WO2021102765A1 - 一种光学投影成像***及方法 - Google Patents

一种光学投影成像***及方法 Download PDF

Info

Publication number
WO2021102765A1
WO2021102765A1 PCT/CN2019/121382 CN2019121382W WO2021102765A1 WO 2021102765 A1 WO2021102765 A1 WO 2021102765A1 CN 2019121382 W CN2019121382 W CN 2019121382W WO 2021102765 A1 WO2021102765 A1 WO 2021102765A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
led display
image
led
display
Prior art date
Application number
PCT/CN2019/121382
Other languages
English (en)
French (fr)
Inventor
刘政明
徐瑞林
颜家煌
Original Assignee
重庆康佳光电技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆康佳光电技术研究院有限公司 filed Critical 重庆康佳光电技术研究院有限公司
Priority to US17/056,767 priority Critical patent/US20220286653A1/en
Priority to PCT/CN2019/121382 priority patent/WO2021102765A1/zh
Priority to CN201980002877.5A priority patent/CN110998434A/zh
Publication of WO2021102765A1 publication Critical patent/WO2021102765A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/142Adjusting of projection optics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3138Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using arrays of modulated light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/006Projectors using an electronic spatial light modulator but not peculiar thereto using LCD's
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/3147Multi-projection systems
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the invention relates to the field of imaging technology, in particular to an optical projection imaging system and method.
  • the optical system of projectors generally uses LCD or DLP projection systems, but both of these projection systems must emit light through a backlight and transmit the light to a liquid crystal modulation screen or MEMS mirror array to project an image.
  • the setting of a system that uses a backlight for projection will cause the overall projection system to be bulky. People are increasingly pursuing the visual enjoyment of large-screen display, and hope that the projection equipment is as small as possible, so how to achieve the size of the projection device At the same time, projecting a large-screen image is a problem to be solved at present.
  • the present invention provides an optical projection imaging system and method, which overcomes the problem that the prior art projection system uses a backlight to emit light, which results in a large projection system that cannot meet the requirements of a large-volume projection system. Defects of large screen display.
  • This embodiment discloses an optical projection imaging system, which includes: an image source controller, a projection screen, an angle controller, and an LED display.
  • the LED display includes a number of LED display components, and each of the LED display components includes : An LED chip and an angle control structure arranged above the LED chip;
  • the angle controller is configured to respectively send at least two different angle control signals to the LED display every preset time to control the LED display to be in at least two different display modes;
  • the image source controller is used to send picture signals to the LED display, wherein the LED displays in different display modes send different picture signals correspondingly;
  • the angle control structure is used to receive an angle control signal sent by the angle controller, and modulate the chief ray direction of each LED chip in the LED display in different angle directions;
  • the modulation corresponds to the direction in which different picture signals are to be projected;
  • the projection screen is used to receive the image corresponding to the chief ray modulated by the angle control structure to obtain a projected image.
  • the display mode includes a first display mode and a second display mode
  • the picture signal includes a first picture signal and a second picture signal
  • the projected image is a first picture corresponding to the first picture signal
  • the LED display further includes: a collimating optical element for collimating the chief ray of the LED chip, and the collimating optical element includes: a micro lens array, a micro ring structure, or a photon Crystal array.
  • the angle control structure includes: an optical axis control device and an optical film structure that are sequentially arranged along the exit optical path of the chief ray of the LED chip;
  • the optical axis control device includes: a metal wire grid electrode, a transparent electrode, and an optically active material layer sequentially arranged along the emitting light path of the LED chip, and the optically active material layer is used to change the polarization of the emitted chief ray ;
  • the optical film structure includes: a polymer liquid crystal layer for refracting the incoming chief light rays.
  • the polymer liquid crystal layer has a first refractive index and a second refractive index for polarized light at different incident angles, and the polarized light refracted by the first refractive index and the polarized light refracted by the second refractive index.
  • the direction of light emission is orthogonal to the axial direction.
  • the optical film structure further includes a UV resin layer disposed behind the polymer liquid crystal layer along the exit light path of the LED chip.
  • it further includes a projection lens arranged between the LED display and the projection screen;
  • the projection lens is used for receiving and amplifying the chief rays of light emitted by the LED display.
  • the LED chip is a Micro-LED.
  • This embodiment also discloses an optical projection imaging method, wherein the projection imaging method includes:
  • the angle controller respectively sends at least two different angle control signals to the LED display every preset time to control the LED display to be in at least two different display modes;
  • the image source controller sends a picture signal to the LED display, wherein the LED display is in different display modes and correspondingly sends different picture signals;
  • the angle control structure receives the angle control signal sent by the angle controller, and modulates the chief ray direction of each LED chip in the LED display in different angle directions; the modulation of the angle direction is different Corresponding to the projected direction of the image signal;
  • the projection screen receives the image corresponding to the chief ray modulated by the angle control structure to obtain a projected image.
  • the display mode includes a first display mode and a second display mode
  • the picture signal includes a first picture signal and a second picture signal
  • the projected image is the LED display every preset time The spliced image of the projected first picture and the second picture.
  • the step of the image source controller sending a picture signal to the LED display includes:
  • the image source controller When the LED display is in the first display mode, the image source controller sends a first picture signal to the LED display, and when the LED display is in the second display mode, the image source controller sends the image source controller to the LED display Send the second picture signal.
  • the method further includes:
  • Each LED chip in the LED display sends out corresponding chief rays of light according to the received picture signal
  • a collimating optical element is used to collimate the chief rays of light emitted from the LED chip.
  • the angle control signal includes a first angle control signal and a second angle control signal; the first angle control signal controls the LED display to be in a first display mode, and the second angle control signal controls the The LED display is in the second display mode; the preset time is the duration of human vision.
  • the angle controller includes: an optical axis control device and an optical diaphragm structure;
  • the optical axis control device includes: a metal wire grid electrode, a transparent electrode, and an optically active material layer;
  • the optical film structure includes: a polymer liquid crystal layer
  • the step of the angle controller respectively issuing a first angle control signal and a second angle control signal to adjust and control the exit angle of the chief light rays emitted by each of the LED chips includes:
  • the angle controller sends out the first angle control signal
  • the chief light rays emitted by each of the LED chips pass through the metal wire grid to form linearly polarized light;
  • the linearly polarized light is under the action of the optically active material layer , Incident on the optical film structure, and emitted at the first angle after being refracted by the optical film structure;
  • the angle controller when the angle controller sends the second angle control signal, the emitted light from the LED chip passes through the metal wire grid to form linearly polarized light; the linearly polarized light is adjusted by the optical axis control device to the original The exit angle is incident on the optical film structure, and is emitted at a second angle after being refracted by the optical film structure.
  • the step of making the linearly polarized light incident on the optical film structure at the original exit angle under the adjustment of the optical axis control device further includes:
  • the optical axis control device is connected to an AC power source, so that the output angle of the linearly polarized light input to the optical axis control device through the optically active material layer remains unchanged.
  • the method before the step of receiving the image corresponding to the chief ray modulated by the angle control structure on the projection screen to obtain a projected image, the method further includes:
