WO2021101059A1 - 절연저항 측정 장치 및 그 장치를 적용하는 배터리 시스템 - Google Patents

절연저항 측정 장치 및 그 장치를 적용하는 배터리 시스템 Download PDF

Info

Publication number
WO2021101059A1
WO2021101059A1 PCT/KR2020/013068 KR2020013068W WO2021101059A1 WO 2021101059 A1 WO2021101059 A1 WO 2021101059A1 KR 2020013068 W KR2020013068 W KR 2020013068W WO 2021101059 A1 WO2021101059 A1 WO 2021101059A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
insulation resistance
resistor
battery
voltage
Prior art date
Application number
PCT/KR2020/013068
Other languages
English (en)
French (fr)
Inventor
옥장수
유재욱
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to US17/439,019 priority Critical patent/US11841389B2/en
Priority to CN202080020599.9A priority patent/CN113557435B/zh
Priority to EP20889304.0A priority patent/EP3933415A4/en
Priority to JP2021544341A priority patent/JP7264578B2/ja
Publication of WO2021101059A1 publication Critical patent/WO2021101059A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/025Measuring very high resistances, e.g. isolation resistances, i.e. megohm-meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/08Measuring resistance by measuring both voltage and current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an insulation resistance measuring device and a battery system to which the device is applied.
  • a battery module by bonding a plurality of battery cells of a secondary battery, or a battery pack by bonding a plurality of battery modules. Can be used as.
  • insulation resistance above a certain level must be maintained in order to prevent electric shock to the user and to prevent unnecessary discharge.
  • the insulation resistance between the positive and negative electrodes of the battery and the chassis of the vehicle must be measured and maintained so that the insulation resistance does not fall below a certain level.
  • the configuration is complicated, and thus, when the apparatus for measuring insulation resistance is implemented as a PCB, there is a problem that the volume increases, and the calculation is complicated, so that there are problems such as an error and a calculation error.
  • the present invention provides an insulation resistance measurement device having a simple configuration of an insulation resistance measurement circuit, and a battery system to which the device is applied.
  • the present invention provides an insulation resistance measuring apparatus capable of calculating insulation resistance formed between each of a positive electrode and a negative electrode of a battery and a chassis ground, and a battery system to which the apparatus is applied.
  • the present invention provides an insulation resistance measuring apparatus capable of calculating insulation resistance formed between an arbitrary electrode of a battery and a chassis ground, and a battery system to which the apparatus is applied.
  • Insulation resistance measuring apparatus includes a first resistor having one end connected to one electrode of a battery, a first switch having one end connected to the other end of the first resistor, and the other end of the first switch.
  • a second resistor having one end connected, a third resistor having one end connected to the other end of the second resistor and the other end connected to the other electrode of the battery, a first contact between the first switch and the second resistor
  • An insulation resistance measuring circuit including a second switch having one end connected to the chassis and the other end connected to a chassis ground;
  • a voltage measuring unit measuring a voltage of a second contact between the second resistor and the third resistor;
  • a control unit for controlling switching of the first switch and the second switch and calculating an insulation resistance value based on the voltage measured by the voltage measuring unit, wherein the control unit includes: Calculation of the insulation resistance value based on a first voltage measured at the second contact during an ON period and a second voltage measured at the second contact during an OFF and ON period of the second switch do.
  • the control unit may perform a normal operation of the insulation resistance measurement circuit based on a voltage measured at the second contact point and a resistance ratio of the first to third resistors in an on state of the first switch and an off state of the second switch. Whether it can be diagnosed.
  • the control unit may electrically separate the insulation resistance measurement circuit by turning off the first switch and the second switch.
  • the insulation resistance measuring circuit may further include a diagnostic resistor connected between one electrode of the battery and the other end of the second switch.
  • the control unit When the second switch is turned on/off in the on state of the first switch, the control unit is configured based on a voltage measured at the second contact point and resistance values of the first to third resistances and the diagnostic resistance, respectively. It is possible to diagnose whether the on/off of the second switch is normally operated.
  • a battery system is a battery system including a device for measuring insulation resistance, comprising: a battery including a plurality of battery cells connected in series; And a first resistor having one end connected to one electrode of the battery, a first switch having one end connected to the other end of the first resistor, a second resistor having one end connected to the other end of the first switch, and the second.
  • a third resistor having the other end of the resistor connected to one end and the other end connected to the other electrode of the battery, one end connected to the first contact between the first switch and the second resistor, and the other end to the chassis ground
  • an insulation resistance measurement device for measuring a voltage of a second contact between the second resistance and the third resistance
  • the insulation resistance measurement device comprising: the first switch and the Insulation resistance based on the first voltage measured at the second contact point during the on period of the second switch and the second voltage measured at the second contact point during the off and on period of the second switch You can calculate the value.
  • the insulation resistance measurement device may include a voltage measured at the second contact point in an on state of the first switch and an off state of the second switch, and the insulation resistance measurement device based on a resistance ratio of the first to third resistances You can diagnose the normal operation of the product.
  • the insulation resistance measurement apparatus may electrically separate the insulation resistance measurement apparatus by turning off the first switch and the second switch.
  • the insulation resistance measuring apparatus may further include a diagnostic resistor connected between one electrode of the battery and the other end of the second switch.
  • the insulation resistance measuring apparatus is applied to a voltage measured at the second contact point and a resistance value of the first to third resistances and the diagnostic resistance, respectively. Based on the normal operation of the second switch on/off, it can be diagnosed.
