maintaining fiber grating 4 and the narrow linewidth polarization maintaining fiber grating 5 are effectively
  • the slow axis of the optical fiber transmitting collimator 6 and the optical fiber receiving collimator 8 are mutually formed at 45°, the working distance is 2-10mm, the spot diameter is less than 2mm, and the coupling loss is less than 0.3dB.
  • the Faraday rotator 7 can rotate the polarization axis of the incident ray to the left or right by 45°.
  • the high gain polarization maintaining fiber 9 is a common rare earth doped silicate or phosphate single-mode polarization maintaining glass fiber, and the doped particles are lanthanide ions such as Er 3+ , Yb 3+ , Tm 3+ , Gd 3 + , Tb 3+ , Dy 3+ , Ho 3+ or Lu 3+ , the core diameter is 5-15 ⁇ m, and the length is less than 5cm.
  • the low reflection output polarization maintaining fiber grating 4 and the narrow linewidth polarization maintaining fiber grating 5 are effectively written on the slow and fast axis of the same polarization maintaining fiber, and the 3dB reflection spectrum width is less than 0.1nm, and the center wavelength of the two is matched. , The difference is less than 0.04nm, the reflectivity of the low-reflection output polarization-maintaining fiber grating 4 is between 40% and 85%, and the reflectivity of the narrow-linewidth polarization-maintaining fiber grating 5 is higher than 70%.
  • the fiber end face high reflection film 10 is plated on the end face of the high gain polarization maintaining fiber, the reflection bandwidth is greater than 5nm, the working center wavelength is similar to the reflection center wavelength of the low reflection output polarization maintaining fiber grating 4, the difference is less than 1nm, and the reflectivity is greater than 85% .
  • connection between all the optical fibers is a slow axis aligned fusion splicing.
  • the present invention uses non-reciprocal magneto-optical rotation technology to construct a virtual ring cavity in a short straight cavity structure, which not only maintains the linear polarization working mode of the laser in the cavity environment, but also eliminates space hole burning.
  • Noise it can produce a single-frequency fiber laser with ultra-narrow linewidth (better than 1kHz) and polarization-maintaining output; eliminate the polarization rotation of the laser in the fiber, so that the laser always maintains the linear polarization state in the fiber in the cavity, thereby improving
  • the environmental stability of the laser can eliminate the noise introduced by the spatial hole burning of the standing wave cavity, and realize the stable low-noise single-frequency laser output.
  • Figure 1 is a schematic diagram of the fiber laser structure of the present invention.
  • Fig. 2 is a schematic diagram of the slow axis alignment mode of the pigtail of the optical fiber transmitting and receiving collimator of the present invention.
  • a low-noise polarization-maintaining virtual ring cavity single-frequency fiber laser includes: single-mode semiconductor laser pump source 1, polarization-maintaining fiber isolator 2, polarization-maintaining wavelength division multiplexer 3, low reflection output Polarization-maintaining fiber grating 4, narrow-linewidth polarization-maintaining fiber grating 5, fiber launching collimator 6, Faraday rotator 7, fiber receiving collimator 8, high-gain polarization-maintaining fiber 9 and fiber end-face high-reflection film 10.
  • the single-mode semiconductor laser pump source 1 is connected to the pump input end of the polarization-maintaining wavelength division multiplexer 3, and the passing end of the polarization-maintaining wavelength division multiplexer 2 is connected to the input end of the polarization-maintaining fiber isolator 2.
  • the common end of the multiplexer 2 is connected to the low reflection output PM fiber grating 4, the low reflection output PM fiber grating 4 is connected to the narrow linewidth PM fiber grating 5, and the narrow linewidth PM fiber grating 5 is collimated with the fiber launch
  • the fiber-receiving collimator 8 is connected via the Faraday rotator 7 and the fiber-receiving collimator 8 is then connected to the high-gain polarization-maintaining fiber 9.
