WO2021100198A1 - Lithium secondary battery and method for producing the same - Google Patents

Lithium secondary battery and method for producing the same Download PDF

Info

Publication number
WO2021100198A1
WO2021100198A1 PCT/JP2019/045810 JP2019045810W WO2021100198A1 WO 2021100198 A1 WO2021100198 A1 WO 2021100198A1 JP 2019045810 W JP2019045810 W JP 2019045810W WO 2021100198 A1 WO2021100198 A1 WO 2021100198A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
positive electrode
electrolyte
secondary battery
lithium secondary
Prior art date
Application number
PCT/JP2019/045810
Other languages
French (fr)
Japanese (ja)
Inventor
晃洋 鴻野
浩伸 蓑輪
陽子 小野
武志 小松
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2019/045810 priority Critical patent/WO2021100198A1/en
Publication of WO2021100198A1 publication Critical patent/WO2021100198A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium secondary battery and a method for manufacturing the same.
  • Lithium-ion secondary batteries that use lithium-ion insertion / removal reactions are widely used as secondary batteries with high energy density in various electronic devices, automobile power supplies, and power storage applications. Research and development of electrode materials and electrolyte materials are underway for the purpose of improving the performance and reducing the cost.
  • Non-Patent Document 1 Flexible batteries are reported, for example, in Non-Patent Document 1.
  • the battery is reported to be thin, bendable, and exhibit a discharge capacity of approximately 250 ⁇ Ah / g with a current density of 0.1 mA / cm 2.
  • a lithium secondary battery that is thin and can be bent is being studied.
  • battery materials that transmit visible light have also been reported.
  • a battery that transmits visible light has a low energy density, it is necessary to use a large amount of battery material, and the current situation is that it has not been put into practical use.
  • a battery that has transparency and flexibility for visible light has a high output voltage, and has a high energy density can be put into practical use, it is possible to greatly expand the design and application range of IoT devices. There is a problem that the battery does not exist.
  • the present invention has been made in view of this problem, and an object of the present invention is to provide a lithium secondary battery having a high output voltage and a method for manufacturing the same, which has both transparency and flexibility for visible light.
  • the lithium secondary battery according to one aspect of the present invention includes a positive electrode containing a substance formed on a flexible transparent film substrate and capable of inserting and removing lithium ions, and a transparent electrolyte having lithium ion conductivity.
  • the positive electrode comprises a metallic lithium formed on a flexible transparent film substrate, a lithium-containing substance, and a negative electrode formed of either a metal capable of inserting and removing ions, and the positive electrode is made of LiCoPO4X or Li2CoPO4X.
  • the gist is that halogen was added to X.
  • the method for manufacturing a lithium secondary battery according to one aspect of the present invention is a positive electrode film formation in which a positive electrode containing a substance capable of inserting and removing lithium ions formed on a flexible transparent film substrate is formed.
  • a lithium secondary battery having a high output voltage and a method for manufacturing the same, which has both transparency and flexibility for visible light.
  • FIG. 1 It is a schematic diagram which shows the basic structure of the lithium secondary battery which concerns on this embodiment. It is a flowchart which shows the procedure for manufacturing the lithium secondary battery shown in FIG. It is a figure which shows an example of charge / discharge characteristics of the lithium secondary battery shown in FIG. It is a figure which shows an example of the charge / discharge cycle characteristic of the lithium secondary battery shown in FIG. It is a figure which shows an example of the light transmission characteristic of the lithium secondary battery shown in FIG.
  • FIG. 1 is a schematic view showing a basic configuration of a lithium secondary battery according to the present embodiment.
  • 1 (a) is a plan view
  • FIG. 1 (b) is a side view.
  • hatching is provided so that the laminated layers can be easily seen.
  • the flexible positive electrode side transparent film substrate 4 and the negative electrode side transparent film substrate 5 having visible light transmission are sandwiched between the laminated films 7 and laminated.
  • the films 7 are heat-bonded to each other.
  • the positive electrode 1, the electrolyte 2, and the negative electrode 3 are laminated and arranged in the laminated film 7.
  • the positive electrode terminal 8 is located on the outside of the laminated film 7 from one short side of the positive electrode side transparent film substrate 4, and the negative electrode terminal 9 is located on the outside of the laminated film 7 from one short side of the negative electrode side transparent film substrate 5. It is protruding. Voltage and current can be taken out from between the positive electrode terminal 8 and the negative electrode terminal 9.
  • the positive electrode terminal 8 and the negative electrode terminal 9 may be an extension of the transparent electrode film 6 described later, or may be made of metal.
  • the lithium secondary battery 100 has a configuration in which a positive electrode 1, an electrolyte 2, and a negative electrode 3 are laminated.
  • the positive electrode 1 is formed on a transparent conductive film 6 formed on the entire surface of the flexible positive electrode side transparent film substrate 4 facing the negative electrode 3 with a predetermined thickness of a substance capable of inserting and removing lithium ions. Is formed.
  • the negative electrode 3 contains a substance capable of inserting and removing lithium ions on the transparent conductive film 6 formed on the entire surface of the flexible negative electrode side transparent film substrate 5 facing the positive electrode 1. It is formed by forming a film with a predetermined thickness.
  • the positive electrode side transparent film substrate 4 and the negative electrode side transparent film substrate 5 are made of, for example, polyethylene terephthalate (PET) or polypropylene (PP).
  • PET polyethylene terephthalate
  • PP polypropylene
  • the visible light transmittance of PET and PP is about 90%.
  • the positive electrode side transparent film substrate 4 and the negative electrode side transparent film substrate 5 may be made of the same material or may be made of different materials.
  • the positive electrode 1 and the negative electrode 3 are arranged so as to face each other with the electrolyte 2 interposed therebetween.
  • the electrolyte 2 a conventional organic electrolyte containing lithium ions or an aqueous electrolyte can be used.
  • a solid electrolyte such as a polymer electrolyte containing lithium ions can also be used as long as it transmits visible light.
  • a separator (not shown) may be included between the positive electrode 1 and the negative electrode 3.
  • the light-transmitting separator include polyethylene (PE), polypropylene (PP), and an ion exchange membrane.
  • the separator may be impregnated with the electrolyte 2.
  • the organic electrolyte or the aqueous electrolyte may be impregnated with the polymer electrolyte or the like.
  • both electrodes may be arranged so as to be in contact with them.
  • the lithium secondary battery 100 has a positive electrode 1 formed on the positive electrode side transparent film substrate 4 and containing a substance capable of inserting and removing lithium ions, and lithium ion conductivity.
  • the transparent electrolyte 2 is provided with a negative electrode 3 formed of a substance capable of dissolving and precipitating lithium or inserting and removing lithium ions on the negative electrode side transparent film substrate 5.
  • FIG. 2 is a flowchart showing a procedure for manufacturing the lithium secondary battery 100 according to the present embodiment. A method for manufacturing the lithium secondary battery 100 will be described with reference to FIG.
  • each of the positive electrode side transparent film substrate 4 and the negative electrode side transparent film substrate 5 is cut into a predetermined size (step S1).
  • the sizes of the positive electrode side and the negative electrode side transparent film substrates 4 and 5 are, for example, 100 mm in length ⁇ 50 mm in width.
  • the thickness is, for example, 0.1 mm.
  • the transparent conductive film 6 on the positive electrode 1 side is formed (step S2).
  • the transparent conductive film 6 is formed on the surface of the positive electrode side transparent film substrate 4.
  • the transparent conductive film 6 is formed of ITO (Indium Tin Oxide).
  • the transparent conductive film 6 was coated with ITO to a thickness of 150 nm by an RF sputtering method. Sputtering was carried out using an ITO (5wt% SnO 2 ) target with an RF output of 100 W while flowing argon (1.0 Pa).
  • a positive electrode 1 is formed on the transparent electrode film 6 (step S3).
  • the positive electrode 1 for example, lithium cobalt oxide (Li2CoPO4F), which is a material of Experimental Example 1 described later, is formed into a film with a thickness of 100 nm by an RF sputtering method (step S3).
  • the film formation of the positive electrode 1 was carried out using a ceramic target of Li2CoPO4F, the flow partial pressure ratio of argon and oxygen was 3: 1, the total gas pressure was 3.7 Pa, and the RF output was 800 W.
  • the transparent conductive film 6 on the negative electrode 3 side is formed (step S4).
  • the transparent electrode film 6 on the negative electrode 3 side is the same as that on the positive electrode 1 side.
  • the negative electrode 3 is formed (step S5).
  • the negative electrode 3 is formed by forming a film of lithium titanate (Li4Ti5O12), which is a material of, for example, Experimental Example 1 described later, to a thickness of 100 nm by an RF sputtering method.
  • the film formation of the negative electrode 3 was carried out using a ceramic target of Li4Ti5O12, the flow partial pressure ratio of argon and oxygen was 3: 1, the total gas pressure was 4.0 Pa, and the RF output was 700 W.
  • the size of the positive electrode 1 and the negative electrode 3 is, for example, 90 mm in length ⁇ 50 mm in width.
  • the size of the bipolar film is smaller than that of the transparent electrode film 6.