  • the method provided by the embodiment of the present invention by adjusting and controlling the exit angle of the light emitted by the LED chip every preset time, images projected from different exit angles are obtained, and the images projected from different exit angles are spliced into a whole image. Therefore, the large-screen image display is realized, and the method of the present invention does not increase the volume of the projection system, but only adjusts the exit angle of the light emitted by the LED chip, so the cost is low, easy to implement, and meets the needs of large-screen image display. .
  • FIG. 1 is a schematic diagram of the structure of a light emitting diode in the prior art
  • FIG. 2 is a schematic structural diagram of an optical projection imaging system according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of projection of an optical projection imaging system according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the structure of a collimating optical element in an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of emitted light in the first display mode in an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of emitted light in a second display mode in an embodiment of the present invention.
  • Fig. 7 is a schematic diagram of a first projection screen in an embodiment of the present invention.
  • Fig. 8 is a schematic diagram of a second projection screen in an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of display after splicing projection pictures in an embodiment of the present invention.
  • Fig. 10 is a schematic diagram of steps of an optical projection imaging method in an embodiment of the present invention.
  • the prior art projection devices usually use a backlight source to emit light, and the backlight source likes to be modulated before projecting to produce an image. Therefore, the projection device using the backlight source for projection generally has the problem of large volume.
  • the inventor proposes to use Micro LED to achieve self-illumination, which overcomes the defects of backlight projection, and adopts different projection angles of the image projected to the projection screen.
  • the large-screen picture display is realized by the method of picture splicing.
  • the display device includes a display and a driver.
  • the driver can be arranged in a non-display area around the display.
  • the display includes a plurality of pixels P arranged in a matrix shape.
  • the driver includes a scan driver and a data driver. The scan driver outputs a scan signal to the scan line on the display, and the data driver outputs a data signal to the data line on the display. Each pixel P is connected to the data line and the scan line.
  • Figure 1 shows a schematic diagram of the structure of an LED display in the prior art, in which thin film transistors are used to drive and control each LED chip, and light of different wavelengths of red, green, and blue are separately regulated, and combined with different gray levels to form a full-color display effect.
  • the LED includes: a substrate 110, a buffer layer 109 located above the substrate and from bottom to top, a first gate insulating layer 108, a first insulating layer 107, a planarization layer 106, a first electrode 105, and a pixel separation structure 104 ,
  • the protective insulating layer 103 and the second electrode 102, the LED chip 101 located above the pixel separation structure 104, the substrate 110 is also provided with a thin film transistor, the thin film transistor includes: a semiconductor layer 116, a second gate insulation The layer 115, the gate electrode 114, the second insulating layer 113, the source electrode 112, and the drain electrode 111.
  • the embodiment provided by the present invention is to adjust the exit direction of the light emitted by the LED chip, so as to realize that different images are projected on the screen respectively, and due to the phenomenon of visual stay of the human eye, when the first image is switched to the first image
  • the picture presented in the human eye at this time is the entire picture spliced by the first picture and the second picture, so that the first picture can be combined.
  • the whole image is divided into two parts, and the images of these two parts are quickly switched during the time when the human eye stays, so that the human eye can see the whole picture.
  • the embodiment of the present invention discloses an optical projection imaging system.
  • the optical projection imaging system includes: an image source controller 10, a projection screen 30, an angle controller 40, and an LED display 20, wherein
  • the LED display 20 includes several LED display components, and each of the LED display components includes: an LED chip 210 and an angle control structure 220 arranged above the LED chip 210.
  • the angle controller 40 is configured to respectively send at least two different angle control signals to the LED display every preset time to control the LED display 20 to be in at least two different display modes.
  • the image source controller 10 is used to send picture signals to the LED display 20, wherein the LED displays 20 in different display modes correspondingly send different picture signals.
  • the angle control structure 220 is configured to receive the angle control signal sent by the angle controller 40, and modulate the direction of the chief ray of each LED chip 210 in the LED display 20 in different angle directions; The modulation of the angular direction corresponds to the direction in which different picture signals are to be projected.
  • the projection screen 30 is configured to receive the image corresponding to the chief ray modulated by the angle control structure 220 to obtain a projected image.
  • the LED display 20 contains a plurality of LED components, and each LED component contains an LED chip 210, and the emission direction of the light emitted by each LED chip 210 can be adjusted.
  • the LED display 20 also includes: an angle control structure arranged above the LED chip.
  • the angle controller 40 sends different angle control signals to the LED display 20, which are respectively used to control the LED display in different display modes.
  • the LED display is in two different display modes by sending two angle control signals.
  • the angle controller sends a first angle control signal to the LED display, so that the The LED display works in the first display mode; the angle controller sends a second angle control signal to the LED display, so that the LED display works in the second display mode;
  • the first display mode corresponds to projection to The image of the projection screen is in the first angle mode, and the second display mode corresponds to the mode in which the image projected on the projection screen is in the second angle.
  • the first display mode the chief ray of each LED chip on the LED display is emitted along a first angular direction
  • in the second display mode the chief ray of each LED chip on the LED display is emitted along a second angular direction.
  • the picture signal sent by the image source controller to the LED display also corresponds to a first picture signal and a second picture signal.
  • the The image source controller sends a first image signal to the LED display, so that the LED display projects a first image; when the LED display is working in the second display mode, the image source controller sends a signal to the LED display
  • the second picture signal is sent to cause the LED display to project a second picture, and the first picture and the second picture are spliced into a complete projected picture.
  • the LED display can also be controlled by the angle controller to be in multiple display modes, so that the LED display can project three or more images at every preset time. Picture, the projected picture is spliced on the projection screen to form the entire picture.
  • the collimating optical element is arranged on the light emitting path of the LED display, and is used to collimate the light emitted by each LED in the LED display along the principal ray direction; in a specific embodiment, the collimating optical element includes : Micro lens array, micro ring structure or photonic crystal array.
  • the angle control structure includes: an optical axis control device and an optical film structure that are sequentially arranged along the exit optical path of the LED chip to emit the chief light.
  • the optical axis control device includes: a metal wire grid electrode, a transparent electrode, and an optically active material layer sequentially arranged along the emitting light path of the LED chip, and the optically active material layer is used to change the polarization of the emitted chief ray ;
  • the optical film structure includes: a polymer liquid crystal layer for refracting the incoming chief light rays.
  • the optical film structure 300 includes: a polymer liquid crystal layer for refracting the incoming chief light rays, and a UV resin layer 302 covering the outer side of the polymer liquid crystal layer along the exit light path of the LED chip.
  • the polymer liquid crystal layer has a first refractive index and a second refractive index for polarized light at different incident angles, and the exit directions of the polarized light refracted by the first refractive index and the polarized light refracted by the second refractive index
  • the axis is orthogonal.
  • the image source controller controls the LED display to work in the first display mode and sends the first picture signal to the LED display
  • the light emitted from the LED chip is generated by the metal wire grid.
  • the optical axis control device 200 does not apply a voltage at this time, that is, does not connect to a power source.
  • the linearly polarized light rotates by a certain angle due to the light direction of the optically rotatory material layer 202, and the angle can be 90 Degrees
  • the linearly polarized light rotated by 90 degrees is incident on the birefringent optical film
  • the refractive index is n1 through the axial direction
  • the light is refracted at the first angle after passing through the refractive index materials of n1 and n0, and after being refracted at the first angle
