WO2021104201A1 - 负极材料及其制备方法,电池和终端 - Google Patents

负极材料及其制备方法,电池和终端 Download PDF

Info

Publication number
WO2021104201A1
WO2021104201A1 PCT/CN2020/130864 CN2020130864W WO2021104201A1 WO 2021104201 A1 WO2021104201 A1 WO 2021104201A1 CN 2020130864 W CN2020130864 W CN 2020130864W WO 2021104201 A1 WO2021104201 A1 WO 2021104201A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
carbon
doped
electrode material
battery
Prior art date
Application number
PCT/CN2020/130864
Other languages
English (en)
French (fr)
Inventor
李政杰
葛传长
周伟
夏圣安
王平华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20892425.8A priority Critical patent/EP4057392A4/en
Publication of WO2021104201A1 publication Critical patent/WO2021104201A1/zh
Priority to US17/752,005 priority patent/US20220285685A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the embodiments of the present invention relate to the technical field of lithium-ion batteries, in particular to negative electrode materials and preparation methods thereof, batteries and terminals.
  • an embodiment of the present invention provides a negative electrode material, which includes a doped carbon material, and part of the doped elements in the doped carbon material forms a C-Ma-Mb chemical bond with a carbon-based matrix, which effectively improves the negative electrode material. To a certain extent, it solves the problem of poor fast charging performance of existing negative electrode materials.
  • the first aspect of the embodiments of the present invention provides a negative electrode material, including a doped carbon material, the doped carbon material includes a carbon-based matrix and a doping element doped in the carbon-based matrix, and the doped carbon material
  • the hetero elements include at least two of B, N, O, P, S, and F, and at least part of the doping elements form a C-Ma-Mb chemical bond with the carbon-based matrix, where Ma and Mb represent two Different said doping elements.
  • the carbon-based matrix includes artificial graphite, natural graphite, hard carbon, soft carbon, mesophase carbon microspheres, carbon nanotubes, graphene, carbon fiber, activated carbon, porous carbon, acetylene black, Ketjen One or more of black.
  • the mass content of the doping element is less than or equal to 5%. Specifically, the mass content of the doping element is 0.1% to 5%.
  • the median particle size of the doped carbon material is 1 nm-30 ⁇ m.
  • the negative electrode material is composed of primary particles or secondary particles of the doped carbon material.
  • the median diameter of the primary particles of doped carbon material may be 1 ⁇ m-10 ⁇ m, and the median diameter of the secondary particles of doped carbon material may be 3 ⁇ m-30 ⁇ m.
  • the negative electrode material further includes a protective layer provided on the surface of the primary particles or secondary particles doped with carbon material, and the protective layer includes a carbon layer and/or a conductive polymer layer.
  • the negative electrode material further includes other negative electrode active components, and the doped carbon material is compounded with the other negative electrode active components to form composite particles.
  • the other negative electrode active components include one or more of carbon-based materials, silicon-based materials, tin-based materials, germanium-based materials, metal compounds, and metal alloys.
  • the doped carbon material and the other negative electrode active components are uniformly distributed.
  • the negative electrode material further includes a protective layer provided on the surface of the composite particles, and the protective layer includes a carbon layer and/or a conductive polymer layer.
  • the composite particle includes an inner core composed of the other negative electrode active components, and a coating layer disposed on the surface of the core, and the coating layer includes the doped carbon material .
  • the thickness of the coating layer is 1 nm-100 nm.
  • the mass ratio of the coating layer to the inner core is 0.1-5:100.
  • the negative electrode material provided by the first aspect of the embodiments of the present invention includes a doped carbon material, and at least part of the doping elements in the doped carbon material form a C-Ma-Mb chemical bond with a carbon-based matrix, and C-Ma-Mb
  • the formation of chemical bonding increases the spacing between the carbon layers, thereby broadening the transmission channel of active ions, reducing the resistance of ion diffusion and transmission between layers, and improving the fast charging performance of the material; on the other hand, Ma-Mb passes through and C Atoms form bonds, reducing vacancy defects in the carbon lattice, increasing the degree of graphitization of the material, thereby improving the conductivity of the material and the first Coulomb efficiency; in addition, the introduction of doping elements Ma and Mb also increases the activity Ion binding and storage sites increase the specific capacity of the negative electrode material.
  • an embodiment of the present invention also provides a method for preparing a negative electrode material, including:
  • the obtained modified carbon source precursor is subjected to a low-temperature pre-carbonization treatment at 500°C to 800°C under a protective atmosphere, and then a high-temperature carbonization treatment at 900°C to 1150°C. After cooling, the doped carbon material is obtained.
  • the material includes a carbon-based matrix and a doping element doped in the carbon-based matrix.
  • the doping element includes at least two of B, N, O, P, S, and F, and at least part of the doping element It forms a C-Ma-Mb chemical bond with the carbon-based matrix, where Ma and Mb represent two different doping elements.
  • the above-mentioned preparation method further includes mixing, granulating, sintering, and crushing the doped carbon material and other negative electrode active components to obtain the doped carbon material and the other negative electrode active components.
  • Composite particles formed by composite, in the composite particles, the doped carbon material and the other negative electrode active components are evenly distributed.
  • the above preparation method further includes mixing the doped carbon material and other negative electrode active components, sintering under an inert atmosphere, and crushing to obtain the doped carbon material and the other negative electrode active components.
  • the doping element source contains at least two elements of B, N, O, P, S, and F.
  • the doping element source is selected from phosphoric acid, lithium phosphate, nitric acid, citric acid, performic acid, phosphorus pentoxide, ethylene diamine, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, urea, ammonia, Hydrogen peroxide, melamine, boric acid, boron oxide, boron nitride, sulfonated polystyrene, thioacetamide, ammonium persulfate, thiourea, sodium sulfate, lithium fluoride, pyrrole, pyridine, thiophene, imidazole, silicon tetrafluoride , Aluminum fluoride, calcium fluoride, phosphazene, pentafluorocyclotriphosphazene, ethoxy (pentafluoro) cyclotriphosphazene, hexachlorocyclotriphosphazene, cetyltri
  • the method for mixing the carbon source precursor and the doping element source includes a physical ball milling method, a low temperature melting method, a mechanical fusion method, a high temperature sintering method, an epitaxial growth method, a vapor deposition method, and magnetron sputtering.
  • a physical ball milling method a low temperature melting method, a mechanical fusion method, a high temperature sintering method, an epitaxial growth method, a vapor deposition method, and magnetron sputtering.
  • sol-gel method microwave reaction method, hydrothermal method, and solvothermal method.
  • the specific operation of mixing the carbon source precursor and the doping element source and reacting at 100°C-180°C is as follows:
  • the carbon source precursor and the doping element source are dispersed in water and reacted at 100°C-180°C for 4-18 hours.
  • the preparation method provided in the second aspect of the embodiment of the present invention has a simple process, easy control, and is suitable for industrial production.
  • a battery includes a positive pole piece, a negative pole piece, a separator, and an electrolyte, wherein the negative pole piece includes a negative active material, and the negative active material includes the first aspect of the present invention.
  • the negative electrode material includes a positive pole piece, a negative pole piece, a separator, and an electrolyte, wherein the negative pole piece includes a negative active material, and the negative active material includes the first aspect of the present invention.
  • the battery includes a lithium ion battery, a sodium ion battery, a potassium ion battery, a magnesium ion battery, a zinc ion battery, a lithium sulfur battery, an aluminum ion battery, or a lithium air battery.
  • the battery provided by the embodiment of the present invention has better fast charging performance, thereby solving the battery life problem of the existing battery to a certain extent.
  • An embodiment of the present invention also provides a terminal, including a terminal housing, a circuit board and a battery located inside the terminal housing, the battery is electrically connected to the circuit board for supplying power to the circuit board, and
  • the battery includes the battery described in the third aspect of the embodiment of the present invention.
  • FIG. 1 is a schematic diagram of the structure of a lithium ion battery provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a doped carbon material 10 provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of forming a C-Ma-Mb chemical bond between a doping element and a carbon-based matrix provided by an embodiment of the present invention
  • 4A and 4B are working schematic diagrams when charging the existing undoped carbon material and the doped carbon material according to the embodiment of the present invention, respectively;
  • FIG. 5 is a schematic structural diagram of a terminal provided by an embodiment of the present invention.
  • Example 6 is a cross-sectional SEM (Scanning Electron Microscope, Scanning Electron Microscope) view of the P and O double-doped graphite anode material in Example 1 of the present invention
  • FIG. 7 is a P element distribution diagram of the P and O double-doped graphite anode material EDS (Energy Dispersive X-Ray Spectroscopy, X-ray energy dispersion spectroscopy) in Example 1 of the present invention
  • FIG. 8 is an XPS (X-ray Photoelectron Spectroscopy, X-ray photoelectron spectroscopy) diagram of the P and O double-doped graphite anode material in Example 1 of the present invention.
  • the embodiment of the present invention provides a negative electrode material, which can be used to make a negative electrode of a secondary battery.
  • the secondary battery can be a lithium ion battery, a sodium ion battery, a potassium ion battery, a magnesium ion battery, a zinc ion battery, and a lithium ion battery. Sulfur batteries, aluminum ion batteries, lithium air batteries, etc.
  • the core components of a lithium ion battery include a positive electrode material 101, a negative electrode material 102, an electrolyte 103, a separator 104, and corresponding communication accessories and circuits.
  • the positive electrode material 101 and the negative electrode material 102 can deintercalate lithium ions to achieve energy storage and release.
  • the electrolyte is a carrier for lithium ions to be transported between the positive and negative electrodes. The poles are separated to prevent short circuits.
  • the charging and discharging mechanism of the secondary battery is: during charging, the active ions (Li + , Na + , K + , Mg 2+ , Zn 2+ , Al 3+, etc.) are removed from the crystal lattice of the positive electrode material and enter after passing through the electrolyte. Into the crystal lattice of the negative electrode material; during discharge, the active ions are extracted from the negative electrode material and enter the crystal lattice of the positive electrode material after passing through the electrolyte.
  • the active ions Li + , Na + , K + , Mg 2+ , Zn 2+ , Al 3+, etc.
  • the graphite electrode material or silicon-carbon electrode material has limited ability to receive active ions due to the small interlayer spacing, which may eventually lead to the precipitation of active ions to form crystals, resulting in degradation of battery capacity and cycle performance, or even possible in severe cases.
  • the active ions are lithium ions or sodium ions
  • the current electrode materials are far from being able to meet the application scenarios of high-current charging. Therefore, it is necessary to develop electrode materials with super fast charging capabilities.
  • the negative electrode material provided by the embodiment of the present invention includes a doped carbon material 10.
  • the doped carbon material 10 includes a carbon-based substrate 1 and a doping element 2 doped in the carbon-based substrate 1.
  • the doping element 2 includes at least two of B, N, O, P, S, and F, and at least part of the doping element 2 forms a C-Ma-Mb chemical bond with the carbon-based matrix 1, where Ma and Mb represent two different doping elements. Miscellaneous elements 2.
  • C-Ma-Mb chemical bonding means that Ma and C form a chemical bond, and Ma and Mb form a chemical bond.
  • the specific bonding method and configuration are not limited, and it can be a single bond or Double bond bonding, triple bond bonding, that is, C-Ma-Mb only means that C, Ma, and Mb have a bonding relationship.
  • Figure 3 it is a schematic diagram of the formation of a C-Ma-Mb chemical bond between the doping element and the carbon-based matrix.
  • Ma and Mb can be any two different elements of B, N, O, P, S, and F that can form chemical bonds.
  • C-Ma-Mb may specifically be C-P-O, C-O-P, C-N-F, C-P-N, C-S-O, C-S-P, C-N-O, C-N-B, C-N-P, C-N-S, C-B-O, C-N-O, etc.
  • the doped carbon material 10 of the embodiment of the present invention may include one or more C-Ma-Mb chemical bonds.
  • it may include both C-P-O and C-P-N chemical bonds.
  • it may also include both C-P-O and C-N-B chemical bonds.
  • it may also include both C-P-O and C-P-S chemical bonds, or both C-P-O and C-S-O chemical bonds.
  • two other C-Ma-Mb chemical bonds may also be included, or three, four or more C-Ma-Mb chemical bonds may be included.
  • the doping elements 2 doped in the carbon-based matrix 1 do not necessarily form a C-Ma-Mb chemical bond, and it is also possible that some of the doping elements and the carbon-based matrix form a chemical bond. C-Ma, C-Mb chemical bonding.
  • the ratio of the mass of the doping element forming the C-Ma-Mb chemical bond to the total mass of the doping element is greater than 50%.
  • the ratio of the mass of the doping element forming the C-Ma-Mb chemical bond to the total mass of the doping element may be 60%, 70%, 80%, 90%, or more than 90%.
  • the carbon-based substrate 1 may be artificial graphite, natural graphite, hard carbon, soft carbon, mesophase carbon microspheres, carbon nanotubes, graphene, carbon fiber, activated carbon, porous carbon, acetylene black, Ketjen One or more of black.
  • C-Ma-Mb repairs defects on the carbon lattice, improves the degree of graphitization, and optimizes