  • the bipolar transparent electrode film 6 formed as described above has a portion protruding with a length of 10 mm in length.
  • the relevant portions are used as the positive electrode terminal 8 and the negative electrode terminal 8 leaving a range of 10 mm in length ⁇ 10 mm in width so that they do not face each other.
  • the positive electrode side transparent film substrate 4 and the transparent electrode film 6, and the negative electrode side transparent film substrate 5 and the transparent electrode film 6 are other than the electrode terminals.
  • a range of 10 mm in length x 40 mm in width is cut out.
  • Electrolyte 2 is an organic electrolytic solution prepared by dissolving 1 mol / L of lithium bistrifluoromethanesulfonylimide (LiTFSI) as a lithium salt in polyvinyl fluoride (PVdF) powder and propylene carbonate (PC), which are binders, and a dispersion medium.
  • the weight ratio of tetrahydrofuran (THF) as a 1: 9: mixed solution at 10 at a dew point of -50 ° C. or less of the dry air, and stirred for 1 hour at 60 ° C., poured 50ml solution in a Petri dish of 200 mm phi, 50 ° C.
  • Electrolyte 2 having a transparent film having a thickness of 1 ⁇ m was prepared by vacuum drying in the above for 12 hours.
  • the battery is assembled (step S8).
  • the positive electrode side transparent film substrate 4 on which the positive electrode 1 is formed, the negative electrode side transparent film substrate 5 on which the negative electrode 3 is formed, and the electrolyte 2 are laminated so that the positive electrode 1 and the negative electrode 3 face each other with the electrolyte 2 interposed therebetween.
  • the thickness of the hot-pressed battery is about 400 ⁇ m.
  • a positive electrode 1 containing a substance capable of inserting and removing lithium ions formed on a flexible transparent film substrate is formed.
  • Positive electrode film formation step S3 electrolyte formation step S7 for forming a transparent electrolyte having lithium ion conductivity, and a metal formed on a flexible transparent film substrate, which is capable of inserting and removing lithium or lithium ions.
  • the positive electrode forming step S3 forms Li2CoPO4F.
  • the lithium secondary battery 100 manufactured by the above manufacturing method was evaluated by performing the following charge / discharge test and charge / discharge cycle test.
  • the charge / discharge test was performed using a general charge / discharge system (for example, Hokuto Denko: SD8 charge / discharge system).
  • a general charge / discharge system for example, Hokuto Denko: SD8 charge / discharge system.
  • the current density per effective area of the positive electrode 1 was energized at 1 ⁇ A / cm 2 , and the final charging voltage was 4.5 V.
  • the discharge conditions were a current density of 1 ⁇ A / cm 2 and a discharge end voltage of 2.5 V.
  • the charge / discharge test was performed in a constant temperature bath at 25 ° C. (the atmosphere is a normal atmosphere).
  • FIG. 3 is a diagram showing an example of charge / discharge characteristics measured in the charge / discharge test.
  • the horizontal axis of FIG. 3 is the capacity [mAh], and the vertical axis is the battery voltage [V].
  • the broken line shows the charging characteristic and the solid line shows the discharging characteristic.
  • the charge / discharge cycle test is a test that evaluates the deterioration of the discharge capacity by repeating charging / discharging.
  • FIG. 4 is a diagram showing a characteristic example of the charge / discharge cycle test.
  • the horizontal axis of FIG. 4 is the number of cycles, and the vertical axis is the discharge capacity [mAh]. As shown in FIG. 4, it shows a characteristic that the discharge capacity decreases when the charge / discharge cycle is repeated.
  • a battery produced by changing the amount of positive electrode material of the lithium secondary battery 100 according to the present embodiment as shown in the following experimental example was evaluated by the above charge / discharge test and charge / discharge cycle test. An experimental example will be described before the evaluation result.
  • Li2CoPO4F which is the amount of positive electrode material in Experimental Example 1, is composed of the raw materials reagents lithium cobalt oxide (LiCoPO4: High Purity Chemistry Co., Ltd.) and lithium fluoride (LiF: Fuji Film Wako Pure Chemical Industries, Ltd.). Weighed so that the molar ratio of F was 1: 1 and crushed and mixed well in a dairy pot. Then, the obtained mixture was filled in a crucible and prepared by heating at 780 ° C. for 24 hours in an argon atmosphere using an electric furnace.
  • LiCoPO4F which is the amount of positive electrode material in Experimental Example 2
  • Co F of cobalt phosphate
  • LiF Fuji Film Wako Pure Chemical Industries, Ltd.
  • Li2CoPO4Cl which is the amount of positive electrode material in Experimental Example 3, is composed of lithium cobalt oxide (LiCoPO4: High Purity Chemistry Co., Ltd.) and lithium chloride (LiCl: Fuji Film Wako Pure Chemical Industries, Ltd.) as raw materials. Weighed so that the molar ratio was 1: 1 and crushed and mixed well in a dairy pot. Then, the obtained mixture was filled in a crucible and heated at 550 ° C. for 36 hours in an argon atmosphere using an electric furnace.
  • LiCoPO4Cl which is the amount of positive electrode material in Experimental Example 4, is made by using cobalt phosphate (CoPO4: High Purity Chemistry Co., Ltd.) and lithium chloride (LiCl: Fuji Film Wako Pure Chemical Industries, Ltd.) as raw materials in Co: F. Weighed so that the molar ratio was 1: 1 and crushed and mixed well in a dairy pot. Then, the obtained mixture was filled in a crucible and heated at 550 ° C. for 36 hours in an argon atmosphere using an electric furnace.
  • Li2CoPO4Br which is the amount of positive electrode material in Experimental Example 5, is composed of the raw materials reagents lithium cobalt oxide (LiCoPO4: High Purity Chemistry Co., Ltd.) and lithium bromide (LiBr: Fuji Film Wako Pure Chemical Industries, Ltd.). Weighed so that the molar ratio of F was 1: 1 and crushed and mixed well in a dairy pot. Then, the obtained mixture was filled in a crucible and heated at 480 ° C. for 48 hours in an argon atmosphere using an electric furnace.
  • LiCoPO4Br which is the amount of positive electrode material in Experimental Example 6, is a Co: F of cobalt phosphate (CoPO4: High Purity Chemistry Co., Ltd.) and lithium bromide (LiBr: Fuji Film Wako Pure Chemical Industries, Ltd.), which are the raw materials. Weighed so that the molar ratio was 1: 1 and crushed and mixed well in a dairy pot. Then, the obtained mixture was filled in a crucible and heated at 480 ° C. for 48 hours in an argon atmosphere using an electric furnace.
  • Li2CoPO4Br which is the amount of positive electrode material in Experimental Example 7, is composed of the raw materials reagents lithium cobalt oxide (LiCoPO4: High Purity Chemistry Co., Ltd.) and lithium iodide (LiI: Fuji Film Wako Pure Chemical Industries, Ltd.). Weighed so that the molar ratio of F was 1: 1 and crushed and mixed well in a dairy pot. Then, the obtained mixture was filled in a crucible and prepared by heating at 400 ° C. for 72 hours in an argon atmosphere using an electric furnace.
  • LiCoPO4I which is the amount of positive electrode material in Experimental Example 8, is a Co: F of cobalt phosphate (CoPO4: High Purity Chemistry Co., Ltd.) and lithium iodide (LiI: Fuji Film Wako Pure Chemical Industries, Ltd.), which are the raw materials. Weighed so that the molar ratio was 1: 1 and crushed and mixed well in a mortar. Then, the obtained mixture was filled in a crucible and prepared by heating at 400 ° C. for 72 hours in an argon atmosphere using an electric furnace.
  • the amount of the positive electrode material in Experimental Examples 1 to 8 above is a lithium oxide obtained by adding a halogen to X of LiCoPO4X or Li2CoPO4X.
  • LiCoPO4F LiCoPO4F
  • Experimental Example 4 LiCoPO4Cl
  • Experimental Example 6 LiCoPO4Br
  • Experimental Example 8 LiCoPO4I, respectively. Is called halogen. Therefore, LiCoPO4X is a lithium oxide in which halogen is added to X.
  • Li2CoPO4F Li2CoPO4F
  • Experimental Example 3 Li2CoPO4Cl
  • Experimental Example 5 Li2CoPO4Br
  • Experimental Example 7 Li2CoPO4Br.
  • Li2CoPO4X is a lithium oxide in which halogen is added to X.
  • a polymer electrolyte was used as the electrolyte 2 of Experimental Examples 1 to 8.
  • the material of the negative electrode is lithium titanate (Li4Ti5O12).
  • Table 1 shows the results of evaluating the lithium secondary batteries of Experimental Examples 1 to 8 by the above evaluation method.
  • the average discharge voltage of the lithium secondary batteries of Experimental Examples 1 to 8 according to this embodiment is 4.0 V.
  • the average discharge capacity retention rate in the 20th cycle is 94%.
  • the lithium secondary batteries of Experimental Examples 1 to 8 had a high output voltage and showed practical characteristics.
  • Experimental Example 9 is a lithium secondary battery in which the electrolyte 2 of Experimental Example 1 is changed from a polymer electrolyte to an organic electrolyte.
  • Table 2 is a table showing the evaluation results of Experimental Examples 1 and 9.
  • FIG. 5 is a diagram showing the light transmission characteristics of the lithium secondary battery 100 according to the present embodiment.
  • the horizontal axis of FIG. 5 is the wavelength of light [nm], and the vertical axis is the transmittance of light [%].
  • the broken line indicates the light transmission characteristic of the negative electrode side transparent film substrate 5 including the negative electrode 3.
  • the alternate long and short dash line shows the light transmission characteristics of the positive electrode side immediate film substrate 4 including the positive electrode 1.
  • the solid line shows the light transmission characteristics of the entire lithium secondary battery 100.
  • the lithium secondary battery 100 transmits light as a whole in the visible light wavelength range (translation 380 nm to 780 nm). It transmits about 36% of light at a wavelength of 600 nm.
  • the lithium secondary battery 100 has a high output voltage, a stable charge cycle characteristic, and a light transmission characteristic.
  • the present invention it is possible to provide a lithium secondary battery having a high output voltage and a method for manufacturing the same, which has both transparency and flexibility for visible light.
  • the present invention is not limited to the above embodiment, and can be modified within the scope of the gist thereof.
  • Negative electrode terminal 100 Lithium secondary battery

