WO2021097856A1 - 纳米银导电薄膜 - Google Patents

纳米银导电薄膜 Download PDF

Info

Publication number
WO2021097856A1
WO2021097856A1 PCT/CN2019/120438 CN2019120438W WO2021097856A1 WO 2021097856 A1 WO2021097856 A1 WO 2021097856A1 CN 2019120438 W CN2019120438 W CN 2019120438W WO 2021097856 A1 WO2021097856 A1 WO 2021097856A1
Authority
WO
WIPO (PCT)
Prior art keywords
nano
conductive film
silver
layers
substrate
Prior art date
Application number
PCT/CN2019/120438
Other languages
English (en)
French (fr)
Inventor
姜鹏举
Original Assignee
南昌欧菲显示科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌欧菲显示科技有限公司 filed Critical 南昌欧菲显示科技有限公司
Priority to PCT/CN2019/120438 priority Critical patent/WO2021097856A1/zh
Publication of WO2021097856A1 publication Critical patent/WO2021097856A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • This application relates to conductive material technology, and in particular to a nano-silver conductive film.
  • Conductive film is a material with conductive function that is widely used in electronic equipment. It can be divided into metal film system, oxide film system, polymer film system, and composite film system. Nano-silver conductive film is widely used in foldable flexible electronic products due to its excellent photoelectric properties and bending resistance. The nano-silver patterning process of the nano-silver conductive film often uses a yellow light process, which uses an etching solution to etch the nano-silver. However, the etching solution is not easy to remove completely, and the remaining etching solution will continue to corrode the nano silver, which seriously affects the stability and service life of the nano silver conductive film.
  • This application provides a corrosion-resistant nano-silver conductive film.
  • the conductive film includes a substrate, two copper layers, two nano-silver layers, and two insulating protective layers; the substrate includes a first surface and a second surface that are opposed to each other.
  • the two copper layers are respectively attached to the first surface and the second surface; the two nano silver layers are respectively attached to the surface of the two copper layers facing away from the substrate; the Two insulating protective layers are respectively attached to the surface of the two nano silver layers facing away from the substrate; the two insulating protective layers both contain an anion trapping agent;
  • the thickness of the substrate is 5 micrometers to 200 micrometers; making the nano silver conductive film thinner.
  • the substrate includes a film material and a resin coating covering the film material; the substrate can be protected.
  • the resin coating is an acrylic resin coating; the thickness of the acrylic resin coating is 800 nanometers to 1500 nanometers; making the nano-silver conductive film thinner.
  • the acrylic resin coating also contains anti-adhesive particles to prevent adhesion of the nano silver conductive film when it is rolled.
  • the anti-adhesion particles are any one or a combination of organic particles and inorganic particles; the particle size of the anti-adhesion particles is 500 nanometers to 2000 nanometers; the anti-adhesion effect is better.
  • the sheet resistance of the nano-silver layer is 10 to 200 ohms/square; the haze of the nano-silver layer is less than 2%; the light transmittance of the nano-silver layer is greater than 88%; this type of nano-silver is conductive
  • the film can be better applied to mobile phone products.
  • the two insulating protective layers are photosensitive adhesive layers; the thickness of the photosensitive adhesive layer is 10 nanometers to 1000 nanometers;
  • the anion trapping agent is composed of soluble metal oxide and organic solvent.
  • the soluble metal oxide accounts for the proportion of the anion trapping agent in a concentration of 2%-20%; within this range, the anion trapping effect is the best.
  • the application also provides an electronic device, which includes the aforementioned nano conductive film.
  • the nano-silver conductive film disclosed in this application adds an anion trapping agent to its insulating protective layer, and neutralizes free anions through anion trapping, preventing the chemical reaction between anions and nano-silver and then corroding nano-silver, which is effective
  • the stability and service life of the nano-silver conductive film are improved.
  • FIG. 1 is a structural example diagram of a nano conductive film provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the structure of the substrate of the nano conductive film provided by the embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an LCD display screen provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the structure of a thin film transistor provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an OLED display screen provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the structure of two electronic devices provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a touch component provided by an embodiment of the present application.
  • a component when referred to as being "fixed to” another component, it can be directly on the other component or a central component may also exist. When a component is considered to be “connected” to another component, it can be directly connected to the other component or there may be a centered component at the same time.
  • the conductive film includes a substrate 10, two copper layers 20, two nano-silver layers 30, and two insulating protective layers 40; The first surface and the second surface; the two copper layers 20 are respectively attached to the first surface and the second surface; the two nano silver layers 30 are respectively attached to the two copper layers 20 facing away The surface of the substrate 10; the two insulating protective layers 40 are respectively attached to the surface of the two nano silver layers 30 facing away from the substrate 10; the two insulating protective layers 40 both contain an anion trapping agent .
