WO2017152784A1 - 一种高温液态熔渣干式离心粒化余热回收***与方法 - Google Patents

一种高温液态熔渣干式离心粒化余热回收***与方法 Download PDF

Info

Publication number
WO2017152784A1
WO2017152784A1 PCT/CN2017/074806 CN2017074806W WO2017152784A1 WO 2017152784 A1 WO2017152784 A1 WO 2017152784A1 CN 2017074806 W CN2017074806 W CN 2017074806W WO 2017152784 A1 WO2017152784 A1 WO 2017152784A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
granulation
waste heat
liquid slag
moving bed
Prior art date
Application number
PCT/CN2017/074806
Other languages
English (en)
French (fr)
Inventor
王树众
孟海鱼
陈林
于鹏飞
吴志强
张忠清
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Publication of WO2017152784A1 publication Critical patent/WO2017152784A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • C21B3/08Cooling slag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • F27D2017/006Systems for reclaiming waste heat using a boiler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Definitions

  • the invention relates to the technical field of blast furnace slag waste heat recovery, in particular to a high temperature liquid slag dry centrifugal granulation waste heat recovery system and method.
  • China is currently the world's largest steel producer, and steel production has maintained its number one position in the world for 17 consecutive years.
  • China's pig iron production reached 711 million tons, accounting for about 60% of the world's total production.
  • blast furnace slag containing huge heat was also produced.
  • the blast furnace slag is generally discharged at a temperature between 1400 and 1550 ° C.
  • Each ton of slag contains (1260 to 1880) ⁇ 10 3 kJ of sensible heat, equivalent to 60 kg of standard coal.
  • the dry slag pit cooling method and the water slag slag method are the most common blast furnace slag treatment methods in China.
  • the dry slag pit cooling method directly discharges the high-temperature liquid slag into the dry slag pit to be air-cooled, and assists water cooling.
  • the method generates a large amount of water vapor when cooling, and releases a large amount of H 2 S and SO 2 gas, corrodes buildings, damages equipment, and deteriorates the working environment. Generally, the method is used only in accident handling. 90% of blast furnace slag in China is treated by water slag.
  • the water slag method refers to the use of low-temperature cooling water to directly mix with high-temperature liquid slag, so that the liquid slag temperature is rapidly lowered and the glass body slag particles are formed.
  • the water slag method can be divided into Inba method, Tula method, bottom filtration method, Lhasa method and Mintek method according to different process flow.
  • the core of the technology is to spray water quenching of high temperature liquid slag to achieve the purpose of cooling and granulation, and then slag separation, the slag water is recirculated through precipitation filtration. use.
  • vitreous slag produced by this method can be used in the cement industry for resource utilization, the process wastes a lot of water resources, generates harmful gases such as SO 2 and H 2 S, and cannot effectively recover the high temperature liquid slag. Quality waste heat resources.
  • the commonly used dry slag cooling method and water slag method not only waste all the high-quality waste heat resources contained in the high-temperature liquid slag, but also consume a lot of water resources and cause serious pollution to the environment.
  • the method has been unable to meet the urgent needs of energy saving and emission reduction in the current steel industry.
  • An efficient, non-polluting new technology must be sought to effectively recover blast furnace slag waste heat resources.
  • the object of the present invention is to provide a high-temperature liquid slag dry centrifugal granulation waste heat recovery system and method, so as to solve the problem that the current high-quality waste heat resource of the blast furnace liquid slag is seriously wasted.
  • a high-temperature liquid slag dry centrifugal granulation waste heat recovery system comprising a liquid slag granulation and heat exchange system and a waste heat recovery system;
  • the liquid slag granulation and heat exchange system consists of one or more independent granulation and heat exchange systems; the granulation and heat exchange system includes a granulation tank, a centrifugal granulator, a moving bed and a slagging device;
  • the inner surface of the chemical storage chamber is provided with a heating surface, and the top of the granulation chamber is provided with an opening, and the falling slag tube extends from the opening into the centrifugal granulator located in the granulation chamber;
  • the air supply duct is arranged on the side of the centrifugal granulator
  • the annular plenum is formed between the centrifugal granulator and the air supply duct;
  • the moving bed is located at the lower part of the granulation chamber, the inner surface of the moving bed is arranged with a heating surface, the top or side is provided with an air outlet, and the bottom is provided with an air inlet device;
  • the slag discharging device is located Below the air inlet
  • the waste heat recovery system includes a primary dust collector, a waste heat boiler, a secondary dust remover, an exhaust fan, and a chimney that are sequentially connected; the primary dust remover connects the collection air passages of the moving bed air outlets.
  • liquid slag granulation and heat exchange system is composed of a plurality of independent granulation and heat exchange systems, and the granulation and heat exchange systems are arranged in a single row or multiple rows in parallel.
  • the method further comprises a liquid slag drainage system and a liquid slag buffering system;
  • the liquid slag drainage system comprises a slag ditch, a baffle and a slag discharge port;
  • the slag ditch inlet is directly connected to the blast furnace slag discharge port, and the slag ditch outlet is located at the slag Above the inlet of the buffer system;
  • the baffle is located at the bottom of the slag ditch;
  • the slag ditch has one or more slag tapping ports;
  • the liquid slag buffering system is composed of one or more independent slag packs;
  • the slag bag comprises a package body, a cover, a slag tube and a plug rod;
  • the slag tube is located at the bottom of the slag bag;
  • the slag package has one or more slag tubes, and the stopper rod is located above the corresponding slag tube for controlling the falling Slag flow or seal slag pipe.
  • the slagging device comprises a vibrating discharger and a sealing valve at a lower part of the moving bed; a slag conveying system is arranged below the slag discharging device; the slag conveying system comprises a temperature resistant conveying belt and a buffer silo, and the conveying belt is located at the slag discharging Below the unit, the buffer silo is located at the end of the conveyor belt.
  • the stopper rod is composed of a metal inner tube and a metal outer tube set, and the two tubes are connected by a connecting rib to form a hollow arrangement, the rod head is a tapered structure or a circular structure; the lower port of the metal inner tube is The outer metal tube is connected, the lower end of the metal outer tube is sealed, the upper end is provided with a cold air outlet of the plug rod; the upper part of the metal inner tube is provided with a cold air inlet of the plug rod; the cold air is imported into the metal inner tube by the cold air inlet of the plug rod, and the metal inner tube and the metal outer tube The outer wall of the metal outer tube is cooled by the cold air outlet of the plug rod; the outer wall of the metal outer tube is fixed with the heat insulating material or the anti-corrosion coating by the hook and the pin.
  • the heating surface disposed on the inner surface of the granulation chamber comprises a heating surface of the inner surface of the vertical wall of the granulation silo and a heating surface of the inner surface of the top of the granulation chamber; a heating surface of the inner surface of the vertical wall of the granulated silo and a surface of the moving bed
