WO2021102958A1 - 一种交通拥堵辅助驾驶方法、***、车载设备和存储介质 - Google Patents

一种交通拥堵辅助驾驶方法、***、车载设备和存储介质 Download PDF

Info

Publication number
WO2021102958A1
WO2021102958A1 PCT/CN2019/122102 CN2019122102W WO2021102958A1 WO 2021102958 A1 WO2021102958 A1 WO 2021102958A1 CN 2019122102 W CN2019122102 W CN 2019122102W WO 2021102958 A1 WO2021102958 A1 WO 2021102958A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
vehicle
traffic jam
ready
assisted driving
Prior art date
Application number
PCT/CN2019/122102
Other languages
English (en)
French (fr)
Inventor
胡子豪
王子涵
刘洋
Original Assignee
驭势(上海)汽车科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 驭势(上海)汽车科技有限公司 filed Critical 驭势(上海)汽车科技有限公司
Priority to PCT/CN2019/122102 priority Critical patent/WO2021102958A1/zh
Priority to CN201980002781.9A priority patent/CN113272750A/zh
Publication of WO2021102958A1 publication Critical patent/WO2021102958A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the embodiments of the present disclosure relate to the technical field of intelligent driving, and in particular to a traffic jam assisted driving method, a traffic jam assisted driving system, on-board equipment, and storage media.
  • At least one embodiment of the present disclosure provides a traffic jam assisted driving method, a traffic jam assisted driving system, a vehicle-mounted device, and a storage medium.
  • an embodiment of the present disclosure proposes a traffic jam assisted driving method.
  • the traffic jam assisted driving function includes a ready state, a ready to enter state, and an on state, and the method includes:
  • the embodiments of the present disclosure also propose a traffic jam assisted driving system.
  • the traffic jam assisted driving function includes a ready state, a ready to enter state, and an open state, and the system includes:
  • An acquiring unit configured to acquire environmental information and vehicle state information around the vehicle based on the vehicle being in the ready state
  • a judging unit configured to judge whether the traffic jam assisted driving function activation condition is met based on the environment information and the vehicle state information
  • a jumping unit configured to jump to the ready-to-enter state based on meeting the conditions for enabling the traffic jam assisted driving function
  • the prompt unit is used to prompt that the traffic jam assisted driving function can be turned on.
  • an embodiment of the present disclosure also proposes a vehicle-mounted device, including: a processor and a memory; the processor is used to execute the steps of the method described in the first aspect by calling a program or instruction stored in the memory.
  • the embodiments of the present disclosure also provide a non-transitory computer-readable storage medium for storing a program or instruction that causes a computer to execute the steps of the method described in the first aspect.
  • the traffic jam assisted driving is performed more reasonably.
  • the ready state by monitoring the environmental information and the vehicle state information, it is judged whether to jump to Ready to enter the state, the prompt function can be turned on in the ready to enter state, and it is manually determined whether to turn on the function to enhance the driving experience.
  • FIG. 1 is an overall architecture diagram of an intelligent driving vehicle provided by an embodiment of the present disclosure
  • Fig. 2 is a block diagram of an intelligent driving system provided by an embodiment of the present disclosure
  • Fig. 3 is a block diagram of a traffic jam assisted driving system provided by an embodiment of the present disclosure
  • FIG. 4 is a block diagram of a vehicle-mounted device provided by an embodiment of the present disclosure.
  • FIG. 5 is a flowchart of a method for assisting driving in traffic jams according to an embodiment of the present disclosure
  • Fig. 6 is a state transition diagram of a traffic jam assisted driving function provided by an embodiment of the present disclosure.
  • embodiments of the present disclosure provide a traffic jam assisted driving solution.
  • traffic jam assisted driving can be performed more reasonably.
  • the environment information and vehicle can be monitored by State information, to determine whether to jump to the ready-to-enter state, the prompt function can be turned on in the ready-to-enter state, and it is manually determined whether to turn on the function to improve the driving experience.
  • FIG. 1 is an overall architecture diagram of an intelligent driving vehicle provided by an embodiment of the disclosure.
  • the intelligent driving vehicle includes: a sensor group, an intelligent driving system 100, a vehicle underlying execution system, and other components that can be used to drive the vehicle and control the operation of the vehicle.
  • the sensor group is used to collect the data of the external environment of the vehicle and detect the position data of the vehicle.
  • the sensor group includes, but is not limited to, at least one of a camera, a lidar, a millimeter wave radar, an ultrasonic radar, a GPS (Global Positioning System, global positioning system), and an IMU (Inertial Measurement Unit), for example.
  • the sensor group is also used to collect dynamics data of the vehicle.
  • the sensor group further includes, but is not limited to, at least one of a wheel speed sensor, a speed sensor, an acceleration sensor, a steering wheel angle sensor, and a front wheel angle sensor, for example.
  • the intelligent driving system 100 is used to obtain data of a sensor group, and all sensors in the sensor group transmit data at a higher frequency during the driving of the intelligent driving vehicle.
  • the intelligent driving system 100 is also used for environmental perception and vehicle positioning based on the data of the sensor group, path planning and decision-making based on environmental perception information and vehicle positioning information, and generating vehicle control instructions based on the planned path, thereby controlling the vehicle according to the plan Route driving.
  • the intelligent driving system 100 has a traffic jam assisted driving function, and the traffic jam assisted driving function defines different states.
  • the different states include but are not limited to: ready state, ready to enter state, and open state.
  • the intelligent driving system 100 realizes traffic jam assisted driving by reasonably switching between different states, and improves the driving experience.
  • the intelligent driving system 100 obtains environmental information and vehicle state information around the vehicle based on the vehicle being in a ready state; and then determines whether the traffic jam assist driving function is met based on the environmental information and vehicle state information; When the traffic jam assisted driving function is turned on, it jumps to the ready-to-enter state; and it prompts that the traffic jam assisted driving function can be turned on.
  • the intelligent driving system 100 may be a software system, a hardware system, or a combination of software and hardware.
  • the intelligent driving system 100 is a software system that runs on an operating system
  • the on-board hardware system is a hardware system that supports the operation of the operating system.
  • the intelligent driving system 100 is also used for wireless communication with a cloud server to exchange various information.
  • the intelligent driving system 100 and the cloud server perform wireless communication through wireless communication networks (for example, including but not limited to wireless communication networks such as GPRS network, Zigbee network, Wifi network, 3G network, 4G network, 5G network, etc.).
  • the cloud server is used to coordinate the management of intelligent driving vehicles. In some embodiments, the cloud server may be used to interact with one or more intelligent driving vehicles, to coordinate and manage the scheduling of multiple intelligent driving vehicles, and so on.
  • the cloud server is a cloud server established by a vehicle service provider to provide cloud storage and cloud computing functions.
  • the vehicle file is created in the cloud server.
  • various information uploaded by the intelligent driving system 100 is stored in the vehicle file.
  • the cloud server can synchronize the driving data generated by the vehicle in real time.
  • the cloud server may be a server or a server group.
  • Server groups can be centralized or distributed. Distributed server is conducive to task allocation and optimization among multiple distributed servers, and overcomes the shortcomings of traditional centralized server resource shortage and response bottleneck.
  • the cloud server may be local or remote.
  • the cloud server can be used to charge vehicles for parking, tolls, etc. In some embodiments, the cloud server is also used to analyze the driving behavior of the driver and evaluate the safety level of the driving behavior of the driver.
  • the cloud server may be used to obtain information about the road side unit (RSU: Road Side Unit) and the intelligent driving vehicle, and may send the information to the intelligent driving vehicle.
  • the cloud server may send the detection information corresponding to the intelligent driving vehicle in the road monitoring unit to the intelligent driving vehicle according to the information of the intelligent driving vehicle.
  • the road monitoring unit may be used to collect road monitoring information.
  • the road monitoring unit may be an environmental sensor, such as a camera, a lidar, etc., or a road device, such as a V2X device, a roadside traffic light device, and the like.
  • the road monitoring unit may monitor the road conditions subordinate to the corresponding road monitoring unit, for example, the type, speed, priority level, etc. of passing vehicles. After the road monitoring unit collects the road monitoring information, the road monitoring information can be sent to the cloud server, or can be sent to the intelligent driving vehicle passing the road.
  • the bottom-level execution system of the vehicle is used to receive vehicle control instructions to control the driving of the vehicle.
  • the vehicle bottom-level execution system includes, but is not limited to: a steering system, a braking system, and a driving system.
  • the steering system, braking system, and drive system are mature systems in the vehicle field and will not be repeated here.
  • the intelligent driving vehicle may further include a vehicle CAN bus not shown in FIG. 1, and the vehicle CAN bus is connected to the underlying execution system of the vehicle.
  • the information interaction between the intelligent driving system 100 and the underlying execution system of the vehicle is transmitted through the vehicle CAN bus.
  • the intelligent driving vehicle can be controlled by the driver and the intelligent driving system 100 to control the vehicle.
  • the driver drives the vehicle by operating a device that controls the traveling of the vehicle.
  • the devices that control the traveling of the vehicle include, but are not limited to, a brake pedal, a steering wheel, and an accelerator pedal, for example.
  • the device for controlling the driving of the vehicle can directly operate the execution system at the bottom of the vehicle to control the driving of the vehicle.
  • FIG. 2 is a block diagram of an intelligent driving system 200 provided by an embodiment of the disclosure.
  • the smart driving system 200 may be implemented as the smart driving system 100 or a part of the smart driving system 100 in FIG. 1 for controlling the driving of the vehicle.
  • the intelligent driving system 200 can be divided into multiple modules or systems, for example, it can include: a perception module 201, a planning module 202, a control module 203, a traffic jam assisted driving system 204, and other modules that can be used for intelligent driving. Or system.
  • the perception module 201 is used for environmental perception and positioning.
  • the sensing module 201 is used to obtain data such as sensor data, V2X (Vehicle to X, wireless communication for vehicles) data, and high-precision maps.
  • the sensing module 201 is configured to perform environment perception and positioning based on at least one of acquired sensor data, V2X (Vehicle to X, vehicle wireless communication) data, and high-precision maps.
  • the perception module 201 is used to generate perception positioning information to realize obstacle perception, recognition of the drivable area of the camera image, and positioning of the vehicle.
  • Environmental Perception can be understood as the ability to understand the scene of the environment, such as the location of obstacles, the detection of road signs/marks, the detection of pedestrians/vehicles, and the semantic classification of data.
  • environment perception can be realized by fusing data from multiple sensors such as cameras, lidars, millimeter wave radars, and so on.
  • Localization is a part of perception, which is the ability to determine the position of an intelligent driving vehicle relative to the environment.
  • Positioning can be: GPS positioning, GPS positioning accuracy is tens of meters to centimeters, high positioning accuracy; positioning can also use GPS and inertial navigation system (Inertial Navigation System) positioning method.
  • Localization can also use SLAM (Simultaneous Localization And Mapping, simultaneous localization and map construction). The goal of SLAM is to construct a map while using the map for positioning. SLAM uses the observed environmental features to determine the current vehicle's location and current observation features s position.
  • V2X is the key technology of the intelligent transportation system, which enables communication between vehicles, vehicles and base stations, base stations and base stations, so as to obtain a series of traffic information such as real-time road conditions, road information, pedestrian information, etc., to improve the safety of intelligent driving and reduce Congestion, improve traffic efficiency, provide on-board entertainment information, etc.
  • High-precision maps are geographic maps used in the field of intelligent driving. Compared with traditional maps, the differences are: 1) High-precision maps include a large amount of driving assistance information, for example, relying on the accurate three-dimensional representation of the road network: including intersections and intersections. The location of road signs, etc.; 2) The high-precision map also includes a lot of semantic information, such as reporting the meaning of different colors on the traffic lights, and for example indicating the speed limit of the road, and the position of the left turn lane; 3) The high-precision map can reach centimeters Class precision to ensure the safe driving of intelligent driving vehicles.
  • the planning module 202 is configured to perform path planning and decision-making based on the perception positioning information generated by the perception module 201.
  • the planning module 202 is configured to perform path planning and decision-making based on the perception positioning information generated by the perception module 201 in combination with at least one of V2X data, high-precision maps and other data.
  • the planning module 202 is used to plan a route and make decisions: behaviors (including but not limited to following, overtaking, stopping, detouring, etc.), vehicle heading, vehicle speed, desired acceleration of the vehicle, desired steering wheel angle And so on, generate planning decision information.
  • the control module 203 is configured to perform path tracking and trajectory tracking based on the planning decision information generated by the planning module 202.
  • control module 203 is used to generate control instructions for the vehicle's bottom-level execution system, and issue control instructions so that the vehicle's bottom-level execution system controls the vehicle to travel along a desired path, for example, by controlling the steering wheel, brakes, and accelerator to control the vehicle. Horizontal and vertical control.
  • control module 203 is also used to calculate the front wheel angle based on the path tracking algorithm.
  • the desired path curve in the path tracking process has nothing to do with time parameters.
  • tracking control it can be assumed that the intelligent driving vehicle is moving at a constant speed at the current speed, and the driving path is approached to the desired path at a certain cost rule; and the trajectory
  • the expected path curve is related to time and space, and the intelligent driving vehicle is required to reach a preset reference path point within a specified time.
  • Path tracking is different from trajectory tracking. It is not subject to time constraints and only needs to track the desired path within a certain error range.