  • the substrate 10 plays a role of supporting other materials in the nano-silver conductive film 101.
  • the copper layer 20, the nano-silver layer 30 and the insulating protective layer 40 are sequentially arranged on the substrate 10; among them, the copper layer 20 can be coated by the magnetron sputtering method of the DC power supply, and the copper layer 20 coated by the magnetron sputtering method is relatively It is flat; of course, in other embodiments, the copper layer 20 can also be plated by electroplating.
  • the nano-silver layer 30 and the insulating protective layer 40 can be arranged in a coating manner.
  • the copper layer 20 and the nano-silver layer 30 are used for conduction, and the insulating protective layer 40 is used to isolate the outside from the copper layer 20 and the nano-silver layer 30, which can not only prevent the oxidation of the nano-silver layer 30, but also effectively protect the copper layer 20 and the nano-silver The layer 30 is protected from damage from the outside.
  • the insulating protective layer 40 contains an anion scavenger.
  • the insulating protective layer 40 can be made of photosensitive glue and anion trapping agent; the uncured liquid photosensitive glue and anion trapping agent are uniformly mixed to form a mixture, and then the mixture is coated on the nano silver layer 30 and passed After being irradiated with ultraviolet light, the mixture is transformed from a liquid state to a solid state, and finally an insulating protective layer 40 containing an anion trapping agent is formed.
  • the role of the anion capture agent is to capture anions, that is, chemically neutralize with the anions. Therefore, the addition of an anion scavenger to the insulating protective layer 40 can be effectively reduced.
  • the mechanism of the metal layer is that the anions in the etching solution undergo a redox reaction with the metal, and by reducing the content of free anions, the redox reaction can be effectively inhibited, so adding anion trapping agent to the insulating protective layer 40 can effectively prevent residues
  • the etching solution on the nano-silver layer 30 is corroded.
  • the thickness of the substrate 10 is 5 micrometers to 200 micrometers.
  • the substrate 10 mainly plays a supporting role in the conductive film. If the thickness of the substrate 10 is too thin, its bearing capacity will be limited, and cracks may even occur during the bearing process. If the thickness of the substrate 10 is too large, the conductivity of the conductive film will be affected, and at the same time, it will not meet the needs of light and thin electronic devices.
  • the substrate 10 includes a film material 11 and a resin coating 12 covering the film material 11.
  • the film material 11 may be formed of an amorphous polymer film, or may be formed of a crystalline polymer film. Further, the film material 11 may be polyamide, cycloolefin copolymer, polycycloolefin film, or the like.
  • a layer of resin coating 12 is covered on the film material 11.
  • the resin coating 12 is an acrylic resin coating 12; the thickness of the acrylic resin coating 12 is 800 nanometers to 1500 nanometers.
  • the acrylic coating has good transparency, chemical stability and weather resistance. If the acrylic coating is too thin, it will not be able to provide sufficient protection to the substrate 10. If the acrylic coating is too thick, the internal stress of the substrate 10 will be too large, and cracks are likely to occur during the punching process; at the same time, the coating will be too thick, which will increase the thickness of the conductive film, which does not meet the requirements of light and thin electronic devices. Further, the acrylic resin coating 12 further contains anti-sticking particles. The role of the anti-adhesion particles is to prevent the adhesion problem of the copper layer 20.
  • the anti-adhesion particles can make the copper layer 20 show the formation of multiple bumps.
  • the anti-adhesion particles may be organic particles or inorganic particles, and the particle size of the anti-adhesion particles is 500 nanometers to 2000 nanometers.
  • the particle size of the anti-sticking agent should be appropriate. If it is too small, the anti-sticking effect will not be obvious. If it is too large, it will affect the surface gloss and transparency of the resin. Therefore, the size of the particle size must match the thickness of the resin. Further, the preferred range of the particle size of the anti-sticking particles is 900 nm to 1100 nm.
  • the sheet resistance of the nano-silver layer 30 is 10 to 200 ohms/square; the haze of the nano-silver layer 30 is less than 2%; the light transmittance of the nano-silver layer 30 is greater than 88% .
  • the nano silver wire is a one-dimensional nano material, which has excellent electrical and thermal conductivity, good mechanical stability, acceptable price, and the oxide still has certain electrical conductivity.
  • the method for preparing nano-silver can be a template method, an electrochemical method, and a wet chemical method.
  • the sheet resistance of the nano-silver layer 30 is 10 to 200 ohms/square, and the sheet resistance is used to intuitively characterize the conductivity of the conductive film, and the measured value determines the conductivity of the film.
  • the haze of the nano-silver layer 30 is less than 2%, and the haze is an important parameter of film gloss and transparency. In this embodiment, the light transmittance of the nano-silver layer 30 is greater than 88%.
  • the two insulating protective layers 40 are photosensitive adhesive layers; the thickness of the photosensitive adhesive layer is 10 nanometers to 1000 nanometers.
  • the photoinitiator in the photosensitive adhesive absorbs ultraviolet light and generates active free radicals under the irradiation of ultraviolet rays, which initiates monomer polymerization and cross-linking chemical reactions, so that the photosensitive adhesive changes from a liquid state to a solid state in a short time.