  • the other end of the high-gain polarization-maintaining fiber 9 is coated with a high-reflection film 10 on the fiber end surface.
  • the connections between all the above-mentioned optical fibers are slow-axis alignment fusion splicing.
  • the slow axis of the pigtails of the fiber launching collimator 6 and the collimator fiber receiving collimator 8 intersect at 45° and are aligned and coupled.
  • the alignment method is shown in Figure 2. Shown.
  • the single-mode semiconductor laser pump source 1 has a central wavelength of 976nm and is output by a single-mode fiber pigtail.
  • the power is generally greater than 400mW; the polarization-maintaining wavelength division multiplexer 3 works at 976/1064nm, the working bandwidth is generally greater than 10nm, and the fast axis is cut off.
  • the insertion loss through and pump input to the common end is less than 0.8dB;
  • the reflection center wavelength of the coupled output polarization-maintaining fiber grating 4 is 1064nm, the bandwidth is 0.05nm, the reflectivity is 60%, and it is effectively written on the PM980 polarization-maintaining
  • the reflection center wavelength of the low reflection narrow linewidth fiber grating 5 is 1063.98nm, the bandwidth is 0.05nm, and the reflectivity is 80%. It is effectively written on the fast axis of the same polarization-maintaining fiber; then use this polarization-maintaining fiber.
  • the other end of the fiber is made of fiber launching collimator 6;
  • Faraday rotator 7 has a working center wavelength of 1064, and the insertion loss is less than 0.3dB;
  • fiber receiving collimator is made of one end of high gain polarization maintaining fiber 9;
  • high gain polarization maintaining fiber 9 is Panda type polarization-maintaining fiber, the doped particles are Yb 3+ ions, the matrix is silicate glass, the absorption is higher than 250dB/m at the wavelength of 976nm, and the length is less than 3cm;
  • the high-reflection film 10 on the fiber end is plated on the high-gain polarization-maintaining fiber 9
  • the working wavelength is 1064nm, the reflectivity is higher than 95%, and the reflection bandwidth is greater than 10nm;
  • the polarization-maintaining fiber isolator 2 has a working wavelength of 1064nm, the insertion loss is less than 1.5dB, and the fast axi
  • the invention utilizes the non-reciprocal optical rotation property of the Faraday rotator to make the laser run in a traveling wave mode in the short straight cavity formed by the polarization-maintaining fiber.
  • the rotation direction of the polarization axis of the incident ray polarized light by the Faraday rotator is independent of the light transmission direction. That is, it is always left-handed 45° along the light transmission direction (or right-handed 45°, which is related to the direction of the magnetic field). In this way, the linearly polarized light passes through the Faraday rotator four times to restore the original polarization state and complete a cycle of operation in the cavity.
  • the specific process is as follows: Under the pumping of the single-mode semiconductor laser pump source, the population inversion occurs in the high-gain polarization-maintaining fiber, and spontaneous radiation occurs.
  • the spontaneous radiation within the reflection bandwidth of the low-reflection narrow-linewidth fiber grating is Reflected, the reflected light is linearly polarized light, which is transmitted along the slow axis of the optical fiber.
  • the double-pass stimulated amplification is obtained in the high-gain polarization-maintaining fiber, and the polarization axis is rotated by 45° after passing through the Faraday rotator for the second time.
  • the polarization state of the amplified light and the initial light are orthogonal to each other .
  • the polarization axis is rotated again by 45°, thus in the fast axis of the high-gain polarization maintaining fiber
  • the upper is double-pass amplified, and after the fourth pass through the Faraday rotator, the polarization axis of the transmitted light is restored to be aligned with the slow axis of the fiber launch collimator pigtail, completing a cycle of operation.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

