WO2021096218A1 - 혈관 내피세포 순수 분리 방법, 혈관 내피세포 특성 유지 배지 및 이를 포함하는 배양 방법 - Google Patents

혈관 내피세포 순수 분리 방법, 혈관 내피세포 특성 유지 배지 및 이를 포함하는 배양 방법 Download PDF

Info

Publication number
WO2021096218A1
WO2021096218A1 PCT/KR2020/015785 KR2020015785W WO2021096218A1 WO 2021096218 A1 WO2021096218 A1 WO 2021096218A1 KR 2020015785 W KR2020015785 W KR 2020015785W WO 2021096218 A1 WO2021096218 A1 WO 2021096218A1
Authority
WO
WIPO (PCT)
Prior art keywords
vascular endothelial
cells
endothelial cells
cell
medium
Prior art date
Application number
PCT/KR2020/015785
Other languages
English (en)
French (fr)
Inventor
이신정
윤영섭
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190145337A external-priority patent/KR102258053B1/ko
Priority claimed from KR1020190145348A external-priority patent/KR102257950B1/ko
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to AU2020382287A priority Critical patent/AU2020382287A1/en
Priority to US17/775,767 priority patent/US20220378845A1/en
Priority to CA3156948A priority patent/CA3156948A1/en
Priority to JP2022526288A priority patent/JP7479466B2/ja
Priority to EP20887246.5A priority patent/EP4060024A4/en
Priority to CN202080078760.8A priority patent/CN114746543A/zh
Publication of WO2021096218A1 publication Critical patent/WO2021096218A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/44Vessels; Vascular smooth muscle cells; Endothelial cells; Endothelial progenitor cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0607Non-embryonic pluripotent stem cells, e.g. MASC
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/069Vascular Endothelial cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/38Vitamins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/11Epidermal growth factor [EGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/165Vascular endothelial growth factor [VEGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/03Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from non-embryonic pluripotent stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/54Collagen; Gelatin