Abstract

The present invention comprises: a positive electrode 1 formed on a flexible transparent film substrate and including a substance that allows insertion and desorption of lithium ions; an electrolyte 2 that is transparent and has lithium ion conductivity; and a negative electrode 3 formed on a flexible transparent film substrate and formed of a metal that allows insertion and desorption of metal lithium or lithium ions. The positive electrode 1 is a lithium oxide in which a halogen is added to X in LiCoPO4X or in Li2CoPO4X. The electrolyte 2 is a polymer electrolyte that is transparent to lithium ions.

Description

リチウム二次電池とその製造方法Lithium secondary battery and its manufacturing method
 本発明は、リチウム二次電池とその製造方法に関する。 The present invention relates to a lithium secondary battery and a method for manufacturing the same.
 リチウムイオンの挿入・脱離反応を用いるリチウムイオン二次電池は、エネルギー密度の高い二次電池として様々な電子機器、自動車用電源、及び電力貯蔵等の用途で広く使用されている。その性能向上及び低コスト化を目的に、電極材料及び電解質材料の研究開発が進められている。 Lithium-ion secondary batteries that use lithium-ion insertion / removal reactions are widely used as secondary batteries with high energy density in various electronic devices, automobile power supplies, and power storage applications. Research and development of electrode materials and electrolyte materials are underway for the purpose of improving the performance and reducing the cost.
 近頃では、スマートフォン等のIT機器及びIoT機器の発展により、モバイル電源用としてリチウム二次電池が注目されている。それぞれの商品の差別化を目的として、それらの機器用の電池に、新しい特性が求められる場合がある。新しい特性としては、例えば柔軟性等が顕在化している。 Recently, with the development of IT devices such as smartphones and IoT devices, lithium secondary batteries have been attracting attention as mobile power sources. Batteries for those devices may be required to have new characteristics for the purpose of differentiating each product. As new characteristics, for example, flexibility has become apparent.
 柔軟性を持つ電池は、例えば非特許文献1で報告されている。その電池は、薄型で曲げることができ、電流密度0.1mA/cm2の放電電流で、約250μAh/gの放電容量を示すことが報告されている。 Flexible batteries are reported, for example, in Non-Patent Document 1. The battery is reported to be thin, bendable, and exhibit a discharge capacity of approximately 250 μAh / g with a current density of 0.1 mA / cm 2.
 上記のように薄型で曲げることができるリチウム二次電池の検討はなされている。また、可視光を透過する電池材料についても報告されている。しかしながら、可視光を透過する電池は、エネルギー密度が低いため、電池材料を大量に使用する必要があり実用化に至っていない現状である。つまり、可視光に対する透過性と柔軟性を持ち、高出力電圧で且つエネルギー密度の高い電池が実用化できれば、IoT機器のデザイン性や用途の幅を大きく広げることが可能であるが、そのような電池が存在しないという課題がある。 As mentioned above, a lithium secondary battery that is thin and can be bent is being studied. In addition, battery materials that transmit visible light have also been reported. However, since a battery that transmits visible light has a low energy density, it is necessary to use a large amount of battery material, and the current situation is that it has not been put into practical use. In other words, if a battery that has transparency and flexibility for visible light, has a high output voltage, and has a high energy density can be put into practical use, it is possible to greatly expand the design and application range of IoT devices. There is a problem that the battery does not exist.
 本発明は、この課題に鑑みてなされたものであり、可視光に対する透過性と柔軟性を兼ね備え、高出力電圧のリチウム二次電池とその製造方法を提供することを目的とする。 The present invention has been made in view of this problem, and an object of the present invention is to provide a lithium secondary battery having a high output voltage and a method for manufacturing the same, which has both transparency and flexibility for visible light.
 本発明の一態様に係るリチウム二次電池は、フレキシブルな透明フィルム基板の上に形成されたリチウムイオンの挿入及び脱離が可能な物質を含む正極と、リチウムイオン導電性を有する透明な電解質と、フレキシブルな透明フィルム基板の上に形成された金属リチウム、リチウム含有物質、及びイオンの挿入及び脱離が可能な金属の何れかで形成される負極とを備え、前記正極は、LiCoPO4X又はLi2CoPO4XのXにハロゲンが添加されたことを要旨とする。 The lithium secondary battery according to one aspect of the present invention includes a positive electrode containing a substance formed on a flexible transparent film substrate and capable of inserting and removing lithium ions, and a transparent electrolyte having lithium ion conductivity. The positive electrode comprises a metallic lithium formed on a flexible transparent film substrate, a lithium-containing substance, and a negative electrode formed of either a metal capable of inserting and removing ions, and the positive electrode is made of LiCoPO4X or Li2CoPO4X. The gist is that halogen was added to X.
 また、本発明の一態様に係るリチウム二次電池の製造方法は、フレキシブルな透明フィルム基板の上に形成されたリチウムイオンの挿入及び脱離が可能な物質を含む正極を成膜する正極成膜ステップと、リチウムイオン導電性を有する透明な電解質を形成する電解質形成ステップと、フレキシブルな透明フィルム基板の上に形成された金属リチウム又はリチウムイオンの挿入及び脱離が可能な金属で形成される負極を成膜する負極成膜ステップとを含むリチウム二次電池の製造方法であって、前記正極成膜ステップは、LiCoPO4X又はLi2CoPO4XのXにハロゲンが添加されたリチウム酸化物を成膜することを要旨とする。 Further, the method for manufacturing a lithium secondary battery according to one aspect of the present invention is a positive electrode film formation in which a positive electrode containing a substance capable of inserting and removing lithium ions formed on a flexible transparent film substrate is formed. A step, an electrolyte forming step of forming a transparent electrolyte having lithium ion conductivity, and a negative electrode formed of a metallic lithium formed on a flexible transparent film substrate or a metal capable of inserting and removing lithium ions. It is a method for manufacturing a lithium secondary battery including a negative electrode film forming step for forming a film, and the gist of the positive electrode forming step is to form a lithium oxide having a halogen added to X of LiCoPO4X or Li2CoPO4X. And.
 本発明によれば、可視光に対する透過性と柔軟性を兼ね備えた高出力電圧のリチウム二次電池とその製造方法を提供することができる。 According to the present invention, it is possible to provide a lithium secondary battery having a high output voltage and a method for manufacturing the same, which has both transparency and flexibility for visible light.
本実施形態に係るリチウム二次電池の基本的な構成を示す模式図である。It is a schematic diagram which shows the basic structure of the lithium secondary battery which concerns on this embodiment. 図1に示すリチウム二次電池を製造する手順を示すフローチャートである。It is a flowchart which shows the procedure for manufacturing the lithium secondary battery shown in FIG. 図1に示すリチウム二次電池の充放電特性の一例を示す図である。It is a figure which shows an example of charge / discharge characteristics of the lithium secondary battery shown in FIG. 図1に示すリチウム二次電池の充放電サイクル特性の一例を示す図である。It is a figure which shows an example of the charge / discharge cycle characteristic of the lithium secondary battery shown in FIG. 図1に示すリチウム二次電池の光透過特性の一例を示す図である。It is a figure which shows an example of the light transmission characteristic of the lithium secondary battery shown in FIG.
 以下、本発明の実施の形態について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 〔リチウム二次電池の構成〕
 図1は、本実施形態に係るリチウム二次電池の基本的な構成を示す模式図である。図1(a)は平面図、図1(b)は側面図である。図1(b)は、積層された層が分かり易いようにハッチングを入れている。
[Construction of lithium secondary battery]
FIG. 1 is a schematic view showing a basic configuration of a lithium secondary battery according to the present embodiment. 1 (a) is a plan view, and FIG. 1 (b) is a side view. In FIG. 1B, hatching is provided so that the laminated layers can be easily seen.
 図1に示すように本実施形態に係るリチウム二次電池100は、可視光透過性のあるフレキシブルな正極側透明フィルム基板4と負極側透明フィルム基板5を、ラミネートフィルム7で上下に挟み、ラミネートフィルム7同士を熱圧着したものである。ラミネートフィルム7で挟まれた中に、正極1、電解質2、及び負極3が積層して配置される。 As shown in FIG. 1, in the lithium secondary battery 100 according to the present embodiment, the flexible positive electrode side transparent film substrate 4 and the negative electrode side transparent film substrate 5 having visible light transmission are sandwiched between the laminated films 7 and laminated. The films 7 are heat-bonded to each other. The positive electrode 1, the electrolyte 2, and the negative electrode 3 are laminated and arranged in the laminated film 7.
 図1(a)に示すように、正極側透明フィルム基板4の一方の短辺から正極端子8と、負極側透明フィルム基板5の一方の短辺から負極端子9が、ラミネートフィルム7の外側に突出している。正極端子8と負極端子9の間から電圧と電流を取り出すことができる。正極端子8と負極端子9は、後述する透明電極膜6が延長されたもので有ってもよいし、金属で構成してもよい。 As shown in FIG. 1A, the positive electrode terminal 8 is located on the outside of the laminated film 7 from one short side of the positive electrode side transparent film substrate 4, and the negative electrode terminal 9 is located on the outside of the laminated film 7 from one short side of the negative electrode side transparent film substrate 5. It is protruding. Voltage and current can be taken out from between the positive electrode terminal 8 and the negative electrode terminal 9. The positive electrode terminal 8 and the negative electrode terminal 9 may be an extension of the transparent electrode film 6 described later, or may be made of metal.
