WO2021109328A1 - 一种液态熔渣余热回收*** - Google Patents

一种液态熔渣余热回收*** Download PDF

Info

Publication number
WO2021109328A1
WO2021109328A1 PCT/CN2020/072570 CN2020072570W WO2021109328A1 WO 2021109328 A1 WO2021109328 A1 WO 2021109328A1 CN 2020072570 W CN2020072570 W CN 2020072570W WO 2021109328 A1 WO2021109328 A1 WO 2021109328A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
granulation
flow control
flue gas
outlet
Prior art date
Application number
PCT/CN2020/072570
Other languages
English (en)
French (fr)
Inventor
王树众
吴志强
马琛
赵军
肖照宇
李美全
徐宁文
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Publication of WO2021109328A1 publication Critical patent/WO2021109328A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • C21B3/08Cooling slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/08Treatment of slags originating from iron or steel processes with energy recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Definitions

  • the invention relates to the technical field of blast furnace slag waste heat recovery, in particular to a liquid slag waste heat recovery system.
  • dry treatment not only saves a lot of water resources, but also hardly releases harmful gases such as H 2 S and SO 2. It has significant economic and environmental performance and has been highly valued in the industry.
  • dry recovery methods based on centrifugal granulation technology are mostly based on laboratory and small-scale trials. It is necessary to fully consider the operation mode of blast furnace and other metallurgical equipment and the situation of the industrial site to carry out corresponding work.
  • the slagging method of the blast furnace is mostly intermittent slagging.
  • a slag buffering device In order to ensure the stable operation of the dry granulation system, a slag buffering device must be considered.
  • a liquid slag buffer device with accident handling function is needed to ensure that the entire system has the ability to deal with accidents, to ensure the safety of operators and the safety of other supporting systems on the site; in addition, it is necessary to fully consider centrifugation Removal of slag and cotton in the granulation process, efficient recovery of waste heat and corresponding control and operation. For this reason, it is necessary to develop a modular and flexible system for recovering the waste heat of liquid slag and corresponding control methods according to the operating characteristics of the blast furnace.
  • the present invention provides a liquid slag waste heat recovery device to ensure the stable operation of the dry centrifugal granulation system and effectively improve the waste heat recovery efficiency.
  • a liquid slag waste heat recovery system includes a slag buffer device 1, a flow control device 2, a centrifugal granulation device 3, and a moving bed device 4; one end of the slag buffer device 1 is connected to the slag trench, and the slag buffer device 1 The other end is connected with the inlet end of the flow control device 2, the outlet end of the flow control device 2 is connected with the inlet end of the centrifugal granulation device 3, and the outlet end of the centrifugal granulation device 3 is connected with the moving bed device 4.
  • the slag buffer device 1 includes a slag ladle body 11 and a slag ladle cover 12; the slag ladle cover 12 is sealed and arranged above the slag ladle body 11, and a slag ladle inner cavity 13 is formed between the slag ladle cover 12 and the slag ladle body 11;
  • One end of the slag bag body 11 is provided with a slag inlet 111, the other end is provided with an accident slag outlet 114, the slag inlet 111 is used to connect with the slag ditch, and the accident slag outlet 114 is used to connect with the accident diversion tank;
  • the side wall of the main body 11 is provided with a slag outlet 112, and a slag outlet 112 is provided with a slag nozzle.
  • One end of the slag nozzle is connected with the slag ladle cavity 13, and the other end is connected with the flow control device 2; the accident slag outlet A peep hole 113 is provided above 114; the bottom plate of the slag bag body 11 is inclined from the slag inlet end to the accident slag outlet end;
  • a burner inlet 121 is provided on one side of the slag ladle cover 12, and the burner inlet 121 is used for installing the burner 5; the other side of the slag ladle cover 12 is provided with a high-temperature flue gas outlet 122, and the high-temperature flue gas outlet 122 passes through the high-temperature flue gas channel 14 is connected to the flow control device 2.
  • the flow control device 2 includes an upper sealing cover 21, a device bottom plate 22, a slag pipe 23, a weir plate 24, and a stopper 25; the upper sealing cover 21 is sealed on the device bottom plate 22 and connected to the slag buffer device 1; the upper part is sealed
  • the side wall of the cover 21 is provided with a stopper rod operating port 211, an inspection inlet 212 and a high-temperature flue gas inlet 213.
  • the stopper rod 25 is installed on the stopper rod operating port 211, and one end of the stopper rod 25 is used to connect with the slag outlet 112, The other end is connected to the outside of the upper sealing cover 21; the high-temperature flue gas inlet 213 is connected to the outlet end of the high-temperature flue gas channel 14;
  • the bottom of the device bottom plate 22 is provided with a slag hole 221, one end of the slag pipe 23 is connected to the slag hole 221, and the other end is connected to the centrifugal granulation device 3; the upper end of the slag pipe 23 is provided with a weir 24; A slag discharge port 222 is provided on one side, and the slag discharge port 222 is connected with the accident diversion tank, and the bottom of the device bottom plate 22 is inclined.
  • the top of the upper sealing cover 21 is provided with a radar level gauge and an infrared thermometer.
  • the granulation device 3 includes a granulation warehouse 31, a flue gas annular header 32, a granulator 33, a heat exchange tube bundle 34, a granulation air distribution pipe 35 and a collecting flue 37;
  • the granulation bin 31 is arranged below the flow control device 2, and the inlet end of the granulation bin 31 is connected with the outlet end of the flow control device 2; the flue gas annular header 32 is arranged at the inlet end of the granulation bin 31, and the flue gas annular collector One end of the box 32 is connected to the granulation bin 31, and the other end is connected through a collecting flue 37; an annular flue gas outlet gap is formed between the flue gas annular header 32 and the outlet end of the flow control device 2;
  • the granulator 33 is arranged in the inner center of the granulation bin 31, and the granulator 33 is arranged directly opposite to the outlet end of the flow control device 2; the heat exchange tube bundles 34 are evenly arranged in the granulation bin 31 in the circumferential direction, and the granulation air distribution pipes are arranged around 35 times. It is evenly arranged below the heat exchange tube bundle 34.
  • a membrane water-cooled wall is laid on the inner wall of the granulation warehouse 31.
  • the membrane water-cooled wall includes a water-cooled wall tube 37, a side iron 38 of the water-cooled wall tube, and a small air outlet 39.
  • the water-cooled wall tube 37 is arranged vertically upward, and two adjacent water-cooled walls are arranged vertically.
  • the wall tubes 37 are connected by a side iron 38 of the water-cooled wall tube, and a small air outlet 39 is provided on the side iron 38 of the water-cooled wall tube.
  • the moving bed device 4 includes a heat exchange warehouse 41, a slag scraper 42, a flattening device 43, a roll crushing device 44, and an air distribution mechanism 45;
  • the heat exchange bin 41 is arranged below the centrifugal granulation device 3, the center of the heat exchange bin 1 is provided with an installation space for the granulation device, the granulation rotor 6 is installed on the installation space; the granulation rotor 6 is provided with slag on both sides
  • the cotton scraper 42 and the slag scraper 42 are arranged at the junction of the heat exchange bin 41 and the granulating rotor 6; the slag scraper 42 is provided with a flat material device 43, and a roll crushing device 44 is arranged below the flat material device 43, and the roller is crushed.
  • An air distribution mechanism 45 is arranged below the device 44; the slag wool scraper 42 is arranged at 180° on both sides of the granulating rotor 6, the slag wool scraper 42 adopts a sawtooth structure; the flat material device 43 adopts an air-cooled rake, and the air-cooled rake is symmetrical They are arranged on both sides of the granulating rotor cup 6, and air exhaust devices are evenly arranged on the air-cooled rake.
  • the air distribution mechanism 45 includes a first-level air distribution pipe 451 and a second-level air distribution pipe 452.
  • the first-level air distribution pipe 451 is arranged at the bottom of the heat exchange warehouse 41, and the second-level air distribution pipe 452 is arranged at the first-stage air distribution pipe.
  • Above the air pipe 451; both ends of the first-level air distribution pipe 451 and the second-level air distribution pipe 452 are softly connected to the side wall of the heat exchange chamber 41, and are connected to the vibration motor.
  • a number of first air supply hoods 4511 are evenly arranged on the first-level air distribution pipe 451, and the distance between two adjacent first air supply hoods 4511 is more than twice the diameter of the first-level air distribution pipe 451;
  • a plurality of inverted U-shaped structures 4521 are evenly arranged on the air distribution pipe 452.
  • the opening of the inverted U-shaped structure 4521 is downward, and the arc section extends upward; the second supply is provided above the arc section of the inverted U-shaped structure 4521.
  • the hood 4522 or an air outlet is provided below the arc section of the inverted U-shaped structure 4521.
  • the second-level air distribution pipe 452 is provided with a plurality of upright air pipes at even intervals, and the upper end of the upright air pipe is provided with a hood.
  • the invention provides a liquid slag waste heat recovery system.
