WO2021106039A1 - 物体検知装置 - Google Patents

物体検知装置 Download PDF

Info

Publication number
WO2021106039A1
WO2021106039A1 PCT/JP2019/045975 JP2019045975W WO2021106039A1 WO 2021106039 A1 WO2021106039 A1 WO 2021106039A1 JP 2019045975 W JP2019045975 W JP 2019045975W WO 2021106039 A1 WO2021106039 A1 WO 2021106039A1
Authority
WO
WIPO (PCT)
Prior art keywords
object detection
vertical angle
angle measurement
vehicle
detection device
Prior art date
Application number
PCT/JP2019/045975
Other languages
English (en)
French (fr)
Inventor
功伊 前山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021560773A priority Critical patent/JPWO2021106039A1/ja
Priority to US17/766,923 priority patent/US20240085521A1/en
Priority to DE112019007912.3T priority patent/DE112019007912T5/de
Priority to CN201980101748.1A priority patent/CN114651189A/zh
Priority to PCT/JP2019/045975 priority patent/WO2021106039A1/ja
Publication of WO2021106039A1 publication Critical patent/WO2021106039A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/411Identification of targets based on measurements of radar reflectivity
    • G01S7/412Identification of targets based on measurements of radar reflectivity based on a comparison between measured values and known or stored values
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9316Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles combined with communication equipment with other vehicles or with base stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/932Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using own vehicle data, e.g. ground speed, steering wheel direction