 図1(b)に示すようにリチウム二次電池100は、正極1、電解質2、及び負極3が積層された構成である。正極1は、フレキシブルな正極側透明フィルム基板4の負極3と対向する表面全体に形成された透明導電膜6の上に、リチウムイオンの挿入及び脱離が可能な物質が所定の厚さ成膜されて形成される。 As shown in FIG. 1B, the lithium secondary battery 100 has a configuration in which a positive electrode 1, an electrolyte 2, and a negative electrode 3 are laminated. The positive electrode 1 is formed on a transparent conductive film 6 formed on the entire surface of the flexible positive electrode side transparent film substrate 4 facing the negative electrode 3 with a predetermined thickness of a substance capable of inserting and removing lithium ions. Is formed.
 負極3は、正極1と同様に、フレキシブルな負極側透明フィルム基板5の正極1と対向する表面全体に形成された透明導電膜6の上に、リチウムイオンの挿入及び脱離が可能な物質が所定の厚さ成膜されて形成される。 Similar to the positive electrode 1, the negative electrode 3 contains a substance capable of inserting and removing lithium ions on the transparent conductive film 6 formed on the entire surface of the flexible negative electrode side transparent film substrate 5 facing the positive electrode 1. It is formed by forming a film with a predetermined thickness.
 正極側透明フィルム基板4と負極側透明フィルム基板5は、例えばポリエチレンテレフタレート(PET)又はポリプロピレン(PP)等で構成する。PET及びPPの可視光の透過率は約90%である。なお、正極側透明フィルム基板4と負極側透明フィルム基板5は、同じ材料でも良いし、異なる材料で構成しても構わない。 The positive electrode side transparent film substrate 4 and the negative electrode side transparent film substrate 5 are made of, for example, polyethylene terephthalate (PET) or polypropylene (PP). The visible light transmittance of PET and PP is about 90%. The positive electrode side transparent film substrate 4 and the negative electrode side transparent film substrate 5 may be made of the same material or may be made of different materials.
 正極1と負極3は、電解質2を挟んで対向して配置される。電解質2は、従来のリチウムイオンを含む有機電解質又は水系電解液を使用することができる。また、リチウムイオンを含むポリマー電解質等の固体状の電解質も、可視光を透過するものであれば使用することができる。 The positive electrode 1 and the negative electrode 3 are arranged so as to face each other with the electrolyte 2 interposed therebetween. As the electrolyte 2, a conventional organic electrolyte containing lithium ions or an aqueous electrolyte can be used. Further, a solid electrolyte such as a polymer electrolyte containing lithium ions can also be used as long as it transmits visible light.
 なお、正極1と負極3の間にセパレータ(図示せず)が含まれてもよい。光透過性を有するセパレータとしては、ポロエチレン(PE)、ポリプロピレン(PP)、及びイオン交換膜等がある。有機電界質又は水系電解質を電解質2として用いる場合には、例えばセパレータに電解質2を含浸させてもよい。 A separator (not shown) may be included between the positive electrode 1 and the negative electrode 3. Examples of the light-transmitting separator include polyethylene (PE), polypropylene (PP), and an ion exchange membrane. When an organic electric field or an aqueous electrolyte is used as the electrolyte 2, for example, the separator may be impregnated with the electrolyte 2.
 また、有機電解質又は水系電解質は、ポリマー電解質等に含浸させてもよい。また、個体電解質及びポリマー電解質等を用いる場合には、両極がこれらに接するように配置すればよい。 Further, the organic electrolyte or the aqueous electrolyte may be impregnated with the polymer electrolyte or the like. When a solid electrolyte, a polymer electrolyte, or the like is used, both electrodes may be arranged so as to be in contact with them.
 以上述べたように本実施形態に係るリチウム二次電池100は、正極側透明フィルム基板4の上に形成されたリチウムイオンの挿入及び脱離が可能な物質を含む正極1と、リチウムイオン導電性を有する透明な電解質2と、負極側透明フィルム基板5の上にリチウムの溶解及び析出又はリチウムイオンの挿入及び脱離が可能な物質で形成される負極3とを備える。 As described above, the lithium secondary battery 100 according to the present embodiment has a positive electrode 1 formed on the positive electrode side transparent film substrate 4 and containing a substance capable of inserting and removing lithium ions, and lithium ion conductivity. The transparent electrolyte 2 is provided with a negative electrode 3 formed of a substance capable of dissolving and precipitating lithium or inserting and removing lithium ions on the negative electrode side transparent film substrate 5.
 これにより、可視光透過性と柔軟性を兼ね備えたリチウム二次電池を提供することができる。 This makes it possible to provide a lithium secondary battery that has both visible light transmission and flexibility.
 〔リチウム二次電池の製造方法〕
 図2は、本実施形態に係るリチウム二次電池100を製造する手順を示すフローチャートである。図2を参照してリチウム二次電池100の製造方法を説明する。
[Manufacturing method of lithium secondary battery]
FIG. 2 is a flowchart showing a procedure for manufacturing the lithium secondary battery 100 according to the present embodiment. A method for manufacturing the lithium secondary battery 100 will be described with reference to FIG.
 先ず、正極側透明フィルム基板4及び負極側透明フィルム基板5のそれぞれを所定の大きさに裁断する(ステップS1)。正極側と負極側透明フィルム基板4,5の大きさは、例えば縦100mm×横50mmの大きさである。厚さは、例えば0.1mmである。 First, each of the positive electrode side transparent film substrate 4 and the negative electrode side transparent film substrate 5 is cut into a predetermined size (step S1). The sizes of the positive electrode side and the negative electrode side transparent film substrates 4 and 5 are, for example, 100 mm in length × 50 mm in width. The thickness is, for example, 0.1 mm.
 次に正極1側の透明導電膜6を成膜する(ステップS2)。正極1を成膜するに当たって、正極側透明フィルム基板4の表面に透明導電膜6を形成する。透明導電膜6はITO(Indium Tin Oxide)で形成する。 Next, the transparent conductive film 6 on the positive electrode 1 side is formed (step S2). In forming the positive electrode 1, the transparent conductive film 6 is formed on the surface of the positive electrode side transparent film substrate 4. The transparent conductive film 6 is formed of ITO (Indium Tin Oxide).
 透明導電膜6は、RFスパッタ法によりITOを150nmの厚さでコートした。スパッタは、ITO(5wt%SnO2)ターゲットを用い、アルゴン(1.0Pa)をフローさせながら100WのRF出力で行った。 The transparent conductive film 6 was coated with ITO to a thickness of 150 nm by an RF sputtering method. Sputtering was carried out using an ITO (5wt% SnO 2 ) target with an RF output of 100 W while flowing argon (1.0 Pa).
 次に透明電極膜6の上に正極1を成膜する(ステップS3)。正極1は、後述する例えば実験例1の材料であるフッ化リン酸コバルトリチウム(Li2CoPO4F)をRFスパッタ法により100nmの厚さで成膜する(ステップS3)。正極1の成膜は、Li2CoPO4Fのセラミックターゲットを用い、アルゴンと酸素の流通分圧比を3:1でトータルのガス圧を3.7Paとし、RF出力800Wの条件で行った。 Next, a positive electrode 1 is formed on the transparent electrode film 6 (step S3). For the positive electrode 1, for example, lithium cobalt oxide (Li2CoPO4F), which is a material of Experimental Example 1 described later, is formed into a film with a thickness of 100 nm by an RF sputtering method (step S3). The film formation of the positive electrode 1 was carried out using a ceramic target of Li2CoPO4F, the flow partial pressure ratio of argon and oxygen was 3: 1, the total gas pressure was 3.7 Pa, and the RF output was 800 W.
 次に負極3側の透明導電膜6を成膜する(ステップS4)。負極3側の透明電極膜6は、正極1側のものと同じである。 Next, the transparent conductive film 6 on the negative electrode 3 side is formed (step S4). The transparent electrode film 6 on the negative electrode 3 side is the same as that on the positive electrode 1 side.
 次に負極3を成膜する(ステップS5)。負極3は、後述する例えば実験例1の材料であるチタン酸リチウム(Li4Ti5O12)をRFスパッタ法により100nmの厚さで成膜する。負極3の成膜は、Li4Ti5O12のセラミックターゲットを用い、アルゴンと酸素の流通分圧比を3:1でトータルのガス圧を4.0Paとし、RF出力700Wの条件で行った。 Next, the negative electrode 3 is formed (step S5). The negative electrode 3 is formed by forming a film of lithium titanate (Li4Ti5O12), which is a material of, for example, Experimental Example 1 described later, to a thickness of 100 nm by an RF sputtering method. The film formation of the negative electrode 3 was carried out using a ceramic target of Li4Ti5O12, the flow partial pressure ratio of argon and oxygen was 3: 1, the total gas pressure was 4.0 Pa, and the RF output was 700 W.
 正極1と負極3の大きさは、例えば縦90mm×横50mmの大きさである。両極の膜の大きさは、透明電極膜6よりも小さい。 The size of the positive electrode 1 and the negative electrode 3 is, for example, 90 mm in length × 50 mm in width. The size of the bipolar film is smaller than that of the transparent electrode film 6.
 次に電極端子を形成する(ステップS6)。上記のように成膜された両極の透明電極膜6は、縦10mmの長さ突出している部分がある。当該部分を、それぞれが対向しないように縦10mm×横10mmの範囲を残して正極端子8及び負極端子8とする。図1に示す例は、横方向の両端部分を電極端子とするので、正極側透明フィルム基板4と透明電極膜6、及び負極側透明フィルム基板5と透明電極膜6のそれぞれは、電極端子以外の縦10mm×横40mmの範囲が切り取られる。 Next, the electrode terminals are formed (step S6). The bipolar transparent electrode film 6 formed as described above has a portion protruding with a length of 10 mm in length. The relevant portions are used as the positive electrode terminal 8 and the negative electrode terminal 8 leaving a range of 10 mm in length × 10 mm in width so that they do not face each other. In the example shown in FIG. 1, since both ends in the lateral direction are electrode terminals, the positive electrode side transparent film substrate 4 and the transparent electrode film 6, and the negative electrode side transparent film substrate 5 and the transparent electrode film 6 are other than the electrode terminals. A range of 10 mm in length x 40 mm in width is cut out.