  • the traffic jam assisted driving system 204 has a traffic jam assisted driving function, and the traffic jam assisted driving function defines different states.
  • the different states include but are not limited to: ready state, ready to enter state, and open state.
  • the traffic jam assisted driving system 204 realizes traffic jam assisted driving by reasonably switching between different states, and improves the driving experience.
  • the traffic jam assisted driving system 204 acquires environment information and vehicle state information around the vehicle based on the vehicle being in a ready state; and then determines whether the traffic jam assisted driving function activation condition is satisfied based on the environment information and vehicle state information; Based on meeting the conditions for enabling the traffic jam assisted driving function, it jumps to the ready-to-enter state; and prompts that the traffic jam assisted driving function can be turned on.
  • the functions of the traffic jam assisted driving system 204 can be integrated into the perception module 201, the planning module 202, or the control module 203, or can be configured as a module independent of the intelligent driving system 200, the traffic jam assisted driving system 204 It can be a software module, a hardware module, or a combination of software and hardware.
  • the traffic jam assisted driving system 204 is a software module running on an operating system
  • the on-board hardware system is a hardware system that supports the operation of the operating system.
  • FIG. 3 is a block diagram of a traffic jam assisted driving system 300 according to an embodiment of the disclosure.
  • the traffic jam assisted driving system 300 may be implemented as the traffic jam assisted driving system 204 or a part of the traffic jam assisted driving system 204 in FIG. 2.
  • the traffic jam assisted driving system 300 may include but is not limited to the following units: an acquisition unit 301, a judgment unit 302, a jump unit 303 and a prompt unit 304.
  • the traffic jam assisted driving function defines different states, and the different states include but are not limited to: ready state, ready to enter state, and open state.
  • the traffic jam assisted driving system 300 is used to implement the traffic jam assisted driving function.
  • the acquiring unit 301 is configured to acquire environmental information around the vehicle and vehicle state information based on the vehicle being in a ready state.
  • the vehicle being in the ready state can be understood as the traffic jam assisted driving system 300 has entered the ready state.
  • the traffic jam assisted driving system 300 When the traffic jam assisted driving system 300 is in a ready state, it realizes the acquisition of environmental information around the vehicle and vehicle state information.
  • the environmental information around the vehicle includes, but is not limited to, lane lines and target vehicles in front of the own lane.
  • vehicle status information includes but is not limited to: vehicle speed, gear position, braking status, steering status, and human-machine interaction (Human-Machine, HM) system status.
  • the state defined by the traffic jam assisted driving function may further include a closed state.
  • the traffic jam assisted driving system 300 will enter the ready state only after detecting that the vehicle assisted driving switch is turned on. Otherwise, the traffic jam assisted driving system 300 will enter the off state after detecting that the vehicle assisted driving switch is turned off. In any state, the traffic jam assisted driving system 300 will detect the state of the vehicle assisted driving switch. In the off state, it will detect that the vehicle assisted driving switch is turned on and enter the ready state; in the non-off state, the detected vehicle assisted driving switch will be turned off. After that, it enters the closed state.
  • the jump unit 303 detects the state of the vehicle driving assistance switch. The jump unit 303 detects that the vehicle assisted driving switch is turned off, and then jumps to the off state; after detecting that the vehicle assisted driving switch is turned on, it jumps from the off state to the ready state.
  • the judging unit 302 is configured to judge whether the traffic jam assist driving function activation condition is met based on the environment information and the vehicle state information. In this embodiment, the judging unit 302 judges whether the traffic jam assisted driving function activation condition is met in the ready state, that is, the traffic jam assisted driving system 300 is in the ready state, which not only realizes the acquisition of environmental information around the vehicle and vehicle state information, It also realizes the judgment of the opening conditions of the traffic jam assisted driving function.
  • the conditions for enabling the traffic jam assisted driving function include, but are not limited to: vehicle status information including: lower than a preset vehicle speed, meeting a preset gear position, braking available, steering available, and man-machine interaction system on.
  • vehicle status information including: lower than a preset vehicle speed, meeting a preset gear position, braking available, steering available, and man-machine interaction system on.
  • the preset vehicle speed and the preset gear position can be set based on actual needs, and the specific values are not limited in this embodiment.
  • the conditions for enabling the traffic jam assisted driving function include but are not limited to: environment information includes: at least one lane line or the target vehicle in front of the own lane exists, wherein the relative distance between at least one lane line and the own vehicle is The preset first distance interval and the relative angle are in the preset angle interval; the relative lateral distance between the target vehicle and the self-vehicle is in the preset second distance interval.
  • the preset first distance interval, the preset angle interval, and the preset second distance interval may be set based on actual needs, and the specific value is not limited in this embodiment.
  • the jumping unit 303 is configured to jump to the ready-to-enter state based on meeting the conditions for enabling the traffic jam assisted driving function. In this embodiment, the jump unit 303 jumps from the ready state to the ready-to-enter state after the judging unit 302 judges that the conditions for enabling the traffic jam assisted driving function are met. In some embodiments, in the ready-to-enter state, the jump unit 303 jumps from the ready-to-enter state to the ready state after the judgment unit 302 judges that the traffic jam assisted driving function is not satisfied.
  • the prompt unit 304 is used for prompting that the traffic jam assisted driving function can be turned on.
  • the prompt unit 304 prompts that the traffic jam assisted driving function can be turned on after the jump unit 303 jumps to the ready to enter state, that is, the traffic jam assisted driving system 300 realizes the traffic jam assisted driving function in the ready to enter state Tips that can be turned on.
  • the prompt method may be a voice prompt; it may also be a text prompt, for example, a human-machine interface (HMI) prompts that the traffic jam assisted driving function can be turned on.
  • HMI human-machine interface
  • the driver may decide whether to enable the traffic jam assisted driving function, where the method of receiving may be to receive voice prompts audibly, or to view text prompts visually. After the driver decides to turn on, he can turn on the traffic jam assisted driving function by changing the state of the traffic jam assisted driving function switch to on.
  • the traffic congestion assistance driving function switch can be a soft switch, such as a touch switch displayed in the HMI, or a hard switch, such as a button configured in the driving position of the vehicle or within the reach of the driver. The button can be pressed or toggled.
  • the traffic jam assisted driving system 300 when the traffic jam assisted driving system 300 is ready to enter the state, it not only prompts that the traffic jam assisted driving function can be turned on, but also detects the state of the traffic jam assisted driving function switch in real time.
  • the traffic jam assisted driving system 300 enters the on state after detecting that the traffic jam assisted driving function switch is turned on.
  • the jump unit 303 detects the state of the traffic jam driver assistance function switch in real time. After the jump unit 303 detects that the traffic jam assisted driving function switch is turned on, it jumps to the on state.
  • the traffic jam assisted driving system 300 is turned on to perform traffic jam assisted driving.
  • the jumping unit 303 in the on state, the jumping unit 303 jumps from the on state to the ready state after the judging unit 302 judges that the traffic jam assisted driving function is not satisfied.
  • the open state includes an active sub-state and a suspended sub-state.
  • the traffic jam assisted driving system 300 when the traffic jam assisted driving system 300 is in the ready to enter state, after detecting that the traffic jam assisted driving function switch is turned on, it enters the activated sub-state of the on state.
  • the jump unit 303 detects the state of the traffic jam assisted driving function switch in real time when it is ready to enter the state, and jumps to the active sub-state based on the traffic jam assisted driving function switch is turned on.
  • the traffic jam assisted driving system 300 takes over the lateral control and the longitudinal control of the vehicle in the active sub-state, so as to achieve complete control of the vehicle.
  • the algorithms of the lateral control and the longitudinal control of the vehicle can follow the algorithms of the lateral control and the longitudinal control in the existing traffic jam assisted driving function, which will not be repeated here.
  • the traffic jam driving assistance system 300 displays environmental information and vehicle status information in the active sub-state.
  • the environment information and vehicle status information can be displayed through the HMI, which is convenient for the driver to understand the environment information and vehicle status information under traffic jam conditions in a timely manner.
  • the traffic jam assisted driving system 300 monitors whether there is manual control in the active sub-state, for example, the driver operates the steering wheel. In some embodiments, the traffic jam assisted driving system 300 is monitored by manual control and enters the suspended state. In some embodiments, the jump unit 303 monitors whether there is manual control in the active sub-state, and based on the manual control, jumps to the suspended sub-state. By dividing the open state into an activated sub-state and a suspended sub-state, the driver's operation and vehicle assisted driving are effectively balanced, thereby satisfying the safe driving of the vehicle under traffic congestion conditions.
  • the traffic jam assisted driving system 300 exits the lateral control of the vehicle and maintains the longitudinal control of the vehicle in the suspended sub-state to achieve partial control of the vehicle, and only control the longitudinal direction, and the driver is responsible for the lateral control. Due to the design of the suspension sub-state, after the driver's intervention, the traffic jam assisted driving function is not directly closed, but in the suspended state, reducing the number of function shutdowns.
  • the traffic jam assisted driving system 300 displays the manual control state in the suspended state.
  • the manual control status can be displayed through the HMI, which is convenient for the driver to know the manual control status under traffic jam conditions in time.
  • the traffic jam assisted driving system 300 monitors the manual control state, the environmental information around the vehicle, and the vehicle state information in real time in the suspended state. Furthermore, the traffic jam assisted driving system 300 automatically activates the traffic jam assisted driving function based on the interruption of the manual control state and the environmental information and vehicle state information meet the conditions for enabling the traffic jam assisted driving function.
  • the interruption of the manual control state can be understood as: the steering system does not detect the torque applied by the driver, or the deviation between the current state of the steering system and the return state is within a preset deviation interval. Among them, the deviation area can be set according to actual needs, and the specific value is not limited in this embodiment.
  • the process of automatically activating the traffic jam assisted driving function is specifically: displaying the automatic activation progress of the traffic jam assisted driving function and prompting whether to exit the automatic activation; when automatically activated When the progress is complete, jump to the active sub-state.
  • the progress of automatic activation of the traffic jam driver assistance function can be displayed through the HMI. In this embodiment, the automatic activation progress through the display function is convenient for the driver to understand that the traffic jam assisted driving function is recovering, and the driver experience is improved.
  • the jump unit 303 jumps from the suspended sub-state to the active sub-state when the automatic activation progress is completed.
  • the traffic jam assisted driving function may also include a fault state.
  • the traffic jam assisted driving system 300 detects whether the vehicle is malfunctioning in a ready state, a ready-to-enter state, or an on state, and then enters a malfunction state after detecting a vehicle malfunction.
  • the jump unit 303 detects whether the vehicle is faulty in the ready state, the ready to enter state or the on state, and then after detecting the vehicle fault, it jumps from the corresponding state to the fault state.
  • the vehicle failure includes, but is not limited to: at least one of the perception module, planning module, control module, human-computer interaction system, and vehicle underlying execution system (including lateral actuators and longitudinal actuators) of the intelligent driving system, etc. malfunction.
  • the traffic jam assisted driving system 300 prompts the driver to take over the vehicle in a fault state, and displays fault information, such as displaying the fault information through the HMI, so that the driver can understand the fault location in time and deal with the fault accordingly.
  • Figure 6 shows a state transition diagram of the traffic jam assisted driving function.
  • the states of the traffic jam assisted driving function include: off state, ready state, ready to enter state, open state, and fault state, where the open state includes active sub-states And hang up the sub state. The transition between each state is described as follows:
  • the vehicle assisted driving switch After the vehicle assisted driving switch is turned off, it will switch from the current state to the off state.
  • the current state can be any state of a ready state, a ready to enter state, an open state, and a fault state.
  • Vehicle assisted driving functions include but are not limited to: traffic jam assisted driving function, adaptive cruise control (ACC) function, highway assist (HWA) function, lane keeping assist (Lane Keeping Assist, LKS) function.
  • ACC adaptive cruise control
  • HWA highway assist
  • LKS lane keeping assist
  • the ready state In the ready state, real-time monitoring of the environment information and vehicle state information around the vehicle, and determine whether the environment information and vehicle state information meet the conditions for enabling the traffic jam assisted driving function. If they are met, the state will jump from the ready state to the ready-to-enter state.
  • the ready-to-enter state it is judged that the environment information and the vehicle state information do not meet the conditions for enabling the traffic jam assisted driving function, and then the ready-to-enter state jumps to the ready state.
  • the traffic jam assisted driving function can be turned on, and the driver decides whether to turn it on. The driver can turn on or off the function by operating the traffic jam assisted driving function switch.
  • the ready-to-enter state after the traffic jam detection assisted driving function switch is turned on, the ready-to-enter state jumps to the activated sub-state of the on state.
  • the open state if it is judged that the environmental information and the vehicle state information do not meet the conditions for enabling the traffic congestion assisted driving function, the open state is changed to the ready state.