Definitions

  • the present invention relates to a vascular endothelial cell pure separation method, a vascular endothelial cell characteristic maintenance medium, and a culture method comprising the same.
  • Vasculogenesis refers to the process by which endothelial cells of existing blood vessels decompose the extracellular matrix (ECM), migrate, divide, and differentiate to form new capillaries. Accordingly, such angiogenesis may be involved in various physiological and pathological phenomena such as wound repair, embryogenesis, tumor formation, chronic inflammation, and obesity.
  • ECM extracellular matrix
  • Angiogenesis can be an essential phenomenon, especially for wound healing or tissue regeneration. For example, if there is a deficiency of angiogenesis in the body, necrosis, ulcers, and ischemia occur, which can cause tissue or organ dysfunction. Further, as the blood supply is not smooth, cardiovascular diseases such as ischemic heart disease, arteriosclerosis, myocardial infarction and angina may also be caused. Accordingly, there has been a demand for the development of a therapy that induces or promotes angiogenesis in order to reduce tissue damage due to deficiency of angiogenesis and treat cardiovascular diseases caused by this.
  • hESCs Human embryonic stem cells isolated from embryos and human induced pluripotent stem cells (hiPSCs) made from somatic cells are endothelial cells that play an important role in blood vessel formation. It can be differentiated into, and can be used in the treatment of blood vessel regeneration. Accordingly, as a new strategy for regenerating damaged blood vessels and further inducing the formation of blood vessels, a blood vessel regeneration therapy using endothelial cells differentiated from human pluripotent stem cells has been proposed.
  • the inventors of the present invention recognized the importance of the purity of endothelial cells differentiated from induced pluripotent stem cells and their in vivo survival rate in the effect of vascular regeneration treatment.
  • the inventors of the present invention have studied a method for separating endothelial cells with high purity from blood vessel-forming endothelial cells from various cell lines differentiated from human induced pluripotent stem cells.
  • matrix adhesion is different depending on the characteristics of differentiated endothelial cells, and when cells are separated according to a specific adhesion time appearing due to matrix adhesion, homogeneous vascular endothelial cells are increased. It could be separated by purity.
  • the problem to be solved is a method for pure vascular endothelial cell separation, which is capable of separating homogeneous endothelial cells adhered to a substrate for a specific time from a cell line of an endothelial cell lineage differentiated from human pluripotent stem cells, and high purity isolated through the method. It is to provide endothelial cells in the blood vessels.
  • Pluripotent stem cells have the ability to self-proliferate and can differentiate into various cells, so can be used for vascular regeneration therapy. Accordingly, as a new strategy to restore ischemic tissue function, endothelial cells differentiated from embryonic stem cells isolated from embryos and induced pluripotent stem cells made from somatic cells. , EC), a vascular regeneration treatment method was proposed.
  • the inventors of the present invention the potential risk factors of pluripotent stem cells such as the occurrence of tumors and abnormal tissues, the use of animal components used in the differentiation process, low differentiation rate of stem cells into vascular endothelial cells in vitro culture It was recognized that the like may cause side effects or insignificant therapeutic effects in vascular regeneration treatment.
  • stem cells and endothelial cells are cultured in vitro in a culture medium that does not meet the conditions, stem cells and endothelial cells are easily aged and lose their ability to proliferate and differentiate. Furthermore, since stem cells and endothelial cells have heterogeneity in which differentiation into unwanted cells is induced depending on the culture conditions, the development of culture media and culture methods for stem cells and endothelial cells is essential for stem cell research. And it is a very important technical field.
  • the inventors of the present invention recognized the importance of maintaining the purity and characteristics of endothelial cells differentiated from human pluripotent stem cells in the effect of vascular regeneration treatment.
  • the inventors of the present invention separate the endothelial cells of blood vessel-forming ability from a cell line differentiated from human pluripotent stem cells with high purity, and promote cell proliferation when cultured in vitro and the characteristics of the cells remain the same as the initial state.
  • a culture medium and a culture method that can be cultured were studied.
  • the inventors of the present invention added FGF and EGF as cell growth factors, VEGF-A as a cell signal transducer, and ascorbic acid as an antioxidant to DMEM/F-12 as a basic medium and used for cell culture, It was found that high-purity vascular endothelial cells can be produced in which the characteristics of vascular endothelial cells are maintained even in repeated cultures. Accordingly, the inventors of the present invention have come to develop a vascular endothelial cell characteristic maintenance medium capable of maintaining and proliferating vascular endothelial cells differentiated from human pluripotent stem cells with high purity.
  • an object to be solved by the present invention is to provide a vascular endothelial cell characteristic maintenance medium capable of proliferating while maintaining characteristics even in repeated cultures of vascular endothelial cells differentiated from human pluripotent stem cells.
  • Another problem to be solved by the present invention is to provide a method for culturing vascular endothelial cells with high purity from human pluripotent stem cells, and a high purity vascular endothelial cells cultured therethrough.
  • obtaining a cell line of an endothelial cell line differentiated from human pluripotent stem cells from a differentiation medium filtering the obtained cell line using a filter, and culturing the filtered cell line on a substrate.
  • a method for pure vascular endothelial cell separation comprising the step and separating only homogenous endothelial cells adhered to a substrate for a time period of 20 hours or less from the cultured cell line.
  • human pluripotent stem cell refers to a cell having a proliferative ability capable of self-proliferation indefinitely while maintaining an undifferentiated state and a differentiation ability capable of differentiating into all cells of the human body, and an embryonic stem cell ( embtyonic stem cells), induced pluripotent stem cells (iPSCs), and somatic cell nuclear transfer cells (SCNTs).
  • embryonic stem cell embtyonic stem cells
  • iPSCs induced pluripotent stem cells
  • SCNTs somatic cell nuclear transfer cells
  • endothelial cell may mean a flat cell constituting a layer covering the inner wall of blood vessels and lymphatic vessels.
  • endothelial cells may be used in the same meaning as "Vascular Endothelial Cell”.
  • endothelial cells differentiated from stem cells for example, human pluripotent stem cells in vascular regeneration treatment
  • stem cells for example, human pluripotent stem cells in vascular regeneration treatment
  • the purity of the endothelial cells used for treatment may also be related to the prognosis for vascular regeneration treatment. More specifically, when endothelial cells containing undifferentiated endothelial cells or other cell lines of the mesodermal lineage, or endothelial cells mixed with impurities are transplanted into ischemic tissue, it may cause a decrease in the survival rate of endothelial cells. Accordingly, in the regenerative treatment, the implanted endothelial cells cannot contribute to blood vessel formation for a long period of time, and thus, the use of low-purity endothelial cells may lead to a decrease in the therapeutic effect.
  • classifying endothelial cells with high purity and maintaining their properties at a high level may be associated with not only increasing the yield of endothelial cells themselves, but also enhancing the effect of cell regeneration therapy using the same.
  • the term "filter” as used herein is a cell collection device, and may mean a screen for separating and collecting target cells of a predetermined size from a fluid sample. For example.
  • a filter impurities or clumps that may lower the purity of cells are removed, and only cells of a certain size can be selected to increase the purity.
  • the pore interval of the filter for selecting high purity vascular endothelial cells may be in the range of 20 to 40 ⁇ m.
  • matrix is a component to which cells may be attached, and may refer to basic substances of connective tissue. More specifically, living biological cells can be cultured in vitro on the substrate of an organism. At this time, the substrate intended for in vitro culture can control interactions with cells, that is, adhesion, differentiation, proliferation, and migration, etc., by functionalized regions on the surface. . For example, cells have different adhesion proteins on their surface for each type. As such, the adhesion protein appears differently for each cell type, it may selectively have an adhesion affinity with the functionalized region of the substrate.
  • the adhesion affinity with the substrate may be determined by the difference in secretion of the adhesion protein that appears according to the type of cell, and thus the interaction with the substrate at different times, that is, adhesion. May appear.
  • the vascular endothelial cells can adhere to the collagen matrix from 4 hours to 20 hours in culture. Further, if the culture is performed for more than 20 hours, cells having characteristics other than vascular endothelial cells are attached, and thus the purity may be lowered when the cells are separated. In addition, if the culture proceeds in less than 4 hours, the vascular endothelial cells may not adhere and thus the vascular endothelial cells may not be obtained.
  • the substrate may include at least one of collagen, fibrin, fibronectin, vitronectin, matrigel, gelatin, laminin, heparin, polylysine, and hyaluronic acid, but not more than 1 mg/ml , Preferably it may contain 0.1 mg/ml of collagen.
  • the substrate is not limited thereto, and any material to which vascular endothelial cells can be selectively attached may be used without limitation.
  • a cell line of an endothelial cell line filtered in a DMEM/F-12 medium containing a cell growth factor and ascorbic acid may be cultured.
  • growth factor refers to a substance capable of promoting cell division, cell growth, and differentiation, and fibroblast growth factor-1 (FGF-1), FGF-2 (bFGF), FGF-3, FGF- 4, FGF-5, FGF-6, epidermal growth factor (EGF), keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), transforming growth factor- ⁇ (TGF- ⁇ ), TGF- ⁇ , angiopoierin 1 (angipoietin 1), angiopoierin 2, erythropoietin, neuropilin, IGF-1, osteopoline, pleiotropin, activin, endothelin 01 and vascular endothelial growth factor-A (VEGF-A) ) May
  • ascorbic acid is an antioxidant and is involved in procollagen synthesis, and may mean a cofactor associated with an increase in type 1 collagen production.
  • Ascorbic acid can stimulate and regulate the proliferation of various mesoderm-derived cells such as endothelial cells, adipocytes, osteoblasts and chondrocytes in vitro.
  • a specific concentration of ascorbic acid is added to the culture medium of the cells, it acts as a cell growth promoter to increase the proliferation power of the cells, and the synthesis of DNA may be promoted.
  • DMEM/F-12 is a basic medium.
  • the term "basic medium" used in the present invention refers to a mixture including sugar, amino acids, water, and the like necessary for cells to survive, and refers to a mixture excluding serum, nutritional substances, and various growth factors.
  • the basic medium of the present invention may be artificially synthesized and used, or a commercially prepared medium may be used.
  • DMEM Dulbecco's Modified Eagle's Medium
  • MEM Minimal Essential Medium
  • BME Base Medium Eagle
  • RPMI 1640 F-10, F-12
  • ⁇ -MEM ⁇ -Minimal Essential Medium
  • G-MEM Gasgow's Minimal Essential Medium
  • Iscove's Modified Dulbecco's Medium and Fetal bovine serum (FBS), but are not limited thereto, and preferably DMEM/F-12.
  • the above-described culturing may include seeding the filtered endothelial cell line on two substrates.
  • the selection yield of vascular endothelial cells decreases, and thus the proliferation efficiency and characteristic maintenance of the vascular endothelial cells may decrease during subculture.
  • the term "homogenous” as used herein may mean a homogeneous cell type having the same morphological shape and marker expression pattern observed on a microscope.
  • the marker is any material that allows differentiating a target cell from other cells around it, and may be at least one of a group consisting of a protein, a sugar lipid, a nucleic acid, and a combination thereof, but is not limited thereto.
  • the marker for vascular endothelial cells may be proteins specifically expressed in vascular endothelial cells, and may include CDH5, VWF, PECAM1, TEK and KDR, but preferably CDH5 and VWF.
  • the expression level of the marker for vascular endothelial cells may be increased by the method of pure vascular endothelial cell separation according to an embodiment of the present invention. More specifically, the gene expression level of CDH5, which is a specific marker for vascular endothelial cells, may be 12 times higher than before separation by a pure vascular endothelial cell separation method. In addition, the gene expression level of VWF, which is a specific marker for vascular endothelial cells, may be twice as high as before separation by a pure vascular endothelial cell separation method.
  • the increase in homogeneous endothelial cells may mean that high-purity endothelial cells can be provided.
  • the use of high purity endothelial cells may be associated with an angiogenesis or revascularization effect.
  • endothelial cells of low purity including undifferentiated stem cells or mesodermal lineage stem cells are transplanted into ischemic tissue, the effect of blood vessel formation or blood vessel regeneration will be lower than when transplanting high purity endothelial cells. I can. Accordingly, it may be very important to isolate high-purity endothelial cells.
  • vascular endothelial cell containing 98% or more of homogeneous endothelial cells expressing CDH5 and VWF separated by the above-described method.
  • the present invention provides a cell therapeutic composition for preventing or treating cardiovascular diseases, including the vascular endothelial cells described above.
  • the term "cardiovascular disease” as used herein may mean a disease occurring in the heart and major arteries. The cause of this may be poor blood supply due to lack of blood vessel formation.
  • the cardiovascular diseases are ischemic heart disease, heart failure, hypertensive heart disease, arrhythmia, peritonosis, ventricular septal defect, congenital heart disease, myocardial middle, pericardial disease, stroke, peripheral vascular disease, aneurysm, arteriosclerosis, blood pressure , Angina and myocardial infarction may be at least one, in particular, among various cardiovascular diseases, may be particularly effective in ischemic cardiovascular disease.
  • the effect as a prophylactic or therapeutic cell therapy for endothelial cells is not limited to ischemic cardiovascular diseases.
  • cell therapy refers to the in vitro proliferation and selection of living autologous, allogenic, and xenogenic cells in order to restore the function of cells and tissues, or changing the biological properties of cells. It can mean all medicines used for treatment, diagnosis, and prevention purposes through a series of actions such as letting go.
  • cell therapy may refer to cells that can be transplanted to repair damaged tissues.
  • the cell therapeutic agent may be endothelial cells differentiated from human pluripotent stem cells that are implanted at the ischemic site to contribute to blood vessel formation.
  • the step of first inoculating on a plate by suspending human pluripotent stem cells (hPSC) with an induction medium differentiation of the first inoculated stem cells into mesoderm cells in the induction medium Culturing the first cultured cells to differentiate into endothelial cells in the differentiation medium, selecting the second cultured cells as cells of the vascular endothelial cell line, and selecting the selected vascular endothelial cells.
  • hPSC human pluripotent stem cells
  • medium refers to cells such as stem cells in vitro that contain essential elements such as sugar, amino acids, various nutrients, serum, growth factors, minerals, etc. essential for the growth and proliferation of cells. It means a mixture for the growth and proliferation of.
  • the present invention may include an induction medium, a differentiation medium, and a maintenance medium.
  • the induction medium refers to a culture medium in which human pluripotent stem cells, which are undifferentiated cells, can induce mesoderm, 4 to 6 ng/ml of FGF2, 2 to 4 ⁇ M of CHIRR99021 and DMEM/F-12. Can include.
  • the differentiation medium refers to a culture medium capable of differentiating into a cell vascular endothelial cell lineage induced by mesoderm, 4 to 6 ng/ml of FGF2, 5 to 10 ng/ml of EGF, 10 to 30 ng/ml VEGF-A, 20 to 30 ng/ml of DLL4 and DMEM/F-12.
  • the maintenance medium refers to a culture medium capable of maintaining and proliferating differentiated vascular endothelial cells, and 4 to 6 ng/ml of FGF2, 5 to 10 ng/ml of EGF, and 10 to 30 ng/ml of VEGF- A, 20-50 ng/ml of ascorbic acid and DMEM/F-12 may be included.
  • DMEM/F-12 is a basic medium.
  • the culturing step of the present invention may have different culturing periods depending on the step. More specifically, the first culturing step is a step in which human pluripotent stem cells are differentiated from the induction medium into mesoderm cells, and the medium is changed every day and the culture period may be performed for 3 days. Further, the second culturing step is a step in which the cells induced by the mesoderm are differentiated into endothelial cells, and the medium is changed every day, and the culture period may be 11 to 13 days.
  • the term "plate” used in the present invention is a container in which cells can be cultured, ie, grown and proliferated, and the upper surface may include a coating film of a substrate to which cells are attached.
  • the coating film may include a coating film made of at least one of collagen, fibronectin, lamidine, lamidine fragment, vitronelin, basement membrane matrix, gelatin, hyaluronic acid, polylysine, and vitronelin, and 1 mg/ml or less, preferably May contain 0.1 mg/ml of collagen.
  • differentiated cells were cultured on a plate coated with a coating film containing less than 1 mg/ml and 0.1 mg/ml of collagen, and only cells of the vascular endothelial cell lineage specifically attached to the coating film were selected. Can be selected.
  • subculture when subculture is performed for the proliferation of endothelial cells, subculture may be performed from 1 to 4 passages.
  • passage culture is, in order to continuously culture cells in a healthy state for a long period of time, after periodically transferring some of the cells to a new culture plate, changing the culture medium to continue the generation of cells. Subsequently, it may mean a method of culturing. As the number of cells increases in a culture plate having a limited space, after a certain period of time, proliferative nutrients are consumed or contaminants accumulate, causing the cells to die naturally. Accordingly, passage culture is used as a method for increasing the number of healthy cells, and generally, one passage of replacing the medium (culture plate) or dividing the cell group and culturing it can be referred to as one passage.
  • the method of passage culture can be used without limitation, a method known in the art, preferably can be carried out by enzymatic separation.
  • vascular endothelial cell characteristic maintenance medium containing /F-12 as an active ingredient is provided.
  • cells selected as vascular endothelial cell lines are selected from 4 to 6 ng/ml of FGF2, 5 to 10 ng/ml of EGF, and 10 to 30 ng/ml of VEGF-A, 20 To 50 ng/ml of ascorbic acid and DMEM/F-12 as active ingredients, and inoculating on a plate by suspending the inoculation on the plate, and maintaining the inoculated vascular endothelial cells in the maintenance medium to maintain the characteristics of vascular endothelial cells.
  • a method for maintaining vascular endothelial cell characteristics is provided, including the step of subculturing to be possible.
  • the vascular endothelial cells differentiated from human pluripotent stem cells may have genes and proteins that are specifically expressed at high levels thereto.
  • the expression levels of CDH5, PECAM1 and VWF genes in vascular endothelial cells differentiated from human pluripotent stem cells may be higher than in other cell lines differentiated from human pluripotent stem cells. Accordingly, genes and proteins that are specifically expressed at high levels in vascular endothelial cells differentiated from human pluripotent stem cells can be used as markers indicating characteristics of vascular endothelial cells.
  • the vascular endothelial cells passaged by the above-described method can maintain 98% or more expression of CDH5 positive cells, which is a specific expression marker of the vascular endothelial cells described above, until the fourth passage. .
  • the vascular endothelial cells passaged by the above-described method may maintain 40% or more expression of PECAM1-positive cells, which is a specific expression marker for vascular endothelial cells described above, up to the fourth passage. .
  • the vascular endothelial cells passaged by the above-described method can maintain 88% or more expression of VWF-positive cells, which is a specific expression marker of the vascular endothelial cells described above, until passage 4. have.
  • the plate may include a coating film made of at least one of collagen, fibronectin, laminin, laminin fragment, vitronenrin, basement membrane matrix, gelatin, hyaluronic acid, polylysine, and vitronelin, and 1 mg/ ml or less, preferably 0.1 mg/ml of collagen may be included.
  • the passage culture of the above-described method may be performed from 1 to 4 passages.
  • vascular endothelial cell prepared by the above-described method may be provided.
  • vascular endothelial cells may have blood vessel formation ability and regeneration ability, and thus, may be used as a cell therapy for preventing or treating cardiovascular diseases.
  • the present invention provides high-purity vascular endothelial cells based on substrate adhesion expressed in accordance with the characteristics of cells, thereby stably having an effect that can be applied to clinical practice.
  • the present invention can separate only vascular endothelial cells differentiated and adhered within a specific time by using the interaction between the adhesion protein and the substrate specifically expressed in vascular endothelial cells, that is, adhesion. Furthermore, the vascular endothelial cells isolated by the above-described method express 98% or more of CDH5 and VWF, which are markers that are specifically expressed in vascular endothelial cells, thereby providing high-purity vascular endothelial cells having a purity of 98% or more. .
  • the present invention is a method of separating high-purity vascular endothelial cells through a culture process in a culture vessel, and can be relatively simpler and more economical than conventional methods such as magnetic cell sorting and flow cell sorting.
  • high-purity vascular endothelial cells can be provided with high yield within a short time.
  • the present invention promotes angiogenesis and provides vascular endothelial cells having excellent vascular regeneration ability, thereby having an effect that can be used as an effective cell therapy for preventing or treating cardiovascular diseases.
  • the present invention relates to a vascular endothelial cell that does not induce an immune response generated by using animal-derived serum or feeder cells, a vascular endothelial cell characteristic maintenance medium capable of proliferating and culturing the same, and a culture method comprising the same. By providing it, there is an effect that can be stably applied to the clinic.
  • the present invention increases the yield of differentiated cells and provides high-purity vascular endothelial cells as human pluripotent stem cells provide induction, differentiation, and maintenance media specialized for each step in culturing into vascular endothelial cells. can do.
  • vascular endothelial cells for mass production of vascular endothelial cells, high purity vascular endothelial cells can be provided within a short time.
  • FIG. 1 shows a procedure of a method of culturing pure vascular endothelial cells.
  • FIG. 2 is a diagram illustrating a procedure of a method for pure vascular endothelial cell separation according to an embodiment of the present invention.
  • 3A to 3D illustrate a process of separating endothelial cells differentiated from human pluripotent stem cells into pure vascular endothelial cells.
  • 5A and 5B show the results of expression of markers and microscopic images according to whether or not to filter in the method for pure vascular endothelial cell separation according to an embodiment of the present invention.
  • 6A to 6C show marker expression results of vascular endothelial cells isolated by the pure vascular endothelial cell separation method according to an embodiment of the present invention.
  • FIG. 7 is a view showing a result of a microscopic image during passage according to the method for pure vascular endothelial cell separation according to an embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a procedure of a method of maintaining and culturing vascular endothelial cell characteristics according to an embodiment of the present invention.
  • 9A to 9D illustrate a process of selecting endothelial cells differentiated from human pluripotent stem cells as pure vascular endothelial cells.
  • FIG. 10 is a result showing a microscopic image of vascular endothelial cells according to the number of culture passages in the culture method for maintaining vascular endothelial cell characteristics according to an embodiment of the present invention.
  • 11A to 11C are results showing the relative expression levels of positive vascular endothelial cells to markers in the vascular endothelial cell characteristic maintenance culture method according to an embodiment of the present invention.
  • FIG. 12 is a result showing the cell growth rate according to the number of passages of vascular endothelial cells in the culture method for maintaining vascular endothelial cell characteristics according to an embodiment of the present invention.
  • 13A and 13B are results showing the relative expression levels of positive vascular endothelial cells to markers according to the culture medium of vascular endothelial cells in the vascular endothelial cell characteristic maintenance culture method according to an embodiment of the present invention.
  • FIG. 14 is a result showing the cell growth rate for each culture medium of vascular endothelial cells according to the number of passages of vascular endothelial cells in the culture method for maintaining vascular endothelial cell characteristics according to an embodiment of the present invention.
  • 15 is a result of showing a microscopic image of vascular endothelial cells according to a culture medium of vascular endothelial cells in a culture method for maintaining vascular endothelial cell characteristics according to an embodiment of the present invention.
  • proliferation refers to an increase in the number of cells, and is used in the same sense as growth.
  • the term “renewal ability” may mean the ability of a cell to make an exact copy of itself, and if the regenerative ability is improved, the cell's proliferative ability may be excellent.
  • FIGS. 2 to 3D shows a procedure of a method of culturing pure vascular endothelial cells.
  • pluripotent stem cells are suspended with an induction medium and seeded on a plate, and the induction medium is replaced every day for 3 days, and differentiation into mesodermal lineage cells can be induced.
  • the induction medium may be a DMEM/F-12 medium containing a growth factor and CHIRR99021, which is a GSK3 ⁇ inhibitor.
  • the growth factors are fibroblast growth factor-1 (FGF-1), FGF-2 (bFGF), FGF-3, FGF-4, FGF-5, FGF-6, epidermal growth factor (EGF), keratinocyte growth factor (KGF).
  • CHIRR99021 is a substance that inhibits the activity of GSK (Glycogen synthase kinase). More specifically, as GSK is suppressed, ß of the signaling system involved in cell proliferation is not degraded by GSK, and thus the amount of gene expression involved in cell proliferation is increased, so that survival and proliferation of cells may be improved.
  • GSK Glycogen synthase kinase
  • the differentiation medium may be a DMEM/F-12 medium containing a growth factor and a Notch signaling ligand, DLL4.
  • DLL4 (Delta-like ligand 4) is a signaling material in the process of forming angiogenesis, and may be associated with an increase in the expression level of markers in endothelial cells.
  • homogenous endothelial cells may be isolated from the differentiated endothelial cell line using the method for pure vascular endothelial cell separation according to an embodiment of the present invention. More specifically, referring to FIG. 2, a procedure of a method for pure vascular endothelial cell separation according to an embodiment of the present invention is shown.
  • the pure vascular endothelial cell separation method is a method for selecting high-purity vascular endothelial cells, the step of obtaining a cell line of an endothelial cell line differentiated from human pluripotent stem cells from a differentiation medium (S110), and the obtained cell line using a filter. Filtering (S120), culturing the filtered cell line on a substrate (S130), and separating the homogeneous endothelial cells attached to the cultured cell line on the substrate (S140).
  • a proteolytic enzyme method may be used to obtain a cell line of an endothelial cell line differentiated from the differentiation medium. More specifically, referring to FIG. 3A, the proteolytic enzyme method is a method of separating cells and cells or between cells and substrates using a proteolytic enzyme. (Dispase), protease, trypsin, and the like may be used, but are not limited thereto.
  • the cell line of the endothelial cell line can be separated into a single cell from the substrate and the binding between the cells.
  • target cells may be separated from the substrate by using the above-described proteolytic enzyme method.
  • a filter having a pore spacing in the range of 20 to 40 ⁇ m may be used to separate cells of a predetermined size. More specifically, referring to FIG. 3B, by using a filter, cells having different morphological sizes from target cells, impurities, and clumps are removed, and only cells having the same morphological size can be separated. Thus, cells of higher homogeneity can be obtained.
  • cell agglomeration refers to a mass formed by agglomeration of cells, and when a cell agglomeration is formed, cell cycle arrest occurs, and accordingly, self-differentiation is induced to produce the desired cells, that is, vascular endothelial cells. Can be difficult to differentiate.
  • the cell line may be divided and seeded on the substrate. More specifically, referring to FIG. 3C, a cell line of an endothelial cell line obtained from one plate containing a substrate may be filtered using a filter, and the filtered cell line may be divided and seeded on two substrates to be cultured. In this case, when the culture is divided into two or more, the selection yield of vascular endothelial cells decreases, and thus the proliferation efficiency and characteristic maintenance of the vascular endothelial cells may decrease during subculture.
  • the filtered cell line on a substrate in the step of culturing the filtered cell line on a substrate (S130), it may be cultured for 4 to 20 hours. More specifically, referring to FIG. 4, the mechanism of adhesion of vascular endothelial cells to the matrix is shown.
  • Cells can interact with functionalized regions on the surface of the cell and matrix using adhesion proteins such as integrin.
  • the adhesion protein may have different expression patterns depending on the characteristics and types of cells generated while the cells are differentiated.
  • the adhesion affinity to the substrate may be determined due to the difference in the adhesion protein, and further, interaction with the substrate, that is, adhesion may occur at different times due to the adhesion affinity according to the characteristics and types of cells.