  • the presence of doping elements with electronegativity greater than 2.55 in C-Ma-Mb can improve the wettability of solvating active ions to the carbon lattice and promote the rapid transport of ions in the interface. Therefore, the existence of C-Ma-Mb optimizes the surface chemical properties of the carbon lattice and the microcrystalline structure of carbon, resulting in a significant improvement in electrochemical performance.
  • the C-Ma-Mb chemical bond only means that Ma and C form a chemical bond, and Ma and Mb form a chemical bond, but the specific configuration is not limited.
  • the carbon-based matrix is doped with phosphorus and oxygen, there may be unstable configurations of C 3 -P and COP in the carbon lattice, but the content is relatively small.
  • the mass content of the doping element is less than or equal to 5%. In an embodiment of the present invention, the mass content of the doping element is 0.1% to 5%. In another embodiment of the present invention, the mass content of the doping element is 2%-4%.
  • the doping amount is greater than 5%, it has a greater impact on the first coulombic efficiency of the negative electrode material. A proper amount of element doping can improve the fast charging performance of the carbon-based matrix without having a big impact on the first coulombic efficiency.
  • the median particle size of the doped carbon material is 1 nm-30 ⁇ m.
  • the doped carbon material with suitable particle size can be selected according to the specific application mode.
  • the doped carbon material may be primary particles or secondary particles. Wherein, the median diameter of the primary particles of doped carbon material may be 1 ⁇ m-10 ⁇ m, and the median diameter of the secondary particles of doped carbon material may be 3 ⁇ m-30 ⁇ m.
  • the negative electrode material provided by the embodiment of the present invention has no limitation on the existence form of the doped carbon material contained.
  • the doped carbon material may be directly used as the negative electrode material to prepare the negative electrode.
  • the doped carbon material and other negative electrode active components can also be combined to form composite particles and then the negative electrode is prepared.
  • the specific method of compounding with other negative electrode active components to form composite particles may be to uniformly mix the doped carbon material with other negative electrode active components and then granulate to obtain composite particles, or use other negative electrode active components as the core.
  • the doped carbon material is used as a shell to cover the surface of the inner core.
  • the doped carbon material of the embodiment of the present invention can also be simply physically mixed with other negative electrode active materials to prepare the negative electrode.
  • the negative electrode material is composed of primary particles or secondary particles doped with carbon material, that is, the doped carbon material is directly used as the negative electrode material to prepare the negative electrode.
  • the negative electrode material may further include a protective layer disposed on the surface of the primary particle or the secondary particle doped with carbon material.
  • the protective layer may be a carbon layer and/or a conductive polymer layer.
  • the material of the carbon layer may specifically be soft carbon, hard carbon, amorphous carbon, carbon nanotubes, graphene, and a composite of one or more of them formed by cracking a carbon source.
  • the conductive polymer of the conductive polymer layer can be specifically, but not limited to, polyacetylene, polypyrrole, polythiophene, poly(3,4-ethylenedioxythiophene): poly(styrenesulfonic acid), polyaniline, polyphenylene, One or more of polyphenylene ethylene.
  • the thickness of the protective layer may be 5nm-50nm, and further may be 10nm-20nm. The protective layer can prevent excessive surface side reactions from direct contact between the electrolyte and the doped carbon material, reduce irreversible capacity and the loss of active ions in the battery, and can also increase the electronic conductivity of the material and improve the fast charging performance of the material.
  • the negative electrode material further includes other negative electrode active components.
  • the doped carbon material is compounded with other negative electrode active components to form composite particles.
  • the doped carbon material and other negative electrode active components are evenly distributed.
  • the mass ratio of other negative electrode active materials and doped carbon materials can be selected according to actual conditions.
  • the median diameter of the doped carbon material in the composite particles formed with other negative electrode active components, may be 1 nm-30 ⁇ m. In a specific embodiment, the median diameter of the doped carbon material in the composite particles may be 50 nm-10 ⁇ m. Further, the median particle size of the doped carbon material may be 100 nm-8 ⁇ m.
  • the doped carbon material and other negative electrode active components can be compounded together by using pitch as a connecting medium, and the pitch is sintered to form carbon. That is, the composite particles also include a carbon material that connects the doped carbon material and other negative electrode active components together.
  • the negative electrode material may further include a protective layer disposed on the surface of the composite particles, and the protective layer may be a carbon layer and/or a conductive polymer layer.
  • the protection layer is as described above, and will not be repeated here.
  • the negative electrode material further includes other negative electrode active components
  • the doped carbon material is compounded with other negative electrode active components to form composite particles.
  • the composite particles include a core composed of other negative electrode active components and arranged in the core.
  • the surface coating layer, the coating layer includes doped carbon material.
  • the thickness of the coating layer may be 1 nm-100 nm, and further, the thickness of the coating layer may be 10 nm-100 nm, 20 nm-80 nm, 50 nm-70 nm.
  • the mass ratio of the coating layer to the core can be 0.1-5:100.
  • the mass ratio of the coating layer to the core may be 1-4:100, and in other embodiments, the mass ratio of the coating layer to the core may be 2-3:100.
  • a proper amount of coating can improve the fast charging performance of the material and alleviate the side reaction of the material and the electrolyte without affecting the material capacity and the first coulombic efficiency.
  • the coating layer may only contain doped carbon material, or may contain both doped carbon material and conductive polymer.
  • the conductive polymer can be specifically, but not limited to, polyacetylene, polypyrrole, polythiophene, poly(3,4-ethylenedioxythiophene): poly(styrene sulfonic acid), polyaniline, polyphenylene, polyphenylene vinylene One or more of.
  • the doped carbon material as the material of the coating layer may have a median particle size of 1 nm-50 nm. Choosing smaller particle size doped carbon materials to prepare the coating layer can better control the thickness and surface morphology of the coating layer, and reduce the specific surface area of the material.
  • the other negative electrode active components mentioned in the embodiment of the present invention may be one or more of carbon-based materials, silicon-based materials, tin-based materials, germanium-based materials, metal compounds, and metal alloys.
  • the carbon-based material may be artificial graphite (AG), natural graphite (NG), hard carbon (HC), soft carbon, mesocarbon microspheres (CMCB), carbon nanotubes (CNT), graphene, carbon fiber, One or more of activated carbon, porous carbon, acetylene black (AB), and Ketjen black
  • silicon-based materials can be silicon (including nano silicon, micro silicon, etc.), silicon oxide, silicon oxide (SiOx, 0.3 ⁇ x ⁇ 1.7), one or more of silicon-carbon composite (Si/C), porous silicon, and thin-film silicon
  • tin-based materials can be metallic tin (Sn), tin-carbon (Sn/C), porous tin, One or more of thin film tin
  • the germanium-based material can be one
  • the negative electrode material of the embodiment of the present invention contains a doped carbon material, and the doping element in the doped carbon material forms a C-Ma-Mb chemical bond with the carbon-based matrix, so it has the following beneficial effects: (1) C- In Ma-Mb, Ma forms a bond with C atoms, which reduces the vacancy defects in the carbon lattice and improves the graphitization degree of the material, thereby improving the conductivity of the material and the first Coulomb efficiency; (2) C-Ma- Mb exists in the carbon lattice or edge, which increases the carbon layer spacing, widens the transmission channel of active ions, reduces the ion diffusion and transmission resistance between layers, and improves the fast charging performance of the material; (3) C-Ma-Mb The presence of doping elements with electronegativity greater than 2.55 can improve the surface wettability of the material, make ion transmission smoother, greatly reduce the interface resistance and diffusion resistance, increase the stable operating voltage window of the electrode, and increase the speed of the material. Charge performance; (4)
  • an embodiment of the present invention also provides a method for preparing a negative electrode material, including:
  • Step (1) mixing the carbon source precursor and the doping element source, and reacting at 100° C.-180° C. to obtain the modified carbon source precursor;
  • Step (2) The obtained modified carbon source precursor is subjected to a low-temperature pre-carbonization treatment of 500°C to 800°C in a protective atmosphere, and then a high-temperature carbonization treatment of 900°C to 1150°C. After cooling, the doped carbon material is obtained.
  • the doped carbon material includes a carbon-based matrix and a doping element doped in the carbon-based matrix.
  • the doping element includes at least two of B, N, O, P, S, and F, and at least part of the doping element is combined with the carbon-based matrix.
  • the matrix forms a C-Ma-Mb chemical bond, where Ma and Mb represent two different doping elements.
  • the carbon source precursor in step (1), may be a material with a carbon element mass content of 80%-99%, a hydrogen element mass content of 1%-15%, and an oxygen element mass content of 0-5%.
  • the softening point of the carbon source precursor is less than 200°C;
  • the median particle size D50 of the carbon source precursor can be 2-15 ⁇ m, and the maximum particle size Dmax is less than 70 ⁇ m.
  • the carbon source precursor can be selected from at least one of graphite and coal pitch, petroleum pitch, and modified coumarone resin with a softening point greater than 200°C.
  • the doping element source contains at least two elements of B, N, O, P, S, and F.
  • the doping element source can be a substance that contains at least two elements of B, N, O, P, S, and F at the same time; it can also be a combination of two or more substances that contain B and N. At least two elements among, O, P, S, and F.
  • the doping element source may be selected from phosphoric acid, lithium phosphate, nitric acid, citric acid, performic acid, phosphorus pentoxide, ethylenediamine, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, urea, ammonia, hydrogen peroxide, melamine, Boric acid, boron oxide, boron nitride, sulfonated polystyrene, thioacetamide, ammonium persulfate, thiourea, sodium sulfate, lithium fluoride, pyrrole, pyridine, thiophene, imidazole, silicon tetrafluoride, aluminum fluoride , Calcium fluoride, phosphazene, pentafluorocyclotriphosphazene, ethoxy (pentafluoro) cyclotriphosphazene, hexachlorocyclotriphosphazene, cetyltrimethylammonium
  • the method of mixing the carbon source precursor and the doping element source includes physical ball milling, low temperature melting, mechanical fusion, high temperature sintering, epitaxial growth, vapor deposition, magnetron sputtering, One or more of sol-gel method, microwave reaction method, hydrothermal method, and solvothermal method.
  • deionized water may be used as a solvent, and the carbon source precursor and the doping element source may be mixed with high speed stirring, and the mass ratio of the carbon source precursor and deionized water is 30-60:100.
  • step (1) the carbon source precursor is mixed with the doping element source, and the specific operation for the reaction at 100°C-180°C is as follows:
  • the carbon source precursor and the doping element source are dispersed in water, and dehydration reaction is carried out at 100° C.-180° C. for 4-18 hours.
  • the doping element is deposited on the surface of the carbon source precursor and diffuses into the carbon source as the reaction progresses, forming bonds with carbon atoms.
  • the low-temperature pre-carbonization temperature may specifically be 500° C., 600° C., 700° C., and 800° C., and the low-temperature pre-carbonization time may be 1-3 hours.
  • the product obtained after low-temperature pre-carbonization The volatile content can be controlled within 3-8%.
  • the temperature of high-temperature carbonization may be 900°C to 1150°C, specifically, the temperature of high-temperature carbonization may be 900°C, 950°C, 1000°C, 1100°C, or 1150°C.
  • the time for high-temperature carbonization can be 2-10 hours, and the high-temperature carbonization treatment is carried out under a vacuum of 1-1000 Pa.
  • a vacuum carbonization furnace can be used.
  • low-temperature pre-carbonization can remove most of the volatile matter.
  • the high-temperature carbonization treatment under vacuum is conducive to the evolution of the unstable configuration containing doped elements in the carbon lattice to a stable configuration.
  • the optimization of the phosphorus configuration makes the surface chemical properties of the carbon-based substrate more stable, and also effectively improves the electrochemical performance of the material.
  • step (2) after being subjected to high-temperature carbonization treatment and cooling down, sieving can be carried out as needed, for example, a standard sieve of 80 mesh or more can be passed. Among them, it can be cooled to 0°C-80°C.
  • the median particle diameter D50 of the doped carbon material is 1 nm-30 ⁇ m, the maximum particle diameter Dmax is less than 90 ⁇ m, and the content of the doping element is less than 5% by weight.
  • the doped carbon material with a larger particle size prepared in step (2) can be pulverized to a target particle size by pulverization.
  • the specific method of pulverization can be, but not limited to, jet pulverization and classification, mechanical pulverization and classification.
  • the above preparation method may further include mixing the doped carbon material with other negative electrode active components, sintering under an inert atmosphere, and crushing to obtain a composite formed by the doped carbon material and other negative electrode active components.
  • the composite particles include a core composed of other negative electrode active components and a coating layer covering the surface of the core, and the coating layer includes a doped carbon material.
  • a doped carbon material with a median particle diameter of 1 nm-50 nm can be selected for mixing with other negative electrode active components.