  • the present invention has the effect of simplifying the circuit for measuring the insulation resistance to reduce the volume and reduce the cost when designing the PCB of the insulation resistance measurement device.
  • FIG. 1 is a diagram illustrating a battery system according to an exemplary embodiment.
  • FIG. 2 is a diagram illustrating in detail an insulation resistance measuring apparatus for measuring insulation resistance formed between a positive and negative electrode of a battery and a chassis ground according to an exemplary embodiment.
  • FIG. 3 is a diagram illustrating an insulation resistance measuring circuit in which the first and second switches of FIG. 2 are turned on.
  • FIG. 4 is a diagram illustrating an insulation resistance measuring circuit in which a first switch of FIG. 2 is turned off and a second switch is turned on.
  • FIG. 5 is a diagram illustrating an insulation resistance measurement circuit in which a diagnostic resistance is added to the insulation resistance measurement apparatus of FIG. 2.
  • FIG. 6 is a diagram illustrating in detail an insulation resistance measuring apparatus for measuring insulation resistance formed between an arbitrary electrode of a battery module and a chassis ground according to an exemplary embodiment.
  • FIG. 7 is a diagram illustrating an insulation resistance measuring circuit in which the first and second switches of FIG. 6 are turned on.
  • FIG. 8 is a diagram illustrating an insulation resistance measuring circuit in which the first switch of FIG. 6 is turned off and the second switch is turned on.
  • FIG. 9 is a diagram illustrating an insulation resistance measurement circuit in which a diagnostic resistance is added to the insulation resistance measurement apparatus of FIG. 6.
  • insulation resistance the resistance component between all components constituting the current path in the battery system and the chassis ground.
  • insulation resistance the resistance component between all components constituting the current path in the battery system and the chassis ground.
  • an insulation resistance formed between each of the positive and negative electrodes of the battery and the chassis ground is assumed, or the insulation resistance formed between an arbitrary electrode of the battery and the chassis ground is assumed.
  • the insulation resistance that can be formed in the battery system to which the present invention is applied is not limited to the above example.
  • FIG. 1 is a diagram illustrating a battery system according to an exemplary embodiment.
  • the battery system 1 includes a battery 10, a relay 20, a current sensor 30, a BMS 40, and an insulation resistance measuring device 50.
  • the battery 10 may supply necessary power by connecting a plurality of battery cells in series/parallel.
  • the battery 10 includes a plurality of battery cells (Cell1-Celln) connected in series, is connected between the two output terminals (OUT1, OUT2) of the battery system 1, the battery
  • the relay 20 is connected between the positive electrode of 10 and the output terminal OUT1
  • the current sensor 30 is connected between the negative electrode of the battery 10 and the output terminal OUT2.
  • the relay 20 controls the electrical connection between the battery system 1 and an external device. When the relay 20 is turned on, the battery system 1 and the external device are electrically connected to perform charging or discharging, and when the relay 20 is turned off, the battery system 1 and the external device are electrically separated.
  • the current sensor 30 is connected in series to the current path between the battery 10 and the external device.
  • the current sensor 30 may measure a current flowing through the battery 10, that is, a charging current and a discharge current, and transmit the measurement result to the BMS 40.
  • the BMS 40 monitors the cell voltage, current, and temperature of the battery 10 in real time, uniformly holds the voltage between a plurality of battery cells (Cell1-Celln), and prevents excessive charging/discharging, so that it is optimally managed. have.
  • the BMS 40 may receive an insulation resistance measurement result from the insulation resistance measurement device 50 to diagnose stability related to insulation resistance.
  • the BMS 40 may generate a notification message.
  • the insulation resistance measuring device 50 may measure the insulation resistance formed between each of the positive and negative electrodes of the battery 10 and the chassis ground, or measure the insulation resistance formed between an arbitrary electrode of the battery 10 and the chassis ground. .
  • the insulation resistance measuring device 50 is electrically connected to the battery system 1 when measuring the insulation resistance, and when the insulation resistance is not measured, it is electrically disconnected from the battery system 1 to generate unnecessary noise. It can prevent the occurrence of leakage current.
  • FIG. 2 is a diagram illustrating in detail an insulation resistance measuring apparatus for measuring insulation resistance formed between each of the positive and negative electrodes of a battery and the chassis ground according to an embodiment
  • FIG. 3 is FIG. 4 is a diagram showing an insulation resistance measurement circuit in a state in which the first switch of FIG. 2 is turned off and the second switch is turned on
  • FIG. 5 is a diagram showing the insulation resistance measurement circuit of FIG. This is a diagram showing an insulation resistance measurement circuit with added diagnostic resistance.
  • the insulation resistance measurement apparatus 50 may include an insulation resistance measurement circuit 51, a voltage measurement unit 52, and a control unit 53.
  • the insulation resistance measuring apparatus 50 is shown as a separate configuration from the BMS 40, but is not limited thereto and may be included in the BMS 40.
  • the insulation resistance measurement circuit 51 includes a first resistor R1 having one end connected to one electrode of the battery 10, a first switch SW1 connected to the other end of the first resistor R1, and a first switch.
  • a second resistor R2 connected to the other end and one end of SW1, a third resistor R3 connected to the other end and one end of the second resistor R2 and connected to the other electrode of the battery 10, 1 and a second switch SW2 having one end connected to the first contact N1 between the switch SW1 and the second resistor R2 and the other end connected to the chassis C ground.
  • the value of the first resistor R1 may be configured to correspond to the sum of the values of the second resistor R2 and the third resistor R3.
  • the first insulation resistance Rp may be formed between the positive electrode of the battery 10 and the chassis C ground
  • the second insulation resistance Rn may be formed between the negative electrode of the battery 10 and the chassis C ground.
  • the insulation resistance RL value may be derived by calculating a parallel (Rp
  • the chassis C is a vehicle that forms the basis of a vehicle, and may mean a state in which the vehicle body is not mounted.
  • the chassis C may have a form in which various components such as an engine, a transmission, and a clutch are combined with a frame that is a basic skeleton.
