WO2021098480A1 - 一种基于全纤维驻极体发电机的高效防护口罩及其制备方法 - Google Patents

一种基于全纤维驻极体发电机的高效防护口罩及其制备方法 Download PDF

Info

Publication number
WO2021098480A1
WO2021098480A1 PCT/CN2020/125089 CN2020125089W WO2021098480A1 WO 2021098480 A1 WO2021098480 A1 WO 2021098480A1 CN 2020125089 W CN2020125089 W CN 2020125089W WO 2021098480 A1 WO2021098480 A1 WO 2021098480A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
electret
full
nanoparticles
protective mask
Prior art date
Application number
PCT/CN2020/125089
Other languages
English (en)
French (fr)
Inventor
蔡容容
雷杨
张立志
张昊晴
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2021098480A1 publication Critical patent/WO2021098480A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B7/00Respiratory apparatus
    • A62B7/10Respiratory apparatus with filter elements
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B23/00Filters for breathing-protection purposes
    • A62B23/02Filters for breathing-protection purposes for respirators
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B9/00Component parts for respiratory or breathing apparatus
    • A62B9/02Valves
    • A62B9/022Breathing demand regulators

Definitions

  • the invention belongs to the technical field of personal protection and air purification, and specifically relates to a high-efficiency protective mask based on a full-fiber electret generator and a preparation method thereof.
  • Melt-blown electret material is another widely used mask material. It introduces electrostatic capture to the conventional filtering mechanism, which can improve the capture efficiency of particles without increasing the filtering resistance.
  • the electrostatic storage capacity of the electret material itself will decay with the increase of temperature and humidity, and because the stored charge on the electret is limited, it is easy to lose the electrostatic capture performance due to the shielding effect of the deposited particles, which makes the long-term filtration performance insufficient ideal.
  • Electret generators can collect mechanical energy in the environment and use them as energy sources, and can also convert mechanical energy into electrical energy, showing broad application prospects in the collection and utilization of micro-energy.
  • the flexible electret generator can collect the mechanical energy in human motion and convert it into electrical energy. Its open circuit voltage can reach tens of volts to several thousand volts, and it is expected to be applied to the electrostatic filter layer of high-efficiency filter masks.
  • the domestic invention patent application CN 105231523 A published on January 13, 2016 introduces a high-efficiency protective mask with a triboelectric nanogenerator as the filter layer.
  • This invention performs surface nano-modification of the traditional mask filter material and adds another Nano-aluminum modified copper mesh is used as the friction layer pole plate, which can produce 300-400 The static voltage of V improves the electrostatic filtering performance.
  • the purpose of the present invention is to provide a high-efficiency protective mask based on a full-fiber electret generator and a preparation method thereof.
  • the protective mask is driven by autonomous breathing to drive the nano generator to periodically generate static electricity to absorb Fine particles, combined with the mechanical capture effect of the fiber membrane itself, can achieve long-term and high-efficiency filtration of fine particle pollutants, while maintaining good air permeability and biocompatibility.
  • the present invention adopts the following technical solutions.
  • a high-efficiency protective mask based on a full-fiber electret generator includes a tightening belt, a silicone mold, and a full-fiber electret generator set in the silicone mold And breathing valve.
  • the all-fiber electret generator includes a filter layer and a sliding fixed pillar arranged on the filter layer;
  • the filter layer includes a silica gel film, a conductive fabric, an electret fiber membrane and a non-woven fabric laminated in sequence ;
  • the conductive fabric and the electret fiber membrane have different electronegativity.
  • the electret fiber membrane is fixed, and the flexible electrode can be slightly slid on the sliding fixed pillar to generate static charges during the contact-separation process.
  • the all-fiber electret generator can be driven by spontaneous breathing.
  • the breathing valve includes two one-way air intake valves and one one-way exhaust valve, which is controlled by the balance of air pressure inside and outside the mask.
  • the thickness of the conductive fabric is 20-300 ⁇ m, and the porosity is 50-98%; the thickness of the electret fiber membrane is 30-200 ⁇ m, the fiber diameter is 0.3-3.0 ⁇ m, and the porosity is 50%. -98%; the conductive fabric and electret fiber membrane can generate a static voltage of 200-1000 V during the working phase.
  • the above-mentioned preparation method of a high-efficiency protective mask based on a full-fiber electret generator includes the following steps:
  • the polymer material is polyvinylidene fluoride, polyvinylidene fluoride-trifluoroethylene, polyvinylidene fluoride-hexafluoropropylene, polyvinylidene fluoride-chlorotrifluoroethylene ether, Polycarbonate, polytrifluoroethylene, polyvinyl chloride, polymethyl methacrylate, polyacrylonitrile one or a mixture of several; the solvent is ethanol, acetone, acetic acid, formic acid, NN dimethyl formaldehyde A mixture of one or more of amide, dichloromethane, chloroform, tetrahydrofuran, and isopropanol; the concentration of the polymer material in the polymer spinning solution is 5-60 wt.%;
  • the nanoparticles are carbon nanoparticles, silicon dioxide nanoparticles, titanium dioxide nanoparticles, ferroferric oxide nanoparticles, three diamond nanoparticles, zinc oxide nanoparticles,
  • the parameters of ultrasonic oscillation or magnetic stirring in step (1) are: time 2-10 h, power 10-300 W, and temperature 30-90°C.
  • the process parameters of static spinning are: electrostatic voltage 10-30 KV, receiving distance 10-30 cm, injection speed 0.05-0.50 mm/min, drum rotation speed 800-2000 r/min ,
  • the temperature is 0-40°C, the relative humidity is 20-80%; the drying is first drying at room temperature for 3-6 hours, and then vacuum drying at 40-60°C for 3-6 hours.
  • the flexible fabric described in step (3) is one of polyoxymethylene, polyamide, wool, silk, polymethyl methacrylate, and polyvinyl alcohol;
  • the conductive polymer is polypyrrole, graphene oxide , Polyaniline, polythiophene;
  • the immersion time in step (3) is 5-30 min, and the ultrasonic power is 10-100 W, the drying temperature is 40-80°C, and the drying time is 3-8 h.
  • the packaging process in step (5) includes one or more of needle sewing, thermal bonding, and ultrasonic bonding.
  • the present invention has the following advantages and beneficial effects:
  • the high-efficiency protective mask provided by the present invention has both mechanical and electrostatic capture effects.
  • the filtration efficiency of PM 2.5 is ⁇ 98%
  • the filtration efficiency of PM 1.0 is ⁇ 90%
  • the filtration pressure drop is between 20-50 Pa
  • the filtration efficiency High good air permeability and certain bactericidal effect.
  • the static electricity in the high-efficiency protective mask of the present invention is driven by spontaneous breathing, which can exist for a long time, and the stability of the static electricity capture performance is ensured.