  • the obtained first image is projected onto the projection screen, and its display effect is shown in Figure 7.
  • the image source controller controls the LED display to work in the second display mode and sends a second picture signal to the LED display
  • the light emitted from the LED chip is generated by the metal wire grid.
  • an AC voltage is applied to the optical axis control device, that is, no power is connected.
  • the linearly polarized light is rotated by a certain angle due to the characteristics of the optically active material. The angle can be 90 degrees, and the linear polarization in the direction of 90 degrees is rotated
  • the light is incident on the birefringent optical film, and the axial refractive index is n1. After the light passes through the n1 and n0 refractive index materials, the light is refracted at the first angle, and the second image obtained after being refracted at the second angle is projected onto the projection screen. ,
  • the display effect is shown in Figure 8.
  • the time for the image source controller to control the LED display to switch between the first display mode and the second display mode is set within a preset time, and the preset time is such that the human eye cannot distinguish between the first image and the second image.
  • the visual residence time of the image that is, when the duration of the first image received on the projection screen is 0-1/2T, the exit angle of each LED chip is modulated as the first exit angle, so as to project the projection Screen 1, when the duration of the second image received on the projection screen is 1/2T-1T, the emission angle of each LED chip is modulated to the second emission angle, so as to project the projection screen 2, then in the preset At time T, what the human eye sees is a stitched image composed of the first image and the second image. If the first image and the second image are two parts of the entire image, the entire image can be spliced based on the first image and the second image, as shown in FIG. 9.
  • the LED chip in the LED display in this embodiment is a Micro LED.
  • a projection lens can also be provided between the LED display and the projection screen, and the projection lens is used to magnify the received image, thereby realizing further magnification of the projection screen. effect.
  • This embodiment also discloses a projection imaging method, which is applied to the projection imaging system; as shown in FIG. 10, the projection imaging method includes:
  • Step S101 The angle controller sends at least two different angle control signals to the LED display at each preset time to control the LED display to be in at least two different display modes; The eye cannot distinguish the visual dwell time of the first image and the second image.
  • the display mode includes a first display mode and a second display mode
  • the picture signal includes a first picture signal and a second picture signal
  • the first picture and the second picture projected by the LED display are spliced together.
  • the angle control signal includes a first angle control signal and a second angle control signal; the first angle control signal controls the LED display to be in the first display mode, and the second angle control signal controls the LED The display is in the second display mode; the preset time is the duration of human vision.
  • Step S102 The image source controller sends a picture signal to the LED display, where the LED display correspondingly sends different picture signals in different display modes.
  • the image source controller sends different picture signals to the LED display, and sends different picture signals every preset time.
  • the step of the image source controller sending a picture signal to the LED display includes:
  • the image source controller When the LED display is in the first display mode, the image source controller sends a first picture signal to the LED display, and when the LED display is in the second display mode, the image source controller sends the image source controller to the LED display Send the second picture signal.
  • Step S103 The angle control structure receives the angle control signal sent by the angle controller, and modulates the chief ray direction of each LED chip in the LED display in different angle directions; the angle direction modulation Correspond to the direction in which different image signals are projected.
  • the angle control structure arranged above the LED chip is used to modulate the direction of the chief ray emitted by the LED chip in different angle directions according to the angle control signal sent from the angle controller, and the angle controller sends out the first angle control
  • the signal adjusts the principal light emitted by the LED chip at a first angle
  • the angle controller sends a second angle control signal to adjust the principal light emitted by the LED chip at a second angle.
  • the angle controller includes: an optical axis control device and an optical film structure;
  • the optical axis control device includes: a metal wire grid electrode, a transparent electrode, and an optically active material layer;
  • the optical film structure includes: a polymer liquid crystal layer
  • the step of the angle controller respectively issuing a first angle control signal and a second angle control signal to adjust and control the exit angle of the chief light rays emitted by each of the LED chips includes:
  • the angle controller sends out the first angle control signal
  • the chief light rays emitted by each of the LED chips pass through the metal wire grid to form linearly polarized light;
  • the linearly polarized light is under the action of the optically active material layer , Incident on the optical film structure, and emitted at the first angle after being refracted by the optical film structure;
  • the angle controller when the angle controller sends the second angle control signal, the emitted light from the LED chip passes through the metal wire grid to form linearly polarized light; the linearly polarized light is adjusted by the optical axis control device to the original The exit angle is incident on the optical film structure, and is emitted at a second angle after being refracted by the optical film structure.
  • the step of making the linearly polarized light incident on the optical film structure at the original exit angle under the adjustment of the optical axis control device further includes:
  • the optical axis control device is connected to an AC power source, so that the output angle of the linearly polarized light input to the optical axis control device through the optically active material layer remains unchanged.
  • Step S104 The projection screen receives the image corresponding to the chief ray modulated by the angle control structure to obtain a projection image.
  • the projection screen arranged in front of the main beam emitted by the LED display receives the main beam modulated by the angle control structure, and projects the main beam to obtain a projected image.
  • the projected image is the two images displayed by the LED display in two display modes, and the two images are projected on the projection screen through different angles, they are spliced into a complete image, and the image is realized by splicing. enlarge.
  • the method further includes:
  • Each LED chip in the LED display sends out corresponding chief rays of light according to the received picture signal
  • a collimating optical element is used to collimate the chief rays of light emitted from the LED chip.
  • the method before the step of receiving the image corresponding to the chief ray modulated by the angle control structure on the projection screen to obtain a projected image, the method further includes:
  • the image source controller needs to first process the complete image to be projected to obtain the first image and the second image
  • the first image and the second image are respectively two parts of the complete image, and the first image and the second image satisfy that the stitched image is a complete image, with a partial overlap image in between.
  • the image source controller respectively controls the first partial image of the complete image respectively projected by the LED projection screen, that is, the first image, and switches and projects the second partial image of the complete image, that is, the second image, every preset time .
  • the angle controller is set in the light emitted by the LED chip, and is used to adjust and control the propagation direction of the light emitted by the LED chip.
  • the light emitted by the LED chip corresponds to the first image projected
  • the light corresponding to the first image is controlled to be emitted after being refracted at a first angle.
  • the light corresponding to the second image is controlled to pass through Emitted after being refracted at the second angle. It is conceivable that, in order to realize the complete splicing of the entire image, the position of the first image in the entire image corresponds to the first angle.
  • the position corresponding to the first image is the left half of the entire image
  • the angle should be adjusted to be projected on the display interface on the left half of the projection screen. If the position corresponding to the second image is the right half of the image, the second angle corresponds to the position projected on the right half of the projection screen. If the position of the entire image corresponding to the first image is the upper half or the lower half, it is similar to the foregoing embodiment.
  • a collimating optical element is also provided on the light path of the LED chip emitting light.
  • the collimating optical element includes: a micro lens array, a micro ring structure or a photonic crystal array, The collimating optical element is used to collimate the light emitted by the LED chip.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)

Abstract

一种光学投影成像***及方法,通过在LED芯片上增加角度控制器,通过角度控制在每隔预设时间对LED芯片发出光线的出射角度进行调节控制,得到不同出射角度投影出的不同图像,投影到投影屏幕上的不同出射角度投影出的不同图像拼接成整幅图像,从而实现图像的大屏幕显示,并未增加投影***的体积,仅仅对LED芯片发出光线的出射角度进行调节,因此成本低,易于实现,满足了图像大屏幕显示的需求。以及一种光学投影成像方法。

Description

一种光学投影成像***及方法 技术领域
本发明涉及成像技术领域,尤其涉及的是一种光学投影成像***及方法。
背景技术
目前投影机的光学***一般采用LCD或DLP投影***,但这两种投影***都要通过背光源发光,将光传输给液晶调制屏或MEMS反射镜阵列才能投射产生图像。但是使用背光源进行投影的***的设置会造成整体投影***体积庞大,人们越来越追求大屏显示的视觉享受感,又希望投影设备尽可能的小型化,因此如何实现投影装置的体积小型化的同时,投影出大屏幕的画面,是目前所要解决的问题。
因此,现有技术有待于进一步的改进。
发明内容
鉴于上述现有技术中的不足之处,本发明提供了一种光学投影成像***及方法,克服现有技术中的投影***使用背光源发光,导致投影***体积大,大体积的投影***无法满足大屏显示的缺陷。
本实施例公开了一种光学投影成像***,其中,包括:图像源控制器、投影屏幕、角度控制器和LED显示器,所述LED显示器包括:若干个LED显示组件,各个所述LED显示组件包括:LED芯片和设置在所述LED芯片上方的角度控制结构;
所述角度控制器,用于在每隔预设时间分别向所述LED显示器发出至少两种不同的角度控制信号,控制LED显示器处于至少两种不同的显示模式;
所述图像源控制器,用于向所述LED显示器发送画面信号,其中,处于不同显示模式的LED显示器对应发送不同的画面信号;
所述角度控制结构,用于接收所述角度控制器发出的角度控制信号,对所述LED显示器中每颗所述LED芯片的出射主光线方向分别进行不同角度方向的调制;所述角度方向的调制与不同的画面信号所要投影的方向相对应;
所述投影屏幕,用于接收经过所述角度控制结构调制后的所述主光线对应的画面,得到投影图像。
可选的,所述显示模式包括第一显示模式和第二显示模式,所述画面信号包括第一画面信号和第二画面信号;所述投影图像为所述第一画面信号对应的第一画面和所述第二画面信号对应的第二画面所拼接出的图像。
可选的,所述LED显示器还包括:用于对所述LED芯片的出射主光线的进行准直的准直光学元件,所述准直光学元件包括:微透镜阵列、微环型结构或者光子晶体阵列。
可选的,所述角度控制结构包括:沿所述LED芯片出射主光线的出射光路依次设置的光学轴向控制装置和光学膜片结构;
所述光学轴向控制装置包括:沿所述LED芯片出射光路依次设置的金属线栅电极、透明电极和旋光性材料层,所述旋光性材料层用于改变所述出射主光线的偏振性;
所述光学膜片结构包括:用于对接入射的所述出射主光线进行折射的高分子液晶层。
可选的,所述高分子液晶层对不同入射角度的偏振光分别具有第一折射率和第二折射率,且经过第一折射率折射出的偏振光与经过第二折射率折射出的偏振光的出射方向成轴向正交。
可选的,所述光学膜片结构还包括,沿LED芯片出射光路设置于所述高分子液晶层之后的UV树脂层。
可选的,还包括设置在所述LED显示器与投影屏幕之间的投影镜头;
所述投影镜头,用于接收LED显示器发出的出射主光线进行放大。
可选的,所述LED芯片为Micro-LED。
本实施例还公开了一种光学投影成像方法,其中,所述投影成像方法包括:
所述角度控制器在每隔预设时间分别向所述LED显示器发出至少两种不同的角度控制信号,控制LED显示器处于至少两种不同的显示模式;
所述图像源控制器向所述LED显示器发送画面信号,其中,所述LED显示器处于不同显示模式对应发送不同的画面信号;
所述角度控制结构接收所述角度控制器发出的角度控制信号,对所述LED显示器中每颗所述LED芯片的出射主光线方向分别进行不同角度方向的调制;所述角度方向的调制与不同的画面信号所要投影的方向相对应;
所述投影屏幕接收经过所述角度控制结构调制后的所述主光线对应的画面,得到投影图像。
可选的,所述显示模式包括第一显示模式和第二显示模式,所述画面信号包括第一画面信号和第二画面信号;所述投影图像为所述每隔预设时间所述LED显示器投影出 的第一画面和第二画面所拼接出的图像。
所述图像源控制器向所述LED显示器发送画面信号的步骤包括:
当LED显示器处于第一显示模式时,所述图像源控制器向所述LED显示器发送第一画面信号,当所述LED显示器处于第二显示模式时,所述图像源控制器向所述LED显示器发送第二画面信号。
可选的,在所述图像源控制器向所述LED显示器发送画面信号的步骤之后,还包括:
所述LED显示器中各颗LED芯片根据接收到的画面信号发出相应的出射主光线;
利用准直光学元件对所述LED芯片的出射主光线进行准直处理。
可选的,所述角度控制信号包括第一角度控制信号和第二角度控制信号;所述第一角度控制信号控制所述LED显示器处于第一显示模式,所述第二角度控制信号控制所述LED显示器处于第二显示模式;所述预设时间为人眼视觉暂留时间。
可选的,所述角度控制器包括:光学轴向控制装置和光学膜片结构;
所述光学轴向控制装置包括:金属线栅电极、透明电极和旋光性材料层;
所述光学膜片结构包括:高分子液晶层;
所述角度控制器分别发出第一角度控制信号和第二角度控制信号对各颗所述LED芯片发出的出射主光线的出射角度进行调节控制的步骤包括:
当所述角度控制器发出第一角度控制信号,则各颗所述LED芯片发出的出射主光线经过金属线栅极形成线性偏振光;所述线性偏振光在所述旋光性材料层的作用下,入射到所述光学膜片结构,经过所述光学膜片结构折射后以所述第一角度发出;
或者,当所述角度控制器发出第二角度控制信号,所述LED芯片发出的出射光线经过金属线栅极形成线性偏振光;所述线性偏振光在光学轴向控制装置的调节下,以原出射角度入射到所述光学膜片结构,经过所述光学膜片结构折射后以第二角度发出。
可选的,所述线性偏振光在光学轴向控制装置的调节下,以原出射角度入射到所述光学膜片结构的步骤中还包括:
将所述光学轴向控制装置接入交流电源,以使得经过所述旋光性材料层输入到所述光学轴向控制装置的所述线性偏振光,输出的出射角度保持不变。
可选的,所述投影屏幕接收经过所述角度控制结构调制后的所述主光线对应的画面,得到投影图像的步骤之前,还包括:
对LED显示器发出的出射主光线进行放大处理后,投影到投影屏幕。
与现有技术相比,本发明实施例具有以下优点:
根据本发明实施方式提供的方法,通过在每隔预设时间对LED芯片发出光线的出射角度进行调节控制,得到不同出射角度投影出的图像,不同出射角度投影出的图像拼接成整幅图像,从而实现图像的大屏幕显示,并且本发明所述的方法并未增加投影***的体积,仅仅对LED芯片发出光线的出射角度进行调节,因此成本低,易于实现,满足了图像大屏幕显示的需求。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术中发光二极管的结构示意图;
图2是本发明实施例光学投影成像***的结构示意图;
图3是本发明实施例光学投影成像***的投影示意图;
图4是本发明实施例中准直光学元件的结构示意图;
图5是本发明实施例中第一显示模式的出射光线示意图;
图6是本发明实施例中第二显示模式的出射光线示意图;
图7是本发明实施例中第一投影画面的示意图;
图8是本发明实施例中第二投影画面的示意图;
图9是本发明实施例中投影画面拼接后的显示示意图;
图10是本发明实施例中光学投影成像方法的步骤示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
发明人发现现有技术的投影装置中通常都是采用背光源进行发光,而背光源喜欢经过调制后才能投影产生图像,因此使用背光源进行投影的投影装置一般存在体积较大的 问题,为了克服投影装置体积大缺陷的同时,满足用户大屏幕显示的效果,发明人提出使用Micro LED实现自发光,克服了背光源投影时的缺陷,并且采用对投影到投影屏幕的画面进行不同出射角度的调制,通过画面拼接的方法实现大屏幕的画面显示。
现有技术中,发光二级管显示器采用PCB、玻璃、柔性透明PI等类别背板技术,包括主动式及被动式驱动设计,于背板上制作驱动电路阵列,对发光二级管提供所需电子与电洞,进而结合发出光源,达到显示功能。显示设备包括显示器和驱动器。其中,驱动器可以设置在显示器周围的非显示区域中。显示器包括排列成矩阵形状多个像素P。驱动器包括扫描驱动器和数据驱动器,其中,扫描驱动器输出扫描信号给显示器上的扫描线,数据驱动器输出数据信号给显示器上的数据线,每个像素P都与数据线和扫描线连接。
如图1显示是现有技术中LED显示器的结构示意图,其中使用薄膜晶体管进行各个LED芯片驱动控制,并单独调控红、绿、蓝三色不同波长的光,配合不同灰阶组合形成全彩显示效果。所述LED包括:基底110、位于基底上方且依次从下往上的缓冲层109、第一栅极绝缘层108、第一绝缘层107、平化层106、第一电极105、像素分隔结构104、保护绝缘层103和第二电极102,位于所述像素分隔结构104上方的LED芯片101,所述基底110上方还设置有薄膜晶体管,所述薄膜晶体管包括:半导体层116、第二栅极绝缘层115、栅电极114、第二绝缘层113、源电极112和漏电极111。本发明所提供的实施例为对所述LED芯片发出光线的出射方向进行调节,从而实现分别将不同的图像投影到屏幕上,且由于人眼存在视觉停留的现象,当第一画面切换成第二画面时,由于人眼中看到的第一画面的记忆还停留在人脑中,因此此时呈现在人眼中的画面为第一画面和第二画面拼接出的整个画面,从而实现可以将一整幅图像分成两个部分,在人眼视觉停留的时间内快速切换这两个部分的画面,实现人眼观看到整个画面的效果。
具体的,本发明实施例公开了一种光学投影成像***,结合图2所示,所述光学投影成像***包括:图像源控制器10、投影屏幕30、角度控制器40和LED显示器20,其中,所述LED显示器20包括:若干个LED显示组件,各个所述LED显示组件包括:LED芯片210和设置在所述LED芯片210上方的角度控制结构220。
所述角度控制器40,用于在每隔预设时间分别向所述LED显示器发出至少两种不同的角度控制信号,控制LED显示器20处于至少两种不同的显示模式。
所述图像源控制器10,用于向所述LED显示器20发送画面信号,其中,处于不同显示模式的LED显示器20对应发送不同的画面信号。
所述角度控制结构220,用于接收所述角度控制器40发出的角度控制信号,对所述LED显示器20中每颗所述LED芯片210的出射主光线方向分别进行不同角度方向的调制;所述角度方向的调制与不同的画面信号所要投影的方向相对应。
所述投影屏幕30,用于接收经过所述角度控制结构220调制后的所述主光线对应的画面,得到投影图像。
所述LED显示器20中含有多个LED组件,每个LED组件中均含有一颗LED芯片210,且各颗LED芯片210发出的光线是的发射方向是可以调控的,具体的,所述LED显示器20还包括:设置在所述LED芯片上方的角度控制结构。
所述角度控制器40向所述LED显示器20发出不同的角度控制信号,分别用于实现对LED显示器进行不同显示模式的控制。
在一种实施方式中,通过发两种角度控制信号,使得所述LED显示器处于两种不同的显示模式,例如:所述角度控制器向所述LED显示器发出第一角度控制信号,使得所述LED显示器在第一显示模式下工作;所述角度控制器向所述LED显示器发送第二角度控制信号,使得所述LED显示器在第二显示模式下工作;所述第一显示模式对应为投影到投影屏幕的图像为第一角度的模式,所述第二显示模式对应的为投影到投影屏幕的图像为第二角度的模式。第一显示模式下,LED显示器上的每颗LED芯片的出射主光线沿第一角度方向出射;第二显示模式下,LED显示器上的每颗LED芯片的出射主光线沿第二角度方向出射。
结合图3所示,所述图像源控制器发送到所述LED显示器的画面信号也对应有第一画面信号和第二画面信号,当所述LED显示器在第一显示模式下工作时,所述图像源控制器向所述LED显示器发送第一画面信号,使得所述LED显示器投影第一画面;当所述LED显示器在第二显示模式下工作时,所述图像源控制器向所述LED显示器发送第二画面信号,使得所述LED显示器投影出第二画面,所述第一画面和第二画面拼接成完整投射画面。
可以想到的是,在每隔预设时间,还可以通过所述角度控制器控制所述LED显示器处于多种显示模式下,使得所述LED显示器在每隔预设时间投影出三幅及以上的画面,投影出的画面在投影屏幕上拼接出整个画面。
所述准直光学元件设置于所述LED显示器的出光光路上,用于沿主光线方向准直所述LED显示器中每颗LED发出的光线;在具体实施方式中,所述准直光学元件包括:微透镜阵列、微环型结构或者光子晶体阵列。
具体的,结合图4所示,所述角度控制结构包括:沿所述LED芯片出射主光线的出射光路依次设置的光学轴向控制装置和光学膜片结构。
所述光学轴向控制装置包括:沿所述LED芯片出射光路依次设置的金属线栅电极、透明电极和旋光性材料层,所述旋光性材料层用于改变所述出射主光线的偏振性;
所述光学膜片结构包括:用于对接入射的所述出射主光线进行折射的高分子液晶层。
所述光学膜片结构300包括:用于对接入射的所述出射主光线进行折射的高分子液晶层和沿LED芯片出射光路且包覆在所述高分子液晶层外侧的UV树脂层302。所述高分子液晶层对不同入射角度的偏振光分别具有第一折射率和第二折射率,且经过第一折射率折射出的偏振光与经过第二折射率折射出的偏振光的出射方向成轴向正交。
结合图5所示,当所述图像源控制器控制所述LED显示器在第一显示模式下工作时,向所述LED显示器发送第一画面信号时,从LED芯片中发出的光线由金属线栅形成线性偏振光,光学轴向控制装置200此时不施加电压,也即不接入电源,所述线性偏振光由于在旋光材料层202的作用下其光线方向旋转一定角度,该角度可以为90度,则旋转90度方向的线性偏振光入射至双折射率光学膜片,通过该轴向折射率为n1,光线经过n1和n0折射率材料后发生第一角度折射,经过第一角度折射后得到的第一图像投影到投影屏幕上,其显示效果如图7所示。