  • the heating surface adopts the structure of single tube spiral rise, multi-tube parallel spiral rise, vertical tube screen or membrane water wall
  • the heating surface of the top surface of the granulation silo adopts a single tube and multiple tubes in parallel horizontal reciprocating or spiral structure, or adopts Membrane water wall structure.
  • the air inlet device comprises an air distribution device at the bottom of the moving bed, an air passage at the bottom of the moving bed, and a blower.
  • the air blower is connected to the air passage, and the air passage respectively communicates with the air supply duct and the moving bed beside the centrifugal granulator.
  • the air distribution device at the bottom; the air distribution device is located at the bottom of the moving bed, and is composed of a cloth duct and a hood, and the cross-sectional shape of the air duct is elliptical.
  • the waste heat recovery system further comprises a feed water pump, a waste heat boiler economizer, a steam drum; the outlet of the feed water pump is sequentially connected to the waste heat boiler economizer, the heated surface of the moving bed inner surface, the inner surface of the granulated silo vertical wall, the heating surface, and the grain
  • the inner surface of the top of the chemical silo is heated and steamed; the lower part of the steam drum is connected to the evaporation heating surface of the waste heat boiler through the pipeline; the top of the steam drum is connected to the waste heat boiler superheater and the main steam pipeline through the pipeline.
  • front and rear furnace walls and the intermediate furnace wall of the moving bed are vertical furnace walls
  • the left and right furnace walls are inclined furnace walls, inclined furnace walls and The angle of the horizontal plane is 60°.
  • the primary dust collector and the waste heat boiler are arranged above the granulation system or on a horizontal surface.
  • a high-temperature liquid slag dry centrifugal granulation waste heat recovery method comprises the following steps:
  • the liquid slag enters the granulation bin through the falling slag pipe and falls on the centrifugal granulator.
  • the rotating centrifugal granulator granulates the inflowing liquid slag into small droplets, and the small droplets splash into the granulation bin.
  • the slag particles having a hard outer surface become;
  • the hot air of the granulation and the air outlet of the heat exchange system is collected and then passed through a dust remover, a waste heat boiler, a secondary dust remover and an exhaust fan, and finally discharged through the chimney.
  • the water fed by the feed water pump is sequentially heated by the waste heat boiler economizer, the moving bed heating surface and the heating surface of the granulating chamber to enter the steam drum; the water in the steam drum is connected to the evaporation heating surface through the pipeline to circulate; The steam is heated by a heater and connected to the main steam line, and the generated steam is combined into a steam pipe network or power generation.
  • the liquid slag first enters the slag trench directly from the blast furnace slag discharge port, and the liquid slag is distributed into one or more independent slag packages through one or more slag discharge ports of the slag ditch to be insulated and buffered to solve the blast furnace interval.
  • liquid slag in the slag bag is passed through the slag tube at a certain flow rate under the control of the plug rod into the granulation chamber and falls on the centrifugal granulator.
  • the liquid slag drainage and buffering system of the invention has the functions of diversion, diversion and heat preservation, effectively solving the problem that the continuous operation of the blast furnace intermittent slag discharge and the waste heat recovery equipment is not synchronized, and realizing the liquid slag in situ and continuous treatment. To guarantee the whole The system operates safely and steadily.
  • the stopper rod of the present invention is composed of a metal inner tube and a metal outer tube set to form a hollow structure, and air cooling is used to ensure that the metal is completely cooled, and the wall temperature of the metal is always lower than its usable temperature.
  • the refractory material is laid on the surface of the outer tube, which can effectively reduce the temperature of the metal wall surface, and the metal outer tube is provided with a hook and a pin to ensure the mechanical properties of the refractory material.
  • the club head has a tapered structure or a circular structure, and the purpose is to closely match the lower nozzle to adjust the flow cross section.
  • the left and right inclined furnace walls of the moving bed of the present invention are at an angle of 60° with the horizontal plane, which is designed according to the angle of repose of the blast furnace slag particles to ensure that the blast furnace slag particles in the bed slide downward freely, which contributes to Drainage.
  • the air distribution device of the moving bed of the present invention adopts a combination of a cloth duct and a hood, and the hood is arranged in a square shape, so that the air in the moving bed is uniform, and the heat exchange between the air and the blast furnace slag particles is enhanced, and the hood is simultaneously
  • the structure can effectively prevent the blast furnace slag particles from entering the air distribution device during the downward movement.
  • the cross-sectional shape of the air duct of the moving bed of the present invention is elliptical, which is designed according to the special slagging method of the present invention to ensure sufficient space between the air ducts to facilitate cooling.
  • the blast furnace slag particles are discharged downward through the air distribution device.
  • the flow direction of the air and the heat transfer medium in the moving bed of the present invention is arranged in a countercurrent flow direction with the moving direction of the blast furnace slag, so that the high temperature sensible heat of the granulated blast furnace slag particles can be fully recovered.
  • the waste heat recovery system of the present invention adopts a combination of air cooling and water cooling, and solves the problem of uneven cooling caused by single water cooling, or the problem of large power consumption of a large air-cooling air flow fan, which can achieve better cooling effect. .
  • FIG. 1 is a schematic view of a high-temperature liquid slag dry centrifugal granulation waste heat recovery system according to the present invention
  • FIG. 2 is a schematic structural view of a stopper rod according to the present invention.
  • Figure 3 is a schematic view showing the structure of another stopper rod in the present invention.
  • Figure 4 is a schematic view showing the arrangement of the moving bed hood of the present invention.
  • Figure 5 is a schematic structural view of a moving bed duct and a hood according to the present invention.
  • Figure 6 is a cross-sectional view taken along line A-A of Figure 5 .
  • a high-temperature liquid slag dry centrifugal granulation waste heat recovery system comprises a liquid slag drainage system, a liquid slag buffer system, a liquid slag granulation and a heat exchange system, Slag conveying system and waste heat recovery system.
  • the liquid slag drainage system comprises a slag ditch 1, a baffle and a slag discharge port 2; the slag ditch inlet is directly connected with the blast furnace slag discharge port, and the slag ditch discharge port 2 is located above the slag buffer system inlet; the baffle is located at the bottom of the slag ditch;
  • the slag ditch has a plurality of slag ports 2 .
  • the liquid slag buffer system is composed of a plurality of independent slag packages; the slag bag comprises a slag bag body 3, a cover 4, a slag tube 5 and a stopper rod 6; the slag tube 5 is located at the bottom of the slag package and is connected to the granulation system
  • the slag bag has a plurality of slag pipes 5, which are located above the corresponding slag pipes 5 for controlling the slag flow rate or sealing the slag pipes 5.
