WO2021109230A1 - 微发光二极管转移装置及微发光二极管转移方法 - Google Patents

微发光二极管转移装置及微发光二极管转移方法 Download PDF

Info

Publication number
WO2021109230A1
WO2021109230A1 PCT/CN2019/125686 CN2019125686W WO2021109230A1 WO 2021109230 A1 WO2021109230 A1 WO 2021109230A1 CN 2019125686 W CN2019125686 W CN 2019125686W WO 2021109230 A1 WO2021109230 A1 WO 2021109230A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
substrate
micro
emitting diode
transfer device
Prior art date
Application number
PCT/CN2019/125686
Other languages
English (en)
French (fr)
Inventor
樊勇
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/627,790 priority Critical patent/US11508604B2/en
Publication of WO2021109230A1 publication Critical patent/WO2021109230A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
    • G02F1/1397Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell the twist being substantially higher than 90°, e.g. STN-, SBE-, OMI-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67271Sorting devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68707Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68318Auxiliary support including means facilitating the separation of a device or wafer from the auxiliary support
    • H01L2221/68322Auxiliary support including means facilitating the selective separation of some of a plurality of devices from the auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68354Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to support diced chips prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68368Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving at least two transfer steps, i.e. including an intermediate handle substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body

Definitions

  • the invention relates to the field of display technology, in particular to a micro-light-emitting diode transfer device and a micro-light-emitting diode transfer method.
  • the micro light emitting diode (Micro LED) display device is a new generation of display technology, and its structure is a miniaturized LED array, that is, a high-density and small-sized LED array integrated on a substrate, so the micro LED technology can be regarded as LED miniaturization and matrix technology.
  • the substrate at the bottom of the LED needs to be removed, and then the micro-light-emitting diode is transferred to the stretch-resistant organic substrate by means of mass transfer.
  • intermolecular force can be used to transfer using structural transfer heads.
  • the fabrication of the structural transfer head is complicated, and it can only transfer the array of micro light emitting diode devices at a fixed position. In actual production, the positions of defective micro-light-emitting diodes among the arrays and a large number of micro-light-emitting diodes are uncertain. Therefore, how to selectively transfer a huge amount of micro light-emitting diodes is currently the key to achieving final yield improvement and cost reduction.
  • the existing micro-light-emitting diode transfer device has the problem that it cannot achieve selective transfer of a huge amount of micro-light-emitting diodes. Therefore, it is necessary to provide a micro-light-emitting diode transfer device and a micro-light-emitting diode transfer method to improve this defect.
  • the embodiments of the present disclosure provide a micro-light-emitting diode transfer device and a micro-light-emitting diode transfer method, which are used to solve the problem that the existing micro-light-emitting diode transfer device cannot achieve selective transfer of a huge amount of micro-light-emitting diodes.
  • micro light emitting diode transfer device including:
  • the holding part is used to hold the transfer substrate
  • Light source used to provide surface light
  • the liquid crystal light valve is arranged on the transmission path of the planar light, the liquid crystal light valve includes a plurality of sub light valves, and the sub light valves correspond to the micro light emitting diodes on the transfer substrate.
  • the micro-light-emitting diode transfer device further includes an adsorption component for adsorbing and transferring unqualified micro-light-emitting diodes on the target substrate.
  • the liquid crystal light valve includes a first substrate and a second substrate that are opposed to each other, and a light blocking wall is disposed between the first substrate and the second substrate, and is adjacent to the first substrate and the second substrate.
  • the light blocking wall and the first substrate and the second substrate form the sub-light valve, and the sub-light valve is filled with liquid crystal.
  • the first substrate is provided with a first driving electrode on a side close to the second substrate
  • the second substrate is provided with a second driving electrode on a side close to the first substrate.
  • the materials of the first electrode and the second electrode are both transparent conductive materials.
  • the driving method of the second driving electrode includes an active matrix driving method or a passive matrix driving method.
  • a first polarizer is provided on the side of the first substrate away from the second substrate, and a second polarizer is provided on the side of the second substrate away from the first substrate.
  • Both a polarizer and the second polarizer are metal wire grid polarizers.
  • the light source includes an ultraviolet light source or an infrared light source.
  • the embodiments of the present disclosure also provide a micro-light-emitting diode transfer device, including:
  • the holding part is used to hold the transfer substrate
  • Light source used to provide surface light
  • the liquid crystal light valve is arranged on the transmission path of the planar light, and includes a first substrate and a second substrate that are arranged oppositely.
  • a light blocking wall is arranged between the first substrate and the second substrate, and adjacent to each other.
  • the light blocking wall and the first substrate and the second substrate form a plurality of sub light valves, and the sub light valves correspond to the micro light emitting diodes on the transfer substrate.
  • the micro-light-emitting diode transfer device further includes an adsorption component for adsorbing and transferring unqualified micro-light-emitting diodes on the target substrate.
  • the first substrate is provided with a first driving electrode on a side close to the second substrate
  • the second substrate is provided with a second driving electrode on a side close to the first substrate.
  • the materials of the first electrode and the second electrode are both transparent conductive materials.
  • the driving method of the second driving electrode includes an active matrix driving method or a passive matrix driving method.
  • a first polarizer is provided on the side of the first substrate away from the second substrate, and a second polarizer is provided on the side of the second substrate away from the first substrate.
  • Both a polarizer and the second polarizer are metal wire grid polarizers.
  • the light source includes an ultraviolet light source or an infrared light source.