  • the liquid photosensitive adhesive is attached to the nano-silver layer 30 by coating, and then is irradiated with ultraviolet or natural light to convert the liquid photosensitive adhesive into a solid photosensitive adhesive.
  • the thickness of the photosensitive adhesive layer containing the anion capture agent is 10 nm to 1000 nm.
  • the concentration of the anion trapping agent added to the photosensitive adhesive will be adjusted according to the amount of etching solution to be cleaned. Generally speaking, the more etching solution that needs to be processed, the corresponding anion trapping agent concentration will increase.
  • concentration of the anion trapping agent in the photosensitive adhesive layer is a preset value, the greater the thickness of the photosensitive adhesive layer, the greater the number of anion trapping agents contained therein, so the inhibitory effect on free anions is better.
  • the thickness of the photosensitive adhesive layer is too large, the flexibility of the nano-silver conductive film 101 will be affected. Further, the thickness of the photosensitive adhesive layer preferably ranges from 10 nanometers to 100 nanometers.
  • the anion capture agent is composed of a soluble metal oxide and an organic solvent.
  • the soluble metal oxide may be dithionite, hydrous bismuth oxide, activated zirconium oxide, hydrous titanium oxide, but is not limited to the above substances.
  • the organic solvent can be benzene, toluene, cyclohexane, ether, and the like. Among them, the proportion of soluble metal oxides in the anion scavenger is 2%-20%.
  • the ratio concentration of the soluble metal oxide is preferably in the range of 5% to 10%, in which case the anion capturing effect is the best.
  • the present application also provides an embodiment of a display screen assembly.
  • the display screen assembly may be an LCD (Liquid Crystal Display, liquid crystal display) or an OLED (Organic Light-Emitting Diode, organic light emitting diode) display.
  • the LCD display screen includes a backlight module 50, a first polarizer 60, a first thin film transistor 70, a liquid crystal layer 80, a second thin film transistor 90, and a Two polarizers 100 and a color film substrate 110.
  • the backlight module 50 provides a light source when the display screen is working.
  • the first polarizer 60 and the second polarizer 100 are used to control the propagation direction of light.
  • the first thin film transistor 70 and the second thin film transistor 90 are the same thin film transistor, and it is shown here that the first and second are only for the convenience of structure description.
  • the first thin film transistor 70 and the second thin film transistor 90 are used to control the voltage of the liquid crystal layer 80 to control the degree of twisting of the liquid crystal molecules.
  • the light transmission direction is twisted along with the liquid crystal molecules. Therefore, the voltage can be controlled to control the light transmission of the liquid crystal layer 80.
  • the first thin film transistor 70 and the second thin film transistor 90 are composed of a glass substrate 62 and a nano-silver conductive film 101, and the nano-silver conductive film 101 is the nano-silver conductive film 101 described in any of the above embodiments.
  • the R, G, and B primary colors of the color film substrate 110 correspond to the sub-pixels on the second thin film transistor 90 one-to-one, and the white light emitted by the backlight module 50 becomes the corresponding R, G, and B color light through the color film substrate 110.
  • the R, G, and B color lights of different intensities are mixed together to achieve color display.
  • the OLED display screen includes an encapsulation layer 110, an organic layer 120, and a thin film transistor 130 that are sequentially attached.
  • the thin film transistor 130 is the input voltage of the organic layer, and the organic layer 120 receives the voltage. After that, the required colored light can be produced.
  • the thin film transistor 130 is similar to the first thin film transistor 70 and the second thin film transistor 90 in the above embodiment of the LCD display screen, and will not be repeated here.
  • the electronic device may be a common electronic device such as a mobile phone, a tablet computer, or a notebook. To facilitate the description of the electronic device, the following specific embodiments use a mobile phone as an example.
  • the electronic device includes a back shell 160, a display assembly 140 disposed on the back shell, and a main board 150 disposed between the back shell 160 and the display assembly 140, and the electronic device also includes an electrical connection with the main board 150.
  • the functional device 170, the functional device may be a speaker, a receiver, a camera, and an antenna.
  • the electronic device includes a touch assembly 180, a main board 190, a housing 200 and a functional device 210.
  • the electronic device can be a smart wearable device or a smart operating device.
  • the touch component 180 is composed of a nano-silver conductive film 101 and a glass substrate 62, which can touch signals.
  • the nano-silver conductive film 101 is the nano-silver conductive film 101 described in any of the above embodiments.
  • the touch assembly 180 is arranged on the housing 200, the main board 190 is arranged between the touch assembly 180 and the housing 200, and the functional device 210 is electrically connected to the main board.
  • the functional device may be a speaker, an earpiece, a camera, and an antenna.
  • the nano-silver conductive film disclosed in this application adds an anion trapping agent to its insulating protective layer, and neutralizes free anions through anion trapping, preventing the chemical reaction between anions and nano-silver and then corroding nano-silver, which is effective
  • the stability and service life of the nano-silver conductive film are improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Laminated Bodies (AREA)