  • the method for mixing the doped carbon material with other negative electrode active components may be physical ball milling, low-temperature melting, mechanical fusion, high-temperature sintering, epitaxial growth, vapor deposition, and magnetron sputtering. Radiation method, sol-gel method, microwave reaction method, hydrothermal method, solvothermal method.
  • the step of adopting the mechanical fusion method is: placing the doped carbon material and other negative electrode active components as the core in a fusion machine for high-speed stirring and mixing, and the stirring rate is 10-2000 revolutions per minute, The stirring time is 0.1-12 hours.
  • the above-mentioned preparation method may further include mixing, granulating, sintering, and crushing the doped carbon material with other negative electrode active components to obtain a composite formed by the doped carbon material and other negative electrode active components.
  • Composite particles, in the composite particles, doped carbon materials and other negative electrode active components are evenly distributed.
  • a doped carbon material with a median particle diameter of 50 nm-10 ⁇ m can be selected for mixing with other negative electrode active components.
  • a small amount of pitch can be added as a connecting medium. During the sintering process, the pitch is carbonized to become carbon, and the function of the pitch is to bond and granulate.
  • the method for mixing the doped carbon material with other negative electrode active components may be physical ball milling, low-temperature melting, mechanical fusion, high-temperature sintering, epitaxial growth, vapor deposition, and magnetron sputtering. Radiation method, sol-gel method, microwave reaction method, hydrothermal method, solvothermal method.
  • the specific steps of adopting the low-temperature melting method are: placing the doped carbon material and other negative electrode active components in a high-speed mixer for stirring and mixing, where the stirring rate is 10-1000 revolutions per minute, The stirring time is 0.1-12 hours.
  • a high-speed mixer can be used for the granulation treatment, and the granulation can be carried out by adding asphalt and programmed temperature rise.
  • the heating rate can be 1°C/min-10/°Cmin, the temperature can be 150°C-500°C, the softening point of asphalt is 50°C-200°C; the median particle diameter D50 of asphalt is 2-15 ⁇ m, and the maximum particle diameter Dmax Less than 70 ⁇ m.
  • the sintering process involved in the above preparation method may use a carbonization furnace, the temperature may be 300°C-800°C, and the sintering time may be 2-10 hours.
  • the crushing treatment involved in the above-mentioned preparation method may adopt jet pulverization and classification and/or mechanical pulverization and classification.
  • the protective atmosphere and inert atmosphere involved in the above preparation method may specifically be at least one of nitrogen, helium, and argon.
  • An embodiment of the present invention also provides a battery, including a positive pole piece, a negative pole piece, a separator, and an electrolyte, wherein the negative pole piece includes a negative active material, and the negative active material includes the negative material provided in the above embodiments of the present invention.
  • the battery may be a lithium ion battery, a sodium ion battery, a potassium ion battery, a magnesium ion battery, a zinc ion battery, a lithium sulfur battery, an aluminum ion battery, or a lithium air battery.
  • the above-mentioned batteries can be used in terminal consumer products, such as mobile phones, tablet computers, portable computers, notebook computers, and other wearable or mobile electronic devices.
  • the embodiment of the present invention also provides a terminal 200.
  • the terminal 200 can be a mobile phone, a tablet computer, a notebook computer, a portable computer, a smart wearable product, and other electronic products.
  • the terminal 200 includes the terminal 200 assembled on the outside of the terminal.
  • the 201 may include a front case assembled on the front side of the terminal and a rear cover assembled on the rear side, and the battery may be fixed inside the rear cover.
  • a method for preparing a negative electrode material includes:
  • the graphite AG powder with a median particle size D50 of 5 ⁇ m, hydrogen peroxide, phosphoric acid and ammonium persulfate were mixed and dispersed in water in a mass ratio of 10:1:2:1 to prepare a slurry with a solid content of 45%, and then Dehydration reaction at 150°C for 8h; afterwards, it is heated to 550°C under nitrogen protection at a rate of 3°C/min for low-temperature pre-carbonization treatment for 2h, and then transferred to a vacuum furnace after it is cooled to room temperature, and the vacuum is adjusted to within 10Pa. Then heat up to 1050°C at a rate of 2°C/min for high-temperature carbonization treatment for 4 hours. After cooling down to room temperature, pass through a 300-mesh standard sieve to obtain P and O doped graphite anode materials. In the anode material, P, O elements and graphite The matrix forms a CPO chemical bond.
  • FIG. 6 is a cross-sectional SEM image of the P and O double-doped graphite anode material prepared in Example 1 of the present invention. The figure shows that the cross-sectional structure of the material is flat and there are no holes inside;
  • FIG. 7 is the preparation obtained in Example 1 of the present invention.
  • a method for preparing a negative electrode material includes:
  • the petroleum asphalt with a softening point of 280°C is made into asphalt powder with a median particle size D50 of 5 ⁇ m using a jet mill classifier; the resulting asphalt powder is combined with ammonium persulfate, phosphoric acid and phosphazene according to 10:1:2:1
  • the mass ratio is mixed and dispersed in water to form a slurry with a solid content of 50%, and dehydrated at 180°C for 4h; then it is heated to 600°C at a rate of 3°C/min under nitrogen protection for low-temperature pre-carbonization treatment After 1h, cool to room temperature and then transfer to vacuum furnace, adjust the vacuum to within 10Pa, then heat up to 1000°C at a rate of 2°C/min for high-temperature carbonization treatment for 6h, after cooling down to room temperature, pass through a 300-mesh standard sieve.
  • P, O, and N-doped hard carbon anode materials In the anode material, P, O, and N elements form a
  • a method for preparing a negative electrode material includes:
  • the coal pitch with a softening point of 250°C is made into a powder with a median particle size D50 of 5 ⁇ m using a jet mill classifier; the resulting pitch powder is combined with hydrogen peroxide, performic acid and phosphoric acid according to 10:1:1:2
  • the mass ratio is mixed and dispersed in water to prepare a slurry with a solid content of 45%, and dehydration reaction is carried out at 180°C for 4h; then it is heated to 600°C at a rate of 3°C/min under nitrogen protection for low-temperature pre-carbonization treatment After 1h, cool to room temperature and then transfer to vacuum furnace, adjust the vacuum to within 10Pa, then heat up to 1000°C at a rate of 2°C/min for high-temperature carbonization treatment for 6h, after cooling down to room temperature, pass through a 300-mesh standard sieve.
  • P and O double-doped hard carbon materials in which the P and O elements form a CPO chemical bond with the carbon matrix;
  • step (2) Take the P and O double-doped hard carbon material obtained in step (1) and pulverize it to a D50 of 1 ⁇ m by jet pulverization, and then combine it with a silicon-carbon/graphite composite material SiC/AG (g capacity of 500mAh/ g) Place in a fusion machine for high-speed stirring and mixing, where the stirring rate is 1000 revolutions per minute, and the stirring time is 1 hour;
  • step (3) The product obtained in step (2) is placed in a carbonization furnace for sintering treatment, the sintering temperature is 800° C., the sintering time is 3 hours, and the sintering atmosphere is nitrogen;
  • the sintered product in step (3) is mechanically pulverized to a D50 of 12 ⁇ m to obtain a silicon carbon/graphite negative electrode material with a doped carbon material coating layer.
  • the negative electrode material includes a silicon carbon/graphite core and a coating Hard carbon material doped with P and O on the surface of the core.
  • a method for preparing a negative electrode material includes:
  • the coal pitch with a softening point of 280°C is made into a powder with a median particle size D50 of 5 ⁇ m using a jet mill classifier; the resulting pitch powder is combined with ammonium persulfate and ethoxy (pentafluoro) cyclotriphosphate Nitrile and cetyltrimethylammonium bromide were mixed and dispersed in water according to a mass ratio of 10:1:2:1 to prepare a slurry with a solid content of 55%, and dehydrated at 150°C for 8h; Under the protection of nitrogen, the temperature is raised to 550°C at a rate of 3°C/min for low-temperature pre-carbonization treatment for 2h, and then transferred to a vacuum furnace after it is cooled to room temperature.
  • the vacuum is adjusted to within 10Pa, and then heated to at a rate of 2°C/min. Carry out high-temperature carbonization treatment at 1050°C for 4 hours. After it is lowered to room temperature, it is passed through a 300-mesh standard sieve to obtain a P and O double-doped hard carbon material. Among them, P and O elements form a CPO chemical bond with the carbon matrix;
  • step (2) The P and O double-doped hard carbon material obtained in step (1) is pulverized to a D50 of 0.5 ⁇ m by a jet pulverization method, and then combined with silicon oxide/graphite composite material SiO/AG (gram capacity 500mAh/ g) Placed in a fusion machine for high-speed stirring and mixing, where the stirring rate is 2000 revolutions per minute, and the stirring time is 0.5 hours;
  • step (3) The product obtained in step (2) is placed in a carbonization furnace for sintering treatment, the sintering temperature is 600°C, the sintering time is 3 hours, and the sintering atmosphere is nitrogen;
  • the sintered product obtained in step (3) is mechanically pulverized to a D50 of 15 ⁇ m to obtain a silicon oxide/graphite anode material with a doped carbon material coating layer.
  • the anode material includes a silicon oxide/graphite core and a coating Hard carbon material doped with P and O on the surface of the core.
  • a method for preparing a negative electrode material includes:
  • the graphite AG powder with a median particle size D50 of 8 ⁇ m, ammonium persulfate, phosphoric acid, and melamine are mixed and dispersed in water at a mass ratio of 10:1:2:1 to prepare a slurry with a solid content of 55% , And dehydrated reaction at 180 °C for 4h; after that, it was heated to 650 °C under nitrogen protection at a rate of 3 °C/min for low temperature pre-carbonization for 1h, after cooling to room temperature, it was transferred to a vacuum furnace, and the vacuum was adjusted to Within 10Pa, heat up at 2°C/min to 1050°C for high-temperature carbonization for 4h. After cooling down to room temperature, go through a 300-mesh standard sieve to obtain P and O double-doped graphite materials. Among them, P and O elements and graphite matrix Form CPO chemical bond;
  • step (2) Place the graphite material obtained in step (1) and nano silicon (with a particle size of 100 nm) in a high-speed mixer for mixing, where the stirring rate is 1000 revolutions per minute, and the stirring time is 1 hour;
  • step (3) Add asphalt with a softening point of 200°C and a median particle size D50 of 3 ⁇ m to the mixture obtained in step (2), program the temperature to increase the temperature, and perform granulation at a rate of 3°C/min, and the temperature is increased to 500°C;
  • step (3) The product obtained in step (3) is placed in a carbonization furnace for sintering treatment, the sintering temperature is 800°C, the sintering time is 3 hours, and the sintering atmosphere is nitrogen;
  • step (4) The sintered product in step (4) is mechanically pulverized to a D50 of 12 ⁇ m to obtain a graphite composite negative electrode material doped with nanometer silicon/P and O.
  • the graphite AG powder was dispersed in water to prepare a slurry with a solid content of 45%, and the graphite negative electrode material of Comparative Example 1 was prepared according to the same method as in Example 1.
  • the petroleum asphalt with a softening point of 280°C was made into a powder with a median particle size of D50 of 5 ⁇ m using a jet mill classifier, and then dispersed in water to make a slurry with a solid content of 50%, which was prepared in the same way as in Example 2.
  • the hard carbon negative electrode material of Comparative Example 2 was obtained.
  • the coal tar with a softening point of 250°C was made into a powder with a median particle size D50 of 5 ⁇ m using a jet mill classifier, and then dispersed in water to make a slurry with a solid content of 45%, which was prepared in the same manner as in Example 3.
  • a silicon carbon/graphite negative electrode material with a coating layer of Comparative Example 3 was obtained.
  • the coal pitch with a softening point of 280°C was made into a powder with a median particle size of D50 of 5 ⁇ m using a jet mill classifier, and then dispersed in water to make a slurry with a solid content of 55%, which was prepared in the same manner as in Example 4.
  • the silicon oxide/graphite negative electrode material with the coating layer of Comparative Example 4 was obtained.
  • Graphite AG powder with a median particle size D50 of 8 ⁇ m was dispersed in water to prepare a slurry with a solid content of 55%.
  • the nano-silicon/graphite composite negative electrode material of Comparative Example 5 was prepared in the same manner as in Example 5.
  • the test method of the half-cell is: prepare a polyvinylidene fluoride solution with a mass fraction of 6-7% with N-methylpyrrolidone as a solvent, and mix the negative electrode material, polyvinylidene fluoride, and conductive carbon black in a mass ratio of 80:10:10 Mix it evenly, apply it on the copper foil, put the coated pole piece into a vacuum drying oven with a temperature of 90°C for 4 hours, and then roll it to a surface density of 4mg/cm 2 for later use.
  • the battery containing the anode material doped with carbon material in the embodiment of the present invention has a higher first-time coulombic efficiency and good fast charging performance.
  • the anode material implemented in the present invention contains a doped carbon material
  • the doping element in the doped carbon material contains at least two doping elements, and at least two doping elements form a C-Ma-Mb chemical bond with the carbon-based matrix.
  • the formation of C-Ma-Mb chemical bonding has the following beneficial effects: (1) Ma and C atoms in C-Ma-Mb are bonded, reducing vacancy defects in the carbon lattice, and improving the degree of graphitization of the material.
  • C-Ma-Mb exists in the carbon lattice or edge, and the larger radius of dopant atoms increases the distance between carbon layers and broadens the transmission channel of active ions.
  • the negative electrode materials in Comparative Examples 1-5 are undoped carbon materials. Due to the existence of a certain amount of defect sites in the carbon lattice, the interlayer spacing of carbon crystallites is small, and the electrolyte wettability is poor, so it is not only in the first charge The process consumes more active ions, and exhibits lower coulombic efficiency and poor rate performance, which is not conducive to fast charging.