 次に電解質2の成膜を行う(ステップS7)。電解質2は、結着材であるポリフッ化ビニデン(PVdF)粉末とプロピレンカーボネート(PC)に、リチウム塩としてリチウムビストリフルオロメタンスルホニルイミド(LiTFSI)を1mol/L溶解させた有機電解液と、分散媒としてテトラヒドロフラン(THF)を重量比1:9:10で混合した溶液を、露点-50℃以下の乾燥空気中において、60℃で1時間攪拌し、溶液を200mmφのシャーレに50ml流し込み、50℃で12時間真空乾燥することで、厚さ1μmの透明な膜の電解質2を作製した。 Next, the electrolyte 2 is formed into a film (step S7). Electrolyte 2 is an organic electrolytic solution prepared by dissolving 1 mol / L of lithium bistrifluoromethanesulfonylimide (LiTFSI) as a lithium salt in polyvinyl fluoride (PVdF) powder and propylene carbonate (PC), which are binders, and a dispersion medium. the weight ratio of tetrahydrofuran (THF) as a 1: 9: mixed solution at 10, at a dew point of -50 ° C. or less of the dry air, and stirred for 1 hour at 60 ° C., poured 50ml solution in a Petri dish of 200 mm phi, 50 ° C. Electrolyte 2 having a transparent film having a thickness of 1 μm was prepared by vacuum drying in the above for 12 hours.
 次に電池の組立を行う(ステップS8)。正極1を成膜した正極側透明フィルム基板4、負極3を成膜した負極側透明フィルム基板5、及び電解質2を、電解質2を挟んで正極1と負極3とが対向する向きで積層させる。 Next, the battery is assembled (step S8). The positive electrode side transparent film substrate 4 on which the positive electrode 1 is formed, the negative electrode side transparent film substrate 5 on which the negative electrode 3 is formed, and the electrolyte 2 are laminated so that the positive electrode 1 and the negative electrode 3 face each other with the electrolyte 2 interposed therebetween.
 そして、縦110mm×横70mm×厚さ100nmのラミネートフィルム7で正極端子8と負極端子9が露出するように挟み込み、130℃でホットプレスする。ホットプレスした電池の厚さは、約400μmである。 Then, sandwich the positive electrode terminal 8 and the negative electrode terminal 9 with a laminated film 7 having a length of 110 mm, a width of 70 mm, and a thickness of 100 nm so that the positive electrode terminal 8 and the negative electrode terminal 9 are exposed, and hot press at 130 ° C. The thickness of the hot-pressed battery is about 400 μm.
 以上述べたように本実施形態に係るリチウム二次電池100の製造方法は、フレキシブルな透明フィルム基板の上に形成されたリチウムイオンの挿入及び脱離が可能な物質を含む正極1を成膜する正極成膜ステップS3と、リチウムイオン導電性を有する透明な電解質を形成する電解質形成ステップS7と、フレキシブルな透明フィルム基板の上に形成された金属リチウム又はリチウムイオンの挿入及び脱離が可能な金属で形成される負極3を成膜する負極成膜ステップS5とを含み、正極成膜ステップS3は、Li2CoPO4Fを成膜する。 As described above, in the method for manufacturing the lithium secondary battery 100 according to the present embodiment, a positive electrode 1 containing a substance capable of inserting and removing lithium ions formed on a flexible transparent film substrate is formed. Positive electrode film formation step S3, electrolyte formation step S7 for forming a transparent electrolyte having lithium ion conductivity, and a metal formed on a flexible transparent film substrate, which is capable of inserting and removing lithium or lithium ions. Including the negative electrode forming step S5 for forming the negative electrode 3 formed in the above, the positive electrode forming step S3 forms Li2CoPO4F.
 上記の製造方法で製造したリチウム二次電池100は、次に示す充放電試験と充放電サイクル試験を行って評価した。 The lithium secondary battery 100 manufactured by the above manufacturing method was evaluated by performing the following charge / discharge test and charge / discharge cycle test.
 〔評価方法〕
 充放電試験は、一般的な充放電システム(例えば北斗電工製:SD8充放電システム)を用いて行った。充電条件は、正極1の有効面積当たりの電流密度を1μA/cm2で通電し、充電終止電圧を4.5Vとした。
〔Evaluation method〕
The charge / discharge test was performed using a general charge / discharge system (for example, Hokuto Denko: SD8 charge / discharge system). As for the charging conditions, the current density per effective area of the positive electrode 1 was energized at 1 μA / cm 2 , and the final charging voltage was 4.5 V.
 放電条件は、電流密度1μA/cm2で放電し、放電終止電圧を2.5Vとした。充放電試験は、25℃の恒温槽内(雰囲気は通常の大気)で行った。 The discharge conditions were a current density of 1 μA / cm 2 and a discharge end voltage of 2.5 V. The charge / discharge test was performed in a constant temperature bath at 25 ° C. (the atmosphere is a normal atmosphere).
 図3は、充放電試験で測定された充放電特性の一例を示す図である。図3の横軸は容量[mAh]、縦軸は電池電圧[V]である。図3において、破線は充電特性、実線は放電特性を示す。 FIG. 3 is a diagram showing an example of charge / discharge characteristics measured in the charge / discharge test. The horizontal axis of FIG. 3 is the capacity [mAh], and the vertical axis is the battery voltage [V]. In FIG. 3, the broken line shows the charging characteristic and the solid line shows the discharging characteristic.
 充放電サイクル試験は、充放電を繰り返して放電容量の劣化を評価する試験である。図4は、充放電サイクル試験の特性例を示す図である。図4の横軸はサイクル数、縦軸は放電容量[mAh]である。図4に示す様に充放電サイクルを繰り返すと放電容量が低下する特性を示す。 The charge / discharge cycle test is a test that evaluates the deterioration of the discharge capacity by repeating charging / discharging. FIG. 4 is a diagram showing a characteristic example of the charge / discharge cycle test. The horizontal axis of FIG. 4 is the number of cycles, and the vertical axis is the discharge capacity [mAh]. As shown in FIG. 4, it shows a characteristic that the discharge capacity decreases when the charge / discharge cycle is repeated.
 本実施形態に係るリチウム二次電池100の正極材量を、下記の実験例に示すように変えて作製した電池を上記の充放電試験と充放電サイクル試験で評価した。その評価結果の前に実験例について説明する。 A battery produced by changing the amount of positive electrode material of the lithium secondary battery 100 according to the present embodiment as shown in the following experimental example was evaluated by the above charge / discharge test and charge / discharge cycle test. An experimental example will be described before the evaluation result.
 (実験例1)
 実験例1の正極材量であるLi2CoPO4Fは、原料である試薬のリン酸コバルトリチウム(LiCoPO4:高純度化学(株))とフッ化リチウム(LiF:富士フィルム和光純薬(株))をCo:Fのモル比が1:1となるように秤量し、乳鉢でよく粉砕・混合した。そして、得られた混合物を坩堝に充填し、電気炉を用いてアルゴン雰囲気下において780℃で24時間加熱することで調製した。
(Experimental Example 1)
Li2CoPO4F, which is the amount of positive electrode material in Experimental Example 1, is composed of the raw materials reagents lithium cobalt oxide (LiCoPO4: High Purity Chemistry Co., Ltd.) and lithium fluoride (LiF: Fuji Film Wako Pure Chemical Industries, Ltd.). Weighed so that the molar ratio of F was 1: 1 and crushed and mixed well in a dairy pot. Then, the obtained mixture was filled in a crucible and prepared by heating at 780 ° C. for 24 hours in an argon atmosphere using an electric furnace.
 (実験例2)
 実験例2の正極材量であるLiCoPO4Fは、原料である試薬のリン酸コバルト(CoPO4:高純度化学(株))とフッ化リチウム(LiF:富士フィルム和光純薬(株))をCo:Fのモル比が1:1となるように秤量し、乳鉢でよく粉砕・混合した。そして、得られた混合物を坩堝に充填し、電気炉を用いてアルゴン雰囲気下において780℃で24時間加熱することで調製した。
(Experimental Example 2)
LiCoPO4F, which is the amount of positive electrode material in Experimental Example 2, is a Co: F of cobalt phosphate (CoPO4: High Purity Chemistry Co., Ltd.) and lithium fluoride (LiF: Fuji Film Wako Pure Chemical Industries, Ltd.), which are the raw materials. Weighed so that the molar ratio was 1: 1 and crushed and mixed well in a mortar. Then, the obtained mixture was filled in a crucible and prepared by heating at 780 ° C. for 24 hours in an argon atmosphere using an electric furnace.
 (実験例3)
 実験例3の正極材量であるLi2CoPO4Clは、原料である試薬のリン酸コバルトリチウム(LiCoPO4:高純度化学(株))と塩化リチウム(LiCl:富士フィルム和光純薬(株))をCo:Fのモル比が1:1となるように秤量し、乳鉢でよく粉砕・混合した。そして、得られた混合物を坩堝に充填し、電気炉を用いてアルゴン雰囲気下において550℃で36時間加熱することで調製した。
(Experimental Example 3)
Li2CoPO4Cl, which is the amount of positive electrode material in Experimental Example 3, is composed of lithium cobalt oxide (LiCoPO4: High Purity Chemistry Co., Ltd.) and lithium chloride (LiCl: Fuji Film Wako Pure Chemical Industries, Ltd.) as raw materials. Weighed so that the molar ratio was 1: 1 and crushed and mixed well in a dairy pot. Then, the obtained mixture was filled in a crucible and heated at 550 ° C. for 36 hours in an argon atmosphere using an electric furnace.
 (実験例4)
 実験例4の正極材量であるLiCoPO4Clは、原料である試薬のリン酸コバルト(CoPO4:高純度化学(株))と塩化リチウム(LiCl:富士フィルム和光純薬(株))をCo:Fのモル比が1:1となるように秤量し、乳鉢でよく粉砕・混合した。そして、得られた混合物を坩堝に充填し、電気炉を用いてアルゴン雰囲気下において550℃で36時間加熱することで調製した。
(Experimental Example 4)
LiCoPO4Cl, which is the amount of positive electrode material in Experimental Example 4, is made by using cobalt phosphate (CoPO4: High Purity Chemistry Co., Ltd.) and lithium chloride (LiCl: Fuji Film Wako Pure Chemical Industries, Ltd.) as raw materials in Co: F. Weighed so that the molar ratio was 1: 1 and crushed and mixed well in a dairy pot. Then, the obtained mixture was filled in a crucible and heated at 550 ° C. for 36 hours in an argon atmosphere using an electric furnace.
 (実験例5)
 実験例5の正極材量であるLi2CoPO4Brは、原料である試薬のリン酸コバルトリチウム(LiCoPO4:高純度化学(株))と臭化リチウム(LiBr:富士フィルム和光純薬(株))をCo:Fのモル比が1:1となるように秤量し、乳鉢でよく粉砕・混合した。そして、得られた混合物を坩堝に充填し、電気炉を用いてアルゴン雰囲気下において480℃で48時間加熱することで調製した。
(Experimental Example 5)