  • the liquid slag granulation and heat exchange system consists of a plurality of independent granulation and heat exchange systems, and the system is arranged in a single row in parallel;
  • the slag granulation and heat exchange system is composed of a granulation tank 7, a centrifugal granulator 8, a moving bed 9 and a slagging device; the inner surface of the granulation chamber is arranged with a heating surface, and the center opening of the top of the granulation chamber makes the slag buffer system
  • the slag tube 5 can extend into the granulation chamber 7, the centrifugal granulator 8 is located below the slag tube 5, the lower portion of the centrifugal granulator 8 is connected to the motor 10, and the side of the centrifugal granulator 8 is provided with a supply duct.
  • the annular plenum 12 is formed between the centrifugal granulator 8 and the air supply duct 11; the moving bed 9 is located at the lower part of the granulation chamber 7, the inner surface is provided with a heated surface 22 of the moving bed inner surface, the top is provided with an air outlet 13 and the bottom is provided The air inlet device; the slagging device is located below the air inlet device.
  • the slag conveying system comprises a temperature-resistant conveying belt 14 and a buffer silo, the conveying belt is located below the slag discharging device, and the buffer silo is arranged at the intersection of the belts in different directions.
  • the waste heat recovery system includes a primary dust collector 15 connected in sequence, a waste heat boiler 16, a secondary dust remover 17, an exhaust fan 18, and a chimney 19; the primary dust collector is connected to the moving bed granulation chamber air outlet collecting duct 20.
  • the high-temperature liquid slag dry centrifugal granulation waste heat recovery system in the present embodiment realizes an effective link between the slag production system and the treatment system through the liquid slag drainage and buffer system, and has the functions of diversion, diversion and heat preservation, and is effective Solve the problem that the continuous operation of blast furnace intermittent slagging and waste heat recovery equipment is not synchronized, realize the on-site and continuous treatment of liquid slag, ensure the safe and stable operation of the whole system; realize the liquefaction and heat exchange system and waste heat recovery system through liquid slag
  • the granulation molding and waste heat recovery of liquid slag, the cooling water resources used in each stage can be recycled, which not only solves the problem of serious waste of resources and serious pollution, but also realizes efficient recovery of waste heat of high-temperature liquid slag.
  • the stopper rod 6 is composed of a metal inner tube 37 and a metal outer tube 38, and the two tubes are connected by a connecting rib 39 to form a hollow arrangement; the rod head 40 of the stopper rod 6 is a cone. A structure is provided; a thermocouple is provided in the rod head for determining the amount of air in the metal inner tube 37 and the metal outer tube 38 so that the temperature of the metal outer tube can be controlled within a suitable range.
  • the lower port of the metal inner tube 37 communicates with the metal outer tube 38, the lower end of the metal outer tube 38 is sealed, the upper end is provided with a plug cold air outlet 42; and the upper portion of the metal inner tube 37 is provided with a plug cold air inlet 41.
  • the cold air enters the metal inner tube 37 from the cold air inlet 41, and flows out between the two tubes through the plug cold air outlet 42 to form a cooling effect on the metal wall surface.
  • the surface of the metal outer tube is laid with a heat insulating material 43, and the outer tube wall is arranged to be pulled Hooks and pins secure the insulation.
  • the heat insulating material 43 is replaced with an anti-corrosion coating 44 formed by plasma high temperature spraying.
  • the inner surface of the granulated silo vertical wall 21 and the heated surface of the moving bed inner surface 22 are spirally raised by a single tube, and the inner surface of the granulated silo is heated by a single tube horizontally reciprocating structure.
  • the front and rear furnace walls and the intermediate furnace wall of the moving bed are vertical furnace walls, and the left and right furnace walls 24 of the moving bed are inclined furnace walls, and the angle between the inclined furnace walls and the horizontal plane is 60°.
  • the air inlet device comprises an air blowing device at the bottom of the moving bed, an air duct 25 at the bottom of the moving bed, and a blower 26, and the air blower 26 communicates with the air duct 25, and the air duct 25 respectively communicates with the air duct 11 and the moving side of the centrifugal granulator.
  • the air distribution device at the bottom of the bed.
  • the air distribution device is located at the bottom of the moving bed and is composed of a cloth duct 27 and a hood 28, and the air duct 27 has an elliptical cross section.
  • the air outlet of the hood 28 is disposed obliquely downward to increase the downward force of the slag particles, and to prevent the slag particles from blocking the air outlet of the hood.
  • the falling liquid slag of the falling slag tube 5 is dropped into the centrifugal granulator 8 for granulation, and the granulated particles are blown into the granulating chamber 7 under the combined action of the centrifugal force and the annular tuyere 12, and are dropped down to After a certain thickness is accumulated in the upper part of the hood, after the lower slag particles are completely cooled, the slag discharge device is opened, and the slag particles are dropped through the air inlet device to the slag discharging device.
  • the air inlet device blows from the bottom to the top, opposite to the falling direction of the particles, and effectively absorbs the heat of the particles.
  • the slagging device includes a vibrating discharger 29 and a sealing valve 30 located at a lower portion of the moving bed.
  • the waste heat recovery system further includes a feed water pump 31, a waste heat boiler economizer 32, and a steam drum 33; the outlet of the feed water pump 31 is sequentially connected to the waste heat boiler economizer 32, the heated surface of the moving bed inner surface 22, and the granulated warehouse vertical wall The inner surface heating surface 21, the granulation chamber top inner surface heating surface 23 and the steam drum 33; the lower portion of the steam drum 33 is connected to the waste heat boiler evaporation heating surface 34 through a pipeline; the top of the steam drum 33 is sequentially connected to the waste heat boiler superheater 35 and the main through the pipeline Steam line 36.
  • the invention utilizes the waste heat recovery method of the above-mentioned high-temperature liquid slag dry centrifugal granulation waste heat recovery system, which mainly comprises the following steps:
  • the liquid slag is firstly introduced into the slag ditch 1 from the slag discharge port of the blast furnace, and the liquid slag is divided by the plurality of slag discharge ports of the slag ditch. It is equipped with a plurality of independent slag packages for thermal insulation buffering to solve the problem of intermittent slag discharge in the blast furnace, and realize continuous operation of the waste heat recovery system;
  • the tempering and hot air of the air outlet of the heat exchange system are collected and passed through a dust collector, a waste heat boiler, a secondary dust collector and an exhaust fan, and finally discharged through the chimney;
  • the water fed by the feed water pump is sequentially heated by the waste heat boiler economizer, the moving bed heating surface and the heating surface of the granulating chamber to enter the steam drum; the water in the steam drum is connected to the evaporation heating surface through the pipeline for circulation; the saturated steam passes through the heat
  • the heater is connected to the main steam line after heating, and the generated steam is incorporated into the steam pipe network or generates electricity.