  • the active sub-state In the active sub-state, it takes over the lateral control and longitudinal control of the vehicle, and displays environmental information and vehicle status information. In the active sub-state, it also monitors whether there is manual control, and the monitoring has manual control, and enters the suspended sub-state.
  • the suspended sub-state exit the lateral control of the vehicle and maintain the longitudinal control of the vehicle, and display the manual control state.
  • it also monitors the manual control state, the environment information around the vehicle, and the vehicle state information in real time, and then based on the interruption of the manual control state and the environmental information and vehicle state information that meet the conditions for enabling the traffic jam assist driving function, the traffic jam assist is automatically activated Driving function, and displays the automatic activation progress of the traffic jam assisted driving function, and prompts whether to exit the automatic activation.
  • the automatic activation progress is completed, it jumps to the active sub-state.
  • the ready to enter state or the on state it detects whether the vehicle is faulty, and then enters the fault state after detecting the vehicle fault.
  • the fault state the driver is prompted to take over the vehicle and the fault information is displayed.
  • the division of each unit in the traffic jam assisted driving system 300 is only a logical function division.
  • there may be other division methods such as the acquisition unit 301, the judgment unit 302, the jump unit 303, and the prompt
  • the unit 304 can be implemented as one unit; the acquisition unit 301, the judgment unit 302, the jump unit 303, or the prompt unit 304 can also be divided into multiple sub-units.
  • each unit or subunit can be implemented by electronic hardware or a combination of computer software and electronic hardware. Whether these functions are executed by hardware or software depends on the specific application and design constraint conditions of the technical solution. Those skilled in the art can use different methods for each specific application to realize the described functions.
  • Fig. 4 is a schematic structural diagram of a vehicle-mounted device provided by an embodiment of the present disclosure.
  • the on-board equipment can support the operation of the intelligent driving system.
  • the vehicle-mounted device includes: at least one processor 401, at least one memory 402, and at least one communication interface 403.
  • the various components in the vehicle-mounted device are coupled together through the bus system 404.
  • the communication interface 403 is used for information transmission with external devices. Understandably, the bus system 404 is used to implement connection and communication between these components.
  • the bus system 404 also includes a power bus, a control bus, and a status signal bus. However, for the sake of clear description, various buses are marked as the bus system 404 in FIG. 4.
  • the memory 402 in this embodiment may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the memory 402 stores the following elements, executable units or data structures, or a subset of them, or an extended set of them: operating systems and applications.
  • the operating system includes various system programs, such as a framework layer, a core library layer, and a driver layer, which are used to implement various basic services and process hardware-based tasks.
  • Application programs including various application programs, such as Media Player, Browser, etc., are used to implement various application services.
  • a program for implementing the traffic jam assisted driving method provided by the embodiments of the present disclosure may be included in an application program.
  • the processor 401 calls a program or instruction stored in the memory 402, specifically, it may be a program or instruction stored in an application program, and the processor 401 is configured to execute the traffic jam assisted driving provided by the embodiment of the present disclosure.
  • the steps of the various embodiments of the method are described in detail below.
  • the traffic jam assisted driving method provided by the embodiments of the present disclosure may be applied to the processor 401 or implemented by the processor 401.
  • the processor 401 may be an integrated circuit chip with signal processing capability. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 401 or instructions in the form of software.
  • the aforementioned processor 401 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the traffic jam assisted driving method provided by the embodiments of the present disclosure may be directly executed and completed by a hardware decoding processor, or executed by a combination of hardware and software units in the decoding processor.
  • the software unit may be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 402, and the processor 401 reads the information in the memory 402 and completes the steps of the method in combination with its hardware.
  • FIG. 5 is a flowchart of a method for assisting driving in traffic jams according to an embodiment of the disclosure.
  • the execution body of the method is a vehicle-mounted device.
  • the execution body of the method is an intelligent driving system supported by the vehicle-mounted device.
  • the traffic jam assisted driving function defines different states, and the different states include but are not limited to: ready state, ready to enter state, and open state.
  • the traffic jam assisted driving method may include the following steps 501 to 504:
  • the vehicle is in the ready state can be understood as the traffic jam assisted driving function has entered the ready state.
  • the traffic jam assisted driving function When the traffic jam assisted driving function is in the ready state, it realizes the acquisition of environmental information around the vehicle and vehicle status information.
  • the environmental information around the vehicle includes, but is not limited to, lane lines and target vehicles in front of the own lane.
  • vehicle status information includes but is not limited to: vehicle speed, gear position, braking status, steering status, and human-machine interaction (Human-Machine, HM) system status.
  • the state defined by the traffic jam assisted driving function may further include a closed state. After the detection vehicle driving assistance switch is turned on, it enters the ready state; otherwise, the detection vehicle driving assistance switch is turned off and enters the off state. In either state, the state of the vehicle assisted driving switch will be detected. In the off state, the vehicle assisted driving switch will be turned on and enter the ready state; in the non-off state, the vehicle assisted driving switch will be turned off and enter the off state. In some embodiments, after detecting that the vehicle assisted driving switch is turned off, it jumps to the off state; after detecting that the vehicle assisted driving switch is turned on, it transitions from the off state to the ready state.
  • the traffic jam assist driving function activation condition is met.
  • the traffic congestion assisted driving function opening condition is met, that is, in the ready state, not only the acquisition of the surrounding environment information and vehicle state information of the vehicle, but also the traffic jam assisted driving function opening condition is realized Judgment.
  • the conditions for enabling the traffic jam assisted driving function include, but are not limited to: vehicle status information including: lower than a preset vehicle speed, meeting a preset gear position, braking available, steering available, and man-machine interaction system on.
  • vehicle status information including: lower than a preset vehicle speed, meeting a preset gear position, braking available, steering available, and man-machine interaction system on.
  • the preset vehicle speed and the preset gear position can be set based on actual needs, and the specific values are not limited in this embodiment.
  • the conditions for enabling the traffic jam assisted driving function include but are not limited to: environment information includes: at least one lane line or the target vehicle in front of the own lane exists, wherein the relative distance between at least one lane line and the own vehicle is The preset first distance interval and the relative angle are in the preset angle interval; the relative lateral distance between the target vehicle and the self-vehicle is in the preset second distance interval.
  • the preset first distance interval, the preset angle interval, and the preset second distance interval may be set based on actual needs, and the specific value is not limited in this embodiment.
  • the ready-to-enter state based on meeting the conditions for enabling the traffic jam assisted driving function.
  • the state transitions from the ready state to the ready-to-enter state.
  • the ready-to-enter state is changed to the ready state.
  • the traffic jam assisted driving function can be turned on.
  • the traffic jam assisted driving function can be prompted, that is, in the ready-to-enter state, a reminder that the traffic jam assisted driving function can be turned on is realized.
  • the prompt method may be a voice prompt; it may also be a text prompt, for example, a human-machine interface (HMI) prompts that the traffic jam assisted driving function can be turned on.
  • HMI human-machine interface
  • the driver may decide whether to enable the traffic jam assisted driving function, where the method of receiving may be to receive voice prompts audibly, or to view text prompts visually. After the driver decides to turn on, he can turn on the traffic jam assisted driving function by changing the state of the traffic jam assisted driving function switch to on.
  • the traffic congestion assistance driving function switch can be a soft switch, such as a touch switch displayed in the HMI, or a hard switch, such as a button configured in the driving position of the vehicle or within the reach of the driver. The button can be pressed or toggled.
  • the ready-to-enter state it not only prompts that the traffic jam assisted driving function can be turned on, but also detects the state of the traffic jam assisted driving function switch in real time. After detecting the traffic jam, the driving assistance function switch is turned on, and then it enters the on state. In some embodiments, the state of the traffic congestion assisted driving function switch is detected in real time, and after the traffic jam is detected, the assisted driving function switch is turned on, and then jumps to the on state. In some embodiments, in the on state, the traffic jam assisted driving is performed. In some embodiments, in the on state, after determining that the traffic jam assisted driving function is not satisfied, the on state is changed to the ready state.
  • the open state includes an active sub-state and a suspended sub-state.
  • the ready-to-enter state after detecting that the traffic jam assist driving function switch is turned on, it enters the activated sub-state of the on state.
  • the state of the traffic congestion assisted driving function switch is detected in real time, and the switch is turned on based on the traffic congestion assisted driving function switch to jump to the active sub-state.
  • the lateral control and the longitudinal control of the vehicle are taken over to achieve complete control of the vehicle.
  • the algorithms of the lateral control and the longitudinal control of the vehicle can follow the algorithms of the lateral control and the longitudinal control in the existing traffic jam assisted driving function, which will not be repeated here.
  • environmental information and vehicle state information are displayed.
  • the environment information and vehicle status information can be displayed through the HMI, which is convenient for the driver to understand the environment information and vehicle status information under traffic jam conditions in a timely manner.
  • the activated sub-state it is monitored whether there is manual control, for example, the driver operates the steering wheel. In some embodiments, the monitoring has manual control and enters the suspended sub-state. In some embodiments, in the active sub-state, it is monitored whether there is manual control, and based on the manual control, it jumps to the suspended sub-state.
  • the suspension sub-state exit the lateral control of the vehicle and maintain the longitudinal control of the vehicle to achieve partial control of the vehicle, and only control the longitudinal direction, and the driver is responsible for the lateral control. Due to the design of the suspension sub-state, after the driver's intervention, the traffic jam assisted driving function is not directly closed, but in the suspended state, reducing the number of function shutdowns.
  • the manual control state in the suspended sub-state, is displayed.
  • the manual control status can be displayed through the HMI, which is convenient for the driver to know the manual control status under traffic jam conditions in time.
  • the manual control state, the environmental information around the vehicle, and the vehicle state information are monitored in real time. Then, based on the interruption of the manual control state and the environmental information and vehicle state information meeting the conditions for enabling the traffic jam assisted driving function, the traffic jam assisted driving function is automatically activated.
  • the interruption of the manual control state can be understood as: the steering system does not detect the torque applied by the driver, or the deviation between the current state of the steering system and the return state is within a preset deviation interval. Among them, the deviation area can be set according to actual needs, and the specific value is not limited in this embodiment.
  • the process of automatically activating the traffic jam assisted driving function is specifically: displaying the automatic activation progress of the traffic jam assisted driving function, and prompting whether to exit the automatic activation; when the automatic activation progress is completed, jump It is the active sub-state.
  • the progress of automatic activation of the traffic jam driving assistance function can be displayed through the HMI. In this embodiment, the automatic activation progress through the display function is convenient for the driver to understand that the traffic jam assisted driving function is recovering, and the driver experience is improved.
  • the traffic jam assisted driving function when displaying the automatic activation progress of the traffic jam assisted driving function through the HMI, it is further prompted that the traffic jam assisted driving function is automatically activated by default after the automatic activation progress is over, and whether to exit the automatic activation is prompted, and the driver can actively choose to exit the automatic activation , To enhance the driver experience.
  • the suspended sub-state is changed to the active sub-state.
  • the traffic jam assisted driving function may also include a fault state.
  • the ready state the ready to enter state or the on state, it detects whether the vehicle is faulty, and then enters the fault state after detecting the vehicle fault.
  • the ready state the ready to enter state, or the on state, it is detected whether the vehicle is faulty, and then after the vehicle fault is detected, the corresponding state is changed to the fault state.
  • the vehicle failure includes, but is not limited to: at least one of the perception module, planning module, control module, human-computer interaction system, and vehicle underlying execution system (including lateral actuators and longitudinal actuators) of the intelligent driving system, etc. malfunction.
  • the driver in a fault state, the driver is prompted to take over the vehicle and display the fault information, for example, the fault information is displayed through the HMI, so that the driver can understand the location of the fault in time and deal with the fault accordingly.
  • the embodiments of the present disclosure also propose a non-transitory computer-readable storage medium, which stores a program or instruction, and the program or instruction causes a computer to execute the various embodiments of the traffic jam assisted driving method. Steps, in order to avoid repetitive description, will not be repeated here.
  • the traffic jam assisted driving is performed more reasonably.
  • the ready state by monitoring the environmental information and the vehicle state information, it is judged whether to jump to the ready to enter state.
  • the prompt function can be turned on in the ready to enter state, and it is manually determined whether to turn on the function to enhance the driving experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

一种交通拥堵辅助驾驶方法、***、车载设备和存储介质,交通拥堵辅助驾驶功能包括就绪状态、准备进入状态和开启状态。方法包括:基于车辆处于所述就绪状态,获取车辆周围的环境信息和车辆状态信息(501);基于环境信息和车辆状态信息,判断是否满***通拥堵辅助驾驶功能开启条件(502);基于满***通拥堵辅助驾驶功能开启条件,跳转为准备进入状态(503);提示交通拥堵辅助驾驶功能可开启(504)。上述方法中通过定义交通拥堵辅助驾驶功能不同的状态,更加合理地进行交通拥堵辅助驾驶,在就绪状态下,通过监测环境信息和车辆状态信息,判断是否跳转为准备进入状态,在准备进入状态下提示功能可开启,由人工决定是否开启功能,提升驾乘体验。

Description

一种交通拥堵辅助驾驶方法、***、车载设备和存储介质 技术领域
本公开实施例涉及智能驾驶技术领域,具体涉及一种交通拥堵辅助驾驶方法、交通拥堵辅助驾驶***、车载设备和存储介质。
背景技术
随着智能驾驶技术的发展,提高了驾驶员和乘客的驾乘体验。交通拥堵工况属于常见且复杂的工况,为此,亟需提供一种交通拥堵辅助驾驶方案,提高在交通拥堵工况下的驾乘体验。
上述对问题的发现过程的描述,仅用于辅助理解本公开的技术方案,并不代表承认上述内容是现有技术。
发明内容
为了解决现有技术存在的至少一个问题,本公开的至少一个实施例提供了一种交通拥堵辅助驾驶方法、交通拥堵辅助驾驶***、车载设备和存储介质。
第一方面,本公开实施例提出一种交通拥堵辅助驾驶方法,交通拥堵辅助驾驶功能包括就绪状态、准备进入状态和开启状态,所述方法包括:
基于车辆处于所述就绪状态,获取车辆周围的环境信息和车辆状态信息;
基于所述环境信息和所述车辆状态信息,判断是否满***通拥堵辅助驾驶功能开启条件;
基于满足所述交通拥堵辅助驾驶功能开启条件,跳转为所述准备进入状态;
提示交通拥堵辅助驾驶功能可开启。
第二方面,本公开实施例还提出一种交通拥堵辅助驾驶***,交通拥堵辅助驾驶功能包括就绪状态、准备进入状态和开启状态,所述***包括:
获取单元,用于基于车辆处于所述就绪状态,获取车辆周围的环境信息和车辆状态信息;
判断单元,用于基于所述环境信息和所述车辆状态信息,判断是否满***通拥堵辅助驾驶功能开启条件;
跳转单元,用于基于满足所述交通拥堵辅助驾驶功能开启条件,跳转为所述准备进入状态;
提示单元,用于提示交通拥堵辅助驾驶功能可开启。
第三方面,本公开实施例还提出一种车载设备,包括:处理器和存储器;所述处理器通过调用所述存储器存储的程序或指令,用于执行如第一方面所述方法的步骤。
第四方面,本公开实施例还提出一种非暂态计算机可读存储介质,用于存储程序或指令,所述程序或指令使计算机执行如第一方面所述方法的步骤。
可见,本公开的至少一个实施例中,通过定义交通拥堵辅助驾驶功能不同的状态,更加合理地进行交通拥堵辅助驾驶,在就绪状态下,通过监测环境信息和车辆状态信息,判断是否跳转为准备进入状态,在准备进入状态下提示功能可开启,由人工决定是否开启功能,提升驾乘体验。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种智能驾驶车辆的整体架构图;
图2是本公开实施例提供的一种智能驾驶***的框图;
图3是本公开实施例提供的一种交通拥堵辅助驾驶***的框图;
图4是本公开实施例提供的一种车载设备的框图;
图5是本公开实施例提供的一种交通拥堵辅助驾驶方法流程图;
图6是本公开实施例提供的一种交通拥堵辅助驾驶功能的状态转移图。
具体实施方式
为了能够更清楚地理解本公开的上述目的、特征和优点,下面结合附图和实施例对本公开作进一步的详细说明。可以理解的是,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。此处所描述的具体实施例仅仅用于解释本公开,而非对本公开的限定。基于所描述的本公开的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。
针对交通拥堵工况,本公开实施例提供一种交通拥堵辅助驾驶方案,通过定义交通拥堵辅助驾驶功能不同的状态,更加合理地进行交通拥堵辅助驾驶,在就绪状态下,通过监测环境信息和车辆状态信息,判断是否跳转为准备进入状态,在准备进入状态下提示功能可开启,由人工决定是否开启功能,提升驾乘体验。
在一些实施例中,本公开实施例提供的交通拥堵辅助驾驶方案,可应用于智能驾驶车辆。图1为本公开实施例提供的一种智能驾驶车辆的整体架构图。
如图1所示,智能驾驶车辆包括:传感器组、智能驾驶***100、车辆底层执行***以及其他可用于驱动车辆和控制车辆运行的部件。
传感器组,用于采集车辆外界环境的数据和探测车辆的位置数据。传感器组例如包括但不限于摄像头、激光雷达、毫米波雷达、超声波雷达、GPS(Global Positioning System,全球定位***)和IMU(Inertial Measurement Unit,惯性测量单元)中的至少一个。
在一些实施例中,传感器组,还用于采集车辆的动力学数据,传感器组例如还包括但不限于车轮转速传感器、速度传感器、加速度传感器、方向盘转角传感器、前轮转角传感器中的至少一个。
智能驾驶***100,用于获取传感器组的数据,传感器组中所有传感器在智能驾驶车辆行驶过程中都以较高的频率传送数据。
智能驾驶***100,还用于基于传感器组的数据进行环境感知和车辆定位,并基于环境感知信息和车辆定位信息进行路径规划和决策,以及基于规划的路径生成车辆控制指令,从而控制车辆按照规划路径行驶。
在一些实施例中,智能驾驶***100具有交通拥堵辅助驾驶功能,且交通拥堵辅助驾驶功能定义不同的状态,不同的状态包括但不限于:就绪状态、准备进入状态和开启状态。智能驾驶***100通过合理切换不同状态,实现交通拥堵辅助驾驶,提升驾乘体验。在一些实施例中,智能驾驶***100基于车辆处于就绪状态,获取车辆周围的环境信息和车辆状态信息;进而基于环境信息和车辆状态信息,判断是否满***通拥堵辅助驾驶功能开启条件;从而基于满***通拥堵辅助驾驶功能开启条件,跳转为准备进入状态;并提示交通拥堵辅助驾驶功能可开启。
在一些实施例中,智能驾驶***100可以为软件***、硬件***或者软硬件结合的***。例如,智能驾驶***100是运行在操作***上的软件***,车载硬件***是支持操作***运行的硬件***。
在一些实施例中,智能驾驶***100,还用于与云端服务器无线通信,交互各种信息。在一些实施例中,智能驾驶***100与云端服务器通过无线通讯网络(例如包括但不限于GPRS网络、Zigbee网络、Wifi网络、3G网络、4G网络、5G网络等无线通讯网络)进行无线通信。
在一些实施例中,云端服务器用于统筹协调管理智能驾驶车辆。在一些实施例中,云端服务器可以用于与一个或多个智能驾驶车辆进行交互,统筹协调管理多个智能驾驶车辆的调度等。
在一些实施例中,云端服务器是由车辆服务商所建立的云端服务器,提供云存储 和云计算的功能。在一些实施例中,云端服务器中建立车辆端档案。在一些实施例中,车辆端档案中储存智能驾驶***100上传的各种信息。在一些实施例中,云端服务器可以实时同步车辆端产生的驾驶数据。
在一些实施例中,云端服务器可以是一个服务器,也可以是一个服务器群组。服务器群组可以是集中式的,也可以是分布式的。分布式服务器,有利于任务在多个分布式服务器进行分配与优化,克服传统集中式服务器资源紧张与响应瓶颈的缺陷。在一些实施例中,云端服务器可以是本地的或远程的。
在一些实施例中,云端服务器可用于对车辆端进行停车收费、过路收费等。在一些实施例中,云端服务器还用于分析驾驶员的驾驶行为,并且对驾驶员的驾驶行为进行安全等级评估。
在一些实施例中,云端服务器可用于获取道路监测单元(RSU:Road Side Unit)和智能驾驶车辆的信息,以及可以发送信息至智能驾驶车辆。在一些实施例中,云端服务器可以根据智能驾驶车辆的信息将道路监测单元中的与智能驾驶车辆相对应的检测信息发送给智能驾驶车辆。
在一些实施例中,道路监测单元可以用于收集道路监测信息。在一些实施例中,道路监测单元可以是环境感知传感器,例如,摄像头、激光雷达等,也可以是道路设备,例如V2X设备,路边红绿灯装置等。在一些实施例中,道路监测单元可以监控隶属于相应道路监测单元的道路情况,例如,通过车辆的类型、速度、优先级别等。道路监测单元在收集到道路监测信息后,可将所述道路监测信息发送给云端服务器,也可以发送给通过道路的智能驾驶车辆。
车辆底层执行***,用于接收车辆控制指令,实现对车辆行驶的控制。在一些实施例中,车辆底层执行***包括但不限于:转向***、制动***和驱动***。转向***、制动***和驱动***属于车辆领域成熟***,在此不再赘述。
在一些实施例中,智能驾驶车辆还可包括图1中未示出的车辆CAN总线,车辆CAN总线连接车辆底层执行***。智能驾驶***100与车辆底层执行***之间的信息交互通过车辆CAN总线进行传递。
在一些实施例中,智能驾驶车辆既可以通过驾驶员又可以通过智能驾驶***100控制车辆行驶。在人工驾驶模式下,驾驶员通过操作控制车辆行驶的装置驾驶车辆,控制车辆行驶的装置例如包括但不限于制动踏板、方向盘和油门踏板等。控制车辆行驶的装置可直接操作车辆底层执行***控制车辆行驶。