Definitions

  • This application relates to an object detection device.
  • ADAS Advanced Driver-
  • ACC Adaptive Cruise Control
  • AEBS Advanced Emergency Braking System
  • Assistance Systems a detection device such as a camera or a radar that obtains information on an object existing around the vehicle is mounted on the vehicle, and an object existing in the moving direction of the vehicle needs to be controlled when driving. It detects as a target object (hereinafter referred to as a controlled object), observes the positional relationship and relative speed between its own vehicle and the controlled object, and controls the driving support of its own vehicle based on the observation result data. ing.
  • Some of the in-vehicle radars used in ADAS have an angle measurement function in the direction perpendicular to the ground, and the detection target is based on the height information of the detected object (hereinafter referred to as the detection target).
  • a technique has been proposed for determining whether the object is a controlled object such as a preceding vehicle or a pedestrian, or an uncontrolled object such as a signboard provided above the road or a thin falling object on the road (Patent Document 1). ).
  • the conventional in-vehicle radar device does not calculate the vertical direction, so that the height of the target from the ground cannot be grasped, so that the signboard provided above the road or the thinness on the road is thin.
  • the ACC system is erroneously operated as a technical problem, and this problem is solved. That is, in the radar device, the transmitted wave is transmitted from the transmitting antenna toward the detection target as the vertical direction, which is the direction of the detection target in the direction perpendicular to the ground, and the reflected wave reflected by the detection target is used.
  • the orientation of the real image on the ground is calculated, and the orientation of the virtual image existing underground is calculated from the reflected wave reflected on the ground after being reflected by the detection object, and the angle difference between the calculated orientation of the real image and the orientation of the virtual image. Is used to calculate the height of the object to be detected from the ground.
  • Patent Document 1 by processing the information obtained from the detection target object, the signboard provided above the road or the thin falling object on the road is not erroneously recognized as the control target object, and the front surface is described.
  • a technique for appropriately recognizing a controlled object is disclosed.
  • the detection target for measuring the vertical direction is selected based on the environmental information in which the vehicle is located, that is, the environmental information in which the object detection unit is located.
  • the object detection device of the present application acquires an object detection unit that detects an object to be detected within a predetermined range and environment information in which the object detection unit is located, and outputs an environment information signal corresponding to the environment information. It is characterized by including an environmental information acquisition unit and a vertical angle measurement function control unit that controls a range in which an angle is measured in the direction perpendicular to the object detection unit based on the environment information signal.
  • the object detection device can control the object detection unit and reduce the amount of calculation of signal processing.
  • FIG. It is a block diagram which shows the structure of Embodiment 1.
  • FIG. It is a flowchart which shows the operation of Embodiment 1. It is a flowchart which shows the operation of Embodiment 2.
  • FIG. 1 is a block diagram showing an object detection device 100 according to the first embodiment.
  • the object detection device 100 includes an object detection unit 10, a vertical angle measurement function control unit 20, and an environment information acquisition unit 30.
  • the object detection unit 10 is composed of a radar control circuit 11, an RF module circuit 12, and a signal processing circuit 13.
  • the RF module circuit 12 is, for example, a board on which a plurality of active components (IC chips, etc.) and passive components (SAW filters, capacitors, resistors, coils, etc.) are mounted.
  • the environment information acquisition unit 30 acquires information A used for controlling the vertical angle measurement function by communication or a sensor.
  • the information A is, for example, the trajectory, speed, traveling direction, relative speed of the detected object, and reflection intensity of the own vehicle, and this information A is called "environmental information”.
  • the environment information acquisition unit 30 outputs the environment information signal B based on the acquired information A to the vertical angle measurement function control unit 20.
  • the vertical angle measurement function control unit 20 outputs a signal C to the radar control circuit 11 and the signal processing circuit 13 of the object detection unit 10 based on the environment information signal B, and among the radar control circuit 11 and the signal processing circuit 13. At least one of the processing contents is controlled so that the vertical angle measurement processing is performed only on the controlled object in the state that meets the predetermined conditions.
  • the control of the processing content is, for example, a control for changing the range of the distance range, the distance accuracy, the speed range, the speed accuracy, the angle range, and the angle accuracy for performing vertical angle measurement.
  • the signal C for performing this control is a “vertical angle measurement function control signal”.
  • the transmitted wave transmitted from the transmitting antenna (not shown) is transmitted in the vertical direction of the object in the direction perpendicular to the ground.
  • the real image vertical direction which is the direction of the real image on the ground, is calculated from the reflected wave reflected by the target, the transmitted wave transmitted from the transmitting antenna is reflected by the object, and the reflected wave reflected on the ground exists underground.
  • the imaginary vertical orientation which is the imaginary orientation, is calculated.
  • the object detection unit 10 calculates the angle difference between the calculated real image vertical direction and the virtual image vertical direction, and calculates the height of the target from the ground using the calculated angle difference.
  • the vertical direction of the object detection unit 10 may be calculated by any method.
  • the vertical direction may be calculated by mechanically or electrically controlling the beam, or a known beam former method or
  • the vertical direction can be calculated by super-resolution angle measurement and monopulse angle measurement.
  • the radar control circuit 11 controls the RF module circuit 12 regarding the transmission and reception of radio waves.
  • the control related to the transmission and reception of radio waves is, for example, control related to the frequency band of the transmitted wave, the occupied frequency band, the sampling frequency, the number of samples, the frequency modulation time, the transmission CH, the reception CH, and the frequency modulation timing.
  • the content of the control can be changed based on the signal C.
  • the RF module circuit 12 transmits and receives radio waves according to the RF module circuit control signal D, and measures the beat signal E.
  • the signal processing circuit 13 calculates, for example, the distance to the object, the relative velocity, the azimuth angle, the elevation angle, and the reflection intensity, and outputs the result as the output signal F.
  • the content of the signal processing can be changed based on the vertical angle measurement function control signal C.
  • the arrows in FIG. 1 indicate the signal flow.
  • FIG. 2 is a flowchart showing the operation of the first embodiment. Detection is started in step S101, in step S102, the environmental information acquisition unit 30 acquires environmental information by communication or a sensor, and the vertical angle measurement function control unit 20 receives the environmental information signal B.
  • step S103 the vertical angle measurement function control unit 20 determines the control content of the vertical angle measurement function based on the environmental information, and also determines whether or not the control content has been changed from the previous cycle. If the control content has been changed, the process proceeds to step S104, and if not, the process proceeds to step S105 radar control.
  • step S104 the vertical angle measurement function control unit 20 changes at least one of the radar control circuit 11 and the signal processing circuit 13 in advance so as to match the control content determined in step S103. , Outputs signal C, which is a vertical angle measurement function control signal.
  • step S105 the radar control circuit 11 controls the RF module circuit 12 based on the preset processing contents.
  • step S106 the RF module circuit 12 transmits / receives radio waves and measures the beat signal based on the RF module circuit control signal D by the radar control circuit 11.
  • step S107 the signal processing circuit 13 performs signal processing on the beat signal E based on the preset processing content, and calculates the detected distance to the object, the speed of the object, the azimuth angle, the elevation angle, the signal strength, and the like. To do. If it is determined in step S108 that the detection has ended, the detection ends in step S109. If it is not determined that the detection is completed, the process returns to step S102, and the acquisition of the environment information is repeated.
  • the vertical angle measurement function of the radar is controlled based on the environmental information.
  • the angle measurement function is not changed, so that unnecessary communication or calculation can be omitted.
  • Embodiment 2 The configuration of the second embodiment is the same as the configuration of the first embodiment. The difference is the operation performed by this configuration.
  • FIG. 3 is a flowchart showing the operation of the second embodiment. The difference between the operation of the second embodiment and the operation of the first embodiment will be described below.
  • the process flow for controlling the vertical angle measurement function and the process flow for detecting an object are parallelized with the process flow of the first embodiment.
  • the flow of processing for determining whether or not to control the vertical angle measurement function is called “vertical angle measurement function control determination loop L1", and the flow of processing for detecting an object is called “object detection processing loop L2”.
  • step S201 detection is started in step S201
  • step S202 the environmental information acquisition unit 30 acquires environmental information by communication or a sensor
  • the vertical angle measurement function control unit 20 acquires environmental information. Receive signal B.
  • step S203 the vertical angle measurement function control unit 20 determines the control content of the vertical angle measurement function based on the environment information signal B, and also determines whether or not the control content has been changed from the previous cycle. At this time, if the control content is changed, the process proceeds to step S204, "interruption to the object detection processing loop L2" is performed, and if the control content is not changed, the process proceeds to step S205.
  • the object detection processing loop L2 starts detection in step S301, determines whether or not an interrupt has occurred in step S302, proceeds to step S303 if an interrupt has occurred, and otherwise proceeds to step S304.
  • Move on to radar control In step S303, the vertical angle measurement function control unit 20 changes at least one of the radar control circuit 11 and the signal processing circuit 13 in advance so as to change the preset processing content according to the control content determined in step S303.
  • Outputs signal C which is a vertical angle measurement function control signal.
  • step S304 the radar control circuit 11 controls the RF module circuit 12 based on the preset processing contents.
  • step S305 the RF module circuit 12 transmits / receives radio waves and measures the beat signal based on the RF module circuit control signal D by the radar control circuit 11.
  • step S306 the signal processing circuit 13 performs signal processing on the beat signal E based on the processing content set in advance, and calculates the distance of the detected object. If it is determined in step S307 that the detection has ended, the detection ends in step S308. If it is not determined that the detection is completed, the process returns to step S302, and the acquisition of environmental information is repeated.
  • step S303 When performing "interruption to the object detection processing loop L2" in step S204, the vertical angle measurement function control unit 20 generates step S303 in the object detection processing loop. On the contrary, when this interrupt is not generated, step S303 does not occur. If it is determined in step S205 that the detection has ended, the detection ends in step S206. If it is not determined that the detection is completed, the process returns to step S202, and the process proceeds in the same manner thereafter.