  • the embodiments of the present disclosure also provide a micro-light-emitting diode transfer method, the micro-light-emitting diode transfer method includes:
  • a transfer substrate is provided, one side of the transfer substrate is provided with a photosensitive adhesive layer, and a plurality of micro light emitting diodes are arranged on the transfer substrate through an array of the photosensitive adhesive layer;
  • the target area is an area of unqualified micro-light emitting diodes that are removed on the target substrate
  • the manufacturing method further includes:
  • the unqualified micro light-emitting diode is adsorbed and transferred by the adsorbing member.
  • the material of the photosensitive adhesive layer includes ultraviolet photosensitive adhesive or infrared photosensitive adhesive.
  • the beneficial effects of the embodiments of the present disclosure add a liquid crystal light valve to the micro-light-emitting diode transfer device.
  • the liquid-crystal light valve includes a plurality of sub-light valves corresponding to the micro-light-emitting diodes on the transfer substrate.
  • the opening and closing of the sub-light valve filters the light passing through the liquid crystal light valve to selectively illuminate the transfer substrate, so that the irradiated part of the micro light-emitting diode is separated from the transfer substrate due to the weakened photosensitive adhesive and adheres to On the target substrate, the technical effect of selective transfer of a huge amount of micro light-emitting diodes is realized.
  • FIG. 1 is a schematic diagram of a cross-sectional structure of a micro-light-emitting diode transfer device provided by an embodiment of the disclosure
  • FIG. 2 is a schematic flowchart of a method for transferring a micro light emitting diode according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a cross-sectional structure of a transfer substrate and a target substrate provided by an embodiment of the disclosure
  • FIG. 4 is a schematic diagram of a cross-sectional structure of a target substrate provided by an embodiment of the disclosure.
  • FIG. 1 is a schematic structural diagram of a micro-light-emitting diode transfer device 100 provided by an embodiment of the disclosure.
  • the micro-light-emitting diode transfer device 100 includes a holding member 11, a light source 12 and a liquid crystal light valve 13.
  • the holding member 11 is used to hold the transfer substrate 20, the light source 12 is used to provide planar light, and the liquid crystal light valve 13 is arranged on the transmission path of the planar light to transmit the light from the light source 12
  • the light is filtered to selectively irradiate the transfer substrate 20.
  • a photosensitive adhesive layer 21 is provided on one side of the transfer substrate 20, the micro light emitting diode 22 is adhered to the transfer substrate through the photosensitive adhesive layer 21, and the light emitted by the light source 12 is irradiated onto the photosensitive adhesive layer 21 through the liquid crystal light valve 13, so that The photosensitive adhesiveness of the photosensitive adhesive layer 21 is reduced, so that the corresponding micro light emitting diode 22 is separated from the transfer substrate 20 and adhered to the target substrate 30.
  • the liquid crystal light valve 13 includes a first substrate 131 and a second substrate 132 disposed oppositely, and a light blocking wall 133 is disposed between the first substrate 131 and the second substrate 132.
  • the adjacent light blocking wall 133 and the first substrate 131 and the second substrate 132 constitute a sub-light valve 134
  • the sub-light valve 134 is filled with liquid crystal 135, and the sub-light valve 134 and the The micro light emitting diode 22 on the transfer substrate 20 corresponds to it.
  • By opening and closing the sub-light valve light can be passed and blocked, thereby selectively irradiating the photosensitive adhesive layer 21 of the transfer substrate 20.
  • the light blocking wall 133 can effectively block the light emitted by the light source 12 from being cross-talked to the adjacent sub-light valve 134 in the sub-light valve 134, improving the collimation of the light emitted by the light source 12, and does not affect the adhesiveness of the adjacent micro LEDs corresponding to the photosensitive adhesive .
  • the materials of the first substrate 131 and the second substrate 132 are both transparent polyimide.
  • the material of the first substrate 131 and the second substrate 132 may also be other transparent materials, which is not limited here.
  • the type of the liquid crystal 135 may be ferroelectric liquid crystal, TN liquid crystal, OCB liquid crystal, PVA or IPS liquid crystal, all of which have high
  • the response speed of the sub-light valve 134 can be accurately controlled to open and close.
  • the first substrate 131 is provided with a first driving electrode 136 on the side close to the second substrate 132
  • the second substrate 132 is provided with a second driving electrode 137 on the side close to the first substrate 131.
  • An electric field is formed between the driving electrode 136 and the second driving electrode 137 to control the deflection direction of the liquid crystal in the sub-light valve 134 to realize the opening and closing of the sub-light valve 134.
  • the first driving electrode 136 and the second driving electrode 137 are both transparent conductive materials, such as transparent metal oxide conductive material ITO.
  • the driving mode of the second driving electrode 137 is an AM driving mode or a PM driving mode, and the precise opening and closing control of each sub-light valve 134 can be realized through the AM driving mode or the PM driving mode.
  • a first polarizer 138 is further provided on the side of the first substrate 131 away from the second substrate 132, and a first polarizer 138 is provided on the side of the second substrate 132 away from the first substrate 131.
  • the first polarizer 138 and the second polarizer 139 are both metal wire grid polarizers. While filtering the light emitted by the light source, it can also reduce the number of first polarizers. The absorption of light by the 138 and the second polarizer 139 improves the transmittance of the light emitted by the light source 12.
  • the light source 12 is an ultraviolet light source
  • the material of the photosensitive adhesive layer 21 on the corresponding transfer substrate 20 should be an ultraviolet photosensitive adhesive.
  • the light source 12 may also be an infrared light source, a visible light source, or a laser light source.
  • the material of the photosensitive adhesive layer 21 should be a photosensitive adhesive corresponding to the light source, which is not specifically limited here.
  • the micro-light-emitting diode transfer device 100 provided by the embodiment of the present disclosure is suitable for mass transfer after the micro-light-emitting diodes are manufactured. It can transfer the micro-light-emitting diodes of the entire transfer substrate 20, or perform selective partial transfer, and at the same time It is suitable for repairing a large number of unqualified micro-light-emitting diodes with unfixed positions on the target substrate after the mass transfer is completed.