Abstract

本发明实施例提供一种负极材料,包括掺杂碳材料,所述掺杂碳材料包括碳基基体和掺杂在碳基基体中的掺杂元素,所述掺杂元素包括B、N、O、P、S、F中的至少两种,至少部分所述掺杂元素与碳基基体形成C-Ma-Mb化学键合,其中,Ma、Mb代表两种不同的所述掺杂元素。该负极材料由于含有掺杂碳材料,且掺杂碳材料中掺杂元素与碳基基体形成了C-Ma-Mb化学键合,因而具有优异的快充性能。本发明实施例还提供了该负极材料的制备方法,以及包含该负极材料的电池和终端。

Description

负极材料及其制备方法,电池和终端
本申请要求于2019年11月25日提交中国专利局、申请号为201911171298.1、申请名称为“负极材料及其制备方法,电池和终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及锂离子电池技术领域,特别是涉及负极材料及其制备方法,电池和终端。
背景技术
随着互联网的发展和便携式电子设备的普及,人们对移动智能电子设备的依赖越来越强,电池的续航问题也越来越突出,通过提高电池容量来增加续航时间是最常规的思路,而快充技术则是一项更为合理的续航解决方案。对于快充,目前业界主要的方案是通过电路设计来提升电池快充能力,然而依靠电路设计虽然在一定程度上提升了快充能力,例如实现了30分钟充满80%的快速充电,但是要想实现更快充电,甚至实现分钟级快充,充电电流会更大,这样对电池负极材料的快充性能提出了更高的要求。然而目前不管是传统石墨负极材料,还是新型高容量硅基负极材料,由于材料本征结构所限,当充电电流过大时,活性离子(如锂离子)扩散缓慢,极易析出成晶,导致电芯鼓胀和循环衰减,严重时甚至起火***。因此想要实现更快充电,需要在满足能量密度不损失的前提下,开发新型的快充负极材料。
发明内容
鉴于此,本发明实施例提供一种负极材料,其包括掺杂碳材料,该掺杂碳材料中的部分掺杂元素与碳基基体形成了C-Ma-Mb化学键合,有效提高了负极材料的快充性能,以在一定程度上解决了现有负极材料快充性能较差的问题。
具体地,本发明实施例第一方面提供一种负极材料,包括掺杂碳材料,所述掺杂碳材料包括碳基基体和掺杂在所述碳基基体中的掺杂元素,所述掺杂元素包括B、N、O、P、S、F中的至少两种,至少部分所述掺杂元素与所述碳基基体形成C-Ma-Mb化学键合,其中,Ma、Mb代表两种不同的所述掺杂元素。
本发明实施方式中,所述碳基基体包括人造石墨、天然石墨、硬碳、软碳、中间相碳微球、碳纳米管、石墨烯、碳纤维、活性碳、多孔碳、乙炔黑、科琴黑中的一种或多种。
本发明实施方式中,所述掺杂碳材料中,所述掺杂元素的质量含量小于或等于5%。具体地,掺杂元素的质量含量为0.1%-5%。
本发明实施方式中,所述掺杂碳材料的中值粒径为1nm-30μm。
本发明一实施方式中,所述负极材料由所述掺杂碳材料的一次颗粒或二次颗粒构成。其中,所述掺杂碳材料一次颗粒的中值粒径可以是1μm-10μm,所述掺杂碳材料二次颗粒的中值粒径可以是3μm-30μm。
本发明实施方式中,所述负极材料还包括设置在所述掺杂碳材料的一次颗粒或二次颗粒表面的保护层,所述保护层包括碳层和/或导电聚合物层。
本发明另一实施方式中,所述负极材料还包括其他负极活性组分,所述掺杂碳材料与所述其他负极活性组分复合形成复合颗粒。
本发明实施方式中,所述其他负极活性组分包括碳基材料、硅基材料、锡基材料、锗基材料、金属化合物、金属合金中的一种或多种。
本发明一具体实施方式中,所述复合颗粒中,所述掺杂碳材料与所述其他负极活性组分均匀分布。
本发明实施方式中,所述负极材料还包括设置在所述复合颗粒表面的保护层,所述保护层包括碳层和/或导电聚合物层。
本发明另一具体实施方式中,所述复合颗粒包括由所述其他负极活性组分构成的内核,以及设置在所述内核表面的包覆层,所述包覆层包括所述掺杂碳材料。
本发明实施方式中,所述包覆层的厚度为1nm-100nm。
本发明实施方式中,所述包覆层与所述内核的质量比为0.1-5:100。
本发明实施例第一方面提供的负极材料,其包括掺杂碳材料,该掺杂碳材料中至少有部分掺杂元素与碳基基体形成了C-Ma-Mb化学键合,C-Ma-Mb化学键合的形成,一方面使得碳层层间距增加,从而拓宽了活性离子的传输通道,降低了层间离子扩散传输阻力,提升了材料的快充性能;另一方面,Ma-Mb通过和C原子成键,减少了碳晶格中的空位缺陷,提高了材料的类石墨化度,从而提升了材料的导电性和首次库伦效率;此外,掺杂元素Ma和Mb的引入,还增加了活性离子结合和储存位点,提高了负极材料的比容量。
第二方面,本发明实施例还提供了一种负极材料的制备方法,包括:
将碳源前驱体与掺杂元素源混合,于100℃-180℃下进行反应,得到改性碳源前驱体;
将所得改性碳源前驱体于保护气氛下进行500℃-800℃低温预碳化处理,再进行900℃-1150℃高温碳化处理,降温冷却后,即得到掺杂碳材料,所述掺杂碳材料包括碳基基体和掺杂在所述碳基基体中的掺杂元素,所述掺杂元素包括B、N、O、P、S、F中的至少两种,至少部分所述掺杂元素与所述碳基基体形成C-Ma-Mb化学键合,其中,Ma、Mb代表两种不同的所述掺杂元素。
本发明实施方式中,上述制备方法进一步包括将所述掺杂碳材料与其他负极活性组分进行混合、造粒、烧结、破碎,得到由所述掺杂碳材料与所述其他负极活性组分复合形成的复合颗粒,所述复合颗粒中,所述掺杂碳材料与所述其他负极活性组分均匀分布。
本发明实施方式中,上述制备方法进一步包括将所述掺杂碳材料与其他负极活性组分进行混合,惰性气氛下烧结,破碎,得到由所述掺杂碳材料与所述其他负极活性组分复合形成的复合颗粒,所述复合颗粒包括由所述其他负极活性组分构成的内核,以及包覆在所述内核表面的包覆层,所述包覆层包括所述掺杂碳材料。
本发明实施方式中,所述掺杂元素源含有B、N、O、P、S、F中的至少两种元素。
本发明实施方式中,所述掺杂元素源选自磷酸、磷酸锂、硝酸、柠檬酸、过甲酸、五氧化二磷、乙二胺、磷酸二氢铵、磷酸氢二铵、尿素、氨水、双氧水、三聚氰胺、硼酸、氧化硼、氮化硼、磺化聚苯乙烯、硫代乙酰胺、过硫酸铵、硫脲、硫酸钠、氟化锂、吡咯、 吡啶、噻吩、咪唑、四氟化硅、氟化铝、氟化钙、磷腈、五氟环三磷腈、乙氧基(五氟)环三磷腈、六氯环三磷腈、十六烷基三甲基溴化铵、二甲砜、L-半胱氨酸、氟氢化氨中的一种或多种。
本发明实施方式中,所述将碳源前驱体与掺杂元素源混合的方法包括物理球磨法、低温熔融法、机械融合法、高温烧结法、外延生长法、气相沉积法、磁控溅射法、溶胶凝胶法、微波反应法、水热法、溶剂热法中的一种或多种。
本发明实施方式中,将碳源前驱体与掺杂元素源混合,于100℃-180℃下进行反应的具体操作为:
将碳源前驱体与掺杂元素源分散于水中,于100℃-180℃下反应4-18小时。
本发明实施例第二方面提供的制备方法,工艺简单,易控制,适于工业化生产。
本发明实施例第三方面提供一种电池,包括正极极片、负极极片、隔膜、电解液,其中,所述负极极片包括负极活性材料,所述负极活性材料包括本发明第一方面所述的负极材料。
本发明实施方式中,所述电池包括锂离子电池、钠离子电池、钾离子电池、镁离子电池、锌离子电池、锂硫电池、铝离子电池或锂空气电池。
本发明实施例提供的电池,具有较佳的快充性能,从而一定程度上解决了现有电池的续航问题。
本发明实施例还提供一种终端,包括终端壳体,以及位于所述终端壳体内部的电路板和电池,所述电池与所述电路板电性连接用于为所述电路板供电,所述电池包括本发明实施例第三方面所述的电池。
附图说明
图1为本发明实施例提供的锂离子电池的结构示意图;
图2为本发明实施例提供的掺杂碳材料10的结构示意图;
图3为本发明实施例提供的掺杂元素与碳基基体形成C-Ma-Mb化学键合的示意图;
图4A和图4B分别为现有无掺杂碳材料和本发明实施例掺杂碳材料充电时的工作示意图;
图5为本发明实施例提供的终端的结构示意图;
图6为本发明实施例1的P、O双掺杂的石墨负极材料的切面SEM(Scanning Electron Microscope,扫描电子显微镜)图;
图7为本发明实施例1的P、O双掺杂的石墨负极材料EDS(Energy Dispersive X-Ray Spectroscopy,X射线能量色散谱)的P元素分布图;
图8为本发明实施例1的P、O双掺杂的石墨负极材料的XPS(X-ray Photoelectron Spectroscopy,X射线光电子能谱仪)图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例进行说明。
本发明实施例提供一种负极材料,该负极材料可用于制作二次电池的负极,其中,二 次电池可以是锂离子电池、钠离子电池、钾离子电池、镁离子电池、锌离子电池、锂硫电池、铝离子电池、锂空气电池等。
如图1所示,锂离子电池的核心部件包括正极材料101、负极材料102、电解液103、隔膜104以及相应的连通辅件和回路。其中,正极材料101、负极材料102可以脱嵌锂离子实现能量的存储和释放,电解液是锂离子在正负极之间传输的载体,隔膜104可透过锂离子但不导电从而将正负极隔开防止短路。二次电池的充放电机理为:充电时,活性离子(Li +,Na +,K +,Mg 2+,Zn 2+,Al 3+等)从正极材料的晶格中脱出,经过电解质后进入到负极材料的晶格中;放电时,活性离子从负极材料中脱出,经过电解质后进入到正极材料的晶格中。当充电电流过大时,石墨类电极材料或者硅碳电极材料由于层间距较小,接收活性离子能力有限,最终很可能导致活性离子析出形成结晶,造成电池容量和循环性能衰减,严重时甚至可能引发安全隐患。特别是当活性离子为锂离子或者钠离子时,当前的电极材料远不能满足大电流充电的应用场景,因此有必要开发具有超级快充能力的电极材料。
如图2所示,本发明实施例提供的负极材料,包括掺杂碳材料10,掺杂碳材料10包括碳基基体1和掺杂在碳基基体1中的掺杂元素2,掺杂元素2包括B、N、O、P、S、F中的至少两种,至少部分掺杂元素2与碳基基体1形成C-Ma-Mb化学键合,其中,Ma、Mb代表两种不同的掺杂元素2。
本发明实施方式中,C-Ma-Mb化学键合表示Ma与C形成了化学键合,Ma与Mb形成了化学键合,具体键合方式、构型不限,可以是单键键合,也可以是双键键合,三键键合,即C-Ma-Mb仅表示C、Ma、Mb有键合关系。如图3所示,为掺杂元素与碳基基体形成C-Ma-Mb化学键合的示意图。C-Ma-Mb中,Ma、Mb可以是B、N、O、P、S、F中任意两种可形成化学键合的不同元素。例如,C-Ma-Mb具体可以是C-P-O,C-O-P,C-N-F,C-P-N,C-S-O,C-S-P,C-N-O,C-N-B,C-N-P,C-N-S,C-B-O,C-N-O等。本发明实施例的掺杂碳材料10中可以包含一种或多种C-Ma-Mb化学键合。例如,本发明一实施方式中,可以是同时包含C-P-O,C-P-N两种化学键合。本发明另一实施方式中,也可以是同时包含C-P-O,C-N-B两种化学键合。本发明另一实施方式中,也可以是同时包含C-P-O,C-P-S两种化学键合,或者同时包含C-P-O,C-S-O两种化学键合。当然,在本发明其他实施方式中,还可以是同时包含其他两种C-Ma-Mb化学键合,或者包含三种、四种或更多种的C-Ma-Mb化学键合。
需要说明的是,本发明实施方式中,掺杂在碳基基体1中的掺杂元素2并不一定都形成了C-Ma-Mb化学键合,也可能部分掺杂元素与碳基基体形成了C-Ma,C-Mb化学键合。本发明实施方式中,可选地,形成C-Ma-Mb化学键合的掺杂元素的质量占掺杂元素总质量的比例大于50%。具体地,形成C-Ma-Mb化学键合的掺杂元素的质量占掺杂元素总质量的比例可以是60%、70%、80%、90%,或者大于90%。
本发明实施方式中,碳基基体1可以是人造石墨、天然石墨、硬碳、软碳、中间相碳微球、碳纳米管、石墨烯、碳纤维、活性碳、多孔碳、乙炔黑、科琴黑中的一种或多种。