  • a slag buffer device By setting a slag buffer device, the effect of intermittent slag discharge from a blast furnace on the centrifugal granulation system is effectively avoided, the stable operation of the centrifugal granulation system is ensured, and the waste heat recovery system is improved It has the capability of emergency treatment of accidents; through the installation of flow control devices, centrifugal granulation devices and moving bed devices, the full heat exchange of slag particles and the smooth discharge of the system are effectively improved, and the heat exchange efficiency is effectively improved; the invention does not cost much
  • the precious water resources also hardly release harmful gases such as H 2 S and SO 2 , and at the same time improve the quality and efficiency of blast furnace slag waste heat recovery.
  • the intermittent slag discharge of the blast furnace is accommodated; by setting the accident slag discharge port on the body of the slag ladle, and setting the bottom plate of the inner cavity of the slag ladle obliquely, it is necessary to discharge slag or accidents.
  • the liquid molten slag in the slag ladle is quickly drained out in a relatively short time; by setting a burner on the slag ladle cover, preheating and supplementary heating of the cavity of the slag ladle are realized.
  • a high-temperature flue gas outlet is provided on the slag ladle cover, which communicates with the flow control device through the high-temperature flue gas channel, which realizes the preheating of the flow control device, and then flows into the subsequent flue gas processing unit.
  • the flue gas generated by the heat can achieve the purpose of preheating the flow control device, make full use of the heat, and improve the energy utilization rate.
  • the bottom of the flow control device is designed to be inclined, which has a certain angle with the horizontal plane, and the other end is equipped with a slag discharge port, which merges into the accident diversion groove; the design of the structure of the inclined bottom surface and the slag discharge port is designed when the system is activated.
  • the slag discharge port can be opened, and the liquid slag can be completely drained from the flow control device during the maintenance and shutdown phases to prevent the residue from sticking to the surface of the equipment and causing damage;
  • the top of the slag dropping device is equipped with a weir plate and the inner cavity of the slag bag
  • the liquid slag at the bottom of the flow control device enters the flow control device;
  • the molten slag at the bottom of the flow control device reaches the height of the weir plate before it passes the weir plate and enters the slagging pipe, thus entering the subsequent links;
  • the design of this structure is through numerical simulation It is verified by experiments that it can greatly reduce the fluctuation of the liquid level in the slagging pipe, thereby making the flow measurement and control more accurate, and it is also of great benefit to the subsequent processing links.
  • the scum scrapers reciprocate on the side of the granulation rotor, which realizes the cutting of the slag wool around the granulation rotor and avoids the slag wool in the granulation.
  • the air distribution mechanism ensures the looseness of the particle layer, avoids the reheating and bonding of the slag particles, ensures the smooth discharge, and effectively improves the heat exchange efficiency;
  • the slag cotton scraper adopts a zigzag structure to realize the granulation around the rotor cup
  • the cut slag wool is cut, and the cut slag wool falls into the moving bed under the action of gravity to continue heat exchange, which improves the efficiency of waste heat recovery.
  • the air distribution mechanism adopts two-stage air distribution to enhance heat exchange efficiency and avoid heat loss; the air distribution pipe is driven by the vibrating motor to stir and vibrate in the material layer to ensure the looseness of the particle layer and effectively avoid The adhesion of the particles is ensured to ensure the smooth discharge of the particles.
  • the air distribution pipe is equipped with multiple inverted U-shaped structure or diameter air pipes, and the inverted U-shaped structure or vertical air pipe extends into the material layer with higher upper temperature.
  • the cooling medium with lower temperature exchanges heat with the semi-molten particles, which improves The heat exchange efficiency ensures the vitrification conversion rate of the semi-molten particles.
  • Figure 1 is a structural block diagram of a liquid slag waste heat recovery system according to the present invention
  • FIG. 2 is a schematic diagram of the structure of the slag buffer device and the flow control device in the waste heat recovery system of the present invention
  • Figure 3 is a transverse cross-sectional view of the slag buffer device in the waste heat recovery system of the present invention
  • FIG. 4 is a longitudinal sectional view of the slag buffer device in the waste heat recovery system according to the present invention.
  • Figure 5 is a side view of the flow control device in the waste heat recovery system of the present invention.
  • FIG. 6 is a schematic diagram of the structure of the granulation device in the waste heat recovery system of the present invention.
  • FIG. 7 is a schematic diagram of the cold water wall structure in the granulation device in the waste heat recovery system of the present invention.
  • Figure 8 is a front cross-sectional view of the moving bed device in the waste heat recovery system of the present invention.
  • Figure 9 is a side cross-sectional view of the moving bed device in the waste heat recovery system of the present invention.
  • FIG. 10 is a schematic cross-sectional structure diagram of the slag buffer device in the waste heat recovery system of the present invention.
  • 1 slag buffer device 1 slag buffer device, 2 flow control device, 3 granulation device, 4 moving bed device, 5 burner, 6 granulation rotor; 11 slag bag body, 12 slag bag cover, 13 slag bag inner cavity, 14 High temperature flue gas channel, 15 flue gas valve; 111 slag inlet, 112 slag outlet, 113 peephole, 114 accident slag outlet; 121 burner inlet, 122 flue gas outlet; 21 upper sealing cover, 22 device bottom plate, 23 Slagging pipe, 24 weir plates, 25 stopper rods; 211 stopper operation port, 212 maintenance inlet, 213 high temperature flue gas inlet; 221 slag drop port, 222 slag discharge port; 251 stopper rod, 252 stopper head; 31 grains Chemical warehouse, 32 flue gas annular header, 33 granulator, 34 heat exchange tube bundle, 35 granulated air duct, 36 flue gas outlet gap, 37 collecting flue, 38 water wall pipe, 39 water wall pipe side
  • the present invention provides a liquid slag waste heat recovery system, including a slag buffer device 1, a flow control device 2, a centrifugal granulation device 3, and a moving bed device 4; a slag buffer device 1
  • One end of the slag storage device 1 is connected to the slag ditch, the other end of the slag buffer device 1 is connected to the inlet end of the flow control device 2, the outlet end of the flow control device 2 is connected to the inlet end of the centrifugal granulation device 3, and the outlet of the centrifugal granulation device 3
  • the end is connected with the moving bed device 4; the liquid molten slag first enters the slag buffer device 1 after being discharged from the slag ditch, and then passes through the flow control device 2, the centrifugal granulation device 3 and the moving bed device in turn.
  • the slag buffer device 1 includes a slag ladle body 11 and a slag ladle cover 12; the slag ladle cover 12 is sealed and arranged above the slag ladle body 11, and a slag ladle inner cavity 13 is formed between the slag ladle cover 12 and the slag ladle body 11;
  • One end of the slag ladle body 11 is provided with a slag inlet 111, and the other end is provided with an accident slag outlet 114; the slag inlet 111 is connected with the outlet end of the slag trench, and the liquid molten slag enters the inner cavity 13 of the slag ladle through the slag inlet 111 ;
  • the accident slag outlet 114 is used to connect with the accident diversion tank, and the accident diversion tank is connected with the slag pit;
  • the side wall of the slag ladle body 11 is provided with a slag tap 112, and a slag tap 112 is provided with a slag tap; one end of the slag tap is connected with the inner cavity 13 of the slag ladle, and the other end is connected with the flow control device 2;
  • a peep hole 113 is provided above the slag port 114;
  • the bottom plate of the slag bag body 11 is inclined from the slag inlet end to the accident discharge port end, and the angle between the bottom plate and the horizontal plane is 5°-10°;
  • the slag bag cover 12 A burner inlet 121 is provided on one side of the slag cover 12, and the burner inlet 121 is used to install the burner 5;
  • the other side of the slag cover 12 is provided with a high-temperature flue gas outlet 122, and the high-temperature flue gas outlet 122 passes through the high-temperature flue gas channel 14 and the flow control Device 2 is connected.
  • the flow control device 2 includes an upper sealing cover 21, a device bottom plate 22, a slag pipe 23, a weir plate 24, and a stopper 25; the upper sealing cover 21 is sealed on the device bottom plate 22 and connected to the slag buffer device 1; the upper part is sealed
  • the side wall of the cover 21 is provided with a stopper rod operating port 211, an inspection inlet 212 and a high-temperature flue gas inlet 213.
  • the stopper rod 25 is installed on the stopper rod operating port 211, and one end of the stopper rod 25 is used to connect with the slag outlet 112, The other end is connected to the outside of the upper sealing cover 21; the high-temperature flue gas inlet 213 is connected to the outlet end of the high-temperature flue gas channel 14; the bottom of the device bottom plate 22 is provided with a slag dropping port 221, and one end of the slag dropping pipe 23 is connected to the slag dropping port 221 The other end is connected to the centrifugal granulation device 3; the upper end of the slag pipe 23 is provided with a weir plate 24; one side of the device bottom plate 22 is provided with a slag discharge port 222, which is connected to the accident diversion tank; the device bottom plate 22 The bottom of the tilt setting.