  • the high-efficiency protective mask of the present invention is provided with two one-way intake valves and one one-way exhaust valve, which avoids the absorption of breathing water vapor on the electret fiber membrane, which reduces the electrostatic capture efficiency and increases the resistance.
  • the high-efficiency protective mask materials of the present invention are all flexible fiber materials, which have good flexibility, air permeability and biocompatibility.
  • Figure 1 is a schematic diagram of the structure of the electrospinning device used in the present invention.
  • Figure 2 is a schematic diagram of the main structure of the high-efficiency protective mask of the present invention.
  • Fig. 3 is a graph of the static voltage generated by the all-fiber electret generator prepared in Examples 1-3 under different respiration frequencies.
  • Figure 4 is a graph of the filtration efficiency and pressure drop of the high-efficiency protective masks prepared in Examples 1-3.
  • the main structure diagram of the high-efficiency protective mask of the present invention is shown in Figure 2.
  • the high-efficiency protective mask includes a tightening belt, a silicone mold 5, a full-fiber electret generator and a breathing valve set in the silicone mold; the full-fiber
  • the electret generator includes a filter layer and a sliding fixed support 9 arranged on the filter layer;
  • the filter layer includes a silica gel film 7, a conductive fabric 10, an electret fiber membrane 11 and a non-woven fabric 8 laminated in sequence;
  • the conductive fabric and the electret fiber membrane have different electronegativity;
  • the breathing valve includes two one-way intake valves 6 and one one-way exhaust valve 12.
  • the gas exerts a positive pressure on the silica gel membrane 7 attached to the conductive fabric 10, and the airflow pushes the conductive fabric 10 to the fixed electret fiber membrane 11. Due to the high pressure drop, the inlet valve 6 is closed, the outlet valve 12 is opened, and the air flow is discharged.
  • the intake valve 6 In the inhalation state, under the action of internal and external pressures, the intake valve 6 is opened, and the dust-laden airflow sequentially flows through the surface of the non-woven fabric 8, the electret fiber membrane 11, and the conductive fabric 10; through the non-woven fabric 8 and the electret
  • the filtration of the porous medium of the fiber membrane 11 and the electrostatic adsorption of the charged thin film conductive fabric 10 and the surface of the electret fiber membrane 11 remove particles.
  • the conductive fabric 10 is separated from the fixed electret fiber membrane 11, and they can generate a large amount of static charge during continuous contact and separation.
  • a high-efficiency protective mask based on a full-fiber electret generator and a preparation method thereof the specific steps are:
  • the electret polyvinylidene fluoride fiber membrane with high degree of orientation is obtained; the polyvinylidene fluoride fiber membrane is dried at 30°C for 4 hours, and then Dry in vacuum at 60°C for 4 h and then stand for use.
  • nylon conductive fabric and the silica gel film are laminated and fixed as a flexible electrode, which is installed on the sliding column, and the polyvinylidene fluoride electret fiber membrane is fixed at the bottom of the sliding column to obtain a nylon-polyamide driven by spontaneous breathing. Vinylidene fluoride electret generator.
  • the thickness of the nylon conductive fabric in the high-efficiency protective mask based on the full-fiber electret generator made in this example is 100 ⁇ m and the porosity is 88%; the thickness of the polyvinylidene fluoride electret fiber membrane is 60 ⁇ m, and the fiber diameter is 0.8 ⁇ m, the porosity is 90%; the all-fiber electret generator has good flexibility, and has an elastic limit of 720 kPa for 50% elastic deformation; as shown in Figure 3, when the breathing frequency is 15 breaths/min. , It can generate a static voltage of 620 V, and a static voltage of 700 V can be generated at a breathing rate of 25 times/min, indicating that a large amount of static charge can be generated by spontaneous breathing.
  • the high-efficiency protective mask based on the all-fiber electret generator prepared in this example was tested in accordance with the "Technical Specification for Daily Protective Masks" GB/T23610-2016.
  • the filtration efficiency for PM 2.5 is 99.67%, and the filtration for PM 1.0
  • the efficiency is 92.88%, and the filtration pressure drop is 26 Pa, as shown in Figure 4; it shows that it has both good air permeability and high efficiency filtration of fine particles.
  • a high-efficiency protective mask based on a full-fiber electret generator and a preparation method thereof the specific steps are:
  • the thickness of the polyoxymethylene conductive fabric in the high-efficiency protective mask based on the full-fiber electret generator made in this example is 50 ⁇ m and the porosity is 82%; the thickness of the polyvinylidene fluoride electret fiber membrane is 60 ⁇ m, and the fiber diameter is 0.8 ⁇ m, the porosity is 90%; the all-fiber electret generator has good flexibility, and has an elastic limit of 850 kPa for 50% elastic deformation; as shown in Figure 3, when the breathing frequency is 15 breaths/min. , It can generate a static voltage of 540 V. When the breathing frequency is 25 times/min, it can generate a static voltage of 602 V, indicating that a large amount of static charge can be generated by spontaneous breathing.
  • the high-efficiency protective mask based on the full-fiber electret generator made in this example was tested in accordance with the "Technical Specification for Daily Protective Masks" GB/T23610-2016, and the filtration efficiency for PM 2.5 was 99.07%, and the filtration for PM 1.0 The efficiency is 92.09%, and the filtration pressure drop is 28 Pa, as shown in Figure 4; it shows that it has both good air permeability and high efficiency filtration of fine particles.
  • a high-efficiency protective mask based on a full-fiber electret generator and a preparation method thereof the specific steps are:
  • the wool-polycarbonate electret generator is embedded in a silicone mold, and the mask is ultrasonically bonded with the one-way intake valve, one-way exhaust valve, and tightening belt.
  • the thickness of the wool conductive fabric in the high-efficiency protective mask based on the all-fiber electret generator made in this example is 80 ⁇ m and the porosity is 89%; the thickness of the polycarbonate electret fiber membrane is 90 ⁇ m, and the fiber diameter is 1.2 ⁇ m , The porosity is 88%; the all-fiber electret generator has good flexibility, and has an elastic limit of 908 kPa for 50% elastic deformation; as shown in Figure 3, when the respiratory rate is 15 breaths/min, it can be A static voltage of 604 V is generated. At a breathing rate of 25 times/min, a static voltage of 623 V can be generated, indicating that a large amount of static charge can be generated by spontaneous breathing.
  • the high-efficiency protective mask based on the all-fiber electret generator prepared in this example was tested in accordance with the "Technical Specification for Daily Protective Masks" GB/T23610-2016, and the filtration efficiency for PM 2.5 is 98.83%, and the filtration for PM 1.0 The efficiency is 91.56%, and the filtration pressure drop is 24 Pa, as shown in Figure 4; it shows that it has both good air permeability and high efficiency filtration of fine particles.