  • the micro-light-emitting diode transfer device further includes an adsorption component 14 for adsorbing and transferring unqualified micro-light-emitting diode devices on the target substrate 30.
  • an adsorption component 14 for adsorbing and transferring unqualified micro-light-emitting diode devices on the target substrate 30.
  • the binding feet connecting the micro-luminescence diode and the target substrate 30 are cut off by laser, and then the unqualified micro-luminescence diode is adsorbed and transferred by the adsorption component 14 At this time, a vacant target area is formed on the target substrate 30.
  • the target area is not fixed.
  • the number of the target area can be one or more.
  • the number of micro light-emitting diodes in the target area can also be more than one.
  • the transfer substrate The micro light emitting diodes 22 corresponding to each other on the target substrate 30 are adhered on the 20.
  • the liquid crystal in the sub-light valve 134 in the target area is driven to deflect, and the light emitted by the light source passes through the light valve 13 to transfer the photosensitive adhesive layer on the substrate 20 corresponding to the target area.
  • 21 is irradiated to weaken the viscosity of the photosensitive adhesive layer 21, the micro light emitting diode 22 on the transfer substrate 21 is detached, and is adhered by the adhesive layer 31 on the target substrate 30 to fill the vacancy after the unqualified micro light emitting diode is removed from the target area.
  • the position on the target substrate is not fixed, and a large number of micro-light-emitting diode defects can be quickly repaired, thereby improving repair efficiency and production yield.
  • the adsorption member 14 is a vacuum adsorption device with a plurality of adsorption holes, which can complete the adsorption and transfer of a large number of micro light emitting diodes in different regions.
  • the adsorption component 14 can also be a magnetic adsorption device or an electrostatic adsorption device, both of which can achieve the same technical effect, and will not be repeated here.
  • the embodiments of the present disclosure add a liquid crystal light valve to the micro-light-emitting diode transfer device.
  • the liquid-crystal light valve includes a plurality of sub-light valves corresponding to the micro-light-emitting diodes on the transfer substrate.
  • the light valve filters the light emitted by the light source to selectively illuminate the transfer substrate, so that the irradiated part of the micro-light-emitting diodes are separated from the transfer substrate and adhered to the target substrate, so as to achieve a large number of micro-light-emitting diodes.
  • the selective transfer and rapid repair of a large number of micro light-emitting diodes improve repair efficiency, production efficiency and production yield, and reduce actual production costs.
  • the embodiment of the present disclosure also provides a micro-light-emitting diode transfer method, and the micro-light-emitting diode transfer method provided by the embodiment of the present disclosure adopts the micro-light-emitting diode transfer device provided in the above-mentioned embodiment, which will be described in detail below with reference to FIGS. 1 to 4 Description.
  • FIG. 2 is a schematic flowchart of a micro-light-emitting diode transfer method provided by an embodiment of the disclosure, and the method includes:
  • Step S10 As shown in FIG. 1, a transfer substrate 20 is provided. One side of the transfer substrate 20 is provided with a photosensitive adhesive layer 21, and a plurality of micro light emitting diodes 22 are arrayed on the transfer substrate 20 through the photosensitive adhesive layer 22 On; and
  • Step S20 Use the light source 12 to irradiate the photosensitive adhesive layer 21 located in the target area on the transfer substrate 20 through the liquid crystal light valve 13, so as to reduce the viscosity of the photosensitive adhesive layer 21, so that the micro light emitting diode 22 is detached and adhered by the adhesive layer 31 on the target substrate 30.
  • FIG. 3 is a schematic diagram of the cross-sectional structure of the transfer substrate and the target substrate provided by the embodiment of the disclosure.
  • the micro light emitting diode 22 in the target area is separated from the transfer substrate 20 due to the weakened adhesiveness of the photosensitive adhesive layer 22 bonded thereto. , And is adhered by the adhesive layer 31 on the target substrate 30, while the micro light-emitting diodes that are not irradiated by light continue to remain on the transfer substrate 20.
  • the transfer method provided by the embodiments of the present disclosure can also be applied to repair the unqualified micro-light emitting diodes with a large number of unfixed positions on the target substrate 30 after the mass transfer is completed.
  • the target area is the area of the unqualified micro-light emitting diode that is removed on the target substrate 30.
  • the manufacturing method provided in the embodiment of the present disclosure should further include:
  • the target substrate 32 is tested to detect unqualified micro-light emitting diodes 32 on the target substrate 30;
  • the unqualified micro light emitting diode 32 is adsorbed and transferred by the adsorbing member 14.
  • FIG. 4 is a schematic cross-sectional structure diagram of a target substrate 32 provided by an embodiment of the present disclosure.
  • the adsorption member 14 adsorbs and transfers the unqualified micro-light emitting diode 32 through the adsorption hole, thereby forming a vacancy in the target area.
  • the micro light-emitting diodes in the target area can be supplemented and placed, and the defect of the target substrate 30 can be repaired.
  • the light source 12 is an ultraviolet light source
  • the material of the photosensitive adhesive layer 21 on the corresponding transfer substrate 20 should be an ultraviolet photosensitive adhesive.
  • the light source 12 may also be an infrared light source, a visible light source or a laser light source.
  • the material of the photosensitive adhesive layer 21 should be a photosensitive adhesive corresponding to the light source such as infrared photosensitive adhesive.
  • the embodiment of the present disclosure provides a micro-light-emitting diode transfer method.
  • the light emitted by the light source can be selectively irradiated to the photosensitive adhesive layer of the transfer substrate, so that the light-irradiated area
  • the micro-light-emitting diodes are transferred to the target substrate, which can realize the massive transfer of the micro-light-emitting diodes, and can also repair the large number of unqualified micro-light-emitting diodes on the target substrate after the massive transfer. , Which can improve production efficiency, repair efficiency and production yield, and reduce actual production costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Robotics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Led Device Packages (AREA)