本发明实施方式中,根据掺杂元素电负性的不同(硼B 2.04,磷P 2.19,碳C 2.55,硫S 2.58,氮N 3.04,氧O 3.44,氟F 3.98),其在化合物中吸引电子的能力强弱不同,当不同掺杂元素之间的电负性差值<2.0时,对应掺杂元素的原子之间形成共价键合作用,得到 C-Ma-Mb的稳定键合(如C-P-O,C-O-P,C-N-F,C-P-N,C-S-O,C-S-P,C-N-O,C-N-B,C-N-P,C-N-S,C-B-O,C-N-O等),Ma与碳原子键合保护了碳晶格表面的不稳定活性氧化位点,从而提升了碳晶格的完整性和碳晶格表面的化学稳定性。同时碳晶格上较大半径的掺杂原子和C-Ma-Mb共同拓宽了碳层层间距;并且C-Ma-Mb对碳晶格上的缺陷进行修复,提高了类石墨化度,优化了碳材料的微晶结构;另外C-Ma-Mb中电负性大于2.55的掺杂元素的存在可以提高溶剂化活性离子对碳晶格的浸润性,促进界面中离子的快速传输。因此,C-Ma-Mb的存在优化了碳晶格的表面化学性质及碳的微晶结构,带来电化学性能的显著提升。
需要说明的是,本发明实施例中,C-Ma-Mb化学键合仅表示Ma与C形成了化学键合,Ma与Mb形成了化学键合,但具体的构型不限。以C-P-O化学键合为例,其具体可以包括C 3-P=O,C 2-P=O(-O),C-P-O三种构型。其中,C 3-P=O构型具有最高的稳定性,是存在于碳晶格中的主体构型,C-P-O构型为亚稳态构型,含量次之。C 3-P=O类三角锥构型有利于层间距的拓宽,可对空位缺陷修复以提高类石墨化度,从而优化碳基微晶结构,促进界面中离子能更快速传输,最终带来电化学性能的显著提升。图4A和图4B分别示出了现有无掺杂碳材料和本发明实施例掺杂碳材料充电时的工作示意图。图中显示,本发明实施例提供的掺杂碳材料,C 3-P=O的存在拓宽了碳层层间距,促进了离子的传输。C 3-P=O构型在提高材料表面润湿性、倍率性能、可逆快速充放电能力、比电容等方面都可以起到积极作用。当然,当碳基基体中掺杂磷、氧时,碳晶格中还可能存在C 3-P和C-O-P不稳定构型,但含量较少。
本发明实施方式中,掺杂碳材料10中,掺杂元素的质量含量小于或等于5%。本发明一实施方式中,掺杂元素的质量含量为0.1%-5%。本发明另一实施方式中,掺杂元素的质量含量为2%-4%。当掺杂量大于5%时,对负极材料的首次库伦效率有较大影响。适合量的元素掺杂能够在提升碳基基体快充性能的同时,不对首次库伦效率产生大的影响。
本发明实施方式中,掺杂碳材料的中值粒径为1nm-30μm。具体地,可以根据具体的应用方式选择适合粒径尺寸的掺杂碳材料。掺杂碳材料可以是一次颗粒,也可以是二次颗粒。其中,掺杂碳材料一次颗粒的中值粒径可以是1μm-10μm,掺杂碳材料二次颗粒的中值粒径可以是3μm-30μm。
本发明实施例提供的负极材料,其含有的掺杂碳材料的存在形式不限,本发明一些实施例中,可以是直接将掺杂碳材料作为负极材料进行负极制备。本发明另一些实施例中,也可以是将掺杂碳材料与其它负极活性组分复合形成复合颗粒再进行负极制备。其中,与其它负极活性组分复合形成复合颗粒的具体方式可以是,将掺杂碳材料与其它负极活性组分均匀混合后造粒得到复合颗粒,也可以是将其它负极活性组分作为内核,掺杂碳材料作为外壳包覆在内核表面。当然,也可以将本发明实施例的掺杂碳材料与其它负极活性材料进行简单物理混合后进行负极制备。
本发明一实施方式中,负极材料由掺杂碳材料的一次颗粒或二次颗粒构成,即直接将掺杂碳材料作为负极材料进行负极制备。该实施方式中,为提升负极材料性能,负极材料还可以进一步包括设置在掺杂碳材料的一次颗粒或二次颗粒表面的保护层,该保护层可以是碳层和/或导电聚合物层。在一些实施例中,碳层的材料具体可以为碳源裂解形成的软 碳、硬碳、无定形碳、碳纳米管、石墨烯及其一种或者几种组成的复合物。导电聚合物层的导电聚合物具体可以是但不限于聚乙炔、聚吡咯,聚噻吩,聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸)、聚苯胺、聚苯撑、聚苯撑乙烯中的一种或多种。保护层的厚度可以是5nm-50nm,进一步可以是10nm-20nm。保护层能防止电解液与掺杂碳材料直接接触产生过多表面副反应,减少不可逆容量和电池中活性离子的损耗,同时还可以增加材料的电子电导能力,提升材料的快充性能。
本发明另一实施方式中,负极材料还包括其他负极活性组分,掺杂碳材料与其他负极活性组分复合形成复合颗粒,复合颗粒中,掺杂碳材料与其他负极活性组分均匀分布。其中,其他负极活性材料与掺杂碳材料的质量比例可根据实际情况进行选择。
本发明实施方式中,与其他负极活性组分形成的复合颗粒中,掺杂碳材料的中值粒径可以是1nm-30μm。在一具体实施方式中,复合颗粒中掺杂碳材料的中值粒径可以是50nm-10μm。进一步,掺杂碳材料的中值粒径可以是100nm-8μm。
本发明一具体实施方式中,复合颗粒中,掺杂碳材料与其他负极活性组分可以是采用沥青作为连接介质复合在一起,沥青烧结后形成碳。即复合颗粒还包括将掺杂碳材料和其他负极活性组分连接在一起的碳材料。
本发明一些实施方式中,负极材料还可以包括设置在复合颗粒表面的保护层,该保护层可以是碳层和/或导电聚合物层。保护层如前文所述,此处不再赘述。
本发明另一实施方式中,负极材料还包括其他负极活性组分,掺杂碳材料与其他负极活性组分复合形成复合颗粒,复合颗粒包括由其他负极活性组分构成的内核,以及设置在内核表面的包覆层,包覆层包括掺杂碳材料。包覆层的厚度可以是1nm-100nm,进一步地,包覆层的厚度可以是10nm-100nm,20nm-80nm,50nm-70nm。包覆层与内核的质量比可以是0.1-5:100。本发明一些实施例中,包覆层与内核的质量比可以是1-4:100,另一些实施例中,包覆层与内核的质量比可以是2-3:100。适量包覆可以在不影响材料容量和首次库伦效率的前提下,提升材料的快充性能,缓解材料和电解液的副反应。本发明实施方式中,包覆层可以是仅包含掺杂碳材料,也可以是同时包含掺杂碳材料和导电聚合物。导电聚合物具体可以是但不限于聚乙炔、聚吡咯,聚噻吩,聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸)、聚苯胺、聚苯撑、聚苯撑乙烯中的一种或多种。本发明一些实施方式中,作为包覆层材料的掺杂碳材料,其中值粒径可以是1nm-50nm。选择较小粒径的掺杂碳材料制备包覆层,可以更好地控制包覆层厚度和表面形貌,减小材料比表面。
其中,本发明实施例上述提到的其他负极活性组分可以是碳基材料、硅基材料、锡基材料、锗基材料、金属化合物、金属合金中的一种或多种。具体地,碳基材料可以是人造石墨(AG)、天然石墨(NG)、硬碳(HC)、软碳、中间相碳微球(CMCB)、碳纳米管(CNT)、石墨烯、碳纤维、活性碳、多孔碳、乙炔黑(AB)、科琴黑中的一种或多种;硅基材料可以是硅(包括纳米硅、微米硅等)、氧化硅、氧化亚硅(SiOx,0.3<x<1.7)、硅碳复合物(Si/C)、多孔硅、薄膜硅中的一种或多种;锡基材料可以是金属锡(Sn)、锡碳(Sn/C)、多孔锡、薄膜锡中的一种或多种;锗基材料可以是金属锗(Ge)、锗碳(Ge/C)、多孔锗、薄膜锗中的一种或多种;金属化合物可以是氧化镍、氧化铁、氧化钴、氧化锰、氧化锌、氧化铜、氧化锡、氧化锗、氧化钼、硫化钼、硫化铁、钛酸锂中的一种或多种;金属合金可以是锂 金属、锂铝合金、锂锡合金、锂硅合金、锂锗合金、锂碳合金中的一种或多种。
本发明实施例的负极材料,由于包含掺杂碳材料,而掺杂碳材料中的掺杂元素与碳基基体形成了C-Ma-Mb化学键合,因而具有如下有益效果:(1)C-Ma-Mb中Ma通过和C原子成键,减少了碳晶格中的空位缺陷,提高了材料的类石墨化度,从而提升了材料的导电性和首次库伦效率;(2)C-Ma-Mb存在于碳晶格或边缘,使得碳层层间距增加,拓宽了活性离子的传输通道,降低了层间离子扩散传输阻力,提升了材料的快充性能;(3)C-Ma-Mb中电负性大于2.55的掺杂元素的存在可以提高材料的表面润湿性,使得离子传输更顺畅,大大减小了界面阻抗和扩散阻抗,提高了电极的稳定工作电压窗口,提升了材料的快充性能;(4)C-Ma-Mb中Ma和Mb的引入,增加了活性离子结合和储存位点,提高了材料的比容量。
相应地,本发明实施例还提供一种负极材料的制备方法,包括:
步骤(1):将碳源前驱体与掺杂元素源混合,于100℃-180℃下进行反应,得到改性碳源前驱体;
步骤(2):将所得改性碳源前驱体于保护气氛下进行500℃-800℃低温预碳化处理,再进行900℃-1150℃高温碳化处理,降温冷却后,即得到掺杂碳材料,掺杂碳材料包括碳基基体和掺杂在碳基基体中的掺杂元素,掺杂元素包括B、N、O、P、S、F中的至少两种,至少部分掺杂元素与碳基基体形成C-Ma-Mb化学键合,其中,Ma、Mb代表两种不同的所述掺杂元素。
本发明实施方式中,步骤(1)中,碳源前驱体可以是碳元素质量含量为80%-99%,氢元素质量含量1%-15%,氧元素质量含量为0-5%的材料,碳源前驱体的软化点小于200℃;碳源前驱体的中值粒径D50可为2-15μm,最大粒径Dmax小于70μm。具体地,碳源前驱体可选自石墨以及软化点大于200℃的煤沥青、石油沥青、改性古马隆树脂中的至少一种。
步骤(1)中,掺杂元素源包含B、N、O、P、S、F中的至少两种元素。掺杂元素源可以是一种物质,该物质同时包含B、N、O、P、S、F中的至少两种元素;也可以是两种或两种以上的物质组合在一起包含B、N、O、P、S、F中的至少两种元素。具体地,掺杂元素源可选自磷酸、磷酸锂、硝酸、柠檬酸、过甲酸、五氧化二磷、乙二胺、磷酸二氢铵、磷酸氢二铵、尿素、氨水、双氧水、三聚氰胺、硼酸、氧化硼、氮化硼、磺化聚苯乙烯、硫代乙酰胺、过硫酸铵、硫脲、硫酸钠、氟化锂、吡咯、吡啶、噻吩、咪唑、四氟化硅、氟化铝、氟化钙、磷腈、五氟环三磷腈、乙氧基(五氟)环三磷腈、六氯环三磷腈、十六烷基三甲基溴化铵、二甲砜、L-半胱氨酸、氟氢化氨中的一种或多种。掺杂元素源与碳源前驱体的质量比可为5-30:100。
步骤(1)中,将碳源前驱体与掺杂元素源混合的方法包括物理球磨法、低温熔融法、机械融合法、高温烧结法、外延生长法、气相沉积法、磁控溅射法、溶胶凝胶法、微波反应法、水热法、溶剂热法中的一种或多种。本发明一具体实施例中,可以是以去离子水为溶剂,将碳源前驱体和掺杂元素源进行高速搅拌混料,碳源前驱体与去离子水的质量比30-60:100。
步骤(1)中,将碳源前驱体与掺杂元素源混合,100℃-180℃下进行反应的具体操作为:
将碳源前驱体与掺杂元素源分散于水中,并于100℃-180℃下进行4-18小时脱水反应。该步骤使得掺杂元素沉积在碳源前躯体表面,并随着反应的进行扩散到碳源内部,与碳原子形成键合。
本发明实施方式中,步骤(2)中,低温预碳化的温度具体可以是500℃、600℃、700℃、800℃,低温预碳化的时间可为1-3小时,低温预碳化后所得产物的挥发分含量可控制在3-8%。高温碳化的温度可为900℃-1150℃,具体地,高温碳化的温度可以是900℃、950℃、1000℃、1100℃、1150℃。高温碳化的时间可为2-10小时,高温碳化处理在1-1000Pa的真空下进行,具体可采用真空碳化炉。其中低温预碳化可将大部分的挥发分去除。而在真空下进行的高温碳化处理有利于碳晶格中含掺杂元素的不稳定构型将向稳定构型演变。以含磷构型为例,在高温碳化处理过程中,不稳定的C 3-P和C-O-P构型转化为更加稳定的C 3-P=O构型以及少部分亚稳态的C-P-O构型,C 3-P=O构型使得碳晶格变得更加有序完整且层间距增大。磷构型的优化使得碳基基体表面化学性质更稳定,也有效提升了材料的电化学性能。
步骤(2)中,经高温碳化处理并降温冷却后,可根据需要进行过筛,例如可以是过80目以上的标准筛网。其中,可以是降温冷却至0℃-80℃。
步骤(2)中,掺杂碳材料的中值粒径D50为1nm-30μm,最大粒径Dmax小于90μm,掺杂元素含量为5重量%以下。对于步骤(2)制得的粒径较大的掺杂碳材料,可以通过粉碎的方式粉碎至目标粒径。粉碎的具体方法可以是但不限于是气流粉碎分级、机械粉碎分级。
本发明一些实施例中,上述制备方法还可以进一步包括将掺杂碳材料与其他负极活性组分进行混合,惰性气氛下烧结,破碎,得到由掺杂碳材料与其他负极活性组分复合形成的复合颗粒,复合颗粒包括由其他负极活性组分构成的内核,以及包覆在内核表面的包覆层,包覆层包括掺杂碳材料。其中,可选用中值粒径为1nm-50nm的掺杂碳材料与其他负极活性组分进行混合。