Li2CoPO4Br, which is the amount of positive electrode material in Experimental Example 5, is composed of the raw materials reagents lithium cobalt oxide (LiCoPO4: High Purity Chemistry Co., Ltd.) and lithium bromide (LiBr: Fuji Film Wako Pure Chemical Industries, Ltd.). Weighed so that the molar ratio of F was 1: 1 and crushed and mixed well in a dairy pot. Then, the obtained mixture was filled in a crucible and heated at 480 ° C. for 48 hours in an argon atmosphere using an electric furnace.
 (実験例6)
 実験例6の正極材量であるLiCoPO4Brは、原料である試薬のリン酸コバルト(CoPO4:高純度化学(株))と臭化リチウム(LiBr:富士フィルム和光純薬(株))をCo:Fのモル比が1:1となるように秤量し、乳鉢でよく粉砕・混合した。そして、得られた混合物を坩堝に充填し、電気炉を用いてアルゴン雰囲気下において480℃で48時間加熱することで調製した。
(Experimental Example 6)
LiCoPO4Br, which is the amount of positive electrode material in Experimental Example 6, is a Co: F of cobalt phosphate (CoPO4: High Purity Chemistry Co., Ltd.) and lithium bromide (LiBr: Fuji Film Wako Pure Chemical Industries, Ltd.), which are the raw materials. Weighed so that the molar ratio was 1: 1 and crushed and mixed well in a dairy pot. Then, the obtained mixture was filled in a crucible and heated at 480 ° C. for 48 hours in an argon atmosphere using an electric furnace.
 (実験例7)
 実験例7の正極材量であるLi2CoPO4Brは、原料である試薬のリン酸コバルトリチウム(LiCoPO4:高純度化学(株))とヨウ化リチウム(LiI:富士フィルム和光純薬(株))をCo:Fのモル比が1:1となるように秤量し、乳鉢でよく粉砕・混合した。そして、得られた混合物を坩堝に充填し、電気炉を用いてアルゴン雰囲気下において400℃で72時間加熱することで調製した。
(Experimental Example 7)
Li2CoPO4Br, which is the amount of positive electrode material in Experimental Example 7, is composed of the raw materials reagents lithium cobalt oxide (LiCoPO4: High Purity Chemistry Co., Ltd.) and lithium iodide (LiI: Fuji Film Wako Pure Chemical Industries, Ltd.). Weighed so that the molar ratio of F was 1: 1 and crushed and mixed well in a dairy pot. Then, the obtained mixture was filled in a crucible and prepared by heating at 400 ° C. for 72 hours in an argon atmosphere using an electric furnace.
 (実験例8)
 実験例8の正極材量であるLiCoPO4Iは、原料である試薬のリン酸コバルト(CoPO4:高純度化学(株))とヨウ化リチウム(LiI:富士フィルム和光純薬(株))をCo:Fのモル比が1:1となるように秤量し、乳鉢でよく粉砕・混合した。そして、得られた混合物を坩堝に充填し、電気炉を用いてアルゴン雰囲気下において400℃で72時間加熱することで調製した。
(Experimental Example 8)
LiCoPO4I, which is the amount of positive electrode material in Experimental Example 8, is a Co: F of cobalt phosphate (CoPO4: High Purity Chemistry Co., Ltd.) and lithium iodide (LiI: Fuji Film Wako Pure Chemical Industries, Ltd.), which are the raw materials. Weighed so that the molar ratio was 1: 1 and crushed and mixed well in a mortar. Then, the obtained mixture was filled in a crucible and prepared by heating at 400 ° C. for 72 hours in an argon atmosphere using an electric furnace.
 以上の実験例1~8の正極材量は、LiCoPO4X又はLi2CoPO4XのXにハロゲンが添加されたリチウム酸化物である。 The amount of the positive electrode material in Experimental Examples 1 to 8 above is a lithium oxide obtained by adding a halogen to X of LiCoPO4X or Li2CoPO4X.
 つまり、実験例2:LiCoPO4F、実験例4:LiCoPO4Cl、実験例6:LiCoPO4Br、実験例8:LiCoPO4IのそれぞれのF(フッ素)、Cl(塩素)、Br(臭素),I(ヨウ素)の4元素はハロゲンと称される。よって、LiCoPO4Xは、Xにハロゲンが添加されたリチウム酸化物である。 That is, the four elements of F (fluorine), Cl (chlorine), Br (bromine), and I (iodine) of Experimental Example 2: LiCoPO4F, Experimental Example 4: LiCoPO4Cl, Experimental Example 6: LiCoPO4Br, and Experimental Example 8: LiCoPO4I, respectively. Is called halogen. Therefore, LiCoPO4X is a lithium oxide in which halogen is added to X.
 実験例1:Li2CoPO4F、実験例3:Li2CoPO4Cl、実験例5:Li2CoPO4Br、実験例7:Li2CoPO4Brのそれぞれについても同様である。Li2CoPO4Xは、Xにハロゲンが添加されたリチウム酸化物である。 The same applies to each of Experimental Example 1: Li2CoPO4F, Experimental Example 3: Li2CoPO4Cl, Experimental Example 5: Li2CoPO4Br, and Experimental Example 7: Li2CoPO4Br. Li2CoPO4X is a lithium oxide in which halogen is added to X.
 実験例1~8の電解質2は、ポリマー電解質を使用した。また、負極の材料は、チタン酸リチウム(Li4Ti5O12)である。 A polymer electrolyte was used as the electrolyte 2 of Experimental Examples 1 to 8. The material of the negative electrode is lithium titanate (Li4Ti5O12).
 〔実験結果〕
 実験例1~8のリチウム二次電池を上記の評価方法で評価した結果を表1に示す。
〔Experimental result〕
Table 1 shows the results of evaluating the lithium secondary batteries of Experimental Examples 1 to 8 by the above evaluation method.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す様に、本実施形態に係る実験例1~8のリチウム二次電池の平均放電電圧は4.0Vである。また、20サイクル目の放電容量維持率の平均は94%である。このように実験例1~8のリチウム二次電池は、高出力電圧であり、実用可能な特性を示した。 As shown in Table 1, the average discharge voltage of the lithium secondary batteries of Experimental Examples 1 to 8 according to this embodiment is 4.0 V. The average discharge capacity retention rate in the 20th cycle is 94%. As described above, the lithium secondary batteries of Experimental Examples 1 to 8 had a high output voltage and showed practical characteristics.
 (実験例9)
 実験例9は、実験例1の電解質2をポリマー電解質から有機電解液に変更したリチウム二次電池である。
(Experimental Example 9)
Experimental Example 9 is a lithium secondary battery in which the electrolyte 2 of Experimental Example 1 is changed from a polymer electrolyte to an organic electrolyte.
 実験例9の電解質2は、ヘキサフルオロリン酸リチウム(LiPF6)のリチウムイオンを含む金属塩を、エチレンカーボネートとジアルキルカーボネート(体積比1:1)の混合溶媒に溶解した有機電解液を用いた。 As the electrolyte 2 of Experimental Example 9, an organic electrolytic solution in which a metal salt containing lithium ions of lithium hexafluorophosphate (LiPF6) was dissolved in a mixed solvent of ethylene carbonate and dialkyl carbonate (volume ratio 1: 1) was used.
 表2は、実験例1と9の評価結果を示す表である。 Table 2 is a table showing the evaluation results of Experimental Examples 1 and 9.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実験例1と比較して、正極1/電解質2及び負極3/電解質2の界面の接触抵抗が増大するため平均放電電圧が0.2V低下する結果が得られた。しかし、放電容量維持率で示されるサイクル安定性に大きな変化が見られなかった。この結果から、高分子電解質を含む電解質2でリチウム二次電池の動作が可能であることが確認できた。 Compared with Experimental Example 1, the contact resistance at the interface between the positive electrode 1 / electrolyte 2 and the negative electrode 3 / electrolyte 2 increased, resulting in a decrease in average discharge voltage of 0.2 V. However, there was no significant change in the cycle stability indicated by the discharge capacity retention rate. From this result, it was confirmed that the lithium secondary battery can be operated with the electrolyte 2 containing the polymer electrolyte.
 (光透過特性)
 図5は、本実施形態に係るリチウム二次電池100の光透過特性を示す図である。図5の横軸は光の波長[nm]、縦軸は光の透過率[%]である。
(Light transmission characteristics)
FIG. 5 is a diagram showing the light transmission characteristics of the lithium secondary battery 100 according to the present embodiment. The horizontal axis of FIG. 5 is the wavelength of light [nm], and the vertical axis is the transmittance of light [%].
 図5において、破線は負極3を含む負極側透明フィルム基板5の光の透過特性を示す。一点鎖線は正極1を含む正極側当面フィルム基板4の光の透過特性を示す。実線はリチウム二次電池100全体の光の透過特性を示す。 In FIG. 5, the broken line indicates the light transmission characteristic of the negative electrode side transparent film substrate 5 including the negative electrode 3. The alternate long and short dash line shows the light transmission characteristics of the positive electrode side immediate film substrate 4 including the positive electrode 1. The solid line shows the light transmission characteristics of the entire lithium secondary battery 100.
 図5に示すように、リチウム二次電池100は全体として可視光の波長範囲(訳380nm~780nm)において光を透過する。600nmの波長では約36%の光を透過する。 As shown in FIG. 5, the lithium secondary battery 100 transmits light as a whole in the visible light wavelength range (translation 380 nm to 780 nm). It transmits about 36% of light at a wavelength of 600 nm.
 このように本実施形態に係るリチウム二次電池100は、高出力電圧と安定した充電サイクル特性と光の透過特性を備える。 As described above, the lithium secondary battery 100 according to the present embodiment has a high output voltage, a stable charge cycle characteristic, and a light transmission characteristic.
 このように本発明によれば、可視光に対する透過性と柔軟性を兼ね備えた高出力電圧のリチウム二次電池とその製造方法を提供することができる。なお、本発明は、上記の実施形態に限定されるものではなく、その要旨の範囲内で変形が可能である。 As described above, according to the present invention, it is possible to provide a lithium secondary battery having a high output voltage and a method for manufacturing the same, which has both transparency and flexibility for visible light. The present invention is not limited to the above embodiment, and can be modified within the scope of the gist thereof.
1:正極
2:電解質
3:負極
4:正極側透明フィルム基板
5:負極側透明フィルム基板
6:透明電極膜
7:ラミネートフィルム
8:正極端子
9:負極端子
100:リチウム二次電池
1: Positive electrode 2: Electrolyte 3: Negative electrode 4: Positive electrode side transparent film substrate 5: Negative electrode side transparent film substrate 6: Transparent electrode film 7: Laminated film 8: Positive electrode terminal 9: Negative electrode terminal 100: Lithium secondary battery