Abstract

一种微发光二极管转移装置(100)和微发光二极管(22)转移方法,微发光二极管转移装置(100)包括固持部件(11)、光源(12)和液晶光阀(13),液晶光阀(13)设置于面状光线的传输路径上,包括多个子光阀(134),通过控制子光阀(134)的开启和关闭,使得被照射部分的微发光二极管(22)从转移基板(20)脱离,并粘附至目标基板(30)上,实现对微发光二极管(22)进行选择性转移的技术效果。

Description

微发光二极管转移装置及微发光二极管转移方法 技术领域
本发明涉及显示技术领域,尤其涉及一种微发光二极管转移装置及微发光二极管转移方法。
背景技术
微发光二极管 (micro light emitting diode, Micro LED )显示装置为新一代显示技术,其结构是微型化LED阵列,即在一基板上集成的高密度微小尺寸的LED阵列,故微LED技术可视为LED 微缩化及矩阵化技术。
技术问题
微发光二极管应用于显示装置中时,需要去掉位于LED底部的基板,然后再通过巨量转移的方式将微发光二极管转移至抗拉伸有机基材。要进行快速的巨量选择性转移,可以通过分子间作用力,利用结构性转移头进行转移。但结构性转移头的制作复杂,而且只能够进行固定位置的微发光二极管器件的阵列转移。在实际生产中,阵列排布并且数量巨多的微发光二极管中存在缺陷的微发光二极管的位置是不确定的。因此,如何对巨量的微发光二极管进行选择性转移是目前实现最终良率提升和成本降低的关键。
综上所述,现有微发光二极管转移装置存在无法实现对巨量的微发光二极管进行选择性转移的问题。故,有必要提供一种微发光二极管转移装置及微发光二极管转移方法来改善这一缺陷。
技术解决方案
本揭示实施例提供一种微发光二极管转移装置及微发光二极管转移方法,用于解决现有微发光二极管转移装置存在无法实现对巨量的微发光二极管进行选择性转移的问题。
本揭示实施例提供一种微发光二极管转移装置,包括:
固持部件,用于固持转移基板;
光源,用于提供面状光线;以及
液晶光阀,设置于所述面状光线的传输路径上,所述液晶光阀包括多个子光阀,所述子光阀与所述转移基板上的微发光二极管相对应。
根据本揭示一实施例,所述微发光二极管转移装置还包括吸附部件,所述吸附部件用于吸附并转移目标基板上不合格的微发光二极管。
根据本揭示一实施例,所述液晶光阀包括相对设置的第一基板和第二基板,所述第一基板和所述第二基板之间设有交叉设置的光阻挡墙,相邻所述光阻挡墙与所述第一基板和所述第二基板形成所述子光阀,所述子光阀内填充有液晶。
根据本揭示一实施例,所述第一基板靠近所述第二基板一侧设有第一驱动电极,所述第二基板靠近所述第一基板一侧设有第二驱动电极,所述第一电极和所述第二电极的材料均为透明导电材料。
根据本揭示一实施例,所述第二驱动电极的驱动方式包括主动矩阵驱动方式或被动矩阵驱动方式。
根据本揭示一实施例,所述第一基板远离所述第二基板一侧设有第一偏光片,所述第二基板远离所述第一基板一侧设有第二偏光片,所述第一偏光片和所述第二偏光片均为金属线栅型偏光片。
根据本揭示一实施例,所述光源包括紫外线光源或红外线光源。
本揭示实施例还提供一种微发光二极管转移装置,包括:
固持部件,用于固持转移基板;
光源,用于提供面状光线;以及
液晶光阀,设置于所述面状光线的传输路径上,包括相对设置的第一基板和第二基板,所述第一基板和所述第二基板之间设有光阻挡墙,相邻所述光阻挡墙与所述第一基板和所述第二基板形成多个子光阀,所述子光阀与所述转移基板上的微发光二极管相对应。
根据本揭示一实施例,所述微发光二极管转移装置还包括吸附部件,所述吸附部件用于吸附并转移目标基板上不合格的微发光二极管。
根据本揭示一实施例,所述第一基板靠近所述第二基板一侧设有第一驱动电极,所述第二基板靠近所述第一基板一侧设有第二驱动电极,所述第一电极和所述第二电极的材料均为透明导电材料。
根据本揭示一实施例,所述第二驱动电极的驱动方式包括主动矩阵驱动方式或被动矩阵驱动方式。
根据本揭示一实施例,所述第一基板远离所述第二基板一侧设有第一偏光片,所述第二基板远离所述第一基板一侧设有第二偏光片,所述第一偏光片和所述第二偏光片均为金属线栅型偏光片。
根据本揭示一实施例,所述光源包括紫外线光源或红外线光源。
本揭示实施例还提供一种微发光二极管转移方法,所述微发光二极管转移方法包括:
提供转移基板,所述转移基板一侧设有光敏胶层,多个微发光二极管通过所述光敏胶层阵列排布于所述转移基板上;以及
利用光源通过液晶光阀对所述转移基板上位于目标区域内的所述光敏胶层进行照射,以减小所述光敏胶层的粘性,使得所述微发光二极管脱离,并被目标基板粘附。
根据本揭示一实施例,所述目标区域为所述目标基板上被拔除的不合格微发光二极管的区域,所述制作方法还包括:
进行转移前,对所述目标基板进行测试,以检测出所述目标基板上不合格的微发光二极管;以及
通过吸附部件吸附并转移不合格的所述微发光二极管。