  • the granulation device 3 includes a granulation bin 31, a flue gas annular header 32, a granulator 33, a heat exchange tube bundle 34, a granulation air distribution pipe 35 and a collecting flue 36;
  • the granulation bin 31 is set in the flow control device 2 Below, the inlet end of the granulation bin 31 is connected with the outlet end of the flow control device 2;
  • the flue gas annular header 32 is arranged at the inlet end of the granulation bin 31, and one end of the flue gas annular header 32 is in communication with the granulation bin 31, The other end is connected by the collecting flue 36;
  • the granulator 33 is arranged in the inner center of the granulation bin 31, and the granulator 33 is arranged directly opposite to the outlet end of the flow control device 2;
  • the heat exchange tube bundle 34 is evenly arranged in the granulation bin 31,
  • the granulated air distribution pipe 35 is arranged below the heat exchange tube bundle 34.
  • a membrane water-cooled wall is laid on the inner wall of the granulation warehouse 31.
  • the membrane water-cooled wall includes a water-cooled wall tube 37, a side iron 38 of the water-cooled wall tube, and a small air outlet 39.
  • the water-cooled wall tube 37 is arranged vertically upward, and two adjacent water-cooled walls are arranged vertically.
  • the wall tubes 37 are connected by a side iron 38 of the water-cooled wall tube, and a small air outlet 39 is provided on the side iron 38 of the water-cooled wall tube.
  • the moving bed device 4 includes a heat exchange bin 41, a slag wool scraper 42, a flattening device 43, a roll crushing device 44, and an air distribution mechanism 45.
  • the heat exchange bin 41 is arranged below the granulation bin 31, the center of the heat exchange bin 41 is provided with an installation space for the granulation device, the granulation rotor 6 is installed on the installation space; the granulation rotor 6 is provided with slag wool on both sides
  • the scraper 42 and the slag scraper 42 are arranged at the junction of the heat exchange bin 41 and the granulation rotor 6; the flattening device 43 is arranged under the slag and wool scraper 42, and the roller crushing device 44 is arranged under the flattening device 43.
  • the roller crushing device An air distribution mechanism 45 is arranged below 44;
  • the slag scraper 42 is arranged at 180° on both sides of the granulation rotor 6.
  • the slag scraper 42 adopts a zigzag structure; the slag scraper 42 can reciprocate on the side of the granulation rotor 6 to realize the granulation rotor 6
  • the slag wool around is cut off, and the cut slag wool falls into the heat exchange chamber 41 under the action of gravity; the slag wool scraper 42 is made of 310S stainless steel with high temperature resistance.
  • the flattening device 43 is arranged below the slag wool scraper 42 and is located in the upper high temperature section of the heat exchange bin 41; the flattening device 43 is symmetrically arranged on both sides of the granulating rotor 6, and the flattening device 43 is connected to the motor. Driven by the reciprocating movement, the surface of the material layer can be reciprocated and combed, which has the effect of uniform material layer.
  • the flat material device 43 adopts an air-cooled rake.
  • the air-cooled rake is symmetrically arranged on both sides of the granulating rotor cup 6, and the air-cooled rake is evenly provided with an air exhaust device.
  • the roll crushing device 44 is arranged under the flat material device 43 and is located in the middle temperature part of the heat exchange bin 41; the roll crushing device 44 is symmetrically arranged on both sides of the granulating rotor cup 6, and the roll crushing device 44 adopts several pairs of wind turbines.
  • the cold roll crushing device, the air-cooled roll crushing device is connected to the two ends of the heat exchange bin 41, and the rotation direction of each pair of air-cooled roll crushing devices is different; the air-cooled roll crushing device realizes the treatment of larger-diameter slag or slag
  • the cotton mass is cut, and the larger particle slag or slag cotton mass is crushed by the air-cooled roller crushing device to form a small slag, and the small slag continues to exchange heat in the heat exchange chamber.
  • the air distribution mechanism 45 includes a first-level air distribution pipe 451 and a second-level air distribution pipe 452.
  • the first-level air distribution pipe 451 is arranged at the bottom of the heat exchange warehouse 1, and the second-level air distribution pipe 452 is arranged at the first-stage air distribution pipe.
  • both ends of the first-level air distribution pipe 451 and the second-level air distribution pipe 452 are softly connected to the side wall of the heat exchange chamber 41 and connected to the vibration motor; on the first-level air distribution pipe 451
  • a number of first air supply hoods 4511 are evenly arranged, and the distance between two adjacent first air supply hoods 4511 is more than twice the diameter of the first-stage air distribution pipe 451;
  • the second-level air distribution pipe 452 has three layout forms:
  • a plurality of inverted U-shaped structures 4511 are evenly spaced on the second-level air distribution pipe 452, the opening of the inverted U-shaped structure 4511 is downward, and the arc section extends upward, and the inverted U-shaped structure 4511 is set above the arc section There is a second air supply hood 4512;
  • a plurality of inverted U-shaped structures 4511 are evenly arranged on the second-level air distribution pipe 452, the opening of the inverted U-shaped structure 4511 is downward, and the arc segment extends upward, and the inverted U-shaped structure 4511 is arranged below the arc segment
  • the second-level air distribution pipe 452 is provided with a plurality of upright air pipes at even intervals, and the upper end of the upright air pipe is provided with a hood.
  • the height of the inverted U-shaped structure can extend to the material layer above 800°C.
  • the liquid slag waste heat recovery system of the present invention the liquid slag is discharged from the slag ditch and sequentially passes through the slag buffer device, the flow control device, the centrifugal granulation device, the moving bed device and the slag discharge module;
  • the waste heat recovery medium is Air and water, where the air passes through the moving bed device, the centrifugal granulation device, the high temperature flue and the waste heat boiler in sequence, and the water passes through the economizer, the moving bed device, the centrifugal granulation device, the waste heat boiler and the superheater heating surface module in sequence.
  • Liquid slag enters the inner cavity of the slag buffer device through the slag inlet on the upper part of the slag buffer device, and then is discharged from the sizing nozzle provided on the side of the slag buffer device, and flows into the outer liquid slag flow control device, the flow control device Arranged with a weir plate structure, the inflowing slag smoothly flows into the slagging tube into the centrifugal granulation module after submerging the weir plate structure; at the same time, a burner inlet is arranged on the slag buffer device cover for installing the burner;
  • the other side of the cache device cover is provided with a high-temperature flue gas outlet;
  • the upper part of one end of the slag cache device is equipped with a slag inlet, the bottom of the other end is equipped with an accident slag outlet, and the upper part is equipped with a peep hole; an accident is provided outside the accident slag outlet
  • the diversion groove leads to the water
  • the outside of the cover is operated by the stopper rod operating device port to operate the stopper rod head and the sizing nozzle to control the flow;
  • the bottom of the liquid slag flow control device is inclined design, and the angle with the horizontal plane is 5°-10°, and the other end is provided with a slag discharge port
  • the outside of the slag discharge port is provided with a slag lead trench, which merges into the accident diversion groove at one end of the slag buffer device;
  • the top of the slag pipe is equipped with a weir structure, and the outside of the lower slag pipe is equipped with a heating device.
  • the slag buffer device can be arranged in a rectangular structure, a circular structure or a circular structure according to the on-site space, and the flow control device is uniformly or non-uniformly distributed on the outer side of the slag buffer device.
  • the burner inlet for installing the burner arranged between the cover of the slag buffer device is arranged obliquely downwards at a certain angle to the horizontal.
  • the other side of the cover of the slag buffer device is provided with a high-temperature flue gas outlet, and the outside is connected with a high-temperature flue , It is connected with the high temperature flue gas inlet on the side of the sealing cover, and there is a valve on the pipe.
  • the burner adopts a single, or multiple symmetrical or staggered arrangement.
  • the lower part of the slag flow control device and the part under the opening of the stopper operating device is set in an inclined structure to ensure that the slag of the module can be drained; there is a weir structure on the periphery of the top of the slag pipe, and the slag flowing into the module needs to be drained. It flows into the slagging pipe through the weir to avoid the fluctuation of the liquid level inside the slagging pipe and to ensure the accuracy of liquid level measurement.
  • the inner wall of the granulation silo is equipped with a membrane water wall, and the water wall is arranged vertically upward. There is a small hole in the middle of the water-cooled side iron, and the small hole has a certain inclination angle.
  • the flue gas in the granulation warehouse is led out from the gap of the flue gas outlet, and the drawn flue gas is collected in the flue gas ring header, and finally flows into the waste heat boiler and other equipment through the collecting flue.
  • the position of the flue gas outlet gap mainly has the following two implementation methods:
  • a flue gas outlet gap is opened around the top of the granulation bin, and the flue gas flows into the flue gas annular header through the flue gas outlet gap around the granulation bin, and finally a collecting flue is set on the flue gas annular header to draw out the flue gas .
  • a flue gas outlet gap is opened around the slag pipe in the center of the granulation warehouse, and the flue gas flows into the flue gas annular header through the flue gas outlet gap in the center of the granulation warehouse, and finally a collecting flue is set on the flue gas annular header to lead out Smoke.
  • slag wool scrapers are set in the connecting section of the moving bed waste heat recovery device and the granulation rotor.
  • the slag scrapers are arranged on both sides of the granulation rotor and arranged at 180°. They are designed according to the sawtooth structure and are made of 310S stainless steel with high temperature resistance. Material. In the early stage of operation of the waste heat recovery system, when the speed of the granulator is too fast or the temperature of the equipment is too low, a large amount of scum will be formed during the centrifugal granulation process.
  • a reciprocating serrated scraper is provided on the side of the rotor cup to cut the slag wool around the rotor cup.
  • air-cooled rakes are arranged in the high temperature section on the upper part of the moving bed.
  • the air-cooled rakes are arranged on both sides in a symmetrical structure.
  • the air-cooled rakes are driven by the motor to reciprocate combing the surface of the material layer, which plays the role of evening the material layer.
  • the air-cooled rake is provided with symmetrically distributed air exhaust devices to enhance the heat exchange effect in the high temperature section of the bed.
  • an air-cooled roll crushing device is installed in the lower part of the air-cooled rake, that is, the middle temperature section of the moving bed.
  • the crushing device adopts a symmetrical distribution and is arranged at both ends of the warehouse.
  • a pair of air-cooled rolls rotate in different directions, and the material layer of the moving bed is discharged more smoothly by using the effect of shearing force.
  • a multi-stage air supply hood is set in the lower part of the moving bed.
  • the distance between the hood and the air supply pipe can be designed to be more than twice the diameter of the air supply pipe to ensure that the slag and The slag wool will not block the bottom of the moving bed.
  • the upper air supply pipe of the secondary air supply hood at the bottom of the moving bed protrudes upward at regular intervals to form an inverted "U"-shaped structure air pipe.
  • the air pipe and the side wall of the moving bed are connected by a soft connection, and the vibration motor drives the air pipe to vibrate to ensure smooth discharge.
  • the inverted "U"-shaped air duct can be set high enough to enter the material layer above the middle temperature section to further strengthen the waste heat recovery.
  • the flue gas of the baking slag buffer device will enter the high-temperature flue along the high-temperature flue gas outlet, first enter the outer liquid slag flow control device, and then The high-temperature flue gas enters the lower centrifugal granulation device through the slagging pipe, and finally flows into the moving bed device through the centrifugal granulation device. After the high temperature flue gas enters the system for a period of time, the waste heat recovery of the system begins. When the entire flue gas enters the waste heat recovery system, it plays a role of preheating the drying bag. Because the parts of the entire system are mostly made of high-temperature resistant metals, they are expensive.
  • the slag buffer device in the slag waste heat recovery system of the present invention includes a slag ladle, a combustion device and a flue gas pipeline; a plurality of combustion devices are arranged on the top of the slag ladle cover and communicate with the inner cavity of the slag ladle;
  • the side of the bag is connected with a flow control device, and the slag bag body is connected to the flow control device through the high-temperature flue gas pipeline and the slag outlet; the flow control device is used to control the flow of the slag bag to the flow control device;
  • the flow control device includes an upper sealing cover, a weir plate of the device bottom plate, a slagging pipe and a stopper rod; the upper sealing cover is also sealed to the side wall of the slag ladle body; a slagging pipe is provided at the bottom of the liquid slag flow measurement and control device, and the slagging pipe is above it There is a weir plate.
  • the stopper rod includes a stopper rod and a stopper rod; the stopper rod operating port is provided on the sealing cover, the stopper rod rod is provided in the stopper rod operating port, and the end of the stopper rod located inside the sealing cover is provided with a stopper rod head; A sizing nozzle is arranged on the upper communicating with the flow control device, the plug head can be inserted into the sizing nozzle, and a heating device is arranged at the sizing nozzle.
  • the flue gas pipeline includes a high-temperature flue gas outlet, a high-temperature flue, a high-temperature flue gas inlet and a valve; the high-temperature flue gas outlet is set on the top of the slag bag, the high-temperature flue gas inlet is set on the flow control device, and one end of the high-temperature flue is connected to the high-temperature flue gas.
  • the gas outlet is connected, and the other end is connected with the high-temperature flue gas inlet; the high-temperature flue is provided with a valve.
  • each burner inlet is provided with a burner; the burner inlet is arranged obliquely.
  • the inside of the slag ladle has an inclined structure from the end of the slag inlet to the end of the accident discharge outlet; the accident diversion groove is arranged outside the accident discharge outlet.
  • the bottom plate of the flow control device is an inclined structure toward the direction of the slag pipe; a heating device is arranged under the slag pipe; the side of the flow control device at the position of the slag pipe is provided with a slag discharge port; the outside of the slag discharge port is provided with a slag lead groove, Into the accident diversion tank located at one end of the slag bag.
  • the top of the sealing cover is provided with a radar level gauge and an infrared thermometer; the side of the sealing cover is provided with an access for maintenance.
  • the slag bag in the invention is provided with a slag bag accident slag discharge port, and the bottom surface of the slag bag cavity is designed to be inclined.
  • the liquid slag in the slag bag cavity can be quickly removed in a short period of time.
  • the filling material is injected into the slag discharge port of the slag bag accident; if the liquid slag in the cavity of the slag bag needs to be discharged urgently in the case of emergency slag discharge, the slag can be discharged
  • the filling in the slag discharge port of the accident slag is opened, so as to quickly discharge the high-temperature liquid slag in the cavity of the slag bag, which can effectively prevent the liquid slag from cooling and condensing in the cavity of the slag bag;
  • the circulation area of the accident slag discharge port is The flow area after specific calculation can be calculated according to the actual volume of the slag ladle cavity.
  • the accidental slag discharge sizing nozzle The material is high-temperature wear-resistant and corrosion-resistant material.
  • the lower plane of the accident slag discharge sizing nozzle is lower than the bottom of the inner cavity of the slag ladle and is inclined downward to ensure the discharge.
  • one or more burners can be arranged on the side of the slag bag cover according to the actual volume of the slag bag to preheat and supplement the heat of the inner cavity of the slag bag; the outlet of the burner is inside the slag bag Inclined downwards, while satisfying the heating function, it avoids the high-temperature baking of the same part of the slag cover by the horizontally arranged burner, thereby preventing the slag cover from cracking.
  • a high-temperature flue gas outlet is provided on the slag ladle cover, and a high-temperature flue gas duct with a valve is connected with the high-temperature flue gas inlet arranged on the side of the sealing cover to connect the high temperature generated in the inner cavity of the slag ladle during the heating stage.
  • the flue gas is introduced into the sealed cover to preheat the liquid slag flow control device, and then flows into the subsequent flue gas processing unit; this structure not only utilizes the flue gas generated by the burner's supplementary heating and preheating, but also reaches the convection flow
  • the purpose of preheating by the device of the control device is to make full use of the heat and improve the energy utilization rate.
  • the bottom of the flow control device has an inclined design and has a certain angle with the horizontal plane.
  • the other end is provided with a slag discharge port, and the outside of the slag discharge port is provided with a slag lead groove, which merges into the accident diversion groove at one end of the slag bag;
  • the design of the structure of the bottom surface and the slag discharge port allows the slag discharge port to be opened during the system startup stage, and the filling in the sizing nozzle is drained from the slag discharge port, and then the slag discharge port is blocked and enters the normal operation stage;
  • the design of the inclined bottom surface can also ensure that the liquid slag is completely drained from the flow control device during the maintenance and shutdown phases, and avoid the residues sticking to the surface of the equipment and causing damage.
  • the top of the slag falling pipe of the flow control device is provided with a weir plate, and the liquid slag in the inner cavity of the slag ladle is discharged through the sizing nozzle and enters the flow control device.
  • the slag on the bottom plate of the flow control device is only where the liquid level reaches the weir plate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Furnace Details (AREA)