  • step S302 it is determined whether or not an interrupt from the vertical angle measurement function control determination loop has occurred. If an interrupt has occurred, the process proceeds to step S303, and if no interrupt has occurred, the process proceeds to step S304.
  • step S303 at least one of the radar control circuit 11 and the signal processing circuit 13 is set so that the vertical angle measurement function control unit 20 conforms to the control content preset in step S203 of the vertical angle measurement function control determination loop L1.
  • the vertical angle measurement function control signal C is output so as to control the processing content of.
  • step S303 it is possible to make the contents of the vertical angle measurement function change with respect to the radar control circuit 11 and the signal processing circuit 13 consistent.
  • FIG. 4 is an image diagram showing the coverage area of the radar.
  • the environmental information acquisition unit 30 acquires the speed of its own vehicle X, and among the objects detected by the vertical angle measurement function control unit 20, it is vertical only to an object whose absolute velocity V target is equal to or less than the threshold value V th.
  • the object detection unit 10 is controlled so as to measure the angle in the direction. For example, when the shaded portion S1 in FIG. 4 is the detection range of the radar , the object detection unit 10 is controlled so that only the objects whose absolute velocity V target is equal to or less than the threshold value V th are subject to vertical angle measurement, and the radio waves are transmitted. Controls transmission / reception and signal processing.
  • the height difference between a stationary object that is an uncontrolled object such as a signboard installed above the road or a thin falling object on the road and a stationary controlled object such as a vehicle stopped due to a traffic jam.
  • efficient radar control and signal processing can be achieved by not performing vertical angle measurement on moving controlled objects such as vehicles traveling in front. It will be possible.
  • FIG. 5 is an image diagram showing the coverage area of the radar.
  • the vertical angle measuring function control unit 20 acquires the speed V own and the specified time of his vehicle X, the vertical angle measuring function control unit 20, only the vertical direction with respect to its own vehicle is movable distance range within a specified time
  • the object detection unit 10 is controlled so as to measure the angle of.
  • the vehicle speed is Bowen [m / S] and the specified time is t [S]
  • the distance range for performing vertical angle measurement is defined as Bown ⁇ t [, as shown in the shaded area S2 in FIG. m] or less.
  • the environmental information acquisition unit 30 acquires the current speed direction of its own vehicle X, one or more information of the target speed, deceleration, and jerk, and the set value of the minimum inter-vehicle distance, and has a vertical angle measurement function.
  • the control unit 20 controls the object detection unit 10 so as to measure the angle in the vertical direction with respect to a distance range within a distance obtained by adding the minimum inter-vehicle distance to the distance traveled by the vehicle to reach the target speed.
  • the set value of the minimum inter-vehicle distance may be defined by the inter-vehicle time between the own vehicle and the preceding vehicle, or may be dynamically changed.
  • the set value of the minimum inter-vehicle distance may be omitted as it is always 0 [m].
  • the image diagram showing the radar coverage area of the 55th embodiment is the same as that of FIG. 5 shown in the 4th embodiment.
  • the present embodiment may be applied only when the own vehicle is decelerating, and the embodiment 4 and the present embodiment may be combined and implemented by applying the fourth embodiment other than when the own vehicle is decelerating. This makes it possible to determine the target for vertical angle measurement according to the acceleration / deceleration situation of the own vehicle.
  • FIG. 6 is an image diagram showing the coverage area of the radar.
  • the environmental information acquisition unit 30 acquires the horizontal angle direction in which the vehicle X is going, and the vertical angle measurement function control unit 20 is perpendicular only to the horizontal angle range ⁇ [deg] in which the vehicle X is going to move.
  • the object detection unit 10 is controlled so as to measure the angle in the direction. For example, when the vehicle X moves forward to the right from now on, the horizontal angle range ⁇ [deg] for performing vertical angle measurement is limited to the front right only, as shown in the shaded area S3 in FIG. As a result, it is possible to eliminate the vertical angle measurement with respect to an object other than the traveling direction of the vehicle X, so that efficient radar control and signal processing become possible.
  • FIG. 7 is an image diagram showing the coverage area of the radar.
  • the environmental information acquisition unit 30 acquires the track information on which the vehicle X is going, and the vertical angle measurement function control unit 20 measures the angle in the vertical direction only on the track on which the vehicle X is going to move.
  • the object detection unit 10 is controlled in this way. For example, when the vehicle X is to turn right from now on, as shown in the shaded area S4 in FIG. 7, the distance range and the horizontal angle range for performing vertical angle measurement are limited to the periphery of the right turning track. At this time, the angle may be measured in the vertical direction with respect to the range in which the track of the own vehicle X has a margin for the acquisition error of the track. As a result, it is possible to reduce the distance range and the horizontal angle range for performing vertical angle measurement on the traveling track of the vehicle X or outside the range including the margin in the track, so that efficient radar control and signal processing can be performed. Is possible.
  • FIG. 8 is an image diagram showing the coverage area of the radar.
  • the environmental information acquisition unit 30 acquires the SNR (Signal-to-Noise Ratio) to be detected and the threshold value for the SNR. Since the angle measurement accuracy is low for an object with a low SNR, the vertical angle measurement function control unit 20 detects the object so that the vertical angle measurement is performed only for the detection target whose SNR exceeds the threshold value.
  • the unit 10 is controlled. For example, when the threshold value of SNR is 5db and the SNR of the shaded area S5-1 in FIG. 8 is 10db, it is assumed that the SNR exceeds the threshold value and the angle is measured in the vertical direction. I do.
  • the SNR of the region of the lattice portion S5-2 is 0db
  • the vertical angle measurement function control unit 20 measures the angle in the vertical direction only for the detection target whose reflected signal intensity exceeds the threshold value, based on the reflected signal intensity of the detection target instead of the SNR.
  • the unit 10 may be controlled. It should be noted that this embodiment may be carried out at the same time as limiting the range in which the angle is measured in the vertical direction according to other embodiments.
  • FIG. 9 is an image diagram showing the coverage area of the radar.
  • the environmental information acquisition unit 30 acquires the speed of its own vehicle X, the threshold value for determining a stationary object, the specified time, and the horizontal direction in which the own vehicle X is going, and is a vertical angle measurement function control unit. 20 determines the stationary object to be detected based on its own vehicle speed, the threshold value for determining a stationary object, and the relative speed of the detection target, and the distance at which its own vehicle X is expected to move within a specified time.
  • the object detection unit 10 is controlled so as to measure the angle in the vertical direction only for a stationary object within the angle range. For example, as shown in the shaded area S6 in FIG.
  • the distance range for performing vertical angle measurement is defined as Bown.
  • the horizontal angle range ⁇ [deg] is limited to the front right only, and the vertical angle measurement is performed only for a stationary object.
  • FIG. 10 is an image diagram showing the coverage area of the radar.
  • the environmental information acquisition unit 30 acquires the speed of its own vehicle X, the threshold value for determining a stationary object, the designated time, and the trajectory on which its own vehicle X is going, and the vertical angle measurement function control unit 20.
  • the object detection unit 10 is controlled so that the object detection unit 10 measures the angle in the vertical direction only for a stationary object within a distance and angle range where the vehicle X is expected to move within a specified time.
  • the distance range for performing vertical angle measurement is defined as Bown.
  • the distance range and the horizontal angle range are limited to t [m] or less, and the vertical angle measurement is performed only for a stationary object.
  • FIG. 11 is a block diagram showing an object detection device 100 according to the eleventh embodiment.
  • FIG. 12 is a configuration diagram showing a state in which the object detection device 100 of the eleventh embodiment is mounted on the vehicle.
  • the configuration of the eleventh embodiment is the same as that of the first embodiment and the second embodiment except for the object detection unit 10.
  • the object detection units 10 are provided in three places in front of the vehicle X and two places in the rear of the vehicle X.
  • the vertical angle measuring function control unit 20 is mounted inside the own vehicle X. The other parts are mounted inside the vehicle X as well as the vertical angle measuring function control unit 20. As a result, it is possible to control the vertical angle measuring function with respect to the covering area of the plurality of object detection units 10 combined, and it is possible to cooperate between the plurality of object detection units.
  • FIG. 13 is a block diagram showing an object detection unit 10, a vertical angle measurement function control unit 20, and an environmental information acquisition unit 30 of the object detection device 100 according to the twelfth embodiment.
  • FIG. 14 is a configuration diagram showing a state in which the object detection device 100 of the twelfth embodiment is mounted on the vehicle.
  • the configuration of the embodiment 12 is the same as that of the first embodiment, the second embodiment, and the eleventh embodiment except for the object detection unit 10, and the object detection unit 10 has a plurality of RF module circuits 12, one. It differs in that it is composed of one signal processing circuit 13 and one or more radar control circuits 11. As shown in FIG. 14, RF module circuits 12 are provided in three places in front of the vehicle X and two places in the rear of the vehicle X. Further, the vertical angle measurement function control unit 20 is mounted inside the vehicle X itself, and the radar control circuit 11 may be mounted inside the vehicle X or mounted in the same place as the RF module circuit 12. May be done. The other parts are mounted inside the vehicle X as well as the vertical angle measuring function control unit 20.
  • the case where the radar is used has been described, but at least one of the distance, the speed, and the angle such as the radar or LiDAR (Light Detection and Ranging).
  • a sensor that performs the above measurements has a vertical angle measurement function, and can change at least one of the distance range, distance accuracy, speed range, speed accuracy, angle range, and angle accuracy for performing vertical angle measurement. If so, it is applicable.
  • radars often have a configuration in which the vertical direction is calculated by a known beamformer method, super-resolution angle measurement, or monopulse angle measurement. Therefore, the processing load can be reduced by limiting the range in which vertical angle measurement is performed. The effect is great.
  • the object detection unit 10, the vertical angle measurement function control unit 20, and the environment information acquisition unit 30 are composed of the processor 200 and the storage device 201 as shown in FIG. 15 as an example of the hardware configuration.
  • the storage device includes a volatile storage device such as a random access memory and a non-volatile auxiliary storage device such as a flash memory. Further, an auxiliary storage device of a hard disk may be provided instead of the flash memory.
  • the processor 200 executes the program input from the storage device 201. In this case, a program is input from the auxiliary storage device to the processor 200 via the volatile storage device.
  • the processor 200 may output data such as a calculation result to the volatile storage device of the storage device 201, or may store the data in the auxiliary storage device via the volatile storage device.
  • the RF module circuit, the radar control circuit, and the signal processing circuit are described as the components of the object detection unit, it is not necessary that these are housed in one housing.
  • a circuit that processes a part or all of the signal processing circuit may be mounted in another housing (signal processing ECU (Electronic Control Unit)) mounted in a place different from the RF module circuit.
  • signal processing ECU Electronic Control Unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