根据本揭示一实施例,所述光敏胶层的材料包括紫外线光敏胶或红外线光敏胶。
有益效果
本揭示实施例的有益效果:本揭示实施例通过在微发光二极管转移装置中增加液晶光阀,所述液晶光阀包括多个与转移基板上的微发光二极管相对应的子光阀,通过控制子光阀的开启和关闭对穿过液晶光阀的光线进行过滤,以对转移基板进行选择性照射,使得被照射部分的微发光二极管因光敏胶粘性减弱从转移基板脱离,并粘附至目标基板上,实现对巨量的微发光二极管进行选择性转移的技术效果。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是揭示的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本揭示实施例提供的微发光二极管转移装置的截面结构示意图;
图2为本揭示实施例提供的微发光二极管转移方法的流程示意图;
图3为本揭示实施例提供的转移基板和目标基板的截面结构示意图;
图4为本揭示实施例提供的目标基板的截面结构示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。
下面结合附图和具体实施例对本揭示做进一步的说明:
本揭示实施例提供一种微发光二极管转移装置,下面结合图1进行详细说明。如图1所示,图1为本揭示实施例提供的微发光二极管转移装置100的结构示意图,所述微发光二极管转移装置100包括固持部件11、光源12和液晶光阀13。所述固持部件11用于固持转移基板20,所述光源12用于提供面状光线,所述液晶光阀13设置于所述面状光线的传输路径上,用于对所述光源12发出的光线进行过滤,以对所述转移基板20进行选择性照射。
所述转移基板20一侧设有光敏胶层21,微发光二极管22通过光敏胶层21粘附于转移基板上,光源12发出的光线通过液晶光阀13照射至光敏胶层21上,可以使光敏胶层21的光敏胶粘性降低,使相应微发光二极管22脱离转移基板20粘附至目标基板30上。
如图1所示,所述液晶光阀13包括相对设置的第一基板131和第二基板132,所述第一基板131和所述第二基板132之间设有交叉设置的光阻挡墙133,相邻所述光阻挡墙133与所述第一基板131和所述第二基板132构成子光阀134,所述子光阀134内填充有液晶135,所述子光阀134与所述转移基板20上的微发光二极管22相对应。通过对子光阀的开启和关闭,能够实现光线的通过和阻挡,从而对转移基板20的光敏胶层21进行选择性照射。光阻挡墙133能够有效阻挡光源12发出的光线在子光阀134内串扰到相邻子光阀134,提高光源12发出的光线的准直度,不影响相邻微发光二极管对应光敏胶的粘性。
优选的,为提高光源12发出的光线在液晶光阀13的透过率,第一基板131和第二基板132的材料均选用透明聚酰亚胺。当然,在一些实施例中,第一基板131和第二基板132的材料也可以是其他透明材料,此处不做限制。
优选的,为提高子光阀134内液晶135的响应速度,所述液晶135的种类可以选用铁电液晶、TN型液晶、OCB液晶、PVA或IPS等类型的液晶,上述种类液晶均具有较高的响应速度,以便于对子光阀134实现精确的开启和关闭控制。
本揭示实施例中,第一基板131靠近第二基板132一侧设有第一驱动电极136,第二基板132靠近第一基板131的一侧设有第二驱动电极137,通电后,第一驱动电极136和第二驱动电极137之间形成电场,控制子光阀134内液晶的偏转方向,实现子光阀134的开启和关闭。
优选的,为提高光源12发出的光线在液晶光阀13的透过率,所述第一驱动电极136和第二驱动电极137均为透明导电材料,例如透明金属氧化物导电材料ITO。
优选的,所述第二驱动电极137的驱动方式为AM驱动方式或PM驱动方式,通过AM驱动方式或PM驱动方式可以实现对每个子光阀134进行精确的开启和关闭的控制。
在本实施例中,第一基板131远离所述第二基板132一侧还设有第一偏光片138,第二基板132远离第一基板131的一侧设有与所述第一偏光片138相对应的第二偏光片139,并且所述第一偏光片138和第二偏光片139均为金属线栅型偏光片,在对光源发出的光线进行过滤的同时,还可以减少第一偏光片138和第二偏光片139对光线的吸收,提高光源12发出的光线的透过率。
在本实施例中,光源12选用紫外线光源,对应的转移基板20上的光敏胶层21的材料应为紫外线光敏胶。在一些实施例中,所述光源12也可以选用红外线光源、可见光光源或激光光源,此时光敏胶层21的材料应为对应光源的光敏胶,此处不做具体限制。
本揭示实施例提供的微发光二极管转移装置100适用于微发光二极管制作完成后的巨量转移,既可以对整个转移基板20的微发光二极管进行转移,也可以进行选择性的局部转移,同时还适用于巨量转移完成后,对目标基板上存在的数量众多且位置不固定的不合格微发光二极管的修复。