Abstract

本发明公开了一种液态熔渣余热回收***,其特征在于,熔渣缓存装置、流量控制装置、离心粒化装置及移动床装置;熔渣缓存装置的一端与渣沟连接,熔渣缓存装置的另一端与流量控制装置的进口端连接,流量控制装置的出口端与离心粒化装置的进口端连接,离心粒化装置的出口端与移动床装置连接;本发明通过设置熔渣缓存装置,有效避免了高炉间歇出渣对离心粒化***的影响,保证了离心粒化***的稳定运行,提高了余热回收***具有事故应急处理的能力;通过设置流量控制装置、离心粒化装置及移动床装置,有效提高了渣粒的充分换热及***排料的顺畅,有效提高了换热效率。

Description

一种液态熔渣余热回收*** 技术领域
本发明涉及高炉渣余热回收技术领域,特别涉及一种液态熔渣余热回收***。
背景技术
在冶金行业如钢铁冶炼过程中产生大量高温熔渣,高炉渣的出炉渣温可达1400-1550℃;我国现有的钢铁冶炼技术,每生产1吨生铁将产生0.3吨高炉渣,以2016年我国生铁产量7.0亿吨进行计算,可折合产生2.1亿吨以上的高炉渣。对于上述高品质余热资源的液态熔渣,目前缺乏完善的回收技术,其余热回收潜力十分巨大。
干法处理相比于水淬法不仅会节约大量的水资源,且也几乎不释放H 2S和SO 2等有害气体,具有显著的经济、环保性能,受到了业内的高度重视。目前基于离心粒化技术的干法回收方式多基于实验室及小试规模。需要充分考虑高炉等冶金设备的运行方式及工业现场情况开展相应工作。
目前高炉的出渣方式多为间歇出渣,为保证干法粒化***稳定运行,需考虑熔渣缓存装置。同时为保证***安全运行,需要一种具有事故处理功能的液态熔渣缓存装置来确保整个***具有事故应急处理的能力,确保操作人员的安全及场地其他配套***的安全;此外,需要充分考虑离心粒化环节渣棉去除、余热高效回收及相应控制和运行。为此,有必要根据高炉运行特性开发一种模块化的灵活回收液态熔渣余热的***及相应控制方式。
发明内容
针对现有技术中存在的技术问题,本发明提供了一种液态熔渣余热回收装置,以确保干法离心粒化***的稳定运行,有效提高余热回收效率。
为达到上述目的,本发明采用的技术方案为:
一种液态熔渣余热回收***,包括熔渣缓存装置1、流量控制装置2、离心粒化装置3及移动床装置4;熔渣缓存装置1的一端与渣沟连接,熔渣缓存装置1的另一端与流量控制装置2的进口端连接,流量控制装置2的出口端与离心粒化装置3的进口端连接,离心粒化装置3的出口端与移动床装置4连接。
熔渣缓存装置1包括渣包本体11及渣包盖12;渣包盖12密封设置在渣包本体11的上方,渣包盖12与渣包本体11之间形成渣包内腔13;
渣包本体11的一端设置有进渣口111,另一端设置有事故排渣口114,进渣口111用于与渣沟连接,事故排渣口114用于与事故导流槽连接;渣包本体11的侧壁上设置有出渣口112,出渣口112中设置有定径水口,定径水口的一端与渣包内腔13连通,另一端与流量控制装置 2连接;事故排渣口114的上方设置有窥视孔113;渣包本体11的底板从进渣口端到事故排渣口端倾斜设置;
渣包盖12的一侧设置燃烧器进口121,燃烧器进口121用于安装燃烧器5;渣包盖12的另一侧设置有高温烟气出口122,高温烟气出口122通过高温烟气通道14与流量控制装置2连接。
流量控制装置2包括上部密封罩21、装置底板22、落渣管23、堰板24及塞棒25;上部密封罩21密封设置在装置底板22上,且与熔渣缓存装置1连接;上部密封罩21的侧壁上设置有塞棒操作口211、检修入口212及高温烟气入口213,塞棒25安装在塞棒操作口211上,塞棒25的一端用于与出渣口112连接,另一端与伸出上部密封罩21外侧;高温烟气入口213与高温烟气通道14的出口端连接;
装置底板22的底部设置有落渣口221,落渣管23的一端与落渣口221连接,另一端与离心粒化装置3连接;落渣管23的上端设置堰板24;装置底板22的一侧设置有排渣口222,排渣口222与事故导流槽连接,装置底板22的底部倾斜设置。
上部密封罩21的顶部设置雷达液位计及红外测温仪。
粒化装置3包括粒化仓31、烟气环形集箱32、粒化器33、换热管束34、粒化布风管35及汇集烟道37;
粒化仓31设置在流量控制装置2的下方,粒化仓31的进口端与流量控制装置2的出口端连接;烟气环形集箱32设置在粒化仓31的进口端,烟气环形集箱32的一端与粒化仓31连通,另一端通过汇集烟道37连接;烟气环形集箱32与流量控制装置2的出口端之间形成环形烟气出口缝隙;
粒化器33设置在粒化仓31内部中心,粒化器33正对流量控制装置2的出口端设置;换热管束34周向均匀设置在粒化仓31中,粒化布风管35周向均匀设置在换热管束34的下方。
粒化仓31的内壁上敷设有膜式水冷壁,膜式水冷壁包括水冷壁管37、水冷壁管边铁38及出风小口39,水冷壁管37竖直向上设置,相邻两个水冷壁管37之间通过水冷壁管边铁38连接,水冷壁管边铁38上设置有出风小口39。
移动床装置4包括换热仓41、渣棉刮刀42、平料装置43、轧辊破碎装置44及布风机构45;
换热仓41设置在离心粒化装置3的下方,换热仓1的中心设置有粒化装置的安装空间,粒化转杯6安装在安装空间上;粒化转杯6两侧设置有渣棉刮刀42,渣棉刮刀42设置在换 热仓41与粒化转杯6的衔接处;渣棉刮刀42的下方设置平料装置43,平料装置43的下方设置轧辊破碎装置44,轧辊破碎装置44的下方设置布风机构45;渣棉刮刀42呈180°设置在粒化转杯6的两侧,渣棉刮刀42采用锯齿形结构;平料装置43采用风冷耙,风冷耙对称设置在粒化转杯6的两侧,风冷耙上均匀设置有排风装置。
布风机构45包括第一级布风管451及第二级布风管452,第一级布风管451设置在换热仓41的底部,第二级布风管452设置在第一级布风管451的上方;第一级布风管451及第二级布风管452的两端均与换热仓41的侧壁软连接,且与振动电机连接。
第一级布风管451上均匀设置有若干个第一供风风帽4511,相邻两个第一供风风帽4511之间的间距为第一级布风管451直径的2倍以上;第二级布风管452上均匀间隔设置有多个倒U型结构4521,倒U型结构4521的开口向下,且圆弧段向上延伸;倒U型结构4521的圆弧段上方设置有第二供风风帽4522或在倒U型结构4521的圆弧段下方设置有出气口。
第二级布风管452上均匀间隔设置有多个直立风管,直立风管的上端设置风帽。
与现有技术相比,本发明的有益效果为:
本发明提供了一种液态熔渣余热回收***,通过设置熔渣缓存装置,有效避免了高炉间歇出渣对离心粒化***的影响,保证了离心粒化***的稳定运行,提高了余热回收***具有事故应急处理的能力;通过设置流量控制装置、离心粒化装置及移动床装置,有效提高了渣粒的充分换热及***排料的顺畅,有效提高了换热效率;本发明既不耗费宝贵的水资源,也几乎不释放H 2S和SO 2等有害气体,同时提高了高炉渣余热回收的品质和效率。
进一步的,通过设置渣包内腔,对高炉间歇性的出渣实现了容置;通过在渣包本体上设置事故排渣口,且将渣包内腔底板倾斜设置,在需要排渣或者事故处理阶段,在较短时间内将渣包内情的液态熔渣迅速排净;通过在渣包盖上设置燃烧器,实现了对渣包内腔的预热和补热。在渣包盖上设置有高温烟气出口,通过高温烟气通道与流量控制装置连通,实现了对流量控制装置的预热,然后汇入后续的烟气处理单元不仅利用了燃烧器补热预热产生的烟气,而且达到了对流量控制装置进行预热的目的,充分利用了热量,提高了能量利用率。
进一步的,流量控制装置底部为倾斜设计,与水平面有一定的夹角,另一端设有排渣口,汇入事故导流槽;倾斜底面和排渣口这种结构的设计,在***启动的阶段,可以打开排渣口,在检修以及停机阶段也可以确保液态熔渣从流量控制装置完全排净,避免残渣粘结在设备表面造成破坏;落渣装置顶部设有堰板,渣包内腔的液态熔渣进入流量控制装置;在流量控制装置底部的熔渣只有液位达到堰板的高度,才能没过堰板进入落渣管,从而进入后续环节;这种结构的设计,通过数值模拟和实验的验证得出可以很大程度的减小落渣管内液位的波动, 进而使流量测控更为精准,对后续处理环节也有很大好处。
进一步,通过设置雷达液位计及红外测温仪,实现了对流量控制装置内的熔渣液位及熔渣温度的实时监测,监测结果准确可靠。