Abstract

一种高温液态熔渣干式离心粒化余热回收***及方法,所述***包括液态熔渣引流***、液态熔渣缓冲***、液态熔渣粒化及换热***、渣粒输送***及余热回收***;液态熔渣引流***包括渣沟(1)、挡板及出渣口(2);液态熔渣缓冲***由一个或多个独立的渣包组成,渣包包括包体(3)、包盖(4)、落渣管(5)、塞棒(6)等结构;液态熔渣粒化与换热***由一个或多个独立的粒化与换热***组成,粒化与换热模块呈单排或多排并列布置,分别由粒化仓(7)、离心粒化器(8)、移动床(9)及排渣装置组成;渣粒输送***包括耐温输送皮带(14)和缓冲料仓;余热回收***包括依次连接的一次除尘器(15)、余热锅炉(16)、二次除尘器(17)、排气风机(18)和烟囱(19)。

Description

一种高温液态熔渣干式离心粒化余热回收***与方法 技术领域
本发明涉及高炉渣余热回收技术领域,特别涉及一种高温液态熔渣干式离心粒化余热回收***及方法。
背景技术
中国目前是全球最大的钢铁生产国,钢铁产量已连续17年保持世界第一。2014年中国生铁产量达到7.11亿吨,约占世界总产量的60%,在冶炼生铁的过程中同时会产生蕴含巨大热量的高炉渣。高炉渣的出炉温度一般在1400~1550℃之间,每吨渣含(1260~1880)×103kJ的显热,相当于60kg标准煤。在我国现有的炼铁技术下,每生产1吨生铁副产0.3吨高炉渣,以目前我国生铁产量7.11亿吨进行计算,可折合产生2.13亿吨以上的高炉渣,其显热量相当于1278万吨标准煤。
干渣坑冷却法和水冲渣法是目前我国最常见的高炉渣处理方法。干渣坑冷却法将高温的液态熔渣直接排入干渣坑空冷,辅助水冷。该法降温时产生大量水蒸气,同时释放出大量的H2S和SO2气体,腐蚀建筑、破坏设备和恶化工作环境,一般只在事故处理时使用该法。我国90%的高炉渣都采用水冲渣法处理。水冲渣法是指利用低温的冷却水直接与高温的液态熔渣混合,使得液态熔渣温度迅速降低并形成玻璃体态炉渣颗粒。水冲渣法按照不同的工艺流程可分为因巴法、图拉法、底滤法、拉萨法、明特克法。尽管水冲渣工艺不断发展,但其技术的核心还是对高温液态熔渣进行喷水水淬,进而达到冷却和粒化的目的,然后进行水渣分离,冲渣的水经过沉淀过滤后再循环使用。尽管该法产生的玻璃体态熔渣可以应用于水泥工业进行资源化利用,但是处理过程浪费大量水资源,产生SO2和H2S等有害气体,也不能有效回收高温液态熔渣所含有的高品质余热资源。
综上所述,目前普遍采用的干渣坑冷却法和水冲渣法,不仅浪费了高温液态熔渣所含有的全部高品质余热资源,而且消耗大量水资源,对环境造成严重污染,这些处理方式已不能适应目前钢铁行业节能减排的迫切需求。必须寻求一种高效、无污染的新技术对高炉渣余热资源进行有效回收。
发明内容
本发明的目的在于提供一种高温液态熔渣干式离心粒化余热回收***与方法,以解决当前高炉液态熔渣高品质余热资源浪费严重的问题。
为了实现上述目的,本发明采用如下技术方案:
一种高温液态熔渣干式离心粒化余热回收***,包括液态熔渣粒化与换热***及余热回收***;
液态熔渣粒化与换热***由一个或多个独立的粒化与换热***组成;所述粒化与换热***包括粒化仓、离心粒化器、移动床及排渣装置;粒化仓内表面布置有受热面,粒化仓顶部设有开口,落渣管从该开口伸入至位于粒化仓内的离心粒化器上方;离心粒化器的旁侧设有送风管道,离心粒化器与送风管道间形成环形风口;移动床位于粒化仓下部,移动床内表面布置有受热面,顶部或侧面设有出风口,底部设有进风装置;排渣装置位于进风装置下方;
余热回收***包括依次连接的一次除尘器、余热锅炉、二次除尘器、排气风机和烟囱;一次除尘器连接各移动床出风口的汇集风道。
进一步的,液态熔渣粒化与换热***由多个独立的粒化与换热***组成,粒化与换热***呈单排或多排并列布置。
进一步的,还包括液态熔渣引流***和液态熔渣缓冲***;液态熔渣引流***包括渣沟、挡板及出渣口;渣沟进口与高炉排渣口直接相连,渣沟出口位于熔渣缓冲***进口上方;挡板位于渣沟底部;渣沟有一个或多个出渣口;液态熔渣缓冲***由一个或多个独立的渣包组成; 所述渣包包括包体、包盖、落渣管及塞棒;落渣管位于渣包底部;渣包有一个或多个落渣管,塞棒位于对应落渣管上方,用于控制落渣流量或者密封落渣管。
进一步的,排渣装置包括位于移动床下部的振动出料机和密封阀;排渣装置下方设有渣粒输送***;渣粒输送***包括耐温输送皮带和缓冲料仓,输送皮带位于排渣装置下方,缓冲料仓位于输送皮带的输送终点。
进一步的,所述塞棒由金属内管和金属外管套装组成,两管之间由连接肋相接,形成中空布置,棒头为锥形结构或者圆形结构;金属内管的下端口与金属外管相连通,金属外管下端密封,上端设有塞棒冷风出口;金属内管上部设有塞棒冷风进口;冷风由塞棒冷风进口进入金属内管,由金属内管和金属外管之间经塞棒冷风出口流出,对金属外管壁面进行冷却;金属外管的外壁通过拉钩以及销钉固定有隔热材料或者喷涂有防腐蚀涂层。
进一步的,所述粒化仓内表面布置的受热面包括粒化仓竖墙内表面受热面和粒化仓顶部内表面受热面;粒化仓竖墙内表面受热面及移动床内表面布置的受热面均采用单管螺旋上升、多管并列螺旋上升、垂直管屏或膜式水冷壁的结构,粒化仓顶部内表面受热面采用单管、多管并列水平往复或盘旋的结构,或者采用膜式水冷壁结构。
进一步的,所述进风装置包括位于移动床底部的布风装置、移动床外侧底部的风道以及鼓风机,鼓风机连通风道,风道分别连通离心粒化器旁侧的送风管道和移动床底部的布风装置;所述布风装置位于移动床底部,由布风管和风帽组成,布风管的横截面形状为椭圆形。
进一步的,余热回收***还包括给水泵、余热锅炉省煤器、汽包;给水泵的出口依次连接余热锅炉省煤器、移动床内表面受热面、粒化仓竖墙内表面受热面、粒化仓顶部内表面受热面和汽包;汽包下部通过管道与余热锅炉蒸发受热面相连;汽包顶部通过管道依次连通余热锅炉过热器和主蒸汽管道。
进一步的,移动床的前后炉墙及中间炉墙为垂直炉墙,左右炉墙为倾斜炉墙,倾斜炉墙与 水平面的夹角为60°。
进一步的,一次除尘器和余热锅炉布置在粒化***的上方或布置在水平面上。
一种高温液态熔渣干式离心粒化余热回收方法,包括以下步骤:
(1)液态熔渣通过落渣管进入粒化仓落在离心粒化器上,旋转的离心粒化器将流入的液态熔渣粒化成小液滴,小液滴飞溅至粒化仓内,小液滴飞行过程中在粒化仓受热面和离心粒化器旁侧的环形风口吹出的环形风的双重冷却作用下,变成具有硬质外表面的渣粒;
(2)渣粒随后落入粒化仓下部的移动床进行堆积形成料层,高温渣粒与周围的移动床受热面和通过布风装置鼓入的空气进行换热,实现充分冷却;
(3)充分冷却后的渣粒穿过布风装置空隙掉落至排渣装置。
进一步的,粒化与换热***出风口的热空气经汇集后依次经过一次除尘器、余热锅炉、二次除尘器和排气风机,最后经烟囱排出。
进一步的,给水泵给入的水依次经过余热锅炉省煤器、移动床受热面和粒化仓受热面的加热后进入汽包;汽包内的水通过管道与蒸发受热面连接进行循环;饱和蒸汽经过热器加热后与主蒸汽管道相连,产生的蒸汽并入蒸汽管网或发电。
进一步的,液态熔渣首先从高炉排渣口直接进入渣沟,通过渣沟的一个或多个出渣口将液态熔渣分配到一个或多个独立的渣包中进行保温缓冲,解决高炉间歇排渣的问题,实现余热回收***的连续运行;
进一步的,渣包中的液态熔渣在塞棒的控制下以一定的流量通过落渣管进入粒化仓落在离心粒化器上。
本发明的技术方案具有以下有益效果:
(1)本发明所述液态熔渣引流及缓冲***具有导流、分流及保温的功能,有效解决高炉间歇排渣与余热回收设备连续运行不同步的难题,实现液态熔渣就地、连续处理,保证整个 ***的安全稳定运行。
(2)本发明所述塞棒由金属内管和金属外管套装组成,形成中空结构,采用风冷保证金属被完全冷却,金属的壁面温度一直低于其可用温度。耐火材料敷设于外管表面,可有效隔热降低金属壁面温度,金属外管上布置有拉钩以及销钉保证耐火材料的力学性能。棒头为锥形结构或者圆形结构,目的是与下方水口紧密配合以调整流通截面。
(3)本发明所述移动床的左右倾斜炉墙与水平面呈60°夹角,这是根据高炉渣颗粒的安息角来设计的,以保证床内高炉渣颗粒自由向下滑动,有助于排渣。