検知範囲内のすべての検知対象物に対して垂直測角を行う場合、情報量が多いため、演算量が多くなり、処理時間が長くなり、応答性が悪くなるという問題が生じる。このため、予め定められた範囲内の物体を検出する物体検知部(10)と、前記物体検知部(10)の置かれている環境情報を取得し、前記環境情報に応じた環境情報信号を出力する環境情報取得部(30)と、前記環境情報信号に基づいて前記物体検知部(10)に対して垂直方向の測角を行う範囲を制御する垂直測角機能制御部(20)を備えた。

Description

物体検知装置
 本願は、物体検知装置に関するものである。
 先行車両と自らの車両との車間距離を一定に保つACC(Adaptive Cruise Control)システムおよび障害物を感知して衝突に備えるAEBS(Advanced Emergency Braking System)によって車両の運転を支援するADAS(Advanced Driver-Assistance Systems)が知られている。
 例えば、AEBSでは、自らの車両の周辺に存在する物体の情報を得るカメラあるいはレーダといった検知装置が、車両に搭載され、自らの車両の移動方向に存在する物体を、運転に際して制御を必要とする対象の物体(以下、制御対象物という)として検出し、自らの車両と制御対象物との位置関係および相対速度を観測し、観測結果のデータに基づいて自らの車両の運転支援の制御を行っている。
 ADASにおいて使用される車載用レーダの中には、地面に対して垂直方向の測角機能を持ち、検知した対象物(以下、検知対象物という)の高さ情報に基づいて、検知対象物が先行車両あるいは歩行者といった制御対象物であるのか、道路の上方に設けられた看板あるいは道路上の薄い落下物といった非制御対象物であるのかを判定するという技術が提案されている(特許文献1)。
 ここで提案されている内容は、従来の車載用レーダ装置が、垂直方位を算出しないため、ターゲットの地面からの高さを把握できないことによって、道路の上方に設けられた看板あるいは道路上の薄い落下物を検出した場合に、正面のターゲットとして誤認識して、ACCシステムが誤って作動するということを技術課題として捉え、この課題を解決するものである。すなわち、レーダ装置において、地面に対して垂直方向における検知対象物の方位である垂直方位として、送信アンテナから検知対象物に向けて送信波を送信して、検知対象物によって反射された反射波から地上にある実像の方位を算出するとともに、検知対象物で反射した後に地面で反射した反射波から地下に存在する虚像の方位を算出し、算出された実像の方位と虚像の方位との角度差を用いて、検知対象物の地面からの高さを算出するようにしたものである。
 すなわち、特許文献1には、検知対象物から得られる情報を処理することによって、道路の上方に設けられた看板あるいは道路上の薄い落下物を誤って制御対象物と認識することなく、正面の制御対象物について適切に認識することができるという技術が開示されている。
特開2014-52187号公報
 特許文献1に提案されている物体検知装置においては、適切な認識を行うために様々な情報を取り入れて情報処理を行っている。
 しかしながら、多くの情報を取り入れて情報処理を行うと、情報量が多いため、演算量が多くなり、処理時間が長くなり、応答性が悪くなるという問題が生じることになる。
 そこで、本願では、この問題を解決するため、垂直方位の測角を行う検知対象を自らの車両の置かれている環境情報、すなわち物体検知部の置かれている環境情報に基づいて、選定することによって、演算量の削減が可能な物体検知装置を提供することを目的としている。
 本願の物体検知装置は、予め定められた範囲内の検知対象物を検出する物体検知部、前記物体検知部の置かれている環境情報を取得し、前記環境情報に応じた環境情報信号を出力する環境情報取得部、および前記環境情報信号に基づいて前記物体検知部に対して垂直方向の測角を行う範囲を制御する垂直測角機能制御部を備えたことを特徴とするものである。
 本願の物体検知装置によれば、物体検知装置は、物体検知部の制御および信号処理の演算量の削減が可能である。
実施の形態1の構成を示すブロック図である。 実施の形態1の動作を示すフローチャートである。 実施の形態2の動作を示すフローチャートである。 実施の形態3の覆域を示すイメージ図である。 実施の形態4の覆域を示すイメージ図である。 実施の形態6の覆域を示すイメージ図である。 実施の形態7の覆域を示すイメージ図である。 実施の形態8の覆域を示すイメージ図である。 実施の形態9の覆域を示すイメージ図である。 実施の形態10の覆域を示すイメージ図である。 実施の形態11の構成を示すブロック図である。 実施の形態11の物体検知部の搭載状態のイメージ図である。 実施の形態12の構成を示すブロック図である。 実施の形態12のRFモジュール回路の搭載状態のイメージ図である。 ハードウェアの一例を示す構成図である。
実施の形態1
 以下、実施の形態1に係る物体検知装置を図1に基づいて説明する。
 図1は、実施の形態1に係る物体検知装置100を示すブロック図である。図1に示すように、物体検知装置100は、物体検知部10、垂直測角機能制御部20、環境情報取得部30を備えている。
 物体検知部10は、レーダ制御回路11、RFモジュール回路12および信号処理回路13によって構成されている。RFモジュール回路12とは、例えば、複数の能動部品(ICチップ等)と受動部品(SAWフィルタ、コンデンサ、抵抗、コイル等)を基板に搭載したものである。
 図1において、環境情報取得部30は、通信あるいはセンサによって、垂直測角機能を制御するために用いる情報Aを取得する。情報Aは、例えば、自らの車両の軌道、速度、進行方向、検知物体の相対速度、および反射強度であって、この情報Aを「環境情報」と呼ぶ。環境情報取得部30は、取得した情報Aに基づく環境情報信号Bを垂直測角機能制御部20に出力する。
 垂直測角機能制御部20は、環境情報信号Bに基づいて、物体検知部10のレーダ制御回路11および信号処理回路13に信号Cを出力して、レーダ制御回路11および信号処理回路13のうち少なくとも一方の処理内容を、予め定めた条件に当てはまる状態の制御対象のみを垂直測角の処理を行うように制御を行う。この処理内容の制御としては、例えば、垂直測角を行う距離範囲、距離精度、速度範囲、速度精度、角度範囲、角度精度の範囲を変更させる制御である。この制御を行うための信号Cは、「垂直測角機能制御信号」である。なお、垂直測角機能制御部20によって制御される物体検知部10では、物体の、地面に対して垂直方向における方位である垂直方位に、送信アンテナ(図示せず)から送信される送信波が物標で反射した反射波から地上にある実像の方位である実像垂直方位を算出するとともに、送信アンテナから送信される送信波が物体で反射し、さらに地面に反射した反射波から地下に存在する虚像の方位である虚像垂直方位を算出する。そして、物体検知部10では、算出された実像垂直方位と虚像垂直方位との角度差を算出し、算出された角度差を用いて、ターゲットの地面からの高さを算出する。ただし、物体検知部10の垂直方位の算出方法はどのような方法でも良く、例えば、機械的または電気的にビームを制御することで垂直方位を算出しても良いし、公知のビームフォーマ法あるいは超分解能測角、モノパルス測角によって垂直方位を算出できる。
 レーダ制御回路11は、RFモジュール回路12に対して、電波の送受信に関する制御を行う。この電波の送受信に関する制御とは、例えば、送信波の周波数帯域、占有周波数帯域、サンプリング周波数、サンプリング数、周波数変調時間、送信CH、受信CH、周波数変調タイミングに関する制御である。この制御を行う際、信号Cに基づいて、制御の内容を変更することができる。
 RFモジュール回路12は、RFモジュール回路制御信号Dに従って電波の送受信を行い、ビート信号Eを測定する。
 信号処理回路13は、ビート信号Eの周波数解析を行うことで、例えば、物体までの距離、相対速度、方位角、仰角、反射強度を算出してその結果を出力信号Fとして出力する。この信号処理を行う際、垂直測角機能制御信号Cに基づいて、信号処理の内容を変更することができる。なお、図1中の矢印は、信号の流れを示す。
 次に、実施の形態1の動作について、図2を用いて説明する。図2は、実施の形態1の動作を示すフローチャートである。
 ステップS101において検知を開始し、ステップS102において、環境情報取得部30は、通信またはセンサによって環境情報を取得し、垂直測角機能制御部20は、環境情報信号Bを受け取る。
 ステップS103において、垂直測角機能制御部20は、環境情報に基づいて垂直測角機能の制御内容を決定すると共に、前の周期から制御内容を変更したか否かの判定を行う。制御内容を変更している場合には、ステップS104に移り、そうでない場合は、ステップS105のレーダ制御に移る。ステップS104において、垂直測角機能制御部20は、ステップS103において決定した制御内容に沿うようにレーダ制御回路11または信号処理回路13のうち少なくとも一方の予め設定されている処理内容を変更するように、垂直測角機能制御信号である信号Cを出力する。