进一步的,通过在粒化转杯的两侧设置渣棉刮刀,渣棉刮刀在粒化转杯的侧面往复运动,实现了对粒化转杯周围的渣棉进行切断,避免了渣棉在粒化转杯周围的团聚;通过设置平料装置实现对料层表面的梳理,起到了均匀料层的作用;通过设置轧辊破损装置,实现对大粒径渣块或渣棉团的破碎;通过设置布风机构,确保了颗粒层的疏松,避免了渣粒返热粘结,确保了排料的顺畅,有效提高了换热效率;渣棉刮刀采用锯齿形结构,实现了对粒化转杯周围的渣棉进行切割,切割后的渣棉在重力作用下,落入移动床内继续换热,提高了余热回收效率。
进一步的,布风机构采用两级布风,强化换热效率,避免了热损失;布风管在振动电机的带动下,在料层中进行搅拌振动,确保了颗粒层的疏松度,有效避免了颗粒粘结,确保了颗粒顺利排出。
进一步的,通过将供风风帽的间距设置为布风管直径的两倍以上,有效提高了换热效率,同时,保证了渣块或渣棉不会堵塞移动床的底部;通过在第二级布风管设置多个倒U型结构或直径风管,倒U型结构或直立风管伸入上部温度较高的料层中,温度较低的冷却工质与半熔融颗粒换热,提高了换热效率,保证了半熔融颗粒的玻璃体化的转化率。
附图说明
图1为本发明所述的一种液态熔渣余热回收***的结构框图;
图2为本发明所述的余热回收***中的熔渣缓存装置及流量控制装置结构示意图;
图3为本发明所述的余热回收***中的熔渣缓存装置的横向剖视图;
图4为本发明所述的余热回收***中的熔渣缓存装置的纵向剖视图;
图5为本发明所述的余热回收***中的流量控制装置侧视图;
图6为本发明所述的余热回收***中的粒化装置结构示意图;
图7为本发明所述的余热回收***中的粒化装置中的冷水壁结构示意图;
图8为本发明所述的余热回收***中的移动床装置正面剖视图;
图9为本发明所述的余热回收***中的移动床装置的侧面剖视图;
图10为本发明所述的余热回收***中的熔渣缓存装置的断面结构示意图。
其中,1熔渣缓存装置,2流量控制装置,3粒化装置,4移动床装置,5燃烧器,6粒化转杯;11渣包本体,12渣包盖,13渣包内腔,14高温烟气通道,15烟气阀门;111进渣 口,112出渣口,113窥视孔,114事故排渣口;121燃烧器进口,122烟气出口;21上部密封罩,22装置底板,23落渣管,24堰板,25塞棒;211塞棒操作口,212检修入口,213高温烟气入口;221落渣口,222排渣口;251塞棒杆,252塞棒头;31粒化仓,32烟气环形集箱,33粒化器,34换热管束,35粒化布风管,36烟气出口缝隙,37汇集烟道,38水冷壁管,39水冷壁管边铁,310出风小口;41换热仓,42渣棉刮刀,43平料装置,44轧辊破碎装置,45布风机构,451第一布风机构,452第二布风机构,4511第一供风风帽,4521倒U型结构,4522第二供风风帽。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细说明。
如附图1-10所述,本发明提供了一种液态熔渣余热回收***,包括熔渣缓存装置1、流量控制装置2、离心粒化装置3及移动床装置4;熔渣缓存装置1的一端与渣沟连接,熔渣缓存装置1的另一端与流量控制装置2的进口端连接,流量控制装置2的出口端与离心粒化装置3的进口端连接,离心粒化装置3的出口端与移动床装置4的连接;液态熔渣从渣沟排出后首先进入熔渣缓存装置1中,然后依次经过流量控制装置2、离心粒化装置3及移动床装置。
熔渣缓存装置1包括渣包本体11及渣包盖12;渣包盖12密封设置在渣包本体11的上方,渣包盖12与渣包本体11之间形成渣包内腔13;
渣包本体11的一端设置有进渣口111,另一端设置有事故排渣口114;进渣口111与渣沟的出口端连接,液态熔渣通过进渣口111进入渣包内腔13中;事故排渣口114用于与事故导流槽连接,事故导流槽与水渣坑连通;
渣包本体11的侧壁上设置有出渣口112,出渣口112中设置有定径水口;定径水口的一端与渣包内腔13连接,另一端与流量控制装置2连接;事故排渣口114的上方设置有窥视孔113;渣包本体11的底板从进渣口端到事故排渣口端倾斜设置,底板与水平面之间的夹角为5°-10°;渣包盖12的一侧设置燃烧器进口121,燃烧器进口121用于安装燃烧器5;渣包盖12的另一侧设置有高温烟气出口122,高温烟气出口122通过高温烟气通道14与流量控制装置2连接。
流量控制装置2包括上部密封罩21、装置底板22、落渣管23、堰板24及塞棒25;上部密封罩21密封设置在装置底板22上,且与熔渣缓存装置1连接;上部密封罩21的侧壁上设置有塞棒操作口211、检修入口212及高温烟气入口213,塞棒25安装在塞棒操作口211上,塞棒25的一端用于与出渣口112连接,另一端与伸出上部密封罩21外侧;高温烟气入 口213与高温烟气通道14的出口端连接;装置底板22的底部设置有落渣口221,落渣管23的一端与落渣口221连接,另一端与离心粒化装置3连接;楼渣管23的上端设置堰板24;装置底板22的一侧设置有排渣口222,排渣口222与事故导流槽连接;装置底板22的底部倾斜设置。
粒化装置3包括粒化仓31、烟气环形集箱32、粒化器33、换热管束34、粒化布风管35及汇集烟道36;粒化仓31设置在流量控制装置2的下方,粒化仓31的进口端与流量控制装置2的出口端连接;烟气环形集箱32设置在粒化仓31的进口端,烟气环形集箱32的一端与粒化仓31连通,另一端通过汇集烟道36连接;粒化器33设置在粒化仓31内部中心,粒化器33正对流量控制装置2的出口端设置;换热管束34均匀设置在粒化仓31中,粒化布风管35设置在换热管束34的下方。
粒化仓31的内壁上敷设有膜式水冷壁,膜式水冷壁包括水冷壁管37、水冷壁管边铁38及出风小口39,水冷壁管37竖直向上设置,相邻两个水冷壁管37之间通过水冷壁管边铁38连接,水冷壁管边铁38上设置有出风小口39。
移动床装置4包括换热仓41、渣棉刮刀42、平料装置43、轧辊破碎装置44及布风机构45。
换热仓41设置在粒化仓31的下方,换热仓41的中心设置有粒化装置的安装空间,粒化转杯6安装在安装空间上;粒化转杯6两侧设置有渣棉刮刀42,渣棉刮刀42设置在换热仓41与粒化转杯6的衔接处;渣棉刮刀42的下方设置平料装置43,平料装置43的下方设置轧辊破碎装置44,轧辊破碎装置44的下方设置布风机构45;
渣棉刮刀42呈180°设置在粒化转杯6的两侧,渣棉刮刀42采用锯齿形结构;渣棉刮刀42能够在粒化转杯6的侧面往复运动,实现了对粒化转杯6周围的渣棉切断,切断后的渣棉在重力作用下落入换热仓41中;渣棉刮刀42采用310S不锈钢耐高温材质。
平料装置43设置在渣棉刮刀42的下方,且位于换热仓41的上部高温段;平料装置43对称设置在粒化转杯6的两侧,平料装置43与电机连接,在电机的带动下往复运动,实现对料层表面进行往复梳理,起到了均匀料层的作用。平料装置43采用风冷耙,风冷耙对称设置在粒化转杯6的两侧,风冷耙上均匀设置有排风装置。
轧辊破碎装置44设置在平料装置43的下方,且位于换热仓41的中温部;轧辊破碎装置44对称设置在粒化转杯6的两侧,轧辊破碎装置44采用若干成对设置有风冷轧辊破碎装置,风冷轧辊破碎装置与换热仓41的两端连接,每一对风冷轧辊破碎装置的旋转方向不同;通过风冷轧辊破碎装置实现对较大粒径的渣块或渣棉团进行切断,较大粒径渣块或渣棉团经 过风冷轧辊破碎装置的破碎后形成小渣块,小渣块在换热仓内继续换热。
布风机构45包括第一级布风管451及第二级布风管452,第一级布风管451设置在换热仓1的底部,第二级布风管452设置在第一级布风管451的上方;第一级布风管451及第二级布风管452的两端均与换热仓41的侧壁软连接,且与振动电机连接;第一级布风管451上均匀设置有若干个第一供风风帽4511,相邻两个第一供风风帽4511之间的间距为第一级布风管451直径的2倍以上;
第二级布风管452有三种布置形式:
1)第二级布风管452上均匀间隔设置有多个倒U型结构4511,倒U型结构4511的开口向下,且圆弧段向上延伸,倒U型结构4511的圆弧段上方设置有第二供风风帽4512;
2)第二级布风管452上均匀间隔设置有多个倒U型结构4511,倒U型结构4511的开口向下,且圆弧段向上延伸,倒U型结构4511的圆弧段下方设置有出气口;
3)第二级布风管452上均匀间隔设置有多个直立风管,直立风管的上端设置风帽。
其中,倒U型结构的高度可以延伸至800℃以上的料层之中。
本发明所述的一种液态熔渣余热回收***,液态熔渣从渣沟排出后依次经过熔渣缓存装置、流量控制装置、离心粒化装置、移动床装置及出渣模块;余热回收介质为空气及水,其中空气依次经过移动床装置、离心粒化装置、高温烟道及余热锅炉,水依次经过省煤器、移动床装置、离心粒化装置、余热锅炉及过热器受热面模块。