(4)本发明所述移动床的布风装置采用布风管与风帽相结合的方式,风帽排列形式为正方形,使得移动床内布风均匀,增强空气与高炉渣颗粒的换热,同时风帽结构可有效防止高炉渣颗粒在向下移动的过程中进入布风装置。
(5)本发明所述移动床的布风管横截面形状为椭圆形,这是根据本发明特殊的排渣方式来设计的,以保证在布风管之间形成足够的空间,利于冷却后的高炉渣颗粒穿过布风装置向下排出。
(6)本发明所述移动床内的空气及受热面内换热工质的流动方向与高炉渣移动方向呈逆流布置,从而可将粒化高炉渣颗粒的高温显热充分回收。
本发明所述余热回收***采用风冷与水冷相结合的方式,解决了单一采用水冷导致的冷却不均匀问题,或单一采用空冷空气流量大风机功耗大的问题,可以达到较好的冷却效果。
附图说明
下面结合附图和具体实施方式对本发明做进一步详细说明。
图1为本发明一种高温液态熔渣干式离心粒化余热回收***示意图;
图2为本发明中一种塞棒的结构示意图;
图3为本发明中另一种塞棒的结构示意图;
图4为本发明移动床风帽排列形式示意图;
图5为本发明移动床布风管及风帽结构示意图;
图6为沿图5中A-A线的剖视图。
图中:1、渣沟;2、渣沟出渣口;3、渣包包体;4、渣包包盖;5、落渣管;6、塞棒;7、粒化仓;8、离心粒化器;9、移动床;10、电机;11、粒化器送风管道;12、粒化器环形风口;13、出风口;14、输送皮带;15、一次除尘器;16、余热锅炉;17、二次除尘器;18、排气风机;19、烟囱;20、汇集风道;21、粒化仓竖墙内表面受热面;22、移动床内表面受热面;23、粒化仓顶部内表面受热面;24、移动床左右炉墙;25、风道;26、鼓风机;27、布风管;28、风帽;29、振动出料机;30、密封阀;31、给水泵;32、余热锅炉省煤器;33、汽包;34、余热锅炉蒸发受热面;35、余热锅炉过热器;36、主蒸汽管道;37、金属内管;38、金属外管;39、连接肋;40、棒头;41、塞棒冷风进口;42、塞棒冷风出口;43、隔热材料;44、防腐蚀涂层。
具体实施方式
下面将结合附图对本发明的具体实施方式加以说明:
请参阅图1至图6所示,本发明一种高温液态熔渣干式离心粒化余热回收***,包括液态熔渣引流***、液态熔渣缓冲***、液态熔渣粒化及换热***、渣粒输送***及余热回收***。
液态熔渣引流***包括渣沟1、挡板及出渣口2;渣沟进口与高炉排渣口直接相连,渣沟出渣口2位于熔渣缓冲***进口上方;挡板位于渣沟底部;渣沟有多个出渣口2。
液态熔渣缓冲***由多个独立的渣包组成;渣包包括渣包包体3、包盖4、落渣管5和塞棒6;落渣管5位于渣包底部,与粒化***相连;渣包具有多个落渣管5,塞棒6位于对应落渣管5上方,用于控制落渣流量或者密封落渣管5。
液态熔渣粒化与换热***由多个独立的粒化与换热***组成,***呈单排并列布置;液态 熔渣粒化及换热***由粒化仓7、离心粒化器8、移动床9及排渣装置组成;粒化仓内表面布置有受热面,粒化仓顶部中心开口使得熔渣缓冲***的落渣管5可伸入粒化仓7内,离心粒化器8位于落渣管5下方,离心粒化器8下部与电机10相连,离心粒化器8的旁侧设有送风管道11,离心粒化器8与送风管道11间形成环形风口12;移动床9位于粒化仓7下部,内表面布置有移动床内表面受热面22,顶部设有出风口13,底部设有进风装置;排渣装置位于进风装置下方。
渣粒输送***包括耐温输送皮带14和缓冲料仓,输送皮带位于排渣装置下方,缓冲料仓设于不同方向皮带的交汇处。
余热回收***包括依次连接的一次除尘器15、余热锅炉16、二次除尘器17、排气风机18和烟囱19;一次除尘器连接移动床粒化仓出风口汇集风道20。
本实施方式中的一种高温液态熔渣干式离心粒化余热回收***通过液态熔渣引流和缓冲***实现了熔渣生产***与处理***的有效链接,具有导流、分流及保温功能,有效解决高炉间歇排渣与余热回收设备连续运行不同步的难题,实现液态熔渣就地、连续处理,保证整个***的安全稳定运行;通过液态熔渣粒化与换热***、余热回收***实现对液态熔渣的粒化成型与余热回收,各阶段所用的冷却水资源可循环利用,不仅解决了资源浪费严重、污染严重的问题,还实现了高温液态熔渣余热的高效回收。
请参阅图2所示,具体的,塞棒6由金属内管37和金属外管38套装组成,两管之间由连接肋39相接,形成中空布置;塞棒6的棒头40为锥形结构;棒头中设有热电偶用于确定金属内管37和金属外管38中的风量,以使金属外管的温度可控制在合适的范围内。金属内管37的下端口与金属外管38相连通,金属外管38下端密封,上端设有塞棒冷风出口42;金属内管37上部设有塞棒冷风进口41。冷风由冷风进口41进入金属内管37,由两管之间经塞棒冷风出口42流出,对金属壁面形成冷却效应。金属外管表面敷设隔热材料43,外管壁上布置拉 钩以及销钉固定隔热材料。请参阅图3所示,为另一种塞棒的结构,将隔热材料43替换成等离子高温喷涂形成的防腐蚀涂层44。
具体的,粒化仓竖墙内表面受热面21及移动床内表面受热面22采用单管螺旋上升的结构,粒化仓顶部内表面受热面23采用单管水平往复的结构。
具体的,移动床的前后炉墙及中间炉墙为垂直炉墙,移动床左右炉墙24为倾斜炉墙,倾斜炉墙与水平面的夹角为60°。进风装置包括位于移动床底部的布风装置、移动床外侧底部的风道25以及鼓风机26,鼓风机26连通风道25,风道25分别连通离心粒化器旁侧的送风管道11和移动床底部的布风装置。布风装置位于移动床底部,由布风管27和风帽28组成,布风管27的横截面形状为椭圆形。风帽28的出风口倾斜向下设置,能够使渣粒掉落的是否增加一个向下的作用力,还能防止渣粒堵住风帽的出风口。落渣管5下落的液态熔渣滴入离心粒化器8中进行粒化,粒化后的颗粒在离心力以及环形风口12的共同作用下,吹入粒化仓7,并往下掉落到风帽上部,堆积一定厚度后,下部渣粒完全冷去后,开启排渣装置,渣粒穿过进风装置掉落至排渣装置中。进风装置由下向上吹风,与颗粒下落方向相反,有效的吸收的颗粒的热量。
具体的,排渣装置包括位于移动床下部的振动出料机29和密封阀30。
具体的,余热回收***还包括给水泵31、余热锅炉省煤器32、汽包33;给水泵31的出口依次连接余热锅炉省煤器32、移动床内表面受热面22、粒化仓竖墙内表面受热面21、粒化仓顶部内表面受热面23和汽包33;汽包33下部通过管道与余热锅炉蒸发受热面34相连;汽包33顶部通过管道依次连通余热锅炉过热器35和主蒸汽管道36。
本发明利用上述一种高温液态熔渣干式离心粒化余热回收***的余热回收方法,主要包括以下步骤:
(1)液态熔渣首先从高炉排渣口直接进入渣沟1,通过渣沟的多个出渣口将液态熔渣分 配到多个独立的渣包中进行保温缓冲,解决高炉间歇排渣的问题,实现余热回收***的连续运行;
(2)渣包中的液态熔渣在塞棒6的控制下以一定的流量通过落渣管5进入粒化仓7,落在离心粒化器8上,高速旋转的离心粒化器将流入转杯的液态熔渣粒化成小液滴,小液滴飞溅至粒化仓的大空间内,小液滴飞行过程中在粒化仓受热面和粒化器环形风的双重冷却作用下,变成具有硬质外表面的渣粒;
(3)渣粒随后落入粒化仓7下部的移动床9,堆积形成一定厚度的料层,以保证冷却时间,高温渣粒与周围的移动床受热面和通过布风装置鼓入的空气进行换热,实现充分冷却;
(4)充分冷却后的渣粒穿过布风装置空隙经排渣装置掉落到输送皮带上,经渣粒输送***输送到渣厂以备后续利用;
各粒化与换热***出风口的热空气经汇集后依次经过一次除尘器、余热锅炉、二次除尘器和排气风机,最后经烟囱排出;
给水泵给入的水依次经过余热锅炉省煤器、移动床受热面和粒化仓受热面的加热后进入汽包;汽包内的水通过管道与蒸发受热面连接进行循环;饱和蒸汽经过热器加热后与主蒸汽管道相连,产生的蒸汽并入蒸汽管网或发电。
最后应说明的是:以上实施方式仅用以说明本发明而非限制本发明所描述的技术方案;因此,尽管本说明书参照上述实施方式对本发明已进行了详细的描述,但是,本领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换;而一切不脱离本发明精神和范围的技术方案及其改进,其均应涵盖在本发明的权利要求范围中。