如图1所示,所述微发光二极管转移装置还包括吸附部件14,所述吸附部件14用于吸附并转移所述目标基板30上的不合格的微发光二极管器件。当对目标基板30进行测试后,检测出不合格的微发光二极管器件,通过激光切断微发光二极管与目标基板30连接的绑脚,然后通过所述吸附部件14将不合格微发光二极管吸附并转移,此时目标基板30上形成空缺的目标区域,所述目标区域并不固定,其数量可以是一个也可以是多个,所述目标区域内的微发光二极管数量也可以是多个,转移基板20上粘附有与目标基板30上一一对应的微发光二极管22。
第一驱动电极136和第二驱动电极137通电后驱动目标区域的子光阀134内的液晶发生偏转,利用光源发出的光线通过光阀13对转移基板20上与所述目标区域对应光敏胶层21进行照射,使光敏胶层21粘性减弱,转移基板21上的微发光二极管22脱离,并被目标基板30上的黏胶层31粘附,填补目标区域拔除不合格微发光二极管后的空缺,因此,利用本揭示实施例提供的微发光二极管转移装置,还可以对目标基板上位置不固定,并且巨量的微发光二极管缺陷进行快速修补,提升修补效率以及生产良率。
在本揭示实施例中,吸附部件14为带有多个吸附孔的真空吸附装置,可以完成不同区域、数量众多的微发光二极管的吸附和转移。当然,在一些实施例中,所述吸附部件14也可以采用磁性吸附装置或静电吸附装置,都可以取得相同的技术效果,此处不再赘述。
本揭示实施例的有益效果:本揭示实施例通过在微发光二极管转移装置中增加液晶光阀,所述液晶光阀包括多个与转移基板上的微发光二极管相对应的子光阀,利用液晶光阀对所述光源发出的光线进行过滤,以对所述转移基板进行选择性照射,使得被照射部分的微发光二极管脱离转移基板,粘附至目标基板上,从而实现对巨量微发光二极管的选择性转移以及对巨量微发光二极管的快速修补,提升修补效率、生产效率以及生产良率,降低实际生产成本。
本揭示实施例还提供一种微发光二极管转移方法,并且本揭示实施例所提供的微发光二极管转移方法采用了上述实施例所提供的微发光二极管转移装置,下面结合图1至图4进行详细说明。
如图2所示,图2为本揭示实施例提供的微发光二极管转移方法的流程示意图,所述方法包括:
步骤S10:如图1所示,提供转移基板20,所述转移基板20一侧设有光敏胶层21,多个微发光二极管22通过所述光敏胶层22阵列排布于所述转移基板20上;以及
步骤S20:利用光源12通过液晶光阀13对所述转移基板20上位于目标区域内的所述光敏胶层21进行照射,以减小所述光敏胶层21的粘性,使得所述微发光二极管22脱离,并被目标基板30上的黏胶层31粘附。
如图3所示,图3为本揭示实施例提供的转移基板和目标基板的截面结构示意图,目标区域内的微发光二极管22由于与其粘结的光敏胶层22的粘性减弱而脱离转移基板20,并被目标基板30上的黏胶层31粘附,而未被光线照射部分的微发光二极管则继续保留在转移基板20上。
若需要对转移基板20整面的微发光二极管22全部进行转移,则只需要通过第一驱动电极136和第二驱动电极137将液晶光阀13内的子光阀134全部开启,便能将微发光二极管22全部转移至目标基板30上,实现微发光二极管的巨量转移。
本揭示实施例提供的转移方法还可适用于巨量转移完成后,对目标基板30存在的数量众多且位置不固定的不合格微发光二极管的修复。此时,目标区域为所述目标基板30上被拔除的不合格微发光二极管的区域,本揭示实施例提供的制作方法应还包括:
进行转移前,对所述目标基板32进行测试,以检测出所述目标基板30上不合格的微发光二极管32;
通过激光切断不合格的微发光二极管32与目标基板30连接的绑脚;
通过吸附部件14吸附并转移不合格的微发光二极管32。
如图4所示,图4为本揭示实施例提供的目标基板32的截面结构示意图,吸附部件14通过其上的吸附孔将不合格的微发光二极管32吸附并转移,从而在目标区域形成空缺,再通过步骤S10和步骤S20的方法,即可实现对目标区域微发光二极管的补放,完成对目标基板30的缺陷的修补。
在本实施例中,光源12选用紫外线光源,对应的转移基板20上的光敏胶层21的材料应为紫外线光敏胶。在一些实施例中,所述光源12也可以选用红外线光源、可见光光源或激光光源,此时光敏胶层21的材料应为对红外线光敏胶等对应光源的光敏胶。
本揭示实施例提供一种微发光二极管转移方法,通过控制光阀内多个子光阀的开启和关闭,使得光源发出的光线可以选择性的照射至转移基板的光敏胶层,使得被光线照射区域的微发光二极管转移至目标基板上,即可以实现对微发光二极管的巨量转移,又可以对巨量转移后,目标基板上存在的不合格微发光二极管数量众多、位置不固定的缺陷进行修复,可以提升生产效率、修补效率以及生产良率,降低实际生产成本。
综上所述,虽然本揭示以优选实施例揭露如上,但上述优选实施例并非用以限制本揭示,本领域的普通技术人员,在不脱离本揭示的精神和范围内,均可作各种更动与润饰,因此本揭示的保护范围以权利要求界定的范围为基准。