液态熔渣由熔渣缓存装置一端上部的进渣口进入熔渣缓存装置内腔,再由熔渣缓存装置侧边设置的定径水口排出,流入外侧的液态熔渣流量控制装置,流量控制装置布置有堰板结构,流入的熔渣没过堰板结构后平稳地流入落渣管进入离心粒化模块;同时在熔渣缓存装置盖上布置有燃烧器进口,用于安装燃烧器;熔渣缓存装置盖另一侧设有高温烟气出口;熔渣缓存装置一端的上部设置有进渣口,另一端底部布置有事故排渣口,上部设有窥视孔;事故排渣口外部设有事故导流槽,通入水渣坑;熔渣缓存装置内腔的底部,从进渣口端到事故排渣口端为倾斜设计,与水平面夹角在5°-10°范围内;定径水口位于熔渣缓存装置侧边,距离熔渣缓存装置底部有一定的距离,且定径水口处设有加热装置;液态熔渣流量控制装置上部设有密封罩,密封罩一侧设有塞棒操作装置口和检修入口,另一侧设有高温烟气入口,顶部设有雷达液位计和红外测温仪;密封罩内部设有塞棒,塞棒由塞棒头和塞棒杆构成,在密封罩外侧通过塞棒操作装置口操作塞棒头与定径水口配合来控制流量;液态熔渣流量控制装置底部为倾斜设计,与水平面夹角为5°-10°,另一端设有排渣口;排渣口外部设有引渣沟,汇入位于熔渣缓存装置一端的事故导流槽;落渣管顶部设有堰板结构,下部落渣管外侧设有 加热装置。
熔渣缓存装置根据现场空间内可以布局为长方形结构、回形结构或圆环结构,流量控制装置均匀或非均匀分布在熔渣缓存装置的外侧面。
在熔渣缓存装置盖之间布置的用于安装燃烧器的燃烧器进口,与水平面呈一定角度倾斜向下布置,熔渣缓存装置盖另一侧设有高温烟气出口,外部连接高温烟道,与密封罩侧边的高温烟气入口相连接,且在管道上设有阀门。燃烧器采用单个、或者多个对称布置、错排布置布置的方式。熔渣流量控制装置下部,位于塞棒操作装置口下的部分设置为倾斜结构,保证该模块的熔渣能排净;落渣管顶部***设有堰板结构,流入该模块的熔渣需没过堰板流入落渣管,避免落渣管内部液位波动,保证液位测量的准确性。
离心粒化模块中,粒化仓内壁敷设膜式水冷壁,水冷壁竖直向上布置。水冷璧边铁中间开设小孔,小孔有一定的倾斜角。粒化仓中烟气由烟气出口缝隙引出,引出的烟气在烟气环形集箱内汇集,最后通过汇集烟道流入余热锅炉等设备。烟气出口缝隙的位置主要有以下两种实施方式:
a)在粒化仓的顶部四周开设烟气出口缝隙,烟气通过粒化仓四周的烟气出口缝隙流进烟气环形集箱,最后在烟气环形集箱上开设汇集烟道引出烟气。
b)在粒化仓中心落渣管四周开设烟气出口缝隙,烟气通过粒化仓中心的烟气出口缝隙流进烟气环形集箱,最后在烟气环形集箱上开设汇集烟道引出烟气。
在移动床余热回收装置和粒化转杯的衔接段,设置了渣棉刮刀,渣棉刮刀设置在粒化转杯的两侧,呈180°布置,按照锯齿的结构设计,采用310S不锈钢耐高温材质。在余热回收***运行初期,当粒化器转速过快或者设备温度过低时,离心粒化过程中会形成大量的渣棉。渣棉产生之后,为防止渣棉团聚在转杯周围,在转杯侧面设置有可以往复运动的锯齿刮刀,将转杯周围的渣棉切断。在移动床上部的高温段,设置风冷耙,风冷耙采用对称结构布置在两侧,风冷耙在电机的带动下在料层表面进行往复梳理,起到均匀料层的作用,同时,在风冷耙上设置有对称的分布的排风装置,在床层高温段起到强化换热的效果。在风冷耙的下部,即移动床中温段,设置了风冷轧辊破碎装置,该破碎装置与风冷耙一样,采用对称分布,布置于仓内的两端,在工作时用电机带动让每一对风冷轧辊沿不同的方向旋转,利用剪切力的作用,让移动床的料层更加顺畅的出料。在移动床的下部,即低温段,设置多级供风风帽,在保证供风量足够的前提下,可以将风帽和供风管的间距设计为供风管直径的2倍以上,保证渣块和渣棉不会堵塞移动床底部。同时,在移动床底部二级供风风帽的上层供风管每隔一定的距离便向上伸出形成倒“U”型结构风管。风管和移动床侧壁使用软连接进行连接,由 振动电机带动风管振动,保证排料顺畅。根据实际情况可以将倒“U”型风管设置的足够高,可以进入到中温段以上的料层之中,进一步强化余热回收。
本发明所述的一种液态熔渣余热回收***,启动前,烘烤熔渣缓存装置的烟气会沿着高温烟气出口进入高温烟道,首先进入外侧的液态熔渣流量控制装置,然后高温烟气经过落渣管进入下部的离心粒化装置中,最后经由离心粒化装置流入到移动床装置。在高温烟气进入***一段时间后,开始进行***的余热回收。整个烟气在进入各余热回收***的过程中,起到烘包预热的作用,由于整个***的部件大多由耐高温的金属构成,价格昂贵。若缺少烟气预热过程直接进行余热回收,高温的液态熔渣和设备直接接触,会引起***内部构件的变形,影响设备的使用寿命,增加维修费用,造成不必要的经济损失。
本发明所述的一种熔渣余热回收***中熔渣缓存装置,包括渣包、燃烧装置及烟气管路;若干燃烧装置设置在渣包盖的顶部,且与渣包内腔连通;渣包侧面连通设置有流量控制装置,渣包本体通过高温烟气管路及出渣口连接流量控制装置;流量控制装置用于控制渣包流向流量控制装置的流量;
流量控制装置包括上部密封罩、装置底板堰板、落渣管及塞棒;上部密封罩与渣包本体侧壁也密封连接;液态熔渣流量测控装置底部设置有落渣管,落渣管上方设置有堰板。
塞棒包括塞棒杆及塞棒头;塞棒操作口设置在密封罩上,塞棒杆设置在塞棒操作口内,且位于密封罩内部的塞棒杆端部设置有塞棒头;渣包上与流量控制装置连通处设置有定径水口,塞棒头能够插在定径水口内,定径水口处设置有加热装置。
烟气管路包括高温烟气出口、高温烟道、高温烟气入口和阀门;高温烟气出口设置在渣包顶部,高温烟气入口设置在流量控制装置上,高温烟道的一端与高温烟气出口连接,另一端与高温烟气入口连接;高温烟道上设置有阀门。
若干燃烧器进口相对布置或相间布置的设置在渣包盖顶部;每个燃烧器进口上均设置有燃烧器;燃烧器进口为倾斜设置。
渣包内部从进渣口端到事故排渣口端为倾斜结构;事故排渣口外部设有事故导流槽。
流量控制装置的底板为朝向落渣管方向的倾斜结构;落渣管下方设置有加热装置;流量控制装置位于落渣管位置的侧面设置有排渣口;排渣口外部设有引渣沟,汇入位于渣包一端的事故导流槽。密封罩顶部设有雷达液位计和红外测温仪;密封罩侧面设置有检修入口。
本发明中渣包设有渣包事故排渣口,并且渣包内腔底面为倾斜设计,在需要排渣或者事故处理阶段,可在较短的时间内将渣包内腔的液态熔渣迅速排净,在正常的运行情况下,渣包事故排渣口内打入填充物;若遇到紧急排渣的情况下,需要将渣包内腔内的液态熔渣紧急 排净时,可将渣包事故排渣口内的填充物打通,从而迅速将渣包内腔里面的高温液态熔渣排出,可有效防止液态熔渣在渣包内腔内部降温凝结;该处事故排渣口的流通面积为特定计算之后的流通面积,可根据渣包内腔的实际体积进行计算,基本上需要满足将液态熔渣在3-5分钟之内排出渣包内腔的要求;该处事故排渣定径水口材料为高温耐磨耐蚀材料,同时该处事故排渣定径水口下平面低于渣包内腔底部倾斜向下,确保排净。
本发明中在渣包盖的侧边,可以根据实际渣包的容积大小,布置一个或者多个燃烧器,用于对渣包内腔的预热和补热;燃烧器的出口在渣包内部倾斜向下,在满足加热功能的同时,避免了水平布置的燃烧器对渣包盖相同部位的高温烘烤,从而防止渣包盖开裂。
本发明中在渣包盖上设置有高温烟气出口,通过带有阀门的高温烟道与布置在密封罩侧边的高温烟气进口相连接,将渣包内腔里在加热阶段产生的高温烟气导入密封罩内,对液态熔渣流量控制装置进行预热,然后汇入后续的烟气处理单元;这种结构不仅利用了燃烧器补热预热产生的烟气,而且达到了对流量控制装置的装置进行预热的目的,充分利用了热量,提高了能量利用率。
本发明中流量控制装置底部为倾斜设计,与水平面有一定的夹角,另一端设有排渣口,排渣口外部设有引渣沟,汇入位于渣包一端的事故导流槽;倾斜底面和排渣口这种结构的设计,在***启动的阶段,可以打开排渣口,将定径水口内的填充物从排渣口排净,随后封堵排渣口,进入正常运行阶段;同时倾斜底面的设计在检修以及停机阶段也可以确保液态熔渣从流量控制装置完全排净,避免残渣粘结在设备表面造成破坏。
本发明中流量控制装置的落渣管顶部设有堰板,渣包内腔的液态熔渣通过定径水口排出,进入流量控制装置,在流量控制装置底板的熔渣只有液位达到堰板的高度,才能没过堰板进入落渣管,从而进入后续环节;通过数值模拟和实验的验证得出可以很大程度的减小落渣管内液位的波动,提高采用雷达液位计测量液位的准确度,进而使流量测控更为精准,对后续处理环节也有很大好处。
以上所述仅表示本发明的优选实施方式,任何人在不脱离本发明的原理下而做出的结构变形、改进和润饰等,这些变形、改进和润饰等均视为在本发明的保护范围内。