Claims (10)

  1. 一种高温液态熔渣干式离心粒化余热回收***,其特征在于,包括液态熔渣粒化与换热***及余热回收***;
    液态熔渣粒化与换热***由一个或多个独立的粒化与换热***组成;所述粒化与换热***包括粒化仓(7)、离心粒化器(8)、移动床(9)及排渣装置;粒化仓内表面布置有受热面,粒化仓顶部设有开口,落渣管(5)从该开口伸入至位于粒化仓(7)内的离心粒化器(8)上方;离心粒化器的旁侧设有送风管道(11),离心粒化器(8)与送风管道(11)间形成环形风口(12);移动床(9)位于粒化仓(7)下部,移动床(9)内表面布置有受热面,顶部或侧面设有出风口(13),底部设有进风装置;排渣装置位于进风装置下方;
    余热回收***包括依次连接的一次除尘器(15)、余热锅炉(16)、二次除尘器(17)、排气风机(18)和烟囱(19);一次除尘器连接各移动床出风口的汇集风道(20)。
  2. 根据权利要求1所述的一种高温液态熔渣干式离心粒化余热回收***,其特征在于,还包括液态熔渣引流***和液态熔渣缓冲***;
    液态熔渣引流***包括渣沟(1)、挡板及出渣口(2);渣沟进口与高炉排渣口直接相连,渣沟出口位于熔渣缓冲***进口上方;挡板位于渣沟底部;渣沟有一个或多个出渣口(2);
    液态熔渣缓冲***由一个或多个独立的渣包组成;所述渣包包括包体(3)、包盖(4)、落渣管(5)及塞棒(6);落渣管(5)位于渣包底部;渣包有一个或多个落渣管(5),塞棒(6)位于对应落渣管(5)上方,用于控制落渣流量或者密封落渣管(5)。
  3. 根据权利要求1所述的一种高温液态熔渣干式离心粒化余热回收***,其特征在于,排渣装置包括位于移动床下部的振动出料机(29)和密封阀(30);排渣装置下方设有渣粒输送***;渣粒输送***包括耐温输送皮带(14)和缓冲料仓,输送皮带(14)位于排渣装置下方,缓冲料仓位于输送皮带(14)的输送终点。
  4. 根据权利要求2所述的一种高温液态熔渣干式离心粒化余热回收***,其特征在于, 所述塞棒(6)由金属内管(37)和金属外管(38)套装组成,两管之间由连接肋(39)相接,形成中空布置,棒头(40)为锥形结构或者圆形结构;金属内管(37)的下端口与金属外管(38)相连通,金属外管(38)下端密封,上端设有塞棒冷风出口(42);金属内管(37)上部设有塞棒冷风进口(41);冷风由塞棒冷风进口(41)进入金属内管(37),由金属内管(37)和金属外管(38)之间经塞棒冷风出口(42)流出,对金属外管(38)壁面进行冷却;金属外管(38)的外壁通过拉钩以及销钉固定有隔热材料或者喷涂有防腐蚀涂层。
  5. 根据权利要求1所述的一种高温液态熔渣干式离心粒化余热回收***,其特征在于,所述粒化仓内表面布置的受热面包括粒化仓竖墙内表面受热面(21)和粒化仓顶部内表面受热面(23);粒化仓竖墙内表面受热面(21)及移动床内表面布置的受热面均采用单管螺旋上升、多管并列螺旋上升、垂直管屏或膜式水冷壁的结构,粒化仓顶部内表面受热面(23)采用单管、多管并列水平往复或盘旋的结构,或者采用膜式水冷壁结构。
  6. 根据权利要求1所述的一种高温液态熔渣干式离心粒化余热回收***,其特征在于,所述进风装置包括位于移动床底部的布风装置、移动床外侧底部的风道(25)以及鼓风机(26),鼓风机(26)连通风道(25),风道(25)分别连通离心粒化器旁侧的送风管道(11)和移动床底部的布风装置;所述布风装置位于移动床底部,由布风管(27)和风帽(28)组成,布风管(27)的横截面形状为椭圆形。
  7. 根据权利要求5所述的一种高温液态熔渣干式离心粒化余热回收***,其特征在于,
    余热回收***还包括给水泵(31)、余热锅炉省煤器(32)、汽包(33);给水泵(31)的出口依次连接余热锅炉省煤器(32)、移动床内表面受热面(22)、粒化仓竖墙内表面受热面(21)、粒化仓顶部内表面受热面(23)和汽包(33);汽包(33)下部通过管道与余热锅炉蒸发受热面(34)相连;汽包(33)顶部通过管道依次连通余热锅炉过热器(35)和主蒸汽管道(36)。
  8. 一种高温液态熔渣干式离心粒化余热回收方法,其特征在于,基于权利要求1至7 中任一项所述的一种液态熔渣干式离心粒化余热回收***,包括以下步骤:
    (1)液态熔渣通过落渣管进入粒化仓落在离心粒化器上,旋转的离心粒化器将流入的液态熔渣粒化成小液滴,小液滴飞溅至粒化仓内,小液滴飞行过程中在粒化仓受热面和离心粒化器旁侧的环形风口吹出的环形风的双重冷却作用下,变成具有硬质外表面的渣粒;
    (2)渣粒随后落入粒化仓下部的移动床进行堆积形成料层,高温渣粒与周围的移动床受热面和通过布风装置鼓入的空气进行换热,实现充分冷却;
    (3)充分冷却后的渣粒穿过布风装置空隙掉落至排渣装置。
  9. 根据权利要求8所述的一种高温液态熔渣干式离心粒化余热回收方法,其特征在于,粒化与换热***出风口的热空气经汇集后依次经过一次除尘器、余热锅炉、二次除尘器和排气风机,最后经烟囱排出。
  10. 根据权利要求8所述的一种高温液态熔渣干式离心粒化余热回收方法,其特征在于,给水泵给入的水依次经过余热锅炉省煤器、移动床受热面和粒化仓受热面的加热后进入汽包;汽包内的水通过管道与蒸发受热面连接进行循环;饱和蒸汽经过热器加热后与主蒸汽管道相连,产生的蒸汽并入蒸汽管网或发电。
PCT/CN2017/074806 2016-03-11 2017-02-24 一种高温液态熔渣干式离心粒化余热回收***与方法 WO2017152784A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610140864.2 2016-03-11
CN201610140864.2A CN105603135B (zh) 2016-03-11 2016-03-11 一种高温液态熔渣干式离心粒化余热回收***与方法