Landscapes

  • Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

本发明公开了一种基于全纤维驻极体发电机的高效防护口罩及其制备方法。所述基于全纤维驻极体发电机的高效防护口罩包括束紧带、硅胶模具、设置在硅胶模具内的全纤维驻极体发电机和呼吸阀。所述的全纤维驻极体发电机包括过滤层和设置在过滤层上的滑动固定支柱;所述过滤层包括依次层叠的硅胶薄膜、导电织物、驻极体纤维膜和无纺布;所述导电织物和驻极体纤维膜有不同的电负性,通过自主呼吸驱动,可产生200-1000V静电压。本发明的基于全纤维驻极体发电机的防护口罩对PM2.5的过滤效率≥98%,PM1.0的过滤效率≥90%,过滤压降为20-50 Pa之间,且柔韧性和透气性好,制备工艺简单,在个体防护领域具有广阔的应用前景。

Description

一种基于全纤维驻极体发电机的高效防护口罩及其制备方法 技术领域
本发明属于个体防护及空气净化技术领域,具体涉及一种基于全纤维驻极体发电机的高效防护口罩及其制备方法。 
背景技术
随着工业化进程的不断深入,细颗粒物已成为重要大气污染物之一,对人体健康造成严重危害,因而基于防雾霾的个体防护也越来越重要。
传统高效防护口罩材料主要依靠物理拦截、惯性碰撞、布朗扩散等机械作用来捕获微细颗粒物,对微细颗粒污染物实现高效过滤的同时,压阻也很大,透气性和舒适性较差。
熔喷驻极体材料是另一种较为广泛使用的口罩材料,它在常规过滤机制上引入静电捕获作用,可以在不增加过滤阻力情况下提高颗粒的捕获效率。然而驻极体材料本身的静电储存量会随温度、湿度升高而衰减,且由于驻极体上的储存电荷有限,容易因沉积颗粒的屏蔽效应而失去静电捕获性能,从而使长期过滤性能不够理想。
驻极体发电机可以收集环境中的机械能作为能源使用,还能将机械能转化为电能,在微能量收集和利用中显示出广阔的应用前景。柔性驻极体发电机可以收集人体运动中的机械能并将其转化为电能,其开路电压可以达到几十伏到几千伏,有望将其应用于高效过滤口罩的静电过滤层。
国内2016年1月13日公开的CN 105231523 A发明专利申请介绍了一种以摩擦电纳米发电机为过滤层的高效防护口罩,该发明对传统口罩过滤材料进行表面纳米改性,并加入另一纳米铝改性铜网作为摩擦层极板,可产生300-400 V的静电压,提升了静电过滤性能。
上述技术的不足之处在于:铜网等金属电极材料的柔韧性差,在不断弯曲的过程中容易产生裂纹发生断裂;且经表面纳米改性得到的摩擦材料耐磨损性能差,这直接影响了口罩材料的过滤稳定性和使用寿命。
技术解决方案
为了克服现有技术的不足,本发明的目的是提供了一种基于全纤维驻极体发电机的高效防护口罩及其制备方法,该防护口罩由自主呼吸驱动纳米发电机周期性产生静电以吸附细颗粒物,结合纤维膜本身的机械捕获作用,实现对细颗粒污染物的长期高效过滤,同时保持良好的透气性和生物相容性。
为了实现上述目的,本发明采用如下的技术方案。
一种基于全纤维驻极体发电机的高效防护口罩,所述基于全纤维驻极体发电机的高效防护口罩包括束紧带、硅胶模具、设置在硅胶模具内的全纤维驻极体发电机和呼吸阀。
优选的,所述的全纤维驻极体发电机包括过滤层和设置在过滤层上的滑动固定支柱;所述过滤层包括依次层叠的硅胶薄膜、导电织物、驻极体纤维膜和无纺布;所述导电织物和驻极体纤维膜有不同的电负性。在呼吸过程,驻极体纤维膜固定,柔性电极可在滑动固定支柱上小幅滑动,在接触-分离过程产生静电荷。
优选的,所述的全纤维驻极体发电机可由自主呼吸驱动。
优选的,所述的呼吸阀包括两个单向进气阀和一个单向排气阀,由口罩内外气压平衡控制。
优选的,所述导电织物的厚度为20-300 μm,孔隙率为50-98%;所述驻极体纤维膜的厚度为30-200 μm,纤维直径为0.3-3.0 μm,孔隙率为50-98%;所述导电织物与驻极体纤维膜在工作阶段可以产生200-1000 V的静电压。
以上所述的一种基于全纤维驻极体发电机的高效防护口罩的制备方法,包括以下步骤:
(1)将聚合物材料和纳米颗粒加入溶剂中,经超声震荡仪震荡超声震荡或恒温磁力搅拌直至溶质溶解均匀,得到聚合物纺丝液;
(2)将聚合物纺丝液通过静电纺丝工艺纺织到覆盖在滚筒上的无纺布,得到具有高取向度的驻极体纤维膜并干燥待用;
(3)将柔性织物置于导电聚合物溶液中超声浸渍、干燥,制得导电织物;
(4)将导电织物和硅胶薄膜进行叠合固定,作为柔性电极,安装在滑动柱上,将驻极体纤维膜固定在滑动柱底部,得到全纤维驻极体发电机;
(5)将全纤维驻极体发电机嵌入硅胶模具,并与呼吸阀封装得到口罩。
优选的,步骤(1)中,所述的聚合物材料为聚偏氟乙烯、聚偏氟乙烯-三氟乙烯、聚偏氟乙烯-六氟丙烯、聚偏氟乙烯-三氟氯乙烯醚、聚碳酸醋、聚三氟乙烯、聚氯乙烯、聚甲基丙烯酸甲醋、聚丙烯腈中的一种或几种的混合物;所述溶剂为乙醇、丙酮、乙酸、甲酸、N-N二甲基甲酰胺、二氯甲烷、三氯甲烷、四氢吠喃、异丙醇中的一种或几种的混合物;所述聚合物纺丝液中聚合物材料的浓度为5-60 wt.%;所述的纳米颗粒为碳纳米颗粒、二氧化硅纳米颗粒、二氧化钛纳米颗粒、四氧化三铁纳米颗粒、四氧化三钻纳米颗粒、氧化锌纳米颗粒、氮化硅纳米颗粒、钦酸钡纳米颗粒、氯化锂纳米颗粒和氧化铝纳米颗粒中的一种或几种的混合物;所述聚合物纺丝液中纳米颗粒的浓度为0.001-1.0 wt.%。