图2为本公开实施例提供的一种智能驾驶***200的框图。在一些实施例中,智能驾驶***200可以实现为图1中的智能驾驶***100或者智能驾驶***100的一部 分,用于控制车辆行驶。
如图2所示,智能驾驶***200可划分为多个模块或***,例如可包括:感知模块201、规划模块202、控制模块203、交通拥堵辅助驾驶***204以及其他一些可用于智能驾驶的模块或***。
感知模块201用于进行环境感知与定位。在一些实施例中,感知模块201用于获取传感器数据、V2X(Vehicle to X,车用无线通信)数据、高精度地图等数据。在一些实施例中,感知模块201用于基于获取的传感器数据、V2X(Vehicle to X,车用无线通信)数据、高精度地图等数据中的至少一种,进行环境感知与定位。
在一些实施例中,感知模块201用于生成感知定位信息,实现对障碍物感知、摄像头图像的可行驶区域识别以及车辆的定位等。
环境感知(Environmental Perception)可以理解为对于环境的场景理解能力,例如障碍物的位置,道路标志/标记的检测,行人/车辆的检测等数据的语义分类。在一些实施例中,环境感知可采用融合摄像头、激光雷达、毫米波雷达等多种传感器的数据进行环境感知。
定位(Localization)属于感知的一部分,是确定智能驾驶车辆相对于环境的位置的能力。定位可采用:GPS定位,GPS的定位精度在数十米到厘米级别,定位精度高;定位还可采用融合GPS和惯性导航***(Inertial Navigation System)的定位方法。定位还可采用SLAM(Simultaneous Localization And Mapping,同步定位与地图构建),SLAM的目标即构建地图的同时使用该地图进行定位,SLAM通过利用已经观测到的环境特征确定当前车辆的位置以及当前观测特征的位置。
V2X是智能交通运输***的关键技术,使得车与车、车与基站、基站与基站之间能够通信,从而获得实时路况、道路信息、行人信息等一系列交通信息,提高智能驾驶安全性、减少拥堵、提高交通效率、提供车载娱乐信息等。
高精度地图是智能驾驶领域中使用的地理地图,与传统地图相比,不同之处在于:1)高精度地图包括大量的驾驶辅助信息,例如依托道路网的精确三维表征:包括交叉路口局和路标位置等;2)高精度地图还包括大量的语义信息,例如报告交通灯上不同颜色的含义,又例如指示道路的速度限制,以及左转车道开始的位置;3)高精度地图能达到厘米级的精度,确保智能驾驶车辆的安全行驶。
规划模块202用于基于感知模块201生成的感知定位信息,进行路径规划和决策。
在一些实施例中,规划模块202用于基于感知模块201生成的感知定位信息,并结合V2X数据、高精度地图等数据中的至少一种,进行路径规划和决策。
在一些实施例中,规划模块202用于规划路径,决策:行为(例如包括但不限于 跟车、超车、停车、绕行等)、车辆航向、车辆速度、车辆的期望加速度、期望的方向盘转角等,生成规划决策信息。
控制模块203用于基于规划模块202生成的规划决策信息,进行路径跟踪和轨迹跟踪。
在一些实施例中,控制模块203用于生成车辆底层执行***的控制指令,并下发控制指令,以使车辆底层执行***控制车辆按照期望路径行驶,例如通过控制方向盘、刹车以及油门对车辆进行横向和纵向控制。
在一些实施例中,控制模块203还用于基于路径跟踪算法计算前轮转角。
在一些实施例中,路径跟踪过程中的期望路径曲线与时间参数无关,跟踪控制时,可以假设智能驾驶车辆以当前速度匀速前进,以一定的代价规则使行驶路径趋近于期望路径;而轨迹跟踪时,期望路径曲线与时间和空间均相关,并要求智能驾驶车辆在规定的时间内到达某一预设好的参考路径点。
路径跟踪不同于轨迹跟踪,不受制于时间约束,只需要在一定误差范围内跟踪期望路径。
交通拥堵辅助驾驶***204具有交通拥堵辅助驾驶功能,且交通拥堵辅助驾驶功能定义不同的状态,不同的状态包括但不限于:就绪状态、准备进入状态和开启状态。交通拥堵辅助驾驶***204通过合理切换不同状态,实现交通拥堵辅助驾驶,提升驾乘体验。在一些实施例中,交通拥堵辅助驾驶***204基于车辆处于就绪状态,获取车辆周围的环境信息和车辆状态信息;进而基于环境信息和车辆状态信息,判断是否满***通拥堵辅助驾驶功能开启条件;从而基于满***通拥堵辅助驾驶功能开启条件,跳转为准备进入状态;并提示交通拥堵辅助驾驶功能可开启。
在一些实施例中,交通拥堵辅助驾驶***204的功能可集成到感知模块201、规划模块202或控制模块203中,也可配置为与智能驾驶***200相独立的模块,交通拥堵辅助驾驶***204可以为软件模块、硬件模块或者软硬件结合的模块。例如,交通拥堵辅助驾驶***204是运行在操作***上的软件模块,车载硬件***是支持操作***运行的硬件***。
图3为本公开实施例提供的一种交通拥堵辅助驾驶***300的框图。在一些实施例中,交通拥堵辅助驾驶***300可以实现为图2中的交通拥堵辅助驾驶***204或者交通拥堵辅助驾驶***204的一部分。
如图3所示,交通拥堵辅助驾驶***300可包括但不限于以下单元:获取单元301、判断单元302、跳转单元303和提示单元304。本实施例中,交通拥堵辅助驾驶功能定义不同的状态,不同的状态包括但不限于:就绪状态、准备进入状态和开启状态。交 通拥堵辅助驾驶***300用于实现交通拥堵辅助驾驶功能。
获取单元301,用于基于车辆处于就绪状态,获取车辆周围的环境信息和车辆状态信息。其中,车辆处于就绪状态可以理解为交通拥堵辅助驾驶***300进入了就绪状态。交通拥堵辅助驾驶***300在就绪状态下,实现车辆周围的环境信息和车辆状态信息的获取。
在一些实施例中,车辆周围的环境信息包括但不限于车道线和自车道前方目标车。车辆状态信息包括但不限于:车速、档位、制动状态、转向状态和人机交互(Human–Machine,HM)***状态。
在一些实施例中,交通拥堵辅助驾驶功能定义的状态还可包括:关闭状态。交通拥堵辅助驾驶***300检测车辆辅助驾驶开关开启后,才会进入就绪状态,否则,检测车辆辅助驾驶开关关闭后,交通拥堵辅助驾驶***300会进入关闭状态。交通拥堵辅助驾驶***300在任一状态下,均会检测车辆辅助驾驶开关的状态,在关闭状态下,检测车辆辅助驾驶开关开启后,进入就绪状态;在非关闭状态下,检测车辆辅助驾驶开关关闭后,进入关闭状态。在一些实施例中,跳转单元303检测车辆辅助驾驶开关的状态。跳转单元303检测车辆辅助驾驶开关关闭后,跳转为关闭状态;检测车辆辅助驾驶开关开启后,由关闭状态跳转为就绪状态。
判断单元302,用于基于环境信息和车辆状态信息,判断是否满***通拥堵辅助驾驶功能开启条件。本实施例中,判断单元302在就绪状态下判断是否满***通拥堵辅助驾驶功能开启条件,也即交通拥堵辅助驾驶***300在就绪状态下,不仅实现车辆周围的环境信息和车辆状态信息的获取,而且实现交通拥堵辅助驾驶功能开启条件的判断。
在一些实施例中,交通拥堵辅助驾驶功能开启条件,包括但不限于:车辆状态信息包括:低于预设车速、满足预设档位、制动可用、转向可用和人机交互***开启。其中,预设车速和预设档位可基于实际需要进行设置,本实施例不限定具体取值。
在一些实施例中,交通拥堵辅助驾驶功能开启条件,包括但不限于:环境信息包括:至少一侧车道线或自车道前方目标车存在,其中,至少一侧车道线与自车的相对距离处于预设的第一距离区间且相对角度处于预设的角度区间;目标车与自车的相对横向距离处于预设的第二距离区间。其中,预设的第一距离区间、预设的角度区间和预设的第二距离区间可基于实际需要进行设置,本实施例不限定具体取值。
跳转单元303,用于基于满***通拥堵辅助驾驶功能开启条件,跳转为准备进入状态。本实施例中,跳转单元303在判断单元302判断满***通拥堵辅助驾驶功能开启条件后,由就绪状态跳转为准备进入状态。在一些实施例中,在准备进入状态下,跳 转单元303在判断单元302判断不满***通拥堵辅助驾驶功能开启条件后,由准备进入状态跳转为就绪状态。
提示单元304,用于提示交通拥堵辅助驾驶功能可开启。本实施例中,提示单元304在跳转单元303跳转为准备进入状态后,提示交通拥堵辅助驾驶功能可开启,也即交通拥堵辅助驾驶***300在准备进入状态下,实现交通拥堵辅助驾驶功能可开启的提示。在一些实施例中,提示的方式可以使语音提示;也可以是文字提示,例如通过人机交互界面(Human–Machine Interface,HMI)提示交通拥堵辅助驾驶功能可开启。
在一些实施例中,驾驶员接收到提示后,可决定是否开启交通拥堵辅助驾驶功能,其中,接收的方式可以是听觉接收语音提示,也可以是视觉查看文字提示。驾驶员决定开启后,可通过改变交通拥堵辅助驾驶功能开关的状态为开启,实现交通拥堵辅助驾驶功能的开启。
在一些实施例中,交通拥堵辅助驾驶功能开关可以为软开关,例如HMI中显示的可触控开关;也可以为硬开关,例如为车辆的驾驶位或驾驶员可触及范围内配置的按钮,按钮可按压或拨动。
在一些实施例中,交通拥堵辅助驾驶***300在准备进入状态下,不仅提示交通拥堵辅助驾驶功能可开启,而且实时检测交通拥堵辅助驾驶功能开关的状态。交通拥堵辅助驾驶***300在检测到交通拥堵辅助驾驶功能开关开启后,进入开启状态。在一些实施例中,跳转单元303实时检测交通拥堵辅助驾驶功能开关的状态。跳转单元303检测交通拥堵辅助驾驶功能开关开启后,跳转为开启状态。在一些实施例中,交通拥堵辅助驾驶***300在开启状态下,进行交通拥堵辅助驾驶。在一些实施例中,在开启状态下,跳转单元303在判断单元302判断不满***通拥堵辅助驾驶功能开启条件后,由开启状态跳转为就绪状态。