Abstract

一种纳米银导电薄膜(101),纳米银导电薄膜(101)包括基材(10)、两个铜层(20)、两个纳米银层(30)和两个绝缘保护层(40);基材(10)包括相对设置的第一表面和第二表面;两个铜层(20)分别附着于第一表面和第二表面;两个纳米银层(30)分别附着于两个铜层(20)背向基材(10)的表面;两个绝缘保护层(40)分别附着于两个纳米银层(30)背向基材(10)的表面;两个绝缘保护层(40)均包含阴离子捕捉剂。通过在绝缘保护层(40)添加阴离子捕捉剂,当阴离子捕捉剂与残留在绝缘保护层(40)和纳米银层(30)中的游离无机酸阴离子接触时发生化学反应,降低了游离的阴离子数量,延缓了纳米银层(30)的腐蚀,提高了纳米银导电薄膜(101)的使用寿命和使用稳定性。

Description

纳米银导电薄膜 技术领域
本申请涉及导电材料技术,具体涉及一种纳米银导电薄膜。
背景技术
导电薄膜是一种被广泛应用于电子设备中的具有导电功能的材料,主要可分为金属膜系、氧化膜系、高分子膜系、复合膜系。纳米银导电薄膜由于其优良的光电性能和耐弯性能,被广泛应用于可折叠柔性电子产品。纳米银导电薄膜的纳米银图案化处理常采用黄光工艺,其利用蚀刻液对纳米银进行蚀刻。然而在蚀刻液不易清除完全,残留的蚀刻液会继续腐蚀纳米银,严重影响纳米银导电薄膜的使用稳定性及使用寿命。
申请内容
本申请提供一种耐腐蚀的纳米银导电薄膜。
本申请提供一种纳米银导电薄膜,所述导电薄膜包括基材、、两个铜层、两个纳米银层和两个绝缘保护层;所述基材包括相对设置的第一表面和第二表面;所述两个铜层分别附着于所述第一表面和所述第二表面;所述两个纳米银层分别附着于所述两个铜层背向所述基材的表面;所述两个绝缘保护层分别附着于所述两个纳米银层背向所述基材的表面;所述两个绝缘保护层均包含阴离子捕捉剂;
其中,所述基材的厚度为5微米~200微米;使得纳米银导电薄膜较薄。
其中,所述基材包括薄膜材料以及覆盖所述薄膜材料的树脂涂层;可以保护基材。
其中,所述树脂涂层为亚克力树脂涂层;所述亚克力树脂涂层厚度为800纳米~1500纳米;使得纳米银导电薄膜较薄。
其中,所述亚克力树脂涂层还包含防粘粒子;使得纳米银导电薄膜卷取时避免粘连。
其中,所述防粘粒子为有机粒子和无机粒子中任意一种或者其组合;所述防粘粒子粒径大小为500纳米~2000纳米;抗粘连效果较佳。
其中,所述纳米银层的方块电阻为10~200欧姆/方块;所述纳米银层的雾度小于2%;所述纳米银层的光透过率大于88%;此类型的纳米银导电薄膜能够较好的应用于手机产品。
其中,所述两个绝缘保护层为光敏胶层;所述光敏胶层厚度为10纳米~1000纳米;
其中,所述阴离子捕捉剂由可溶性金属氧化物和有机溶剂组成。;
其中,所述可溶性金属氧化物所占阴离子捕捉剂的比例浓度为2%~20%;此范围内阴离子捕捉效果最佳。
本申请还提供了一种电子设备,所述电子设备包括上述的纳米导电薄膜。
本申请所公开的纳米银导电薄膜,在其绝缘保护层中添加阴离子捕捉剂,通过阴离子捕捉对游离的阴离子的中和反应,阻止了阴离子与纳米银产生化学反应进而对纳米银产生腐蚀,有效提高了纳米银导电薄膜的使用稳定性能和使用寿命。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的纳米导电薄膜的结构示例图;
图2是本申请实施例提供的纳米导电薄膜的基材的结构示意图;
图3是本申请实施例提供的LCD显示屏的结构示意图;
图4是本申请实施例提供的薄膜晶体管的结构示意图;
图5是本申请实施例提供的OLED显示屏的结构示意图;
图6是本申请实施例提供的两种电子设备的结构示意图;
图7是本申请实施例提供的触摸组件的结构示意图;
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请公开了一种纳米银导电薄膜101,所述导电薄膜包括基材10、两个铜层20、两个纳米银层30和两个绝缘保护层40;所述基材10包括相对设置的第一表面和第二表面;所述两个铜层20分别附着于所述第一表面和所述第二表面;所述两个纳米银层30分别附着于所述两个铜层20背向所述基材10的表面;所述两个绝缘保护层40分别附着于所述两个纳米银层30背向所述基材10的表面;所述两个绝缘保护层40均包含阴离子捕捉剂。具体在本实施例中,基材10在纳米银导电薄膜101起到支撑其他材料的作用。铜层20、纳米银层30和绝缘保护层40在基材10上依次设置;其中,铜层20可以采用直流电源的磁控溅射法镀膜,采用磁控溅射法镀膜的铜层20较为平整;当然在其他实施例中铜层20也可以采用电镀的方式镀膜。纳米银层30和绝缘保护层40可以采用涂布的方式设置。铜层20与纳米银层30用于导电,绝缘保护层40用于隔绝外界与铜层20和纳米银层30,不仅可以防止纳米银层30的氧化,还可以有效保护铜层20和纳米银层30免受外界带来的损坏。
进一步的,绝缘保护层40中含有阴离子捕捉剂。具体的,绝缘保护层40的制作原料可以为光敏胶和阴离子捕捉剂;将未固化的液态的光敏胶与阴离子捕捉剂均匀混合形成混合物,再将混合物涂布于纳米银层30上,并通过紫外光照射后,混合物由液态转化为固态,最终形成了含有阴离子捕捉剂的绝缘保护层40。阴离子捕捉剂的作用是捕捉阴离子,也即与阴离子发生化学中和反应。因此,在绝缘保护层40中添加了阴离子捕捉剂后可以有效减少。进一步 的,纳米银层30在通过蚀刻液完成图案化后,会有部分蚀刻液残留于绝缘保护层40和纳米银层30,而残留的蚀刻液会对纳米银层30进一步腐蚀;蚀刻液蚀刻金属层的机理是蚀刻液中的阴离子与金属发生了氧化还原反应,而通过减少游离的阴离子的含量,能有效抑制氧化还原反应的发生,所以在绝缘保护层40添加阴离子捕捉剂可以有效防止残留的蚀刻液对纳米银层30的腐蚀。
在本实施例中,所述基材10的厚度为5微米~200微米。基材10在导电薄膜中主要起承载作用。若基材10厚度太薄,会导致其承载能力有限,甚至可能在承载过程中发生龟裂。若基材10厚度过大,将会影响导电薄膜的导电性能,同时也不能满足电子设备轻薄的需求。
在本实施例中,所述基材10包括薄膜材料11以及覆盖所述薄膜材料11的树脂涂层12。具体在本实施例中,薄膜材料11可以由非晶性聚合物薄膜形成,也可由结晶性聚合物薄膜形成。进一步的,薄膜材料11可以为聚酰胺、环烯烃类共聚物、聚环烯烃薄膜等。同时由于铜层20与聚合物薄膜存在材质差异,故为了提高基材10与铜层20的粘连稳定性能,在薄膜材料11上覆盖一层树脂涂层12。
在本实施例中,所述树脂涂层12为亚克力树脂涂层12;所述亚克力树脂涂层12厚度为800纳米~1500纳米。具体在本实施例中,亚克力涂层具有较好的透明性、化学稳定性和耐候性。若亚克力涂层太薄,则无法对基材10产生足够的保护。若亚克力涂层太厚,会导致基材10内应力过大,在冲切过程容易发生龟裂;同时涂层太厚会导致导电薄膜的厚度增大,不符合电子设备轻薄的需求。进一步的,所述亚克力树脂涂层12还包含防粘粒子。防粘粒子的作用是防止铜层20的粘连问题,防粘粒子可以使铜层20表明形成多个凸起,在利用卷对卷工艺来制造长条的纳米银导电薄膜101时,可以是相邻的铜层20之间形成点接触,从而防止其互相粘接和压接。防粘粒子可以为有机粒子或者无机粒子,防粘粒子的粒径大小为500纳米~2000纳米。防粘剂粒子大小要适当,若太小则防粘效果不明显,若太大则影响树脂的表面光泽和透明性。因此,其粒径的尺寸要与树脂厚度相匹配。进一步的,防粘粒子的粒径优选范围为900纳米~1100纳米。
在本实施例中,所述纳米银层30的方块电阻为10~200欧姆/方块;所述 纳米银层30的雾度小于2%;所述纳米银层30的光透过率大于88%。具体在本实施例中,纳米银丝是一维纳米材料,具有优异的导电导热性、良好的机械稳定性、可接受的价格和氧化物仍具有一定的导电性等特点。制备纳米银的方法可以为模板法、电化学法和湿化学法。纳米银层30的方块电阻为10~200欧姆/方块,方块电阻用于直观表征导电薄膜的导电性能,其测量值的大小决定薄膜导电性能的高低。纳米银层30的雾度小于2%,雾度是薄膜光泽以及透明度的重要参数。在本实施例中纳米银层30的光透过率大于88%。
在本实施例中,所述两个绝缘保护层40为光敏胶层;所述光敏胶层厚度为10纳米~1000纳米。光敏胶中的光引发剂在紫外线的照射下吸收紫外光后产生活性自由基,引发单体聚合、交联化学反应,使光敏胶在短时间内由液态转化为固态。具体在本实施例中,液态的光敏胶通过涂布方式贴合于纳米银层30上,然后通过紫外线或者自然光的照射,使液态的光敏胶转化为固态的光敏胶。含有阴离子捕捉剂的光敏胶层的厚度为10纳米~1000纳米。具体的,添加于光敏胶中的阴离子捕捉剂的浓度会随所需清理的蚀刻液数量进行相应的调整,一般而言需要处理的蚀刻液越多,相应的阴离子捕捉剂浓度就会增大。当阴离子捕捉剂在光敏胶层中的浓度为预设值时,光敏胶层的厚度越大,其中含有的阴离子捕捉剂数量越多,所以对游离的阴离子的抑制作用更好。但是当光敏胶层的厚度过大时会对纳米银导电薄膜101的柔软性造成影响。进一步的,光敏胶层的厚度优选范围为10纳米~100纳米。
在本实施例中,所述阴离子捕捉剂由可溶性金属氧化物和有机溶剂组成。具体在本实施例中,可溶性金属氧化物可以为连二亚硫酸盐,含水氧化铋,活性氧化锆,含水氧化钛,但不限于上述物质。有机溶剂可以为苯、甲苯、环己烷、***等。其中,可溶性金属氧化物占阴离子捕捉剂的比例浓度为2%~20%。当可溶性金属氧化物比例浓度在2%以下,阴离子捕捉剂有效成分太少,捕捉阴离子效果较差;当可溶性金属氧化物比例浓度20%以上时,继续增加其可溶性金属氧化物的比例浓度对捕捉阴离子效果增幅作用不明显,且浪费材料。进一步的,可溶性金属氧化物的比例浓度优选范围为5%~10%,此时阴离子捕捉效果最佳。
本申请还提供显示屏组件的实施例,所述显示屏组件可以是LCD(Liquid  Crystal Display,液晶显示器)或是OLED(Organic Light-Emitting Diode,有机发光二极管)显示屏。参阅图3及图4,在一种实施例中,LCD显示屏包括依次贴合的背光模组50、第一偏光片60、第一薄膜晶体管70、液晶层80、第二薄膜晶体管90、第二偏光片100、彩膜基板110。所述背光模组50在显示屏工作时提供光源。第一偏光片60和第二偏光片100用于控制光的传播方向。第一薄膜晶体管70和第二薄膜晶体90管为相同的薄膜晶体管,此处表明第一和第二仅为结构描述方便。第一薄膜晶体管70和第二薄膜晶体管90用于控制液晶层80的电压来控制液晶分子的扭曲程度,光线传输方向随液晶分子一起扭转,故可以通过控制电压,从而控制液晶层80的光透过率。所述第一薄膜晶体管70和第二薄膜晶体管90由玻璃基材62和纳米银导电薄膜101组成,所述纳米银导电薄膜101为上述实施例中任一所述的纳米银导电薄膜101。彩膜基板110的R、G、B三基色与第二薄膜晶体管90上的子像素一一对应,背光模组50发出的白光,经彩膜基板110变成相应的R、G、B色光,不同强度的R、G、B色光混合在一起,就实现了彩色显示。
参阅图5,在另一种实施例中,OLED显示屏包括依次贴合的封装层110、有机层120和薄膜晶体管130,所述薄膜晶体130管为有机层输入电压,有机层120收到电压后可产生所需要的彩色光。所述薄膜晶体管130与上述LCD显示屏的实施例中的第一薄膜晶体管70和第二薄膜晶体管90类似,在此不做赘述。
本申请还提供一种电子设备的实施例,所述电子设备可以为手机、平板电脑、笔记本等常见的电子设备,为了方便对电子设备的描述,以下具体实施例采用手机为例说明。参考图6,所述电子设备包括背壳160、设置在背壳上的显示组件140,以及设置在背壳160与显示组件140之间的主板150,且电子设备还包括与主板150电连接的功能器件170,功能器件可以是扬声器、听筒、摄像头、天线。
参考图7,在另一个实施例中,电子设备包括触控组件180、主板190、壳体200和功能器件210。电子设备可以是智能穿戴设备、智能操作设备。触摸组件180由纳米银导电薄膜101和玻璃基材62构成,可以触控信号,所述纳米银导电薄膜101为上述实施例中任一所述的纳米银导电薄膜101。触控组 件180设置在壳体200上,主板190设置于触控组件180和壳体200中间,功能器件210与主板电连接,所述功能器件可以是扬声器、听筒、摄像头、天线。
本申请所公开的纳米银导电薄膜,在其绝缘保护层中添加阴离子捕捉剂,通过阴离子捕捉对游离的阴离子的中和反应,阻止了阴离子与纳米银产生化学反应进而对纳米银产生腐蚀,有效提高了纳米银导电薄膜的使用稳定性能和使用寿命。
以上在说明书、权利要求书以及附图中提及的特征,只要在本申请的范围内是有意义的,均可以任意相互组合。
以上是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (11)

  1. 一种纳米银导电薄膜,其特征在于,所述导电薄膜包括基材、两个铜层、两个纳米银层和两个绝缘保护层;所述基材包括相对设置的第一表面和第二表面;所述两个铜层分别附着于所述第一表面和所述第二表面;所述两个纳米银层分别附着于所述两个铜层背向所述基材的表面;所述两个绝缘保护层分别附着于所述两个纳米银层背向所述基材的表面;所述两个绝缘保护层均包含阴离子捕捉剂。
  2. 如权利要求1所述的纳米银导电薄膜,其特征在于,所述基材的厚度为5微米~200微米。
  3. 如权利要求2所述的纳米银导电薄膜,其特征在于,所述基材包括薄膜材料以及覆盖所述薄膜材料的树脂涂层。
  4. 如权利要求3所述的纳米银导电薄膜,其特征在于,所述树脂涂层为亚克力树脂涂层;所述亚克力树脂涂层厚度为800纳米~1500纳米。
  5. 如权利要求4所述的纳米银导电薄膜,其特征在于,所述亚克力树脂涂层还包含防粘粒子。
  6. 如权利要求5所述的纳米银导电薄膜,其特征在于,所述防粘粒子为有机粒子和无机粒子中任意一种或者其组合;所述防粘粒子粒径大小为500纳米~2000纳米。
  7. 如权利要求1所述的纳米银导电薄膜,其特征在于,所述纳米银层的方块电阻为10~200欧姆/方块;所述纳米银层的雾度小于2%;所述纳米银层的光透过率大于88%。
  8. 如权利要求1所述的纳米银导电薄膜,其特征在于,所述两个绝缘保护层为光敏胶层;所述光敏胶层厚度为10纳米~1000纳米。
  9. 如权利要求1所述的纳米银导电薄膜,其特征在于,所述阴离子捕捉剂由可溶性金属氧化物和有机溶剂组成。
  10. 如权利要求9所述的纳米银导电薄膜,其特征在于,所述可溶性金属氧化物所占阴离子捕捉剂的质量百分比为2%~20%。
  11. 一种电子设备,其特征在于,所述电子设备包括权利要求1~10任一所述的纳米银导电薄膜。
PCT/CN2019/120438 2019-11-22 2019-11-22 纳米银导电薄膜 WO2021097856A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/120438 WO2021097856A1 (zh) 2019-11-22 2019-11-22 纳米银导电薄膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/120438 WO2021097856A1 (zh) 2019-11-22 2019-11-22 纳米银导电薄膜

Publications (1)

Publication Number Publication Date
WO2021097856A1 true WO2021097856A1 (zh) 2021-05-27

Family

ID=75980089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120438 WO2021097856A1 (zh) 2019-11-22 2019-11-22 纳米银导电薄膜

Country Status (1)

Country Link
WO (1) WO2021097856A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103412689A (zh) * 2013-03-30 2013-11-27 深圳欧菲光科技股份有限公司 电容触摸屏
JP5521364B2 (ja) * 2008-03-18 2014-06-11 日立化成株式会社 接着シート
CN104182111A (zh) * 2013-05-22 2014-12-03 太瀚科技股份有限公司 电磁感应板结构及其制作方法、及电磁式手写输入装置
CN104850252A (zh) * 2014-02-18 2015-08-19 杰圣科技股份有限公司 触控面板及其制造方法
CN110249242A (zh) * 2017-05-09 2019-09-17 日东电工株式会社 光学构件用组合物、光学构件以及图像显示装置
CN110362230A (zh) * 2019-07-10 2019-10-22 合肥微晶材料科技有限公司 一种超薄柔性耐弯折触摸屏

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5521364B2 (ja) * 2008-03-18 2014-06-11 日立化成株式会社 接着シート
CN103412689A (zh) * 2013-03-30 2013-11-27 深圳欧菲光科技股份有限公司 电容触摸屏
CN104182111A (zh) * 2013-05-22 2014-12-03 太瀚科技股份有限公司 电磁感应板结构及其制作方法、及电磁式手写输入装置
CN104850252A (zh) * 2014-02-18 2015-08-19 杰圣科技股份有限公司 触控面板及其制造方法
CN110249242A (zh) * 2017-05-09 2019-09-17 日东电工株式会社 光学构件用组合物、光学构件以及图像显示装置
CN110362230A (zh) * 2019-07-10 2019-10-22 合肥微晶材料科技有限公司 一种超薄柔性耐弯折触摸屏

Similar Documents

Publication Publication Date Title
US10100208B2 (en) Method of manufacturing a transparent conductive film
US10809864B2 (en) Film touch sensor
CN105321956B (zh) 柔性显示装置及其制造方法
CN111610871A (zh) 电极结构及其触控面板
US20160303838A1 (en) Transparent conductive multilayer assembly
CN107239162A (zh) 触摸传感器及其制备方法
US20150382475A1 (en) Preparation method of patterned film, display substrate and display device
TW201523386A (zh) 複合偏光板-整合觸控感測電極及含此之觸控螢幕面板
CN105446555B (zh) 纳米银线导电层叠结构及触控面板
TWI553711B (zh) 觸控面板及其製作方法
US20230162627A1 (en) Flexible polarizer and flexible touch display device
CN107710119A (zh) 带圆偏光板的触摸传感器及图像显示装置
CN106537306A (zh) 带静电电容耦合方式触摸屏输入装置的显示装置
US11630541B2 (en) Touch panel and manufacturing method thereof
US11010001B2 (en) Touch substrate, method of manufacturing the same, and touch display device
WO2021097856A1 (zh) 纳米银导电薄膜
CN103744220A (zh) 一种pdlc显示模块
US9865223B2 (en) Optoelectronic modulation stack
CN107660279A (zh) 导电结构体及其制造方法
CN112837846A (zh) 纳米银导电薄膜
US11347359B2 (en) Touch panel, manufacturing method of touch panel, and device thereof
JP6941718B2 (ja) タッチパネル及びその形成方法
TW202018479A (zh) 觸控偏光結構及其應用之觸控顯示裝置
TWI748709B (zh) 接觸結構、電子裝置、和製造接觸結構的方法
TWI746132B (zh) 觸控面板、觸控面板的製作方法及觸控顯示裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953313

Country of ref document: EP

Kind code of ref document: A1