优选的,步骤(1)所述的超声震荡或磁力搅拌的参数为:时间2-10 h,功率10-300 W,温度30-90℃。
优选的,步骤(2)中,所述静纺丝的工艺参数为:静电电压10-30 KV,接收距离10-30 cm,注射速度0.05-0.50 mm/min,滚筒转速800-2000 r/min,温度0-40℃,相对湿度20-80%;所述干燥是先在室温下干燥3-6 h,然后在40-60℃下真空干燥3-6 h。
优选的,步骤(3)所述的柔性织物为聚甲醛、聚酰胺、羊毛、蚕丝、聚甲基丙烯酸甲酯和聚乙烯醇中的一种;所述导电聚合物为聚吡咯、氧化石墨烯、聚苯胺、聚噻吩中的一种;步骤(3)中的浸渍时间为5-30 min,超声功率为10-100 W,干燥温度为40-80℃,干燥时间为3-8 h。
优选的,步骤(5)中的封装工艺包括针缝制、热粘合、超声波粘合中的一种或几种。
有益效果
与现有技术相比,本发明具有如下优点及有益效果:
(1)本发明提供的高效防护口罩同时具有机械和静电捕获作用,对PM 2.5的过滤效率≥98%,PM 1.0的过滤效率≥90%,过滤压降为20-50 Pa之间,过滤效率高、透气性好且有一定的杀菌作用。
(2)本发明的高效防护口罩中的静电由自主呼吸驱动产生,可长期存有,保证了静电捕获性能的稳定性。
(3)本发明的高效防护口罩设有两个单向进气阀和一个单向排气阀,避免了呼吸水汽吸附于驻极体纤维膜而使静电捕获效率降低和阻力增大。
(4)本发明的高效防护口罩材料全为柔性纤维材料,具备较好的柔韧性、透气性和生物相容性。
附图说明
图1是本发明所用静电纺丝装置的结构示意图;
图中编号说明如下:1-电压保护***,2-滚筒接收控制***,3-纺丝液推注***和4-高压静电***。
图2是本发明的高效防护口罩主要结构示意图;
图中编号说明如下:5-硅胶模具,6-单向进气阀,7-硅胶薄膜,8-无纺布,9-滑动固定柱,10-导电织物,11-驻极体纤维膜,12-单向排气阀。
图3是实施例1-3所制备的全纤维驻极体发电机在不同呼吸频率下产生的静电压图。
图4是实施例1-3所制备的高效防护口罩的过滤效率和压降图。
本发明的实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
本发明的高效防护口罩主要结构示意图如图2所示,该高效防护口罩包括束紧带、硅胶模具5、设置在硅胶模具内的全纤维驻极体发电机和呼吸阀;所述的全纤维驻极体发电机包括过滤层和设置在过滤层上的滑动固定支柱9;所述过滤层包括依次层叠的硅胶薄膜7、导电织物10、驻极体纤维膜11和无纺布8;所述导电织物和驻极体纤维膜有不同的电负性;所述呼吸阀包括两个单向进气阀6和一个单向排气阀12。
在呼气状态下,气体将正压力施加到附着在导电织物10的硅胶膜7上,气流会将导电织物10推向固定的驻极体纤维膜11。 由于高压降,进气阀6关,出气阀12打开, 气流排出。
吸气状态时,在内外压力作用下,进气阀门6打开,含尘气流依次流经无纺布8,驻极体纤维膜11,导电织物10的表面;通过无纺布8和驻极体纤维膜11多孔介质的过滤和荷电薄膜导电织物10、驻极体纤维膜11表面静电的吸附作用将颗粒去除。此时,导电织物10与固定的驻极体纤维膜11分离,它们在不断的接触分离中可产生大量静电荷。
实施例 1
本实施例的一种基于全纤维驻极体发电机的高效防护口罩及其制备方法,具体步骤为:
(1)用电子天平准确称取16.2 g N-N二甲基甲酰胺和10.8 g丙酮置于50 mL烧杯中,然后称取0.05 g纳米二氧化硅(纯度99.5%,平均粒径20 nm)置于上述混合溶剂中,接着用电子天平准确称取3.0 g聚偏氟乙烯置于上述烧杯中,加入搅拌子,在60℃下用磁力搅拌器搅拌8 h,搅拌功率为200 W,配置成均匀稳定的纺丝液。
(2)用注射器吸取聚偏氟乙烯纺丝液,使用图1所示的静电纺丝设备(由电压保护***1,滚筒接收控制***2,纺丝液推注***3和高压静电***4组成,下同)进行静电纺丝,以无纺布作为接收基底,调节静电纺丝参数:静电高压为18 KV,接收距离为15 cm,注射速度为0.14 mm/min,滚筒转速1500 r/min,温度35℃,相对湿度为40%,纺丝时间为30 min,得到具有高取向度的驻极体聚偏氟乙烯纤维膜;将聚偏氟乙烯纤维膜在30℃室温下干燥4 h,然后在60℃下真空干燥4 h后静置待用。
(3)将适量聚苯胺溶于N,N-二甲基甲酰胺溶剂配置成25 mg/mL的聚苯胺溶液,将尼龙柔性织物超声浸渍于聚苯胺溶液,超声功率为50 W,浸渍时间为10 min;而后将织物在50℃下真空干燥5 h,得到尼龙导电织物。
(4)将尼龙导电织物和硅胶薄膜进行叠合固定,作为柔性电极,安装在滑动柱上,将聚偏氟乙烯驻极体纤维膜固定在滑动柱底部,得到可由自主呼吸驱动的尼龙-聚偏氟乙烯驻极体发电机。
(5)将尼龙-聚偏氟乙烯驻极体发电机嵌入硅胶模具,并与单向进气阀、单向排气阀、束紧带等经超声粘合得到口罩。