 ステップS105において、レーダ制御回路11は、予め設定された処理内容に基づいてRFモジュール回路12に対する制御を行う。
 ステップS106において、RFモジュール回路12は、レーダ制御回路11によるRFモジュール回路制御信号Dに基づいて、電波の送受信およびビート信号の測定を行う。
 ステップS107において、信号処理回路13は、予め設定された処理内容に基づいて、ビート信号Eに対する信号処理を行い、検知した物体までの距離、物体の速度、方位角、仰角および信号強度などを算出する。
 ステップS108において、検知終了と判定された場合は、ステップS109において検知が終了する。検知終了と判定されなかった場合には、処理は、ステップS102へと戻り、環境情報の取得が繰り返される。
 このフローチャートに示した動作によって、環境情報に基づいてレーダの垂直測角機能の制御が行われる。その結果、環境情報に基づいて、垂直測角機能の変更が不要の場合には測角機能の変更を行わないため、無駄な通信あるいは計算を省くことができる。
実施の形態2
 本実施の形態2の構成は、本実施の形態1の構成と同じである。異なるところは、この構成によって行われる動作である。
 図3は、本実施の形態2の動作を示すフローチャートである。本実施の形態2の動作と実施の形態1の動作との差異を次に説明する。
 実施の形態2では、実施の形態1の処理の流れに対して、垂直測角機能の制御を行う処理の流れと物体の検知を行う処理の流れを並列化している。
 垂直測角機能の制御を行うか否かを判定する処理の流れを「垂直測角機能制御判定ループL1」、物体の検知を行う処理の流れを「物体検知処理ループL2」と呼ぶ。
 垂直測角機能制御判定ループL1では、ステップS201において検知を開始し、ステップS202において、環境情報取得部30は、通信またはセンサによって環境情報を取得し、垂直測角機能制御部20は、環境情報信号Bを受け取る。ステップS203において、垂直測角機能制御部20は、環境情報信号Bに基づいて、垂直測角機能の制御内容を決定すると共に、前の周期から制御内容を変更したか否かの判定を行う。この際に、制御内容を変更している場合には、ステップS204に移り、「物体検知処理ループL2への割り込み」を行い、制御内容を変更していない場合には、ステップS205に移る。
 物体検知処理ループL2は、ステップS301において検知を開始し、ステップS302において、割り込みが発生したか否かを判定し、割り込みが発生した場合には、ステップS303に進み、そうでない場合は、ステップS304のレーダ制御に移る。ステップS303において、垂直測角機能制御部20は、ステップS303において決定した制御内容に沿うようにレーダ制御回路11または信号処理回路13のうち少なくとも一方の予め設定されている処理内容を変更するように、垂直測角機能制御信号である信号Cを出力する。
 ステップS304において、レーダ制御回路11は、予め設定された処理内容に基づいてRFモジュール回路12に対する制御を行う。
 ステップS305において、RFモジュール回路12は、レーダ制御回路11によるRFモジュール回路制御信号Dに基づいて、電波の送受信およびビート信号の測定を行う。
 ステップS306において、信号処理回路13は、予め設定された処理内容に基づいて、ビート信号Eに対する信号処理を行い、検知した物体の距離を算出する。
 ステップS307において、検知終了と判定された場合は、ステップS308において検知が終了する。検知終了と判定されなかった場合には、処理は、ステップS302へと戻り、環境情報の取得が繰り返される。
 ステップS204において、「物体検知処理ループL2への割り込み」を行う場合には、垂直測角機能制御部20は、物体検知処理ループにおいてステップS303を発生させる。逆に、この割り込みが生じていないときには、ステップS303は発生しない。
 ステップS205において、検知終了と判定された場合は、ステップS206にて検知が終了する。検知終了と判定されなかった場合、処理は、ステップS202へと戻り、以後同様にして処理を進めていく。
 物体検知処理ループL2では、ステップS302において、垂直測角機能制御判定ループからの割り込みが発生しているかを判定する。割り込みが発生している場合には、ステップS303に移り、割り込みが発生していない場合は、ステップS304に移る。
 ステップS303において、垂直測角機能制御部20が、垂直測角機能制御判定ループL1のステップS203で予め設定されている制御内容に沿うように、レーダ制御回路11または信号処理回路13のうち少なくとも一方の処理内容の制御を行うように、垂直測角機能制御信号Cを出力する。
 この構成によって、垂直測角機能制御判定ループL1と物体検知処理ループL2とを並列に信号処理できるため、物体検知の周期と垂直測角機能制御の周期を分離して独立させることができ、実施の形態1と同様の効果を持ちながら、より柔軟なシステム設計が可能となる。また、ステップS303をステップS304の前段階にすることによって、レーダ制御回路11と信号処理回路13に対する垂直測角機能変更の内容に一貫性を持たせることができる。
実施の形態3
 図4は、レーダの覆域を示すイメージ図である。環境情報取得部30において、自らの車両Xの速度を取得し、垂直測角機能制御部20によって、検知した物体のうち絶対速度Vtargetがしきい値Vth以下である物体に対してのみ垂直方向の測角を行うように物体検知部10を制御する。例えば、図4の斜線部分S1がレーダの検知範囲であるとき、絶対速度Vtargetがしきい値Vth以下の物体のみを垂直測角対象とするように物体検知部10を制御し、電波の送受信および信号処理に対する制御を行う。
 これにより、道路の上方に設けられた看板あるいは道路上の薄い落下物のような非制御対象である静止物と、渋滞によって停止した車両のような静止している制御対象とを高さの違いによって区別することができると同時に、前方を走行している車両のような移動している制御対象に対しては垂直測角を行わないとすることによって、効率的なレーダの制御および信号処理が可能となる。
実施の形態4
 図5は、レーダの覆域を示すイメージ図である。環境情報取得部30において、自らの車両Xの速度Vownおよび指定時間を取得し、垂直測角機能制御部20によって、自らの車両が指定時間以内に移動可能な距離範囲に対してのみ垂直方向の測角を行うように物体検知部10を制御する。例えば、自らの車両速度がVown[m/S]であり指定時間をt[S]である場合、図5の斜線部分S2のように、垂直測角を行う距離範囲をVown・t[m]以下にする。
 これにより、自らの車両が指定時間以内には移動不可能な距離の物体に対する垂直測角を行うことを省略できるため、効率的なレーダの制御および信号処理が可能となる。
実施の形態5
 環境情報取得部30において、自らの車両Xの現在の速度Vownと、目標速度、減速度およびジャークのうち一つ以上の情報と、最小車間距離の設定値とを取得し、垂直測角機能制御部20によって、自らの車両が目標速度となるまでに移動する距離に最小車間距離を加えた距離以内の距離範囲に対して垂直方向の測角を行うように物体検知部10を制御する。最小車間距離の設定値は、自らの車両と先行車との車間時間によって規定されて良いし、動的に変更しても良い。また、最小車間距離の設定値は常に0[m]であるとして、省略しても良い。この実施の形態55の、レーダの覆域を示すイメージ図は、実施の形態4に示した図5と同じになる。
 これにより、自らの車両の進行方向上に存在する静止物が制御対象であった場合でも、制御対象との衝突を避けることが可能な距離から静止物が制御対象か否かの判断を行うことが可能となる。
 なお、自車の減速時にのみ本実施の形態を適用し、自車の減速時以外に実施の形態4を適用することで実施の形態4と本実施の形態を組み合わせて実施しても良い。これにより、自車の加減速の状況に応じた垂直測角を行う対象の判断が可能となる。
実施の形態6
 図6は、レーダの覆域を示すイメージ図である。環境情報取得部30において、自らの車両Xがこれから進む水平角度方向を取得し、垂直測角機能制御部20によって、自らの車両Xがこれから移動する水平角度範囲θ[deg]に対してのみ垂直方向の測角を行うように物体検知部10を制御する。例えば、自らの車両Xがこれから右前方へと進む場合には、図6の斜線部分S3のように、垂直測角を行う水平角度範囲θ[deg]を右前方のみに限定する。
 これにより、自らの車両Xの進行方向以外の物体に対する垂直測角をなくすことができるため、効率的なレーダの制御および信号処理が可能となる。
実施の形態7