Publications (1)

Publication Number Publication Date
WO2017152784A1 true WO2017152784A1 (zh) 2017-09-14

Family

ID=55983471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074806 WO2017152784A1 (zh) 2016-03-11 2017-02-24 一种高温液态熔渣干式离心粒化余热回收***与方法

Country Status (2)

Country Link
CN (1) CN105603135B (zh)
WO (1) WO2017152784A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108330237A (zh) * 2017-09-27 2018-07-27 中能立化科技有限公司 一种渣流输送装置及熔渣粒化取热***
CN110205418A (zh) * 2018-06-27 2019-09-06 西安华江环保科技股份有限公司 一种压力式高炉红渣余热回收利用***及方法
CN110257572A (zh) * 2019-06-10 2019-09-20 北京中冶设备研究设计总院有限公司 一种干法粒化熔渣输送控流的方法
CN110643758A (zh) * 2019-11-14 2020-01-03 南京鹏昆环保科技有限公司 一种高温液态钢渣资源化处理及热能回收方法及装置
CN112725553A (zh) * 2021-02-09 2021-04-30 无锡红旗除尘设备有限公司 一种高温液态稀熔渣急冷干式粒化及余热回收***
CN112853013A (zh) * 2021-03-19 2021-05-28 中冶节能环保有限责任公司 一种高温钢渣余热回收装置及基于该装置的余热回收方法
CN114686624A (zh) * 2022-03-29 2022-07-01 广东韶钢松山股份有限公司 一种不停机的熔渣处理方法
CN114704814A (zh) * 2022-04-07 2022-07-05 马鞍山市如松冶金科技有限责任公司 一种环型热熔渣气化锅炉热量回收***及其使用方法
CN114854912A (zh) * 2022-04-29 2022-08-05 安徽马钢嘉华新型建材有限公司 一种矿渣多方式冷却***
CN115415275A (zh) * 2022-10-17 2022-12-02 国能新疆化工有限公司 一种煤气化渣固废再生利用设备
CN115747393A (zh) * 2022-11-21 2023-03-07 山东惠众鑫工程技术有限公司 一种转炉钢渣余热回收工艺