本发明实施方式中,将掺杂碳材料与其他负极活性组分进行混合的方法可以是物理球磨法、低温熔融法、机械融合法、高温烧结法、外延生长法、气相沉积法、磁控溅射法、溶胶凝胶法、微波反应法、水热法、溶剂热法。本发明一具体实施例中,采用机械融合法的步骤为:将掺杂碳材料和作为内核的其他负极活性组分置于融合机中进行高速搅拌混合,搅拌速率为10-2000转/分钟,搅拌时间为0.1-12小时。
本发明另一些实施例中,上述制备方法还可以包括将掺杂碳材料与其他负极活性组分进行混合、造粒、烧结、破碎,得到由掺杂碳材料与其他负极活性组分复合形成的复合颗粒,复合颗粒中,掺杂碳材料与其他负极活性组分均匀分布。本发明一些实施方式中,可选用中值粒径为50nm-10μm的掺杂碳材料与其他负极活性组分进行混合。本发明实施方式中,造粒的过程中,可加入少量沥青作为连接介质,烧结过程中沥青碳化变成碳,沥青的作用为粘结造粒。
本发明实施方式中,将掺杂碳材料与其他负极活性组分进行混合的方法可以是物理球磨法、低温熔融法、机械融合法、高温烧结法、外延生长法、气相沉积法、磁控溅射法、溶胶凝胶法、微波反应法、水热法、溶剂热法。本发明一具体实施例中,采用低温熔融法 的具体步骤为:将掺杂碳材料和其他负极活性组分置于高速混料机中进行搅拌混合,其中搅拌速率为10-1000转/分钟,搅拌时间为0.1-12小时。
本发明实施方式中,造粒处理可采用高速混料机,通过加入沥青,程序升温进行造粒。升温速率可为1℃/分钟-10/℃分钟,温度可为150℃-500℃,沥青的软化点为50℃-200℃;沥青的中值粒径D50为2-15μm,最大粒径Dmax小于70μm。
本发明实施方式中,上述制备方法中所涉及到的烧结处理可采用碳化炉,温度可为300℃-800℃,烧结的时间可为2-10小时。
本发明实施方式中,上述制备方法中所涉及到的破碎处理可采用气流粉碎分级和/或机械粉碎分级方式。
本发明实施方式中,上述制备方法中所涉及到的保护气氛、惰性气氛具体可以是氮气、氦气和氩气中的至少一种。
本发明实施例还提供一种电池,包括正极极片、负极极片、隔膜、电解液,其中,负极极片包括负极活性材料,负极活性材料包括本发明实施例上述提供的负极材料。所述电池可以是锂离子电池、钠离子电池、钾离子电池、镁离子电池、锌离子电池、锂硫电池、铝离子电池或锂空气电池。上述电池可用于终端消费产品,如手机、平板电脑、便携机、笔记本电脑以及其它可穿戴或可移动的电子设备。
如图5所示,本发明实施例还提供一种终端200,该终端200可以是手机、也可以是平板电脑、笔记本电脑、便携机、智能穿戴产品等电子产品,终端200包括组装在终端外侧的外壳201,以及位于外壳201内部的电路板和电池(图中未示出),电池与电路板电性连接用于为电路板供电,其中,电池为本发明实施例上述提供的电池,外壳201可包括组装在终端前侧的前壳和组装在后侧的后盖,电池可固定在后盖内侧。
下面分多个实施例对本发明实施例进行进一步的说明。
实施例1
一种负极材料的制备方法,包括:
将中值粒径D50为5μm的石墨AG粉体与双氧水、磷酸和过硫酸铵按照10:1:2:1的质量比混合分散于水中,制成固含量为45%的浆料,并于150℃下脱水反应8h;之后将其在氮气保护下以3℃/min速率升温至550℃进行低温预碳化处理2h,降至室温后再转入至真空炉中,调节真空度至10Pa以内,再以2℃/min速率升温至1050℃进行高温碳化处理4h,降至室温后,过300目标准筛即得P、O双掺杂的石墨负极材料,负极材料中,P、O元素与石墨基体形成C-P-O化学键合。
图6为本发明实施例1制备得到的P、O双掺杂的石墨负极材料的切面SEM图,图中显示,材料剖面结构平整,内部无孔洞;图7为本发明实施例1制备得到的P、O双掺杂的石墨负极材料中P元素分布图,从图中可以看到,P元素均匀掺杂在石墨负极材料中。图8为本发明实施例1制备得到的P、O双掺杂的石墨负极材料的磷构型分布图。图8显示,负极材料中,C 3-P=O构型分布最多,C-P-O构型次之,而C-O-P构型和C 3-P构型相对较少。
实施例2
一种负极材料的制备方法,包括:
将软化点为280℃的石油沥青采用气流粉碎分级机制成中值粒径D50为5μm的沥青粉体;将得到的沥青粉体与过硫酸铵、磷酸和磷腈按照10:1:2:1的质量比混合分散于水中,制成固含量为50%的浆料,并于180℃下脱水反应4h;之后将其在氮气保护下以3℃/min速率升温至600℃进行低温预碳化处理1h,降至室温后再转入至真空炉中,调节真空度至10Pa以内,再以2℃/min速率升温至1000℃进行高温碳化处理6h,降至室温后,过300目标准筛即得P、O、N掺杂的硬碳负极材料,负极材料中,P、O、N元素与硬碳基体形成C-P-O和C-P-N化学键合。
实施例3
一种负极材料的制备方法,包括:
(1)将软化点为250℃的煤沥青采用气流粉碎分级机制成中值粒径D50为5μm的粉体;将得到的沥青粉体与双氧水、过甲酸和磷酸按照10:1:1:2的质量比混合分散于水中,制成固含量为45%的浆料,并于180℃下脱水反应4h;之后将其在氮气保护下以3℃/min速率升温至600℃进行低温预碳化处理1h,降至室温后再转入至真空炉中,调节真空度至10Pa以内,再以2℃/min速率升温至1000℃进行高温碳化处理6h,降至室温后,过300目标准筛即得P、O双掺杂的硬碳材料,其中,P、O元素与碳基体形成C-P-O化学键合;
(2)取步骤(1)中得到的P、O双掺杂的硬碳材料采用气流粉碎方法粉碎至D50为1μm,然后将其和硅碳/石墨复合材料SiC/AG(克容量为500mAh/g)置于融合机中进行高速搅拌混合,其中搅拌速率为1000转/分钟,搅拌时间为1小时;
(3)将步骤(2)中所得产物置于碳化炉中进行烧结处理,烧结温度800℃,烧结时间3小时,烧结气氛为氮气;
(4)将步骤(3)中烧结产物进行机械粉碎至D50为12μm,即得具有掺杂碳材料包覆层的硅碳/石墨负极材料,该负极材料包括硅碳/石墨内核,和包覆在内核表面的P、O双掺杂的硬碳材料。
实施例4
一种负极材料的制备方法,包括:
(1)将软化点为280℃的煤沥青采用气流粉碎分级机制成中值粒径D50为5μm的粉体;将得到的沥青粉体与过硫酸铵、乙氧基(五氟)环三磷腈、十六烷基三甲基溴化铵按照10:1:2:1的质量比混合分散于水中,制成固含量为55%的浆料,并于150℃下脱水反应8h;之后将其在氮气保护下以3℃/min速率升温至550℃进行低温预碳化处理2h,降至室温后再转入至真空炉中,调节真空度至10Pa以内,再以2℃/min速率升温至1050℃进行高温碳化处理4h,降至室温后,过300目标准筛,即得P、O双掺杂的硬碳材料,其中,P、O元素与碳基体形成C-P-O化学键合;
(2)将步骤(1)中得到的P、O双掺杂的硬碳材料采用气流粉碎方法粉碎至D50为0.5μm,然后将其和硅氧/石墨复合材料SiO/AG(克容量500mAh/g)置于融合机中进行高速搅拌混合,其中搅拌速率为2000转/分钟,搅拌时间为0.5小时;
(3)将步骤(2)中所得产物置于碳化炉中进行烧结处理,烧结温度600℃,烧结时间3小时,烧结气氛为氮气;
(4)将步骤(3)中所得烧结产物机械粉碎至D50为15μm,即得有掺杂碳材料包覆层的硅氧/石墨负极材料,该负极材料包括硅氧/石墨内核,和包覆在内核表面的P、O双掺杂的硬碳材料。
实施例5
一种负极材料的制备方法,包括:
(1)将中值粒径D50为8μm的石墨AG粉体与过硫酸铵、磷酸、三聚氰胺按照10:1:2:1的质量比混合分散于水中,制成固含量为55%的浆料,并于180℃下脱水反应4h;之后将其在氮气保护下以3℃/min速率升温至650℃进行低温预碳化处理1h,降至室温后再转入至真空炉中,调节真空度至10Pa以内,再以2℃/min升温至1050℃进行高温碳化处理4h,降至室温后,过300目标准筛即得P、O双掺杂的石墨材料,其中,P、O元素与石墨基体形成C-P-O化学键合;
(2)将步骤(1)中得到的石墨材料与纳米硅(粒径为100nm)置于高速混料机进行混合,其中搅拌速率为1000转/分钟,搅拌时间为1小时;
(3)向步骤(2)所得混合物中加入软化点为200℃、中值粒径D50为3μm的沥青,程序升温,进行造粒,升温速率为3℃/分钟,升温到500℃;
(4)将步骤(3)中所得产物置于碳化炉中进行烧结处理,烧结温度800℃,烧结时间3小时,烧结气氛为氮气;
(5)将步骤(4)中烧结产物进行机械粉碎至D50为12μm,即得纳米硅/P、O双掺杂的石墨复合负极材料。
对比例1
将石墨AG粉体分散于水中,制成固含量为45%的浆料,按照实施例1相同的方法制备得到对比例1的石墨负极材料。
对比例2
将软化点为280℃的石油沥青采用气流粉碎分级机制成中值粒径D50为5μm的粉体,然后分散于水中,制成固含量为50%的浆料,按照实施例2相同的方法制备得到对比例2的硬碳负极材料。
对比例3
将软化点为250℃的煤沥青采用气流粉碎分级机制成中值粒径D50为5μm的粉体,然后分散于水中,制成固含量为45%的浆料,按照实施例3相同的方法制备得到对比例3的具有包覆层的硅碳/石墨负极材料。
对比例4
将软化点为280℃的煤沥青采用气流粉碎分级机制成中值粒径D50为5μm的粉体,然后分散于水中,制成固含量为55%的浆料,按照实施例4相同的方法制备得到对比例4的具有包覆层的硅氧/石墨负极材料。
对比例5
将中值粒径D50为8μm的石墨AG粉体分散于水中,制成固含量为55%的浆料,按照实施例5相同的方法制备得到对比例5的纳米硅/石墨复合负极材料。
为对本发明实施例技术方案带来的有益效果进行有力支持,采用半电池测试方法分别对采用本发明实施例1-5和对比例1-5的负极材料的锂离子电池和钠离子电池进行首次充放电性能测试和倍率测试,结果列于表1和表2。半电池的测试方法为:以N-甲基吡咯烷酮为溶剂配制质量分数为6-7%的聚偏氟乙烯溶液,将负极材料、聚偏氟乙烯、导电碳黑按质量比80:10:10混合均匀,涂于铜箔上,将涂好的极片放入温度为90℃真空干燥箱中真空干燥4小时,辊压到面密度为4mg/cm 2备用。然后在充氩气的手套箱中装配成2032型扣式电池,以1mol/L LiPF 6(锂离子电池)或者1mol/L NaPF 6(钠离子电池)的三组分混合溶剂按EC:DMC:EMC=1:1:1(体积比)混合液为电解液,金属锂片(锂离子电池)或金属钠片(钠离子电池)为对电极,在电化学检测***上对组装的半电池进行电化学性能测试,充放电电压范围为5mV至3.0V,测试0.1C下脱锂容量及对应的首次库伦效率,以及1C,2C,3C下的快速充电性能。
表1 不同负极材料锂离子电池性能测试结果
Figure PCTCN2020130864-appb-000001
表2 不同负极材料钠离子电池性能测试结果
Figure PCTCN2020130864-appb-000002
以上测试结果表明,相比对比例1-5,本发明实施例采用含有掺杂碳材料的负极材料的电池,具有较高的首次库伦效率和良好的快充性能。这是由于本发明实施的负极材料含有掺杂碳材料,且掺杂碳材料中的掺杂元素至少包含两种,且至少两掺杂元素与碳基基体形成了C-Ma-Mb化学键合,而C-Ma-Mb化学键合的形成具有如下有益效果:(1)C-Ma-Mb中Ma和C原子键合,减少了碳晶格中的空位缺陷,提高了材料的类石墨化度,从而提升了材料的导电性和首次库伦效率;(2)C-Ma-Mb存在于碳晶格或边缘,掺杂原子较大的半径使得碳层层间距增加,拓宽了活性离子的传输通道,降低了层间离子扩散传输阻力,提升了材料的快充性能;(3)C-Ma-Mb中电负性大于2.55的掺杂元素的存在极大地提高了材料的表面润湿性,使得离子传输更顺畅,大大减小了界面阻抗和扩散阻抗,提升了材料的快充性能;(4)C-Ma-Mb中Ma和Mb的引入,增加了活性离子结合和储存位点,提高了材料的比容量。
而对比例1-5中的负极材料为未掺杂的碳材料,由于碳晶格中存在一定量的缺陷位点,同时碳微晶的层间距小,电解液浸润性差,因此不仅在首次充电过程中消耗较多的活性离子,而且表现出较低的库伦效率和较差的倍率性能,不利于快速充电。

Claims (24)

  1. 一种负极材料,其特征在于,包括掺杂碳材料,所述掺杂碳材料包括碳基基体和掺杂在所述碳基基体中的掺杂元素,所述掺杂元素包括B、N、O、P、S、F中的至少两种,至少部分所述掺杂元素与所述碳基基体形成C-Ma-Mb化学键合,其中,Ma、Mb代表两种不同的所述掺杂元素。
  2. 如权利要求1所述的负极材料,其特征在于,所述碳基基体包括人造石墨、天然石墨、硬碳、软碳、中间相碳微球、碳纳米管、石墨烯、碳纤维、活性碳、多孔碳、乙炔黑、科琴黑中的一种或多种。
  3. 如权利要求1所述的负极材料,其特征在于,所述掺杂碳材料中,所述掺杂元素的质量含量小于或等于5%。
  4. 如权利要求1所述的负极材料,其特征在于,所述掺杂碳材料的中值粒径为1nm-30μm。
  5. 如权利要求1所述的负极材料,其特征在于,所述负极材料由所述掺杂碳材料的一次颗粒或二次颗粒构成。
  6. 如权利要求5所述的负极材料,其特征在于,所述掺杂碳材料一次颗粒的中值粒径为1μm-10μm,所述掺杂碳材料二次颗粒的中值粒径为3μm-30μm。
  7. 如权利要求5所述的负极材料,其特征在于,所述负极材料还包括设置在所述掺杂碳材料的一次颗粒或二次颗粒表面的保护层,所述保护层包括碳层和/或导电聚合物层。
  8. 如权利要求1所述的负极材料,其特征在于,所述负极材料还包括其他负极活性组分,所述掺杂碳材料与所述其他负极活性组分复合形成复合颗粒。
  9. 如权利要求8所述的负极材料,其特征在于,所述其他负极活性组分包括碳基材料、硅基材料、锡基材料、锗基材料、金属化合物、金属合金中的一种或多种。
  10. 如权利要求8所述的负极材料,其特征在于,所述复合颗粒中,所述掺杂碳材料与所述其他负极活性组分均匀分布。
  11. 如权利要求10所述的负极材料,其特征在于,所述负极材料还包括设置在所述复合颗粒表面的保护层,所述保护层包括碳层和/或导电聚合物层。
  12. 如权利要求8所述的负极材料,其特征在于,所述复合颗粒包括由所述其他负极活性组分构成的内核,以及设置在所述内核表面的包覆层,所述包覆层包括所述掺杂碳材料。
  13. 如权利要求12所述的负极材料,其特征在于,所述包覆层的厚度为1nm-100nm。
  14. 如权利要求12所述的负极材料,其特征在于,所述包覆层与所述内核的质量比为0.1-5:100。
  15. 一种负极材料的制备方法,其特征在于,包括:
    将碳源前驱体与掺杂元素源混合,于100℃-180℃下进行反应,得到改性碳源前驱体;
    将所得改性碳源前驱体于保护气氛下进行500℃-800℃低温预碳化处理,再进行900℃-1150℃高温碳化处理,降温冷却后,即得到掺杂碳材料,所述掺杂碳材料包括碳基基体和掺杂在所述碳基基体中的掺杂元素,所述掺杂元素包括B、N、O、P、S、F中的至 少两种,至少部分所述掺杂元素与所述碳基基体形成C-Ma-Mb化学键合,其中,Ma、Mb代表两种不同的所述掺杂元素。
  16. 如权利要求15所述的制备方法,其特征在于,进一步包括将所述掺杂碳材料与其他负极活性组分进行混合、造粒、烧结、破碎,得到由所述掺杂碳材料与所述其他负极活性组分复合形成的复合颗粒,所述复合颗粒中,所述掺杂碳材料与所述其他负极活性组分均匀分布。
  17. 如权利要求15所述的制备方法,其特征在于,进一步包括将所述掺杂碳材料与其他负极活性组分进行混合,惰性气氛下烧结,破碎,得到由所述掺杂碳材料与所述其他负极活性组分复合形成的复合颗粒,所述复合颗粒包括由所述其他负极活性组分构成的内核,以及包覆在所述内核表面的包覆层,所述包覆层包括所述掺杂碳材料。
  18. 如权利要求15所述的制备方法,其特征在于,所述掺杂元素源含有B、N、O、P、S、F中的至少两种元素。
  19. 如权利要求18所述的制备方法,其特征在于,所述掺杂元素源选自磷酸、磷酸锂、硝酸、柠檬酸、过甲酸、五氧化二磷、乙二胺、磷酸二氢铵、磷酸氢二铵、尿素、氨水、双氧水、三聚氰胺、硼酸、氧化硼、氮化硼、磺化聚苯乙烯、硫代乙酰胺、过硫酸铵、硫脲、硫酸钠、氟化锂、吡咯、吡啶、噻吩、咪唑、四氟化硅、氟化铝、氟化钙、磷腈、五氟环三磷腈、乙氧基(五氟)环三磷腈、六氯环三磷腈、十六烷基三甲基溴化铵、二甲砜、L-半胱氨酸、氟氢化氨中的一种或多种。
  20. 如权利要求15所述的制备方法,其特征在于,所述将碳源前驱体与掺杂元素源混合的方法包括物理球磨法、低温熔融法、机械融合法、高温烧结法、外延生长法、气相沉积法、磁控溅射法、溶胶凝胶法、微波反应法、水热法、溶剂热法中的一种或多种。
  21. 如权利要求15所述的制备方法,其特征在于,所述将碳源前驱体与掺杂元素源混合,于100℃-180℃下进行反应的具体操作为:
    将碳源前驱体与掺杂元素源分散于水中,于100℃-180℃下反应4-18小时。
  22. 一种电池,其特征在于,包括正极极片、负极极片、隔膜、电解液,其中,所述负极极片包括负极活性材料,所述负极活性材料包括如权利要求1-14任一项所述的负极材料。
  23. 如权利要求22所述的电池,其特征在于,所述电池包括锂离子电池、钠离子电池、钾离子电池、镁离子电池、锌离子电池、锂硫电池、铝离子电池或锂空气电池。
  24. 一种终端,其特征在于,包括终端壳体,以及位于所述终端壳体内部的电路板和电池,所述电池与所述电路板电性连接用于为所述电路板供电,所述电池包括权利要求22-23任一项所述的电池。
PCT/CN2020/130864 2019-11-25 2020-11-23 负极材料及其制备方法,电池和终端 WO2021104201A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20892425.8A EP4057392A4 (en) 2019-11-25 2020-11-23 NEGATIVE ELECTRODE MATERIAL AND PRODUCTION PROCESS THEREOF, BATTERY AND TERMINAL
US17/752,005 US20220285685A1 (en) 2019-11-25 2022-05-24 Negative electrode material, production method thereof, battery, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911171298.1A CN112838197B (zh) 2019-11-25 2019-11-25 负极材料及其制备方法,电池和终端
CN201911171298.1 2019-11-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/752,005 Continuation US20220285685A1 (en) 2019-11-25 2022-05-24 Negative electrode material, production method thereof, battery, and terminal