 図7は、レーダの覆域を示すイメージ図である。環境情報取得部30において、自らの車両Xがこれから進む軌道情報を取得し、垂直測角機能制御部20によって、自らの車両Xがこれから移動する軌道上に対してのみ垂直方向の測角を行うように物体検知部10を制御する。例えば、自らの車両Xがこれから右旋回する場合には、図7の斜線部分S4のように、垂直測角を行う距離範囲および水平角度範囲を右旋回の軌道の周辺のみに限定する。このとき、自らの車両Xの軌道に対して軌道の取得誤差に対するマージンを持たせた範囲に対して垂直方向の測角を行っても良い。
 これにより、自らの車両Xの進行軌道上またはその軌道にマージンを含めた範囲以外での垂直測角を行う距離範囲および水平角度範囲を減らすことができるため、効率的なレーダの制御および信号処理が可能となる。
実施の形態8
 図8は、レーダの覆域を示すイメージ図である。環境情報取得部30において、検知対象のSNR(Signal-to-Noise Ratio)と、SNRに対するしきい値を取得する。SNRが低い物体に対しては測角精度が低くなるため、垂直測角機能制御部20によって、SNRがしきい値を超える検知対象に対してのみ垂直方向の測角を行うように、物体検知部10を制御する。例えば、SNRのしきい値を5dbとしたとき、図8の斜線部分S5-1の領域のSNRが10dbである場合には、SNRがしきい値を超える物体であるとして、垂直方向の測角を行う。一方、格子部分S5-2の領域のSNRが0dbである場合には、SNRがしきい値を下回る物体であるとして、垂直測角を行わない。
 これにより、SNRの低い低位置物体あるいは路面に対しての垂直測角を省くことができるため、効率的なレーダの制御および信号処理が可能となる。このとき、SNRではなく検知対象の反射信号強度に基づいて、垂直測角機能制御部20による反射信号強度がしきい値を超える検知対象に対してのみ垂直方向の測角を行うように物体検知部10を制御してもよい。
 なお、本実施の形態は、他の実施の形態によって垂直方向の測角を行う範囲を制限するのと同時に実施しても良い。
実施の形態9
 図9は、レーダの覆域を示すイメージ図である。環境情報取得部30において、自らの車両Xの速度と、静止物判定のためのしきい値と、指定時間と、自らの車両Xがこれから進む水平方向とを取得し、垂直測角機能制御部20によって、自らの車両速度、静止物判定のためのしきい値および検知対象の相対速度に基づいて検知対象の静止物判定を行い、自らの車両Xが指定時間以内に移動すると予想される距離、角度範囲内の静止物に対してのみ垂直方向の測角を行うように物体検知部10を制御する。例えば、図9の斜線部S6のように、自らの車両Xの速度がVown[m/S]であり指定時間をt[S]としたときに垂直測角を行う距離範囲をVown・t[m]以下にするとともに、水平角度範囲θ[deg]を右前方のみに限定し、静止物に対してのみ垂直測角を行う。
 これにより、道路上の看板あるいは落下物のような非制御対象である静止物と、渋滞によって停止した車両のような静止している制御対象とを高さの違いによって区別することができると同時に、前方を走行している車両のような移動している制御対象に対しては垂直測角を行わない。また、自らの車両Xが指定時間以内には移動不可能な距離の静止物あるいは自らの車両Xの進行方向以外の静止物といった、自らの車両Xと明らかに衝突しない物体に対する垂直測角をなくすことができるため、効率的なレーダの制御および信号処理が可能となる。
実施の形態10
 図10は、レーダの覆域を示すイメージ図である。環境情報取得部30において、自らの車両Xの速度と、静止物判定のためのしきい値と、指定時間と、自らの車両Xがこれから進む軌道とを取得し、垂直測角機能制御部20によって、自らの車両Xが指定時間以内に移動すると予想される距離、角度範囲内の静止物に対してのみ垂直方向の測角を行うように物体検知部10を制御する。例えば、図10の斜線部S7のように、自らの車両Xの速度がVown[m/S]であり指定時間をt[S]としたときに垂直測角を行う距離範囲をVown・t[m]以下にするとともに、距離範囲および水平角度範囲を右旋回の軌道の周辺のみに限定し、静止物に対してのみ垂直測角を行う。
 これにより、道路上の看板あるいは落下物のような非制御対象である静止物と、渋滞によって停止した車両のような静止している制御対象とを高さの違いによって区別することができると同時に、前方を走行している車両のような移動している制御対象に対しては垂直測角を行わない。また、自らの車両Xが指定時間以内には移動不可能な距離の静止物あるいは自らの車両Xの進行軌道上以外の静止物といった、自らの車両Xと明らかに衝突しない物体に対する垂直測角をなくすことができるため、効率的なレーダの制御および信号処理が可能となる。
実施の形態11
 図11は、実施の形態11に係る物体検知装置100を示すブロック図である。また、図12は、実施の形態11の物体検知装置100を車両に搭載している状態を示す構成図である。
 実施の形態11の構成は、物体検知部10以外は、実施の形態1および実施の形態2の構成と同じである。この実施の形態11では、物体検知部10を自らの車両Xの前方に3か所、後方に2か所備えている。また、垂直測角機能制御部20は、自らの車両Xの内部に搭載されている。なお、その他の部分は、垂直測角機能制御部20と同様に自らの車両Xの内部に搭載されている。
 これにより、複数の物体検知部10の覆域を合わせた覆域に対しての垂直測角機能の制御が可能となるとともに、複数の物体検知部間の連携が可能となる。
実施の形態12
図13は、実施の形態12に係る物体検知装置100の物体検知部10、垂直測角機能制御部20および環境情報取得部30を示すブロック図である。
 また、図14は、実施の形態12の物体検知装置100を車両に搭載している状態を示す構成図である。
 実施の形態12の構成は、物体検知部10以外は、実施の形態1、実施の形態2および実施の形態11の構成と同じであり、物体検知部10が、複数のRFモジュール回路12、一つの信号処理回路13および一つ以上のレーダ制御回路11によって構成されているところが異なっている。図14に示すように、RFモジュール回路12を、自らの車両Xの前方に3か所、後方に2か所備えている。また、垂直測角機能制御部20は、自らの車両Xの内部に搭載されており、レーダ制御回路11は、車両Xの内部に搭載されても良いし、RFモジュール回路12と同じ場所に搭載されても良い。
 なお、その他の部分は、垂直測角機能制御部20と同様に自らの車両Xの内部に搭載されている。
 これにより、全てのRFモジュール回路12が同時に最大性能を求められるということをなくすことで、複数の物体検知部10において個々の信号処理回路13に求められる処理性能の合計よりも低い処理性能であっても、同等の機能を実現することができる。
 なお、実施の形態1から実施の形態12においては、レーダを使用した場合での説明を行ったが、レーダあるいはLiDAR(Light Detection and Ranging)のような、距離、速度、角度のうち少なくとも一つ以上の測定を行い、垂直測角機能を持ち、垂直測角を行う距離範囲、距離精度、速度範囲、速度精度、角度範囲、角度精度のうち少なくともどれか一つを変更させることができるセンサであれば、適用可能である。
 なお、特にレーダにおいては、公知のビームフォーマ法あるいは超分解能測角、モノパルス測角によって垂直方位を算出する構成をとることが多いため、垂直測角を行う範囲を制限することによる処理負荷低減の効果が大きい。
 また、物体検知部10、垂直測角機能制御部20、および環境情報取得部30は、ハードウェアの構成の一例を図15に示すように、プロセッサ200と記憶装置201から構成される。記憶装置は図示していないが、ランダムアクセスメモリ等の揮発性記憶装置と、フラッシュメモリ等の不揮発性の補助記憶装置とを具備する。また、フラッシュメモリの代わりにハードディスクの補助記憶装置を具備してもよい。プロセッサ200は、記憶装置201から入力されたプログラムを実行する。この場合、補助記憶装置から揮発性記憶装置を介してプロセッサ200にプログラムが入力される。また、プロセッサ200は、演算結果等のデータを記憶装置201の揮発性記憶装置に出力してもよいし、揮発性記憶装置を介して補助記憶装置にデータを保存してもよい。
 物体検知部の構成要素として、RFモジュール回路、レーダ制御回路、信号処理回路を記載しているが、これらが一つの筐体内に収まっている必要はない。例えば、信号処理回路の一部または全部の処理を行う回路を、RFモジュール回路と異なる場所に搭載された別の筐体(信号処理ECU(Electronic Control Unit))に搭載しても良い。
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
10 物体検知部、11 レーダ制御回路、12 RFモジュール回路、13 信号処理回路、20 垂直測角機能制御部、30 環境情報取得部、100 物体検知装置、200 プロセッサ、201 記憶装置