  • characteristics and types of cells can be distinguished through markers, and markers that can identify vascular endothelial cells may include CDH5, VWF, PECAM1, TEK and KDR, but preferably CDH5 and VWF. .
  • vascular endothelial cells expressing CDH5 and VWF markers may adhere to a substrate containing 0.1 mg/ml collagen for 4 to 20 hours, and when culture proceeds beyond 20 hours, CDH5 and VWF Non-vascular endothelial cells expressing the marker may adhere to different types of cells with different expression patterns of the marker. Accordingly, the time of the culturing step for the pure vascular endothelial cell separation method according to an embodiment of the present invention may be cultured for 4 to 20 hours, but is not limited thereto, and the culture time is adjusted according to the type of substrate. Can be.
  • the substrate used in the step of culturing the filtered cell line on a substrate may include at least one of collagen, fibrin, fibronectin, vitronectin, matrigel, gelatin, laminin, heparin, polylysine, and hyaluronic acid. However, it may contain less than 1 mg/ml, preferably 0.1 mg/ml of collagen.
  • the substrate is not limited thereto, and any material to which vascular endothelial cells can be selectively attached may be used without limitation.
  • a cell line of an endothelial cell line filtered in DMEM/F-12 medium containing a cell growth factor and ascorbic acid may be cultured.
  • growth factor refers to a substance capable of promoting cell division, cell growth, and differentiation, and fibroblast growth factor-1 (FGF-1), FGF-2 (bFGF), FGF-3, FGF- 4, FGF-5, FGF-6, epidermal growth factor (EGF), keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), transforming growth factor- ⁇ (TGF- ⁇ ), TGF- ⁇ , angiopoierin 1 (angipoietin 1), angiopoierin 2, erythropoietin, neuropilin, IGF-1, osteopoline, pleiotropin, activin, endothelin 01 and vascular endothelial growth factor-A (VEGF-A) ) May
  • the temperature in the culture environment conditions is 36 °C to 38 °C, preferably 36.5 °C to 37.5 °C, the supply oxygen (O2) is 1% to 25%, the supply carbon dioxide (CO2) can be 1% to 15% have.
  • high-purity vascular endothelium containing 98% or more of positive cells expressing a marker specifically expressed in vascular endothelial cells Cells can be separated. More specifically, referring to FIG. 3D, first, cells that have not adhered for 4 to 20 hours are removed, so that only cells attached to the substrate for 4 to 20 hours can be separated. At this time, the cells adhered to the substrate for 4 to 20 hours are homogeneous cells having the same morphological shape and expression pattern of the marker, and more than 98% of positive cells expressing specific CDH5 and VWF markers in vascular endothelial cells may be present. have. That is, endothelial cells having a purity of 98% or more can be obtained.
  • the expression level of a marker for vascular endothelial cells may be increased by the method for pure vascular endothelial cell separation according to an embodiment of the present invention. More specifically, the gene expression level of CDH5, which is a specific marker for vascular endothelial cells, may be 12 times higher than before separation by a pure vascular endothelial cell separation method. In addition, the gene expression level of VWF, which is a specific marker for vascular endothelial cells, may be twice as high as before separation by a pure vascular endothelial cell separation method.
  • homogeneous endothelial cells isolated by the method for pure vascular endothelial cell separation may be subcultured to increase the quantity of cells and maintain the cells.
  • the medium used in the subculture may be a DMEM/F-12 medium containing cell growth factors and ascorbic acid, which is the same as the medium used in the pure separation step.
  • passage culture can be performed up to passages 1 to 4. More specifically, when the vascular endothelial cells are cultured beyond 4 passages, not only the proliferative power and the differentiation ability decrease, but also when cultured for a long period of time, cell agglomeration (Clump), etc. may be formed and chromosomal mutations may be accompanied. Accordingly, passage culture capable of securing a large number of cells with high purity while maintaining the characteristics of vascular endothelial cells may preferably be from 1 to 4 passages.
  • 5A to 5B show the results of expression of markers and microscopic images according to whether or not to filter in the method for pure vascular endothelial cell separation according to an embodiment of the present invention.
  • the isotype control group is a control in which a specimen of a homogeneous immunoglobulin having no antigen specificity is reacted with a sample, and the positive rate in the isotype control group is less than 2%, so that it can be set as a cut-off for positive vascular endothelial cells.
  • the level of positive expression for the CDH5 marker in vascular endothelial cells is shown to be 72.8%. Furthermore, when a filter was used, the level of positive expression for the CDH5 marker in vascular endothelial cells appeared to be 99.7%.
  • FIG. 5A a graph showing the positive expression level of the vascular endothelial cell marker according to the presence or absence of the above-described filter is shown. More specifically, it appears that positive cells expressing the CDH5 marker increased from 72.8% to 99.7% due to the use of the filter. This may mean that, due to the use of a filter, the number of positive cells expressing the CDH5 marker can be increased.
  • FIG. 5B a microscopic image result according to whether or not a filter is used in the method for pure vascular endothelial cell separation according to an embodiment of the present invention is shown. More specifically, when the filter is not used, the observed cell colonies appear to be composed of cells that are not morphologically uniform. On the other hand, when a filter is used, the cell clusters appear to be composed of cells of a morphologically uniform shape. This may mean that, due to the use of a filter, only cells having the same morphological characteristics can be separated.
  • the filter is used in the method for pure vascular endothelial cell separation according to an embodiment of the present invention, the number of positive cells expressing CDH5, which is a specific marker for vascular endothelial cells, may increase. Cells of the same shape can be separated. Accordingly, due to the use of the filter, there is an effect of providing higher purity vascular endothelial cells.
  • 6A to 6C show marker expression results of vascular endothelial cells isolated by the pure vascular endothelial cell separation method according to an embodiment of the present invention.
  • results of expression levels of positive vascular endothelial cells for markers in the pure vascular endothelial cell separation method according to an embodiment of the present invention are shown. More specifically, the level of positive expression for the CDH5 marker of vascular endothelial cells appears to be 41.6% when pure separation of the present invention is not performed, and 99.7% when pure separation is performed.
  • the level of positive expression for the PECAM1 marker of vascular endothelial cells appears to be 16.9% when pure separation of the present invention is not performed, and 42.6% when pure separation is performed.
  • the level of positive expression for the TEK marker of vascular endothelial cells is 11.6% when pure separation of the present invention is not performed, and 28.8% when pure separation is performed.
  • the level of positive expression for the KDR marker of vascular endothelial cells was found to be 2.6% when pure separation of the present invention was not performed, and 16.0% when pure separation was performed.
  • the level of positive expression for the VWF marker of vascular endothelial cells appears to be 71.6% when pure separation of the present invention is not performed, and 98.4% when pure separation is performed.
  • FIG. 6B a graph showing the expression level of positive vascular endothelial cells against markers in the method for pure vascular endothelial cell separation described above is shown. More specifically, in all of the CDH5, PECAM1, TEK, KDR, and VWF markers, which are characteristic indicators of vascular endothelial cells, the number of marker-expressing positive cells was increased by pure separation. In particular, as the number of positive cells expressing markers for CDH5 and VWF is shown to be 98% or more, it may mean that the purity of vascular endothelial cells is 98% or more.
  • FIG. 6C the expression levels of mRNA for vascular endothelial markers according to the method for pure vascular endothelial cell isolation according to an embodiment of the present invention are shown.
  • the expression levels of the markers were normalized using GAPDH. More specifically, the level of mRNA expression in vascular endothelial cells for CDH5, PECAM1, TEK, VWF and NOS markers appears to be increased by pure separation. Furthermore, the gene expression for the CDH5 marker, which is characteristically expressed in vascular endothelial cells with 98% purity, appears to be 12 times higher than before pure separation by pure separation.
  • the gene expression for the VWF marker which is characteristically expressed in vascular endothelial cells with 98% purity, appears to be twice as high as before pure separation by pure separation.
  • the level of mRNA expression in vascular endothelial cells for KDR markers appears to be high before pure isolation.
  • the KDR marker is expressed in the early stages of differentiation of vascular endothelial cells, and gradually loses these sexual characteristics when differentiated into mature vascular endothelial cells.
  • the VWF marker it is not expressed at the beginning of differentiation, but is expressed in the process of differentiation into mature vascular endothelial cells. Accordingly, in the case of an endothelial cell population before pure isolation having a high mRNA expression level for KDR, it may mean that undifferentiated vascular endothelial cells are included. Furthermore, in the case of a population of endothelial cells after pure isolation having a high level of mRNA expression for VWF, it may mean that fully differentiated and mature vascular endothelial cells are included.
  • vascular endothelial cells in the method for pure vascular endothelial cell isolation according to an embodiment of the present invention may be differentiated from human pluripotent stem cells.
  • the stem cells since they have the characteristics of stem cells, substrate adhesion may be significantly lower than that of other cells, and thus, may be cultured in suspension.
  • the characteristics of the stem cells may be lost, and matrix adhesion to the vascular endothelial cells may be obtained.
  • the suspended cells when subcultured, have characteristics of stem cells that are still poor in substrate adhesion, and may mean that they are undifferentiated cells in the early stages of differentiation expressing KDR markers.
  • the adherent cells are mature cells in which the vascular endothelial cells exhibit matrix adhesion properties.
  • vascular endothelial cells when only mature vascular endothelial cells are isolated and subcultured by the method of pure vascular endothelial cell separation according to an embodiment of the present invention, it appears that only adherent cells are present. This may mean that there are no undifferentiated cells, and only mature vascular endothelial cells are seeded and proliferated into high-purity vascular endothelial cells.
  • FIGS. 8 to 10 a vascular endothelial cell characteristic maintenance culture method according to an embodiment of the present invention will be described in detail with reference to FIGS. 8 to 10.
  • FIGS. 9A to 10 are diagrams illustrating a procedure of a method of maintaining and culturing vascular endothelial cell characteristics according to an embodiment of the present invention. Hereinafter, for convenience of explanation, it will be described with reference to FIGS. 9A to 10.
  • the vascular endothelial cell characteristics maintenance culture method the step of first inoculating on a plate by suspending human pluripotent stem cells with an induction medium (S110), the first inoculated stem First culturing the cells to differentiate into mesodermal cells in the induction medium (S120), the second culturing to differentiate the first cultured cells into endothelial cells in the differentiation medium (S130), the second cultured cells into vascular endothelium Selecting cells of the cell lineage (S140), suspending the selected vascular endothelial cells with a maintenance medium and inoculating a second onto a plate (S150), and subculturing the second inoculated vascular endothelial cells to proliferate in the maintenance medium It includes a step (S160).
  • the temperature in the culture environment conditions is 36 °C to 38 °C, preferably 36.5 °C to 37.5 °C, the supply oxygen (O2) is 1% to 25%, the supply carbon dioxide (CO2) may be 1% to 15% .
  • the proteolytic enzyme refers to an enzyme capable of isolating the intercellular matrix in order to liberate cells or cell aggregates contained in living tissues, and to separate human pluripotent stem cells from tissues or to separate cells and cell aggregates.
  • Genase, dispase, protease, trypsin, and the like may be used, but are not limited thereto.
  • the plate is not limited as long as it is capable of cell culture, and a variety of flasks, tissue culture flasks, dishes, petri dishes, microplates, microwell plates, micro slides, pamber slides, scenerys, tubes, trays and culture bags, etc.
  • a shaped plate may be used, and may include a cell adhesion layer coating film on the upper surface.
  • the coating film of the plate may include at least one of collagen, fibronectin, lamidine, lamidine fragment, vitronelin, basement membrane matrix, gelatin, hyaluronic acid, polylysine, and vitronelin, and 1 mg/ml or less. , Preferably it may contain 0.1 mg/ml of collagen. Accordingly, as the cells are cultured on a plate including a 0.1 mg/ml collagen coating film, adhesion and extension of cells are promoted, so that the differentiation efficiency of mesodermal lineage cells may be increased.
  • the step of first culturing the first inoculated stem cells to differentiate into mesodermal cells in the induction medium (S120), growth factors of 4 to 6 ng/ml of FGF2, GSK3 ⁇ inhibitor of 2 to 4 ⁇ M of CHIRR99021 and Differentiation from stem cells to mesodermal lineage cells can be induced by culturing the culture medium while changing the medium daily for 3 days in an induction medium containing DMEM/F-12.
  • FGF2 Fibroblast growth factor
  • FGF2 Fibroblast growth factor
  • CHIRR99021 is a substance that inhibits the activity of GSK (Glycogen synthase kinase). More specifically, as GSK is suppressed, ß of the signaling system involved in cell proliferation is not degraded by GSK, and thus the amount of gene expression involved in cell proliferation is increased, so that survival and proliferation of cells may be improved.
  • GSK Gene synthase kinase
  • the second culturing step (S130) to differentiate the first cultured cells into endothelial cells in the differentiation medium growth factors of 4 to 6 ng/ml of FGF2, 5 to 10 ng/ml of EGF, and 10 to Cells of the mesodermal lineage were cultured in differentiation medium containing 30 ng/ml of VEGF-A, Notch signaling ligands of 20 to 30 ng/ml of DLL4 and DMEM/F-12 for 11 to 13 days daily. Can induce differentiation into the endothelial cell lineage.
  • the differentiation efficiency into the endothelial cell lineage may be increased.
  • EGF Extracellular growth factor
  • EGF is a growth factor capable of promoting proliferation, growth, and differentiation of cells by binding to its receptor, and may have an activity of promoting proliferation of epithelial cells.
  • VEGF-A Vascular endothelial growth factor
  • VEGF-A Vascular endothelial growth factor
  • DLL4 (Delta-like ligand 4) is a Notch that plays a role in inhibiting excessive angiogenesis by reducing the growth and migration of endothelial cells, determination of arterial/venous differentiation, determination of tip/stock cells, and formation of tip cells. It is a signaling material that acts on receptors to properly regulate angiogenic germination. Particularly, due to the addition of DLL4, the Notch signal, which acts to distinguish and maintain cell characteristics, is regulated, and it is determined that the characteristic of vascular endothelial cells, that is, the expression level of the marker, will increase.
  • vascular endothelial cell lineage cells S140
  • vascular endothelial cells by selecting vascular endothelial cells from various cell lines differentiated from stem cells, that is, endothelial cell lineage, high purity vascular endothelium Cells can be acquired. More specifically, a process of selecting pure vascular endothelial cells will be described with reference to FIGS. 9A to 9D.
  • FIG. 9A a colony consisting of an endothelial cell line is shown.
  • Endothelial cells differentiated from human pluripotent stem cells are autonomously differentiated to form colonies composed of heterogeneous endothelial cell lines. Accordingly, referring to (b) of FIG. 9A, differentiated endothelial cell lines appear to be mixed with various types in terms of size and shape.
  • colonies composed of differentiated endothelial cell lines may be divided and inoculated on two or less plates prior to cell selection. At this time, if more than two plates are inoculated, the yield of selection of vascular endothelial cells may decrease.
  • cell selection may be performed to obtain only high purity vascular endothelial cells.
  • Cell selection is a technology for separating specific differentiated cells with high purity, and flow cell sorting and magnetic cell sorting can be used, but cells can be selected using cell-specific characteristics. May be.
  • cells may be separated and selected using selective attachment of cells having specific surface adhesion of a substrate. More specifically, depending on the characteristics of each cell, the time to adhere to the substrate may vary. Accordingly, by culturing a heterogeneous endothelial cell lineage on a plate including a coating film made of a substrate, cells adhering to the coating film of the plate can be sequentially classified according to the culture time.
  • vascular endothelial cells attached within a specific time are shown. All cells attached at the same time appear to have the same shape, and floating cells are considered to be not endothelial cells with the same characteristics, and are removed through washing.
  • the coating film made of the substrate may contain 0.1 mg/ml of collagen, but is not limited thereto, and a coating film including various substrates to which vascular endothelial cells can be specifically attached over time may be used. .
  • the selected cells are shown to have the same shape, which may mean that they are endothelial cells having the same characteristics. Accordingly, only high-purity vascular endothelial cells can be selected and used by the above-described method.
  • the attachment time may be 4 hours to 20 hours. That is, cell selection may mean separating cells of an endothelial cell lineage from 4 to 20 hours after inoculation.
  • the vascular endothelial cells selected with high purity are suspended with the maintenance medium and contain 0.1 mg/ml of collagen.
  • the coating film is inoculated onto the coated plate.
  • vascular endothelial cells in the step of subculturing the second inoculated vascular endothelial cells to proliferate in the maintenance medium (S160), growth factors of 4 to 6 ng/ml of FGF2, 5 to 10 ng/ml of EGF, and 10 to 30 ng Proliferation of vascular endothelial cells can be induced by subculturing in a maintenance medium containing /ml of VEGF-A, 20-50 ng/ml of ascorbic acid and DMEM/F-12.
  • a maintenance medium containing /ml of VEGF-A, 20-50 ng/ml of ascorbic acid and DMEM/F-12.
  • the passage culture may be performed up to passages 1 to 4. More specifically, when the vascular endothelial cells are cultured more than 4 passages, not only the proliferative power and the differentiation ability decrease, but when cultured for a long time, cell agglomeration (Clump) or the like may be formed and chromosomal mutations may be accompanied.
  • Clump cell agglomeration
  • FIG. 10 a result showing a microscopic image of vascular endothelial cells according to the number of culture passages is shown. The vascular endothelial cells according to each passage appear to have the same size and shape, and cell agglomeration does not appear until the fourth passage.
  • passage culture capable of securing a large number of cells with high purity while maintaining the characteristics of vascular endothelial cells may preferably be from 1 to 4 passages.
  • ascorbic acid is an antioxidant and is involved in procollagen synthesis and is a cofactor associated with the increase in type 1 collagen production. Ascorbic acid can stimulate and regulate the proliferation of various mesoderm-derived cells such as adipocytes, osteoblasts, and chondrocytes in vitro. Furthermore, when a specific concentration of ascorbic acid is added to the culture medium of mesenchymal stem cells, it acts as a cell growth promoter, increasing the proliferation of cells and promoting DNA synthesis. However, if the concentration of ascorbic acid is not appropriate, it may rather inhibit the proliferation of cells and cause apoptosis by having cytotoxicity. Accordingly, the appropriate concentration of ascorbic acid capable of improving the proliferation of cells may be 20 to 50 ng/ml, but is not limited thereto.
  • the vascular endothelial cell characteristic maintenance culture method according to an embodiment of the present invention has an effect of producing vascular endothelial cells in high yield from human pluripotent stem cells.
  • 11A to 11C are results showing the relative expression levels of positive vascular endothelial cells to markers in vascular endothelial cell characteristic maintenance culture according to an embodiment of the present invention.
  • FIG. 11A the relative marker expression level of the vascular endothelial cell positive control is shown. More specifically, it appears that CDH5, PECAM1, TEK, KDR and VWF are expressed in the vascular endothelial cell positive control. This may mean that CDH5, PECAM1, TEK, KDR and VWF are markers showing characteristics in vascular endothelial cells. Accordingly, by confirming the markers, CDH5, PECAM1, TEK, KDR, and VWF, which are markers that are specifically expressed in vascular endothelial cells, it is possible to confirm the maintenance of the characteristics of vascular endothelial cells.
  • FIG. 11B the result of the expression level of markers of vascular endothelial cells according to the passage culture in the maintenance medium is shown. More specifically, the level of positive expression for the CDH5 marker of vascular endothelial cells according to the passage culture in the maintenance medium was found to be 99.7% at passage 1, 99.0% at passage 2, 99.2% at passage 3, and 98.3% at passage 4. .
  • the level of positive expression for the PECAM1 marker of vascular endothelial cells according to the passage culture in the maintenance medium was found to be 42.8% at passage 1, 43.2% at passage 2, 38.6% at passage 3, and 45.4% at passage 4.
  • the level of positive expression for TEK markers of vascular endothelial cells according to subculture in the maintenance medium was found to be 28.8% at passage 1, 63.4% at passage 2, 30.2% at passage 3, and 17.9% at passage 4.
  • the level of positive expression for the KDR marker of vascular endothelial cells according to the passage culture in the maintenance medium was found to be 16.0% at passage 1, 61.2% at passage 2, 14.5% at passage 3, and 4.6% at passage 4.
  • the level of positive expression for the VWF marker of vascular endothelial cells according to the subculture in the maintenance medium was found to be 98.4% at passage 1, 93.1% at passage 2, 88.3% at passage 3, and 97.4% at passage 4.
  • the vascular endothelial cells according to the passage culture in the maintenance medium are highly purified differentiated vascular endothelial cells that exhibit high expression levels for CDH5, PECAM1, TEK, KDR, and VWF, which are the markers identified in the vascular endothelial cell positive control.
  • High purity may mean a purity of 98% or more, and for example, it may mean that the expression of CDH5 positive cells is maintained by 98% or more until the fourth passage.
  • FIG. 11C a graph showing the positive expression level for the marker of vascular endothelial cells according to the passage culture in the above-described maintenance medium is shown. More specifically, the CDH5 marker shows that 98% or more of the number of CDH5 expression-positive cells is maintained until passage 4, the PECAM1 marker shows that the number of CDH5-expressing-positive cells is maintained by 40% or more until the fourth passage, and in the VWF marker, CDH5 expression until passage 4 It appears that more than 88% of the number of positive cells is maintained.
  • the number of marker-expressing-positive cells for each passage is not uniform or tends to decrease, but the number of marker-expressing-positive cells up to passage 3 appears to be maintained higher than that of the vascular endothelial cell positive control. Therefore, when the vascular endothelial cells were passaged in the maintenance medium, the expression of the markers CDH5, PECAM1, TEK, KDR and VWF, which were identified in the vascular endothelial cell positive control, appeared to be continuously maintained until passage 4. This may mean that cultivation of vascular endothelial cells in a maintenance medium can proliferate while maintaining the characteristics of vascular endothelial cells.
  • a cell growth rate according to the number of passages of vascular endothelial cells in the vascular endothelial cell characteristic maintenance culture method according to an embodiment of the present invention is shown.
  • the cell growth rate is determined by how long one cell becomes two cells. This is referred to as a doubling time and can be used as a measure for evaluating the growth rate of cells, that is, proliferation capacity.
  • the cell growth rate was expressed as a cumulative population doubling level (CPDL) value according to the number of passages of vascular endothelial cells.
  • CPDL is an index representing the rate of cell growth. More specifically, if the CPDL value is 10, it may mean that the cell has divided 10 times, and if this is calculated numerically, it may mean that one cell proliferates up to about 1000 cells.
  • CPDL was calculated by Equation 1 below.
  • Ni is the number of cells initially seeded
  • Nf is the final number of cells
  • In is the natural log.
  • the CPDL value of vascular endothelial cells cultured in the maintenance medium appears to have a value within the range of 1 to 2.5 at passages 1 to 4. This may mean that one vascular endothelial cell can proliferate up to 22.5 cells.
  • the proliferation culture of vascular endothelial cells in the culture medium for maintaining vascular endothelial cell characteristics can proliferate into uniform vascular endothelial cells without changing the shape and characteristics of the cells despite repeated culture. I can.
  • Example 1 is 4 to 6 ng/ml of FGF2, 5 to 10 ng/ml of EGF, 10 to 30 ng/ml of VEGF-A, 20 to 50 ng/ml of FGF2 according to an embodiment of the present invention. It was set as a vascular endothelial cell characteristic maintenance medium containing ascorbic acid and DMEM/F-12.
  • Comparative Example 1 is a conventional cell culture medium containing hFGF-B, VEGF, R3-IGF-1, ascorbic acid, hEGF, heparin and GA-1000, and Comparative Example 2 is 4 to 6 ng/ml It was set as the vascular endothelial cell differentiation medium of the present invention comprising FGF2, 5 to 10 ng/ml of EGF, 10 to 30 ng/ml of VEGF-A, 20 to 30 ng/ml of DLL4 and DMEM/F-12. .
  • FIGS. 13A and 13B are results showing the relative expression levels of positive vascular endothelial cells to markers according to the culture medium of vascular endothelial cells in the vascular endothelial cell characteristic maintenance culture method according to an embodiment of the present invention.
  • FIG. 13A the result of the expression level of markers of vascular endothelial cells according to the culture medium is shown.
  • the level of positive expression for the CDH5 marker of vascular endothelial cells was found to be 96.2% in Comparative Example 1, 99.4% in Comparative Example 2, and 99.0% in Example 1.
  • the level of positive expression for the PECAM1 marker of vascular endothelial cells was found to be 42.9% in Comparative Example 1, 37.6% in Comparative Example 2, and 59.9% in Example 1.
  • the level of positive expression for the KDR marker of vascular endothelial cells was found to be 19.2% in Comparative Example 1, 69.4% in Comparative Example 2, and 63.8% in Example 1.
  • the level of positive expression for the VWF marker of vascular endothelial cells was found to be 85.0% in Comparative Example 1, 91.6% in Comparative Example 2, and 96.7% in Example 1.
  • the vascular endothelial cells according to the culture medium are vascular endothelial cells that express expression for CDH5, PECAM1, TEK, KDR, and VWF, which are the markers identified in the vascular endothelial cell positive control.
  • FIG. 13B a graph showing the positive expression level of the vascular endothelial cell marker according to the above-described culture medium is shown. More specifically, referring to Figure 13b (a) and (e), in the CDH5 and VWF markers, which are characteristic indicators of vascular endothelial cells, all of Comparative Example 1, Comparative Example 2, and Example 1 have high marker-expressing positive cells. Appears to be visible. On the other hand, referring to (b), (c) and (d) of FIG. 13B, in PECAM1, TEK and KDR markers, which are characteristic indicators of vascular endothelial cells, Example 1 expresses higher markers than Comparative Examples 1 and 2. It appears to have a positive cell count.
  • the differentiated cells are vascular endothelial cells only by confirming the expression of a small number of indicators. Accordingly, the higher the number of indicators related thereto, the higher the purity of the endothelial cells may be. Accordingly, it may mean that Example 1, which showed a high number of marker-expressing-positive cells for all of the markers specifically expressed on vascular endothelial cells, is the highest purity differentiated vascular endothelial cells.
  • FIG. 14 a cell growth rate result for each culture medium of vascular endothelial cells according to the number of passages of vascular endothelial cells in the vascular endothelial cell characteristic maintenance culture method according to an embodiment of the present invention is shown. More specifically, the CPDL value of the vascular endothelial cells cultured in Comparative Example 1 appears to have a value within the range of 1 to 4.5 at passages 1 to 4. This may mean that one vascular endothelial cell can proliferate up to 24.5.
  • the CPDL value of the vascular endothelial cells cultured in Comparative Example 2 appears to have a value within the range of 1 to 3 at passages 1 to 4. This may mean that one vascular endothelial cell can proliferate up to 23.
  • the CPDL value of the vascular endothelial cells cultured in Example 1 appears to have a value within the range of 1 to 3.5 at passages 1 to 4. This may mean that one vascular endothelial cell can proliferate up to 23.5 cells. Therefore, the cell growth rate may be best in Comparative Example 1, which can proliferate the most.
  • Comparative Example 1 when the cells rapidly increase explosively, cell agglomeration may be formed in the cells, and differentiation into unwanted cells may be induced due to the cell agglomeration.
  • FIG. 15 a microscopic image of vascular endothelial cells according to a culture medium of vascular endothelial cells in the vascular endothelial cell characteristic maintenance culture method according to an embodiment of the present invention is shown. More specifically, it appears that cell aggregates were formed in the vascular endothelial cells cultured in Comparative Example 1. On the other hand, in Example 1, it appears that only individual vascular endothelial cells are formed without the formation of a cell agglomerate. Therefore, while differentiation is induced only in a desired direction, a medium having excellent proliferation power may be Example 1.
  • the vascular endothelial cell characteristic maintenance medium decreases the proliferative capacity and regeneration ability as the cell culture proceeds, and does not cause a problem that the characteristics of the vascular endothelial cells are deteriorated due to mutation. It has the effect of maintaining and proliferating cells in high purity.
  • the present invention provides uniform vascular endothelial cells, thereby providing vascular endothelial cells that can be stably used in clinical applications.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Developmental Biology & Embryology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Virology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

본 명세서에서는 인간 만능 줄기세포로부터 분화된 내피세포 계통의 세포주에서 특정 시간 동안 기질 상에 부착된 동질성의 내피세포를 분리할 수 있는, 혈관 내피세포 순수 분리 방법 및 이를 통해 분리된 고순도의 혈관 내피세포와 4 내지 6 ng/ml의 FGF2, 5 내지 10 ng/ml의 EGF, 10 내지 30 ng/ml의 VEGF-A, 20 내지 50 ng/ml의 아스코르빅산 및 DMEM/F-12를 유효성분으로 포함하는, 혈관 내피세포 특성 유지 배지 및 이를 포함하는 배양 방법이 제공된다.

Description

혈관 내피세포 순수 분리 방법, 혈관 내피세포 특성 유지 배지 및 이를 포함하는 배양 방법
본 발명은 혈관 내피세포 순수 분리 방법, 혈관 내피세포 특성 유지 배지 및 이를 포함하는 배양 방법에 관한 것이다.
혈관 신생(Vasculogenesis)은 기존 혈관의 내피세포가 세포외 기질(Extracellular Matrix, ECM)을 분해하고, 이동, 분열 및 분화하여 새로운 모세혈관을 형성하는 과정을 의미한다. 이에, 이러한 혈관 형성은 상처 수복, 배아 발생, 종양 형성, 만성염증, 비만 등 여러 가지 생리적 및 병리적 현상에 관여할 수 있다.
혈관 신생은 특히 상처 치유나 조직 재생에 필수적인 현상일 수 있다. 예를 들어 체내에서 혈관 신생의 결핍이 있을 경우, 괴사, 궤양 및 허혈이 일어남에 따라, 조직 또는 기관의 기능 이상을 유발할 수 있다. 나아가, 혈액 공급이 원활하지 못함에 따라, 허혈성 심장 질환, 동맥경화증, 심근경색증 및 협심증과 같은 심혈관계 질환 또한 야기될 수 있다. 이에 따라, 혈관 신생의 결핍으로 인한 조직 손상을 감소시키고, 이로 유발되는 심혈관계 질환을 치료하기 위한, 혈관 신생을 유도하거나 촉진시키는 치료법의 개발이 요구되었다.
발명의 배경이 되는 기술은 본 발명에 대한 이해를 보다 용이하게 하기 위해 작성되었다. 발명의 배경이 되는 기술에 기재된 사항들이 선행기술로 존재한다고 인정하는 것으로 이해되어서는 안 된다.
배아로부터 분리한 인간 배아 줄기 세포 (hESC, human embryonic stem cell) 와 체세포로부터 만들어진 인간 유도 만능 줄기 세포 (hiPSC, human induced pluripotent stem cell)는, 혈관 형성에 있어 중요한 역할을 하는 내피 세포 (endothelial cell) 로 분화할 수 있어, 혈관 재생 치료에 이용될 수 있다. 이에 따라, 손상된 혈관을 재생하고, 나아가 혈관의 형성을 유도하는 새로운 전략으로, 인간 만능 줄기 세포로부터 분화된 내피 세포를 이용한 혈관 재생 치료법이 제시되었다.
한편, 본 발명의 발명자들은 혈관 재생 치료의 효과에 있어서, 유도 만능 줄기 세포로부터 분화된 내피 세포의 순도 및 이의 생체 내 생존률의 중요성에 대하여 인지하였다.
이에, 본 발명의 발명자들은, 인간 유도 만능 줄기 세포로부터 분화된 다양한 세포주 (cell line) 로부터 혈관 형성능의 내피 세포를 높은 순도로 분리할 수 있는 방법에 대하여 연구하였다.
그 결과, 본 발명의 발명자들은 분화된 내피세포의 특성에 따라 기질 부착성이 다르게 나타나는 것을 발견하였고, 기질 부착성으로 인해 나타나는 특정 부착 시간에 따라 세포를 분리할 경우, 동질성의 혈관 내피세포를 높은 순도로 분리할 수 있었다.
이에 해결하고자 하는 과제는, 인간 만능 줄기세포로부터 분화된 내피세포 계통의 세포주에서 특정 시간 동안 기질 상에 부착된 동질성의 내피세포를 분리할 수 있는, 혈관 내피세포 순수 분리 방법 및 이를 통해 분리된 고순도의 혈관 내피세포를 제공하는 것이다.
만능 줄기세포(Pluripotent Stem Cell)는 자가증식 능력을 갖추고, 다양한 세포로 분화할 수 있어, 혈관 재생치료에 이용될 수 있다. 이에 따라, 허혈성 조직 기능을 회복시킬 수 있는 새로운 전략으로, 배아로부터 분리한 배아 줄기세포(Embryonic Stem Cell)와 체세포로부터 만들어진 유도 만능 줄기세포 (Induced Pluripotent Stem Cell)로부터 분화된 혈관 내피세포(Endothelial Cell, EC)를 이용한, 혈관 재생치료법이 제시되었다.
한편, 본 발명의 발명자들은, 종양 및 이상 조직의 발생과 같은 만능 줄기세포가 갖는 잠재적 위험 요소들, 분화 과정에서 이용되는 동물성분의 이용, 줄기세포의 체외 배양에서 혈관 내피세포로의 낮은 분화율 등이, 혈관 재생치료에 있어서 부작용 또는 미미한 치료효과를 야기시킬 수 있음을 인식하였다.
한편, 체외에서 인위적으로 만능 줄기세포를 내피세포로 분화 및 유지하기 위해서는 적합한 배양 배지를 공급하면서, 혈장이나 림프액과 같은 체액을 근거로 한 생체의 조건에 가까운 영양분, pH, 온도 및 삼투압 등의 환경 조건을 충분히 만족되는 환경을 제공해 주어야 한다. 줄기세포 및 내피세포는 체외에서 배양을 거듭하거나, 외부로부터 자극을 받을수록 세포의 형태, 크기 및 특성 등이 미세하게 변형되거나 달라지며, 세포의 재생능, 증식 및 분화능력이 낮아지는 즉, 노화가 진행된다는 문제점이 있다.
따라서, 조건에 맞지 않은 배양 배지에서 줄기세포 및 내피세포를 체외 배양할 경우, 줄기세포 및 내피세포는 쉽게 노화되고, 증식 및 분화능력을 상실한다. 나아가, 줄기세포 및 내피세포는 배양 조건에 따라 원치 않는 세포로의 분화가 유발되는 이질성(Heterogeneity)을 갖기 때문에, 줄기세포 및 내피세포에 대한 배양 배지 및 배양 방법의 개발은 줄기 세포 연구에 있어서 필수적이며 매우 중요한 기술 분야이다.
본 발명의 발명자들은 혈관 재생 치료의 효과에 있어서, 인간 만능 줄기세포로부터 분화된 내피세포의 순도 및 특성 유지의 중요성에 대하여 인지하였다.
이에, 본 발명의 발명자들은, 인간 만능 줄기세포로부터 분화된 세포주로부터 혈관 형성능의 내피세포를 높은 순도로 분리하고, 이의 체외 배양시 세포 증식의 증진 및 세포의 특성이 초기 상태와 동일하게 유지되면서 장기 배양이 가능한 배양 배지 및 배양 방법에 대하여 연구하였다.
그 결과, 본 발명의 발명자들은 세포 성장인자인 FGF 및 EGF, 세포 신호 전달 물질인 VEGF-A 및 산화방지제인 아스코르빅산을 기본 배지인 DMEM/F-12에 첨가하여 세포 배양에 사용하였을 경우, 거듭되는 배양에서도 혈관 내피세포의 특성이 유지된 고순도의 혈관 내피세포를 생산할 수 있다는 것을 발견할 수 있었다. 이에, 본 발명의 발명자들은, 인간 만능 줄기세포로부터 분화된 혈관 내피세포를 고순도로 유지 및 증식시킬 수 있는, 혈관 내피세포 특성 유지 배지를 개발하는데 이르렀다.
이에, 본 발명이 해결하고자 하는 과제는, 인간 만능 줄기세포로부터 분화된 혈관 내피세포를 거듭되는 배양에서도 특성이 유지되면서 증식할 수 있는, 혈관 내피세포 특성 유지 배지를 제공하는 것이다.
본 발명이 해결하고자 하는 다른 과제는, 인간 만능 줄기세포로부터 순도 높은 혈관 내피세포를 배양할 수 있는, 혈관 내피세포 특성 유지 배양 방법 및 이를 통해 배양된 고순도의 혈관 내피세포를 제공하는 것이다.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예에 따르면, 인간 만능 줄기세포로부터 분화된 내피세포 계통의 세포주를 분화 배지로부터 수득하는 단계, 수득된 세포주를 필터를 이용하여 여과하는 단계, 여과된 세포주를 기질 상에 배양하는 단계 및 배양된 세포주에서 20시간 이하의 시간 동안 기질 상에 부착된 동질성(homogenous)의 내피세포만 분리하는 단계를 포함하는, 혈관 내피세포 순수 분리 방법이 제공된다.
본 명세서에서 사용되는 용어 " 인간 만능 줄기세포 "는 미분화 상태를 유지하면서 무한대로 자가 증식할 수 있는 증식능력 및 인체의 모든 세포로 분화할 수 있는 분화능력을 가진 세포를 의미하며, 배아 줄기 세포(embtyonic stem cell), 유도 만능 줄기세포(induced pluripotent stem cell, iPSC) 및 체세포 핵치환 줄기세포(somatic cell nuclear transfer cell, SCNT) 중 적어도 하나를 포함할 수 있다.
본 명세서에서 사용되는 용어, " 내피세포 "는 혈관과 림프관의 내벽을 덮고 있는 층을 구성하는 편평 세포를 의미할 수 있다. 이에, 내피세포는 "혈관 내피세포(Vascular Endothelial Cell)"와 동일한 의미로 사용될 수 있다.
한편, 혈관 재생 치료에 있어서 줄기세포, 예를 들어 인간 만능 줄기세포로부터 분화된 내피세포는, 세포 치료제로서 생체 내에 이식되어 손상된 혈관을 재생하고 혈관의 형성 또는 혈관의 신생을 유도할 수 있다. 이때, 치료에 이용되는 내피세포의 순도는, 혈관 재생 치료에 대한 예후와도 연관될 수 있다. 보다 구체적으로, 미분화된 내피세포 또는 중배엽 계통의 다른 세포주를 포함하거나, 불순물이 혼합된 내피세포를 허혈성 조직에 이식할 경우, 내피세포의 생존률의 저하를 야기할 수 있다. 이에, 재생 치료에 있어서 이식된 내피세포는 오랜 기간 동안 혈관 형성에 기여할 수 없음에 따라, 순도가 낮은 내피세포의 이용은 치료 효과의 저하로 이어질 수 있다.
이에, 순도 높은 내피세포를 분류하고 이의 특성을 높은 수준으로 유지하는 것은, 내피세포 자체의 수득률을 높이는 것뿐만 아니라, 이를 이용한 세포 재생치료의 효과를 증진시키는 것과도 연관될 수 있다.
본 명세서에서 사용되는 용어 " 필터(Filter) "는 세포 채집 장치로서, 유체 샘플로부터 일정 크기의 표적 세포를 분리하여 채집하기 위한 스크린을 의미할 수 있다. 예를 들어. 필터가 사용됨으로써, 세포의 순도를 낮출 수 있는 불순물이나 세포 집과(Clump)이 제거되고, 일정한 크기의 세포만이 선별되어 순도가 높아 질 수 있다. 이에, 본 발명의 특징에 따르면, 고순도의 혈관 내피세포를 선별하기 위한 필터의 공극 간격은 20 내지 40 μm 범위일 수 있다.
본 명세서에서 사용되는 용어 " 기질(Matrix) "은 세포들이 붙어 있을 수 있는 성분으로서, 결합 조직의 기본 물질들을 의미할 수 있다. 보다 구체적으로, 살아있는 생물학적 세포들은 유기체의 기질에서 체외 배양될 수 있다. 이때, 체외 배양을 위해 의도된 기질은 표면의 관능화된 영역에 의하여 세포와의 상호작용 즉, 부착(Adhesion), 분화(Differentiation), 확산(proliferation), 및 이주(Migration) 등을 조절할 수 있다. 예를 들어, 세포는 각각의 종류에 따라 표면에 서로 다른 부착 단백질을 가지고 있다. 이러한, 부착 단백질은 세포의 종류마다 다르게 나타남에 따라, 선택적으로 기질의 관능화된 영역과의 부착 친화력을 가질 수 있다. 따라서, 세포의 분화 및 증식을 위한 배양이 진행되면서, 세포의 종류에 따라 나타나는 부착 단백질의 분비 차이에 의하여 기질과의 부착 친화력이 결정될 수 있으며, 이로 인하여 다른 시기에 기질에 대한 상호작용 즉, 부착이 나타날 수 있다. 이에, 혈관 내피세포는 배양 4 시간부터 최대 20시간까지 콜라겐 기질에 대한 부착이 이루어질 수 있다. 나아가, 20시간을 초과하여 배양이 진행될 경우, 혈관 내피세포가 아닌 다른 특성을 가진 세포가 부착되어 세포분리 시 순도가 낮아질 수 있다. 또한, 4시간 미만으로 배양이 진행될 경우, 혈관 내피세포가 부착되지 못하여 혈관 내피세포를 수득하지 못할 수 있다.
이에, 혈관 내피세포를 기질 상에 배양함으로써, 혈관 내피세포에서 나타나는 특이적 표면 부착성 즉, 기질과의 부착 친화력에 의하여 시간에 따른 선택적 배양이 이루어질 수 있다. 나아가, 본 발명의 다른 특징에 따르면, 기질은, 콜라겐, 피브린, 피브로넥틴, 비트로넥틴, 마트리겔, 젤라틴, 라미닌, 헤파린, 폴리리신 및 히알루론산 중 적어도 하나를 포함할 수 있으나, 1 mg/ml 이하, 바람직하게는 0.1 mg/ml의 콜라겐을 포함할 수 있다. 그러나, 기질은 이에 제한되는 것은 아니며, 혈관 내피세포가 선택적으로 부착될 수 있는 물질이면 제한없이 사용될 수 있다.
본 발명의 또 다른 특징에 따르면, 전술한 배양하는 단계에서는 세포 성장인자 및 아스코르빅산을 포함하는 DMEM/F-12 배지에서 여과된 내피세포 계통의 세포주가 배양될 수 있다. 이때, 성장인자(Growth factor)는 세포 분열, 세포 생장 및 분화를 촉진할 수 있는 물질을 의미하며, FGF-1(fibroblast growth factor-1), FGF-2(bFGF), FGF-3, FGF-4, FGF-5, FGF-6, EGF(epidermal growth factor), KGF(keratinocyte growth factor), HGF(hepatocyte growth factor), TGF-α(transforming growth factor-α), TGF-β, 엔지오포이에린 1(angipoietin 1), 엔지오포이에린 2, 에리트로포이에린(erythropoietin), 뉴로필린, IGF-1, 오스테오폴린, 플레이오트로핀, 액티빈, 엔도텔린01 및 VEGF-A(vascular endothelial growth factor-A) 중 적어도 하나를 포함할 수 있으나, 이에 제한되는 것은 아니다.
나아가, 아스코르빅산(Ascorbic acid)는 산화방지제로 procollagen 합성에 관여하며, type 1 콜라겐 생산의 증가와 관련된 보조인자(Cofactor)를 의미할 수 있다. 아스코르빅산은 in vitro에서 내피세포, 지방세포, 조골세포 및 연골세포와 같은 다양한 중배엽 유래의 세포 증식을 자극 및 조절할 수 있다. 나아가, 세포의 배양 배지에 특정 농도의 아스코르빅산을 첨가할 경우, 세포 성장 촉진제로 작용하여 세포의 증식력이 증가되고, DNA의 합성이 촉진될 수 있다.
한편, DMEM/F-12는 기본 배지이다. 이때, 본 발명에서 사용되는 용어 " 기본 배지 "는 세포가 살아가기 위해 필요한, 당, 아미노산 및 물 등이 포함되어 있는 혼합물로서, 혈청, 영양 물질 및 각종 성장인자를 제외한 혼합물을 의미한다. 본 발명의 기본 배지는 인위적으로 합성하여 제조하여 사용하거나 상업적으로 제조된 배지를 사용할 수 있다. 예를 들어, 상업적으로 제조된 배지는 DMEM(Dulbecco's Modified Eagle's Medium), MEM(Minimal Essential Medium), BME(Basal Medium Eagle), RPMI 1640, F-10, F-12, α-MEM(α-Minimal Essential Medium), G-MEM(Glasgow's Minimal Essential Medium), Iscove's Modified Dulbecco's Medium 및 FBS (Fetal bovine serum) 등을 포함할 수 있으나, 이에 제한되는 것은 아니며, 바람직하게는 DMEM/F-12일 수 있다.
본 발명의 또 다른 특징에 따르면, 전술한 배양하는 단계에서는 여과된 내피세포 계통의 세포주를 2개의 기질 상에 파종하는 단계를 포함할 수 있다. 이때, 2개 초과로 나누어 배양할 경우, 혈관 내피세포의 선별 수율이 감소하여, 계대 배양시에 혈관 내피세포의 증식 효율 및 특성 유지가 감소할 수 있다.
한편, 본 명세서에서 사용되는 용어 " 동질성(Homogenous) "은 현미경 상에 관찰되는 형태학적 모양 및 마커의 발현 양상이 동일한 동종의 세포 유형을 의미할 수 있다. 이때, 마커(Marker)는 표적 세포와 주변의 다른 세포를 구별할 수 있도록 하는 모든 물질로서, 단백질, 당 지질, 핵산 및 이들의 조합으로 이루어진 그룹 중 적어도 하나일 수 있으나, 이에 제한되는 것은 아니다. 보다 구체적으로, 혈관 내피세포에 대한 마커는 혈관 내피세포에서 특이적으로 발현되는 단백질일 수 있으며, CDH5, VWF, PECAM1, TEK 및 KDR을 포함할 수 있으나, 바람직하게는 CDH5 및 VWF일 수 있다.
이러한, 혈관 내피세포에 대한 마커는 본 발명의 일 실시예에 따른 혈관 내피세포 순수 분리 방법에 의하여, 발현 수준이 증가될 수 있다. 보다 구체적으로, 혈관 내피세포에 대한 특이적인 마커인 CDH5의 유전자 발현 수준은 혈관 내피세포 순수 분리 방법에 의하여 분리되기 전 보다 12배 높을 수 있다. 또한, 혈관 내피세포에 대한 특이적인 마커인 VWF의 유전자 발현 수준은 혈관 내피세포 순수 분리 방법에 의하여 분리되기 전 보다 2배 높을 수 있다.
나아가, 동질성의 내피세포의 증가는 고순도의 내피세포를 제공할 수 있음을 의미할 수 있다. 고순도의 내피 세포를 이용하는 것은, 혈관 형성 또는 혈관 재생 효과와 연관될 수 있다. 예를 들어, 미분화된 줄기 세포 또는 중배엽 계통의 줄기 세포를 포함하는 낮은 순도의 내피 세포를 허혈 조직에 이식할 경우, 혈관 형성 또는 혈관 재생의 효과는, 높은 순도의 내피 세포를 이식했을 때 보다 낮을 수 있다. 이에 따라, 고순도의 내피 세포를 분리하는 것이 매우 중요할 수 있다.
본 발명의 일 실시예에 따르면, 전술한 방법으로 분리되어 CDH5 및 VWF를 발현하는 동질성의 내피세포를 98 % 이상 함유하는, 혈관 내피세포가 제공된다.
또한, 본 발명의 일 실시예에 따르면, 본 발명은 전술한 혈관 내피세포를 포함하는, 심혈관계 질환의 예방용 또는 치료용 세포 치료제 조성물이 제공된다.
이때, 본 명세서 사용되는 용어, " 심혈관계 질환 "은 심혈관계 질환은 심장과 주요 동맥에 발생하는 질환을 의미할 수 있다. 이의 원인으로는 혈관 형성의 결핍으로 인한 원활하지 못한 혈액 공급이 있을 수 있다. 본원 발명에서 심혈관계 질환은 허혈성 심장 질환, 심부전, 고혈압성 심장질환, 부정맥, 심장관막증, 심실중격결손, 선천성 심장질환, 심근중, 심낭질환, 뇌졸증, 말초혈관질환, 동맥류, 동맥경화증, 혈압, 협심증 및 심근경색증 중 적어도 하나일 수 있으며, 특히, 다양한 심혈관계 질환 중, 허혈성 심혈관계 질환에 특히 효과적일 수 있다. 그러나, 내피세포에 대한 예방용 또는 치료용 세포 치료제로서의 효과는 허혈성 심혈관계 질환에 제한되는 것은 아니다.
본 명세서 사용되는 용어, " 세포 치료제 "는 세포와 조직의 기능을 복원하기 위하여 살아 있는 자가(Autologous), 동종(Allogenic), 이종(Xenogenic) 세포를 체외에서 증식, 선별하거나 세포의 생물학적 특성을 변화시키는 등 일련의 행위를 통하여 치료, 진단, 예방 목적으로 사용되는 모든 의약품을 의미할 수 있다. 본원 명세서에서 세포 치료제는 손상 조직의 회복을 위해 이식될 수 있는 세포 그 자체를 의미할 수 있다. 예를 들어, 세포 치료제는 허혈 부위에 이식되어 혈관 형성에 기여하는, 인간 만능 줄기 세포로부터 분화된 내피세포일 수 있다.
본 발명의 일 실시예에 따르면, 인간 만능 줄기세포(Human Pluripotent Stem Cell, hPSC)를 유도 배지와 현탁하여 플레이트상에 제 1 접종하는 단계, 제 1 접종된 줄기세포를 유도 배지에서 중배엽 세포로 분화하도록 제 1 배양하는 단계, 제 1 배양된 세포를 분화 배지에서 내피세포로 분화하도록 제 2 배양하는 단계, 제 2 배양된 세포를 혈관 내피세포 계통의 세포로 선별하는 단계, 선별된 혈관 내피세포를 유지 배지와 현탁하여 플레이트상에 제 2 접종하는 단계, 및 제 2 접종된 혈관 내피세포를 유지 배지에서 증식하도록 계대 배양하는 단계를 포함하는, 혈관 내피세포 특성 유지 배양 방법이 제공된다.
본 발명에서 사용되는 용어 " 배지 "는, 당, 아미노산, 각종 영양물질, 혈청, 성장인자, 무기질 등의 세포의 성장 및 증식 등에 필수적인 요소를 포함하는 생체 외(In vitro)에서 줄기세포 등의 세포의 성장 및 증식을 위한 혼합물을 의미한다.
이때, 본 발명의 특징에 따르면, 본 발명은 유도 배지, 분화 배지 및 유지 배지를 포함할 수 있다. 보다 구체적으로, 유도 배지는, 미분화 세포인 인간 만능 줄기세포가 중배엽으로 유도시킬 수 있는 배양 배지를 의미하며, 4 내지 6 ng/ml의 FGF2, 2 내지 4 μM의 CHIRR99021 및 DMEM/F-12를 포함할 수 있다.
또한, 분화 배지는, 중배엽으로 유도된 세포 혈관 내피세포 계통으로 분화시킬 수 있는 배양 배지를 의미하며, 4 내지 6 ng/ml의 FGF2, 5 내지 10 ng/ml의 EGF, 10 내지 30 ng/ml의 VEGF-A, 20 내지 30 ng/ml의 DLL4 및 DMEM/F-12를 포함할 수 있다.
또한, 유지 배지는 분화된 혈관 내피세포를 유지 및 증식시킬 수 있는 배양 배지를 의미하며, 4 내지 6 ng/ml의 FGF2, 5 내지 10 ng/ml의 EGF, 10 내지 30 ng/ml의 VEGF-A, 20 내지 50 ng/ml의 아스코르빅산 및 DMEM/F-12를 포함할 수 있다.
이때, DMEM/F-12는 기본 배지이다.
본 발명의 또 다른 특징에 따르면, 본 발명의 배양 단계는 단계에 따른 다른 배양 기간을 가질 수 있다. 보다 구체적으로, 제 1 배양 단계는 인간 만능 줄기세포가 유도 배지에서 중배엽 세포로 분화되는 단계로서, 매일 배지를 교체해주며 3일 동안의 배양 기간을 가질 수 있다. 나아가, 제 2 배양 단계는 중배엽으로 유도된 세포가 내피세포로 분화되는 단계로서, 매일 배지를 교체해주며 11 내지 13일 동안의 배양 기간을 가질 수 있다.
한편, 본 발명에서 사용되는 용어 " 플레이트 "는, 세포의 배양, 즉 성장 및 증식이 이루어질 수 있는 용기로서, 상부표면이 세포가 부착가능한 기질의 코팅막을 포함할 수 있다. 이때, 코팅막은 콜라겐, 피브로넥틴, 라미딘, 라미딘 프래그먼트, 비트로넥린, 기저막 매트릭스, 젤라틴, 히알루론산, 폴리리신 및 비트로넥린 중 적어도 하나로 이루어진 코팅막을 포함할 수 있으며, 1 mg/ml 이하, 바람직하게는 0.1 mg/ml의 콜라겐을 포함할 수 있다.
이에, 분화된 세포를 1 mg/ml 이하, 0.1 mg/ml의 콜라겐을 포함하는 코팅막이 코팅된 플레이트에서 배양하여, 코팅막에 특이적을 부착된 혈관 내피세포 계통의 세포만을 자연선택(Natural Selection)하여 선별할 수 있다.
본 발명의 또 다른 특징에 따르면, 내피세포의 증식을 위하여 계대 배양을 하는 경우, 계대 배양은 1 내지 4 계대까지 수행될 수 있다.
본 발명에서 사용되는 용어 " 계대 배양 "은, 세포를 건강한 상태로 지속적으로 장기간 배양하기 위해, 주기적으로 세포의 일부를 새로운 배양 플레이트에 옮긴 후, 배양 배지를 갈아주면서 세포의 대(代)를 계속 이어서 배양하는 방법을 의미할 수 있다. 한정된 공간을 가진 배양 플레이트 내에서 세포의 수가 늘어나면서 일정시간이 지나면 증식 영양분이 소비되거나 오염 물질이 쌓여 세포가 자연히 죽게 될 수 있다. 이에, 건강한 세포의 수를 늘리기 위한 방법으로 계대 배양이 사용되며, 통상적으로 한 차례 배지(배양 플레이트)를 교체하는 것 또는 세포군을 나누어 배양하는 것을 1 계대(1 passage)라고 할 수 있다. 계대 배양의 방법은 당업계에 공지된 방법을 제한 없이 사용할 수 있으나, 바람직하게는 효소적 분리로 수행될 수 있다.
본 발명의 일 실시예에 따르면, 4 내지 6 ng/ml의 FGF2, 5 내지 10 ng/ml의 EGF, 10 내지 30 ng/ml의 VEGF-A, 20 내지 50 ng/ml의 아스코르빅산 및 DMEM/F-12를 유효성분으로 포함하는, 혈관 내피세포 특성 유지 배지가 제공된다.
또한, 본 발명의 일 실시예에 따르면, 혈관 내피세포 계통으로 선별된 세포를 4 내지 6 ng/ml의 FGF2, 5 내지 10 ng/ml의 EGF, 10 내지 30 ng/ml의 VEGF-A, 20 내지 50 ng/ml의 아스코르빅산 및 DMEM/F-12를 유효성분으로 포함하는 유지 배지와 현탁하여 플레이트상에 접종하는 단계, 및 접종된 혈관 내피세포를 유지 배지에서 혈관 내피세포의 특성이 유지되도록 계대 배양하는 단계를 포함하는, 혈관 내피세포 특성 유지 배양 방법이 제공된다.
이때, 인간 만능 줄기세포로부터 분화된 혈관 내피세포는, 이에 특이적으로 높은 수준으로 발현하는 유전자 및 단백질을 가질 수 있다. 예를 들어, 인간 만능 줄기세포로부터 분화된 혈관 내피세포에서의 CDH5, PECAM1 및 VWF 유전자의 발현 수준은, 인간 만능 줄기세포로부터 분화된 다른 세포주에서 보다 높을 수 있다. 이에, 인간 만능 줄기세포로부터 분화된 혈관 내피세포에서 특이적으로 높은 수준으로 발현하는 유전자 및 단백질이 혈관 내피세포의 특성을 나타내는 마커(Marker)로 이용될 수 있다. 따라서, 전술한 마커의 확인을 통하여, 배양을 거듭하면서 야기될 수 있는 혈관 내피세포의 변질에 대한 문제점을 확인할 수 있으며, 분화된 다양한 세포주들 사이에서 혈관 내피세포를 높은 순도로 분리할 수 있다.
이에, 본 발명의 또 다른 특징에 따르면, 전술한 방법에 의해 계대 배양된 혈관 내피세포는, 전술한 혈관 내피세포의 특이 발현 마커인, CDH5 양성 세포 발현이 4계대까지 98 % 이상 유지될 수 있다.
나아가, 본 발명의 또 다른 특징에 따르면, 전술한 방법에 의해 계대 배양된 혈관 내피세포는, 전술한 혈관 내피세포의 특이 발현 마커인, PECAM1 양성 세포 발현이 4계대까지 40 % 이상 유지될 수 있다.
더 나아가, 본 발명의 또 다른 특징에 따르면, 전술한 방법에 의해 계대 배양된 혈관 내피세포는, 전술한 혈관 내피세포의 특이 발현 마커인, VWF 양성 세포 발현이 4계대까지 88 % 이상 유지될 수 있다.
본 발명의 또 다른 특징에 따르면, 플레이트는 콜라겐, 피브로넥틴, 라미닌, 라미닌 프래그먼트, 비트로넥린, 기저막 매트릭스, 젤라틴, 히알루론산, 폴리리신 및 비트로넥린 중 적어도 하나로 이루어진 코팅막을 포함할 수 있으며, 1 mg/ml 이하, 바람직하게는 0.1 mg/ml의 콜라겐을 포함할 수 있다.
또한, 본 발명의 또 다른 특징에 따르면, 전술한 방법의 계대 배양은, 1 내지 4 계대까지 수행될 수 있다.
본 발명의 일 실시예에 따르면, 전술한 방법으로 제조된 혈관 내피세포가 제공될 수 있다. 이러한, 혈관 내피세포는 혈관 형성능 및 재생능을 가질수 있으며, 이에, 심혈관계 질환의 예방용 또는 치료용 세포 치료제로서 이용될 수 있다.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다. 다만, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것에 불과하므로 본 발명의 범위가 이들 실시예에 의해 한정되는 것으로 해석되어서는 아니된다.
본 발명은 세포의 특성에 따라 발현되는 기질 부착성에 기초하여, 고순도의 혈관 내피세포를 제공함으로써, 안정적으로 임상에 적용할 수 있는 효과가 있다.
보다 구체적으로, 본 발명은 혈관 내피세포에서 특이적으로 발현되는 부착 단백질 및 기질과의 상호작용 즉, 부착력을 이용하여, 특정 시간내에 분화되어 부착된 혈관 내피세포만을 분리할 수 있다. 나아가, 전술한 방법에 의하여 분리된 혈관 내피세포는 혈관 내피세포에서 특이적으로 발현하는 마커인 CDH5 및 VWF를 98 % 이상 발현함에 따라, 순도가 98 % 이상인 고순도의 혈관 내피세포를 제공할 수 있다.
또한, 본 발명은 배양 용기 내에서 배양 과정을 통해 고순도의 혈관 내피세포를 분리하는 방법으로서, 자성 세포 분류 및 유세포 분류와 같은 종래의 방법보다 비교적 간단하고, 경제적일 수 있다.
또한, 혈관 내피세포의 대량생산을 위한 혈관 내피세포의 계대 배양에 있어서 고순도의 혈관 내피세포를 짧은 시간 내에 높은 수율로 제공할 수 있다.
나아가, 본 발명은 혈관 신생을 촉진하고, 혈관 재생력이 뛰어난 혈관 내피세포를 제공함으로써, 심혈관계 질환에 대한 예방 또는 치료에 효과적인 세포 치료제로서 활용될 수 있는 효과가 있다.
본 발명은 동물 유래 혈청 또는 피더 세포(Feeder cell)를 이용에 따라 발생되는 면역반응을 유발하지 않는 혈관 내피세포, 이를 고순도로 증식 배양할 수 있는 혈관 내피세포 특성 유지 배지 및 이를 포함하는 배양 방법을 제공함으로써 안정적으로 임상에 적용할 수 있는 효과가 있다.
구체적으로, 본 발명은 인간 만능줄기세포가 혈관 내피세포로 배양에 있어서 각각의 단계에 특화된 유도, 분화 및 유지 배지를 제공함에 따라, 분화된 세포의 수율을 증가시키고, 고순도의 혈관 내피세포를 제공할 수 있다.
또한, 혈관 내피세포의 대량생산을 위한 혈관 내피세포의 계대 배양에 있어서 특화된 유지 배지를 제공함에 따라, 고순도의 혈관 내피세포를 짧은 시간 내에 제공할 수 있다.
본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.
도 1은 순수 혈관 내피세포의 배양 방법의 절차을 도시한 것이다.
도 2는 본 발명의 일 실시예에 따른 혈관 내피세포 순수 분리 방법의 절차를 도시한 것이다.
도 3a 내지 3d는 인간 만능 줄기세포로부터 분화된 내피세포를 순수 혈관 내피세포로 분리하는 과정을 도시한 것이다.
도 4는 혈관 내피세포의 기질 부착성 메커니즘을 도시한 것이다.
도 5a 및 5b는 본 발명의 일 실시예에 따른 혈관 내피세포 순수 분리 방법에서 필터 여부에 따른 마커 발현 및 현미경 이미지를 결과를 도시한 것이다.
도 6a 내지 6c는 본 발명의 일 실시예에 따른 혈관 내피세포 순수 분리방법에 의하여 분리된 혈관 내피세포의 마커발현 결과를 도시한 것이다.
도 7는 본 발명의 일 실시예에 따른 혈관 내피세포 순수 분리 방법에 따른 계대 배양시 현미경 이미지를 결과를 도시한 것이다.
도 8은 본 발명의 일 실시예에 따른 혈관 내피세포 특성 유지 배양 방법의 절차를 도시한 것이다.
도 9a 내지 9d는 인간 만능 줄기세포로부터 분화된 내피세포를 순수 혈관 내피세포로 선별하는 과정을 도시한 것이다.
도 10은 본 발명의 일 실시예에 따른 혈관 내피세포 특성 유지 배양 방법에서 배양 계대수에 따른 혈관 내피세포의 현미경 이미지를 나타내는 결과이다.
도 11a 내지 11c는 본 발명의 일 실시예에 따른 혈관 내피세포 특성 유지 배양 방법에서 마커들에 대한 양성 혈관 내피세포의 상대적 발현 수준을 나타내는 결과이다.
도 12는 본 발명의 일 실시예에 따른 혈관 내피세포 특성 유지 배양 방법에서 혈관 내피세포의 계대수에 따른 세포 성장률을 나타내는 결과이다.
도 13a 및 13b는 본 발명의 일 실시예에 따른 혈관 내피세포 특성 유지 배양 방법에서 혈관 내피세포의 배양 배지에 따른 마커들에 대한 양성 혈관 내피세포의 상대적 발현 수준을 나타내는 결과이다.
도 14는 본 발명의 일 실시예에 따른 혈관 내피세포 특성 유지 배양 방법에서 혈관 내피세포의 계대수에 따른 혈관 내피세포의 배양 배지 별 세포 성장률을 나타내는 결과이다.
도 15는 본 발명의 일 실시예에 따른 혈관 내피세포 특성 유지 배양 방법에서 혈관 내피세포의 배양 배지에 따른 혈관 내피세포의 현미경 이미지를 나타내는 결과이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 본 명세서에서 사용되는 용어 " 분화(Differentiation) "는 세포가 특별한 기능을 갖는 특정한 세포나 조직의 복합체 또는 개체의 수준으로 발달하는 것을 의미한다.
본 명세서에서 사용되는 용어 " 증식(Proliferation) "은 세포 수의 증가를 의미하는 것으로 성장(growth)과 동일한 의미로 사용된다.
본 명세서에서 사용되는 용어 " 재생능(Renewal ability) "은 세포가 자신과 똑같은 복사본을 만들어낼 수 있는 능력을 의미할 수 있으며, 재생능이 개선되는 경우 세포의 증식능이 우수할 수 있다.
혈관 내피세포 순수 분리 방법
이하에서는 도 1 내지 3d를 참조하여, 본 발명의 일 실시예에 따른 혈관 내피세포 순수 분리 방법에 대해서 구체적으로 설명한다.
도 1은 순수 혈관 내피세포의 배양 방법의 절차을 도시한 것이다. 이하에서는, 설명의 편의를 위해서 도 2 내지 3d를 참조하여 설명한다.
도 1을 참조하면, 먼저, 만능 줄기세포가 유도 배지와 현탁하여 플레이트 상에 접종(Seeding)되고, 3일간 매일 유도 배지가 교체되며 중배엽 계통의 세포로 분화가 유도될 수 있다. 이때, 유도 배지는 성장인자 및 GSK3β저해제인 CHIRR99021를 포함하는 DMEM/F-12 배지일 수 있다. 이때, 성장인자는 FGF-1(fibroblast growth factor-1), FGF-2(bFGF), FGF-3, FGF-4, FGF-5, FGF-6, EGF(epidermal growth factor), KGF(keratinocyte growth factor), HGF(hepatocyte growth factor), TGF-α(transforming growth factor-α), ,TGF-β, 엔지오포이에린 1(angipoietin 1), 엔지오포이에린 2, 에리트로포이에린(erythropoietin), 뉴로필린, IGF-1, 오스테오폴린, 플레이오트로핀, 액티빈, 엔도텔린01 및 VEGF-A(vascular endothelial growth factor-A) 중 적어도 하나를 포함할 수 있으나, 이에 제한되는 것은 아니다. 나아가, CHIRR99021는 GSK(Glycogen synthase kinase)의 활성을 억제하는 물질이다. 보다 구체적으로, GSK가 억제됨에 따라 세포 증식에 관여하는 신호전달체계의 ß이 GSK에 의해 분해되지 않아 세포 증식에 관여하는 유전자 발현량이 증가되어, 세포의 생존 및 증식이 향상될 수 있다.
그 다음, 중배엽 계통의 세포는 분화 배지에서 11 내지 14일간 매일 분화 배지가 교체되며, 내피세포 계통의 세포주로 분화될 수 있다. 이때, 분화 배지는 성장인자 및 노치 신호 전달 리간드인 DLL4를 포함하는 DMEM/F-12 배지일 수 있다. 이때, DLL4(Delta-like ligand 4)는 신생혈관 형성 과정에서의 신호전달물질로서, 내피세포의 마커의 발현 수준의 증가와도 연관될 수 있다.
그 다음, 본 발명의 일 실시예에 따른 혈관 내피세포 순수 분리 방법을 이용하여 분화된 내피세포 계통의 세포주에서 동질성(Homogenous)의 내피세포가 분리될 수 있다. 보다 구체적으로, 도 2를 참조하면, 본 발명의 일 실시예에 따른 혈관 내피세포 순수 분리 방법의 절차가 도시된다. 혈관 내피세포 순수 분리 방법은 고순도의 혈관 내피세포를 선별하기 위한 방법으로, 인간 만능 줄기세포로부터 분화된 내피세포 계통의 세포주를 분화 배지로부터 수득하는 단계(S110), 수득된 세포주를 필터를 이용하여 여과하는 단계(S120), 여과된 세포주를 기질 상에 배양하는 단계(S130) 및 배양된 세포주를 기질 상에 부착된 동질성의 내피세포를 분리하는 단계(S140)를 포함할 수 있다.
먼저, 인간 만능 줄기세포로부터 분화된 내피세포 계통의 세포주를 분화 배지로부터 수득하는 단계(S110)에서는, 분화 배지로부터 분화된 내피세포 계통의 세포주를 수득하기 위하여 단백질 분해 효소 방법이 이용될 수 있다. 보다 구체적으로, 도 3a를 참조하면, 단백질 분해 효소 방법은, 단백질 분해 효소를 이용하여 세포 및 세포간 또는 세포 및 기질간을 분리하는 방법으로서, 분해 효소 물질로서 콜라제네이즈(Collagenase), 디스페이즈(Dispase), 프로테아제(Protease) 및 트립신(Trypsin) 등이 이용될 수 있으나, 이에 제한되는 것은 아니다. 이에, 내피세포 계통의 세포주는 기질 및 세포간의 결합으로부터 각각의 하나의 세포로 분리될 수 있다. 나아가, 본 발명의 일 실시예에 따른 혈관 내피세포 순수 분리 방법에서 전술한 단백질 분해 효소 방법을 이용하여 기질로부터 표적 세포를 분리할 수 있다.
그 다음, 수득된 세포주를 필터를 이용하여 여과하는 단계(S120)에서는, 일정 크기의 세포를 분리하기 위하여 공극 간격이 20 내지 40 μm 범위의 필터가 사용될 수 있다. 보다 구체적으로, 도 3b를 참조하면, 필터를 사용함으로써, 표적 세포와 형태학적 크기가 다른 세포, 불순물 및 세포 집괴(Clump)가 제거되고, 형태학적으로 동일한 크기의 세포만 분리될 수 있다. 이에, 보다 높은 동질성의 세포가 수득될 수 있다. 이때, 세포 집괴는 세포가 뭉쳐서져 생긴 덩어리를 의미하며, 세포 집괴가 형성된 경우, 세포 주기 억류(Cell cycle arrest)가 발생하고, 이에 따라 자체 분화가 유도되어 원하고자 하는 세포 즉, 혈관 내피세포로의 분화가 어려울 수 있다.
그 다음, 여과된 세포주를 기질 상에 배양하는 단계(S130)에서는, 세포주를 나누어 기질 상에 파종(Seeding)할 수 있다. 보다 구체적으로, 도 3c를 참조하면, 기질을 포함하는 하나의 플레이트로부터 수득된 내피세포 계통의 세포주를 필터를 이용하여 여과하고, 여과된 세포주를 2개의 기질 상에 나누어 파종하여 배양할 수 있다. 이때, 2개 초과로 나누어 배양할 경우, 혈관 내피세포의 선별 수율이 감소하여, 계대 배양시에 혈관 내피세포의 증식 효율 및 특성 유지가 감소할 수 있다.
또한, 여과된 세포주를 기질 상에 배양하는 단계(S130)에서는 4 시간 내지 20 시간 동안 배양될 수 있다. 보다 구체적으로, 도 4를 참조하면, 혈관 내피세포의 기질 부착성 메커니즘을 도시한 것이다. 세포는 인테그린(Integrin)과 같은 부착 단백질을 이용하여 세포와 기질 표면의 관능화된 영역과 상호작용할 수 있다. 이때, 부착 단백질은 세포가 분화되면서 발생하는 세포의 특성 및 종류에 따라 다른 발현 양상의 차이를 가질 수 있다. 이러한, 부착 단백질의 차이로 인하여 기질에 대한 부착 친화력이 결정될 수 있으며, 나아가, 세포의 특성 및 종류에 따른 부착 친화력으로 인하여 다른 시기에 기질에 대한 상호 작용 즉, 부착이 나타날 수 있다. 또한, 세포의 특성 및 종류는 마커를 통하여 구별될 수 있으며, 혈관 내피세포를 확인할 수 있는 마커로는 CDH5, VWF, PECAM1, TEK 및 KDR을 포함할 수 있으나, 바람직하게는 CDH5 및 VWF일 수 있다.
이에, CDH5 및 VWF 마커를 발현하는 혈관 내피세포는 4 시간 내지 20 시간 동안에 0.1 mg/ml의 콜라겐을 포함하는 기질에 대한 부착이 이루어질 수 있으며, 20시간을 초과하여 배양이 진행될 경우, CDH5 및 VWF 마커를 발현하는 혈관 내피세포가 아닌 마커의 발현 양상이 다른 종류의 세포가 부착될 수 있다. 이에, 본 발명의 일 실시예에 따른 혈관 내피세포 순수 분리 방법에 대한 배양하는 단계의 시간은 4 시간 내지 20 시간 동안 배양될 수 있으나, 이에 제한되는 것은 아니며, 기질의 종류에 따라 배양 시간이 조절될 수 있다.
나아가, 여과된 세포주를 기질 상에 배양하는 단계(S130)에서 사용되는 기질은 콜라겐, 피브린, 피브로넥틴, 비트로넥틴, 마트리겔, 젤라틴, 라미닌, 헤파린, 폴리리신 및 히알루론산 중 적어도 하나를 포함할 수 있으나, 1 mg/ml 이하, 바람직하게는 0.1 mg/ml의 콜라겐을 포함할 수 있다. 그러나, 기질은 이에 제한되는 것은 아니며, 혈관 내피세포가 선택적으로 부착될 수 있는 물질이면 제한없이 사용될 수 있다.
더 나아가, 여과된 세포주를 기질 상에 배양하는 단계(S130)에서는 세포 성장인자 및 아스코르빅산을 포함하는 DMEM/F-12 배지에서 여과된 내피세포 계통의 세포주가 배양될 수 있다. 이때, 성장인자(Growth factor)는 세포 분열, 세포 생장 및 분화를 촉진할 수 있는 물질을 의미하며, FGF-1(fibroblast growth factor-1), FGF-2(bFGF), FGF-3, FGF-4, FGF-5, FGF-6, EGF(epidermal growth factor), KGF(keratinocyte growth factor), HGF(hepatocyte growth factor), TGF-α(transforming growth factor-α), TGF-β, 엔지오포이에린 1(angipoietin 1), 엔지오포이에린 2, 에리트로포이에린(erythropoietin), 뉴로필린, IGF-1, 오스테오폴린, 플레이오트로핀, 액티빈, 엔도텔린01 및 VEGF-A(vascular endothelial growth factor-A) 중 적어도 하나를 포함할 수 있으나, 이에 제한되는 것은 아니다.
더 나아가, 배양 환경 조건에서 온도는 36 ℃내지 38 ℃바람직하게는 36.5 ℃내지 37.5 ℃이며, 공급 산소(O2)는 1 % 내지 25 %이며, 공급 이산화탄소(CO2)는 1 % 내지 15 %일 수 있다.
그 다음, 배양된 세포주를 기질 상에 부착된 동질성의 내피세포를 분리하는 단계(S140)에서는, 혈관 내피세포에서 특이적으로 발현되는 마커에 대한 발현 양성세포를 98 % 이상 함유하는 고순도의 혈관 내피세포를 분리할 수 있다. 보다 구체적으로, 도 3d를 참조하면, 먼저, 4 시간 내지 20 시간 동안 부착되지 못한 세포들이 제거되어, 4 시간 내지 20 시간 동안 기질 상에 부착된 세포들만 분리될 수 있다. 이때, 4 시간 내지 20 시간 동안 기질 상에 부착된 세포들은 형태학적 모양 및 마커의 발현 양상이 동일한 동질성의 세포로서, 혈관 내피세포에서 특이적인 CDH5 및 VWF 마커를 발현하는 양성세포가 98 % 이상일 수 있다. 즉, 순도 98% 이상의 내피세포가 수득될 수 있다.
나아가, 본 발명의 일 실시예에 따른 혈관 내피세포 순수 분리 방법에 의하여 혈관 내피세포에 대한 마커의 발현 수준이 증가될 수 있다. 보다 구체적으로, 혈관 내피세포에 대한 특이적인 마커인 CDH5의 유전자 발현 수준은 혈관 내피세포 순수 분리 방법에 의하여 분리되기 전 보다 12배 높을 수 있다. 또한, 혈관 내피세포에 대한 특이적인 마커인 VWF의 유전자 발현 수준은 혈관 내피세포 순수 분리 방법에 의하여 분리되기 전 보다 2배 높을 수 있다.
다시, 도 1을 참조하면, 본 발명의 일 실시예에 따른 혈관 내피세포 순수 분리 방법에 의하여 분리된 동질성의 내피세포는 세포의 양적 증가 및 세포의 유지를 위하여 계대 배양될 수 있다. 이때, 계대 배양에서 사용되는 배지는 순수 분리 단계에서 사용된 배지와 동일한, 세포 성장인자 및 아스코르빅산을 포함하는 DMEM/F-12 배지일 수 있다. 또한, 계대 배양은 1 내지 4 계대까지 수행될 수 있다. 보다 구체적으로, 혈관 내피세포는 배양이 4 계대 초과로 진행될 경우, 증식력 및 분화 능력이 감소될 뿐만 아니라, 장기간 배양할 경우 세포 집괴(Clump)등이 형성되고 염색체상의 변이가 동반될 수 있다. 따라서, 혈관 내피세포의 특성이 유지되면서 고순도를 가진 다량의 세포 수를 확보할 수 있는 계대 배양은 바람직하게, 1 내지 4 계대까지 일 수 있다.
이상의 본 발명의 일 실시예에 따른 혈관 내피세포 순수 분리 방법에 의하여, 인간 만능 줄기세포로부터 동질성의 특성을 가진 고순도의 혈관 내피세포를 높은 수율로 생산할 수 있는 효과가 있다.
본 발명의 일 실시예에 따른 혈관 내피세포 순수 분리 방법에서의 필터 효과 확인
이하에서는, 도 5a 내지 5b를 참조하여, 본 발명의 일 실시예에 따른 혈관 내피세포 순수 분리 방법에서 필터에 따른 효과에 대하여 구체적으로 설명한다.
도 5a 내지 5b는 본 발명의 일 실시예에 따른 혈관 내피세포 순수 분리 방법에서 필터 여부에 따른 마커 발현 및 현미경 이미지를 결과를 도시한 것이다.
도 5a를 참조하면, 본 발명의 일 실시예에 따른 혈관 내피세포 순수 분리 방법에서 필터 여부에 따른 마커들에 대한 양성 혈관 내피세포의 발현 수준 결과가 도시된다. 이때, 필터에 여부 따른 혈관 내피세포들은 동형 대조군(Isotype control)과 함께 검사될 수 있다. 동형 대조군은 항원 특이성이 없는 동종의 면역글로불린과 검체를 반응시킨 대조군으로서, 동형 대조군에서 양성 비율이 2 % 미만이 되도록하여 혈관 내피세포의 양성에 대한 cut-off로 설정될 수 있다.
먼저, 도 5a의 (a)를 참조하면, 필터가 사용되지 않았을 경우, 혈관 내피세포의 CDH5 마커에 대한 양성 발현 수준은 72.8 %인 것으로 나타난다. 나아가, 필터가 사용되었을 경우, 혈관 내피세포의 CDH5 마커에 대한 양성 발현 수준은 99.7 %인 것으로 나타난다.
나아가, 도 5a의 (b)를 참조하면, 전술한 필터 유무에 따른 혈관 내피세포의 마커에 대한 양성 발현 수준을 그래프로 나타낸 결과가 도시된다. 보다 구체적으로, 필터의 사용으로 인하여, CDH5 마커를 발현하는 양성 세포가 72.8 %에서 99.7 %로 증가된 것으로 나타난다. 이는, 필터의 사용으로 인하여, CDH5 마커를 발현하는 양성 세포의 수가 증가될 수 있다는 것을 의미할 수 있다.
더 나아가, 도 5b를 참조하면, 본 발명의 일 실시예에 따른 혈관 내피세포 순수 분리 방법에서 필터 여부에 따른 현미경 이미지 결과가 도시된다. 보다 구체적으로, 필터가 사용되지 않았을 경우, 관찰된 세포 군집(colony)들은 형태학적으로 균일하지 못한 세포들로 구성되어 있는 것으로 나타난다. 반면에, 필터가 사용되었을 경우, 세포 군집들은 형태학적으로 균일한 모양의 세포들로 구성되어 있는 것으로 나타난다. 이는, 필터의 사용으로 인하여, 동일한 형태학적 특성을 가진 세포로만 분리될 수 있다는 것을 의미할 수 있다.
이상의 결과로, 본 발명의 일 실시예에 따른 혈관 내피세포 순수 분리방법에서 필터의 사용함에 따라, 혈관 내피세포에 대한 특이적인 마커인 CDH5를 발현하는 양성 세포수가 증가될 수 있으며, 형태학적으로도 동일한 모양의 세포를 분리할 수 있다. 이에, 필터의 사용으로 인하여, 보다 높은 고순도의 혈관 내피세포를 제공할 수 있는 효과가 있다.
본 발명의 일 실시예에 따른 혈관 내피세포 순수 분리 방법에 의하여 분리된 혈관 내피세포의 순도 확인
이하에서는, 도 6a 내지 6c 및 도 7을 참조하여, 본 발명의 일 실시예에 따른 혈관 내피세포 순수 분리 방법에 의하여 분리된 혈관 내피세포의 순도 확인에 대하여 구체적으로 설명한다.
도 6a 내지 6c는 본 발명의 일 실시예에 따른 혈관 내피세포 순수 분리방법에 의하여 분리된 혈관 내피세포의 마커발현 결과를 도시한 것이다.
먼저, 도 6a를 참조하면, 본 발명의 본 발명의 일 실시예에 따른 혈관 내피세포 순수 분리 방법에서 마커들에 대한 양성 혈관 내피세포의 발현 수준 결과가 도시된다. 보다 구체적으로, 혈관 내피세포의 CDH5 마커에 대한 양성 발현 수준은 본 발명의 순수 분리가 수행되지 않았을 경우에는 41.6 %인 것으로 나타나며, 순수 분리가 수행되었을 경우에는 99.7 %인 것으로 나타난다.
또한, 혈관 내피세포의 PECAM1 마커에 대한 양성 발현 수준은 본 발명의 순수 분리가 수행되지 않았을 경우에는 16.9 %인 것으로 나타나며, 순수 분리가 수행되었을 경우에는 42.6 %인 것으로 나타난다.
또한, 혈관 내피세포의 TEK 마커에 대한 양성 발현 수준은 본 발명의 순수 분리가 수행되지 않았을 경우에는 11.6 %인 것으로 나타나며, 순수 분리가 수행되었을 경우에는 28.8 %인 것으로 나타난다.
또한, 혈관 내피세포의 KDR 마커에 대한 양성 발현 수준은 본 발명의 순수 분리가 수행되지 않았을 경우에는 2.6 %인 것으로 나타나며, 순수 분리가 수행되었을 경우에는 16.0 %인 것으로 나타난다.
또한, 혈관 내피세포의 VWF 마커에 대한 양성 발현 수준은 본 발명의 순수 분리가 수행되지 않았을 경우에는 71.6 %인 것으로 나타나며, 순수 분리가 수행되었을 경우에는 98.4 %인 것으로 나타난다.
나아가, 도 6b를 참조하면, 전술한 혈관 내피세포 순수 분리 방법에서 마커들에 대한 양성 혈관 내피세포의 발현 수준을 그래프로 나타낸 결과가 도시된다. 보다 구체적으로, 혈관 내피세포의 특징적인 지표인 CDH5, PECAM1, TEK, KDR 및 VWF 마커 모두에서, 순수 분리에 의하여 마커 발현 양성 세포수가 증가된 것으로 나타난다. 특히, CDH5 및 VWF에 대한 마커 발현 양성 세포수가 98 % 이상인 것으로 나타남에 따라, 혈관 내피세포의 순도가 98 % 이상인 것을 의미할 수 있다.
더 나아가, 도 6c를 참조하면, 본 발명의 일 실시예에 따른 혈관 내피세포 순수 분리 방법에 따른 혈관 내피세포의 마커들에 대한 mRNA의 발현 수준이 나타난다. 이때, 마커들의 발현 수준은 GAPDH를 이용하여 표준화되었다. 보다 구체적으로, CDH5, PECAM1, TEK, VWF 및 NOS 마커들에 대한 혈관 내피세포의 mRNA 발현 수준은 순수 분리에 의하여 증가되는 것으로 나타난다. 나아가, 98 % 순도를 갖는 혈관 내피세포에서 특징적으로 발현되는 CDH5 마커에 대한 유전자 발현은 순수 분리에 의하여 순수 분리되지 전보다 12배 높은 것으로 나타난다.
또한, 98 % 순도를 갖는 혈관 내피세포에서 특징적으로 발현되는 VWF 마커에 대한 유전자 발현은 순수 분리에 의하여 순수 분리되지 전보다 2배 높은 것으로 나타난다.
반면에, KDR 마커에 대한 혈관 내피세포의 mRNA 발현 수준은 순수 분리 전에 높은 것으로 나타난다. 이는, KDR 마커의 경우, 혈관 내피세포의 분화 초기에 발현되고, 성숙한 혈관 내피세포로 분화되면 이들 성징을 서서히 잃게 된다. 반면에, VWF 마커의 경우, 분화 초기에 발현되지 않고, 성숙한 혈관 내피세포로 분화되는 과정에서 발현되는 물질이다. 이에, KDR에 대한 mRNA 발현 수준이 높은 순수 분리 전의 내피세포 군집의 경우, 미분화된 혈관 내피세포가 포함된 것으로 의미할 수 있다. 나아가, VWF에 대한 mRNA 발현 수준이 높은 순수 분리 후의 내피세포 군집의 경우, 완전 분화되어 성숙한 혈관 내피세포가 포함된 것으로 의미할 수 있다.
예를 들어, 도 7을 참조하면, 본 발명의 일 실시예에 따른 혈관 내피세포 순수 분리 방법에 따른 계대 배양시 현미경 이미지가 도시된다. 순수 분리 방법이 수행되지 않은 혈관 내피세포의 계대 배양에서는 부착 세포 및 부유 세포가 섞여 있는 것으로 나타난다. 보다 구체적으로, 본 발명의 일 실시예에 따른 혈관 내피세포 순수 분리 방법에서의 혈관 내피세포는 인간 만능 줄기세포로부터 분화될 수 있다.
이때, 인간 만능 줄기세포의 경우, 줄기 세포의 특성을 갖기 때문에 기질 부착성이 다른 세포에 비하여 현저히 떨어질 수 있으며, 이에 따라, 부유 배양될 수 있다. 그러나, 줄기세포가 혈관 내피세포로 분화가 이루어지면서, 줄기세포에 대한 특성을 잃고, 혈관 내피세포에 대한 기질 부착성을 획득할 수 있다. 이에, 계대 배양시 부유 세포는 아직 기질 부착성이 떨어지는 줄기세포의 특성을 가지며, KDR 마커가 발현되는 분화 초기의 미분화된 세포임을 의미할 수 있다. 나아가, 부착 세포는 혈관 내피세포의 기질 부착성 특성이 나타난 성숙한 세포임을 의미할 수 있다.
더 나아가, 본 발명의 일 실시예에 따른 혈관 내피세포 순수 분리 방법에 의하여 성숙한 혈관 내피 세포만 분리되어 계대 배양된 경우, 부착 세포만 존재하는 것으로 나타난다. 이는, 미분화 세포가 존재하지 않고, 성숙한 혈관 내피세포만 파종되어, 고순도의 혈관 내피세포로 증식되었음을 의미할 수 있다.
이상의 결과로, 본 발명의 일 실시예에 따른 혈관 내피세포 순수 분리 방법에 의하여 미분화된 세포 및 특성이 다른 세포를 분리함으로써, 계대 배양시 높은 순도의 혈관 내피세포를 제공할 수 있음을 확인할 수 있었다. 이에, 혈관 내피세포의 특징적으로 발현되는 CDH5 및 VWF 마커 발현이 98 %이상, 즉 순도가 98 % 이상인 고순도의 혈관 내피세포를 제공할 수 있다.
혈관 내피세포 특성 유지 배양 방법
이하에서는 도 8 내지 10을 참조하여, 본 발명의 일 실시예에 따른 혈관 내피세포 특성 유지 배양 방법에 대해서 구체적으로 설명한다.
도 8은 본 발명의 일 실시예에 따른 혈관 내피세포 특성 유지 배양 방법의 절차를 도시한 것이다. 이하에서는, 설명의 편의를 위해서 도 9a 내지 10을 참조하여 설명한다.
도 8을 참조하면, 본 발명의 일 실시예에 따른 혈관 내피세포 특성 유지 배양 방법은, 인간 만능 줄기세포를 유도 배지와 현탁하여 플레이트상에 제 1 접종하는 단계(S110), 제 1 접종된 줄기세포를 유도 배지에서 중배엽 세포로 분화하도록 제 1 배양하는 단계(S120), 제 1 배양된 세포를 분화 배지에서 내피세포로 분화하도록 제 2 배양하는 단계(S130), 제 2 배양된 세포를 혈관 내피세포 계통의 세포로 선별하는 단계(S140), 선별된 혈관 내피세포를 유지 배지와 현탁하여 플레이트상에 제 2 접종하는 단계(S150) 및 제 2 접종된 혈관 내피세포를 유지 배지에서 증식하도록 계대 배양하는 단계(S160)를 포함한다.
이때, 배양 환경 조건에서 온도는 36 ℃내지 38 ℃바람직하게는 36.5 ℃내지 37.5 ℃이며, 공급 산소(O2)는 1 % 내지 25 %이며, 공급 이산화탄소(CO2)는 1 % 내지 15 %일 수 있다.
보다 구체적으로, 먼저, 인간 만능 줄기세포를 유도 배지와 현탁하여 플레이트상에 제 1 접종하는 단계(S110)에서는, 미분화 상태의 인간 만능 줄기세포를 단백질 분해 효소를 이용하여 조직에서 분리한 후, 유도 배지와 현탁하여 0.1 mg/ml의 콜라겐을 포함하는 코팅막이 코팅된 플레이트상에 접종(Seeding)시킨다.
이때, 단백질 분해 효소는 생체 조직에 포함되는 세포 또는 세포 집합체를 유리시키기 위해서 세포간 매트릭스를 단리시킬 수 있는 효소를 의미하며, 조직으로부터 인간 만능 줄기세포를 분리 또는 세포 및 세포 집합체를 분리하기 위하여 콜라제네이즈(Collagenase), 디스페이즈(Dispase), 프로테아제(Protease) 및 트립신(Trypsin) 등이 이용될 수 있으나, 이에 제한되는 것은 아니다.
나아가, 플레이트는 세포 배양이 이루어질 수 있는 것이라면 한정되지 않고, 플라스크, 조직 배양용 플라스크, 디쉬, 페트리디쉬, 마이크로 플레이트, 마이크로 웰 플레이트, 마이크로 슬라이드, 팸버 슬라이드, 샬레, 튜브, 트레이 및 배양 백 등 다양한 모양의 플레이트가 이용될 수 있으며, 상부표면의 세포부착층 코팅막을 포함할 수 있다. 보다 구체적으로, 플레이트의 코팅막은, 콜라겐, 피브로넥틴, 라미딘, 라미딘 프래그먼트, 비트로넥린, 기저막 매트릭스, 젤라틴, 히알루론산, 폴리리신 및 비트로넥린 중 적어도 하나를 포함할 수 있으며, 1 mg/ml 이하, 바람직하게는 0.1 mg/ml의 콜라겐을 포함할 수 있다. 이에, 0.1mg/ml의 콜라겐 코팅막을 포함하는 플레이트에 배양됨에 따라 세포의 접착 및 신전이 촉진되어, 중배엽 계통 세포의 분화 효율이 증가될 수 있다.
그 다음, 제 1 접종된 줄기세포를 유도 배지에서 중배엽 세포로 분화하도록 제 1 배양하는 단계(S120)에서는, 성장인자인 4 내지 6 ng/ml의 FGF2, GSK3β저해제인 2 내지 4 μM의 CHIRR99021 및 DMEM/F-12를 포함하는 유도 배지에서 3 일간 매일 배지를 교체하며 배양함으로써, 줄기세포에서 중배엽 계통 세포로 분화를 유도할 수 있다.
이때, FGF2(Fibroblast growth factor)는 세포증식, 세포분화 등을 비롯해 분열 촉진, 혈관 생성, 뼈 형성 및 신경 성장 등의 다양한 생물학적 과정에 관련되어 있는 성장 인자이다.
또한, CHIRR99021는 GSK(Glycogen synthase kinase)의 활성을 억제하는 물질이다. 보다 구체적으로, GSK가 억제됨에 따라 세포 증식에 관여하는 신호전달체계의 ß이 GSK에 의해 분해되지 않아 세포 증식에 관여하는 유전자 발현량이 증가되어, 세포의 생존 및 증식이 향상될 수 있다.
그 다음, 제 1 배양된 세포를 분화 배지에서 내피세포로 분화하도록 제 2 배양하는 단계(S130)에서는, 성장인자인 4 내지 6 ng/ml의 FGF2, 5 내지 10 ng/ml의 EGF, 10 내지 30 ng/ml의 VEGF-A, 노치 신호 전달 리간드인 20 내지 30 ng/ml의 DLL4 및 DMEM/F-12를 포함하는 분화 배지에서 11 내지 13일간 매일 배지를 교체하며 배양함으로써, 중배엽 계통의 세포에서 내피세포 계통으로 분화를 유도할 수 있다. 나아가, 제 1 배양된 세포를 분화 배지에서 내피세포로 분화하도록 제 2 배양하는 단계(S130)에서 선택적으로 헤파린이 이용됨으로써, 내피세포 계통으로의 분화 효율이 증가될 수 있다.
이때, EGF(Epidermal growth factor)는 이의 수용체와 결합하여 세포의 증식, 성장 및 분화를 촉진할 수 있는 성장 인자이며, 상피세포의 증식을 촉진하는 활성을 가질 수 있다.
또한, VEGF-A(Vascular endothelial growth factor)는 VEGF 신호전달을 활성화하여 배아 순환계 형성 및 혈관 형성에 관여하는 신호전달 물질이며, 내피세포의 세포 분열 및 세포 이동을 자극할 수 있다.
또한, DLL4(Delta-like ligand 4)는 내피세포의 성장, 이동, 동/정맥 분화의 결정, 팁/스톡 세포 결정 및 팁 세포 형성을 감소시켜 과도한 혈관신생을 억제하는 역할을 하는 노치(Notch) 수용체에 작용하여 혈관신생성 발아를 적절하게 조절하는 신호전달물질이다. 특히, DLL4의 추가로 인하여, 세포의 특성을 구별하고 유지하는데 작용하는 노치신호가 조절되어, 혈관 내피세포의 특성 즉, 마커의 발현 수준이 증가될 것으로 판단된다.
그 다음, 제 2 배양된 세포를 혈관 내피세포 계통의 세포로 선별하는 단계(S140)에서는, 줄기세포로부터 분화된 다양한 세포주들 즉, 내피세포 계통으로부터 혈관 내피세포를 선별함으로써, 높은 순도의 혈관 내피세포를 획득할 수 있다. 보다 구체적으로, 도 9a 내지 9d를 참조하여, 순수 혈관 내피세포로 선별하는 과정을 설명한다.
먼저, 도 9a의 (a)를 참조하면, 내피세포 계통으로 구성되는 콜로니(Colony)가 도시된다. 인간 만능 줄기세포로부터 분화된 내피세포는 자율적으로 분화됨으로써 불균질(Heterogeneous)한 내피세포 계통으로 구성되는 콜로니를 형성할 수 있다. 이에, 도 9a의 (b)를 참조하면, 분화된 내피세포 계통들은 크기 및 형태면에서 다양한 종류가 섞여 있는 것으로 나타난다.
그 다음, 도 9b를 참조하면, 세포 선별에 앞서 분화된 내피세포 계통으로 구성되는 콜로니를 2개 이하의 플레이트상에 분할하여 접종할 수 있다. 이때, 플레이트가 2개를 초과하여 접종할 경우, 혈관 내피세포의 선별 수율이 감소할 수 있다.
그 다음, 높은 순도의 혈관 내피세포만을 획득하기 위하여 세포 선별이 수행될 수 있다. 세포 선별은 분화된 특정 세포를 고순도로 분리하기 위한 기술로서, 유세포 분류(Flow cell sorting) 및 자성 세포 분류(magnetic cell sorting) 등이 이용될 수 있으나, 세포 고유의 특성을 이용하여 세포를 선별할 수도 있다.
예를 들어, 도 9c의 (a)를 참조하면, 기질의 특이적 표면 부착성을 가지는 세포의 선택적 부착을 이용하여 세포가 분리 및 선별될 수 있다. 보다 구체적으로, 각 세포들은 특성에 따라, 기질에 부착되는 시간이 다르게 나타날 수 있다. 이에, 기질로 이루어진 코팅막을 포함하는 플레이트에 불균질한 내피세포 계통을 배양하여, 플레이트의 코팅막에 부착되는 세포들을 배양 시간에 따라 순차적으로 분류할 수 있다.
도 9c의 (b)를 참조하면, 특정 시간 내에 부착된 혈관 내피세포가 도시된다. 동일 시간에 부착된 세포는 모두 동일한 모양을 갖는 것으로 나타나며, 부유 세포들은 같은 특성을 가진 내피세포가 아닌 것으로 간주하여, 세척을 통하여 제거된다. 이때, 기질로 이루어진 코팅막은 0.1 mg/ml의 콜라겐을 포함할 수 있으나, 이에 제한되는 것은 아니며, 혈관 내피세포가 시간에 따라 특이적으로 부착될 수 있는 다양한 기질을 포함하는 코팅막이 이용될 수 있다.
마지막으로, 도 9d의 (a)를 참조하면, 플레이트의 코팅막에 부착된 세포만을 선별한다. 도 9d의 (b)를 참조하면, 선별된 세포들은 동일한 형태인 것으로 나타나며, 이는, 동일한 특성을 가진 내피세포임을 의미할 수 있다. 이에, 전술한 방법에 의하여 순도 높은 혈관 내피세포만을 선별하여 이용할 수 있다. 부착시간은 4시간 내지 20시간일 수 있다. 즉, 세포 선별은 접종 후 4시간 내지 20시간에 내피세포 계통의 세포를 분리하는 것을 의미할 수 있다.
다시, 도 8의 선별된 혈관 내피세포를 유지 배지와 현탁하여 플레이트상에 제 2 접종하는 단계(S150)에서는, 고순도로 선별된 혈관 내피세포를 유지 배지와 현탁하여 0.1 mg/ml의 콜라겐을 포함하는 코팅막이 코팅된 플레이트상에 접종시킨다.
마지막으로, 제 2 접종된 혈관 내피세포를 유지 배지에서 증식하도록 계대 배양하는 단계(S160)에서는, 성장인자인 4 내지 6 ng/ml의 FGF2, 5 내지 10 ng/ml의 EGF, 10 내지 30 ng/ml의 VEGF-A, 20 내지 50 ng/ml의 아스코르빅산 및 DMEM/F-12를 포함하는 유지 배지에서 계대 배양함으로써, 혈관 내피세포의 증식을 유도할 수 있다.
이때, 계대 배양은 1 내지 4 계대까지 수행될 수 있다. 보다 구체적으로, 혈관 내피세포는 배양이 4 계대 초과로 진행될 경우, 증식력 및 분화 능력이 감소될 뿐만 아니라, 장기간 배양할 경우 세포 집괴(Clump)등이 형성되고 염색체상의 변이를 동반할 수 있다. 이에, 도 10을 참조하면, 배양 계대수에 따른 혈관 내피세포의 현미경 이미지를 나타내는 결과가 도시된다. 각 계대에 따른 혈관 내피세포는 모두 동일한 크기 및 형태를 갖는 것으로 나타나며, 4계대까지 세포 집괴가 생성되지 않는 것으로 나타난다. 이때, 세포 집괴가 형성된 경우, 세포 주기 억류(Cell cycle arrest)가 발생하고, 이에 따라 자체 분화가 유도되어 원하고자 하는 세포 즉, 혈관 내피세포로의 분화가 어려울 수 있다. 따라서, 혈관 내피세포의 특성이 유지되면서 고순도를 가진 다량의 세포 수를 확보할 수 있는 계대 배양은 바람직하게, 1 내지 4 계대까지 일 수 있다.
나아가, 아스코르빅산(Ascorbic acid)는 산화방지제로 procollagen 합성에 관여하며, type 1 콜라겐 생산의 증가와 관련된 보조인자(Cofactor)이다. 아스코르빅산은 in vitro에서 지방세포, 조골세포, 연골세포와 같은 다양한 중배엽 유래의 세포 증식을 자극 및 조절할 수 있다. 나아가, 중간엽 줄기세포의 배양 배지에 특정 농도의 아스코르빅산을 첨가할 경우, 세포 성장 촉진제로 작용하여 세포의 증식력이 증가되고, DNA의 합성까지 촉진시킬 수 있다. 그러나, 아스코르빅산의 농도가 적절하지 못할 경우, 오히려 세포의 증식력을 억제시키고, 세포 독성(Cytotoxic)을 가짐으로 세포 자살(Apoptosis)를 일으킬 수 있다. 이에, 세포의 증식력을 향상시킬 수 있는 적정 아스코르빅산의 농도는 20 내지 50 ng/ml일 수 있으나, 이에 제한되는 것은 아니다.
이상의 본 발명의 일 실시예에 따른 혈관 내피세포 특성 유지 배양 방법에 의하여, 인간 만능 줄기세포로부터 혈관 내피세포를 높은 수율로 생산할 수 있는 효과가 있다.
본 발명의 일 실시예에 따른 유지 배지에서의 혈관 내피세포 특성 유지 확인
이하에서는, 도 11a 내지 12를 참조하여, 본 발명의 일 실시예에 따른 유지 배지에서의 혈관 내피세포 특성 유지에 대하여 구체적으로 설명한다.
도 11a 내지 11c는 본 발명의 일 실시예에 따른 혈관 내피세포 특성 유지 배양에서 마커들에 대한 양성 혈관 내피세포의 상대적 발현 수준을 나타내는 결과이다.
먼저, 도 11a를 참조하면, 혈관 내피세포 양성 대조군(Positive control)의 상대적 마커 발현 수준이 도시된다. 보다 구체적으로, 혈관 내피세포 양성 대조군에서는 CDH5, PECAM1, TEK, KDR 및 VWF가 발현되는 것으로 나타난다. 이는, CDH5, PECAM1, TEK, KDR 및 VWF가 혈관 내피세포에서 특성을 나타내는 마커임을 의미할 수 있다. 이에, 혈관 내피세포에 특이적으로 발현하는 마커인, CDH5, PECAM1, TEK, KDR 및 VWF를 확인함에 따라, 혈관 내피세포의 특성 유지를 확인할 수 있다.
이에, 도 11b를 참조하면, 유지 배지에서의 계대 배양에 따른 혈관 내피세포의 마커 발현 수준 결과가 도시된다. 보다 구체적으로, 유지 배지에서의 계대 배양에 따른 혈관 내피세포의 CDH5 마커에 대한 양성 발현 수준은 1 계대에서 99.7 %, 2 계대에서 99.0 %, 3 계대에서 99.2 % 및 4 계대에서 98.3 % 인 것으로 나타난다.
또한, 유지 배지에서의 계대 배양에 따른 혈관 내피세포의 PECAM1 마커에 대한 양성 발현 수준은 1 계대에서 42.8 %, 2 계대에서 43.2 %, 3 계대에서 38.6 % 및 4 계대에서 45.4 % 인 것으로 나타난다.
또한, 유지 배지에서의 계대 배양에 따른 혈관 내피세포의 TEK 마커에 대한 양성 발현 수준은 1 계대에서 28.8 %, 2 계대에서 63.4 %, 3 계대에서 30.2 % 및 4 계대에서 17.9 % 인 것으로 나타난다.
또한, 유지 배지에서의 계대 배양에 따른 혈관 내피세포의 KDR 마커에 대한 양성 발현 수준은 1 계대에서 16.0 %, 2 계대에서 61.2 %, 3 계대에서 14.5 % 및 4 계대에서 4.6 % 인 것으로 나타난다.
또한, 유지 배지에서의 계대 배양에 따른 혈관 내피세포의 VWF 마커에 대한 양성 발현 수준은 1 계대에서 98.4 %, 2 계대에서 93.1 %, 3 계대에서 88.3 % 및 4 계대에서 97.4 % 인 것으로 나타난다.
따라서, 유지 배지에서의 계대 배양에 따른 혈관 내피세포는 혈관 내피세포 양성 대조군에서 확인된 마커인 CDH5, PECAM1, TEK, KDR 및 VWF에 대하여 높은 발현 수준을 나타내는 고순도의 분화된 혈관 내피세포임을 의미할 수 있다. 고순도는 98 % 이상의 순도를 의미할 수 있으며, 예를 들어, CDH5 양성 세포 발현이 4계대까지 98 % 이상 유지되는 것을 의미할 수 있다.
나아가, 도 11c를 참조하면, 전술한 유지 배지에서의 계대 배양에 따른 혈관 내피세포의 마커에 대한 양성 발현 수준을 그래프로 나타낸 결과가 도시된다. 보다 구체적으로, CDH5 마커에서는 4 계대까지 CDH5 발현 양성 세포수가 98 % 이상 유지되는 것으로 나타나며, PECAM1 마커에서는 4 계대까지 CDH5 발현 양성 세포수가 40 % 이상 유지되는 것으로 나타나며, VWF 마커에서는 4 계대까지 CDH5 발현 양성 세포수가 88 % 이상 유지되는 것으로 나타난다. 그러나, TEK 및 KDR 마커에서는 각 계대별 마커 발현 양성 세포수가 균일하지 못하거나, 감소하는 경향을 보이나, 3 계대까지의 마커 발현 양성 세포수는 혈관 내피세포 양성 대조군보다 높게 유지된 것으로 나타난다. 따라서, 혈관 내피세포가 유지 배지에서 계대 배양된 경우, 혈관 내피세포 양성 대조군에서 확인된 마커인 CDH5, PECAM1, TEK, KDR 및 VWF의 발현이 4 계대까지 지속적으로 유지된 것으로 나타난다. 이는, 유지 배지에서의 혈관 내피세포의 배양은 혈관 내피세포의 특성을 유지하면서 증식시킬 수 있다는 것을 의미할 수 있다.
더 나아가, 도 12를 참조하면, 본 발명의 일 실시예에 따른 혈관 내피세포 특성 유지 배양 방법에서 혈관 내피세포의 계대수에 따른 세포 성장률이 도시된다. 이때, 세포는 이분법을 이용하여 증식함에 따라, 세포 성장률은 한 개의 세포가 두 개의 세포로 되는 시간이 어느 정도인지에 따라 결정된다. 이를, 분열 시간(Doubling time)이라 하며 세포의 성장률 즉, 증식력을 평가할 수 있는 척도로 사용될 수 있다. 이에, 세포 성장률은 혈관 내피세포의 계대수에 따라 CPDL(Cumulative population doubling level) 값으로 나타냈다. CPDL은 세포 성장률을 나타내는 지수이다. 보다 구체적으로, CPDL 값이 10이라 하면 세포가 10번의 분열을 하였음을 의미할 수 있으며, 이를 수치상으로 계산하면 하나의 세포가 약 1000개의 세포까지 증식함을 의미할 수 있다. CPDL은 아래의 수학식 1에 의해 계산되었다.
Figure PCTKR2020015785-appb-M000001
이때, Ni는 초기 접종(Seeding)한 세포수, Nf는 최종 세포수, In은 자연로그를 의미한다.
유지 배지에서 배양된 혈관 내피세포의 CPDL 값은 1 내지 4 계대에서 1 내지 2.5 범위 내의 값을 갖는 것으로 나타난다. 이는, 하나의 혈관 내피세포가 22.5 개까지 증식할 수 있음을 의미할 수 있다.
이상의 결과로, 본 발명의 일 실시예에 따른 혈관 내피세포 특성 유지 배양 배지에서의 혈관 내피세포의 증식 배양은 거듭되는 배양에도 불구하고 세포의 형태 및 특성에 변화없이 균일한 혈관 내피세포로 증식시킬 수 있다.
배지에 따른 혈관 내피세포 특성 유지 비교
이하에서는, 도 13a 내지 도 15을 참조하여, 배지에 따른 혈관 내피세포 특성 유지에 대하여 구체적으로 설명한다. 이때, 실시예 1은 본 발명의 일 실시예에 따른 4 내지 6 ng/ml의 FGF2, 5 내지 10 ng/ml의 EGF, 10 내지 30 ng/ml의 VEGF-A, 20 내지 50 ng/ml의 아스코르빅산 및 DMEM/F-12을 포함하는 혈관 내피세포 특성 유지 배지로 설정하였다.
나아가, 비교예 1은 hFGF-B, VEGF, R3-IGF-1, 아스코르빅산, hEGF, 헤파린 및 GA-1000을 포함하는 종래의 세포 배양 배지로, 비교예 2는 4 내지 6 ng/ml의 FGF2, 5 내지 10 ng/ml의 EGF, 10 내지 30 ng/ml의 VEGF-A, 20 내지 30 ng/ml의 DLL4 및 DMEM/F-12을 포함하는 본 발명의 혈관 내피세포 분화 배지로 설정하였다.
먼저, 도 13a 및 13b는 본 발명의 일 실시예에 따른 혈관 내피세포 특성 유지 배양 방법에서 혈관 내피세포의 배양 배지에 따른 마커들에 대한 양성 혈관 내피세포의 상대적 발현 수준을 나타내는 결과이다.
보다 구체적으로, 도 13a를 참조하면, 배양 배지에 따른 혈관 내피세포의 마커 발현 수준 결과가 도시된다. 혈관 내피세포의 CDH5 마커에 대한 양성 발현 수준은 비교예 1에서 96.2 %, 비교예 2에서 99.4 % 및 실시예 1에서 99.0 %인 것으로 나타난다.
또한, 혈관 내피세포의 PECAM1 마커에 대한 양성 발현 수준은 비교예 1에서 42.9 %, 비교예 2에서 37.6 % 및 실시예 1에서 59.9 %인 것으로 나타난다.
또한, 혈관 내피세포의 TEK 마커에 대한 양성 발현 수준은 비교예 1에서 57.3 %, 비교예 2에서 38.8 % 및 실시예 1에서 66.9 %인 것으로 나타난다.
또한, 혈관 내피세포의 KDR 마커에 대한 양성 발현 수준은 비교예 1에서 19.2 %, 비교예 2에서 69.4 % 및 실시예 1에서 63.8 %인 것으로 나타난다.
또한, 혈관 내피세포의 VWF 마커에 대한 양성 발현 수준은 비교예 1에서 85.0 %, 비교예 2에서 91.6 % 및 실시예 1에서 96.7 %인 것으로 나타난다.
따라서, 배양 배지에 따른 혈관 내피세포는 혈관 내피세포 양성 대조군에서 확인된 마커인 CDH5, PECAM1, TEK, KDR 및 VWF에 대하여 발현을 나타내는 혈관 내피세포임을 의미할 수 있다.
그러나, 도 13b를 참조하면, 전술한 배양 배지에 따른 혈관 내피세포의 마커에 대한 양성 발현 수준을 그래프로 나타낸 결과가 도시된다. 보다 구체적으로, 도 13b의 (a) 및 (e)를 참조하면, 혈관 내피세포의 특징적인 지표인 CDH5 및 VWF 마커에서는 비교예 1, 비교예 2 및 실시예 1 모두가 높은 마커 발현 양성 세포수를 보이는 것으로 나타난다. 반면에, 도 13b의 (b), (c) 및 (d)를 참조하면, 혈관 내피세포의 특징적인 지표인 PECAM1, TEK 및 KDR 마커에서는, 실시예 1이 비교예 1 및 2 보다 높은 마커 발현 양성 세포수를 보이는 것으로 나타난다. 이때, 소수 지표의 발현 확인만으로는 분화된 세포가 혈관 내피세포임을 입증하기에 어려울 수 있다. 이에, 이와 관련된 다수의 지표가 높을수록 보다 순도가 높은 내피세포일 수 있다. 따라서, 혈관 내피세포에 특이적으로 발현하는 마커들에 대하여 모두 높은 마커 발현 양성 세포수를 보인, 실시예 1이 가장 고순도의 분화된 혈관 내피세포임을 의미할 수 있다.
나아가, 도 14를 참조하면, 본 발명의 일 실시예에 따른 혈관 내피세포 특성 유지 배양 방법에서 혈관 내피세포의 계대수에 따른 혈관 내피세포의 배양 배지 별 세포 성장률 결과가 도시된다. 보다 구체적으로, 비교예 1에서 배양된 혈관 내피세포의 CPDL 값은 1 내지 4 계대에서 1 내지 4.5 범위 내의 값을 갖는 것으로 나타난다. 이는, 하나의 혈관 내피세포가 24.5 개까지 증식할 수 있음을 의미할 수 있다.
또한, 비교예 2에서 배양된 혈관 내피세포의 CPDL 값은 1 내지 4 계대에서 1 내지 3 범위 내의 값을 갖는 것으로 나타난다. 이는, 하나의 혈관 내피세포가 23 개까지 증식할 수 있음을 의미할 수 있다.
또한, 실시예 1에서 배양된 혈관 내피세포의 CPDL 값은 1 내지 4 계대에서 1 내지 3.5 범위 내의 값을 갖는 것으로 나타난다. 이는, 하나의 혈관 내피세포가 23.5 개까지 증식할 수 있음을 의미할 수 있다. 따라서, 세포 성장률은 가장 많이 증식할 수 있는 비교예 1이 가장 좋을 수 있다. 그러나, 세포가 빠르게 폭발적으로 증가하는 경우, 세포는 세포 집괴가 형성될 수 있으며, 세포 집괴로 인하여 원하지 않는 세포로 분화가 유발될 수 있다.
이에, 도 15를 참조하면, 본 발명의 일 실시예에 따른 혈관 내피세포 특성 유지 배양 방법에서 혈관 내피세포의 배양 배지에 따른 혈관 내피세포의 현미경 이미지가 도시된다. 보다 구체적으로, 비교예 1에서 배양된 혈관 내피세포에서 세포 집괴가 형성된 것으로 나타난다. 반면에, 실시예 1에서는 세포 집괴의 형성 없이 각각의 혈관 내피세포들로만 이루어진 것으로 나타난다. 따라서, 원하는 방향으로만 분화가 유도되면서, 증식력이 우수한 배지는 실시예 1일 수 있다.
이상의 결과로, 본 발명의 일 실시예에 따른 혈관 내피세포 특성 유지 배지는 세포 배양이 진행될수록 증식력 및 재생능이 감소되고, 변이를 동반하여 혈관 내피세포의 특성이 변질되는 문제를 야기하지 않아, 혈관 내피세포를 고순도로 유지 및 증식할 수 있는 효과가 있다.
이에, 본 발명은 균일한 혈관 내피세포를 제공함으로써, 임상 적용에 있어 안정적으로 사용가능한 혈관 내피세포를 제공할 수 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시 예들을 더욱 상세하게 설명하였으나, 본 발명은 반드시 이러한 실시 예로 국한되는 것은 아니고, 본 발명의 기술사상을 벗어나지 않는 범위 내에서 다양하게 변형 실시될 수 있다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 그러므로, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
[이 발명을 지원한 국가연구개발사업]
[과제고유번호] HI16C2211
[부처명] 보건복지부
[연구관리 전문기관] 한국보건산업진흥원
[연구사업명] 첨단의료기술개발사업
[연구과제명] 인간유도만능줄기세포유래 내피세포의생산 및 치료효과 결정
[기여율] 1/1
[주관기관] 연세대학교 산학협력단
[연구기간] 2019.04.01 ~ 2020.01.31