本实施例所制得的基于全纤维驻极体发电机的高效防护口罩中尼龙导电织物厚度为100 μm,孔隙率88%;聚偏氟乙烯驻极体纤维膜厚度为60 μm,纤维直径为0.8 μm,孔隙率为90%;该全纤维驻极体发电机具有良好的柔韧性,对于50%的弹性变形具有720 kPa的弹性极限;如图3所示,在呼吸频率15次/分时,可产生 620 V的静电压,在呼吸频率25次/分时,可产生 700 V的静电压,说明可由自主呼吸驱动产生大量静电荷。
本实施例所制得基于全纤维驻极体发电机的高效防护口罩按照《日常防护型口罩技术规范》GB/T23610-2016进行测试,对PM 2.5的过滤效率为99.67%,对PM 1.0的过滤效率92.88%,过滤压降为26 Pa,如图4所示;说明兼具良好的透气性和对微细颗粒物的高效过滤。
实施例 2
本实施例的一种基于全纤维驻极体发电机的高效防护口罩及其制备方法,具体步骤为:
(1)用电子天平准确称取16.2 g N-N二甲基甲酰胺和10.8 g丙酮置于50 mL烧杯中,然后称取0.03 g纳米氮化硅(纯度99.5%,平均粒径30 nm)置于上述混合溶剂中,接着用电子天平准确称取3.6 g聚偏氟乙烯置于上述烧杯中,加入搅拌子,在80℃下用磁力搅拌器搅拌8 h,搅拌功率为300 W,配置成均匀稳定的纺丝液。
(2)用注射器吸取聚偏氟乙烯纺丝液,使用图1所示的静电纺丝设备进行静电纺丝,以无纺布作为接收基底,调节静电纺丝参数:静电高压为20 KV,接收距离为15 cm,注射速度为0.14 mm/min,滚筒转速1500 r/min,温度32℃,相对湿度为60%,纺丝时间为30 min,得到具有高取向度的驻极体聚偏氟乙烯纤维膜;将聚偏氟乙烯纤维膜在30℃室温下干燥4 h,然后在60℃下真空干燥4 h后静置待用。
(3) 将适量聚苯胺溶于N,N-二甲基甲酰胺溶剂配置成25 mg/mL的聚苯胺溶液,,将聚甲醛纤维织物超声浸渍于聚苯胺溶液,超声功率为60 W,浸渍时间为20 min;而后将织物在50℃下真空干燥6 h,得到聚甲醛导电织物。
(4)将聚甲醛导电织物和硅胶薄膜进行叠合固定,作为柔性电极,安装在滑动柱上,将聚偏氟乙烯驻极体纤维膜固定在滑动柱底部,得到可由自主呼吸驱动的聚甲醛-聚偏氟乙烯驻极体发电机。
(5)将聚甲醛-聚偏氟乙烯驻极体发电机嵌入硅胶模具,并与单向进气阀、单向排气阀、束紧带等经超声粘合得到口罩。
本实施例所制得基于全纤维驻极体发电机的高效防护口罩中聚甲醛导电织物厚度为50 μm,孔隙率82%;聚偏氟乙烯驻极体纤维膜厚度为60 μm,纤维直径为0.8 μm,孔隙率为90%;该全纤维驻极体发电机具有良好的柔韧性,对于50%的弹性变形具有850 kPa的弹性极限;如图3所示,在呼吸频率15次/分时,可产生 540 V的静电压,在呼吸频率25次/分时,可产生 602 V的静电压,说明可由自主呼吸驱动产生大量静电荷。
本实施例所制得基于全纤维驻极体发电机的高效防护口罩按照《日常防护型口罩技术规范》GB/T23610-2016进行测试,对PM 2.5的过滤效率为99.07%,对PM 1.0的过滤效率92.09%,过滤压降为28 Pa,如图4所示;说明兼具良好的透气性和对微细颗粒的高效过滤。
实施例 3
本实施例的一种基于全纤维驻极体发电机的高效防护口罩及其制备方法,具体步骤为:
(1)用电子天平准确称取30 g 二氯甲烷置于50 mL烧杯中,然后称取0.03 g纳米氧化锌(平均粒径30 nm)置于上述溶剂中,接着用电子天平准确称取2.4 g聚碳酸酯置于上述烧杯中,在60℃下用超声震荡6 h,超声功率为200 W,配置成均匀稳定的纺丝液。
(2)用注射器吸取聚碳酸酯纺丝液,使用图1所示的静电纺丝设备进行静电纺丝,以无纺布作为接收基底,调节静电纺丝参数:静电高压为25 KV,接收距离为12 cm,注射速度为0.14 mm/min,滚筒转速1200 r/min,温度32℃,相对湿度为60%,纺丝时间为25 min,得到具有高取向度的驻极体聚碳酸酯纤维膜;将聚碳酸酯纤维膜在30℃室温下干燥4 h,然后在60℃下真空干燥3 h后静置待用。
(3) 将适量聚吡咯溶于N,N-二甲基甲酰胺溶剂配置成20 mg/mL的聚吡咯溶液,将羊毛织物超声浸渍于聚吡咯溶液,超声功率为60 W,浸渍时间为15 min;而后将织物在40℃下真空干燥8 h,得到羊毛导电织物。
(4)将羊毛导电织物和硅胶薄膜进行叠合固定,作为柔性电极,安装在滑动柱上,将聚碳酸酯驻极体纤维膜固定在滑动柱底部,得到可由自主呼吸驱动的羊毛-聚碳酸酯驻极体发电机。
(5)将羊毛-聚碳酸酯驻极体发电机嵌入硅胶模具,并与单向进气阀、单向排气阀、束紧带等经超声粘合得到口罩。
本实施例所制得基于全纤维驻极体发电机的高效防护口罩中羊毛导电织物厚度为80 μm,孔隙率89%;聚碳酸酯驻极体纤维膜厚度为90 μm,纤维直径为1.2 μm,孔隙率为88%;该全纤维驻极体发电机具有良好的柔韧性,对于50%的弹性变形具有908 kPa的弹性极限;如图3所示,在呼吸频率15次/分时,可产生 604 V的静电压,在呼吸频率25次/分时,可产生 623 V的静电压,说明可由自主呼吸驱动产生大量静电荷。
本实施例所制得基于全纤维驻极体发电机的高效防护口罩按照《日常防护型口罩技术规范》GB/T23610-2016进行测试,对PM 2.5的过滤效率为98.83%,对PM 1.0的过滤效率91.56%,过滤压降为24 Pa,如图4所示;说明兼具良好的透气性和对微细颗粒的高效过滤。