在一些实施例中,开启状态包括:激活子状态和挂起子状态。在一些实施例中,交通拥堵辅助驾驶***300在准备进入状态下,检测到交通拥堵辅助驾驶功能开关开启后,进入开启状态的激活子状态。在一些实施例中,跳转单元303在准备进入状态下,实时检测交通拥堵辅助驾驶功能开关的状态,基于交通拥堵辅助驾驶功能开关开启,跳转为激活子状态。
在一些实施例中,交通拥堵辅助驾驶***300在激活子状态下,接管车辆的横向控制和纵向控制,实现对车辆进行完全控制。在一些实施例中,车辆的横向控制和纵向控制的算法可沿用现有的交通拥堵辅助驾驶功能中横向控制和纵向控制的算法,在此不再赘述。
在一些实施例中,交通拥堵辅助驾驶***300在激活子状态下,显示环境信息和 车辆状态信息。在一些实施例中,可通过HMI显示环境信息和车辆状态信息,便于驾驶员及时了解交通拥堵工况下的环境信息和车辆状态信息。
在一些实施例中,交通拥堵辅助驾驶***300在激活子状态下,监控是否有人工控制,例如驾驶员操作方向盘。在一些实施例中,交通拥堵辅助驾驶***300监测有人工控制,进入挂起子状态。在一些实施例中,跳转单元303在激活子状态下,监测是否有人工控制,基于有人工控制,跳转为挂起子状态。通过将开启状态划分为激活子状态和挂起子状态,有效平衡驾驶员操作和车辆辅助驾驶,进而满***通拥堵工况下车辆的安全驾驶。
在一些实施例中,交通拥堵辅助驾驶***300在挂起子状态下,退出车辆的横向控制并保持对车辆的纵向控制,实现对车辆进行部分控制,仅控制纵向,由驾驶员负责横向控制。由于设计挂起子状态,使驾驶员干涉后,交通拥堵辅助驾驶功能并非直接关闭,而是处于挂起状态,减少功能关闭次数。
在一些实施例中,交通拥堵辅助驾驶***300在挂起子状态下,显示人工控制状态。在一些实施例中,可通过HMI显示人工控制状态,便于驾驶员及时了解交通拥堵工况下的人工控制状态。
在一些实施例中,交通拥堵辅助驾驶***300在挂起子状态下,实时监测人工控制状态、车辆周围的环境信息和车辆状态信息。进而交通拥堵辅助驾驶***300基于人工控制状态中断且环境信息和车辆状态信息满***通拥堵辅助驾驶功能开启条件,自动激活交通拥堵辅助驾驶功能。在一些实施例中,人工控制状态中断可以理解为:转向***没有检测到驾驶员施加力矩,或转向***当前状态与回正状态的偏差值在预设的偏差区间内。其中,偏差区域可根据实际需要进行设置,本实施例不限定具体取值。
在一些实施例中,交通拥堵辅助驾驶***300在挂起子状态下,自动激活交通拥堵辅助驾驶功能的过程具体为:显示交通拥堵辅助驾驶功能自动激活进度,并提示是否退出自动激活;当自动激活进度完成时,跳转为激活子状态。在一些实施例中,可通过HMI显示交通拥堵辅助驾驶功能自动激活进度。本实施例中,通过显示功能自动激活进度,便于驾驶员了解交通拥堵辅助驾驶功能正在恢复,提升驾驶员体验。在一些实施例中,通过HMI显示交通拥堵辅助驾驶功能自动激活进度时,进一步提示自动激活进度结束后默认自动激活交通拥堵辅助驾驶功能,并提示是否退出自动激活,驾驶员可主动选择退出自动激活,提升驾驶员体验。在一些实施例中,跳转单元303在自动激活进度完成时,由挂起子状态跳转为激活子状态。
在一些实施例中,交通拥堵辅助驾驶功能还可包括故障状态。交通拥堵辅助驾驶 ***300在就绪状态、准备进入状态或开启状态下,检测车辆是否故障,进而在检测到车辆故障后,进入故障状态。在一些实施例中,跳转单元303在就绪状态、准备进入状态或开启状态下,检测车辆是否故障,进而在检测到车辆故障后,由对应状态跳转为故障状态。在一些实施例中,车辆故障包括但不限于:智能驾驶***的感知模块、规划模块、控制模块、人机交互***和车辆底层执行***(包括横向执行器和纵向执行器)等中的至少一个发生故障。
在一些实施例中,交通拥堵辅助驾驶***300在故障状态下,提示驾驶员接管车辆,并显示故障信息,例如通过HMI显示故障信息,以使驾驶员及时了解故障位置并进行相应地故障处理。
图6示出了一种交通拥堵辅助驾驶功能的状态转移图,交通拥堵辅助驾驶功能的状态包括:关闭状态、就绪状态、准备进入状态、开启状态和故障状态,其中,开启状态包括激活子状态和挂起子状态。各状态之间的转移描述如下:
车辆辅助驾驶开关关闭后,由当前状态跳转为关闭状态。其中,当前状态可以是就绪状态、准备进入状态、开启状态和故障状态中的任一状态。
车辆辅助驾驶开关开启后,由关闭状态跳转到就绪状态。
车辆辅助驾驶功能包括但不限于:交通拥堵辅助驾驶功能、自适应巡航(Adaptive Cruise Control,ACC)功能、高速公路辅助(Highway Assist,HWA)功能、车道保持辅助(Lane Keeping Assist,LKS)功能。在就绪状态下,实时监控车辆周围的环境信息和车辆状态信息,若环境信息和车辆状态信息满足ACC功能、HWA功能或LKS功能的进入条件,则进入对应的功能,其中,ACC功能、HWA功能和LKS功能的进入条件可沿用现有技术,不再赘述。
在就绪状态下,实时监控车辆周围的环境信息和车辆状态信息,判断环境信息和车辆状态信息是否满***通拥堵辅助驾驶功能开启条件,若满足,则由就绪状态跳转为准备进入状态。
在准备进入状态下,判断环境信息和车辆状态信息不满***通拥堵辅助驾驶功能开启条件,则由准备进入状态跳转为就绪状态。在准备进入状态下,提示交通拥堵辅助驾驶功能可开启,驾驶员决定是否开启,驾驶员通过操作交通拥堵辅助驾驶功能开关,实现功能开启或关闭。在准备进入状态下,检测交通拥堵辅助驾驶功能开关开启后,由准备进入状态跳转至开启状态的激活子状态。
在开启状态下,判断环境信息和车辆状态信息不满***通拥堵辅助驾驶功能开启条件,则由开启状态跳转为就绪状态。
在激活子状态下,接管车辆的横向控制和纵向控制,并显示环境信息和车辆状态 信息。在激活子状态下,还监控是否有人工控制,监测有人工控制,进入挂起子状态。
在挂起子状态下,退出车辆的横向控制并保持对车辆的纵向控制,并显示人工控制状态。在挂起子状态下,还实时监测人工控制状态、车辆周围的环境信息和车辆状态信息,进而基于人工控制状态中断且环境信息和车辆状态信息满***通拥堵辅助驾驶功能开启条件,自动激活交通拥堵辅助驾驶功能,并显示交通拥堵辅助驾驶功能自动激活进度,并提示是否退出自动激活。在挂起子状态下,当自动激活进度完成时,跳转为激活子状态。
在就绪状态、准备进入状态或开启状态下,检测车辆是否故障,进而在检测到车辆故障后,进入故障状态。在故障状态下,提示驾驶员接管车辆,并显示故障信息。
在一些实施例中,交通拥堵辅助驾驶***300中各单元的划分仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如获取单元301、判断单元302、跳转单元303和提示单元304可以实现为一个单元;获取单元301、判断单元302、跳转单元303或提示单元304也可以划分为多个子单元。可以理解的是,各个单元或子单元能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能。
图4是本公开实施例提供的一种车载设备的结构示意图。车载设备可支持智能驾驶***的运行。
如图4所示,车载设备包括:至少一个处理器401、至少一个存储器402和至少一个通信接口403。车载设备中的各个组件通过总线***404耦合在一起。通信接口403,用于与外部设备之间的信息传输。可理解地,总线***404用于实现这些组件之间的连接通信。总线***404除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但为了清楚说明起见,在图4中将各种总线都标为总线***404。
可以理解,本实施例中的存储器402可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。
在一些实施方式中,存储器402存储了如下的元素,可执行单元或者数据结构,或者他们的子集,或者他们的扩展集:操作***和应用程序。
其中,操作***,包含各种***程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例提供的交通拥堵辅助驾驶方法的程序可以包含在应用程序中。
在本公开实施例中,处理器401通过调用存储器402存储的程序或指令,具体的, 可以是应用程序中存储的程序或指令,处理器401用于执行本公开实施例提供的交通拥堵辅助驾驶方法各实施例的步骤。
本公开实施例提供的交通拥堵辅助驾驶方法可以应用于处理器401中,或者由处理器401实现。处理器401可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器401中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器401可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