Claims (30)

  1. 인간 만능 줄기세포로부터 분화된 내피세포 계통의 세포주를 분화 배지로부터 수득하는 단계;
    수득된 상기 세포주를 필터를 이용하여 여과하는 단계;
    여과된 상기 세포주를 기질 상에 배양하는 단계, 및
    배양된 상기 세포주에서 기질 상에 부착된 동질성(homogenous)의 내피세포를 분리하는 단계를 포함하는, 혈관 내피세포 순수 분리 방법.
  2. 제 1 항에 있어서,
    상기 필터는,
    공극 간격이 20 내지 40μm 범위인, 혈관 내피세포 순수 분리 방법.
  3. 제 1 항에 있어서,
    상기 기질은,
    콜라겐, 피브린, 피브로넥틴, 비트로넥틴, 마트리겔, 젤라틴, 라미닌, 헤파린, 폴리리신 및 히알루론산 중 적어도 하나를 포함하는, 혈관 내피세포 순수 분리 방법.
  4. 제 3 항에 있어서,
    상기 기질은,
    콜라겐이고, 0.1 mg/ml의 상기 콜라겐을 포함하는, 혈관 내피세포 순수 분리 방법.
  5. 제 1 항에 있어서,
    상기 배양하는 단계는,
    세포 성장인자 및 아스코르빅산을 포함하는 DMEM/F-12 배지에서 배양하는, 혈관 내피세포 순수 분리 방법.
  6. 제 5 항에 있어서,
    상기 세포 성장인자는,
    FGF-1(fibroblast growth factor-1), FGF-2(bFGF), FGF-3, FGF-4, FGF-5, FGF-6, EGF(epidermal growth factor), KGF(keratinocyte growth factor), HGF(hepatocyte growth factor), TGF-α(transforming growth factor-α), TGF-β, 엔지오포이에린 1(angipoietin 1), 엔지오포이에린 2, 에리트로포이에린(erythropoietin), 뉴로필린, IGF-1, 오스테오폴린, 플레이오트로핀, 액티빈, 엔도텔린01 및 VEGF-A(vascular endothelial growth factor-A) 중 적어도 하나를 포함하는, 혈관 내피세포 순수 분리 방법.
  7. 제 1 항에 있어서,
    상기 배양하는 단계는,
    여과된 상기 세포주를 2개의 기질 상에 파종하는 단계를 포함하는, 혈관 내피세포 순수 분리 방법.
  8. 제 1 항에 있어서,
    상기 배양하는 단계는,
    4시간 내지 20시간 동안 배양되는, 혈관 내피세포 순수 분리 방법.
  9. 제 1 항에 있어서,
    상기 동질성의 내피세포는,
    CDH5 및 VWF를 발현하는, 혈관 내피세포 순수 분리 방법.
  10. 제 9항에 있어서,
    상기 CDH5의 유전자 발현 수준은,
    분리되기 전 보다 12배 높은, 혈관 내피세포 순수 분리 방법.
  11. 제 9항에 있어서,
    상기 VWF의 유전자 발현 수준은,
    분리되기 전 보다 2배 높은, 혈관 내피세포 순수 분리 방법.
  12. 제 1 항 내지 11 항 중 어느 한 항의 방법으로 분리되어 CDH5 및 VWF를 발현하는 동질성(homogenous)의 내피세포를 98 %이상 함유하는, 혈관 내피세포.
  13. 제 12 항에 기재된 98 % 이상의 순도를 가지는 혈관 내피세포를 포함하는, 심혈관계 질환의 예방용 또는 치료용 세포 치료제 조성물.
  14. 제 13 항에 있어서,
    상기 심혈관계 질환은,
    허혈성 심장 질환, 심부전, 고혈압성 심장질환, 부정맥, 심장관막증, 심실중격결손, 선천성 심장질환, 심근중, 심낭질환, 뇌졸증, 말초혈관질환, 동맥류, 동맥경화증, 고혈압, 협심증 및 심근경색증 중 적어도 하나인, 심혈관계 질환의 예방용 또는 치료용 세포 치료제 조성물.
  15. 인간 만능 줄기세포(human pluripotent stem cell, hPSC)를 유도 배지와 현탁하여 플레이트상에 제 1 접종하는 단계;
    상기 제 1 접종된 줄기세포를 유도 배지에서 중배엽 세포로 분화하도록 제 1 배양하는 단계;
    상기 제 1 배양된 세포를 분화 배지에서 내피세포로 분화하도록 제 2 배양하는 단계;
    상기 제 2 배양된 세포를 혈관 내피세포 계통의 세포로 선별하는 단계;
    선별된 상기 혈관 내피세포를 유지 배지와 현탁하여 플레이트상에 제 2 접종하는 단계, 및
    상기 제 2 접종된 혈관 내피세포를 유지 배지에서 증식하도록 계대 배양하는 단계를 포함하는, 혈관 내피세포 특성 유지 배양 방법.
  16. 제 15 항에 있어서,
    상기 유도 배지는,
    4 내지 6 ng/ml의 FGF2 및 2 내지 4 μM의 CHIRR99021을 포함하는, 혈관 내피세포 특성 유지 배양 방법.
  17. 제 15 항에 있어서,
    상기 분화 배지는,
    4 내지 6 ng/ml의 FGF2, 5 내지 10 ng/ml의 EGF, 10 내지 30 ng/ml의 VEGF-A 및 20 내지 30 ng/ml의 DLL4를 포함하는, 혈관 내피세포 특성 유지 배양 방법.
  18. 제 15 항에 있어서,
    상기 유지 배지는,
    4 내지 6 ng/ml의 FGF2, 5 내지 10 ng/ml의 EGF, 10 내지 30 ng/ml의 VEGF-A 및 20 내지 50 ng/ml의 아스코르빅산을 포함하는, 혈관 내피세포 특성 유지 배양 방법.
  19. 제 15 항에 있어서,
    상기 인간 만능 줄기세포는,
    배아 줄기 세포(embtyonic stem cell), 유도 만능 줄기세포(induced pluripotent stem cell, iPSC) 및 체세포 핵치환 줄기세포 (somatic cell nuclear transfer cell, SCNT) 중 적어도 하나를 포함하는, 혈관 내피세포 특성 유지 배양 방법.
  20. 제 15 항에 있어서,
    상기 제 1 배양하는 단계는,
    3일 동안 매일 배지를 교체하며 배양하는 단계인, 혈관 내피세포 특성 유지 배양 방법.
  21. 제 15 항에 있어서,
    상기 제 2 배양하는 단계는,
    11 내지 13일 동안 매일 배지를 교체하며 배양하는 단계인, 혈관 내피세포 특성 유지 배양 방법.
  22. 제 15 항에 있어서,
    상기 플레이트는,
    콜라겐, 피브로넥틴, 라미닌, 라미닌 프래그먼트, 비트로넥린, 기저막 매트릭스, 젤라틴, 히알루론산, 폴리리신 및 비트로넥린 중 적어도 하나로 이루어진 코팅막을 포함하는, 혈관 내피세포 특성 유지 배양 방법.
  23. 제 22항에 있어서,
    상기 코팅막은,
    0.1 mg/ml의 상기 콜라겐을 포함하는, 혈관 내피세포 특성 유지 배양 방법.
  24. 제 15 항에 있어서,
    상기 계대 배양은,
    1 내지 4 계대까지 수행되는, 혈관 내피세포 특성 유지 배양 방법.
  25. 제 15 항 내지 24 항 중 어느 한 한의 방법으로 제조된 98% 이상의 순도를 가지는 혈관 내피세포.
  26. 4 내지 6 ng/ml의 FGF2, 5 내지 10 ng/ml의 EGF, 10 내지 30 ng/ml의 VEGF-A 및 20 내지 50 ng/ml의 아스코르빅산을 유효성분으로 포함하는, 혈관 내피세포 특성 유지 배지.
  27. 혈관 내피세포 계통으로 분리된 세포를 4 내지 6 ng/ml의 FGF2, 5 내지 10 ng/ml의 EGF, 10 내지 30 ng/ml의 VEGF-A 및 20 내지 50 ng/ml의 아스코르빅산을 유효성분으로 포함하는 유지 배지와 현탁하여 플레이트상에 접종하는 단계, 및
    접종된 상기 혈관 내피세포를 상기 유지 배지에서 혈관 내피세포의 특성이 유지되도록 계대 배양하는 단계를 포함하는, 혈관 내피세포 특성 유지 배양 방법.
  28. 제 27 항에 있어서,
    상기 계대 배양된 세포는,
    CDH5 양성 세포 발현이 4계대까지 98 % 이상 유지되는, 혈관 내피세포 특성 유지 계대 배양 방법.
  29. 제 27 항에 있어서,
    상기 계대 배양된 세포는,
    PECAM1 양성 세포 발현이 4계대까지 40 % 이상 유지되는, 혈관 내피세포 특성 유지 계대 배양 방법.
  30. 제 27 항에 있어서,
    상기 계대 배양된 세포는,
    VWF 양성 세포 발현이 4계대까지 88 % 이상 유지되는, 혈관 내피세포 특성 유지 계대 배양 방법.
PCT/KR2020/015785 2019-11-13 2020-11-11 혈관 내피세포 순수 분리 방법, 혈관 내피세포 특성 유지 배지 및 이를 포함하는 배양 방법 WO2021096218A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2020382287A AU2020382287A1 (en) 2019-11-13 2020-11-11 Method of isolation of pure culture of vascular endothelial cells, medium for maintaining characteristics of vascular endothelial cells, and culture method including same
US17/775,767 US20220378845A1 (en) 2019-11-13 2020-11-11 Method of isolation of pure culture of vascular endothelial cells, medium for maintaining characteristics of vascular endothelial cells, and culture method including same
CA3156948A CA3156948A1 (en) 2019-11-13 2020-11-11 Method of isolation of pure culture of vascular endothelial cells, medium for maintaining characteristics of vascular endothelial cells, and culture method including same
JP2022526288A JP7479466B2 (ja) 2019-11-13 2020-11-11 血管内皮細胞純粋分離方法、血管内皮細胞特性維持培地及びそれを含む培養方法
EP20887246.5A EP4060024A4 (en) 2019-11-13 2020-11-11 ISOLATION METHOD OF A PURE CULTURE OF VASCULAR ENDOTHELIAL CELLS, MEDIUM FOR PRESERVING THE PROPERTIES OF VASCULAR ENDOTHELIAL CELLS AND CULTURE METHOD THEREFOR
CN202080078760.8A CN114746543A (zh) 2019-11-13 2020-11-11 分离纯培养血管内皮细胞的方法、维持血管内皮细胞特性的培养基和包括其的培养方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020190145337A KR102258053B1 (ko) 2019-11-13 2019-11-13 혈관 내피세포 순수 분리 방법
KR10-2019-0145348 2019-11-13
KR10-2019-0145337 2019-11-13
KR1020190145348A KR102257950B1 (ko) 2019-11-13 2019-11-13 혈관 내피세포 특성 유지 배지 및 이를 포함하는 배양 방법