Claims (9)

  1. 一种基于全纤维驻极体发电机的高效防护口罩,其特征在于,所述基于全纤维驻极体发电机的高效防护口罩包括束紧带、硅胶模具(5)、设置在硅胶模具内的全纤维驻极体发电机和呼吸阀;所述的全纤维驻极体发电机包括过滤层和设置在过滤层上的滑动固定支柱(9);所述过滤层包括依次层叠的硅胶薄膜(7)、导电织物(10)、驻极体纤维膜(11)和无纺布(8);所述导电织物和驻极体纤维膜有不同的电负性。
  2. 根据权利要求1所述的一种基于全纤维驻极体发电机的高效防护口罩,其特征在于,所述的全纤维驻极体发电机可由自主呼吸驱动;所述的呼吸阀包括两个单向进气阀(6)和一个单向排气阀(12),由口罩内外气压平衡控制。
  3. 根据权利要求1所述的一种基于全纤维驻极体发电机的高效防护口罩,其特征在于,所述导电织物的厚度为20-300 μm,孔隙率为50-98%;所述驻极体纤维膜的厚度为30-200 μm,纤维直径为0.3-3.0 μm,孔隙率为50-98%;所述导电织物与驻极体纤维膜在工作阶段可以产生200-1000 V的静电压。
  4. 制备权利要求1-3任一项所述的一种基于全纤维驻极体发电机的高效防护口罩的方法,其特征在于,包括以下步骤:
    (1)将聚合物材料和纳米颗粒加入溶剂中,经超声震荡或恒温磁力搅拌直至溶质溶解均匀,得到聚合物纺丝液;
    (2)将聚合物纺丝液通过静电纺丝工艺纺织到覆盖在滚筒上的无纺布,得到具有高取向度的驻极体纤维膜并干燥待用;
    (3)将柔性织物置于导电聚合物溶液中超声浸渍、干燥,制得导电织物;
    (4)将导电织物和硅胶薄膜进行叠合固定,作为柔性电极,安装在滑动柱上,将驻极体纤维膜固定在滑动柱底部,得到全纤维驻极体发电机;
    (5)将全纤维驻极体发电机嵌入硅胶模具,并与呼吸阀封装得到口罩。
  5. 根据权利要求4所述的制备方法,其特征在于,步骤(1)中,所述的聚合物材料为聚偏氟乙烯、聚偏氟乙烯-三氟乙烯、聚偏氟乙烯-六氟丙烯、聚偏氟乙烯-三氟氯乙烯醚、聚碳酸醋、聚三氟乙烯、聚氯乙烯、聚甲基丙烯酸甲醋、聚丙烯腈中的一种或几种的混合物;所述溶剂为乙醇、丙酮、乙酸、甲酸、N-N二甲基甲酰胺、二氯甲烷、三氯甲烷、四氢吠喃、异丙醇中的一种或几种的混合物;所述聚合物纺丝液中聚合物材料的浓度为5-60 wt.%;所述的纳米颗粒为碳纳米颗粒、二氧化硅纳米颗粒、二氧化钛纳米颗粒、四氧化三铁纳米颗粒、四氧化三钻纳米颗粒、氧化锌纳米颗粒、氮化硅纳米颗粒、钦酸钡纳米颗粒、氯化锂纳米颗粒和氧化铝纳米颗粒中的一种或几种的混合物;所述聚合物纺丝液中纳米颗粒的浓度为0.001-1.0 wt.%。
  6. 根据权利要求4所述的制备方法,其特征在于,步骤(1)所述的超声震荡或磁力搅拌的参数为:时间2-10 h,功率10-300 W,温度30-90℃。
  7. 根据权利要求4所述的制备方法,其特征在于,步骤(2)中,所述静电纺丝的工艺参数为:静电电压10-30 KV,接收距离10-30 cm,注射速度0.05-0.50 mm/min,滚筒转速800-2000 r/min,温度0-40℃,相对湿度20-80%;所述干燥是先在室温下干燥3-6 h,然后在40-60℃下真空干燥3-6 h。
  8. 根据权利要求4所述的制备方法,其特征在于,步骤(3)所述的柔性织物为聚甲醛、聚酰胺、羊毛、蚕丝、聚甲基丙烯酸甲酯和聚乙烯醇中的一种;所述导电聚合物为聚吡咯、氧化石墨烯、聚苯胺、聚噻吩中的一种;步骤(3)中的浸渍时间为5-30 min,超声功率为10-100 W,干燥温度为40-80℃,干燥时间为3-8 h。
  9. 根据权利要求4所述的制备方法,其特征在于,步骤(5)中的封装工艺包括针缝制、热粘合、超声波粘合中的一种或几种。
     