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105603135B (zh) * 2016-03-11 2018-12-07 西安交通大学 一种高温液态熔渣干式离心粒化余热回收***与方法
CN105861768B (zh) * 2016-06-20 2018-08-24 上海欧骋冶金成套设备有限公司 一种高炉熔渣的干法处理装置
CN106282447B (zh) * 2016-09-21 2018-07-03 重庆大学 具有自调节及防结渣功能的熔渣干式粒化余热回收装置
CN106423168B (zh) * 2016-09-23 2018-10-12 青岛理工大学 一种液态高炉渣粒化制取焦油裂解催化剂的方法与装置
CN106755661B (zh) * 2016-12-14 2018-12-21 重庆大学 干法离心粒化法制备钒渣粉末
CN106939363B (zh) * 2017-02-28 2019-10-11 西安交通大学 用于液态熔渣干式离心粒化及余热回收的***及控制方法
CN106940140B (zh) * 2017-02-28 2018-09-04 西安交通大学 一种带有流量温度监测及控制功能的二级液态熔渣缓存***
CN108359756B (zh) * 2018-02-26 2019-12-24 西安交通大学 一种用于液态熔渣干式离心粒化及余热回收利用***
CN108330235B (zh) * 2018-02-26 2019-12-24 西安交通大学 一种液态熔渣粒化及余热回收装置
CN108330234B (zh) * 2018-02-26 2020-01-10 西安交通大学 一种干式离心粒化及余热回收实验装置
CN108330233B (zh) * 2018-02-26 2020-03-17 西安交通大学 一种具有熔渣缓存及流量控制功能的液态熔渣干式离心粒化及余热回收***
CN109385496B (zh) * 2018-10-24 2020-06-23 青岛大学 一种液态熔渣机械离心粒化防粘结装置及其预热方法
CN109780916B (zh) * 2019-01-17 2024-02-20 南京华电节能环保股份有限公司 悬挂式快速冷却器、高炉熔渣回收余热发电的装置及方法
CN112146446B (zh) * 2019-06-28 2022-03-18 宝山钢铁股份有限公司 基于多介质耦合的高炉熔渣粒化换热装置
CN110484664A (zh) * 2019-09-27 2019-11-22 重庆大学 高温液态熔渣离心粒化余热回收***创建方法
CN110656211A (zh) * 2019-09-29 2020-01-07 青岛理工大学 一种应用于高炉渣干法离心粒化的风冷装置及方法
CN111020077B (zh) * 2019-12-04 2021-07-13 西安交通大学 一种液态熔渣余热回收***
CN111118239B (zh) * 2019-12-04 2021-06-29 西安交通大学 一种用于液态熔渣余热回收的模块化自然对流锅炉***
KR20230119222A (ko) * 2021-02-05 2023-08-16 제이에프이 스틸 가부시키가이샤 공급 열량 추정 방법, 공급 열량 추정 장치, 및 고로의 조업 방법
CN114777508A (zh) * 2022-05-06 2022-07-22 河南省冶金研究所有限责任公司 一种冶炼熔渣多级余热高效回收利用***
CN114904890A (zh) * 2022-05-31 2022-08-16 中节能(成都)能源科技服务有限公司 一种黄磷熔渣的资源化利用***及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3858657B2 (ja) * 2001-09-28 2006-12-20 住友金属工業株式会社 風砕スラグ粒子の製造方法及び装置並びに排ガス処理設備
DE102009007182A1 (de) * 2009-02-03 2010-08-05 Sms Siemag Aktiengesellschaft Stopfenvorrichtung zur Vermeidung von Clogging in einer Stranggießanlage
CN102424867A (zh) * 2011-12-31 2012-04-25 钢铁研究总院 一种熔渣粒化和余热回收装置
CN202377525U (zh) * 2011-12-08 2012-08-15 武钢集团昆明钢铁股份有限公司 一种连铸机塞棒冷却装置
CN102827969A (zh) * 2012-09-06 2012-12-19 西安交通大学 一种干式粒化液态熔渣的余热回收***及方法
CN105603135A (zh) * 2016-03-11 2016-05-25 西安交通大学 一种高温液态熔渣干式离心粒化余热回收***与方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103849697B (zh) * 2013-08-13 2015-06-10 上海耀秦冶金设备技术有限公司 高炉熔渣直接生产矿棉或微晶产品的熔渣处理装置及方法
CN105112577B (zh) * 2015-09-30 2017-05-03 东北大学 干式粒化回收高炉渣余热的装置和回收高炉渣余热的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3858657B2 (ja) * 2001-09-28 2006-12-20 住友金属工業株式会社 風砕スラグ粒子の製造方法及び装置並びに排ガス処理設備
DE102009007182A1 (de) * 2009-02-03 2010-08-05 Sms Siemag Aktiengesellschaft Stopfenvorrichtung zur Vermeidung von Clogging in einer Stranggießanlage
CN202377525U (zh) * 2011-12-08 2012-08-15 武钢集团昆明钢铁股份有限公司 一种连铸机塞棒冷却装置
CN102424867A (zh) * 2011-12-31 2012-04-25 钢铁研究总院 一种熔渣粒化和余热回收装置
CN102827969A (zh) * 2012-09-06 2012-12-19 西安交通大学 一种干式粒化液态熔渣的余热回收***及方法
CN105603135A (zh) * 2016-03-11 2016-05-25 西安交通大学 一种高温液态熔渣干式离心粒化余热回收***与方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108330237A (zh) * 2017-09-27 2018-07-27 中能立化科技有限公司 一种渣流输送装置及熔渣粒化取热***
CN110205418A (zh) * 2018-06-27 2019-09-06 西安华江环保科技股份有限公司 一种压力式高炉红渣余热回收利用***及方法
CN110257572A (zh) * 2019-06-10 2019-09-20 北京中冶设备研究设计总院有限公司 一种干法粒化熔渣输送控流的方法
CN110643758A (zh) * 2019-11-14 2020-01-03 南京鹏昆环保科技有限公司 一种高温液态钢渣资源化处理及热能回收方法及装置
CN112725553A (zh) * 2021-02-09 2021-04-30 无锡红旗除尘设备有限公司 一种高温液态稀熔渣急冷干式粒化及余热回收***
CN112853013A (zh) * 2021-03-19 2021-05-28 中冶节能环保有限责任公司 一种高温钢渣余热回收装置及基于该装置的余热回收方法
CN114686624A (zh) * 2022-03-29 2022-07-01 广东韶钢松山股份有限公司 一种不停机的熔渣处理方法
CN114704814A (zh) * 2022-04-07 2022-07-05 马鞍山市如松冶金科技有限责任公司 一种环型热熔渣气化锅炉热量回收***及其使用方法
CN114854912A (zh) * 2022-04-29 2022-08-05 安徽马钢嘉华新型建材有限公司 一种矿渣多方式冷却***
CN115415275A (zh) * 2022-10-17 2022-12-02 国能新疆化工有限公司 一种煤气化渣固废再生利用设备
CN115415275B (zh) * 2022-10-17 2023-10-31 国能新疆化工有限公司 一种煤气化渣固废再生利用设备
CN115747393A (zh) * 2022-11-21 2023-03-07 山东惠众鑫工程技术有限公司 一种转炉钢渣余热回收工艺

Also Published As

Publication number Publication date
CN105603135B (zh) 2018-12-07
CN105603135A (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
WO2017152784A1 (zh) 一种高温液态熔渣干式离心粒化余热回收***与方法
CN108359756B (zh) 一种用于液态熔渣干式离心粒化及余热回收利用***
WO2019161638A1 (zh) 一种具有熔渣缓存及流量控制功能的液态熔渣干式离心粒化及余热回收***
CN102424867B (zh) 一种熔渣粒化和余热回收装置
CN101871025B (zh) 冶金熔渣干式处理装置及其处理方法
CN103557711A (zh) 熔融炉渣急冷粒化及余热回收发电***及其方法
CN108267013B (zh) 一种烧结矿冷却和余热利用***和低氧全循环冷却方法
WO2017152782A1 (zh) 一种液态高温熔渣粒化及余热回收装置
CN102952908B (zh) 一种钢渣气淬及余热回收利用的设备和方法
WO2021109324A1 (zh) 一种用于液态熔渣余热回收的模块化自然对流锅炉***
CN103540698B (zh) 钢渣粒化及余热回收装置
CN205014851U (zh) 烧结矿显热回收装置
CN203534229U (zh) 一种熔融炉渣急冷粒化及余热回收发电***
CN106556258A (zh) 烧结矿显热回收装置及其使用方法
CN106636502A (zh) 一种高温炉渣风淬粒化流化床锅炉余热回收装置
CN104629778B (zh) 一种干熄炉内防焦炭堵塞装置
CN105154604B (zh) 提高炼铁工序能效的方法及装置
CN201825962U (zh) 冶金熔渣干式处理装置
CN201778004U (zh) 一种干熄焦高温焦粉排灰装置
CN103451330A (zh) 改进的冶金熔渣干熄处理装置及其处理方法
CN206570358U (zh) 一种高温炉渣风淬粒化流化床锅炉余热回收装置
CN107723397A (zh) 炉渣风淬粒化装置
CN107816898B (zh) 炉渣换热装置及包含该装置的高温余热回收装置
CN210030754U (zh) 一种熔融高炉渣流化床热回收固化装置
CN207515552U (zh) 炉渣分流换热装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762470

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17762470

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/04/2019)