一种低噪声保偏虚拟环形腔单频光纤激光器,包括:单模半导体激光泵浦源(1)、保偏光纤隔离器(2)、保偏波分复用器(3)、低反射输出保偏光纤光栅(4)、窄线宽保偏光纤光栅(5)、光纤发射准直器(6)、法拉第旋光器(7)、光纤接收准直器(8)、高增益保偏光纤(9)和光纤端面高反膜(10)。在短直腔结构中利用非互易的磁致旋光技术构建虚拟环形腔,既保持了激光在腔内环境稳定的线偏振工作方式,又消除了空间烧孔噪声,因而能产生超窄线宽且保偏输出的单频光纤激光;消除激光在光纤中的偏振旋转,使得激光在腔内光纤中一直保持线偏振态,从而提高激光器的环境稳定性,同时又可消除驻波腔的空间烧孔引入的噪声,实现环境稳定的低噪声单频激光输出。

Description

一种低噪声保偏虚拟环形腔单频光纤激光器 技术领域
本发明涉及光纤激光器技术领域,尤其是一种低噪声保偏虚拟环形腔单频光纤激光器。
背景技术
低噪声单频激光因线宽窄、相干性好等优势而在激光雷达、原子钟、引力波探测等精密测量领域有着广阔的应用前景。随着精密测量领域的测量精度要求不断提高,人们不断追求更低噪声,环境稳定性更好的单频激光。
短腔型光纤激光器是实现低噪声单频激光输出的主要方案之一,已经在工程实践中得到了大量的应用。早在1991年,美国联合技术研究中心的G.A.Ball等人就首次报道了单频短腔光纤激光器的实现方法并公开了一种腔结构方案[IEEE Photonics Technology Letters,1991.3(7):p.613-615.],但是受限于此时的关键器件特别是高增益光纤的制作工艺水平,激光器的稳定性、噪声和功率均处在较低水平。随着光纤激光技术的发展,2004年,美国亚历山大大学和NP光子公司在超窄线宽单频光纤激光研究方面申请了稀土掺杂磷酸盐玻璃单模光纤激光器[专利号:US 6816514 B2]和高功率窄线宽单频光纤激光器[公开号:US 2004/0240508 A1]两个专利,对几种稀土掺杂磷酸盐玻璃单模光纤,并对部分腔型结构进行了权利要求。2008年,华南理工大学在超窄线宽单频光纤激光研究方面申请了一种低噪声窄线宽高功率的单纵模光纤激光器[专利号:200810220661.X]专利,对其腔型结构及保偏的稀土掺杂磷酸盐玻璃单模光纤进行了权利要求。以上文献及发明专利提供的窄线宽单频光纤激光器,其增益光纤均存在空间烧孔效应,且只能实现kHz量级的线宽输出。2011年,华南理工大学申请了一种超窄线宽低噪声高功率单频光纤激光器[公布号:CN 102306897 A],对其腔型结构进行了权力要求,该专利提出了采用偏振旋转技术在短直腔结构中构建折叠复合腔及双虚拟环形腔以消除空间烧孔效应引入的噪声,通过在腔内引入1/4波片使得线偏振激光在通过后变为圆偏振光,从而消除腔内光纤中对向传输光发生干涉相长所形成的驻波。
然而,由于圆偏振光在光纤中传输时的偏振态在旋转演化,所以激光状态对光纤长度的变化十分敏感,环境的振动和热噪声均会对激光的稳定性造成不利影响,破环了保偏光纤型激光器的环境稳定性和高偏振对比度优势。
发明内容
本发明所要解决的技术问题在于,提供一种低噪声保偏虚拟环形腔单频光纤激光器,能够消除激光在光纤中的偏振旋转,使得激光在腔内光纤中一直保持线偏振态,从而提高激光器的环境稳定性,同时又可消除驻波腔的空间烧孔引入的噪声,实现环境稳定的低噪声单频激光输出。
为解决上述技术问题,本发明提供一种低噪声保偏虚拟环形腔单频光纤激光器,包括:单模半导体激光泵浦源1、保偏光纤隔离器2、保偏波分复用器3、低反射输出保偏光纤光栅4、窄线宽保偏光纤光栅5、光纤发射准直器6、法拉第旋光器7、光纤接收准直器8、高增益保偏光纤9和光纤端面高反膜10;单模半导体激光泵浦源1与保偏波分复用器3的泵浦输入端连接,保偏光纤隔离器2与保偏波分复用器3通过端相连输出单频激光,低反射输出保偏光纤光栅4和窄线宽保偏光纤光栅5分别有效刻写在同一条保偏光纤的慢/快轴上,窄线宽保偏光纤光栅5的另一端与光纤发射准直器6相连,光纤发射准直器6的发射光经过法拉第旋光器7后由光纤接收准直器8接收,光纤接收准直器8与高增益保偏光纤9相连,所述光纤端面高反膜10镀在高增益光纤端面上。
优选的,光纤发射准直器6和光纤接收准直器8,慢轴互成45°,工作距离均处于2~10mm,光斑直径小于2mm,耦合损耗小于0.3dB。
优选的,法拉第旋光器7可将入射线偏振光振动轴左旋或右旋45°。
优选的,高增益保偏光纤9是普通的稀土掺杂硅酸盐或磷酸盐单模保偏玻璃光纤,掺杂粒子为镧系离子为Er 3+,Yb 3+,Tm 3+,Gd 3+,Tb 3+,Dy 3+,Ho 3+或Lu 3+,纤芯直径5~15μm,长度小于5cm。
优选的,低反射输出保偏光纤光栅4和窄线宽保偏光纤光栅5分别有效刻写在同一条保偏光纤的慢和快轴上,3dB反射谱宽均小于0.1nm,两者中心波长匹配,差量小于0.04nm,低反射输出保偏光纤光栅4的反射率均处于40%~85%之间,窄线宽保偏光纤光栅5的反射率高于70%以上。
优选的,光纤端面高反膜10镀在高增益保偏光纤端面,反射带宽大于5nm,工作中心波长与低反射输出保偏光纤光栅4反射中心波长相近,差量小于1nm,反射率大于85%。
优选的,所有光纤之间的连接为慢轴对准熔接。
本发明的有益效果为:本发明在短直腔结构中利用非互易的磁致旋光技术构建虚拟环形腔,既保持了激光在腔内环境稳定的线偏振工作方式,又消除了空间烧孔噪声,因 而能产生超窄线宽(优于1kHz量级)且保偏输出的单频光纤激光;消除激光在光纤中的偏振旋转,使得激光在腔内光纤中一直保持线偏振态,从而提高激光器的环境稳定性,同时又可消除驻波腔的空间烧孔引入的噪声,实现环境稳定的低噪声单频激光输出。
附图说明
图1为本发明的光纤激光器结构示意图。
图2为本发明光纤发射与接收准直器尾纤慢轴对准方式示意图。
具体实施方式
如图1所示,一种低噪声保偏虚拟环形腔单频光纤激光器,包括:单模半导体激光泵浦源1、保偏光纤隔离器2、保偏波分复用器3、低反射输出保偏光纤光栅4、窄线宽保偏光纤光栅5、光纤发射准直器6、法拉第旋光器7、光纤接收准直器8、高增益保偏光纤9和光纤端面高反膜10。单模半导体激光泵浦源1与保偏波分复用器3的泵浦输入端连接,保偏波分复用器2的通过端与保偏光纤隔离器2输入端相连,保偏波分复用器2的公共端与低反射输出保偏光纤光栅4连接,低反射输出保偏光纤光栅4与窄线宽保偏光纤光栅5连接,窄线宽保偏光纤光栅5与光纤发射准直器6连接,经由法拉第旋转器7连接光纤接受准直器8,光纤接受准直器8再与高增益保偏光纤9连接,高增益保偏光纤9另一端镀光纤端面高反膜10。以上所述所有光纤之间的连接为慢轴对准熔接,光纤发射准直器6和准直器光纤接受准直器8的尾纤慢轴相交45°对准耦合,对准方式如图2所示。
单模半导体激光泵浦源1中心波长976nm,由单模光纤尾纤输出,功率一般大于400mW;保偏波分复用器3为工作方式为976/1064nm,工作带宽一般大于10nm,快轴截止,通过和泵浦输入端到公共端插损均小于0.8dB;耦合输出保偏光纤光栅4的反射中心波长为1064nm,带宽为0.05nm,反射率60%,有效刻写在型号为PM980的保偏光纤的慢轴上,低反射窄线宽光纤光栅5的反射中心波长为1063.98nm,带宽为0.05nm,反射率80%,有效刻写在同一根保偏光纤的快轴上;再使用该保偏光纤的另一端制作光纤发射准直器6;法拉第旋光器7工作中心波长1064,***损耗小于0.3dB;光纤接收准直器使用高增益保偏光纤9的一端制作;高增益保偏光纤9为熊猫型保偏光纤,掺杂粒子为Yb 3+离子,基质为硅酸盐玻璃,976nm波长处吸收高于250dB/m,长度小于3cm;光纤端高反膜10镀在高增益保偏光纤9的另一端,工作波长1064nm,反射率高于95%,反射带宽大于10nm;保偏光纤隔离器2工作波长1064nm,***损耗小于1.5dB,快轴 截止。增大单模半导体激光泵浦源1至足够高的功率,可以从保偏光纤隔离器2输出稳定的高对比度的偏振1064nm单频激光。
本发明利用法拉第旋光器的非互易旋光性质,在保偏光纤构成的短直腔中使得激光按照行波方式运转,法拉第旋光器对入射线偏振光偏振轴的旋转方向与光传输方向无关,即始终保持沿着光传输方向左旋45°(或者是右旋45°,与磁场方向有关)。这样,线偏振光四次经过法拉第旋光器可恢复初始偏振态,在腔内完成一个周期运转。具体过程如下:在单模半导体激光泵浦源的抽运下,高增益保偏光纤中发生粒子数反转,出现自发辐射,在低反射窄线宽光纤光栅的反射带宽内的自发辐射光被反射,反射光为线偏振光,沿着光纤慢轴传输,第一次经过法拉第旋光器后其偏振轴旋转45°,通过光纤接收准直器进入高增益保偏光纤的慢轴传输,在光纤端面高反膜的反射下,在高增益保偏光纤中得到双程受激放大,第二次通过法拉第旋光器后偏振轴再旋转45°,此时的放大光与初始光偏振态相互正交,从而在光纤发射准直器尾纤中沿着快轴传输,经过输出耦合反射镜的反射,第三次通过法拉第旋光器,偏振轴再次旋转45°,从而在高增益保偏光纤的快轴上被双程放大,第四次通过法拉第旋光器后,传输光的偏振轴恢复到和光纤发射准直器尾纤慢轴对准,完成了一个周期的运转。可见,随着抽运功率的提高,腔内的增益增大至等于损耗,激光起振。由于短直腔的自由光谱程较大,在与窄线宽低反保偏光纤光栅共同的滤波作用配合下输出单个纵模的单频低噪声激光。

Claims (7)

  1. 一种低噪声保偏虚拟环形腔单频光纤激光器,其特征在于,包括:单模半导体激光泵浦源(1)、保偏光纤隔离器(2)、保偏波分复用器(3)、低反射输出保偏光纤光栅(4)、窄线宽保偏光纤光栅(5)、光纤发射准直器(6)、法拉第旋光器(7)、光纤接收准直器(8)、高增益保偏光纤(9)和光纤端面高反膜(10);单模半导体激光泵浦源(1)与保偏波分复用器(3)的泵浦输入端连接,保偏光纤隔离器(2)与保偏波分复用器(3)通过端相连输出单频激光,低反射输出保偏光纤光栅(4)和窄线宽保偏光纤光栅(5)分别有效刻写在同一条保偏光纤的慢/快轴上,窄线宽保偏光纤光栅(5)的另一端与光纤发射准直器(6)相连,光纤发射准直器(6)的发射光经过法拉第旋光器(7)后由光纤接收准直器(8)接收,光纤接收准直器(8)与高增益保偏光纤(9)相连,所述光纤端面高反膜(10)镀在高增益光纤端面上。
  2. 如权利要求1所述的低噪声保偏虚拟环形腔单频光纤激光器,其特征在于,光纤发射准直器(6)和光纤接收准直器(8),慢轴互成45°,工作距离均处于2~10mm,光斑直径小于2mm,耦合损耗小于0.3dB。
  3. 如权利要求1所述的低噪声保偏虚拟环形腔单频光纤激光器,其特征在于,法拉第旋光器(7)可将入射线偏振光振动轴左旋或右旋45°。
  4. 如权利要求1所述的低噪声保偏虚拟环形腔单频光纤激光器,其特征在于,高增益保偏光纤(9)是普通的稀土掺杂硅酸盐或磷酸盐单模保偏玻璃光纤,掺杂粒子为镧系离子为Er 3+,Yb 3+,Tm 3+,Gd 3+,Tb 3+,Dy 3+,Ho 3+或Lu 3+,纤芯直径5~15μm,长度小于5cm。
  5. 如权利要求1所述的低噪声保偏虚拟环形腔单频光纤激光器,其特征在于,低反射输出保偏光纤光栅(4)和窄线宽保偏光纤光栅(5)分别有效刻写在同一条保偏光纤的慢和快轴上,3dB反射谱宽均小于0.1nm,两者中心波长匹配,差量小于0.04nm,低反射输出保偏光纤光栅(4)的反射率均处于40%~85%之间,窄线宽保偏光纤光栅(5)的反射率高于70%以上。
  6. 如权利要求1所述的低噪声保偏虚拟环形腔单频光纤激光器,其特征在于,光纤端面高反膜(10)镀在高增益保偏光纤端面,反射带宽大于5nm,工作中心波长与低反射输出保偏光纤光栅(4)反射中心波长相近,差量小于1nm,反射率大于85%。
  7. 如权利要求1所述的低噪声保偏虚拟环形腔单频光纤激光器,其特征在于,所有光纤之间的连接为慢轴对准熔接。
PCT/CN2020/087492 2019-12-04 2020-04-28 一种低噪声保偏虚拟环形腔单频光纤激光器 WO2021109435A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911226407.5 2019-12-04
CN201911226407.5A CN110797738A (zh) 2019-12-04 2019-12-04 一种低噪声保偏虚拟环形腔单频光纤激光器

Publications (1)

Publication Number Publication Date
WO2021109435A1 true WO2021109435A1 (zh) 2021-06-10

Family

ID=69447356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087492 WO2021109435A1 (zh) 2019-12-04 2020-04-28 一种低噪声保偏虚拟环形腔单频光纤激光器

Country Status (2)