PCT/CN2020/125089 2019-11-20 2020-10-30 一种基于全纤维驻极体发电机的高效防护口罩及其制备方法 WO2021098480A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911139180.0 2019-11-20
CN201911139180 2019-11-20

Publications (1)

Publication Number Publication Date
WO2021098480A1 true WO2021098480A1 (zh) 2021-05-27

Family

ID=70945992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125089 WO2021098480A1 (zh) 2019-11-20 2020-10-30 一种基于全纤维驻极体发电机的高效防护口罩及其制备方法

Country Status (2)

Country Link
CN (1) CN111249638B (zh)
WO (1) WO2021098480A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115679472A (zh) * 2022-10-20 2023-02-03 湖南大学 一种磁热纤维及其制备方法和应用
WO2023163973A1 (en) * 2022-02-23 2023-08-31 Nexvera Llc Antimicrobial face mask

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111249638B (zh) * 2019-11-20 2021-10-26 华南理工大学 一种基于全纤维驻极体发电机的高效防护口罩及其制备方法
CN111973903B (zh) * 2020-07-10 2021-08-31 东华大学 一种基于电荷泵原理的高过滤效率摩擦电口罩
DE112021004004T5 (de) * 2020-07-29 2023-06-01 Japan Fine Ceramics Co. Ltd. Siliziumnitridsubstrat und Verfahren zur Herstellung hiervon
CN112337193B (zh) * 2020-09-09 2022-01-07 华南理工大学 热舒适性防pm2.5的纳米纤维口罩滤芯及其制备方法
CN112323539B (zh) * 2020-09-16 2022-10-28 齐鲁工业大学 基于天然植物纤维的可驻极过滤原纸及其制备方法与应用
CN114920971B (zh) * 2022-05-17 2023-06-27 爱芯环保科技(厦门)股份有限公司 Pvdf复合石墨烯的动态驻极滤芯