Publications (1)

Publication Number Publication Date
WO2021104201A1 true WO2021104201A1 (zh) 2021-06-03

Family

ID=75922368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130864 WO2021104201A1 (zh) 2019-11-25 2020-11-23 负极材料及其制备方法,电池和终端

Country Status (4)

Country Link
US (1) US20220285685A1 (zh)
EP (1) EP4057392A4 (zh)
CN (2) CN116190596A (zh)
WO (1) WO2021104201A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113506868A (zh) * 2021-06-28 2021-10-15 山东玉皇新能源科技有限公司 一种非金属掺杂硬碳负极材料及其制备方法
CN113540447A (zh) * 2021-06-29 2021-10-22 暨南大学 一种超长循环多原子掺杂中空碳电极材料的制备及应用
CN114388805A (zh) * 2021-12-30 2022-04-22 华南师范大学 氟化亚锰-碳复合材料及其制备方法和应用
CN115101814A (zh) * 2022-08-24 2022-09-23 宁德新能源科技有限公司 电化学装置及电子装置
CN115414874A (zh) * 2022-08-31 2022-12-02 安普瑞斯(无锡)有限公司 一种多重多原子共掺杂碳气凝胶及其制备方法和应用
CN115611264A (zh) * 2022-11-10 2023-01-17 泰安市法拉第能源科技有限公司 沥青基硬碳负极材料及制备方法、钠离子电池
US20230147558A1 (en) * 2021-11-09 2023-05-11 Microvast Power Systems Co., Ltd. Negative electrode material and method of preparing the same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113517442B (zh) * 2021-06-07 2023-03-24 宁德新能源科技有限公司 负极材料、电化学装置和电子装置
CN113659143A (zh) * 2021-08-06 2021-11-16 东莞市创明电池技术有限公司 钠离子电池负极材料的制备方法及负极材料,钠离子电池
CN113809314B (zh) * 2021-08-16 2023-01-31 北京科技大学 一种多孔硅碳或锗碳材料的制备方法和用途
CN113707863B (zh) * 2021-08-26 2023-04-14 蜂巢能源科技有限公司 一种硬碳复合材料及其制备方法和应用
CN113690420B (zh) * 2021-08-26 2023-03-03 厦门大学 一种氮硫掺杂硅碳复合材料及其制备方法和应用
CN114094103B (zh) * 2021-11-16 2024-05-03 江苏超电新能源科技发展有限公司 掺杂氟和硫的锂电池电极导电剂材料的制备方法及其用途
CN114497451B (zh) * 2022-01-28 2024-03-19 上海兰钧新能源科技有限公司 一种负极片及其制备方法和应用
CN114583137B (zh) * 2022-03-17 2023-10-24 华中科技大学 一种在碳表面进行硫掺杂磷修饰的方法及其应用
CN114678512B (zh) * 2022-03-22 2023-10-13 惠州亿纬锂能股份有限公司 负极材料及其制备方法、电池
CN114914420B (zh) * 2022-05-17 2023-12-05 长沙理工大学 一种双重修饰的锂离子电池负极材料及制备方法
CN114975890A (zh) * 2022-06-22 2022-08-30 湖北亿纬动力有限公司 一种负极极片用石墨材料及其制备方法和含有其的锂离子电池
CN115332538B (zh) * 2022-10-12 2023-04-07 宁德新能源科技有限公司 硬碳材料及其制备方法、电化学装置及电子装置
CN116247166A (zh) * 2023-05-06 2023-06-09 宁德时代新能源科技股份有限公司 负极极片及其制备方法、电池单体、电池和用电装置
CN116654895B (zh) * 2023-05-31 2024-01-23 青岛新泰和纳米科技有限公司 一种磷锡共掺杂硬碳负极材料及其制备方法
CN116613300B (zh) * 2023-07-18 2023-09-22 成都锂能科技有限公司 一种煤基炭化的钠电池负极材料、其制备方法、包含其的钠离子电池
CN116885174B (zh) * 2023-09-08 2024-01-23 浙江华宇钠电新能源科技有限公司 混合掺杂碳材料及其在车辆用钠离子电池材料中的用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105098185A (zh) * 2014-04-29 2015-11-25 华为技术有限公司 复合负极材料及其制备方法、锂离子二次电池负极极片和锂离子二次电池
CN108493424A (zh) * 2018-04-11 2018-09-04 中科锂电新能源有限公司 一种氮、磷、硫共掺杂复合碳材料、其制备方法和锂离子电池
CN109970043A (zh) * 2019-04-08 2019-07-05 中国石油大学(华东) 氮磷共掺杂碳纳米片及其制备方法、碱金属离子电池电极、碱金属离子电池和电动装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0529095B1 (en) * 1991-03-02 1999-08-04 Sony Corporation Method for producing an anode material and a non-aqueous electrolyte cell employing such anode material
CN103618071A (zh) * 2013-11-14 2014-03-05 中国科学院广州能源研究所 一种锂离子电池碳硅复合负极材料及其制备方法
CN103887505A (zh) * 2014-04-14 2014-06-25 中南大学 一种官能化炭材料和高析氢物质掺杂态官能化炭复合材料的应用
CN104003368B (zh) * 2014-05-06 2016-05-11 北京理工大学 一种多孔磷-氮共掺杂碳材料及其制备方法
CN105932234A (zh) * 2016-05-05 2016-09-07 华东师范大学 一种钠离子电池负极材料用掺杂多孔碳球及其制备方法
CN106025195B (zh) * 2016-05-12 2018-06-26 陕西科技大学 一种含有多级孔径分布的钠离子电池负极碳材料的制备方法
CN105810914B (zh) * 2016-05-13 2018-02-27 中南大学 一种钠离子电池硫掺杂多孔碳材料及其制备方法
CN107706360A (zh) * 2017-07-25 2018-02-16 深圳市沃特玛电池有限公司 一种锂离子电池复合负极材料的制备方法
CN110085822B (zh) * 2019-04-18 2020-12-08 江苏理工学院 一种f-n-c复合材料及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105098185A (zh) * 2014-04-29 2015-11-25 华为技术有限公司 复合负极材料及其制备方法、锂离子二次电池负极极片和锂离子二次电池
CN108493424A (zh) * 2018-04-11 2018-09-04 中科锂电新能源有限公司 一种氮、磷、硫共掺杂复合碳材料、其制备方法和锂离子电池
CN109970043A (zh) * 2019-04-08 2019-07-05 中国石油大学(华东) 氮磷共掺杂碳纳米片及其制备方法、碱金属离子电池电极、碱金属离子电池和电动装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113506868A (zh) * 2021-06-28 2021-10-15 山东玉皇新能源科技有限公司 一种非金属掺杂硬碳负极材料及其制备方法
CN113540447A (zh) * 2021-06-29 2021-10-22 暨南大学 一种超长循环多原子掺杂中空碳电极材料的制备及应用
US20230147558A1 (en) * 2021-11-09 2023-05-11 Microvast Power Systems Co., Ltd. Negative electrode material and method of preparing the same
CN114388805A (zh) * 2021-12-30 2022-04-22 华南师范大学 氟化亚锰-碳复合材料及其制备方法和应用
CN114388805B (zh) * 2021-12-30 2024-04-30 华南师范大学 氟化亚锰-碳复合材料及其制备方法和应用
CN115101814A (zh) * 2022-08-24 2022-09-23 宁德新能源科技有限公司 电化学装置及电子装置
CN115101814B (zh) * 2022-08-24 2022-12-09 宁德新能源科技有限公司 电化学装置及电子装置
CN115414874A (zh) * 2022-08-31 2022-12-02 安普瑞斯(无锡)有限公司 一种多重多原子共掺杂碳气凝胶及其制备方法和应用
CN115414874B (zh) * 2022-08-31 2023-07-14 安普瑞斯(无锡)有限公司 一种多重多原子共掺杂碳气凝胶及其制备方法和应用
CN115611264A (zh) * 2022-11-10 2023-01-17 泰安市法拉第能源科技有限公司 沥青基硬碳负极材料及制备方法、钠离子电池

Also Published As

Publication number Publication date
CN116190596A (zh) 2023-05-30
EP4057392A1 (en) 2022-09-14
EP4057392A4 (en) 2023-08-23
CN112838197B (zh) 2022-12-27
CN112838197A (zh) 2021-05-25
US20220285685A1 (en) 2022-09-08

Similar Documents

Publication Publication Date Title
WO2021104201A1 (zh) 负极材料及其制备方法,电池和终端
Wang et al. Toward practical high‐energy and high‐power lithium battery anodes: present and future
Zhang et al. A conductive molecular framework derived Li2S/N, P‐codoped carbon cathode for advanced lithium–sulfur batteries
KR102038545B1 (ko) 리튬 황 전지용 양극, 이의 제조방법 및 이를 포함하는 리튬 황 전지
CN111261865B (zh) 二次电池用负极活性物质及其制备方法
US9748573B2 (en) Mesoporous silicon compound used as lithium-ion cell negative electrode material and preparation method thereof
Lee et al. Si-based composite interconnected by multiple matrices for high-performance Li-ion battery anodes
WO2014048390A1 (zh) 电极复合材料及其制备方法、正极、具有该正极的电池
Liang et al. A new high-capacity and safe energy storage system: lithium-ion sulfur batteries
CN110247033B (zh) 一种SnS@NSC核-双壳立方体结构复合材料及其制备方法和应用
Sun et al. Specially designed carbon black nanoparticle-sulfur composite cathode materials with a novel structure for lithium–sulfur battery application
KR20040100058A (ko) 리튬 이차 전지용 음극 활물질 및 그의 제조 방법
CA2893574A1 (en) Positive electrode active material/graphene composite particles, and positive electrode material for lithium ion cell
KR100758383B1 (ko) 리튬/유황이차전지용 탄소 코팅 유황전극
CN108321438B (zh) 全石墨锂硫电池及其制备方法
TW201817065A (zh) 負極活性物質、混合負極活性物質材料、及負極活性物質的製造方法
CN108899499B (zh) 基于Sb/Sn磷酸盐的负极材料及其制备方法与在钠离子电池中的应用
WO2018113267A1 (zh) 锂离子电池负极材料及其制备方法
CN113130858A (zh) 硅基负极材料及其制备方法、电池和终端
CN114678512B (zh) 负极材料及其制备方法、电池
CN113921801B (zh) 补锂材料、正极材料及锂离子二次电池
CN110690452A (zh) 具有核壳结构的锂电池用负极材料及锂电池
Ma et al. A core@ double‐shell structured silicon/flower‐like manganese selenide/carbon composite as superior dual anode materials of Li/Na‐ion batteries
WO2023016047A1 (zh) 负极材料及其制备方法、锂离子电池
KR20150078068A (ko) 리튬 이차전지용 음극 활물질의 제조방법 및 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892425

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020892425

Country of ref document: EP

Effective date: 20220607

NENP Non-entry into the national phase

Ref country code: DE