Country Link
CN (1) CN110797738A (zh)
WO (1) WO2021109435A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110797738A (zh) * 2019-12-04 2020-02-14 南京先进激光技术研究院 一种低噪声保偏虚拟环形腔单频光纤激光器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6574394B1 (en) * 1996-08-23 2003-06-03 Pirelli Cavi E Sistemi S.P.A. Optical fibre grating and optical fiber transmission system using such optical fiber grating
US20110129180A1 (en) * 2009-12-01 2011-06-02 Advalue Photonics, Inc. Highly rare-earth doped fiber array
CN102270810A (zh) * 2011-05-10 2011-12-07 清华大学 一种降低光纤放大器中非线性效应并实现环境稳定的方法
CN102306897A (zh) * 2011-08-22 2012-01-04 华南理工大学 一种超窄线宽低噪声高功率单频光纤激光器
CN103236629A (zh) * 2013-04-24 2013-08-07 广东汉唐量子光电科技有限公司 一种偏振稳定的光纤激光级联放大器
CN104092086A (zh) * 2014-06-18 2014-10-08 华南理工大学 一种超窄线宽单频调q脉冲光纤激光器
CN104466636A (zh) * 2014-11-30 2015-03-25 华南理工大学 一种单频调q脉冲光纤激光器
CN110797738A (zh) * 2019-12-04 2020-02-14 南京先进激光技术研究院 一种低噪声保偏虚拟环形腔单频光纤激光器
CN210779477U (zh) * 2019-12-04 2020-06-16 南京先进激光技术研究院 一种低噪声保偏虚拟环形腔单频光纤激光器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6574394B1 (en) * 1996-08-23 2003-06-03 Pirelli Cavi E Sistemi S.P.A. Optical fibre grating and optical fiber transmission system using such optical fiber grating
US20110129180A1 (en) * 2009-12-01 2011-06-02 Advalue Photonics, Inc. Highly rare-earth doped fiber array
CN102270810A (zh) * 2011-05-10 2011-12-07 清华大学 一种降低光纤放大器中非线性效应并实现环境稳定的方法
CN102306897A (zh) * 2011-08-22 2012-01-04 华南理工大学 一种超窄线宽低噪声高功率单频光纤激光器
CN103236629A (zh) * 2013-04-24 2013-08-07 广东汉唐量子光电科技有限公司 一种偏振稳定的光纤激光级联放大器
CN104092086A (zh) * 2014-06-18 2014-10-08 华南理工大学 一种超窄线宽单频调q脉冲光纤激光器
CN104466636A (zh) * 2014-11-30 2015-03-25 华南理工大学 一种单频调q脉冲光纤激光器
CN110797738A (zh) * 2019-12-04 2020-02-14 南京先进激光技术研究院 一种低噪声保偏虚拟环形腔单频光纤激光器
CN210779477U (zh) * 2019-12-04 2020-06-16 南京先进激光技术研究院 一种低噪声保偏虚拟环形腔单频光纤激光器

Also Published As

Publication number Publication date
CN110797738A (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
CN102306897B (zh) 一种超窄线宽低噪声高功率单频光纤激光器
US7907334B2 (en) High power fiber chirped pulse amplification system utilizing telecom-type components
US6700697B2 (en) Reflective erbium-doped amplifier
WO2020155696A1 (zh) 一种多波长单频调q光纤激光器
CN105470791B (zh) 基于二维纳米材料锁模的空间结构光纤激光器
US20130329280A1 (en) Fiber-amplifiers with all-fiber optical isolator
WO2021109435A1 (zh) 一种低噪声保偏虚拟环形腔单频光纤激光器
CN113783091B (zh) 一种光纤隔离器
CN109038194B (zh) 一种双端输出功率可调的线性腔全光纤激光振荡器
CN210779477U (zh) 一种低噪声保偏虚拟环形腔单频光纤激光器
CN104092095A (zh) 一种高稳定超窄线宽单频光纤激光器
CN203871645U (zh) 一种低噪声保偏单频光纤激光器
CN109560453B (zh) 基于sbs和法布里珀罗干涉仪的被动调q锁模环形激光器
JP4194763B2 (ja) 偏光および波長の安定した超蛍光ソース
CN111129937A (zh) 一种窄带皮秒锁模光纤激光器
JP3228451B2 (ja) 光ファイバ増幅器
US5734667A (en) Polarization-stable laser
CN113241578A (zh) 基于相位偏置非线性偏振旋转锁模光纤激光器及实现方法
CN202217906U (zh) 一种超窄线宽低噪声高功率单频光纤激光器
CN113937601A (zh) 一种单偏振态、单纵模光纤激光器
CN103825180B (zh) 一种低噪声保偏单频光纤激光器
CN100384036C (zh) 光纤偏振超荧光光源
CN214589674U (zh) 基于相位偏置非线性偏振旋转锁模光纤激光器
JPH01297874A (ja) 光ファイバレーザ装置
CN216289479U (zh) 一种多程放大复用保偏ase光源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20896950

Country of ref document: EP

Kind code of ref document: A1