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120007106U (ko) * 2011-04-06 2012-10-16 이성균 산소항균마스크
CN103023371A (zh) * 2012-12-10 2013-04-03 北京大学 一种微纳集成发电机及其制备方法
CN203851062U (zh) * 2014-01-24 2014-09-24 国家纳米科学中心 一种接触-分离式摩擦纳米发电机
CN105214510A (zh) * 2014-04-15 2016-01-06 纳米新能源(唐山)有限责任公司 基于摩擦发电的pm2.5滤膜及其制备方法
CN105231523A (zh) * 2015-10-08 2016-01-13 天津理工大学 一种以摩擦电纳米发电机为过滤层的高效防护口罩
CN106474640A (zh) * 2015-08-28 2017-03-08 北京纳米能源与***研究所 口罩
CN107115603A (zh) * 2017-04-05 2017-09-01 东华大学 一种呼气‑吸气隔开的雾霾净化口罩
CN206498984U (zh) * 2016-12-23 2017-09-19 纳智源科技(唐山)有限责任公司 一种防雾霾装置
US20180000244A1 (en) * 2015-11-19 2018-01-04 The Lovesac Company Furniture System Recliner Assembly with Sled Rails
CN107994803A (zh) * 2017-12-25 2018-05-04 内蒙古科技大学 一种压电摩擦电混合可穿戴纳米发电机及制备方法
CN109316679A (zh) * 2017-07-31 2019-02-12 北京纳米能源与***研究所 摩擦电吸附面罩
CN110086373A (zh) * 2019-04-29 2019-08-02 电子科技大学 一种仿生贝壳式呼吸监测摩擦纳米发电机及其制备方法
CN111249638A (zh) * 2019-11-20 2020-06-09 华南理工大学 一种基于全纤维驻极体发电机的高效防护口罩及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2499121C (en) * 2002-09-16 2011-06-28 Triosyn Holding, Inc. Electrostatically charged filter media incorporating an active agent
CN101613943B (zh) * 2009-07-17 2011-08-31 东华大学 一种层层自组装聚苯胺/尼龙复合导电织物的制备方法
CN203634676U (zh) * 2013-03-25 2014-06-11 郎佩琳 防pm2.5静电口罩
CN105920919B (zh) * 2016-05-17 2018-07-10 华南理工大学 一种用于净化pm2.5的超疏水驻极体滤材的制备及活化方法
CN105854645A (zh) * 2016-06-28 2016-08-17 北京中科奥倍超声波技术研究院 除尘富氧复合膜的制备方法
US20180001244A1 (en) * 2016-07-01 2018-01-04 Hollingsworth & Vose Company Multi-layered electret-containing filtration media
CN207871297U (zh) * 2017-11-03 2018-09-18 北京中科艾加科技有限公司 一种基于压力调控的静电防雾霾口罩
CN207870326U (zh) * 2017-11-03 2018-09-18 北京中科艾加科技有限公司 一种自驱动式压电防雾霾口罩
CN108786492A (zh) * 2018-08-27 2018-11-13 中国科学院城市环境研究所 一种品质因子可调控的空气过滤膜及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120007106U (ko) * 2011-04-06 2012-10-16 이성균 산소항균마스크
CN103023371A (zh) * 2012-12-10 2013-04-03 北京大学 一种微纳集成发电机及其制备方法
CN203851062U (zh) * 2014-01-24 2014-09-24 国家纳米科学中心 一种接触-分离式摩擦纳米发电机
CN105214510A (zh) * 2014-04-15 2016-01-06 纳米新能源(唐山)有限责任公司 基于摩擦发电的pm2.5滤膜及其制备方法
CN106474640A (zh) * 2015-08-28 2017-03-08 北京纳米能源与***研究所 口罩
CN105231523A (zh) * 2015-10-08 2016-01-13 天津理工大学 一种以摩擦电纳米发电机为过滤层的高效防护口罩
US20180000244A1 (en) * 2015-11-19 2018-01-04 The Lovesac Company Furniture System Recliner Assembly with Sled Rails
CN206498984U (zh) * 2016-12-23 2017-09-19 纳智源科技(唐山)有限责任公司 一种防雾霾装置
CN107115603A (zh) * 2017-04-05 2017-09-01 东华大学 一种呼气‑吸气隔开的雾霾净化口罩
CN109316679A (zh) * 2017-07-31 2019-02-12 北京纳米能源与***研究所 摩擦电吸附面罩
CN107994803A (zh) * 2017-12-25 2018-05-04 内蒙古科技大学 一种压电摩擦电混合可穿戴纳米发电机及制备方法
CN110086373A (zh) * 2019-04-29 2019-08-02 电子科技大学 一种仿生贝壳式呼吸监测摩擦纳米发电机及其制备方法
CN111249638A (zh) * 2019-11-20 2020-06-09 华南理工大学 一种基于全纤维驻极体发电机的高效防护口罩及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023163973A1 (en) * 2022-02-23 2023-08-31 Nexvera Llc Antimicrobial face mask
CN115679472A (zh) * 2022-10-20 2023-02-03 湖南大学 一种磁热纤维及其制备方法和应用
CN115679472B (zh) * 2022-10-20 2024-04-05 湖南大学 一种磁热纤维及其制备方法和应用

Also Published As

Publication number Publication date
CN111249638A (zh) 2020-06-09
CN111249638B (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
WO2021098480A1 (zh) 一种基于全纤维驻极体发电机的高效防护口罩及其制备方法
US11014028B2 (en) Method for preparation and activation of super-hydrophobic electret fiber material for cleaning PM2.5
Shao et al. High-performance multifunctional electrospun fibrous air filter for personal protection: A review
US20210154606A1 (en) Efficient low-resistance micro-nano-fiber microscopic gradient structure filtration material, and preparation method therefor
CN112370867B (zh) 一种高效抗菌防护口罩过滤层的制备方法
CN109730378B (zh) 一种具有静电纺丝膜的pm2.5防护口罩及其制备方法
CN106690577A (zh) 基于氧化石墨烯的复合纳滤防霾抗菌抑菌口罩及制备方法
CN113368712B (zh) 一种高效空气过滤复合纳米纤维膜及其制备方法
CN207870326U (zh) 一种自驱动式压电防雾霾口罩
CN107503044A (zh) 用于空气净化的负载zif‑8的二氧化硅纳米纤维膜
CN111974090B (zh) 一种无静电高效过滤纤维材料的制备方法
CN111869951B (zh) 一种口罩过滤层的制备方法
CN106390766A (zh) 一种具有自清洁功能的仿鼻腔纤毛结构过滤材料
CN108786492A (zh) 一种品质因子可调控的空气过滤膜及其制备方法
CN111973903B (zh) 一种基于电荷泵原理的高过滤效率摩擦电口罩
CN106757483A (zh) 一种静电纺制备的驻极聚醚酰亚胺‑勃姆石复合纤维过滤材料及其制备方法
CN112397848B (zh) 一种高性能锂离子电池隔膜及其制备
CN106731228A (zh) 一种高效多功能滤料及其制备方法
CN108379932B (zh) 一种纳米纤维过滤材料以及基于该过滤材料的空气过滤设备
Sharma et al. Smart electrospun materials
Wu et al. Design of PTFE/PP multilayer composite membrane as mask filter layer with steady filtration efficiency and high dust holding capacity
CN105327586B (zh) 一种具有吸声降噪功能的空气过滤器
CN210869973U (zh) 基于噪声发电的负离子防尘口罩
CN106512556A (zh) 一种树枝状的静电纺/驻极体复合纳米纤维膜过滤材料及其制备方法
CN111746076A (zh) 一种过滤面料、口罩及其生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23.09.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20889232

Country of ref document: EP

Kind code of ref document: A1