结合图6所示,当所述图像源控制器控制所述LED显示器在第二显示模式下工作时,向所述LED显示器发送第二画面信号时,从LED芯片中发出的光线由金属线栅形成线性偏振光,光学轴向控制装置施加有交流电压,也即不接入电源,所述线性偏振光由于旋光材料特征旋转一定角度,该角度可以为90度,则旋转90度方向的线性偏振光入射至双折射率光学膜片,通过该轴向折射率为n1,光线经过n1和n0折射率材料后发生第一角度折射,经过第二角度折射后得到的第二图像投影到投影屏幕上,其显示效果如图8所示。
本实施例中,图像源控制器控制LED显示器在第一显示模式和第二显示模式之间切换的时间设置在预设时间以内,且所述预设时间为人眼无法分辨第一图像和第二图像的视觉停留时间,也即是,当投影屏幕中接收到第一图像的持续时间为0-1/2T时间内调制每颗LED芯片发出光线的出射角度为第一出射角度,从而投射出投影画面1,当投影屏幕中接收到第二图像的持续时间为1/2T-1T时间内调制每颗LED芯片发出光线的出射角度为第二出射角度,从而投射出投影画面2,则在预设时间T,人眼看到的是有第一图像和第二图像组成的拼接图像。若第一图像和第二图像分别为整个图像的两个部分, 则基于第一图像和第二图像可拼接出整个图像,如图9所示。
为了实现投影***的小型化,本实施例中LED显示器中的所述LED芯片为Micro LED。
在本实施例的一种具体实施方式中,在所述LED显示器和投影屏幕之间还可以设置投影镜头,利用所述投影镜头对接收到的图像进行放大处理,从而实现对投影画面进一步放大的效果。
本实施例还公开了一种投影成像方法,应用于所述的投影成像***;如图10所示,所述投影成像方法包括:
步骤S101、所述角度控制器在每隔预设时间分别向所述LED显示器发出至少两种不同的角度控制信号,控制LED显示器处于至少两种不同的显示模式;所述每隔预设时间为人眼无法分辨第一图像和第二图像的视觉停留时间。
在一种实施方式中,所述显示模式包括第一显示模式和第二显示模式,所述画面信号包括第一画面信号和第二画面信号;所述投影图像为所述每隔预设时间所述LED显示器投影出的第一画面和第二画面所拼接出的图像。
具体的,所述角度控制信号包括第一角度控制信号和第二角度控制信号;所述第一角度控制信号控制所述LED显示器处于第一显示模式,所述第二角度控制信号控制所述LED显示器处于第二显示模式;所述预设时间为人眼视觉暂留时间。
步骤S102、所述图像源控制器向所述LED显示器发送画面信号,其中,所述LED显示器处于不同显示模式对应发送不同的画面信号。
所述图像源控制器向所述LED显示器发送不同的画面信号,且在每隔预设时间发送不同画面信号。
所述图像源控制器向所述LED显示器发送画面信号的步骤包括:
当LED显示器处于第一显示模式时,所述图像源控制器向所述LED显示器发送第一画面信号,当所述LED显示器处于第二显示模式时,所述图像源控制器向所述LED显示器发送第二画面信号。
步骤S103、所述角度控制结构接收所述角度控制器发出的角度控制信号,对所述LED显示器中每颗所述LED芯片的出射主光线方向进行不同角度方向的调制;所述角度方向的调制与不同的画面信号所要投影的方向相对应。
设置在所述LED芯片上方的角度控制结构,用于根据从角度控制器中发出的角度控制信号对LED芯片发出的主光线方向进行不同角度方向的调制,所述角度控制器发 出第一角度控制信号对LED芯片发出的主光线做第一角度上的调整,所述角度控制器发出第二角度控制信号对LED芯片发出的主光线做第二角度上的调整。
在一种实施方式中,所述角度控制器包括:光学轴向控制装置和光学膜片结构;
所述光学轴向控制装置包括:金属线栅电极、透明电极和旋光性材料层;
所述光学膜片结构包括:高分子液晶层;
所述角度控制器分别发出第一角度控制信号和第二角度控制信号对各颗所述LED芯片发出的出射主光线的出射角度进行调节控制的步骤包括:
当所述角度控制器发出第一角度控制信号,则各颗所述LED芯片发出的出射主光线经过金属线栅极形成线性偏振光;所述线性偏振光在所述旋光性材料层的作用下,入射到所述光学膜片结构,经过所述光学膜片结构折射后以所述第一角度发出;
或者,当所述角度控制器发出第二角度控制信号,所述LED芯片发出的出射光线经过金属线栅极形成线性偏振光;所述线性偏振光在光学轴向控制装置的调节下,以原出射角度入射到所述光学膜片结构,经过所述光学膜片结构折射后以第二角度发出。
具体的,所述线性偏振光在光学轴向控制装置的调节下,以原出射角度入射到所述光学膜片结构的步骤中还包括:
将所述光学轴向控制装置接入交流电源,以使得经过所述旋光性材料层输入到所述光学轴向控制装置的所述线性偏振光,输出的出射角度保持不变。
步骤S104、所述投影屏幕接收经过所述角度控制结构调制后的所述主光线对应的画面,得到投影图像。
设置在LED显示器出射主光束前方的投影屏幕接收到角度控制结构调制后的出射主光束,对主光束进行投影,得到投影图像。
由于投影图像是所述LED显示器在两个显示模式分别显示出的两个画面,且两个画面通过不同的角度投影到投影屏幕上,拼接成一个完整的图像,通过拼接的方式实现对图像的放大。
在所述图像源控制器向所述LED显示器发送画面信号的步骤之后,还包括:
所述LED显示器中各颗LED芯片根据接收到的画面信号发出相应的出射主光线;
利用准直光学元件对所述LED芯片的出射主光线进行准直处理。
可选的,所述投影屏幕接收经过所述角度控制结构调制后的所述主光线对应的画面,得到投影图像的步骤之前,还包括:
对LED显示器发出的出射主光线进行放大处理后,投影到投影屏幕。
在本实施的一种实施方式中,若要投影出的拼接图像为一幅完整的图像,则需要所述图像源控制器首先对待投影出的完整图像进行处理,得到第一图像和第二图像,所述第一图像和第二图像分别为该完整图像的两个部分,所述第一图像和第二图像满足拼接后的图像为完整图像,其中间具有部分重叠图像。
所述图像源控制器分别控制LED投影屏幕分别投影出的完整图像的第一部分图像,也即第一图像,在每隔预设时间切换投影该完整图像的第二部分图像,也即第二图像。
所述角度控制器设置在LED芯片发出光线的光线中,用于对所述LED芯片发出光的传播方向进行调节控制,当所述LED芯片发出的光与投影出的第一图像相对应时,则控制所述第一图像所对应的光经过第一角度折射后发出,当所述LED芯片发出的光与投影出的第二图像相对应时,则控制所述第二图像所对应的光经过第二角度折射后发出。可以想到的是,为了实现整个图像的完整拼接,所述第一图像所在整幅图像中的位置与第一角度相对应,若第一图像所对应的位置为整幅图的左半边图像,则其角度应该调整为投影到投影屏幕的左半边的显示界面上,若第二图像所对应的位置为整幅图的右半边图像,则第二角度所对应投影到投影屏幕的右半边的位置。若第一图像所对应整幅图的位置为上半边或下半边,则与上述实施方式相似。
为了实现更好的出射光学调节效果,在所述LED芯片发出光线的光路上,还设置有准直光学元件,所述准直光学元件包括:微透镜阵列、微环型结构或者光子晶体阵列,利用所述准直光学元件对所述LED芯片发出的光进行准直处理。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本发明旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (15)

  1. 一种光学投影成像***,其特征在于,包括:图像源控制器、投影屏幕、角度控制器和LED显示器;所述LED显示器包括:若干个LED显示组件,各个所述LED显示组件包括:LED芯片和设置在所述LED芯片上方的角度控制结构;
    所述角度控制器,用于在每隔预设时间向所述LED显示器发出至少两种不同的角度控制信号,控制LED显示器处于至少两种不同的显示模式;
    所述图像源控制器,用于向所述LED显示器发送画面信号,其中,处于不同显示模式的LED显示器对应发送不同的画面信号;
    所述角度控制结构,用于接收所述角度控制器发出的角度控制信号,对所述LED显示器中每颗所述LED芯片的出射主光线方向分别进行不同角度方向的调制;所述角度方向的调制与不同的画面信号所要投影的方向相对应;
    所述投影屏幕,用于接收经过所述角度控制结构调制后的所述主光线对应的画面,得到投影图像。
  2. 根据权利要求1所述的光学投影成像***,其特征在于,所述显示模式包括第一显示模式和第二显示模式,所述画面信号包括第一画面信号和第二画面信号;所述投影图像为所述第一画面信号对应的第一画面和所述第二画面信号对应的第二画面所拼接出的图像。
  3. 根据权利要求1所述的光学投影成像***,其特征在于,所述LED显示器还包括:用于对所述LED芯片的出射主光线的进行准直的准直光学元件,所述准直光学元件包括:微透镜阵列、微环型结构或者光子晶体阵列。
  4. 根据权利要求2所述的光学投影成像***,其特征在于,所述角度控制结构包括:沿所述LED芯片出射主光线的出射光路依次设置的光学轴向控制装置和光学膜片结构;
    所述光学轴向控制装置包括:沿所述LED芯片出射光路依次设置的金属线栅电极、透明电极和旋光性材料层,所述旋光性材料层用于改变所述出射主光线的偏振性;
    所述光学膜片结构包括:用于对接入射的所述出射主光线进行折射的高分子液晶层。
  5. 根据权利要求4所述的光学投影成像***,其特征在于,所述高分子液晶层对不同入射角度的偏振光分别具有第一折射率和第二折射率,且经过第一折射率折射出的偏振光与经过第二折射率折射出的偏振光的出射方向成轴向正交。
  6. 根据权利要求3所述的光学投影成像***,其特征在于,所述光学膜片结构还包括,沿LED芯片出射光路设置于所述高分子液晶层之后的UV树脂层。
  7. 根据权利要求1所述的光学投影成像***,其特征在于,还包括设置在所述LED显示器与投影屏幕之间的投影镜头;
    所述投影镜头,用于接收LED显示器发出的出射主光线进行放大。
  8. 根据权利要求1所述的光学投影成像***,其特征在于,所述LED芯片为Micro-LED。
  9. 一种光学投影成像方法,其特征在于,应用于权利要求1所述的投影成像***;所述投影成像方法包括:
    所述角度控制器在每隔预设时间分别向所述LED显示器发出至少两种不同的角度控制信号,控制LED显示器处于至少两种不同的显示模式;
    所述图像源控制器向所述LED显示器发送画面信号,其中,所述LED显示器处于不同显示模式对应发送不同的画面信号;
    所述角度控制结构接收所述角度控制器发出的角度控制信号,对所述LED显示器中每颗所述LED芯片的出射主光线方向分别进行不同角度方向的调制;所述角度方向的调制与不同的画面信号所要投影的方向相对应;
    所述投影屏幕接收经过所述角度控制结构调制后的所述主光线对应的画面,得到投影图像。
  10. 根据权利要求9所述的光学投影成像方法,其特征在于,所述显示模式包括第一显示模式和第二显示模式,所述画面信号包括第一画面信号和第二画面信号;所述投影图像为所述每隔预设时间所述LED显示器投影出的第一画面和第二画面所拼接出的图像。
    所述图像源控制器向所述LED显示器发送画面信号的步骤包括:
    当LED显示器处于第一显示模式时,所述图像源控制器向所述LED显示器发送第一画面信号,当所述LED显示器处于第二显示模式时,所述图像源控制器向所述LED显示器发送第二画面信号。
  11. 根据权利要求9所述的光学投影成像方法,其特征在于,在所述图像源控制器向所述LED显示器发送画面信号的步骤之后,还包括:
    所述LED显示器中各颗LED芯片根据接收到的画面信号发出相应的出射主光线;
    利用准直光学元件对所述LED芯片的出射主光线进行准直处理。
  12. 根据权利要求9所述的光学投影成像方法,其特征在于,所述角度控制信号包括第一角度控制信号和第二角度控制信号;所述第一角度控制信号控制所述LED显示 器处于第一显示模式,所述第二角度控制信号控制所述LED显示器处于第二显示模式;所述预设时间为人眼视觉暂留时间。
  13. 根据权利要求9所述的光学投影成像方法,其特征在于,所述角度控制器包括:光学轴向控制装置和光学膜片结构;
    所述光学轴向控制装置包括:金属线栅电极、透明电极和旋光性材料层;
    所述光学膜片结构包括:高分子液晶层;
    所述角度控制器分别发出第一角度控制信号和第二角度控制信号对各颗所述LED芯片发出的出射主光线的出射角度进行调节控制的步骤包括:
    当所述角度控制器发出第一角度控制信号,则各颗所述LED芯片发出的出射主光线经过金属线栅极形成线性偏振光;所述线性偏振光在所述旋光性材料层的作用下,入射到所述光学膜片结构,经过所述光学膜片结构折射后以所述第一角度发出;
    或者,当所述角度控制器发出第二角度控制信号,所述LED芯片发出的出射光线经过金属线栅极形成线性偏振光;所述线性偏振光在光学轴向控制装置的调节下,以原出射角度入射到所述光学膜片结构,经过所述光学膜片结构折射后以第二角度发出。
  14. 根据权利要求13所述的光学投影成像方法,其特征在于,所述线性偏振光在光学轴向控制装置的调节下,以原出射角度入射到所述光学膜片结构的步骤中还包括:
    将所述光学轴向控制装置接入交流电源,以使得经过所述旋光性材料层输入到所述光学轴向控制装置的所述线性偏振光,输出的出射角度保持不变。
  15. 根据权利要求9所述的光学投影成像方法,其特征在于,所述投影屏幕接收经过所述角度控制结构调制后的所述主光线对应的画面,得到投影图像的步骤之前,还包括:
    对LED显示器发出的出射主光线进行放大处理后,投影到投影屏幕。
PCT/CN2019/121382 2019-11-28 2019-11-28 一种光学投影成像***及方法 WO2021102765A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/056,767 US20220286653A1 (en) 2019-11-28 2019-11-28 Optical Projection Imaging System and Method
PCT/CN2019/121382 WO2021102765A1 (zh) 2019-11-28 2019-11-28 一种光学投影成像***及方法
CN201980002877.5A CN110998434A (zh) 2019-11-28 2019-11-28 一种光学投影成像***及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/121382 WO2021102765A1 (zh) 2019-11-28 2019-11-28 一种光学投影成像***及方法