本公开实施例提供的交通拥堵辅助驾驶方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件单元组合执行完成。软件单元可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器402,处理器401读取存储器402中的信息,结合其硬件完成方法的步骤。
图5为本公开实施例提供的一种交通拥堵辅助驾驶方法流程图。该方法的执行主体为车载设备,在一些实施例中,该方法的执行主体为车载设备所支持的智能驾驶***。本实施例中,交通拥堵辅助驾驶功能定义不同的状态,不同的状态包括但不限于:就绪状态、准备进入状态和开启状态。
如图5所示,交通拥堵辅助驾驶方法可包括以下步骤501至504:
501、基于车辆处于就绪状态,获取车辆周围的环境信息和车辆状态信息。其中,车辆处于就绪状态可以理解为交通拥堵辅助驾驶功能进入了就绪状态。交通拥堵辅助驾驶功能在就绪状态下,实现车辆周围的环境信息和车辆状态信息的获取。
在一些实施例中,车辆周围的环境信息包括但不限于车道线和自车道前方目标车。车辆状态信息包括但不限于:车速、档位、制动状态、转向状态和人机交互(Human–Machine,HM)***状态。
在一些实施例中,交通拥堵辅助驾驶功能定义的状态还可包括:关闭状态。检测车辆辅助驾驶开关开启后,才进入就绪状态,否则,检测车辆辅助驾驶开关关闭后,进入关闭状态。在任一状态下,均会检测车辆辅助驾驶开关的状态,在关闭状态下,检测车辆辅助驾驶开关开启后,进入就绪状态;在非关闭状态下,检测车辆辅助驾驶开关关闭后,进入关闭状态。在一些实施例中,检测车辆辅助驾驶开关关闭后,跳转为关闭状态;检测车辆辅助驾驶开关开启后,由关闭状态跳转为就绪状态。
502、基于环境信息和车辆状态信息,判断是否满***通拥堵辅助驾驶功能开启条件。本实施例中,在就绪状态下判断是否满***通拥堵辅助驾驶功能开启条件,也即在就绪状态下,不仅实现车辆周围的环境信息和车辆状态信息的获取,而且实现交通拥堵辅助驾驶功能开启条件的判断。
在一些实施例中,交通拥堵辅助驾驶功能开启条件,包括但不限于:车辆状态信息包括:低于预设车速、满足预设档位、制动可用、转向可用和人机交互***开启。其中,预设车速和预设档位可基于实际需要进行设置,本实施例不限定具体取值。
在一些实施例中,交通拥堵辅助驾驶功能开启条件,包括但不限于:环境信息包括:至少一侧车道线或自车道前方目标车存在,其中,至少一侧车道线与自车的相对距离处于预设的第一距离区间且相对角度处于预设的角度区间;目标车与自车的相对横向距离处于预设的第二距离区间。其中,预设的第一距离区间、预设的角度区间和预设的第二距离区间可基于实际需要进行设置,本实施例不限定具体取值。
503、基于满***通拥堵辅助驾驶功能开启条件,跳转为准备进入状态。本实施例中,在判断满***通拥堵辅助驾驶功能开启条件后,由就绪状态跳转为准备进入状态。在一些实施例中,在准备进入状态下,在判断不满***通拥堵辅助驾驶功能开启条件后,由准备进入状态跳转为就绪状态。
504、提示交通拥堵辅助驾驶功能可开启。本实施例中,在跳转为准备进入状态后,提示交通拥堵辅助驾驶功能可开启,也即在准备进入状态下,实现交通拥堵辅助驾驶功能可开启的提示。在一些实施例中,提示的方式可以使语音提示;也可以是文字提示,例如通过人机交互界面(Human–Machine Interface,HMI)提示交通拥堵辅助驾驶功能可开启。
在一些实施例中,驾驶员接收到提示后,可决定是否开启交通拥堵辅助驾驶功能,其中,接收的方式可以是听觉接收语音提示,也可以是视觉查看文字提示。驾驶员决定开启后,可通过改变交通拥堵辅助驾驶功能开关的状态为开启,实现交通拥堵辅助驾驶功能的开启。
在一些实施例中,交通拥堵辅助驾驶功能开关可以为软开关,例如HMI中显示的可触控开关;也可以为硬开关,例如为车辆的驾驶位或驾驶员可触及范围内配置的按钮,按钮可按压或拨动。
在一些实施例中,在准备进入状态下,不仅提示交通拥堵辅助驾驶功能可开启,而且实时检测交通拥堵辅助驾驶功能开关的状态。在检测到交通拥堵辅助驾驶功能开关开启后,进入开启状态。在一些实施例中,实时检测交通拥堵辅助驾驶功能开关的状态,检测交通拥堵辅助驾驶功能开关开启后,跳转为开启状态。在一些实施例中, 在开启状态下,进行交通拥堵辅助驾驶。在一些实施例中,在开启状态下,在判断不满***通拥堵辅助驾驶功能开启条件后,由开启状态跳转为就绪状态。
在一些实施例中,开启状态包括:激活子状态和挂起子状态。在一些实施例中,在准备进入状态下,检测到交通拥堵辅助驾驶功能开关开启后,进入开启状态的激活子状态。在一些实施例中,在准备进入状态下,实时检测交通拥堵辅助驾驶功能开关的状态,基于交通拥堵辅助驾驶功能开关开启,跳转为激活子状态。
在一些实施例中,在激活子状态下,接管车辆的横向控制和纵向控制,实现对车辆进行完全控制。在一些实施例中,车辆的横向控制和纵向控制的算法可沿用现有的交通拥堵辅助驾驶功能中横向控制和纵向控制的算法,在此不再赘述。
在一些实施例中,在激活子状态下,显示环境信息和车辆状态信息。在一些实施例中,可通过HMI显示环境信息和车辆状态信息,便于驾驶员及时了解交通拥堵工况下的环境信息和车辆状态信息。
在一些实施例中,在激活子状态下,监控是否有人工控制,例如驾驶员操作方向盘。在一些实施例中,监测有人工控制,进入挂起子状态。在一些实施例中,在激活子状态下,监测是否有人工控制,基于有人工控制,跳转为挂起子状态。通过将开启状态划分为激活子状态和挂起子状态,有效平衡驾驶员操作和车辆辅助驾驶,进而满***通拥堵工况下车辆的安全驾驶。
在一些实施例中,在挂起子状态下,退出车辆的横向控制并保持对车辆的纵向控制,实现对车辆进行部分控制,仅控制纵向,由驾驶员负责横向控制。由于设计挂起子状态,使驾驶员干涉后,交通拥堵辅助驾驶功能并非直接关闭,而是处于挂起状态,减少功能关闭次数。
在一些实施例中,在挂起子状态下,显示人工控制状态。在一些实施例中,可通过HMI显示人工控制状态,便于驾驶员及时了解交通拥堵工况下的人工控制状态。
在一些实施例中,在挂起子状态下,实时监测人工控制状态、车辆周围的环境信息和车辆状态信息。进而基于人工控制状态中断且环境信息和车辆状态信息满***通拥堵辅助驾驶功能开启条件,自动激活交通拥堵辅助驾驶功能。在一些实施例中,人工控制状态中断可以理解为:转向***没有检测到驾驶员施加力矩,或转向***当前状态与回正状态的偏差值在预设的偏差区间内。其中,偏差区域可根据实际需要进行设置,本实施例不限定具体取值。
在一些实施例中,在挂起子状态下,自动激活交通拥堵辅助驾驶功能的过程具体为:显示交通拥堵辅助驾驶功能自动激活进度,并提示是否退出自动激活;当自动激活进度完成时,跳转为激活子状态。在一些实施例中,可通过HMI显示交通拥堵辅助 驾驶功能自动激活进度。本实施例中,通过显示功能自动激活进度,便于驾驶员了解交通拥堵辅助驾驶功能正在恢复,提升驾驶员体验。在一些实施例中,通过HMI显示交通拥堵辅助驾驶功能自动激活进度时,进一步提示自动激活进度结束后默认自动激活交通拥堵辅助驾驶功能,并提示是否退出自动激活,驾驶员可主动选择退出自动激活,提升驾驶员体验。在一些实施例中,在自动激活进度完成时,由挂起子状态跳转为激活子状态。
在一些实施例中,交通拥堵辅助驾驶功能还可包括故障状态。在就绪状态、准备进入状态或开启状态下,检测车辆是否故障,进而在检测到车辆故障后,进入故障状态。在一些实施例中,在就绪状态、准备进入状态或开启状态下,检测车辆是否故障,进而在检测到车辆故障后,由对应状态跳转为故障状态。在一些实施例中,车辆故障包括但不限于:智能驾驶***的感知模块、规划模块、控制模块、人机交互***和车辆底层执行***(包括横向执行器和纵向执行器)等中的至少一个发生故障。
在一些实施例中,在故障状态下,提示驾驶员接管车辆,并显示故障信息,例如通过HMI显示故障信息,以使驾驶员及时了解故障位置并进行相应地故障处理。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员能够理解,本公开实施例并不受所描述的动作顺序的限制,因为依据本公开实施例,某些步骤可以采用其他顺序或者同时进行。另外,本领域技术人员能够理解,说明书中所描述的实施例均属于可选实施例。
本公开实施例还提出一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储程序或指令,所述程序或指令使计算机执行如交通拥堵辅助驾驶方法各实施例的步骤,为避免重复描述,在此不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本公开的范围之内并且形成不同的实施例。
本领域的技术人员能够理解,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
虽然结合附图描述了本公开的实施方式,但是本领域技术人员可以在不脱离本公 开的精神和范围的情况下做出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。
工业实用性
本公开实施例中,通过定义交通拥堵辅助驾驶功能不同的状态,更加合理地进行交通拥堵辅助驾驶,在就绪状态下,通过监测环境信息和车辆状态信息,判断是否跳转为准备进入状态,在准备进入状态下提示功能可开启,由人工决定是否开启功能,提升驾乘体验。