  • the insulation resistance measuring circuit 51 is shown to be connected to the chassis C, but is not limited thereto, and may be combined with various devices.
  • the voltage measurement unit 52 measures the voltage of the second contact N2 between the second resistor R2 and the third resistor R3 according to the on/off of the first switch SW1 and the second switch SW2. It is measured and transmitted to the control unit 53.
  • the voltage of the second contact N2 is the voltage Vp of the battery 10 applied to the third resistor R3 according to the on/off of the first switch SW1 and the second switch SW2.
  • the controller 53 controls the switching of the first switch SW1 and the second switch SW2, and calculates an insulation resistance RL value based on the voltage measured at the second contact N2.
  • the controller 53 may transmit the calculated insulation resistance RL to the BMS 40.
  • the controller 53 is based on the following equation (Va) measured at the second contact point N2 during the ON period of the first switch SW1 and the second switch SW2. 1) can be derived.
  • the controller 53 is based on the following equation based on the second voltage Vb measured at the second contact N2 during the off period of the first switch SW1 and the on period of the second switch SW2. (2) can be derived.
  • the control unit 53 can derive the following equation (3) by solving the system of equations of equations (1) and (2).
  • the control unit 53 calculates the first insulation resistance Rp and the second insulation resistance Rn, respectively, as shown in equation (3), and then the parallel (Rp) of the first insulation resistance Rp and the second insulation resistance Rn. ⁇ Rn) By calculating the resistance value, the insulation resistance (RL) value can be derived.
  • the control unit 53 may diagnose whether the insulation resistance measurement circuit 51 is normally operating using the second switch SW2. Specifically, when the first switch SW1 is turned on by the control unit 53 and the second switch SW2 is turned off, the insulation resistance measuring circuit 51 is ) And the chassis (C) are electrically separated from the ground, and are electrically connected to the positive and negative electrodes of the battery 10. At this time, the control unit 53 determines whether the insulation resistance measurement circuit 51 operates normally based on the voltage measured at the second contact point N2 and the resistance ratio of the first to third resistors R1, R2, and R3. Can be diagnosed.
  • the insulation resistance measurement circuit 51 may further include a diagnostic resistor RH connected between one electrode of the battery 10 and the other end of the second switch SW2.
  • the controller 53 may diagnose whether the on/off of the second switch SW2 is normally operated using the diagnostic resistor RH. Specifically, when the second switch SW2 is turned on in the on state of the first switch SW1 by the control unit 53, and when the second switch SW2 is turned off, measured at the second contact point N2, respectively. Whether the on/off of the second switch SW2 is normally operated may be diagnosed based on the voltage, the values of the first to third resistors R1, R2, and R3, and the diagnostic resistor RH.
  • FIG. 6 is a diagram illustrating in detail an insulation resistance measuring apparatus for measuring insulation resistance formed between an arbitrary electrode of a battery module and a chassis ground according to an embodiment
  • FIG. 7 is Fig. 8 is a diagram showing an insulation resistance measuring circuit in which the first switch of Fig. 6 is turned off and the second switch is turned on, and is diagnosed in the insulation resistance measuring apparatus of Fig. 9 and Fig. 6
  • It is a diagram showing an insulation resistance measuring circuit with added resistance.
  • the insulation resistance measuring apparatus 50 corresponds to the insulation resistance measuring apparatus 50 shown in FIG. 2.
  • Each of the insulation resistance measuring apparatus 50 shown in FIGS. 2 and 6 has the same configuration, arrangement, and function of the components.
  • a description of the configurations of the insulation resistance measuring apparatus 50 illustrated in FIG. 6 will be replaced with a description of the configurations of the insulation resistance measuring apparatus 50 illustrated in FIG. 2.
  • the insulation resistance RL may be formed between any electrode of the battery 10 and the ground of the chassis C.
  • the sum of the voltage (V1) between the positive electrode of the battery 10 and the contact connected to the insulation resistance (RL) and the voltage (V2) between the contact connected to the insulation resistance (RL) and the negative electrode of the battery 10 is the battery 10 Corresponds to the total voltage Vp of.
  • the controller 53 is based on the first voltage Va measured at the second contact point N2 during the ON period of the first switch SW1 and the second switch SW2.
  • the following formula (4) can be derived.
  • control unit 53 is applied to the second voltage Vb measured at the second contact N2 during the off period of the first switch SW1 and the on period of the second switch SW2. Based on the following formula (5) can be derived.
  • the control unit 53 can derive the following equation (6) for the following insulation resistance RL by solving the simultaneous equations of equations (4) and (5).
  • the control unit 53 may diagnose whether the insulation resistance measurement circuit 51 is normally operating using the second switch SW2. Specifically, when the first switch SW1 is turned on by the control unit 53 and the second switch SW2 is turned off, the insulation resistance measuring circuit 51 is ) And the chassis (C) are electrically separated from the ground, and are electrically connected to the positive and negative electrodes of the battery 10. At this time, the control unit 53 determines whether the insulation resistance measurement circuit 51 operates normally based on the voltage measured at the second contact point N2 and the resistance ratio of the first to third resistors R1, R2, and R3. Can be diagnosed.
  • the insulation resistance measurement circuit 51 may further include a diagnostic resistor RH connected between one electrode of the battery 10 and the other end of the second switch SW2.
  • the controller 53 may diagnose whether the on/off of the second switch SW2 is normally operated using the diagnostic resistor RH. Specifically, when the second switch SW2 is turned on in the on state of the first switch SW1 by the control unit 53, and when the second switch SW2 is turned off, measured at the second contact point N2, respectively. Whether the on/off of the second switch SW2 is normally operated may be diagnosed based on the voltage, the values of the first to third resistors R1, R2, and R3, and the diagnostic resistor RH.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명의 절연저항 측정 장치는, 배터리의 전극에 일단이 연결되어 있는 제1 저항, 상기 제1 저항에 연결되어 있는 제1 스위치, 상기 제1 스위치에 연결되어 있는 제2 저항, 상기 제2 저항에 연결되고 배터리의 타 전극에 타단이 연결되어 있는 제3 저항, 상기 제1 스위치와 상기 제2 저항 사이에 있는 제1 접점에 일단이 연결되고 섀시 그라운드 타단에 연결되어 있는 제2 스위치를 포함하는 절연저항 측정 회로; 제2 접점의 전압을 측정하는 전압 측정부; 및 제1 및 제2 스위칭을 제어하고, 측정된 전압값에 기초하여 절연저항 값을 계산하는 제어부를 포함하고, 제어부는 상기 제1 및 제2 스위치의 온 기간 동안의 상기 제2 접점에서 측정되는 제1 전압과, 상기 제1 스위치의 오프 및 제2 스위치의 온 기간 동안의 상기 제2 접점에서 측정되는 제2 전압에 기초하여 상기 절연저항 값을 계산한다.

Description

절연저항 측정 장치 및 그 장치를 적용하는 배터리 시스템
관련 출원(들)과의 상호 인용
본 출원은 2019년 11월 18일자 한국 특허 출원 제10-2019-0147977호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 절연저항 측정 장치 및 그 장치를 적용하는 배터리 시스템에 관한 것이다.
전기 자동차, 에너지 저장 시스템 및 무정전 전원 공급 장치와 같은 고 용량을 필요로 하는 환경에서는 2차 전지의 배터리 셀(Cell)을 복수 개 접합함으로써 배터리 모듈로 사용하거나, 배터리 모듈을 복수 개 접합하여 배터리 팩으로 사용할 수 있다.
배터리 셀이나 모듈을 접합하여 배터리를 고전압으로 사용하는 경우, 사용자가 감전되는 것을 방지하고 불필요한 방전이 수행되는 것을 예방하기 위해 일정 수준 이상의 절연저항을 유지해야 한다. 예를 들어, 고전압 배터리가 차량에 적용되어 사용되는 경우, 배터리의 양극 및 음극과 차량의 섀시(Chassis) 간 절연저항을 측정하고 절연저항이 일정 수준 이하로 떨어지지 않도록 유지해야 한다.
종래 절연저항을 측정하는 장치는, 구성이 복잡하여 절연저항을 측정하는 장치를 PCB로 구현할 때 부피가 커지는 문제가 있고, 계산이 복잡하여 오차 발생, 계산 오류 등의 문제가 있다.
본 발명은 절연저항 측정 회로의 구성이 간이한 절연저항 측정 장치 및 그 장치를 적용하는 배터리 시스템을 제공한다.
본 발명은 배터리의 양극과 음극 각각과 섀시 그라운드 사이에 형성된 절연저항을 산출할 수 있는 절연저항 측정 장치 및 그 장치를 적용하는 배터리 시스템을 제공한다.
본 발명은 배터리의 임의의 전극과 섀시 그라운드 사이에 형성된 절연저항을 산출할 수 있는 절연저항 측정 장치 및 그 장치를 적용하는 배터리 시스템을 제공한다.
본 발명의 일 특징에 따른 절연저항 측정 장치는, 배터리의 일 전극에 일단이 연결되어 있는 제1 저항, 상기 제1 저항의 타단과 일단이 연결되어 있는 제1 스위치, 상기 제1 스위치의 타단과 일단이 연결되어 있는 제2 저항, 상기 제2 저항의 타단과 일단이 연결되고 상기 배터리의 타 전극에 타단이 연결되어 있는 제3 저항, 상기 제1 스위치와 상기 제2 저항 사이에 있는 제1 접점에 일단이 연결되고 섀시(chassis) 그라운드에 타단이 연결되어 있는 제2 스위치를 포함하는 절연저항 측정 회로; 상기 제2 저항과 상기 제3 저항 사이에 있는 제2 접점의 전압을 측정하는 전압 측정부; 및 상기 제1 스위치 및 상기 제2 스위치의 스위칭을 제어하고 상기 전압 측정부에서 측정된 전압에 기초하여 절연저항 값을 계산하는 제어부를 포함하고 상기 제어부는, 상기 제1 스위치 및 상기 제2 스위치의 온 기간 동안의 상기 제2 접점에서 측정되는 제1 전압과 상기 제1 스위치의 오프 및 상기 제2 스위치의 온 기간 동안의 상기 제2 접점에서 측정되는 제2 전압에 기초하여 상기 절연저항 값을 계산한다.
상기 제어부는, 상기 제1 스위치의 온 상태 및 상기 제2 스위치의 오프 상태에서 상기 제2 접점에서 측정되는 전압과 상기 제1 내지 제3 저항의 저항 비에 기초하여 상기 절연저항 측정 회로의 정상동작 여부를 진단할 수 있다.
상기 제어부는, 상기 제1 스위치 및 상기 제2 스위치를 턴 오프하여 상기 절연저항 측정 회로를 전기적으로 분리할 수 있다.
상기 절연저항 측정 회로는, 상기 배터리의 일 전극과 상기 제2 스위치의 타단 사이에 연결되어 있는 진단 저항을 더 포함할 수 있다.
상기 제어부는, 상기 제1 스위치의 온 상태에서 상기 제2 스위치가 온/오프 될 때 각각 상기 제2 접점에서 측정되는 전압과 상기 제1 내지 제3 저항 및 상기 진단 저항의 저항 값에 기초하여 상기 제2 스위치의 온/오프의 정상동작 여부를 진단할 수 있다.
본 발명의 다른 특징에 따른 배터리 시스템은 절연저항을 측정하는 장치를 포함하는 배터리 시스템에 있어서, 직렬 연결되어 있는 복수의 배터리 셀을 포함하는 배터리; 및 배터리의 일 전극에 일단이 연결되어 있는 제1 저항, 상기 제1 저항의 타단과 일단이 연결되어 있는 제1 스위치, 상기 제1 스위치의 타단과 일단이 연결되어 있는 제2 저항, 상기 제2 저항의 타단과 일단이 연결되고 상기 배터리의 타 전극에 타단이 연결되어 있는 제3 저항, 상기 제1 스위치와 상기 제2 저항 사이에 있는 제1 접점에 일단이 연결되고 섀시(chassis) 그라운드에 타단이 연결되어 있는 제2 스위치를 포함하고 상기 제2 저항과 상기 제3 저항 사이에 있는 제2 접점의 전압을 측정하는 절연저항 측정 장치를 포함하고 상기 절연저항 측정 장치는, 상기 제1 스위치 및 상기 제2 스위치의 온 기간 동안의 상기 제2 접점에서 측정되는 제1 전압과 상기 제1 스위치의 오프 및 상기 제2 스위치의 온 기간 동안의 상기 제2 접점에서 측정되는 제2 전압에 기초하여 절연저항 값을 계산할 수 있다.
상기 절연저항 측정 장치는, 상기 제1 스위치의 온 상태 및 상기 제2 스위치의 오프 상태에서 상기 제2 접점에서 측정되는 전압과 상기 제1 내지 제3 저항의 저항 비에 기초하여 상기 절연저항 측정 장치의 정상동작 여부를 진단할 수 있다.
상기 절연저항 측정 장치는, 상기 제1 스위치 및 상기 제2 스위치를 턴 오프하여 상기 절연저항 측정 장치를 전기적으로 분리할 수 있다.
상기 절연저항 측정 장치는, 상기 배터리의 일 전극과 상기 제2 스위치의 타단 사이에 연결되어 있는 진단 저항을 더 포함할 수 있다.
상기 절연저항 측정 장치는, 상기 제1 스위치의 온 상태에서 상기 제2 스위치가 온/오프 될 때 각각 상기 제2 접점에서 측정되는 전압과 상기 제1 내지 제3 저항 및 상기 진단 저항의 저항 값에 기초하여 상기 제2 스위치의 온/오프의 정상동작 여부를 진단할 수 있다.
본 발명은 절연저항을 측정하는 회로를 간략히 구성하여 절연저항 측정 장치의 PCB 설계 시 부피를 줄이고 비용을 절감할 수 있는 효과를 갖는다.
도 1은 일 실시예에 따른 배터리 시스템을 설명하는 도면이다.
도 2는 일 실시예에 따라 배터리의 양극과 음극 각각과 섀시 그라운드 사이에 형성된 절연저항을 측정하는 절연저항 측정 장치를 상세하게 설명하는 도면이다.
도 3은 도 2의 제1, 2 스위치가 온 상태인 절연저항 측정 회로를 보여주는 도면이다.
도 4는 도 2의 제1 스위치가 오프 및 제2 스위치가 온 상태인 절연저항 측정 회로를 보여주는 도면이다.
도 5는 도 2의 절연저항 측정 장치에 진단 저항이 추가된 절연저항 측정 회로를 보여주는 도면이다.
도 6은 일 실시예에 따라 배터리 모듈의 임의의 전극과 섀시 그라운드 사이에 형성된 절연저항을 측정하는 절연저항 측정 장치를 상세하게 설명하는 도면이다.
도 7은 도 6의 제1, 2 스위치가 온 상태인 절연저항 측정 회로를 보여주는 도면이다.
도 8은 도 6의 제1 스위치가 오프 및 제2 스위치가 온 상태인 절연저항 측정 회로를 보여주는 도면이다.
도 9 도 6의 절연저항 측정 장치에 진단 저항이 추가된 절연저항 측정 회로를 보여주는 도면이다.
배터리 시스템에서 전류 경로를 구성하는 모든 구성들은 섀시 그라운드와 절연되어 있다. 이 때, 배터리 시스템에서 전류 경로를 구성하는 모든 구성들과 섀시 그라운드 간의 저항 성분을 절연저항이라 한다. 이하 실시예에서는 배터리의 양극과 음극 각각과 섀시 그라운드 사이에 형성된 절연저항을 가정하여 설명하거나, 배터리의 임의의 전극과 섀시 그라운드 사이에 형성된 절연저항을 가정하여 설명한다. 그러나 본 발명이 적용되는 배터리 시스템에서 형성될 수 있는 절연저항은 위 예에 제한되지 않는다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시예를 상세히 설명하되, 동일하거나 유사한 구성요소에는 동일, 유사한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및/또는 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
도 1은 일 실시예에 따른 배터리 시스템을 설명하는 도면이다.
도 1을 참고하면, 배터리 시스템(1)은 배터리(10), 릴레이(20), 전류 센서(30), BMS(40) 및 절연저항 측정 장치(50)를 포함한다.
배터리(10)는 복수의 배터리 셀이 직렬/병렬 연결되어 필요한 전원을 공급할 수 있다. 도 1에 도시된 바와 같이, 배터리(10)는 직렬 연결되어 있는 복수의 배터리 셀(Cell1-Celln)을 포함하고, 배터리 시스템(1)의 두 출력단(OUT1, OUT2) 사이에 연결되어 있으며, 배터리(10)의 양극과 출력단(OUT1) 사이에 릴레이(20)가 연결되어 있고, 배터리(10)의 음극과 출력단(OUT2) 사이에 전류센서(30)가 연결되어 있다.
릴레이(20)는 배터리 시스템(1)과 외부 장치 간의 전기적 연결을 제어한다. 릴레이(20)가 온 되면, 배터리 시스템(1)과 외부 장치가 전기적으로 연결되어 충전 또는 방전이 수행되고, 릴레이(20)가 오프 되면, 배터리 시스템(1)과 외부 장치가 전기적으로 분리된다.
전류센서(30)는 배터리(10)와 외부 장치간 전류 경로에 직렬 연결되어 있다. 전류센서(30)는 배터리(10)에 흐르는 전류 즉, 충전 전류 및 방전 전류를 측정하고, 측정 결과를 BMS(40)에 전달할 수 있다.
BMS(40)는 배터리(10)의 셀 전압, 전류, 온도를 실시간 모니터링하여, 복수의 배터리 셀(Cell1-Celln) 간의 전압을 균일하게 잡아주고, 과도한 충전/방전을 막아 최적 상태로 관리할 수 있다. 예를 들어, BMS(40)는 절연저항 측정 장치(50)로부터 절연저항 측정 결과를 수신하여 절연저항과 관련한 안정성을 진단할 수 있다. BMS(40)는 절연저항의 안정성에 문제가 있다고 판단하면 알림 메시지를 생성할 수 있다.
절연저항 측정 장치(50)는 배터리(10)의 양극과 음극 각각과 섀시 그라운드 사이에 형성된 절연저항을 측정하거나, 배터리(10)의 임의의 전극과 섀시 그라운드 사이에 형성된 절연저항을 측정할 수 있다. 예를 들어, 절연저항 측정 장치(50)는 절연저항을 측정할 때는 배터리 시스템(1)에 전기적으로 연결되고, 절연저항을 측정하지 않을 때는 배터리 시스템(1)에 전기적으로 분리되어 불필요한 노이즈 발생, 누설전류 발생을 예방할 수 있다.
도 2는 일 실시예에 따라 배터리의 양극과 음극 각각과 섀시 그라운드 사이에 형성된 절연저항을 측정하는 절연저항 측정 장치를 상세하게 설명하는 도면이고, 도 3은 도 2의 제1, 2 스위치가 온 상태인 절연저항 측정 회로를 보여주는 도면이고, 도 4는 도 2의 제1 스위치가 오프 및 제2 스위치가 온 상태인 절연저항 측정 회로를 보여주는 도면이고, 도 5는 도 2의 절연저항 측정 장치에 진단 저항이 추가된 절연저항 측정 회로를 보여주는 도면이다.
도 2를 참고하면, 절연저항 측정 장치(50)는 절연저항 측정 회로(51), 전압 측정부(52), 및 제어부(53)을 포함할 수 있다. 도 1에는, 절연저항 측정 장치(50)가 BMS(40)와 별개의 구성으로 도시되어 있으나, 이에 한정되지 않고 BMS(40) 내에 포함될 수 있다.
절연저항 측정 회로(51)는 배터리(10)의 일 전극에 일단이 연결되는 제1 저항(R1), 제1 저항(R1)의 타단과 일단이 연결되는 제1 스위치(SW1), 제1 스위치(SW1)의 타단과 일단이 연결되는 제2 저항(R2), 제2 저항(R2)의 타단과 일단이 연결되고 배터리(10)의 타 전극에 타단이 연결되는 제3 저항(R3), 제1 스위치(SW1)와 제2 저항(R2) 사이에 있는 제1 접점(N1)에 일단이 연결되고 섀시(chassis, C) 그라운드에 타단이 연결되어 있는 제2 스위치(SW2)를 포함한다. 제1 저항(R1) 값은 제2 저항(R2) 및 제3 저항(R3) 값의 합에 대응되게 구성될 수 있다.
제1 절연저항(Rp)은 배터리(10)의 양극과 섀시(C) 그라운드 사이에 형성되고, 제2 절연저항(Rn)은 배터리(10)의 음극과 섀시(C) 그라운드 사이에 형성될 수 있다. 절연저항(RL) 값은 제1 절연저항(Rp) 및 제2 절연저항(Rn)의 병렬(Rp∥Rn) 저항 값을 계산하여 도출될 수 있다.
섀시(C)는 차량의 기본을 이루는 차대로, 차체를 탑재하지 않은 상태를 의미할 수 있다. 섀시(C)는 기본 골격인 프레임에 엔진, 변속기, 클러치 등 다양한 구성 요소들이 결합된 형태일 수 있다. 도 2에서는, 절연저항 측정 회로(51)가 섀시(C)와 연결되도록 도시되어 있으나 이에 한정되는 것은 아니며, 다양한 장치와 결합될 수 있다.
전압 측정부(52)는 제1 스위치(SW1) 및 제2 스위치(SW2)의 온/오프에 따라 제2 저항(R2) 및 제3 저항(R3) 사이의 제2 접점(N2)의 전압을 측정하여 제어부(53)에 전달한다. 제2 접점(N2)의 전압은 제1 스위치(SW1) 및 제2 스위치(SW2)의 온/오프에 따라 제3 저항(R3)에 인가되는 배터리(10)의 전압(Vp)이다.
제어부(53)는 제1 스위치(SW1) 및 제2 스위치(SW2)의 스위칭을 제어하고, 제2 접점(N2)에서 측정된 전압에 기초하여 절연저항(RL) 값을 계산한다. 제어부(53)는 계산된 절연저항(RL) 값을 BMS(40)에 전달할 수 있다.
도 3을 참고하면, 제어부(53)는 제1 스위치(SW1) 및 제2 스위치(SW2)가 온 기간 동안의 제2 접점(N2)에서 측정되는 제1 전압(Va)에 기초하여 하기 식(1)을 도출할 수 있다.
Figure PCTKR2020013068-appb-img-000001
도 4 참고하면, 제어부(53)는 제1 스위치(SW1)의 오프 및 제2 스위치(SW2)의 온 기간 동안의 제2 접점(N2)에서 측정되는 제2 전압(Vb)에 기초하여 하기 식(2)을 도출할 수 있다.
Figure PCTKR2020013068-appb-img-000002
제어부(53)는 식(1) 및 식(2)의 연립방정식을 풀어 하기 식(3)을 도출할 수 있다.
Figure PCTKR2020013068-appb-img-000003
제어부(53)는 식(3)과 같이 제1 절연저항(Rp) 및 제2 절연저항(Rn)을 각각 구한 후, 제1 절연저항(Rp) 및 제2 절연저항(Rn)의 병렬(Rp∥Rn) 저항 값을 계산하여 절연저항(RL) 값을 도출할 수 있다.
제어부(53)는 제2 스위치(SW2)를 이용하여 절연저항 측정 회로(51)의 정상 동작 여부를 진단할 수 있다. 구체적으로, 제어부(53)에 의해 제1 스위치(SW1)가 온 되고 제2 스위치(SW2)가 오프 되면, 절연저항 측정 회로(51)는 제1 절연저항(Rp), 제2 절연저항(Rn) 및 섀시(C) 그라운드와는 전기적으로 분리되고 배터리(10)의 양극 및 음극에 전기적으로 연결된다. 이때, 제어부(53)는, 제2 접점(N2)에서 측정된 전압과, 제1 내지 제3 저항(R1, R2, R3)의 저항 비에 기초하여 절연저항 측정 회로(51)의 정상동작 여부를 진단할 수 있다.
도 5를 참고하면, 절연저항 측정 회로(51)는 배터리(10)의 일 전극과 제2 스위치(SW2)의 타단 사이에 연결되는 진단 저항(RH)을 더 포함할 수 있다. 제어부(53)는 진단 저항(RH)을 이용하여 제2 스위치(SW2)의 온/오프의 정상 동작 여부를 진단할 수 있다. 구체적으로, 제어부(53)에 의해 제1 스위치(SW1)의 온 상태에서 제2 스위치(SW2)가 온 될 때 그리고 제2 스위치(SW2)가 오프 될 때 각각 제2 접점(N2)에서 측정된 전압과, 제1 내지 제3 저항(R1, R2, R3), 진단 저항(RH)의 값에 기초하여 제2 스위치(SW2)의 온/오프의 정상 동작 여부를 진단할 수 있다.
도 6은 일 실시예에 따라 배터리 모듈의 임의의 전극과 섀시 그라운드 사이에 형성된 절연저항을 측정하는 절연저항 측정 장치를 상세하게 설명하는 도면이고, 도 7은 도 6의 제1, 2 스위치가 온 상태인 절연저항 측정 회로를 보여주는 도면이고, 도 8은 도 6의 제1 스위치가 오프 및 제2 스위치가 온 상태인 절연저항 측정 회로를 보여주는 도면이고, 도 9 도 6의 절연저항 측정 장치에 진단 저항이 추가된 절연저항 측정 회로를 보여주는 도면이다.
도 6을 참고하면, 절연저항 측정 장치(50)는 도 2에 도시된 절연저항 측정 장치(50)에 대응한다. 도 2 및 도 6에 도시된 절연저항 측정 장치(50) 각각은 포함하는 구성, 구성들의 배치 및 기능이 같다. 이하 도 6에 도시된 절연저항 측정 장치(50)의 구성들에 대한 설명은 도 2에 도시된 절연저항 측정 장치(50)의 구성들에 대한 설명으로 갈음한다.
절연저항(RL)은 배터리(10)의 임의의 전극과 섀시(C) 그라운드 사이에 형성될 수 있다. 배터리(10)의 양극과 절연저항(RL)과 연결된 접점 사이의 전압(V1) 및 절연저항(RL)과 연결된 접점과 배터리(10)의 음극 사이의 전압(V2)의 합은 배터리(10)의 전체전압(Vp)에 대응한다.
도 6 및 도 7을 참고하면, 제어부(53)는 제1 스위치(SW1) 및 제2 스위치(SW2)가 온 기간 동안의 제2 접점(N2)에서 측정되는 제1 전압(Va)에 기초하여 하기 식(4)를 도출할 수 있다.
Figure PCTKR2020013068-appb-img-000004
도 6 및 도 8을 참고하면, 제어부(53)는 제1 스위치(SW1)의 오프 및 제2 스위치(SW2)의 온 기간 동안의 제2 접점(N2)에서 측정되는 제2 전압(Vb)에 기초하여 하기 식(5)를 도출할 수 있다.
Figure PCTKR2020013068-appb-img-000005
제어부(53)는 식(4) 및 식(5)의 연립방정식을 풀어 하기 절연저항(RL)에 관한 하기 식(6)을 도출할 수 있다.
Figure PCTKR2020013068-appb-img-000006
식(1) 내지 식(3)에 기초하여 절연저항(Rp) 및 제2 절연저항(Rn)을 각각 구한 후, 제1 절연저항(Rp) 및 제2 절연저항(Rn)의 병렬(Rp∥Rn) 저항 값을 계산하여 도출된 절연저항(RL) 값과 식(4) 내지 식(6)에 기초하여 도출된 절연저항(RL) 값은 같다.
제어부(53)는 제2 스위치(SW2)를 이용하여 절연저항 측정 회로(51)의 정상 동작 여부를 진단할 수 있다. 구체적으로, 제어부(53)에 의해 제1 스위치(SW1)가 온 되고 제2 스위치(SW2)가 오프 되면, 절연저항 측정 회로(51)는 제1 절연저항(Rp), 제2 절연저항(Rn) 및 섀시(C) 그라운드와는 전기적으로 분리되고 배터리(10)의 양극 및 음극에 전기적으로 연결된다. 이때, 제어부(53)는, 제2 접점(N2)에서 측정된 전압과, 제1 내지 제3 저항(R1, R2, R3)의 저항 비에 기초하여 절연저항 측정 회로(51)의 정상동작 여부를 진단할 수 있다.
도 9를 참고하면, 절연저항 측정 회로(51)는 배터리(10)의 일 전극과 제2 스위치(SW2)의 타단 사이에 연결되는 진단 저항(RH)을 더 포함할 수 있다. 제어부(53)는 진단 저항(RH)을 이용하여 제2 스위치(SW2)의 온/오프의 정상 동작 여부를 진단할 수 있다. 구체적으로, 제어부(53)에 의해 제1 스위치(SW1)의 온 상태에서 제2 스위치(SW2)가 온 될 때 그리고 제2 스위치(SW2)가 오프 될 때 각각 제2 접점(N2)에서 측정된 전압과, 제1 내지 제3 저항(R1, R2, R3), 진단 저항(RH)의 값에 기초하여 제2 스위치(SW2)의 온/오프의 정상 동작 여부를 진단할 수 있다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였으나, 본 발명의 권리범위가 이에 한정되는 것은 아니며 본 발명이 속하는 분야에서 통상의 지식을 가진 자가 여러 가지로 변형 및 개량한 형태 또한 본 발명의 권리범위에 속한다.

Claims (10)

  1. 배터리의 일 전극에 일단이 연결되어 있는 제1 저항, 상기 제1 저항의 타단과 일단이 연결되어 있는 제1 스위치, 상기 제1 스위치의 타단과 일단이 연결되어 있는 제2 저항, 상기 제2 저항의 타단과 일단이 연결되고 상기 배터리의 타 전극에 타단이 연결되어 있는 제3 저항, 상기 제1 스위치와 상기 제2 저항 사이에 있는 제1 접점에 일단이 연결되고 섀시(chassis) 그라운드에 타단이 연결되어 있는 제2 스위치를 포함하는 절연저항 측정 회로;
    상기 제2 저항과 상기 제3 저항 사이에 있는 제2 접점의 전압을 측정하는 전압 측정부; 및
    상기 제1 스위치 및 상기 제2 스위치의 스위칭을 제어하고 상기 전압 측정부에서 측정된 전압에 기초하여 절연저항 값을 계산하는 제어부를 포함하고
    상기 제어부는,
    상기 제1 스위치 및 상기 제2 스위치의 온 기간 동안의 상기 제2 접점에서 측정되는 제1 전압과 상기 제1 스위치의 오프 및 상기 제2 스위치의 온 기간 동안의 상기 제2 접점에서 측정되는 제2 전압에 기초하여 상기 절연저항 값을 계산하는 절연저항 측정 장치.
  2. 제1항에 있어서,
    상기 제어부는,
    상기 제1 스위치의 온 상태 및 상기 제2 스위치의 오프 상태에서 상기 제2 접점에서 측정되는 전압과 상기 제1 내지 제3 저항의 저항 비에 기초하여 상기 절연저항 측정 회로의 정상동작 여부를 진단하는 절연저항 측정 장치.
  3. 제1항에 있어서,
    상기 제어부는,
    상기 제1 스위치 및 상기 제2 스위치를 턴 오프하여 상기 절연저항 측정 회로를 전기적으로 분리하는 절연저항 측정 장치.
  4. 제1항에 있어서,
    상기 절연저항 측정 회로는,
    상기 배터리의 일 전극과 상기 제2 스위치의 타단 사이에 연결되어 있는 진단 저항을 더 포함하는 절연저항 측정 장치.
  5. 제4항에 있어서,
    상기 제어부는,
    상기 제1 스위치의 온 상태에서 상기 제2 스위치가 온/오프 될 때 각각 상기 제2 접점에서 측정되는 전압과 상기 제1 내지 제3 저항 및 상기 진단 저항의 저항 값에 기초하여 상기 제2 스위치의 온/오프의 정상동작 여부를 진단하는 절연저항 측정 장치.
  6. 절연저항을 측정하는 장치를 포함하는 배터리 시스템에 있어서,
    직렬 연결되어 있는 복수의 배터리 셀을 포함하는 배터리; 및
    배터리의 일 전극에 일단이 연결되어 있는 제1 저항, 상기 제1 저항의 타단과 일단이 연결되어 있는 제1 스위치, 상기 제1 스위치의 타단과 일단이 연결되어 있는 제2 저항, 상기 제2 저항의 타단과 일단이 연결되고 상기 배터리의 타 전극에 타단이 연결되어 있는 제3 저항, 상기 제1 스위치와 상기 제2 저항 사이에 있는 제1 접점에 일단이 연결되고 섀시(chassis) 그라운드에 타단이 연결되어 있는 제2 스위치를 포함하고 상기 제2 저항과 상기 제3 저항 사이에 있는 제2 접점의 전압을 측정하는 절연저항 측정 장치를 포함하고
    상기 절연저항 측정 장치는,
    상기 제1 스위치 및 상기 제2 스위치의 온 기간 동안의 상기 제2 접점에서 측정되는 제1 전압과 상기 제1 스위치의 오프 및 상기 제2 스위치의 온 기간 동안의 상기 제2 접점에서 측정되는 제2 전압에 기초하여 절연저항 값을 계산하는 배터리 시스템.
  7. 제6항에 있어서,
    상기 절연저항 측정 장치는,
    상기 제1 스위치의 온 상태 및 상기 제2 스위치의 오프 상태에서 상기 제2 접점에서 측정되는 전압과 상기 제1 내지 제3 저항의 저항 비에 기초하여 상기 절연저항 측정 장치의 정상동작 여부를 진단하는 배터리 시스템.
  8. 제6항에 있어서,
    상기 절연저항 측정 장치는,
    상기 제1 스위치 및 상기 제2 스위치를 턴 오프하여 상기 절연저항 측정 장치를 전기적으로 분리하는 배터리 시스템.
  9. 제6항에 있어서,
    상기 절연저항 측정 장치는,
    상기 배터리의 일 전극과 상기 제2 스위치의 타단 사이에 연결되어 있는 진단 저항을 더 포함하는 배터리 시스템.
  10. 제4항에 있어서,
    상기 절연저항 측정 장치는,
    상기 제1 스위치의 온 상태에서 상기 제2 스위치가 온/오프 될 때 각각 상기 제2 접점에서 측정되는 전압과 상기 제1 내지 제3 저항 및 상기 진단 저항의 저항 값에 기초하여 상기 제2 스위치의 온/오프의 정상동작 여부를 진단하는 배터리 시스템.
PCT/KR2020/013068 2019-11-18 2020-09-25 절연저항 측정 장치 및 그 장치를 적용하는 배터리 시스템 WO2021101059A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/439,019 US11841389B2 (en) 2019-11-18 2020-09-25 Apparatus for estimating insulation resistance and battery system using the same
CN202080020599.9A CN113557435B (zh) 2019-11-18 2020-09-25 用于估计绝缘电阻的设备及包括该设备的电池***
EP20889304.0A EP3933415A4 (en) 2019-11-18 2020-09-25 DEVICE FOR MEASUREMENT OF INSULATION RESISTANCE AND BATTERY SYSTEM WITH IT
JP2021544341A JP7264578B2 (ja) 2019-11-18 2020-09-25 絶縁抵抗測定装置およびその装置を適用するバッテリーシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190147977A KR20210060210A (ko) 2019-11-18 2019-11-18 절연저항 측정 장치 및 그 장치를 적용하는 배터리 시스템
KR10-2019-0147977 2019-11-18

Publications (1)

Publication Number Publication Date
WO2021101059A1 true WO2021101059A1 (ko) 2021-05-27

Family

ID=75981676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/013068 WO2021101059A1 (ko) 2019-11-18 2020-09-25 절연저항 측정 장치 및 그 장치를 적용하는 배터리 시스템

Country Status (6)

Country Link
US (1) US11841389B2 (ko)
EP (1) EP3933415A4 (ko)
JP (1) JP7264578B2 (ko)
KR (1) KR20210060210A (ko)
CN (1) CN113557435B (ko)
WO (1) WO2021101059A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018221479A1 (de) * 2018-12-12 2020-06-18 Robert Bosch Gmbh Schaltungsanordnung zur Fehlererkennung in einem ungeerdeten Hochvoltsystem
KR102679033B1 (ko) * 2021-10-01 2024-06-26 재단법인 한국기계전기전자시험연구원 장기 내전압 및 절연저항 측정 시험 시스템
DE102021127385B3 (de) * 2021-10-21 2022-11-03 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Plausibilisierung einer Isolationsüberwachung eines Hochvoltsystems eines Elektrofahrzeugs während des Aufladens einer Traktionsbatterie des Elektrofahrzeugs
CN114325102A (zh) * 2021-12-23 2022-04-12 珠海格力电器股份有限公司 一种绝缘电阻检测电路及其绝缘电阻检测方法、汽车
KR20230106346A (ko) * 2022-01-06 2023-07-13 주식회사 엘지에너지솔루션 절연 저항 측정을 위한 배터리 장치 및 배터리 관리 시스템
TWI802331B (zh) * 2022-03-22 2023-05-11 新普科技股份有限公司 一種絕緣電阻偵測裝置及其偵測方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130110066A (ko) * 2012-03-27 2013-10-08 주식회사 엘지화학 고장 자가 진단 기능을 구비한 절연 저항 측정 장치 및 이를 이용한 고장 자가 진단 방법
KR20150081988A (ko) * 2014-01-07 2015-07-15 에스케이배터리시스템즈 주식회사 배터리의 절연 저항 측정 장치 및 방법
CN206038771U (zh) * 2016-08-23 2017-03-22 深圳市国新动力科技有限公司 一种电动汽车绝缘电阻检测电路
CN108872812A (zh) * 2018-06-29 2018-11-23 深圳市国新动力科技有限公司 一种低成本绝缘漏电检测电路及检测方法
KR20190001330A (ko) * 2017-06-27 2019-01-04 주식회사 엘지화학 절연 저항 산출 시스템 및 방법

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165973A (ja) 1987-12-23 1989-06-29 Kawasaki Steel Corp 直流回路の絶縁抵抗測定装置
JP2006220520A (ja) 2005-02-10 2006-08-24 Honda Motor Co Ltd 非接地直流電源の絶縁抵抗測定装置及びその方法
JP2012173053A (ja) 2011-02-18 2012-09-10 Mitsubishi Heavy Ind Ltd 漏電検出装置及びその方法
US9236827B2 (en) * 2011-07-29 2016-01-12 Panasonic Intellectual Property Management Co., Ltd. Motor drive circuit, motor device, and moving vehicle
EP2570289B1 (de) 2011-09-16 2018-08-15 Samsung SDI Co., Ltd. Einrichtung zur Erfassung des Isolationswiderstandes eines Hochvoltbatteriesystems
CN104220886B (zh) 2012-03-26 2017-05-17 株式会社Lg化学 用于测量电池的绝缘电阻的设备和方法
US9046559B2 (en) 2012-05-09 2015-06-02 Curtis Instruments, Inc. Isolation monitor
KR20130128597A (ko) * 2012-05-17 2013-11-27 현대모비스 주식회사 절연저항 센싱회로 및 이를 포함하는 배터리관리시스템
JP2014020914A (ja) 2012-07-18 2014-02-03 Keihin Corp 漏電検出装置
KR101389362B1 (ko) 2012-09-27 2014-04-25 현대오트론 주식회사 절연 저항 측정 장치 및 방법
DE102013215731A1 (de) 2013-08-09 2015-02-12 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Messung eines oder mehrerer Isolationswiderstände in einem Kraftfahrzeug
KR101512395B1 (ko) 2013-10-08 2015-04-16 현대오트론 주식회사 절연저항 측정 장치 및 방법
JP6433305B2 (ja) 2014-04-09 2018-12-05 矢崎総業株式会社 非接地電源の絶縁検出装置及び絶縁検出方法
KR101619328B1 (ko) 2014-11-17 2016-05-10 현대오트론 주식회사 절연 저항 측정 장치 및 그 방법
US9772392B2 (en) 2015-02-26 2017-09-26 Lear Corporation Apparatus and method for diagnosing hardware in an insulation resistance monitoring system for a vehicle
CN105277787B (zh) * 2015-09-30 2018-09-11 上海凌翼动力科技有限公司 电动汽车绝缘电阻故障预测方法及***
ITUB20159266A1 (it) 2015-12-18 2017-06-18 Magneti Marelli Spa Dispositivo elettronico, sistema e metodo per misure di resistenza di isolamento, con funzioni di auto-diagnosi 5 e di diagnosi di perdita di isolamento di un apparato elettrico energizzato rispetto a massa.
KR101887442B1 (ko) 2016-11-09 2018-08-10 현대오트론 주식회사 절연 저항 측정 회로 진단 장치
EP3361271B1 (en) 2017-02-08 2022-06-01 Fico Triad, S.A. Device and method for measuring isolation resistance of battery powered systems
JP6698599B2 (ja) * 2017-09-21 2020-05-27 矢崎総業株式会社 地絡検出装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130110066A (ko) * 2012-03-27 2013-10-08 주식회사 엘지화학 고장 자가 진단 기능을 구비한 절연 저항 측정 장치 및 이를 이용한 고장 자가 진단 방법
KR20150081988A (ko) * 2014-01-07 2015-07-15 에스케이배터리시스템즈 주식회사 배터리의 절연 저항 측정 장치 및 방법
CN206038771U (zh) * 2016-08-23 2017-03-22 深圳市国新动力科技有限公司 一种电动汽车绝缘电阻检测电路
KR20190001330A (ko) * 2017-06-27 2019-01-04 주식회사 엘지화학 절연 저항 산출 시스템 및 방법
CN108872812A (zh) * 2018-06-29 2018-11-23 深圳市国新动力科技有限公司 一种低成本绝缘漏电检测电路及检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3933415A4 *

Also Published As

Publication number Publication date
JP2022531527A (ja) 2022-07-07
JP7264578B2 (ja) 2023-04-25
US11841389B2 (en) 2023-12-12
CN113557435A (zh) 2021-10-26
US20220146561A1 (en) 2022-05-12
CN113557435B (zh) 2024-04-05
KR20210060210A (ko) 2021-05-26
EP3933415A4 (en) 2022-06-01
EP3933415A1 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
WO2021101059A1 (ko) 절연저항 측정 장치 및 그 장치를 적용하는 배터리 시스템
WO2021020852A1 (ko) 배터리 관리 장치 및 배터리 관리 방법
EP2616824A2 (en) Insulation resistance measurement circuit having self-test function without generating leakage current
WO2014084628A1 (ko) 배터리 전류 측정 장치 및 그 방법
WO2018066839A1 (ko) 전압 분배를 이용한 퓨즈 진단 장치 및 방법
WO2018139830A1 (ko) 음극 릴레이를 이용한 배터리팩의 절연저항 측정 장치 및 측정 방법
WO2014051284A1 (ko) 차량의 차대에 배치된 전지팩의 절연저항을 측정하기 위한 방법 및 시스템
WO2015050327A1 (ko) 전지셀 어셈블리
WO2022080692A1 (ko) 배터리 장치, 배터리 관리 시스템 및 연결 상태 진단 방법
WO2021033956A1 (ko) 배터리 시스템 및 배터리 시스템의 운용 방법
WO2019088430A1 (ko) 체결 인식 기능을 갖춘 배터리 팩
WO2019093667A1 (ko) 릴레이 진단 회로
WO2021085808A1 (ko) 온도 측정 장치, 이를 포함하는 배터리 장치 및 온도 측정 방법
WO2017090978A1 (ko) 배터리 팩 상태 병렬 모니터링 장치
WO2021085869A1 (ko) 배터리 충전상태 추정방법 및 이를 적용한 배터리 관리 시스템
WO2018088685A1 (ko) 배터리 팩
WO2019093625A1 (ko) 충전 제어 장치 및 방법
WO2023101189A1 (ko) 셀 밸런싱 방법 및 그 방법을 제공하는 배터리 시스템
WO2011031067A2 (ko) 배터리 관리 시스템의 입출력 제어 회로
WO2022265277A1 (ko) 배터리 관리 장치 및 방법
WO2018143541A1 (ko) 배터리 팩, 배터리 관리 시스템 및 그 방법
WO2022039402A1 (ko) 전기자동차 급속충전 고전압 센싱장치
WO2019117608A1 (ko) 전류 측정 장치 및 방법
WO2021210904A1 (ko) 전압 센싱 회로, 배터리 팩 및 배터리 시스템
WO2021167247A1 (ko) 배터리 장치 및 전류 센서 진단 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889304

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021544341

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 20889304.0

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020889304

Country of ref document: EP

Effective date: 20210910

NENP Non-entry into the national phase

Ref country code: DE