Claims (10)

  1. 一种液态熔渣余热回收***,其特征在于,熔渣缓存装置(1)、流量控制装置(2)、离心粒化装置(3)及移动床装置(4);熔渣缓存装置(1)的一端与渣沟连接,熔渣缓存装置(1)的另一端与流量控制装置(2)的进口端连接,流量控制装置(2)的出口端与离心粒化装置(3)的进口端连接,离心粒化装置(3)的出口端与移动床装置(4)连接。
  2. 根据权利要求1所述的一种液态熔渣余热回收***,其特征在于,熔渣缓存装置(1)包括渣包本体(11)及渣包盖(12);渣包盖(12)密封设置在渣包本体(11)的上方,渣包盖(12)与渣包本体(11)之间形成渣包内腔(13);
    渣包本体(11)的一端设置有进渣口(111),另一端设置有事故排渣口(114),进渣口(111)用于与渣沟连接,事故排渣口(114)用于与事故导流槽连接;渣包本体(11)的侧壁上设置有出渣口(112),出渣口(112)中设置有定径水口,定径水口的一端与渣包内腔(13)连通,另一端与流量控制装置(2)连接;事故排渣口(114)的上方设置有窥视孔(113);渣包本体(11)的底板从进渣口端到事故排渣口端倾斜设置;
    渣包盖(12)的一侧设置燃烧器进口(121),燃烧器进口(121)用于安装燃烧器(5);渣包盖(12)的另一侧设置有高温烟气出口(122),高温烟气出口(122)通过高温烟气通道(14)与流量控制装置(2)连接。
  3. 根据权利要求2所述的一种液态熔渣余热回收***,其特征在于,流量控制装置(2)包括上部密封罩(21)、装置底板(22)、落渣管(23)、堰板(24)及塞棒(25);上部密封罩(21)密封设置在装置底板(22)上,且与熔渣缓存装置(1)连接;上部密封罩(21)的侧壁上设置有塞棒操作口(211)、检修入口(212)及高温烟气入口(213),塞棒(25)安装在塞棒操作口(211)上,塞棒(25)的一端用于与出渣口(112)连接,另一端与伸出上部密封罩(21)外侧;高温烟气入口(213)与高温烟气通道(14)的出口端连接;
    装置底板(22)的底部设置有落渣口(221),落渣管(23)的一端与落渣口(221)连接,另一端与离心粒化装置(3)连接;落渣管(23)的上端设置堰板(24);装置底板(22)的一侧设置有排渣口(222),排渣口(222)与事故导流槽连接,装置底板(22)的底部倾斜设置。
  4. 根据权利要求3所述的一种液态熔渣余热回收***,其特征在于,上部密封罩(21)的顶部设置雷达液位计及红外测温仪。
  5. 根据权利要求1所述的一种液态熔渣余热回收***,其特征在于,粒化装置(3)包括粒化仓(31)、烟气环形集箱(32)、粒化器(33)、换热管束(34)、粒化布风管(35)及汇集烟道(37);
    粒化仓(31)设置在流量控制装置(2)的下方,粒化仓(31)的进口端与流量控制装置(2)的出口端连接;烟气环形集箱(32)设置在粒化仓(31)的进口端,烟气环形集箱(32) 的一端与粒化仓(31)连通,另一端通过汇集烟道(37)连接;烟气环形集箱(32)与流量控制装置(2)的出口端之间形成环形烟气出口缝隙;
    粒化器(33)设置在粒化仓(31)内部中心,粒化器(33)正对流量控制装置(2)的出口端设置;换热管束(34)周向均匀设置在粒化仓(31)中,粒化布风管(35)周向均匀设置在换热管束(34)的下方。
  6. 根据权利要求1所述的一种液态熔渣余热回收***,其特征在于,粒化仓(31)的内壁上敷设有膜式水冷壁,膜式水冷壁包括水冷壁管(37)、水冷壁管边铁(38)及出风小口(39),水冷壁管(37)竖直向上设置,相邻两个水冷壁管(37)之间通过水冷壁管边铁(38)连接,水冷壁管边铁(38)上设置有出风小口(39)。
  7. 根据权利要求1所述的一种液态熔渣余热回收***,其特征在于,移动床装置(4)包括换热仓(41)、渣棉刮刀(42)、平料装置(43)、轧辊破碎装置(44)及布风机构(45);
    换热仓(41)设置在离心粒化装置(3)的下方,换热仓(1)的中心设置有粒化装置的安装空间,粒化转杯(6)安装在安装空间上;粒化转杯(6)两侧设置有渣棉刮刀(42),渣棉刮刀(42)设置在换热仓(41)与粒化转杯(6)的衔接处;渣棉刮刀(42)的下方设置平料装置(43),平料装置(43)的下方设置轧辊破碎装置(44),轧辊破碎装置(44)的下方设置布风机构(45);渣棉刮刀(42)呈180°设置在粒化转杯(6)的两侧,渣棉刮刀(42)采用锯齿形结构;平料装置(43)采用风冷耙,风冷耙对称设置在粒化转杯(6)的两侧,风冷耙上均匀设置有排风装置。
  8. 根据权利要求1所述的一种熔渣余热回收移动床装置,其特征在于,布风机构(45)包括第一级布风管(451)及第二级布风管(452),第一级布风管(451)设置在换热仓(41)的底部,第二级布风管(452)设置在第一级布风管(451)的上方;第一级布风管(451)及第二级布风管(452)的两端均与换热仓(41)的侧壁软连接,且与振动电机连接。
  9. 根据权利要求8所述的一种熔渣余热回收移动床装置,其特征在于,第一级布风管(451)上均匀设置有若干个第一供风风帽(4511),相邻两个第一供风风帽(4511)之间的间距为第一级布风管(451)直径的2倍以上;第二级布风管(452)上均匀间隔设置有多个倒U型结构(4521),倒U型结构(4521)的开口向下,且圆弧段向上延伸;倒U型结构(4521)的圆弧段上方设置有第二供风风帽(4522)或在倒U型结构(4521)的圆弧段下方设置有出气口。
  10. 根据权利要求8所述的一种熔渣余热回收移动床装置,其特征在于,第二级布风管(452)上均匀间隔设置有多个直立风管,直立风管的上端设置风帽。
PCT/CN2020/072570 2019-12-04 2020-01-17 一种液态熔渣余热回收*** WO2021109328A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911228591.7A CN111020077B (zh) 2019-12-04 2019-12-04 一种液态熔渣余热回收***
CN201911228591.7 2019-12-04

Publications (1)

Publication Number Publication Date
WO2021109328A1 true WO2021109328A1 (zh) 2021-06-10

Family

ID=70207949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072570 WO2021109328A1 (zh) 2019-12-04 2020-01-17 一种液态熔渣余热回收***

Country Status (2)

Country Link
CN (1) CN111020077B (zh)
WO (1) WO2021109328A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113758345A (zh) * 2021-08-30 2021-12-07 桐昆集团浙江恒腾差别化纤维有限公司 一种热煤余热回收***
CN115231316A (zh) * 2022-09-22 2022-10-25 山东大学 基于废气携废渣激冷钢渣的流态化粉料供送***及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111074021A (zh) * 2019-12-04 2020-04-28 西安交通大学 一种液态熔渣干式离心粒化***用均匀流场出风结构
CN113913567A (zh) * 2021-11-10 2022-01-11 北京中冶设备研究设计总院有限公司 熔渣干法粒化装置及粒化方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145481A (ja) * 1983-02-08 1984-08-20 日本鋼管株式会社 サイフオン式転炉スラグカツト装置
EP1239249A2 (de) * 2001-03-09 2002-09-11 SMS Demag AG Verfahren und Vorrichtung zum Stichlochstopfen und/oder Stichlochbohren an einem metallurgischen Gefäss, insbesondere an einem Elektroschmelzofen
CN105603135A (zh) * 2016-03-11 2016-05-25 西安交通大学 一种高温液态熔渣干式离心粒化余热回收***与方法
CN106940140A (zh) * 2017-02-28 2017-07-11 西安交通大学 一种带有流量温度监测及控制功能的二级液态熔渣缓存***
CN106939363A (zh) * 2017-02-28 2017-07-11 西安交通大学 用于液态熔渣干式离心粒化及余热回收的***及控制方法
CN108330233A (zh) * 2018-02-26 2018-07-27 西安交通大学 一种具有熔渣缓存及流量控制功能的液态熔渣干式离心粒化及余热回收***
CN108424988A (zh) * 2018-02-26 2018-08-21 西安交通大学 一种具有补热及预热功能的液态熔渣缓存装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103320553B (zh) * 2013-06-25 2015-06-17 东北大学 一种高温熔渣急冷干法处理及回收显热的装置和方法
CN104313209B (zh) * 2014-09-26 2016-08-17 重庆大学 组合式机械破碎离心粒化装置
CN108359756B (zh) * 2018-02-26 2019-12-24 西安交通大学 一种用于液态熔渣干式离心粒化及余热回收利用***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145481A (ja) * 1983-02-08 1984-08-20 日本鋼管株式会社 サイフオン式転炉スラグカツト装置
EP1239249A2 (de) * 2001-03-09 2002-09-11 SMS Demag AG Verfahren und Vorrichtung zum Stichlochstopfen und/oder Stichlochbohren an einem metallurgischen Gefäss, insbesondere an einem Elektroschmelzofen
CN105603135A (zh) * 2016-03-11 2016-05-25 西安交通大学 一种高温液态熔渣干式离心粒化余热回收***与方法
CN106940140A (zh) * 2017-02-28 2017-07-11 西安交通大学 一种带有流量温度监测及控制功能的二级液态熔渣缓存***
CN106939363A (zh) * 2017-02-28 2017-07-11 西安交通大学 用于液态熔渣干式离心粒化及余热回收的***及控制方法
CN108330233A (zh) * 2018-02-26 2018-07-27 西安交通大学 一种具有熔渣缓存及流量控制功能的液态熔渣干式离心粒化及余热回收***
CN108424988A (zh) * 2018-02-26 2018-08-21 西安交通大学 一种具有补热及预热功能的液态熔渣缓存装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113758345A (zh) * 2021-08-30 2021-12-07 桐昆集团浙江恒腾差别化纤维有限公司 一种热煤余热回收***
CN115231316A (zh) * 2022-09-22 2022-10-25 山东大学 基于废气携废渣激冷钢渣的流态化粉料供送***及方法

Also Published As

Publication number Publication date
CN111020077A (zh) 2020-04-17
CN111020077B (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
WO2021109328A1 (zh) 一种液态熔渣余热回收***
CN108359756B (zh) 一种用于液态熔渣干式离心粒化及余热回收利用***
WO2017152784A1 (zh) 一种高温液态熔渣干式离心粒化余热回收***与方法
CN102424867B (zh) 一种熔渣粒化和余热回收装置
WO2021109325A1 (zh) 具有渣棉破碎功能的液态熔渣干式粒化及余热回收装置及其操作方法
CN103557711A (zh) 熔融炉渣急冷粒化及余热回收发电***及其方法
CN203534229U (zh) 一种熔融炉渣急冷粒化及余热回收发电***
CN201028469Y (zh) W型全自然循环硫铁矿余热锅炉
CN111020074B (zh) 一种可强化熔渣换热的液态熔渣余热回收装置及其操作方法
CN101979951B (zh) 电炉烟气干法除尘及其显热回收***
CN111074019B (zh) 具有剪切破碎渣棉功能的液态熔渣干式粒化及余热回收装置及其操作方法
CN214142412U (zh) 炉渣余热回收***
CN111020078B (zh) 一种具有预热及冷却功能的落渣管固定装置
WO2021109326A1 (zh) 一种一体式液态熔渣缓存及流量测控装置
CN102679751B (zh) 有机热载体余热炉及余热炉***
CN201729860U (zh) 一种阳极精炼炉加料设备
CN109439813B (zh) 一种高炉冲渣放散蒸汽余热回收方法
CN214361470U (zh) 炉渣余热回收***
CN111074018A (zh) 一种液态熔渣缓存及流量测控装置
CN112283681A (zh) 一种带尾部急冷受热面的角管式锅炉
CN113462829B (zh) 炉渣余热回收***
CN202322723U (zh) 125t/h干熄焦无挡墙一次除尘器
CN111074022A (zh) 一种液态熔渣缓存及流量控制装置的操作方法
CN101482373A (zh) 转炉废气余热回收利用***
CN111074021A (zh) 一种液态熔渣干式离心粒化***用均匀流场出风结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20897521

Country of ref document: EP

Kind code of ref document: A1