Claims (16)

  1. 一种微发光二极管转移装置,包括:
    固持部件,用于固持转移基板;
    光源,用于提供面状光线;以及
    液晶光阀,设置于所述面状光线的传输路径上,所述液晶光阀包括多个子光阀,所述子光阀与所述转移基板上的微发光二极管相对应。
  2. 如权利要求1所述的微发光二极管转移装置,其中,所述微发光二极管转移装置还包括吸附部件,所述吸附部件用于吸附并转移目标基板上不合格的微发光二极管。
  3. 如权利要求1所述的微发光二极管转移装置,其中,所述液晶光阀包括相对设置的第一基板和第二基板,所述第一基板和所述第二基板之间设有交叉设置的光阻挡墙,相邻所述光阻挡墙与所述第一基板和所述第二基板形成所述子光阀,所述子光阀内填充有液晶。
  4. 如权利要求3所述的微发光二极管转移装置,其中,所述第一基板靠近所述第二基板一侧设有第一驱动电极,所述第二基板靠近所述第一基板一侧设有第二驱动电极,所述第一电极和所述第二电极的材料均为透明导电材料。
  5. 如权利要求4所述的微发光二极管转移装置,其中,所述第二驱动电极的驱动方式包括主动矩阵驱动方式或被动矩阵驱动方式。
  6. 如权利要求4所述的微发光二极管转移装置,其中,所述第一基板远离所述第二基板一侧设有第一偏光片,所述第二基板远离所述第一基板一侧设有第二偏光片,所述第一偏光片和所述第二偏光片均为金属线栅型偏光片。
  7. 如权利要求1所述的微发光二极管转移装置,其中,所述光源包括紫外线光源或红外线光源。
  8. 一种微发光二极管转移装置,包括:
    固持部件,用于固持转移基板;
    光源,用于提供面状光线;以及
    液晶光阀,设置于所述面状光线的传输路径上,包括相对设置的第一基板和第二基板,所述第一基板和所述第二基板之间设有光阻挡墙,相邻所述光阻挡墙与所述第一基板和所述第二基板形成多个子光阀,所述子光阀与所述转移基板上的微发光二极管相对应。
  9. 如权利要求8所述的微发光二极管转移装置,其中,所述微发光二极管转移装置还包括吸附部件,所述吸附部件用于吸附并转移目标基板上不合格的微发光二极管。
  10. 如权利要求8所述的微发光二极管转移装置,其中,所述第一基板靠近所述第二基板一侧设有第一驱动电极,所述第二基板靠近所述第一基板一侧设有第二驱动电极,所述第一电极和所述第二电极的材料均为透明导电材料。
  11. 如权利要求10所述的微发光二极管转移装置,其中,所述第二驱动电极的驱动方式包括主动矩阵驱动方式或被动矩阵驱动方式。
  12. 如权利要求10所述的微发光二极管转移装置,其中,所述第一基板远离所述第二基板一侧设有第一偏光片,所述第二基板远离所述第一基板一侧设有第二偏光片,所述第一偏光片和所述第二偏光片均为金属线栅型偏光片。
  13. 如权利要求8所述的微发光二极管转移装置,其中,所述光源包括紫外线光源或红外线光源。
  14. 一种微发光二极管转移方法,所述微发光二极管转移方法包括:
    提供转移基板,所述转移基板一侧设有光敏胶层,多个微发光二极管通过所述光敏胶层阵列排布于所述转移基板上;以及
    利用光源通过液晶光阀对所述转移基板上位于目标区域内的所述光敏胶层进行照射,以减小所述光敏胶层的粘性,使得所述微发光二极管脱离,并被目标基板粘附。
  15. 如权利要求14所述的微发光二极管转移方法,其中,所述目标区域为所述目标基板上被拔除的不合格微发光二极管的区域,所述制作方法还包括:
    进行转移前,对所述目标基板进行测试,以检测出所述目标基板上不合格的微发光二极管;以及
    通过吸附部件吸附并转移不合格的所述微发光二极管。
  16. 如权利要求15所述的微发光二极管转移方法,其中,所述光敏胶层的材料包括紫外线光敏胶或红外线光敏胶。
PCT/CN2019/125686 2019-12-02 2019-12-16 微发光二极管转移装置及微发光二极管转移方法 WO2021109230A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/627,790 US11508604B2 (en) 2019-12-02 2019-12-16 Micro light emitting diode transfer device and transfer method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911214312.1A CN111081604A (zh) 2019-12-02 2019-12-02 微发光二极管转移装置及微发光二极管转移方法
CN201911214312.1 2019-12-02

Publications (1)

Publication Number Publication Date
WO2021109230A1 true WO2021109230A1 (zh) 2021-06-10

Family

ID=70312446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125686 WO2021109230A1 (zh) 2019-12-02 2019-12-16 微发光二极管转移装置及微发光二极管转移方法

Country Status (3)

Country Link
US (1) US11508604B2 (zh)
CN (1) CN111081604A (zh)
WO (1) WO2021109230A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111477651A (zh) * 2020-04-16 2020-07-31 广东工业大学 一种基于液晶光闸掩膜的巨量转移方法及转移装置
CN112992756A (zh) * 2020-05-28 2021-06-18 重庆康佳光电技术研究院有限公司 一种转移承载装置及转移方法
WO2022088095A1 (zh) * 2020-10-30 2022-05-05 京东方科技集团股份有限公司 微型发光二极管的巨量转移方法及显示面板
CN112382643B (zh) * 2020-11-10 2022-09-27 福州京东方光电科技有限公司 转印基板、其制作方法及显示面板的制作方法、转印设备
CN114193937B (zh) * 2021-11-05 2022-10-14 华中科技大学 剔除坏点及自对准喷印的μLED全彩显示制造方法与设备
WO2023108450A1 (zh) * 2021-12-15 2023-06-22 厦门市芯颖显示科技有限公司 寻址转移设备
CN116013834B (zh) * 2022-12-19 2023-10-03 惠科股份有限公司 暂态基板及led芯片转移方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202362559U (zh) * 2011-11-02 2012-08-01 信利半导体有限公司 一种液晶显示装置
CN202486473U (zh) * 2012-01-12 2012-10-10 信利半导体有限公司 一种液晶光阀
CN107431107A (zh) * 2015-04-01 2017-12-01 歌尔股份有限公司 微发光二极管的转移方法、制造方法、装置和电子设备
CN107919414A (zh) * 2017-12-04 2018-04-17 歌尔股份有限公司 微发光二极管转移的方法、制造方法、装置和电子设备
CN108962789A (zh) * 2018-06-25 2018-12-07 开发晶照明(厦门)有限公司 微器件转移方法和微器件转移设备
US20190027642A1 (en) * 2016-01-20 2019-01-24 Goertek. Inc Micro-LED Transfer Method and Manufacturing Method

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5178445A (en) * 1989-06-09 1993-01-12 Garrett Moddel Optically addressed spatial light modulator
US5986736A (en) * 1995-04-26 1999-11-16 Canon Kabushiki Kaisha Liquid crystal device, image display apparatus and image forming apparatus
US6864931B1 (en) * 1999-02-17 2005-03-08 Kent State University Electrically controllable liquid crystal microstructures
JP4618606B2 (ja) * 2000-05-09 2011-01-26 スタンレー電気株式会社 光学スイッチング装置及びその製造方法
TW535024B (en) * 2000-06-30 2003-06-01 Minolta Co Ltd Liquid display element and method of producing the same
US7179512B2 (en) * 2002-05-14 2007-02-20 Fujitsu Limited Liquid crystal display and manufacturing method of same
TWI266939B (en) * 2003-09-29 2006-11-21 Sharp Kk Liquid crystal display apparatus
JP2005156752A (ja) * 2003-11-21 2005-06-16 Sony Corp 液晶表示素子および投射型表示装置
US20070153227A1 (en) * 2005-12-22 2007-07-05 Solbeam, Inc. Method for directing light rays
DE102007005821B4 (de) * 2007-01-31 2013-11-14 Seereal Technologies S.A. Lichtmodulator und Verfahren zur Gewährleistung einer minimalen Amplitudenmodulation in phasenmodulierenden Lichtmodulatoren
WO2010021104A1 (ja) * 2008-08-19 2010-02-25 シャープ株式会社 液晶表示装置
US20110317116A1 (en) * 2009-03-04 2011-12-29 Sharp Kabushiki Kaisha Liquid crystal display apparatus and manufacturing method thereof
BRPI1011063A2 (pt) * 2009-05-29 2016-04-05 Sharp Kk painel de cristal líquido e dispositivo de exibição de cristal líquido
JP5857599B2 (ja) * 2011-09-30 2016-02-10 セイコーエプソン株式会社 スクリーンおよび画像表示システム
JP6461544B2 (ja) * 2014-10-08 2019-01-30 株式会社ジャパンディスプレイ 液晶表示装置およびその製造方法
KR102659184B1 (ko) * 2015-09-30 2024-04-22 다이니폰 인사츠 가부시키가이샤 조광 셀
KR102335725B1 (ko) * 2017-05-14 2021-12-07 레이아 인코포레이티드 액티브 이미터를 사용하는 멀티뷰 백라이트, 디스플레이, 및 방법
CN109994413A (zh) * 2017-12-29 2019-07-09 南昌欧菲显示科技有限公司 微型元件巨量转移方法
KR20210083358A (ko) * 2018-11-07 2021-07-06 리얼디 스파크, 엘엘씨 지향성 디스플레이 장치
US20200227484A1 (en) * 2019-01-13 2020-07-16 Innolux Corporation Lighting device
US20200409208A1 (en) * 2019-06-27 2020-12-31 Wicue, Inc. Liquid crystal dimmable film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202362559U (zh) * 2011-11-02 2012-08-01 信利半导体有限公司 一种液晶显示装置
CN202486473U (zh) * 2012-01-12 2012-10-10 信利半导体有限公司 一种液晶光阀
CN107431107A (zh) * 2015-04-01 2017-12-01 歌尔股份有限公司 微发光二极管的转移方法、制造方法、装置和电子设备
US20190027642A1 (en) * 2016-01-20 2019-01-24 Goertek. Inc Micro-LED Transfer Method and Manufacturing Method
CN107919414A (zh) * 2017-12-04 2018-04-17 歌尔股份有限公司 微发光二极管转移的方法、制造方法、装置和电子设备
CN108962789A (zh) * 2018-06-25 2018-12-07 开发晶照明(厦门)有限公司 微器件转移方法和微器件转移设备

Also Published As

Publication number Publication date
CN111081604A (zh) 2020-04-28
US20210335647A1 (en) 2021-10-28
US11508604B2 (en) 2022-11-22

Similar Documents

Publication Publication Date Title
WO2021109230A1 (zh) 微发光二极管转移装置及微发光二极管转移方法
TWI634371B (zh) 微小元件的轉移方法
WO2016180149A1 (zh) 触控显示装置
JP4516377B2 (ja) 液晶表示パネルの切断方法
KR102338907B1 (ko) 액정 표시 장치 및 액정 표시 장치의 제조 방법
US7557898B2 (en) Substrate gap adjusting device, substrate gap adjusting method, and method of manufacturing liquid crystal display device, comprising substrate pressing sections that independently transmit force
KR20230154779A (ko) 발광 다이오드 표시 장치
WO2007086159A1 (ja) 表示装置、表示装置の製造方法、基板及びカラーフィルタ基板
WO2016106885A1 (zh) 液晶面板和用于固化框胶的方法
US20160266432A1 (en) Liquid crystal display device and manufacturing method thereof
JP2008077116A (ja) 液晶表示パネル
CN111640370A (zh) 粘接结构、显示装置及显示装置的粘接方法
JP2008139555A (ja) 液晶表示装置及びその製造方法
KR20160064297A (ko) 표시패널 제조방법 및 그에 의해 제조된 표시패널
CN101613177A (zh) 划线设备及采用该划线设备制造显示面板的方法
US20070070288A1 (en) Liquid crystal display device and method for manufacturing the same
WO2013017022A1 (zh) 真空对盒设备及对盒方法
TW201302462A (zh) 顯示裝置及其製造方法
CN106226958B (zh) 一种显示基板及其制作方法、显示装置
KR101131921B1 (ko) 액정패널의 조립공정 및 액정패널
KR20150066011A (ko) 액정표시장치 및 이의 제조 방법
JP2005215419A (ja) 反射型液晶表示装置及び透過型液晶表示装置
KR20060079721A (ko) 액정 표시 장치용 표시판의 제조 방법
JP2004205976A (ja) 表示パネルおよびその製造方法
KR101182299B1 (ko) 백라이트 유닛 및 그의 제조방법과 상기 백라이트 유닛을구비한 액정표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955281

Country of ref document: EP

Kind code of ref document: A1