Publications (1)

Publication Number Publication Date
WO2021102765A1 true WO2021102765A1 (zh) 2021-06-03

Family

ID=70080516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121382 WO2021102765A1 (zh) 2019-11-28 2019-11-28 一种光学投影成像***及方法

Country Status (3)

Country Link
US (1) US20220286653A1 (zh)
CN (1) CN110998434A (zh)
WO (1) WO2021102765A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112967612A (zh) * 2020-04-23 2021-06-15 重庆康佳光电技术研究院有限公司 一种led显示屏
TWI784612B (zh) * 2021-07-05 2022-11-21 友達光電股份有限公司 顯示裝置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139590A (ja) * 2008-12-10 2010-06-24 Sony Corp 画像投影装置及び投影画像の二次元/三次元切替え方法
CN104614929A (zh) * 2015-02-12 2015-05-13 南京中科神光科技有限公司 一种多画面投影显示装置及多画面投影方法
CN105068354A (zh) * 2015-08-11 2015-11-18 重庆卓美华视光电有限公司 裸眼3d显示装置
CN105527789A (zh) * 2016-02-29 2016-04-27 青岛海信电器股份有限公司 一种投影显示方法及***
CN105632384A (zh) * 2016-03-02 2016-06-01 青岛海信电器股份有限公司 一种投影显示***及方法
CN108957755A (zh) * 2018-07-27 2018-12-07 京东方科技集团股份有限公司 一种显示组件及其控制方法、平视显示器及汽车
CN208384231U (zh) * 2018-04-20 2019-01-15 深圳创维新世界科技有限公司 虚拟现实显示***

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7083283B2 (en) * 2003-07-22 2006-08-01 Seiko Epson Corporation Projector
CN101169520A (zh) * 2006-11-16 2008-04-30 中国科学院长春光学精密机械与物理研究所 一种用于液晶投影显示的偏振光转换装置
US7933509B2 (en) * 2007-12-31 2011-04-26 Motorola, Inc. Device and method for reducing optical blurring
JP2014021140A (ja) * 2012-07-12 2014-02-03 Seiko Epson Corp スクリーン、および画像表示システム
US20160327783A1 (en) * 2016-02-29 2016-11-10 Hisense Electric Co., Ltd. Projection display system and method
CN206161977U (zh) * 2016-11-07 2017-05-10 宁波视睿迪光电有限公司 一种显示调节装置及显示设备
CN207731065U (zh) * 2018-01-16 2018-08-14 歌尔科技有限公司 一种3d激光投影装置及***
CN109188839B (zh) * 2018-10-23 2020-10-09 刘兆昆 投影机及其摄影摄像***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139590A (ja) * 2008-12-10 2010-06-24 Sony Corp 画像投影装置及び投影画像の二次元/三次元切替え方法
CN104614929A (zh) * 2015-02-12 2015-05-13 南京中科神光科技有限公司 一种多画面投影显示装置及多画面投影方法
CN105068354A (zh) * 2015-08-11 2015-11-18 重庆卓美华视光电有限公司 裸眼3d显示装置
CN105527789A (zh) * 2016-02-29 2016-04-27 青岛海信电器股份有限公司 一种投影显示方法及***
CN105632384A (zh) * 2016-03-02 2016-06-01 青岛海信电器股份有限公司 一种投影显示***及方法
CN208384231U (zh) * 2018-04-20 2019-01-15 深圳创维新世界科技有限公司 虚拟现实显示***
CN108957755A (zh) * 2018-07-27 2018-12-07 京东方科技集团股份有限公司 一种显示组件及其控制方法、平视显示器及汽车

Also Published As

Publication number Publication date
US20220286653A1 (en) 2022-09-08
CN110998434A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
US9151984B2 (en) Active reflective surfaces
WO2020248631A1 (zh) 液晶显示装置
US7995153B2 (en) Image processing system capable of changing a polarization angle of a polarized image and related method
US7825363B2 (en) Micro lens array unit having at least one of first and second micro lens arrays movable for changing the effective focal length of the micro lens array unit and liquid crystal display projection device using same
WO2020211524A1 (zh) 显示***及其控制方法、计算机可读存储介质
JP2008286993A (ja) 表示装置
WO2021102765A1 (zh) 一种光学投影成像***及方法
TW201736906A (zh) 頭戴式顯示裝置
TW201030426A (en) Addressable backlight for LCD panel
JP2008292861A (ja) 液晶表示装置及び映像表示装置
JP5332961B2 (ja) 電気光学装置及び電子機器
US10775627B2 (en) Display device and head-mounted display
WO2024046067A1 (zh) 近眼显示装置及其显示方法、可穿戴设备
WO2017206543A1 (zh) 显示装置及其驱动方法
KR20160041155A (ko) 디스플레이 장치 및 디스플레이 시스템
JP6713498B2 (ja) 表示装置
CN116360101A (zh) 一种消色差的多焦面vr显示装置及方法
JP2021192071A (ja) 投射型液晶表示装置及び電子機器
KR101038343B1 (ko) 실리콘 액정 마이크로디스플레이의 컬러 기반의 마이크로디바이스
WO2020215866A1 (zh) 一种调光装置及其控制方法、显示***
US10690926B1 (en) Near-eye augmented reality device
US10338456B2 (en) Display apparatus with liquid crystal display projecting an image on a transmissive screen
KR20200009166A (ko) 증강 현실 제공 장치와 그의 구동방법
JP2013101165A (ja) シングルチップ液晶立体メガネ
JP2015059979A (ja) 画像表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954419

Country of ref document: EP

Kind code of ref document: A1