Claims (13)

  1.  予め定められた範囲内の検知対象物を検出する物体検知部、前記物体検知部の置かれている環境情報を取得し、前記環境情報に応じた環境情報信号を出力する環境情報取得部、および前記環境情報信号に基づいて前記物体検知部に対して垂直方向の測角を行う範囲を制御する垂直測角機能制御部を備えたことを特徴とする物体検知装置。
  2.  前記物体検知部は、レーダ制御回路と、RFモジュール回路と、信号処理回路とを有することを特徴とする請求項1に記載の物体検知装置。
  3.  前記物体検知部は、前記RFモジュール回路を複数備えていることを特徴とする請求項2に記載の物体検知装置。
  4.  前記物体検知部が複数設けられ、前記垂直測角機能制御部が複数の前記物体検知部を制御することを特徴とする請求項1から3のいずれか1項に記載の物体検知装置。
  5.  前記垂直測角機能制御部は、前記物体検知部の垂直方向の測角に関する機能を制御することによって、垂直測角を行う距離範囲、距離精度、速度範囲、速度精度、角度範囲、角度精度のうち少なくとも一つ以上を変更させることを特徴とする請求項1から4のいずれか1項に記載の物体検知装置。
  6.  前記環境情報取得部は、前記垂直測角機能制御部が前記物体検知部に対する制御を行うための情報として車両の軌道、速度、進行方向、検知物体の相対速度、SNR、反射信号強度のうち一つ以上の情報を取得することを特徴とする請求項1から5のいずれか1項に記載の物体検知装置。
  7.  前記垂直測角機能制御部は、前記検知対象物が静止物か否かの判断を行い、静止物に対してのみ垂直測角を行うように制御することを特徴とする請求項1から6のいずれか1項に記載の物体検知装置。
  8.  車両に搭載され、前記垂直測角機能制御部は、自らの車両の速度に基づいて、垂直測角を行う距離範囲を制御することを特徴とする請求項1から7のいずれか1項に記載の物体検知装置。
  9.  車両に搭載され、前記垂直測角機能制御部は、自らの車両が目標速度となるまでに移動する距離に基づいて、垂直測角を行う距離範囲を制御することを特徴とする請求項1から8のいずれか1項に記載の物体検知装置。
  10.  車両に搭載され、前記垂直測角機能制御部は、自らの車両の進行方向に基づいて、垂直測角を行う水平角度範囲を制御することを特徴とする請求項1から9のいずれか1項に記載の物体検知装置。
  11.  車両に搭載され、前記垂直測角機能制御部は、自らの車両の軌道情報に基づいて、垂直測角を行う距離範囲および水平角度範囲のうち一つ以上を制御することを特徴とする請求項1から10のいずれか1項に記載の物体検知装置。
  12.  前記垂直測角機能制御部は、前記検知対象物からの反射信号のSNRに基づいて、SNRがしきい値よりも高い検知対象に対してのみ垂直測角を行うように制御することを特徴とする請求項1から11のいずれか1項に記載の物体検知装置。
  13.  前記垂直測角機能制御部は、前記検知対象物からの反射信号の強度に基づいて、反射信号の強度がしきい値よりも高い検知対象に対してのみ垂直測角を行うように制御することを特徴とする請求項1から12のいずれか1項に記載の物体検知装置。
PCT/JP2019/045975 2019-11-25 2019-11-25 物体検知装置 WO2021106039A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021560773A JPWO2021106039A1 (ja) 2019-11-25 2019-11-25
US17/766,923 US20240085521A1 (en) 2019-11-25 2019-11-25 Object detection device
DE112019007912.3T DE112019007912T5 (de) 2019-11-25 2019-11-25 Objekterkennungsvorrichtung
CN201980101748.1A CN114651189A (zh) 2019-11-25 2019-11-25 物体检测装置
PCT/JP2019/045975 WO2021106039A1 (ja) 2019-11-25 2019-11-25 物体検知装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/045975 WO2021106039A1 (ja) 2019-11-25 2019-11-25 物体検知装置