Claims (15)

  1. 一种交通拥堵辅助驾驶方法,其特征在于,交通拥堵辅助驾驶功能包括就绪状态、准备进入状态和开启状态,所述方法包括:
    基于车辆处于所述就绪状态,获取车辆周围的环境信息和车辆状态信息;
    基于所述环境信息和所述车辆状态信息,判断是否满***通拥堵辅助驾驶功能开启条件;
    基于满足所述交通拥堵辅助驾驶功能开启条件,跳转为所述准备进入状态;
    提示交通拥堵辅助驾驶功能可开启。
  2. 根据权利要求1所述的方法,其特征在于,所述交通拥堵辅助驾驶功能还包括关闭状态;所述方法还包括:
    检测车辆辅助驾驶开关关闭后,跳转为所述关闭状态;
    检测车辆辅助驾驶开关开启后,由所述关闭状态跳转为所述就绪状态。
  3. 根据权利要求1所述的方法,其特征在于,所述交通拥堵辅助驾驶功能开启条件,包括:
    车辆状态信息包括:低于预设车速、满足预设档位、制动可用、转向可用和人机交互***开启;
    环境信息包括:至少一侧车道线或自车道前方目标车存在,其中,所述至少一侧车道线与自车的相对距离处于预设第一距离区间且相对角度处于预设角度区间;所述目标车与自车的相对横向距离处于预设的第二距离区间。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述准备进入状态下,实时检测交通拥堵辅助驾驶功能开关的状态;
    基于所述交通拥堵辅助驾驶功能开关开启,跳转为所述开启状态。
  5. 根据权利要求1所述的方法,其特征在于,所述开启状态包括:激活子状态和挂起子状态;所述方法还包括:
    在所述准备进入状态下,实时检测交通拥堵辅助驾驶功能开关的状态;
    基于所述交通拥堵辅助驾驶功能开关开启,跳转为所述激活子状态;
    监测是否有人工控制;
    基于有人工控制,跳转为所述挂起子状态。
  6. 根据权利要求5所述的方法,其特征在于,
    在所述激活子状态下,接管车辆的横向控制和纵向控制;
    在所述挂起子状态下,退出车辆的横向控制并保持对车辆的纵向控制。
  7. 根据权利要求5所述的方法,其特征在于,
    在所述激活子状态下,显示环境信息和车辆状态信息;
    在所述挂起子状态下,显示人工控制状态。
  8. 根据权利要求5所述的方法,其特征在于,还包括:
    在所述挂起子状态下,实时监测人工控制状态、车辆周围的环境信息和车辆状态信息;
    基于人工控制状态中断且所述环境信息和车辆状态信息满***通拥堵辅助驾驶功能开启条件,自动激活交通拥堵辅助驾驶功能。
  9. 根据权利要求8所述的方法,其特征在于,所述自动激活交通拥堵辅助驾驶功能,包括:
    显示交通拥堵辅助驾驶功能自动激活进度,并提示是否退出自动激活;
    当所述自动激活进度完成时,跳转为所述激活子状态。
  10. 根据权利要求1所述的方法,其特征在于,所述交通拥堵辅助驾驶功能还包括故障状态;所述方法还包括:
    在所述就绪状态、所述准备进入状态或所述开启状态下,检测到车辆故障后,跳转为所述故障状态。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:在所述故障状态下,提示驾驶员接管车辆,并显示故障信息。
  12. 根据权利要求1所述的方法,其特征在于,所述方法还包括:在所述准备进入状态或所述开启状态下,基于所述环境信息和所述车辆状态信息,判断不满***通拥堵辅助驾驶功能开启条件后,跳转为所述就绪状态。
  13. 一种交通拥堵辅助驾驶***,其特征在于,交通拥堵辅助驾驶功能包括就绪状态、准备进入状态和开启状态,所述***包括:
    获取单元,用于基于车辆处于所述就绪状态,获取车辆周围的环境信息和车辆状态信息;
    判断单元,用于基于所述环境信息和所述车辆状态信息,判断是否满***通拥堵辅助驾驶功能开启条件;
    跳转单元,用于基于满足所述交通拥堵辅助驾驶功能开启条件,跳转为所述准备进入状态;
    提示单元,用于提示交通拥堵辅助驾驶功能可开启。
  14. 一种车载设备,其特征在于,包括:处理器和存储器;
    所述处理器通过调用所述存储器存储的程序或指令,用于执行如权利要求1至12任一项所述方法的步骤。
  15. 一种非暂态计算机可读存储介质,其特征在于,所述非暂态计算机可读存储介质存储程序或指令,所述程序或指令使计算机执行如权利要求1至12任一项所述方法的步骤。
PCT/CN2019/122102 2019-11-29 2019-11-29 一种交通拥堵辅助驾驶方法、***、车载设备和存储介质 WO2021102958A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/122102 WO2021102958A1 (zh) 2019-11-29 2019-11-29 一种交通拥堵辅助驾驶方法、***、车载设备和存储介质
CN201980002781.9A CN113272750A (zh) 2019-11-29 2019-11-29 一种交通拥堵辅助驾驶方法、***、车载设备和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/122102 WO2021102958A1 (zh) 2019-11-29 2019-11-29 一种交通拥堵辅助驾驶方法、***、车载设备和存储介质

Publications (1)

Publication Number Publication Date
WO2021102958A1 true WO2021102958A1 (zh) 2021-06-03

Family

ID=76129074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122102 WO2021102958A1 (zh) 2019-11-29 2019-11-29 一种交通拥堵辅助驾驶方法、***、车载设备和存储介质

Country Status (2)

Country Link
CN (1) CN113272750A (zh)
WO (1) WO2021102958A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114435407A (zh) * 2022-03-24 2022-05-06 广州小鹏自动驾驶科技有限公司 一种车辆控制方法、装置及车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106218636A (zh) * 2016-07-21 2016-12-14 浙江吉利汽车研究院有限公司 一种交通拥堵辅助***
CN108569296A (zh) * 2017-12-15 2018-09-25 蔚来汽车有限公司 自适应匹配辅助驾驶***的方法及其实现模块
CN108776472A (zh) * 2018-05-17 2018-11-09 驭势(上海)汽车科技有限公司 智能驾驶控制方法及***、车载控制设备和智能驾驶车辆
CN109808709A (zh) * 2019-01-15 2019-05-28 北京百度网讯科技有限公司 车辆行驶保障方法、装置、设备及可读存储介质
US10310509B1 (en) * 2012-09-28 2019-06-04 Waymo Llc Detecting sensor degradation by actively controlling an autonomous vehicle
CN110428693A (zh) * 2019-07-31 2019-11-08 驭势科技(北京)有限公司 用户驾驶习惯培训方法、培训模块、车载设备及存储介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5667944B2 (ja) * 2011-08-11 2015-02-12 本田技研工業株式会社 サーバ側渋滞解消走行支援方法
CN104079669B (zh) * 2014-07-22 2016-08-17 李德毅 双驾双控智能车总线***
CN204713069U (zh) * 2015-06-15 2015-10-21 山东理工大学 一种交通拥堵时的辅助驾驶***
CN107215387A (zh) * 2017-05-11 2017-09-29 江苏保千里视像科技集团股份有限公司 一种基于转向干预的汽车双驾双控方法及***
CN108545079B (zh) * 2018-03-30 2020-02-21 吉利汽车研究院(宁波)有限公司 一种拥堵路况驾驶辅助***及方法
CN108974003A (zh) * 2018-08-09 2018-12-11 北京智行者科技有限公司 一种交互方法
CN109017806B (zh) * 2018-08-09 2020-01-24 北京智行者科技有限公司 车载控制***
CN109885040B (zh) * 2019-02-20 2022-04-26 江苏大学 一种人机共驾中的车辆驾驶控制权分配***
CN109808615A (zh) * 2019-03-22 2019-05-28 北京经纬恒润科技有限公司 一种自动驾驶方法及装置
CN110077315A (zh) * 2019-04-30 2019-08-02 禾多科技(北京)有限公司 自动驾驶指示灯***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10310509B1 (en) * 2012-09-28 2019-06-04 Waymo Llc Detecting sensor degradation by actively controlling an autonomous vehicle
CN106218636A (zh) * 2016-07-21 2016-12-14 浙江吉利汽车研究院有限公司 一种交通拥堵辅助***
CN108569296A (zh) * 2017-12-15 2018-09-25 蔚来汽车有限公司 自适应匹配辅助驾驶***的方法及其实现模块
CN108776472A (zh) * 2018-05-17 2018-11-09 驭势(上海)汽车科技有限公司 智能驾驶控制方法及***、车载控制设备和智能驾驶车辆
CN109808709A (zh) * 2019-01-15 2019-05-28 北京百度网讯科技有限公司 车辆行驶保障方法、装置、设备及可读存储介质
CN110428693A (zh) * 2019-07-31 2019-11-08 驭势科技(北京)有限公司 用户驾驶习惯培训方法、培训模块、车载设备及存储介质

Also Published As

Publication number Publication date
CN113272750A (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
CN110603181B (zh) 一种智能驾驶车辆让行方法、装置及车载设备
US10739787B2 (en) Responsibilities and agreement acceptance for vehicle platooning
JP7506113B2 (ja) 遮蔽を伴う道路利用者反応モデリングに従って自律車両を動作させること
WO2021102957A1 (zh) 一种车道保持方法、车载设备和存储介质
JP6819177B2 (ja) 運転支援方法及び運転支援装置
JP6630267B2 (ja) 車両制御装置
CN108352112A (zh) 用于确定车辆的驾驶意图的方法和车辆通信***
CA3127637A1 (en) Operator assistance for autonomous vehicles
WO2020164021A1 (zh) 用于驾驶控制的方法、装置、设备、介质和***
US20210139048A1 (en) Tree policy planning for autonomous vehicle driving solutions
JP6623311B2 (ja) 制御装置及び制御方法
CN110422177A (zh) 一种车辆控制方法、装置及***
CN110606070B (zh) 一种智能驾驶车辆及其制动方法、车载设备和存储介质
US20200272159A1 (en) Method and vehicle control system for intelligent vehicle control about a roundabout
WO2018061079A1 (ja) 車両制御装置
CN110673602A (zh) 一种强化学习模型、车辆自动驾驶决策的方法和车载设备
WO2020258276A1 (zh) 一种智能驾驶车辆让行方法、装置及车载设备
CN110568847A (zh) 一种车辆的智能控制***、方法,车载设备和存储介质
US11966224B2 (en) Systems and methods for detecting surprise movements of an actor with respect to an autonomous vehicle
CN110562269A (zh) 一种智能驾驶车辆故障处理的方法、车载设备和存储介质
JP2019159611A (ja) 車両制御装置、車両制御方法、およびプログラム
CN110599790B (zh) 一种智能驾驶车辆进站停靠的方法、车载设备和存储介质
WO2021102958A1 (zh) 一种交通拥堵辅助驾驶方法、***、车载设备和存储介质
CN110428693B (zh) 用户驾驶习惯培训方法、培训模块、车载设备及存储介质
WO2021097844A1 (zh) 基于多传感器数据融合的护栏估计方法和车载设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954166

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19954166

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/12/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19954166

Country of ref document: EP

Kind code of ref document: A1