Publications (1)

Publication Number Publication Date
WO2021096218A1 true WO2021096218A1 (ko) 2021-05-20

Family

ID=75912219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/015785 WO2021096218A1 (ko) 2019-11-13 2020-11-11 혈관 내피세포 순수 분리 방법, 혈관 내피세포 특성 유지 배지 및 이를 포함하는 배양 방법

Country Status (7)

Country Link
US (1) US20220378845A1 (ko)
EP (1) EP4060024A4 (ko)
JP (1) JP7479466B2 (ko)
CN (1) CN114746543A (ko)
AU (1) AU2020382287A1 (ko)
CA (1) CA3156948A1 (ko)
WO (1) WO2021096218A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115927164B (zh) * 2022-10-11 2023-09-26 成都诺医德医学检验实验室有限公司 一种血管化肿瘤类器官的培养方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110122858A (ko) * 2009-02-27 2011-11-11 셀룰러 다이내믹스 인터내셔널, 인코포레이티드 만능 세포의 분화
KR20170007694A (ko) * 2015-07-10 2017-01-19 가톨릭대학교 산학협력단 동질성을 가지는 줄기세포 분획의 분리방법
KR20180066263A (ko) * 2015-11-04 2018-06-18 페이트 세러퓨틱스, 인코포레이티드 조혈 세포 분화를 유도하기 위한 방법 및 조성물
WO2019025826A1 (en) * 2017-08-02 2019-02-07 Semmelweis Egyetem METHODS FOR PRODUCING ENDOTHELIAL CELLS AND VASCULAR ENDOTHELIAL CONSTRUCTS DERIVED FROM INDUCED HUMAN PLURIPOTENT STEM CELLS

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7247477B2 (en) * 2002-04-16 2007-07-24 Technion Research & Development Foundation Ltd. Methods for the in-vitro identification, isolation and differentiation of vasculogenic progenitor cells
JP5685768B2 (ja) * 2008-10-30 2015-03-18 公益財団法人ヒューマンサイエンス振興財団 スクリーニング方法
WO2012168167A1 (en) * 2011-06-09 2012-12-13 F. Hoffmann-La Roche Ag Method for differentiation of pluripotent stem cells into vascular bed cells
EP2841563B1 (en) * 2012-04-24 2019-06-12 Dan S. Kaufman Method for developing natural killer cells from stem cells
US10669529B2 (en) * 2015-07-17 2020-06-02 Kyoto University Method for inducing vascular endothelial cells
EP3458572A4 (en) * 2016-05-17 2020-03-04 Agency for Science, Technology and Research ENDOTHEL CELLS FROM HUMAN STEM CELLS, ENDOTHEL-HEPATOCYTE COCULTIVATION SYSTEM AND USES THEREOF

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110122858A (ko) * 2009-02-27 2011-11-11 셀룰러 다이내믹스 인터내셔널, 인코포레이티드 만능 세포의 분화
KR20170007694A (ko) * 2015-07-10 2017-01-19 가톨릭대학교 산학협력단 동질성을 가지는 줄기세포 분획의 분리방법
KR20180066263A (ko) * 2015-11-04 2018-06-18 페이트 세러퓨틱스, 인코포레이티드 조혈 세포 분화를 유도하기 위한 방법 및 조성물
WO2019025826A1 (en) * 2017-08-02 2019-02-07 Semmelweis Egyetem METHODS FOR PRODUCING ENDOTHELIAL CELLS AND VASCULAR ENDOTHELIAL CONSTRUCTS DERIVED FROM INDUCED HUMAN PLURIPOTENT STEM CELLS

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LEE SHIN-JEONG, SOHN YOUNG-DOUG, ANDUKURI ADINARAYANA, KIM SANGSUNG, BYUN JAEMIN, HAN JI WOONG, PARK IN-HYUN, JUN HO-WOOK, YOON YO: "Enhanced Therapeutic and Long-Term Dynamic Vascularization Effects of Human Pluripotent Stem Cell–Derived Endothelial Cells Encapsulated in a Nanomatrix Gel", CIRCULATION, AMERICAN HEART ASSOCIATION, US, vol. 136, no. 20, 14 November 2017 (2017-11-14), US, pages 1939 - 1954, XP055812328, ISSN: 0009-7322, DOI: 10.1161/CIRCULATIONAHA.116.026329 *
LEE SHIN-JEONG; KIM KYUNG HEE; YOON YOUNG-SUP: "Generation of Human Pluripotent Stem Cell-derived Endothelial Cells and Their Therapeutic Utility", CURRENT CARDIOLOGY REPORTS, CURRENT SCIENCE, PHILADELPHIA, PA, US, vol. 20, no. 6, 5 May 2018 (2018-05-05), US, pages 1 - 7, XP036496224, ISSN: 1523-3782, DOI: 10.1007/s11886-018-0985-8 *
See also references of EP4060024A4 *

Also Published As

Publication number Publication date
AU2020382287A1 (en) 2022-06-02
CA3156948A1 (en) 2021-05-20
CN114746543A (zh) 2022-07-12
EP4060024A1 (en) 2022-09-21
US20220378845A1 (en) 2022-12-01
JP7479466B2 (ja) 2024-05-08
JP2023501419A (ja) 2023-01-18
EP4060024A4 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
Owen et al. Stromal stem cells: Marrow‐derived osteogenic precursors
JP5843775B2 (ja) 幹細胞を分化させるための重量オスモル濃度の操作法
JP5750130B2 (ja) ヒト胚盤胞由来幹細胞に由来する多能性非収縮心臓前駆細胞の新規の集団
CA2600653C (en) Pluripotent stem cell derived from cardiac tissue
WO2021187758A1 (ko) 심장 오가노이드, 이의 제조 방법 및 이를 이용한 약물 독성 평가 방법
US20200188443A1 (en) Compositions and methods for obtaining organoids
Tang et al. A novel two-step procedure to expand cardiac Sca-1+ cells clonally
KR20090086260A (ko) 미손상 골수 또는 미손상 제대 조직으로부터 조직 전구체 세포 및 성숙 조직 세포를 형성 및 증식시키는 방법
US7186558B2 (en) Keratinocytes obtained from embryonic stem cells of mammals
KR102292132B1 (ko) 무혈청 배지 조성물
Benali et al. Tubule formation by human surface respiratory epithelial cells cultured in a three-dimensional collagen lattice
WO2019144605A1 (zh) 一种高效的hPSCs向MSCs分化的方法
WO2017051978A1 (ko) 심장내막 유래 성체줄기세포로부터 제조된 유도만능 줄기세포의 심혈관계 세포로의 분화방법 및 이의 용도
WO2021096218A1 (ko) 혈관 내피세포 순수 분리 방법, 혈관 내피세포 특성 유지 배지 및 이를 포함하는 배양 방법
WO2012008733A2 (ko) 1기 태반조직 유래 줄기세포 및 이를 함유하는 세포치료제
Shi et al. A screen of suitable inducers for germline differentiation of chicken embryonic stem cells
WO2013165120A1 (ko) 신경능선줄기세포의 배양방법 및 그 용도
WO2011102680A2 (ko) Pi3k/akt/gsk3 경로를 통해 성체줄기세포의 증식, 다분화능 및 재프로그래밍을 촉진하는 cd49f
Deng et al. Effects of transforming growth factor β1 (TGFβ-1) and dentin non-collagenous proteins (DNCP) on human embryonic ectomesenchymal cells in a three-dimensional culture system
KR102258053B1 (ko) 혈관 내피세포 순수 분리 방법
WO2019221477A1 (ko) 전구세포 배양액 및 다층 그래핀 필름을 포함하는 줄기세포 분화 촉진용 조성물 및 이의 용도
WO2013108949A1 (ko) 인간 배아줄기세포 유래 혈관주위 전구세포의 제조방법 및 이를 포함하는 세포치료 조성물
KR20180092506A (ko) 이종 동물 혈청이 첨가된 배지 없이 사람 하비갑개 유래 중간엽 줄기세포를 배양 및 분화시키는 방법
Umezawa et al. Proliferative activity of skeletal myoblast sheet by paracrine effects of mesenchymal stem cells
JP2006000059A (ja) 細胞外基質を用いた動物細胞の増殖及び分化促進方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887246

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3156948

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022526288

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020382287

Country of ref document: AU

Date of ref document: 20201111

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020887246

Country of ref document: EP

Effective date: 20220613