Publications (1)

Publication Number Publication Date
WO2021106039A1 true WO2021106039A1 (ja) 2021-06-03

Family

ID=76130078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045975 WO2021106039A1 (ja) 2019-11-25 2019-11-25 物体検知装置

Country Status (5)

Country Link
US (1) US20240085521A1 (ja)
JP (1) JPWO2021106039A1 (ja)
CN (1) CN114651189A (ja)
DE (1) DE112019007912T5 (ja)
WO (1) WO2021106039A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036539A (ja) * 2007-07-31 2009-02-19 Mitsubishi Electric Corp レーダ信号処理装置およびレーダ信号処理方法
JP2012194039A (ja) * 2011-03-16 2012-10-11 Mitsubishi Electric Corp 車載用レーダ装置
JP2014052187A (ja) * 2012-09-04 2014-03-20 Fujitsu Ten Ltd レーダ装置および物標高算出方法
JP2018067237A (ja) * 2016-10-21 2018-04-26 株式会社Soken センサ制御装置
WO2018101082A1 (ja) * 2016-12-01 2018-06-07 日立オートモティブシステムズ株式会社 レーダ装置
JP2019066284A (ja) * 2017-09-29 2019-04-25 株式会社デンソーテン レーダ装置およびレーダ装置の制御方法
JP2019120514A (ja) * 2017-12-28 2019-07-22 古河電気工業株式会社 レーダ装置およびレーダ装置の対象物検出方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559370U (ja) * 1992-01-16 1993-08-06 三菱電機株式会社 飛行シミュレーション・データ作成装置
JP2009058316A (ja) * 2007-08-31 2009-03-19 Fujitsu Ten Ltd レーダ装置、物体検出方法、及び車両
JP5558440B2 (ja) * 2011-09-08 2014-07-23 三菱電機株式会社 物体検出装置
JP2015020648A (ja) * 2013-07-22 2015-02-02 日産自動車株式会社 車載機器制御システム及び車載機器の制御方法
JP2018059813A (ja) * 2016-10-05 2018-04-12 株式会社デンソーテン レーダ装置および物標検出方法
JP6937631B2 (ja) * 2017-07-25 2021-09-22 日立Astemo株式会社 レーダ装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036539A (ja) * 2007-07-31 2009-02-19 Mitsubishi Electric Corp レーダ信号処理装置およびレーダ信号処理方法
JP2012194039A (ja) * 2011-03-16 2012-10-11 Mitsubishi Electric Corp 車載用レーダ装置
JP2014052187A (ja) * 2012-09-04 2014-03-20 Fujitsu Ten Ltd レーダ装置および物標高算出方法
JP2018067237A (ja) * 2016-10-21 2018-04-26 株式会社Soken センサ制御装置
WO2018101082A1 (ja) * 2016-12-01 2018-06-07 日立オートモティブシステムズ株式会社 レーダ装置
JP2019066284A (ja) * 2017-09-29 2019-04-25 株式会社デンソーテン レーダ装置およびレーダ装置の制御方法
JP2019120514A (ja) * 2017-12-28 2019-07-22 古河電気工業株式会社 レーダ装置およびレーダ装置の対象物検出方法

Also Published As

Publication number Publication date
JPWO2021106039A1 (ja) 2021-06-03
US20240085521A1 (en) 2024-03-14
DE112019007912T5 (de) 2022-09-22
CN114651189A (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
US10338216B2 (en) Object detection in multiple radars
JP4593468B2 (ja) レーダ装置
US20180128916A1 (en) Object detection in multiple radars
US10338208B2 (en) Object detection in multiple radars
US10345439B2 (en) Object detection in multiple radars
US20190086512A1 (en) Method and apparatus for vehicular radar calibration
JP5122536B2 (ja) レーダ装置
JP2001242242A (ja) 検知性能向上機能を備えたミリ波レーダ装置
EP3865904A1 (en) Electronic device, electronic device control method, and electronic device control program
JP2010197133A (ja) 物体検知装置
CN110806580B (zh) 移动平台上的雷达***中的振动减轻
US20190086509A1 (en) Synchronization of multiple radars start up time for interference mitigation
CN112654888A (zh) 电子设备、电子设备的控制方法、以及电子设备的控制程序
JP2008152390A (ja) 車両用周辺監視装置
JPWO2005066656A1 (ja) 車載レーダ装置およびその信号処理方法
CN109799505B (zh) 用于多雷达***中的连续追踪的方法和装置
US20180128912A1 (en) Object detection in multiple radars
WO2018000666A1 (zh) 雷达***、交通工具、无人机以及探测方法
Kawakubo et al. Electronically-scanning millimeter-wave RADAR for forward objects detection
WO2021106039A1 (ja) 物体検知装置
CN116106894A (zh) 基于5d毫米波雷达的目标跟踪方法、设备及存储介质
Dickmann et al. Automotive radar—“quo vadis?”
US20210247489A1 (en) Automotive radar with common-differential mode antenna
EP3865907A1 (en) Electronic device, method for controlling electronic device, and program for controlling electronic device
CN113942506A (zh) 跟车行驶自动巡航方法及***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953925

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17766923

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021560773

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19953925

Country of ref document: EP

Kind code of ref document: A1