Claims (4)

  1.  フレキシブルな透明フィルム基板の上に形成されたリチウムイオンの挿入及び脱離が可能な物質を含む正極と、
     リチウムイオン導電性を有する透明な電解質と、
     フレキシブルな透明フィルム基板の上に形成された金属リチウム、リチウム含有物質、及びイオンの挿入及び脱離が可能な金属の何れかで形成される負極と
     を備え、
     前記正極は、LiCoPO4X又はLi2CoPO4XのXにハロゲンが添加されたリチウム酸化物であるリチウム二次電池。
    A positive electrode containing a substance formed on a flexible transparent film substrate that allows insertion and desorption of lithium ions, and
    A transparent electrolyte with lithium ion conductivity and
    It comprises a metallic lithium formed on a flexible transparent film substrate, a lithium-containing material, and a negative electrode formed of any of the metals capable of inserting and removing ions.
    The positive electrode is a lithium secondary battery which is a lithium oxide obtained by adding a halogen to X of LiCoPO4X or Li2CoPO4X.
  2.  前記電解質は、リチウムイオンを通すポリマー電解質であり、可視光透過性を有する請求項1に記載のリチウム二次電池。 The lithium secondary battery according to claim 1, wherein the electrolyte is a polymer electrolyte that allows lithium ions to pass through, and has visible light transmittance.
  3.  前記電解質は、リチウムイオンを含む有機電解液であり、可視光透過性を有する請求項1に記載のリチウム二次電池。 The lithium secondary battery according to claim 1, wherein the electrolyte is an organic electrolyte containing lithium ions and has visible light transmittance.
  4.  フレキシブルな透明フィルム基板の上に形成されたリチウムイオンの挿入及び脱離が可能な物質を含む正極を成膜する正極成膜ステップと、リチウムイオン導電性を有する透明な電解質を形成する電解質形成ステップと、フレキシブルな透明フィルム基板の上に形成された金属リチウム又はリチウムイオンの挿入及び脱離が可能な金属で形成される負極を成膜する負極成膜ステップとを含むリチウム二次電池の製造方法であって、前記正極成膜ステップは、LiCoPO4X又はLi2CoPO4XのXにハロゲンが添加されたリチウム酸化物を成膜するリチウム二次電池の製造方法。
     
    A positive electrode film forming step for forming a positive electrode containing a substance capable of inserting and removing lithium ions formed on a flexible transparent film substrate, and an electrolyte forming step for forming a transparent electrolyte having lithium ion conductivity. A method for manufacturing a lithium secondary battery, which comprises a negative electrode forming step of forming a negative electrode formed of a metal capable of inserting and removing metallic lithium or lithium ions formed on a flexible transparent film substrate. The positive electrode film forming step is a method for manufacturing a lithium secondary battery for forming a lithium oxide having a halogen added to X of LiCoPO4X or Li2CoPO4X.
PCT/JP2019/045810 2019-11-22 2019-11-22 Lithium secondary battery and method for producing the same WO2021100198A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/045810 WO2021100198A1 (en) 2019-11-22 2019-11-22 Lithium secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/045810 WO2021100198A1 (en) 2019-11-22 2019-11-22 Lithium secondary battery and method for producing the same

Publications (1)

Publication Number Publication Date
WO2021100198A1 true WO2021100198A1 (en) 2021-05-27

Family

ID=75981571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045810 WO2021100198A1 (en) 2019-11-22 2019-11-22 Lithium secondary battery and method for producing the same

Country Status (1)

Country Link
WO (1) WO2021100198A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229126A (en) * 2002-02-01 2003-08-15 Sangaku Renkei Kiko Kyushu:Kk Electrode active material for non-aqueous electrolyte secondary battery
JP2008146917A (en) * 2006-12-07 2008-06-26 Nippon Synthetic Chem Ind Co Ltd:The All-solid lithium secondary battery
JP2012526376A (en) * 2009-06-25 2012-10-25 ノキア コーポレイション Nanostructure flexible electrode and energy storage device using the same
KR20140074266A (en) * 2014-05-26 2014-06-17 한국전기연구원 Manufacturing Methods of Flexible Transparent Battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229126A (en) * 2002-02-01 2003-08-15 Sangaku Renkei Kiko Kyushu:Kk Electrode active material for non-aqueous electrolyte secondary battery
JP2008146917A (en) * 2006-12-07 2008-06-26 Nippon Synthetic Chem Ind Co Ltd:The All-solid lithium secondary battery
JP2012526376A (en) * 2009-06-25 2012-10-25 ノキア コーポレイション Nanostructure flexible electrode and energy storage device using the same
KR20140074266A (en) * 2014-05-26 2014-06-17 한국전기연구원 Manufacturing Methods of Flexible Transparent Battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Confirm the basic operation of "transparent battery" that does not make you feel the existence-To further expand the possibilities of IoT-", NTT NEWS RELEASE, 26 November 2018 (2018-11-26), XP055829076, Retrieved from the Internet <URL:https://www.ntt.co.jp/news2018/1811/181126c.html> [retrieved on 20200203] *

Similar Documents

Publication Publication Date Title
JP6340133B2 (en) Lithium ion battery, solid electrolyte and method for producing the same
WO2019135319A1 (en) Solid electrolyte material and battery
JPWO2019135315A1 (en) Solid electrolyte material and battery
RU2686477C9 (en) Electric battery
WO2015068268A1 (en) All-solid-state cell, electrode for all-solid-state cell, and method for manufacturing same
CN110581303B (en) Solid state electrochemical assembly, solid state electrochemical device and method of making the same
JP6622364B2 (en) Secondary battery electrode material and secondary battery
WO2020105439A1 (en) Lithium secondary battery and manufacturing method thereof
KR20180094184A (en) All-solid battery using sulfide-based solid electrolyte and method of manufacturing the same
JP2014035989A (en) Method for manufacturing sulfide solid electrolyte layer and method for manufacturing battery
WO2022057189A1 (en) Solid-state battery, battery module, battery pack, and related device thereof
JP6648649B2 (en) Manufacturing method of all solid lithium sulfur battery
CN113130979A (en) Solid electrolyte, preparation method thereof and solid battery
KR102347745B1 (en) Air electrode for all-solid lithium air battery and method for producing thereof
WO2007114977A2 (en) Lithium-metal-oxide composite electrodes
JP6748348B2 (en) All solid state battery
WO2020105431A1 (en) Sodium secondary battery and manufacturing method thereof
CN113054191A (en) Binder solution for all-solid-state battery and electrode slurry including the same
TW201814942A (en) Lithium battery, solid electrolyte membrane and their manufacturing methods thereof
CN108539151B (en) Electrode material for secondary battery and secondary battery
WO2021100198A1 (en) Lithium secondary battery and method for producing the same
CN111040061B (en) Solid sodium ion electrolyte, preparation method thereof and all-solid-state sodium battery
KR102006821B1 (en) Solid electrolyte material, methods for manufacturing the same, and all solid state battery including the same
JP6697155B2 (en) All solid state battery
WO2023105573A1 (en) Lithium secondary battery and method for producing lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP