WO2021095782A1 - Catalyst and method for manufacturing same, and method for manufacturing unsaturated hydrocarbon - Google Patents

Catalyst and method for manufacturing same, and method for manufacturing unsaturated hydrocarbon Download PDF

Info

Publication number
WO2021095782A1
WO2021095782A1 PCT/JP2020/042127 JP2020042127W WO2021095782A1 WO 2021095782 A1 WO2021095782 A1 WO 2021095782A1 JP 2020042127 W JP2020042127 W JP 2020042127W WO 2021095782 A1 WO2021095782 A1 WO 2021095782A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
carbon
producing
alkane
transition metal
Prior art date
Application number
PCT/JP2020/042127
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 裕樹
二宮 航
杉山 茂
Original Assignee
三菱ケミカル株式会社
国立大学法人徳島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社, 国立大学法人徳島大学 filed Critical 三菱ケミカル株式会社
Priority to CN202080079057.9A priority Critical patent/CN114728272A/en
Priority to JP2021556132A priority patent/JPWO2021095782A1/ja
Priority to KR1020227015941A priority patent/KR20220078697A/en
Publication of WO2021095782A1 publication Critical patent/WO2021095782A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • B01J35/58
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/08Alkenes with four carbon atoms
    • C07C11/09Isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor

Definitions

  • the present invention relates to a catalyst, a method for producing the same, and a method for producing an unsaturated hydrocarbon.
  • a method for producing an alkene by dehydrogenating an alkane is generally known, and various catalysts for this dehydrogenation are being studied.
  • Patent Document 1 describes a dehydrogenation catalyst in which nickel and tin are supported on a composite carrier in which a specific amount of zinc oxide is supported on a specific ⁇ -alumina carrier. Then, an example is described in which isobutane is dehydrogenated to produce isobutylene (isobutene) using this dehydrogenation catalyst.
  • Patent Document 2 describes a catalyst in which zinc and a metal belonging to the VIIIA of the Periodic Table are supported on a specific zeolite carrier. A method for producing unsaturated hydrocarbons by dehydrogenating hydrocarbons in the presence of this catalyst is described. As an example, an example is described in which n-butane is dehydrogenated to produce butene (1-butene, 2-butene, isobutene) using this catalyst.
  • a surfactant is added after the step (a) of dispersing the silicate in water, the step (b) of adding the chromium element, and the step (a) or the step (b).
  • a method for producing an oxidative dehydrogenating catalyst which comprises a step (c) of heat-treating at a temperature of 50 to 150 ° C. for 1 to 20 hours and a step (d) of heat-treating at a temperature of 200 to 700 ° C. for 1 to 10 hours.
  • a method for producing an alkene from an alkane by contacting the obtained catalyst with a mixed gas containing an alkane and oxygen at a specific mixing ratio is described.
  • an example of producing isobutylene (isobutene) from isobutane using this catalyst is described.
  • Patent Document 4 describes that in the hydrocarbon conversion process, a pretreatment is performed on a catalyst in which a transition metal is supported on a carrier, but the pretreatment time is 30 to 90 minutes. It was short and could not suppress the aggregation of transition metals, and could not achieve a high selectivity.
  • an object of the present invention is to solve the problem in view of the above circumstances, that is, a catalyst capable of producing unsaturated hydrocarbons with a high selectivity in dehydrogenation of alkanes, a method for producing the same, and non-compliance.
  • the purpose is to provide a method for producing a saturated hydrocarbon.
  • a catalyst characterized in that a transition metal and carbon are supported on a carrier and the carbon contains fibrous carbon.
  • a method for producing a catalyst including Provided is a method for producing a catalyst, which forms and supports fibrous carbon by bringing a carbon-containing gas into contact with the catalyst precursor in the step of forming the catalyst.
  • a method for producing an unsaturated hydrocarbon in which the above catalyst is brought into contact with a mixed gas containing an alkane and carbon dioxide to produce an unsaturated hydrocarbon from the alkane.
  • a carbon-containing gas was brought into contact with the catalyst precursor on which the transition metal compound was supported on the carrier, carbon containing fibrous carbon was supported on the catalyst precursor, and the transition metal and carbon containing fibrous carbon were supported.
  • the present invention it is possible to provide a catalyst capable of producing an unsaturated hydrocarbon with a high selectivity in dehydrogenation of an alkane, a method for producing the same, and a method for producing an unsaturated hydrocarbon.
  • the catalyst according to the embodiment of the present invention is a catalyst in which carbon is supported on a carrier on which a transition metal is supported.
  • This catalyst is a solid catalyst that has catalytic activity in the reaction of forming unsaturated hydrocarbons by dehydrogenation of alkanes.
  • it is suitable as a catalyst for a reaction for forming an unsaturated hydrocarbon (preferably an alkene) by dehydrogenation of the alkane.
  • the carrier on which the transition metal and carbon are supported is not particularly limited, and for example, at least one selected from the group consisting of silica, alumina, zirconia, and titania can be used. One of these may be used alone or two or more thereof may be used in combination. Among these, alumina is preferable, and ⁇ -alumina is particularly preferable.
  • the particle size of the carrier can be appropriately selected, but it is preferable to adjust the particle size so that the pressure loss in the catalyst layer of the reactor (for example, the reaction tube) filled with the obtained catalyst does not become excessively large.
  • the particle size of the carrier is preferably as small as possible from the viewpoint of securing the surface area of the catalyst while suppressing the pressure loss in the catalyst layer, and when a mesh according to the Japanese Industrial Standards (JIS) is used, 3.5 mesh (opening). It is preferably 5.6 mm) or more, and particularly preferably 8.6 mesh (opening 2.0 mm) or more.
  • the fine particles are difficult to handle, and from the viewpoint of the influence on the reactivity due to the increase in pressure loss when filled in the reactor, it is preferably 635 mesh (opening 20 ⁇ m) or less, and 280 mesh (opening 20 ⁇ m). It is particularly preferably 53 ⁇ m) or less.
  • the catalyst according to the embodiment of the present invention can be filled in a reactor (for example, a reaction tube) in a powder state. At that time, it is preferable to adjust the particle size so that the pressure loss in the catalyst layer does not become excessively large.
  • the particle size of the catalyst is preferably as small as possible from the viewpoint of securing the surface area of the catalyst while suppressing the pressure loss in the catalyst layer.
  • the catalyst may be mixed with other materials or may be filled after molding from the viewpoint of suppressing the pressure loss in the catalyst layer.
  • a filler sica ball, alumina ball
  • alumina ball that is inert to the catalyst and does not deteriorate the catalyst performance can be used.
  • a binder that does not deteriorate the catalytic performance can be added to the obtained catalyst, kneaded, heated and fired.
  • the binder include silica-based, alumina-based, zirconia-based, and diatomaceous earth-based.
  • the shape after molding includes tablets, pellets, spheres, and extruded shapes. By molding, strength and handleability can be improved.
  • the transition metal carried on the carrier is at least selected from the group consisting of molybdenum, tungsten, chromium, nickel, iron, noble metals (Au, Ag, Pt, Pd, Rh, Ir, Ru, Os), vanadium, manganese, and zinc.
  • One type can be used, and a plurality of types may be used.
  • nickel (Ni) is preferable from the viewpoint of cost and catalytic performance.
  • the amount of the transition metal carried on the carrier is preferably 1.0% by mass or more and 30.0% by mass or less with respect to the carrier from the viewpoint of exhibiting good activity as a catalyst.
  • the amount of the transition metal carried on the carrier is preferably 1.0% by mass or more and 30.0% by mass or less with respect to the carrier from the viewpoint of exhibiting good activity as a catalyst.
  • the amount of the transition metal carried on the carrier is more preferably 3.0% by mass or more, further preferably 5.0% by mass or more, and 10.0% by mass or more. Is particularly preferable, and it is most preferably 15.0% by mass or more, while it is more preferably 28.0% by mass or less, further preferably 25.0% by mass or less, and 23.0% by mass. The following is particularly preferable.
  • the amount of the transition metal supported on the carrier can be measured by fluorescent X-ray analysis measurement.
  • the catalyst of this embodiment carries carbon including fibrous carbon in addition to the transition metal.
  • the conversion rate of alkanes and the selectivity of alkenes corresponding to the alkanes can be improved in the dehydrogenation reaction of alkanes. The reason for this is not clear, but the following reasons can be considered.
  • a normal metal-supported catalyst in general, as the reaction progresses, the metal particles on the carrier aggregate to become coarse particles, so that the reactivity decreases due to the decrease in the surface area of the active site, and the selectivity decreases due to the structural change of the active site. Is caused.
  • the presence of carbon containing fibrous carbon suppresses aggregation of transition metals due to heat or vibration during the reaction. Therefore, it is considered that a good active site can be maintained, and the selectivity of the alkane, the selectivity of the alkene corresponding to the alkane, and the selectivity of the unsaturated hydrocarbon are improved.
  • fibrous carbon carbon that extends in a fibrous form (carbon that exists in a so-called elongated shape) when observed with a scanning electron microscope (SEM) is referred to as fibrous carbon.
  • the cross-sectional shape of the fibrous carbon (the shape of the cross section perpendicular to the longitudinal direction) may be any of a circle, an ellipse, a triangle, a quadrangle, a polygon, etc. It may be. Further, the ratio of the length of fibrous carbon to the average diameter of the cross section is not particularly limited. Further, the fibrous carbon may be bent, linearly extended, or branched.
  • the amount of carbon containing fibrous carbon supported on the carrier is preferably 510% by mass or more and preferably 2500% by mass or less with respect to the supported transition metal. If the amount of carbon including fibrous carbon supported on the carrier is 550% by mass or more with respect to the supported transition metal, the effect of immobilizing the transition metal particles can be easily obtained, so that the transition metal during the reaction can be easily obtained. It becomes easier to suppress the aggregation of particles. As a result, the conversion rate of alkanes and the selectivity of alkenes corresponding to the alkanes can be increased.
  • the carbon supported on the carrier may contain fibrous carbon, and if the amount of carbon containing fibrous carbon is in such a range, the above-mentioned effect can be more sufficiently obtained.
  • the carbon supported on the carrier contains fibrous carbon (the presence of the fibrous carbon supported on the carrier). It is preferable that the observation image obtained by SEM is divided into 12 by a uniform lattice, and fibrous carbon is formed on the carrier to the extent that the presence of fibrous carbon can be confirmed in each lattice.
  • the amount of carbon including fibrous carbon supported on the carrier is 2500% by mass or less with respect to the supported transition metal, the transition metal particles are coated with an excess amount of carbon and hinder the catalytic activity. This can be further prevented, and the conversion rate of alkanes and the selectivity of alkenes corresponding to the alkanes can be increased.
  • the amount of carbon containing fibrous carbon supported on the carrier is more preferably 700% by mass or more, particularly preferably 1000% by mass or more, based on the supported transition metal. On the other hand, it is more preferably 2300% by mass or less, and particularly preferably 2000% by mass or less.
  • the amount of carbon including fibrous carbon supported on the carrier is raised to 1000 ° C. using simultaneous measurement of thermal weight and differential thermal (TG-DTA), and is supported from the weight reduction at that time. It is possible to measure the amount of carbon used. In the examples described later, since the weight loss when heated to 200 ° C. is due to the desorption of adsorbed water, the fiber carrying the weight loss amount in the heating process from 200 ° C. to 1000 ° C. Calculated as due to carbon containing carbon.
  • the fibrous carbon supported on the carrier on which the transition metal is supported preferably has an average diameter of 20 nm or more and 100 nm or less.
  • the average diameter of the fibrous carbon is 20 nm or more, the agglomeration of transition metal particles can be further prevented during the reaction, and the conversion rate of alkanes and the selectivity of alkenes corresponding to the alkanes can be further improved.
  • the average diameter of the fibrous carbon is 100 nm or less, the coating of the transition metal particles by the fibrous carbon can be further suppressed, and the decrease in catalytic activity tends to be easily prevented.
  • the average diameter of the fibrous carbon is more preferably 25 nm or more, particularly preferably 30 nm or more, while further preferably 95 nm or less, and particularly preferably 90 nm or less.
  • the average diameter of the fibrous carbon is defined as the portion where the observation image obtained by the scanning electron microscope (SEM) is divided into 12 by a uniform grid, and the diameter of the fibrous carbon is the largest in each grid. Then, the part having the smallest diameter is selected and used as the representative diameter value, and the average value of the representative diameter values of the fibrous carbon is used as the average diameter of the fibrous carbon.
  • the method for producing a catalyst according to the embodiment of the present invention includes a step of mixing a solution containing a transition metal compound and a carrier and heating to remove the catalyst to obtain a catalyst precursor, and a carbon-containing gas in the catalyst precursor. It has a step of contacting the catalyst to form a catalyst in which a transition metal and a carbon are supported. By contacting the catalyst precursor with a carbon-containing gas, fibrous carbon can be formed and supported.
  • the steps of obtaining the catalyst precursor include a step of mixing a solution in which a transition metal compound is dissolved and a carrier and heating to evaporate the solvent to obtain a solid, and a step of crushing the solid to obtain a powdery catalyst precursor.
  • the step of obtaining can be included.
  • a transition metal compound containing a transition metal to be supported is dissolved in a solution to prepare a solution, and a carrier is added to the solution to obtain a mixed solution containing the transition metal compound and the carrier.
  • a carrier is added to the solution to obtain a mixed solution containing the transition metal compound and the carrier.
  • the addition is a kind of mixing, but it means that it may be further mixed after the addition.
  • the carrier used in the step of obtaining the catalyst precursor at least one selected from the above-mentioned group consisting of silica, alumina, zirconia, and titania can be used.
  • alumina is preferable, and ⁇ -alumina is particularly preferable.
  • the mixed solution containing the transition metal compound and the carrier can be heated to evaporate the solvent to obtain a catalyst precursor in which the transition metal is supported on the carrier as a solid.
  • a powdery catalyst precursor By pulverizing the obtained catalyst precursor (solid), a powdery catalyst precursor can be obtained.
  • the obtained catalyst precursor can be dried, for example, at 20 ° C. or higher and 200 ° C. or lower, for example, for 1 hour or longer and 20 hours or shorter.
  • the temperature of this drying treatment is more preferably 60 ° C. or higher, further preferably 100 ° C. or higher, and more preferably 120 ° C. or lower.
  • the drying treatment time is more preferably 5 hours or more, while more preferably 15 hours or less.
  • the obtained catalyst precursor may be heat-treated (calcined) for, for example, 2 hours or more and 30 hours or less at a high temperature of 300 ° C. or higher and 1000 ° C. or lower.
  • the temperature of this heat treatment (calcination) is more preferably 400 ° C. or higher, while more preferably 800 ° C. or lower.
  • the heat treatment (calcination) time is more preferably 3 hours or more, while more preferably 12 hours or less.
  • the obtained powdery catalyst precursor can be filled into a reactor (for example, a reaction tube) in a powder state. At that time, it is preferable to adjust the particle size so that the pressure loss in the catalyst precursor phase does not become excessively large.
  • the particle size of the catalyst precursor is preferably as small as possible from the viewpoint of securing the surface area of the catalyst precursor while suppressing the pressure loss in the catalyst precursor phase.
  • the catalyst precursor may be mixed with other materials or may be filled after molding from the viewpoint of suppressing the pressure loss in the catalyst precursor phase.
  • a filler sica ball, alumina ball
  • alumina ball that is inert to the catalyst and does not deteriorate the catalyst performance can be used.
  • a binder that does not deteriorate the performance of the finally obtained catalyst can be added to the catalyst precursor, kneaded, heated and sintered.
  • the binder include silica-based, alumina-based, zirconia-based, and diatomaceous earth-based.
  • the shape after molding includes tablets, pellets, spheres, and extruded shapes. By molding, strength and handleability can be improved.
  • the carbon-containing gas is brought into contact with the obtained catalyst precursor. As a result, it is carbonized by the oxidation reaction of the carbon-containing gas.
  • the transition metal transition metal oxide
  • carbon was supported at the same time as the reduction of the transition metal oxide, and the transition metal and carbon were supported.
  • a catalyst catalyst for alcan dehydrogenation
  • carbon is generated between the transition metal oxides during the reduction of the transition metal oxide, and aggregation of the transition metal crystallites can be suppressed. ..
  • the crystallite diameter of the transition metal supported on (the carrier) of the catalyst is the ratio of the crystallite diameter of the transition metal after contact with the carbon-containing gas to the crystallite diameter when the carbon-containing gas is not brought into contact, or on the carrier.
  • the ratio of the crystallite diameter of the transition metal when it contains fibrous carbon to the crystal particle size of the transition metal supported on the carrier when the supported carbon does not contain fibrous carbon is 0. It is preferably .80 or less, more preferably more than 0.00, preferably 0.60 or less, and further preferably 0.20 or more and 0.50 or less. The conditions shown below can be adjusted as appropriate so as to fall within this range.
  • the powder X-ray analysis measurement of the catalyst is performed, and the peak attributable to the transition metal crystallite is calculated from the obtained result from Scherrer's equation. It is possible.
  • SmartLab / R / INP / DX manufactured by Rigaku Co., Ltd.
  • the measurement conditions were Cu-K ⁇ ray as an X-ray source, a tube voltage of 45 kV, and a tube current of 150 mA.
  • the standard for the ratio of the crystallite diameter of the transition metal supported on the catalyst (carrier) is the crystallite diameter of the transition metal when the carbon-containing gas is not brought into contact with the catalyst precursor, or the supported carbon. It can be the crystal particle size of the transition metal supported on the carrier when it does not contain fibrous carbon.
  • the crystallite diameter as such a reference is preferably the crystallite diameter of the transition metal when the catalyst precursor is subjected to hydrogen reduction treatment (contact with a pretreatment gas containing hydrogen that does not contain carbon-containing gas). ..
  • hydrogen reduction treatment contact with a pretreatment gas containing hydrogen that does not contain carbon-containing gas.
  • This carbon-containing gas preferably contains a hydrocarbon as a carbon source (carbon source) to be supported on the catalyst precursor.
  • a hydrocarbon as a carbon source (carbon source) to be supported on the catalyst precursor.
  • a hydrocarbon an alkane having 2 to 5 carbon atoms is preferable.
  • alkanes having 2 to 5 carbon atoms include ethane, propane, n-butane, isobutane, n-pentane, and isopentane. These may be used alone or in admixture of two or more.
  • the raw materials may be different hydrocarbons or the same hydrocarbons, but the same hydrocarbons are preferable from the viewpoint of simplifying the process.
  • the carbon source and the alkane raw material the above-mentioned alkane having 2 to 5 carbon atoms (for example, ethane, propane, n-butane, isobutane, n-pentane, isopentane) is preferable, and isobutane is more preferable.
  • This carbon-containing gas may contain an inert gas such as helium or nitrogen in addition to the carbon source.
  • the concentration of the carbon source (preferably hydrocarbon) contained in the carbon-containing gas is preferably 1% by volume or more and 30% by volume or less, and 5% by volume in particular. The above is particularly preferable, while 20% by volume or less is particularly preferable.
  • concentration of the carbon source is 1% by volume or more, a sufficient amount of carbon can be supported better, and the selectivity of unsaturated hydrocarbons can be further increased.
  • concentration of the carbon source is 30% by volume or less, the support of excess carbon can be more easily controlled, and the decrease in the alkane conversion rate and the selectivity of unsaturated hydrocarbons can be more sufficiently suppressed. ..
  • the temperature in the step of supporting carbon on the catalyst precursor is preferably 300 ° C. or higher and 1000 ° C. or lower, and above all, 400 ° C. or higher. On the other hand, it is more preferably 700 ° C. or lower, and particularly preferably 600 ° C. or lower.
  • the temperature of this carbon supporting step is 300 ° C. or higher, a more sufficient carbon supporting amount can be obtained.
  • the temperature of this carbon supporting step is 1000 ° C. or lower, it is possible to more sufficiently suppress a decrease in the amount of carbon supported and a decrease in catalytic activity due to the thermal decomposition reaction of the carbon source alkane.
  • the pressure in the step of supporting carbon on the catalyst precursor can be appropriately selected depending on the type of carbon-containing gas used, but is 0.01 MPa or more and 1 MPa or more. The following is preferable.
  • By setting the pressure to 0.01 MPa or more it is possible to easily suppress the desorption of components on the carrier under reduced pressure.
  • Further, by setting the pressure to 1 MPa or less an increase in reactivity due to pressurization can be more sufficiently prevented, and an excessive amount of carbon supported on the carrier can be prevented.
  • it is more preferably 0.8 MPa or less, particularly preferably 0.5 MPa or less, and further preferably 0.05 MPa or more.
  • the pressure may be atmospheric pressure (0.101 MPa).
  • a fixed-bed flow type reaction method in which the carbon-containing gas is circulated in a reactor (for example, a reaction tube) filled with the catalyst precursor can be used.
  • the W / F when the carbon-containing gas is brought into contact with the catalyst precursor is preferably 0.03 g ⁇ min / ml or more and 0.5 g ⁇ min / ml or less.
  • W is the mass (g) of the catalyst precursor filled in the reaction tube
  • F is the flow rate (ml / min) of the carbon-containing gas to be circulated in the reaction tube filled with the catalyst precursor. That is, W / F is the mass of the catalyst precursor filled in the reaction tube with respect to the flow rate of the carbon-containing gas flowing in the reactor, and is represented by the following formula.
  • W / F (Amount of catalyst precursor filled in the reaction tube [g]) / (Flow rate of carbon-containing gas flowing in the reaction tube [ml / min])
  • the W / F is particularly preferably 0.05 g ⁇ min / ml or more, while it is particularly preferably 0.2 g ⁇ min / ml or less.
  • the catalyst according to the present invention is brought into contact with a mixed gas containing alkane and carbon dioxide (hereinafter, also appropriately referred to as “reaction gas”), and the unsaturated hydrocarbon is derived from the alkane.
  • reaction gas a mixed gas containing alkane and carbon dioxide
  • the alkane raw material used for the dehydrogenation reaction of alkane is not particularly limited, but an alkane having 2 to 5 carbon atoms is preferable. When the number of carbon atoms is 5 or less, it is possible to suppress the generation of low carbon number by-products due to the decomposition reaction.
  • alkanes having 2 to 5 carbon atoms include ethane, propane, n-butane, isobutane, n-pentane, and isopentane. These may be used alone or in admixture of two or more.
  • the dehydrogenation reaction mainly produces ethylene from ethane, propylene from propane, butadiene from n-butane, isobutene from isobutane, pentene from n-pentane, and isoprene from isopentane.
  • the above-mentioned dehydrogenation reaction of alkane is performed to produce the corresponding unsaturated hydrocarbon.
  • This dehydrogenation reaction is carried out by bringing a mixed gas (reaction gas) containing alkane and carbon dioxide into contact with the catalyst according to the present invention.
  • the molar ratio of carbon dioxide to alkane contained in this mixed gas (reaction gas) is preferably 0.1 or more and 1.9 or less, and more preferably 0.25 or more, while 1. It is more preferably 6 or less.
  • this molar ratio is less than 0.1, the concentration of carbon dioxide is low, so that the reactivity tends to decrease.
  • this molar ratio is larger than 1.9, the concentration of carbon dioxide is high, so that the selectivity tends to decrease.
  • This mixed gas may contain an inert gas such as helium or nitrogen, water vapor (water), methane, hydrogen or the like as long as the effect of the present invention is not impaired, in addition to alkane and carbon dioxide.
  • an inert gas such as helium or nitrogen, water vapor (water), methane, hydrogen or the like as long as the effect of the present invention is not impaired, in addition to alkane and carbon dioxide.
  • the concentration of alkane in this mixed gas is preferably 1% by volume or more and 30% by volume or less, more preferably 1% by volume or more, further preferably 5% by volume or more, and 20% by volume. % Or less is more preferable.
  • concentration of alkane is 1% by volume or more, it is possible to further suppress the decrease in selectivity of unsaturated hydrocarbon due to the improvement of the conversion rate of alkane. Further, when the concentration of alkane is 30% by volume or less, the decrease in the conversion rate of alkane can be further suppressed.
  • the temperature of the dehydrogenation reaction of the alkane (the temperature at which the mixed gas is brought into contact with the catalyst) is preferably 300 ° C. or higher and 1000 ° C. or lower, more preferably 400 ° C. or higher, and more preferably 700 ° C. or lower. 600 ° C. or lower is more preferable.
  • the temperature of this dehydrogenation reaction is 300 ° C. or higher, more sufficient catalytic activity can be obtained.
  • the temperature of this dehydrogenation reaction is 1000 ° C. or lower, it is possible to further suppress a decrease in selectivity of unsaturated hydrocarbon and a decrease in catalytic activity due to a thermal decomposition reaction of alkane.
  • the pressure in the dehydrogenation reaction of alkanes can be appropriately selected depending on the type of alkane used in the reaction, but it can usually be set to 1 MPa or less, preferably 0.01 MPa or more and 1 MPa or less. Among these, the pressure is more preferably 0.8 MPa or less, further preferably 0.5 MPa or less, while more preferably 0.05 MPa or more, further preferably 0.1 MPa or more.
  • the pressure may be atmospheric pressure (0.101 MPa). By setting the pressure to 0.01 MPa or more, the active site on the catalyst and the alkane are more appropriately contacted during the reaction, and the selectivity of the alkane is likely to be improved.
  • the runaway reaction caused by the excessive contact of the alkane in the reaction gas and the generated unsaturated hydrocarbon with the active site on the catalyst can be further suppressed, and the corresponding alkene can be further suppressed. Can increase the selectivity of.
  • the reaction form used in the method for producing unsaturated hydrocarbons according to the embodiment of the present invention is not particularly limited, and the usual form used for the catalytic reaction can be adopted.
  • reaction types such as fixed beds, moving beds, and fluidized beds can be mentioned.
  • the fixed floor method can be preferably adopted because the apparatus is relatively simple and the process design is easy. That is, in the method for producing an unsaturated hydrocarbon according to the embodiment of the present invention, the dehydrogenation reaction of alkanes is carried out by mixing a reactor (for example, a reaction tube) filled with a catalyst according to the present invention containing raw materials such as alkanes and carbon dioxide. It can be carried out by a fixed bed flow type reaction method in which gas (reaction gas) is circulated.
  • the W / F in the dehydrogenation reaction of alkanes is preferably 0.001 g ⁇ min / ml or more and 1000 g ⁇ min / ml or less.
  • the W / F is more preferably 0.01 g ⁇ min / ml or more, and more preferably 100 g ⁇ min / ml or less.
  • W is the mass (g) of the catalyst filled in the reaction tube
  • F is the flow rate (ml / min) of the mixed gas (reaction gas) containing alcan and carbon dioxide to be distributed in the reaction tube filled with the catalyst.
  • W / F is the mass of the catalyst filled in the reaction tube with respect to the flow rate of the mixed gas (reaction gas) flowing in the reaction tube, and is represented by the following formula.
  • W / F (Amount of catalyst filled in the reaction tube [g]) / (Flow rate of mixed gas flowing in the reaction tube [ml / min])
  • the reaction time of the alkane with the catalyst can be further secured, and the conversion rate of the alkane can be improved.
  • the W / F is 1000 g ⁇ min / ml or less, it is possible to further prevent the reaction time of the alkane with the catalyst from becoming excessive, and the produced alkene reacts on the catalyst to carbon dioxide. It is possible to prevent a decrease in the selectivity due to the above.
  • a catalyst Ni—C / ⁇ -Al 2 O 3 catalyst
  • Nickel nitrate hexahydrate (Wako Pure Chemical Industries, Ltd.) was added in an amount of 3.89 parts by mass and dissolved in 15 parts by mass of water so that the amount of Ni charged with respect to ⁇ -Al 2 O 3 was 20% by mass.
  • ⁇ -Al 2 O 3 (Nippon Light Metal Co., Ltd.) was added to this aqueous solution and mixed. The mixture was then heated to evaporate the water to give a solid.
  • the obtained solid was pulverized and vacuum dried at 110 ° C. for 12 hours.
  • the pulverized solid was further calcined at 550 ° C. for 1 hour (heating rate 1 ° C./min).
  • the obtained solid was pulverized again to obtain a powdery catalyst precursor 1 (nickel-supported ⁇ -Al 2 O 3 ).
  • the obtained catalyst precursor 1 was packed in a quartz reaction tube having a diameter of 9 mm and a length of 35 mm installed in a fixed-bed circulation type reactor, and heated to 550 ° C. while circulating helium. Then, each condition was set so that the W / F of the pretreatment gas containing 85.8% by volume of helium and 14.2% by volume of isobutane was 0.12 g ⁇ min / ml. In this way, the pretreatment gas was circulated in the reaction tube for 3 hours to obtain a Ni—C / ⁇ -Al 2 O 3 catalyst in which carbon was supported on the catalyst precursor 1. In addition, powder X-ray analysis measurement of the obtained catalyst (Ni—C / ⁇ -Al 2 O 3 catalyst) was performed.
  • isobutene was produced from isobutane as follows. With the catalyst obtained as described above filled in the reaction tube as it was, a reaction gas adjusted to 73.7% by volume of helium, 14.2% by volume of isobutane, and 12.1% by volume of carbon dioxide was circulated. At that time, each condition was set so that the W / F was 0.017 g ⁇ min / ml. The reaction tube outlet gas 6 hours after the start of the reaction gas flow was measured by gas chromatography to determine the isobutane conversion rate, isobutene selectivity and isobutene yield. The results are shown in Table 1.
  • W / F Amount of catalyst precursor or catalyst filled in the reaction tube (g) / Supply rate of carbon-containing gas or reaction gas supplied into the reaction tube (ml / min)
  • the isobutane conversion rate, isobutene selectivity and isobutene yield are represented by the following formulas.
  • Isobutane conversion rate (%) (number of moles of reacted isobutane) / (number of moles of supplied isobutane)
  • Isobutene selectivity (%) (number of moles of produced isobutane) / (number of moles of reacted isobutane)
  • Isobutene yield (%) (number of moles of produced isobutane) / (number of moles of supplied isobutane)
  • Example 2 A catalyst (Ni—C / ⁇ -Al 2 O 3 catalyst) was prepared by the same method as in Example 1 except that the flow time of the pretreatment gas was changed to 5 hours, and subsequently, the same method as in Example 1. Isobutene was produced in the above. Further, the obtained catalyst (Ni-C / ⁇ -Al 2 O 3 catalyst) was heated to 1000 ° C. using simultaneous thermogravimetric and differential thermal measurement (TG-DTA), and was supported from the weight reduction at that time. The amount of carbon used was measured. In the weight change at this time, since the weight loss when heated to 200 ° C. was due to the desorption of adsorbed water, the carbon carrying the weight loss amount in the heating process from 200 ° C.
  • TG-DTA simultaneous thermogravimetric and differential thermal measurement
  • Example 3 A catalyst (Ni—C / ⁇ -Al 2 O 3 catalyst) was prepared by the same method as in Example 1 except that the flow time of the pretreatment gas was changed to 7 hours, and subsequently, the same method as in Example 1. Isobutene was produced in the above. The results are shown in Table 1.
  • Example 1 A Ni / ⁇ -Al 2 O 3 catalyst was produced by the same method as in Example 1 except that the pretreatment gas was not circulated, and then isobutylene was produced by the same method as in Example 1. The results are shown in Table 1.
  • Example 2 Change the pretreatment gas to a gas containing 80.0% by volume of helium and 20.0% by volume of hydrogen, set the W / F to 0.0042 g ⁇ min / ml, and set the flow time of the pretreatment gas to 1 hour.
  • a Ni / ⁇ -Al 2 O 3 catalyst was produced by the same method as in Example 1 except that each condition was changed, and then isobutene was produced by the same method as in Example 1. The results are shown in Table 1.
  • Example 4 A Ni / ⁇ -Al 2 O 3 catalyst was prepared by the same method as in Example 1 except that the flow time of the pretreatment gas was changed to 1 hour, and then isobutylene was produced by the same method as in Example 1. went. The results are shown in Table 1.

Abstract

Provided is a catalyst with which it is possible to manufacture an unsaturated hydrocarbon at a higher selectivity in the dehydrogenation of an alkane, a method for manufacturing the catalyst, and a method for manufacturing an unsaturated hydrocarbon. A catalyst, characterized in that a transition metal and carbon are supported on a carrier and the carbon contains fibrous carbon. The catalyst is brought into contact with a mixed gas containing an alkane and carbon dioxide, and an unsaturated hydrocarbon is manufactured from the alkane.

Description

触媒及びその製造方法、並びに不飽和炭化水素の製造方法A catalyst and a method for producing the same, and a method for producing an unsaturated hydrocarbon.
 本発明は、触媒及びその製造方法、並びに不飽和炭化水素の製造方法に関するものである。 The present invention relates to a catalyst, a method for producing the same, and a method for producing an unsaturated hydrocarbon.
 アルカンを脱水素化してアルケンを製造する方法は一般に知られており、この脱水素化のための種々の触媒が検討されている。 A method for producing an alkene by dehydrogenating an alkane is generally known, and various catalysts for this dehydrogenation are being studied.
 例えば、特許文献1には、特定のγ-アルミナ担体に特定量の酸化亜鉛を担持してなる複合担体に、ニッケル及びスズが担持されている脱水素触媒が記載されている。そして、この脱水素触媒を用いて、イソブタンを脱水素してイソブチレン(イソブテン)を製造する例が記載されている。 For example, Patent Document 1 describes a dehydrogenation catalyst in which nickel and tin are supported on a composite carrier in which a specific amount of zinc oxide is supported on a specific γ-alumina carrier. Then, an example is described in which isobutane is dehydrogenated to produce isobutylene (isobutene) using this dehydrogenation catalyst.
 また、特許文献2には、特定のゼオライト担体上に、亜鉛及び周期律表第VIIIA属金属が担持された触媒が記載されている。そしてこの触媒の存在下で、炭化水素を脱水素して不飽和炭化水素を製造する方法が記載されている。実施例として、この触媒を用いて、n-ブタンを脱水素してブテン(1-ブテン、2-ブテン、イソブテン)を製造する例が記載されている。 Further, Patent Document 2 describes a catalyst in which zinc and a metal belonging to the VIIIA of the Periodic Table are supported on a specific zeolite carrier. A method for producing unsaturated hydrocarbons by dehydrogenating hydrocarbons in the presence of this catalyst is described. As an example, an example is described in which n-butane is dehydrogenated to produce butene (1-butene, 2-butene, isobutene) using this catalyst.
 また、特許文献3には、水中にケイ酸塩を分散させる工程(a)と、クロム元素を添加する工程(b)と、工程(a)又は工程(b)の後に、界面活性剤を添加し、50~150℃の温度で1~20時間熱処理する工程(c)と、200~700℃の温度で1~10時間熱処理する工程(d)と、を含む酸化脱水素触媒の製造方法が記載されている。そして、得られた触媒を、アルカン及び酸素を特定の混合比で含む混合ガスに接触させて、アルカンからアルケンを製造する方法が記載されている。実施例として、この触媒を用いて、イソブタンからイソブチレン(イソブテン)を製造する例が記載されている。 Further, in Patent Document 3, a surfactant is added after the step (a) of dispersing the silicate in water, the step (b) of adding the chromium element, and the step (a) or the step (b). A method for producing an oxidative dehydrogenating catalyst, which comprises a step (c) of heat-treating at a temperature of 50 to 150 ° C. for 1 to 20 hours and a step (d) of heat-treating at a temperature of 200 to 700 ° C. for 1 to 10 hours. Are listed. Then, a method for producing an alkene from an alkane by contacting the obtained catalyst with a mixed gas containing an alkane and oxygen at a specific mixing ratio is described. As an example, an example of producing isobutylene (isobutene) from isobutane using this catalyst is described.
 また、特許文献4には、炭化水素転換プロセスにおいて、遷移金属が担体に担持された触媒に対して、前処理を行うことが記載されているが、その前処理の時間は30分から90分間と短いもので、遷移金属の凝集を抑制できるものではなく、高い選択率を実現できるものではなかった。 Further, Patent Document 4 describes that in the hydrocarbon conversion process, a pretreatment is performed on a catalyst in which a transition metal is supported on a carrier, but the pretreatment time is 30 to 90 minutes. It was short and could not suppress the aggregation of transition metals, and could not achieve a high selectivity.
特開平9-75732号公報Japanese Unexamined Patent Publication No. 9-7532 特開2013-163647号公報Japanese Unexamined Patent Publication No. 2013-163647 特開2014-140827号公報Japanese Unexamined Patent Publication No. 2014-140827 特表2018-520858号公報Special Table 2018-520858
 アルカンの脱水素により不飽和炭化水素を製造する方法において、生産性が高いことが望ましく、そのためにはより高い選択率で得ることが求められる。 In the method for producing unsaturated hydrocarbons by dehydrogenation of alkanes, it is desirable that the productivity is high, and for that purpose, it is required to obtain a higher selectivity.
 そこで、本発明の目的は、上記事情に鑑みた課題を解決することにあり、すなわち、アルカンの脱水素において高い選択率で不飽和炭化水素を製造することができる触媒及びその製造方法、並びに不飽和炭化水素の製造方法を提供することにある。 Therefore, an object of the present invention is to solve the problem in view of the above circumstances, that is, a catalyst capable of producing unsaturated hydrocarbons with a high selectivity in dehydrogenation of alkanes, a method for producing the same, and non-compliance. The purpose is to provide a method for producing a saturated hydrocarbon.
 本発明の一態様によれば、遷移金属と炭素が担体に担持され、前記炭素が繊維状炭素を含んでいることを特徴とする触媒が提供される。 According to one aspect of the present invention, there is provided a catalyst characterized in that a transition metal and carbon are supported on a carrier and the carbon contains fibrous carbon.
 本発明の他の態様によれば、
 遷移金属化合物を含む溶液と担体を混合し、加熱して溶媒を除去して、触媒前駆体を得る工程と、
 前記触媒前駆体に、炭素含有ガスを接触させ、遷移金属と炭素が担持された触媒を形成する工程と、
を含む、触媒の製造方法であって、
 前記触媒を形成する工程において、前記触媒前駆体に、炭素含有ガスを接触させることで、繊維状炭素を形成し、担持する、触媒の製造方法が提供される。
According to another aspect of the invention
A step of mixing a solution containing a transition metal compound and a carrier and heating to remove the solvent to obtain a catalyst precursor.
A step of contacting the catalyst precursor with a carbon-containing gas to form a catalyst in which a transition metal and carbon are supported, and
A method for producing a catalyst, including
Provided is a method for producing a catalyst, which forms and supports fibrous carbon by bringing a carbon-containing gas into contact with the catalyst precursor in the step of forming the catalyst.
 本発明の他の態様によれば、
 上記の触媒を、アルカン及び二酸化炭素を含む混合ガスに接触させて、前記アルカンから不飽和炭化水素を製造する、不飽和炭化水素の製造方法が提供される。
According to another aspect of the invention
Provided is a method for producing an unsaturated hydrocarbon, in which the above catalyst is brought into contact with a mixed gas containing an alkane and carbon dioxide to produce an unsaturated hydrocarbon from the alkane.
 本発明の他の態様によれば、
 上記の触媒の製造方法によって触媒を製造し、引き続き、得られた触媒に、アルカン及び二酸化炭素を含む混合ガスを接触させて、前記アルカンから不飽和炭化水素を製造する、不飽和炭化水素の製造方法が提供される。
According to another aspect of the invention
Production of unsaturated hydrocarbons in which a catalyst is produced by the above-mentioned catalyst production method, and subsequently, the obtained catalyst is brought into contact with a mixed gas containing an alkane and carbon dioxide to produce an unsaturated hydrocarbon from the alkane. A method is provided.
 本発明の他の態様によれば、
 遷移金属化合物が担体に担持された触媒前駆体に、炭素含有ガスを接触させて、前記触媒前駆体に繊維状炭素を含む炭素を担持させ、遷移金属と繊維状炭素を含む炭素が担持された触媒を形成する工程と、
 得られた触媒に、アルカン及び二酸化炭素を含む混合ガスを接触させて、前記アルカンから不飽和炭化水素を製造する、不飽和炭化水素の製造方法が提供される。
According to another aspect of the invention
A carbon-containing gas was brought into contact with the catalyst precursor on which the transition metal compound was supported on the carrier, carbon containing fibrous carbon was supported on the catalyst precursor, and the transition metal and carbon containing fibrous carbon were supported. The process of forming the catalyst and
Provided is a method for producing an unsaturated hydrocarbon, which comprises contacting the obtained catalyst with a mixed gas containing an alkane and carbon dioxide to produce an unsaturated hydrocarbon from the alkane.
 本発明によれば、アルカンの脱水素において高い選択率で不飽和炭化水素を製造することができる触媒及びその製造方法、並びに不飽和炭化水素の製造方法を提供することができる。 According to the present invention, it is possible to provide a catalyst capable of producing an unsaturated hydrocarbon with a high selectivity in dehydrogenation of an alkane, a method for producing the same, and a method for producing an unsaturated hydrocarbon.
本発明の実施例2の触媒のSEM画像である。It is an SEM image of the catalyst of Example 2 of this invention. 図1のSEM画像に格子状の分割線を示したSEM画像である。It is an SEM image which showed the grid-like dividing line in the SEM image of FIG.
 以下、本発明の実施形態による触媒及びその製造方法、並びにアルカンから不飽和炭化水素(好ましくはアルケン)を製造する方法について詳細に説明する。 Hereinafter, the catalyst according to the embodiment of the present invention, a method for producing the same, and a method for producing an unsaturated hydrocarbon (preferably an alkene) from an alkane will be described in detail.
 (触媒)
 本発明の実施形態による触媒は、遷移金属が担持された担体に炭素が担持された触媒である。
 この触媒は、アルカンの脱水素により不飽和炭化水素を形成する反応において触媒活性を有する固体触媒である。後述のアルカンから不飽和炭化水素を製造する方法において、アルカンの脱水素により不飽和炭化水素(好ましくはアルケン)を形成する反応の触媒として好適である。
(catalyst)
The catalyst according to the embodiment of the present invention is a catalyst in which carbon is supported on a carrier on which a transition metal is supported.
This catalyst is a solid catalyst that has catalytic activity in the reaction of forming unsaturated hydrocarbons by dehydrogenation of alkanes. In the method for producing an unsaturated hydrocarbon from an alkane, which will be described later, it is suitable as a catalyst for a reaction for forming an unsaturated hydrocarbon (preferably an alkene) by dehydrogenation of the alkane.
 この触媒において、遷移金属と炭素が担持される担体としては、特段の制限はなく、例えば、シリカ、アルミナ、ジルコニア、チタニアからなる群から選ばれる少なくとも1種を用いることができる。これらの1種を単独で用いても2種以上を併用してもよい。これらの中でもアルミナが好ましく、特にγ-アルミナが好ましい。 In this catalyst, the carrier on which the transition metal and carbon are supported is not particularly limited, and for example, at least one selected from the group consisting of silica, alumina, zirconia, and titania can be used. One of these may be used alone or two or more thereof may be used in combination. Among these, alumina is preferable, and γ-alumina is particularly preferable.
 担体の粒径は適宜選択できるが、得られた触媒を充填した反応器(例えば反応管)の触媒層での圧力損失が過度に大きくならないように粒径を調整することが好ましい。触媒層での圧力損失を抑えながら、触媒の表面積を確保する点から、担体の粒径はできるだけ小さいことが好ましく、日本産業規格(JIS)によるメッシュを用いた場合、3.5メッシュ(目開き5.6mm)以上であることが好ましく、8.6メッシュ(目開き2.0mm)以上であることが特に好ましい。一方、微粒分は取り扱いが難しく、また反応器に充填した際の圧力損失の増加による反応性への影響の観点から、635メッシュ(目開き20μm)以下であることが好ましく、280メッシュ(目開き53μm)以下であることが特に好ましい。 The particle size of the carrier can be appropriately selected, but it is preferable to adjust the particle size so that the pressure loss in the catalyst layer of the reactor (for example, the reaction tube) filled with the obtained catalyst does not become excessively large. The particle size of the carrier is preferably as small as possible from the viewpoint of securing the surface area of the catalyst while suppressing the pressure loss in the catalyst layer, and when a mesh according to the Japanese Industrial Standards (JIS) is used, 3.5 mesh (opening). It is preferably 5.6 mm) or more, and particularly preferably 8.6 mesh (opening 2.0 mm) or more. On the other hand, the fine particles are difficult to handle, and from the viewpoint of the influence on the reactivity due to the increase in pressure loss when filled in the reactor, it is preferably 635 mesh (opening 20 μm) or less, and 280 mesh (opening 20 μm). It is particularly preferably 53 μm) or less.
 本発明の実施形態による触媒は、粉末状態で反応器(例えば反応管)へ充填することができる。その際、触媒層での圧力損失が過度に大きくならないように粒径を調整することが好ましい。触媒層での圧力損失を抑えながら、触媒の表面積を確保する点から、触媒の粒径はできるだけ小さいことが好ましい。また、触媒層での圧力損失を抑える点から、触媒を他の材料と混合してもよいし、成形した後に充填してもよい。他の材料としては、触媒に不活性で且つ触媒性能を劣化させない充填剤(シリカボール、アルミナボール)を用いることができる。また、成形は、得られた触媒に、その触媒性能を劣化させないバインダーを添加、混練し、加熱して燒結することができる。バインダー(燒結剤)としては、シリカ系、アルミナ系、ジルコニア系、珪藻土系が挙げられる。また成形後の形状は、タブレットや、ペレット、球状、押し出し状が挙げられる。成形することにより、強度と取り扱い性を高めることができる。 The catalyst according to the embodiment of the present invention can be filled in a reactor (for example, a reaction tube) in a powder state. At that time, it is preferable to adjust the particle size so that the pressure loss in the catalyst layer does not become excessively large. The particle size of the catalyst is preferably as small as possible from the viewpoint of securing the surface area of the catalyst while suppressing the pressure loss in the catalyst layer. Further, the catalyst may be mixed with other materials or may be filled after molding from the viewpoint of suppressing the pressure loss in the catalyst layer. As another material, a filler (silica ball, alumina ball) that is inert to the catalyst and does not deteriorate the catalyst performance can be used. Further, in molding, a binder that does not deteriorate the catalytic performance can be added to the obtained catalyst, kneaded, heated and fired. Examples of the binder (sintering agent) include silica-based, alumina-based, zirconia-based, and diatomaceous earth-based. The shape after molding includes tablets, pellets, spheres, and extruded shapes. By molding, strength and handleability can be improved.
 担体に担持する遷移金属としては、モリブデン、タングステン、クロム、ニッケル、鉄、貴金属(Au、Ag、Pt、Pd、Rh、Ir、Ru、Os)、バナジウム、マンガン、亜鉛からなる群から選ばれる少なくとも一種を用いることができ、複数種を用いてもよい。これらの中でも、コスト及び触媒性能の点から、ニッケル(Ni)が好ましい。 The transition metal carried on the carrier is at least selected from the group consisting of molybdenum, tungsten, chromium, nickel, iron, noble metals (Au, Ag, Pt, Pd, Rh, Ir, Ru, Os), vanadium, manganese, and zinc. One type can be used, and a plurality of types may be used. Among these, nickel (Ni) is preferable from the viewpoint of cost and catalytic performance.
 担体に担持する遷移金属の量は、触媒として良好な活性を発現する観点から、担体に対して1.0質量%以上30.0質量%以下であることが好ましい。担体に担持する遷移金属の量を1.0質量%以上とすることにより、活性点として存在する遷移金属粒子が担体表面に保持されやすくなるので、アルカンの転化率を高めることができる。また、担体に担持する遷移金属の量を30.0質量%以下とすることにより、担体に担持された遷移金属粒子が凝集するのをより抑制することができ、活性点の表面積を大きく維持でき、アルカンの転化率及び該アルカンに対応するアルケンの選択率を高めることができる。上記のなかでも、担体に担持する遷移金属の量は、3.0質量%以上であることがより好ましく、5.0質量%以上であることがさらに好ましく、10.0質量%以上であることが特に好ましく、15.0質量%以上であることが最も好ましく、一方、28.0質量%以下であることがより好ましく、25.0質量%以下であることがさらに好ましく、23.0質量%以下であることが特に好ましい。なお、本発明において担体に担持される遷移金属の量は蛍光X線分析測定により測定することができる。 The amount of the transition metal carried on the carrier is preferably 1.0% by mass or more and 30.0% by mass or less with respect to the carrier from the viewpoint of exhibiting good activity as a catalyst. By setting the amount of the transition metal carried on the carrier to 1.0% by mass or more, the transition metal particles existing as active points are easily retained on the surface of the carrier, so that the conversion rate of alcan can be increased. Further, by setting the amount of the transition metal supported on the carrier to 30.0% by mass or less, it is possible to further suppress the aggregation of the transition metal particles supported on the carrier, and it is possible to maintain a large surface area of the active site. , The conversion rate of alkanes and the selectivity of alkenes corresponding to the alkanes can be increased. Among the above, the amount of the transition metal carried on the carrier is more preferably 3.0% by mass or more, further preferably 5.0% by mass or more, and 10.0% by mass or more. Is particularly preferable, and it is most preferably 15.0% by mass or more, while it is more preferably 28.0% by mass or less, further preferably 25.0% by mass or less, and 23.0% by mass. The following is particularly preferable. In the present invention, the amount of the transition metal supported on the carrier can be measured by fluorescent X-ray analysis measurement.
 本実施形態の触媒は、上述の通り、遷移金属に加えて、さらに繊維状炭素を含む炭素を担持している。触媒が、繊維状炭素を含む炭素を担持することによりアルカンの脱水素反応においてアルカンの転化率及び該アルカンに対応するアルケンの選択率を向上することができる。この理由は明らかではないが、下記の理由が考えられる。 As described above, the catalyst of this embodiment carries carbon including fibrous carbon in addition to the transition metal. By supporting carbon containing fibrous carbon in the catalyst, the conversion rate of alkanes and the selectivity of alkenes corresponding to the alkanes can be improved in the dehydrogenation reaction of alkanes. The reason for this is not clear, but the following reasons can be considered.
 通常の金属担持触媒では、一般的に担体上の金属粒子が反応の進行とともに、凝集し粗大粒子となることで活性点の表面積低下による反応性の低下、及び活性点の構造変化による選択率低下が引き起こされる。しかしながら、遷移金属に加えて、予め特定量の繊維状炭素を含む炭素を担持させておくことにより、繊維状炭素を含む炭素の存在により反応中に熱や振動による遷移金属どうしの凝集を抑制することができるため、良好な活性点を保持することができ、アルカンの選択率及び該アルカンに対応するアルケンの選択率、さらに不飽和炭化水素の選択率が向上するものと思われる。なお、本発明において、走査電子顕微鏡(SEM)により観察した際に、繊維状に伸びた炭素(いわゆる細長い形状に存在する炭素)を繊維状炭素と称すものとする。繊維状に伸びた炭素の断面形状(長手方向に垂直な断面の形状)は、円形、楕円形、三角形、四角形、多角形等のいずれでもよく、不定形であってもよく、薄い板状になっていてもよい。また、断面の平均直径に対する繊維状炭素の長さの比も特に制限はない。また、繊維状炭素は、屈曲していてもよく直線的に伸びていてもよく、枝分れしていてもよい。 In a normal metal-supported catalyst, in general, as the reaction progresses, the metal particles on the carrier aggregate to become coarse particles, so that the reactivity decreases due to the decrease in the surface area of the active site, and the selectivity decreases due to the structural change of the active site. Is caused. However, by supporting carbon containing a specific amount of fibrous carbon in advance in addition to the transition metal, the presence of carbon containing fibrous carbon suppresses aggregation of transition metals due to heat or vibration during the reaction. Therefore, it is considered that a good active site can be maintained, and the selectivity of the alkane, the selectivity of the alkene corresponding to the alkane, and the selectivity of the unsaturated hydrocarbon are improved. In the present invention, carbon that extends in a fibrous form (carbon that exists in a so-called elongated shape) when observed with a scanning electron microscope (SEM) is referred to as fibrous carbon. The cross-sectional shape of the fibrous carbon (the shape of the cross section perpendicular to the longitudinal direction) may be any of a circle, an ellipse, a triangle, a quadrangle, a polygon, etc. It may be. Further, the ratio of the length of fibrous carbon to the average diameter of the cross section is not particularly limited. Further, the fibrous carbon may be bent, linearly extended, or branched.
 担体に担持される繊維状炭素を含む炭素の量は、担持されている遷移金属に対して510質量%以上であることが好ましく、2500質量%以下であることが好ましい。担体に担持される繊維状炭素を含む炭素の量が担持されている遷移金属に対して550質量%以上であれば、遷移金属粒子を固定化させる効果が得やすくなるために反応中に遷移金属粒子が凝集するのを抑制できやすくなる。その結果、アルカンの転化率及び該アルカンに対応するアルケンの選択率を高めることができる。担体に担持されている炭素には繊維状炭素が含まれていればよく、繊維状炭素を含む炭素の量がこのような範囲にあれば、より十分な上記効果を得ることができる。担体に担持された炭素に繊維状炭素が含まれていること(担体に担持された繊維状炭素が存在していること)は、走査電子顕微鏡(SEM)により確認することができる。SEMにより得られた観察画像を均等な格子で12分割し、各格子内に繊維状炭素の存在が確認できる程度に担体上に繊維状炭素が形成されていることが好ましい。
 一方、担体に担持される繊維状炭素を含む炭素の量が担持されている遷移金属に対して2500質量%以下であれば、遷移金属粒子が過剰量の炭素に被覆され触媒活性を妨げることをより防ぐことができ、アルカンの転化率及び該アルカンに対応するアルケンの選択率を高めることができる。
 上記のなかでも、担体に担持される繊維状炭素を含む炭素の量は、担持されている遷移金属に対して700質量%以上であることがさらに好ましく、1000質量%以上であることが特に好ましく、一方、2300質量%以下であることがさらに好ましく、2000質量%以下であることが特に好ましい。
 なお、本発明において、担体に担持される繊維状炭素を含む炭素の量は、熱重量・示差熱同時測定(TG-DTA)を用いて1000℃まで昇温し、その際の重量減少から担持されている炭素量の測定を行うことができる。なお、後述の実施例においては、200℃まで加熱した際の重量減少は吸着した水の脱離によるものであるため、200℃から1000℃までの昇温過程での重量減少量を担持した繊維状炭素を含む炭素によるものとして計算した。
The amount of carbon containing fibrous carbon supported on the carrier is preferably 510% by mass or more and preferably 2500% by mass or less with respect to the supported transition metal. If the amount of carbon including fibrous carbon supported on the carrier is 550% by mass or more with respect to the supported transition metal, the effect of immobilizing the transition metal particles can be easily obtained, so that the transition metal during the reaction can be easily obtained. It becomes easier to suppress the aggregation of particles. As a result, the conversion rate of alkanes and the selectivity of alkenes corresponding to the alkanes can be increased. The carbon supported on the carrier may contain fibrous carbon, and if the amount of carbon containing fibrous carbon is in such a range, the above-mentioned effect can be more sufficiently obtained. It can be confirmed by a scanning electron microscope (SEM) that the carbon supported on the carrier contains fibrous carbon (the presence of the fibrous carbon supported on the carrier). It is preferable that the observation image obtained by SEM is divided into 12 by a uniform lattice, and fibrous carbon is formed on the carrier to the extent that the presence of fibrous carbon can be confirmed in each lattice.
On the other hand, if the amount of carbon including fibrous carbon supported on the carrier is 2500% by mass or less with respect to the supported transition metal, the transition metal particles are coated with an excess amount of carbon and hinder the catalytic activity. This can be further prevented, and the conversion rate of alkanes and the selectivity of alkenes corresponding to the alkanes can be increased.
Among the above, the amount of carbon containing fibrous carbon supported on the carrier is more preferably 700% by mass or more, particularly preferably 1000% by mass or more, based on the supported transition metal. On the other hand, it is more preferably 2300% by mass or less, and particularly preferably 2000% by mass or less.
In the present invention, the amount of carbon including fibrous carbon supported on the carrier is raised to 1000 ° C. using simultaneous measurement of thermal weight and differential thermal (TG-DTA), and is supported from the weight reduction at that time. It is possible to measure the amount of carbon used. In the examples described later, since the weight loss when heated to 200 ° C. is due to the desorption of adsorbed water, the fiber carrying the weight loss amount in the heating process from 200 ° C. to 1000 ° C. Calculated as due to carbon containing carbon.
 遷移金属が担持された担体に担持された繊維状炭素は、繊維状炭素の平均直径が20nm以上100nm以下であることが好ましい。繊維状炭素の平均直径が20nm以上であれば、反応中、遷移金属粒子の凝集をより防ぐことができ、アルカンの転化率及び該アルカンに対応するアルケンの選択率をより向上させることができる。一方、繊維状炭素の平均直径が100nm以下であれば、繊維状炭素による遷移金属粒子の被覆をより抑制でき、触媒活性の低下を防ぎやすくなる傾向がある。なかでも、繊維状炭素の平均直径は、25nm以上であることがさらに好ましく、30nm以上であることが特に好ましく、一方、95nm以下であることがさらに好ましく、90nm以下であることが特に好ましい。
 なお、本発明において繊維状炭素の平均直径とは、走査電子顕微鏡(SEM)により得られた観察画像を均等な格子で12分割し、各格子内から、その繊維状炭素の最も直径が大きい箇所と、最も直径が小さい箇所を選び、直径代表値とし、繊維状炭素の直径代表値の平均値を繊維状炭素の平均直径とする。
The fibrous carbon supported on the carrier on which the transition metal is supported preferably has an average diameter of 20 nm or more and 100 nm or less. When the average diameter of the fibrous carbon is 20 nm or more, the agglomeration of transition metal particles can be further prevented during the reaction, and the conversion rate of alkanes and the selectivity of alkenes corresponding to the alkanes can be further improved. On the other hand, when the average diameter of the fibrous carbon is 100 nm or less, the coating of the transition metal particles by the fibrous carbon can be further suppressed, and the decrease in catalytic activity tends to be easily prevented. Among them, the average diameter of the fibrous carbon is more preferably 25 nm or more, particularly preferably 30 nm or more, while further preferably 95 nm or less, and particularly preferably 90 nm or less.
In the present invention, the average diameter of the fibrous carbon is defined as the portion where the observation image obtained by the scanning electron microscope (SEM) is divided into 12 by a uniform grid, and the diameter of the fibrous carbon is the largest in each grid. Then, the part having the smallest diameter is selected and used as the representative diameter value, and the average value of the representative diameter values of the fibrous carbon is used as the average diameter of the fibrous carbon.
(触媒の製造方法)
 本発明の実施形態による触媒の製造方法は、遷移金属化合物を含む溶液と担体を混合し、加熱して溶媒を除去して、触媒前駆体を得る工程と、この触媒前駆体に、炭素含有ガスを接触させ、遷移金属と炭素が担持された触媒を形成する工程を有する。前記触媒前駆体に、炭素含有ガスを接触させることで、繊維状炭素を形成でき、担持することができる。
(Catalyst manufacturing method)
The method for producing a catalyst according to the embodiment of the present invention includes a step of mixing a solution containing a transition metal compound and a carrier and heating to remove the catalyst to obtain a catalyst precursor, and a carbon-containing gas in the catalyst precursor. It has a step of contacting the catalyst to form a catalyst in which a transition metal and a carbon are supported. By contacting the catalyst precursor with a carbon-containing gas, fibrous carbon can be formed and supported.
 前記触媒前駆体を得る工程は、遷移金属化合物を溶解した溶液と担体を混合し、加熱して溶媒を蒸発して固体を得る工程と、該固体を粉砕して、粉末状の触媒前駆体を得る工程を含むことができる。 The steps of obtaining the catalyst precursor include a step of mixing a solution in which a transition metal compound is dissolved and a carrier and heating to evaporate the solvent to obtain a solid, and a step of crushing the solid to obtain a powdery catalyst precursor. The step of obtaining can be included.
 触媒前駆体を得る工程では、担持する遷移金属を含む遷移金属化合物を溶媒に溶解させて溶液を調製し、この溶液中へ担体を添加して、遷移金属化合物と担体を含む混合液を得ることができる。なお、本発明において添加は混合の1種であるが、添加後にさらに混合しても良いことを意味するものとする。 In the step of obtaining a catalyst precursor, a transition metal compound containing a transition metal to be supported is dissolved in a solution to prepare a solution, and a carrier is added to the solution to obtain a mixed solution containing the transition metal compound and the carrier. Can be done. In the present invention, the addition is a kind of mixing, but it means that it may be further mixed after the addition.
 触媒前駆体を得る工程に用いる担体としては、前述の、シリカ、アルミナ、ジルコニア、チタニアからなる群から選ばれる少なくとも1種を用いることができる。これらの中でもアルミナが好ましく、特にγ-アルミナが好ましい。 As the carrier used in the step of obtaining the catalyst precursor, at least one selected from the above-mentioned group consisting of silica, alumina, zirconia, and titania can be used. Among these, alumina is preferable, and γ-alumina is particularly preferable.
 続いて、遷移金属化合物と担体を含む混合液を加熱して溶媒を蒸発して、遷移金属が担体に担持された触媒前駆体を固体として得ることができる。得られた触媒前駆体(固体)を粉砕することで、粉末状の触媒前駆体を得ることができる。 Subsequently, the mixed solution containing the transition metal compound and the carrier can be heated to evaporate the solvent to obtain a catalyst precursor in which the transition metal is supported on the carrier as a solid. By pulverizing the obtained catalyst precursor (solid), a powdery catalyst precursor can be obtained.
 得られた触媒前駆体は、例えば20℃以上200℃以下で、例えば1時間以上20時間以下の乾燥処理を行うことができる。この乾燥処理の温度は、60℃以上がより好ましく、100℃以上がさらに好ましく、一方、120℃以下がより好ましい。この乾燥処理の時間は、5時間以上がより好ましく、一方、15時間以下がより好ましい。 The obtained catalyst precursor can be dried, for example, at 20 ° C. or higher and 200 ° C. or lower, for example, for 1 hour or longer and 20 hours or shorter. The temperature of this drying treatment is more preferably 60 ° C. or higher, further preferably 100 ° C. or higher, and more preferably 120 ° C. or lower. The drying treatment time is more preferably 5 hours or more, while more preferably 15 hours or less.
 また、得られた触媒前駆体は、例えば300℃以上1000℃以下の高温下で、例えば2時間以上30時間以下の熱処理(焼成)を行ってもよい。この熱処理(焼成)の温度は、400℃以上がより好ましく、一方、800℃以下がより好ましい。この熱処理(焼成)の時間は、3時間以上がより好ましく、一方、12時間以下がより好ましい。 Further, the obtained catalyst precursor may be heat-treated (calcined) for, for example, 2 hours or more and 30 hours or less at a high temperature of 300 ° C. or higher and 1000 ° C. or lower. The temperature of this heat treatment (calcination) is more preferably 400 ° C. or higher, while more preferably 800 ° C. or lower. The heat treatment (calcination) time is more preferably 3 hours or more, while more preferably 12 hours or less.
 得られた粉末状の触媒前駆体は、粉末状態で反応器(例えば反応管)へ充填することができる。その際、触媒前駆体相での圧力損失が過度に大きくならないように粒径を調整することが好ましい。触媒前駆体相での圧力損失を抑えながら、触媒前駆体の表面積を確保する点から、触媒前駆体の粒径はできるだけ小さいことが好ましい。
 また、触媒前駆体相での圧力損失を抑える点から、触媒前駆体を他の材料と混合してもよいし、成形した後に充填してもよい。他の材料としては、触媒に不活性で且つ触媒性能を劣化させない充填剤(シリカボール、アルミナボール)を用いることができる。また、成形は、触媒前駆体に、最終的に得られた触媒の性能を劣化させないバインダーを添加、混練し、加熱して燒結することができる。バインダー(燒結剤)としては、シリカ系、アルミナ系、ジルコニア系、珪藻土系が挙げられる。また成形後の形状は、タブレットや、ペレット、球状、押し出し状が挙げられる。成形することにより、強度と取り扱い性を高めることができる。
The obtained powdery catalyst precursor can be filled into a reactor (for example, a reaction tube) in a powder state. At that time, it is preferable to adjust the particle size so that the pressure loss in the catalyst precursor phase does not become excessively large. The particle size of the catalyst precursor is preferably as small as possible from the viewpoint of securing the surface area of the catalyst precursor while suppressing the pressure loss in the catalyst precursor phase.
Further, the catalyst precursor may be mixed with other materials or may be filled after molding from the viewpoint of suppressing the pressure loss in the catalyst precursor phase. As another material, a filler (silica ball, alumina ball) that is inert to the catalyst and does not deteriorate the catalyst performance can be used. Further, in molding, a binder that does not deteriorate the performance of the finally obtained catalyst can be added to the catalyst precursor, kneaded, heated and sintered. Examples of the binder (sintering agent) include silica-based, alumina-based, zirconia-based, and diatomaceous earth-based. The shape after molding includes tablets, pellets, spheres, and extruded shapes. By molding, strength and handleability can be improved.
 次に、得られた触媒前駆体に、炭素含有ガスを接触させる。これにより、炭素含有ガスの酸化反応により炭素化される。また、それと同時に、触媒前駆体上に酸化状態で存在する遷移金属(遷移金属酸化物)を還元することで、遷移金属酸化物の還元と同時に炭素が担持され、遷移金属と炭素が担持された触媒(アルカン脱水素用触媒)を形成することができる。この際、遷移金属酸化物の還元と炭素の担持を同時に行うことができるため、遷移金属酸化物の還元の際、遷移金属酸化物間に炭素が生成し、遷移金属結晶子の凝集が抑制できる。 Next, the carbon-containing gas is brought into contact with the obtained catalyst precursor. As a result, it is carbonized by the oxidation reaction of the carbon-containing gas. At the same time, by reducing the transition metal (transition metal oxide) existing in the oxidized state on the catalyst precursor, carbon was supported at the same time as the reduction of the transition metal oxide, and the transition metal and carbon were supported. A catalyst (catalyst for alcan dehydrogenation) can be formed. At this time, since the transition metal oxide can be reduced and the carbon can be supported at the same time, carbon is generated between the transition metal oxides during the reduction of the transition metal oxide, and aggregation of the transition metal crystallites can be suppressed. ..
 触媒(の担体)上に担持した遷移金属の結晶子径は、炭素含有ガスを接触させない場合の結晶子径に対する、炭素含有ガスの接触後の遷移金属の結晶子径の比として、あるいは担体に担持された炭素が繊維状炭素を含んでいない場合の前記担体に担持された遷移金属の結晶粒子径に対する、前記繊維状炭素を含んでいる場合の前記遷移金属の結晶子径の比として、0.80以下であることが好ましく、さらに0.00を超え、0.60以下であることが好ましく、0.20以上、0.50以下であることがさらに好ましい。この範囲に入るよう、以下に示す条件を適宜調整することが可能である。
 また、担体上に担持した遷移金属結晶子径の測定においては、触媒の粉末X線解析測定を行い、得られた結果から遷移金属結晶子に帰属されるピークを用いてシェラーの式から算出することが可能である。本発明においては、粉末X線解析測定はSmartLab/R/INP/DX(株式会社リガク製)を用いた。測定条件は、X線源としてCu-Kα線を用い、管電圧45kV、管電流150mAで行った。また、例えば、遷移金属としてNiが使われる場合は、2θ=44°の(112)面に帰属されるピークを用いて算出することが可能である。
 触媒(の担体)に担持された遷移金属の結晶子径の比の基準は、前述の通り、触媒前駆体に炭素含有ガスを接触させない場合の遷移金属の結晶子径、あるいは担持された炭素が繊維状炭素を含んでいない場合の前記担体に担持された遷移金属の結晶粒子径とすることができる。このような基準とする結晶子径は、触媒前駆体に水素還元処理(炭素含有ガスを含まない水素を含む前処理ガスに接触)を行った場合の遷移金属の結晶子径とすることが好ましい。特に後述の比較例3の条件で触媒前駆体に水素還元処理(炭素含有ガスを含まない水素を含む前処理ガスに接触)を行った後の担体に担持された遷移金属の結晶粒子径を基準とすることが好ましい。
The crystallite diameter of the transition metal supported on (the carrier) of the catalyst is the ratio of the crystallite diameter of the transition metal after contact with the carbon-containing gas to the crystallite diameter when the carbon-containing gas is not brought into contact, or on the carrier. The ratio of the crystallite diameter of the transition metal when it contains fibrous carbon to the crystal particle size of the transition metal supported on the carrier when the supported carbon does not contain fibrous carbon is 0. It is preferably .80 or less, more preferably more than 0.00, preferably 0.60 or less, and further preferably 0.20 or more and 0.50 or less. The conditions shown below can be adjusted as appropriate so as to fall within this range.
Further, in the measurement of the transition metal crystallite diameter carried on the carrier, the powder X-ray analysis measurement of the catalyst is performed, and the peak attributable to the transition metal crystallite is calculated from the obtained result from Scherrer's equation. It is possible. In the present invention, SmartLab / R / INP / DX (manufactured by Rigaku Co., Ltd.) was used for the powder X-ray analysis measurement. The measurement conditions were Cu-Kα ray as an X-ray source, a tube voltage of 45 kV, and a tube current of 150 mA. Further, for example, when Ni is used as the transition metal, it can be calculated using the peak attributed to the (112) plane at 2θ = 44 °.
As described above, the standard for the ratio of the crystallite diameter of the transition metal supported on the catalyst (carrier) is the crystallite diameter of the transition metal when the carbon-containing gas is not brought into contact with the catalyst precursor, or the supported carbon. It can be the crystal particle size of the transition metal supported on the carrier when it does not contain fibrous carbon. The crystallite diameter as such a reference is preferably the crystallite diameter of the transition metal when the catalyst precursor is subjected to hydrogen reduction treatment (contact with a pretreatment gas containing hydrogen that does not contain carbon-containing gas). .. In particular, based on the crystal particle size of the transition metal supported on the carrier after hydrogen reduction treatment (contact with a pretreatment gas containing hydrogen containing no carbon-containing gas) was performed on the catalyst precursor under the conditions of Comparative Example 3 described later. Is preferable.
 この炭素含有ガスは、触媒前駆体に担持させる炭素の供給源(炭素源)として、炭化水素を含むことが好ましい。この炭化水素としては炭素数2~5のアルカンが好ましい。炭素数が2~5のアルカンとしては、エタン、プロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタンが挙げられる。これらは1種を単独で、又は2種以上を混合して用いてもよい。
 触媒を製造する工程と、得られた触媒を用いてアルカンを脱水素して不飽和炭化水素を製造する工程とを連続して行う場合は、炭素担持用の炭素源と、脱水素反応のアルカン原料とが異なる炭化水素であってもよいし、同じ炭化水素であってもよいが、プロセスの簡略化の観点から、同じ炭化水素であることが好ましい。この場合の炭素源およびアルカン原料としては、上記の炭素数2~5のアルカン(例えば、エタン、プロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン)が好ましく、イソブタンがより好ましい。
This carbon-containing gas preferably contains a hydrocarbon as a carbon source (carbon source) to be supported on the catalyst precursor. As this hydrocarbon, an alkane having 2 to 5 carbon atoms is preferable. Examples of alkanes having 2 to 5 carbon atoms include ethane, propane, n-butane, isobutane, n-pentane, and isopentane. These may be used alone or in admixture of two or more.
When the step of producing a catalyst and the step of dehydrogenating an alkane using the obtained catalyst to produce an unsaturated hydrocarbon are continuously performed, a carbon source for supporting carbon and an alkane for dehydrogenation reaction are performed. The raw materials may be different hydrocarbons or the same hydrocarbons, but the same hydrocarbons are preferable from the viewpoint of simplifying the process. In this case, as the carbon source and the alkane raw material, the above-mentioned alkane having 2 to 5 carbon atoms (for example, ethane, propane, n-butane, isobutane, n-pentane, isopentane) is preferable, and isobutane is more preferable.
 この炭素含有ガスは、炭素源の他に、ヘリウム、窒素等の不活性ガスを含んでいてもよい。 This carbon-containing gas may contain an inert gas such as helium or nitrogen in addition to the carbon source.
 炭素含有ガスに含まれる炭素源(好ましくは炭化水素)の濃度(炭素含有ガスに対する炭素源の体積比率)は、1容積%以上、30容量%以下であることが好ましく、なかでも、5容積%以上であることが特に好ましく、一方、20容積%以下であることが特に好ましい。炭素源の濃度が1容量%以上であることにより、十分な量の炭素をより良好に担持することができ、不飽和炭化水素の選択率をより高めることができる。また、炭素源の濃度が30容量%以下であることにより、過剰な炭素の担持をより容易に制御でき、アルカン転化率および不飽和炭化水素の選択率の低下をより十分に抑制することができる。 The concentration of the carbon source (preferably hydrocarbon) contained in the carbon-containing gas (volume ratio of the carbon source to the carbon-containing gas) is preferably 1% by volume or more and 30% by volume or less, and 5% by volume in particular. The above is particularly preferable, while 20% by volume or less is particularly preferable. When the concentration of the carbon source is 1% by volume or more, a sufficient amount of carbon can be supported better, and the selectivity of unsaturated hydrocarbons can be further increased. Further, when the concentration of the carbon source is 30% by volume or less, the support of excess carbon can be more easily controlled, and the decrease in the alkane conversion rate and the selectivity of unsaturated hydrocarbons can be more sufficiently suppressed. ..
 触媒前駆体に炭素を担持する工程における温度(触媒前駆体に炭素含有ガスを接触させる際の温度)は、300℃以上、1000℃以下であることが好ましく、なかでも、400℃以上であることが特に好ましく、一方、700℃以下であることがさらに好ましく、600℃以下であることが特に好ましい。この炭素担持工程の温度が300℃以上であることにより、より十分な炭素担持量を得ることができる。また、この炭素担持工程の温度が1000℃以下であることにより、炭素源のアルカンの熱分解反応による炭素担持量の低下及び触媒活性低下をより十分に抑制することができる。 The temperature in the step of supporting carbon on the catalyst precursor (the temperature at which the carbon-containing gas is brought into contact with the catalyst precursor) is preferably 300 ° C. or higher and 1000 ° C. or lower, and above all, 400 ° C. or higher. On the other hand, it is more preferably 700 ° C. or lower, and particularly preferably 600 ° C. or lower. When the temperature of this carbon supporting step is 300 ° C. or higher, a more sufficient carbon supporting amount can be obtained. Further, when the temperature of this carbon supporting step is 1000 ° C. or lower, it is possible to more sufficiently suppress a decrease in the amount of carbon supported and a decrease in catalytic activity due to the thermal decomposition reaction of the carbon source alkane.
 触媒前駆体に炭素を担持する工程における圧力(触媒前駆体に炭素含有ガスを接触させる際の圧力)は、使用する炭素含有ガスの種類により適宣選択することができるが、0.01MPa以上1MPa以下であることが好ましい。該圧力を0.01MPa以上とすることにより減圧下での担体上の成分脱離を抑制しやすくすることができる。また、該圧力を1MPa以下とすることにより加圧による反応性の増大をより十分に防ぐことができ、担体への炭素の担持量が過剰になるのを防ぐことができる。上記のなかでも、0.8MPa以下であることがさらに好ましく、0.5MPa以下であることが特に好ましく、一方、0.05MPa以上であることがさらに好ましい。なお、該圧力は大気圧(0.101MPa)であってもよい。 The pressure in the step of supporting carbon on the catalyst precursor (pressure when the carbon-containing gas is brought into contact with the catalyst precursor) can be appropriately selected depending on the type of carbon-containing gas used, but is 0.01 MPa or more and 1 MPa or more. The following is preferable. By setting the pressure to 0.01 MPa or more, it is possible to easily suppress the desorption of components on the carrier under reduced pressure. Further, by setting the pressure to 1 MPa or less, an increase in reactivity due to pressurization can be more sufficiently prevented, and an excessive amount of carbon supported on the carrier can be prevented. Among the above, it is more preferably 0.8 MPa or less, particularly preferably 0.5 MPa or less, and further preferably 0.05 MPa or more. The pressure may be atmospheric pressure (0.101 MPa).
 触媒前駆体に炭素含有ガスを接触させる方法としては、触媒前駆体を充填した反応器(例えば反応管)に、炭素含有ガスを流通させる固定床流通式反応方式で行うことができる。 As a method of bringing the carbon-containing gas into contact with the catalyst precursor, a fixed-bed flow type reaction method in which the carbon-containing gas is circulated in a reactor (for example, a reaction tube) filled with the catalyst precursor can be used.
 触媒前駆体に炭素含有ガスを接触させる際のW/Fは、0.03g・min/ml以上0.5g・min/ml以下であることが好ましい。
 なお、Wは反応管内に充填された触媒前駆体の質量(g)であり、Fは触媒前駆体が充填された反応管内へ流通させる炭素含有ガスの流通速度(ml/min)である。すなわち、W/Fは、反応器内に流れる炭素含有ガスの流通速度に対する反応管内に充填された触媒前駆体の質量であり、以下の式で表される。
The W / F when the carbon-containing gas is brought into contact with the catalyst precursor is preferably 0.03 g · min / ml or more and 0.5 g · min / ml or less.
W is the mass (g) of the catalyst precursor filled in the reaction tube, and F is the flow rate (ml / min) of the carbon-containing gas to be circulated in the reaction tube filled with the catalyst precursor. That is, W / F is the mass of the catalyst precursor filled in the reaction tube with respect to the flow rate of the carbon-containing gas flowing in the reactor, and is represented by the following formula.
 W/F=(反応管内に充填された触媒前駆体量[g])/(反応管内に流れる炭素含有ガスの流通速度[ml/min]) W / F = (Amount of catalyst precursor filled in the reaction tube [g]) / (Flow rate of carbon-containing gas flowing in the reaction tube [ml / min])
 W/Fを0.03g・min/ml以上とすることにより、炭素の担持量が不十分となるのを防ぐことができる。また、W/Fを0.5g・min/ml以下とすることにより炭素担持量が過剰になるのを防ぐことができる。上記のなかでも、W/Fは、0.05g・min/ml以上であることが特に好ましく、一方、0.2g・min/ml以下であることが特に好ましい。 By setting the W / F to 0.03 g · min / ml or more, it is possible to prevent the carbon support amount from becoming insufficient. Further, by setting the W / F to 0.5 g · min / ml or less, it is possible to prevent the carbon loading amount from becoming excessive. Among the above, the W / F is particularly preferably 0.05 g · min / ml or more, while it is particularly preferably 0.2 g · min / ml or less.
 (アルカンから不飽和炭化水素を製造する方法)
 本発明の実施形態による不飽和炭化水素の製造方法では、本発明による触媒を、アルカン及び二酸化炭素を含む混合ガス(以下適宜「反応ガス」ともいう)に接触させて、アルカンから不飽和炭化水素を製造する。
(Method of producing unsaturated hydrocarbons from alkanes)
In the method for producing an unsaturated hydrocarbon according to the embodiment of the present invention, the catalyst according to the present invention is brought into contact with a mixed gas containing alkane and carbon dioxide (hereinafter, also appropriately referred to as “reaction gas”), and the unsaturated hydrocarbon is derived from the alkane. To manufacture.
 アルカンの脱水素反応に使用するアルカン原料としては、特に制限はないが、炭素数が2~5のアルカンが好ましい。炭素数が5以下であることにより、分解反応による低炭素数の副生成物の発生を抑制することができる。炭素数が2~5のアルカンとしては、エタン、プロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタンが挙げられる。これらは1種を単独で、又は2種以上を混合して用いてもよい。脱水素反応によって、エタンからはエチレンが、プロパンからはプロピレンが、n-ブタンからはブタジエンが、イソブタンからはイソブテンが、n-ペンタンからはペンテンが、イソペンタンからはイソプレンが主に生成する。 The alkane raw material used for the dehydrogenation reaction of alkane is not particularly limited, but an alkane having 2 to 5 carbon atoms is preferable. When the number of carbon atoms is 5 or less, it is possible to suppress the generation of low carbon number by-products due to the decomposition reaction. Examples of alkanes having 2 to 5 carbon atoms include ethane, propane, n-butane, isobutane, n-pentane, and isopentane. These may be used alone or in admixture of two or more. The dehydrogenation reaction mainly produces ethylene from ethane, propylene from propane, butadiene from n-butane, isobutene from isobutane, pentene from n-pentane, and isoprene from isopentane.
 本発明の実施形態による製造方法では、上述したアルカンの脱水素反応を行い、対応する不飽和炭化水素を製造する。この脱水素反応は、アルカン及び二酸化炭素を含む混合ガス(反応ガス)を本発明による触媒に接触させることで行う。この混合ガス(反応ガス)に含まれる、アルカンに対する二酸化炭素のモル比は0.1以上1.9以下であることが好ましく、この中でも0.25以上であることがより好ましく、一方、1.6以下であることがより好ましい。このモル比が0.1より小さい場合、二酸化炭素の濃度が低いため、反応性が低下する傾向がある。一方、このモル比が1.9より大きい場合、二酸化炭素の濃度が高いため、選択性が低下する傾向がある。 In the production method according to the embodiment of the present invention, the above-mentioned dehydrogenation reaction of alkane is performed to produce the corresponding unsaturated hydrocarbon. This dehydrogenation reaction is carried out by bringing a mixed gas (reaction gas) containing alkane and carbon dioxide into contact with the catalyst according to the present invention. The molar ratio of carbon dioxide to alkane contained in this mixed gas (reaction gas) is preferably 0.1 or more and 1.9 or less, and more preferably 0.25 or more, while 1. It is more preferably 6 or less. When this molar ratio is less than 0.1, the concentration of carbon dioxide is low, so that the reactivity tends to decrease. On the other hand, when this molar ratio is larger than 1.9, the concentration of carbon dioxide is high, so that the selectivity tends to decrease.
 この混合ガス(反応ガス)は、アルカン及び二酸化炭素以外に、本発明による効果を阻害しない範囲で、ヘリウム、窒素等の不活性ガスや、水蒸気(水)、メタン、水素などを含んでもよい。 This mixed gas (reaction gas) may contain an inert gas such as helium or nitrogen, water vapor (water), methane, hydrogen or the like as long as the effect of the present invention is not impaired, in addition to alkane and carbon dioxide.
 この混合ガス(反応ガス)中のアルカンの濃度は、1容量%以上30容量%以下であることが好ましく、この中でも1容量%以上がより好ましく、5容量%以上がさらに好ましく、一方、20容量%以下がより好ましい。アルカンの濃度が1容量%以上であることにより、アルカンの転化率向上による不飽和炭化水素の選択性低下をより抑制することができる。また、アルカンの濃度が30容量%以下であることにより、アルカンの転化率の低下をより抑制することができる。 The concentration of alkane in this mixed gas (reaction gas) is preferably 1% by volume or more and 30% by volume or less, more preferably 1% by volume or more, further preferably 5% by volume or more, and 20% by volume. % Or less is more preferable. When the concentration of alkane is 1% by volume or more, it is possible to further suppress the decrease in selectivity of unsaturated hydrocarbon due to the improvement of the conversion rate of alkane. Further, when the concentration of alkane is 30% by volume or less, the decrease in the conversion rate of alkane can be further suppressed.
 アルカンの脱水素反応の温度(触媒に前記混合ガスを接触させる際の温度)は、300℃以上1000℃以下であることが好ましく、400℃以上がより好ましく、一方、700℃以下がより好ましく、600℃以下がさらに好ましい。この脱水素反応の温度が300℃以上であることにより、より十分な触媒活性を得ることができる。また、この脱水素反応の温度が1000℃以下であることにより、アルカンの熱分解反応による不飽和炭化水素の選択率低下及び触媒活性低下をより抑制することができる。 The temperature of the dehydrogenation reaction of the alkane (the temperature at which the mixed gas is brought into contact with the catalyst) is preferably 300 ° C. or higher and 1000 ° C. or lower, more preferably 400 ° C. or higher, and more preferably 700 ° C. or lower. 600 ° C. or lower is more preferable. When the temperature of this dehydrogenation reaction is 300 ° C. or higher, more sufficient catalytic activity can be obtained. Further, when the temperature of this dehydrogenation reaction is 1000 ° C. or lower, it is possible to further suppress a decrease in selectivity of unsaturated hydrocarbon and a decrease in catalytic activity due to a thermal decomposition reaction of alkane.
 アルカンの脱水素反応における圧力は、反応に使用するアルカンの種類により適宣選択することができるが、通常は1MPa以下に設定でき、0.01MPa以上1MPa以下であることが好ましい。この中でも該圧力は0.8MPa以下がより好ましく、0.5MPa以下がさらに好ましく、一方、0.05MPa以上がより好ましく、0.1MPa以上がさらに好ましい。なお、該圧力は大気圧(0.101MPa)であってもよい。該圧力を0.01MPa以上とすることで、反応中、触媒上の活性点とアルカンの接触がより適切に行われ、アルカンの選択率が向上しやすくなる。また、該圧力を1MPa以下とすることにより、反応ガス中のアルカン及び生成した不飽和炭化水素が触媒上の活性点と過剰に接触することにより引き起こされる暴走反応をより抑制できるとともに、対応するアルケンの選択率を高めることができる。 The pressure in the dehydrogenation reaction of alkanes can be appropriately selected depending on the type of alkane used in the reaction, but it can usually be set to 1 MPa or less, preferably 0.01 MPa or more and 1 MPa or less. Among these, the pressure is more preferably 0.8 MPa or less, further preferably 0.5 MPa or less, while more preferably 0.05 MPa or more, further preferably 0.1 MPa or more. The pressure may be atmospheric pressure (0.101 MPa). By setting the pressure to 0.01 MPa or more, the active site on the catalyst and the alkane are more appropriately contacted during the reaction, and the selectivity of the alkane is likely to be improved. Further, by setting the pressure to 1 MPa or less, the runaway reaction caused by the excessive contact of the alkane in the reaction gas and the generated unsaturated hydrocarbon with the active site on the catalyst can be further suppressed, and the corresponding alkene can be further suppressed. Can increase the selectivity of.
 本発明の実施形態による不飽和炭化水素の製造方法で用いられる反応形式は、特に限定されず、触媒反応に使用されている通常の形式を採用することができる。例えば、固定床、移動床、流動床などの反応形式が挙げられる。これらのなかでも、装置が比較的簡便でプロセス設計も容易である点から、固定床方式を好適に採用することができる。すなわち、本発明の実施形態による不飽和炭化水素の製造方法において、アルカンの脱水素反応は、本発明による触媒を充填した反応器(例えば反応管)に、原料のアルカン、二酸化炭素等を含む混合ガス(反応ガス)を流通させる固定床流通式反応方式で行うことができる。 The reaction form used in the method for producing unsaturated hydrocarbons according to the embodiment of the present invention is not particularly limited, and the usual form used for the catalytic reaction can be adopted. For example, reaction types such as fixed beds, moving beds, and fluidized beds can be mentioned. Among these, the fixed floor method can be preferably adopted because the apparatus is relatively simple and the process design is easy. That is, in the method for producing an unsaturated hydrocarbon according to the embodiment of the present invention, the dehydrogenation reaction of alkanes is carried out by mixing a reactor (for example, a reaction tube) filled with a catalyst according to the present invention containing raw materials such as alkanes and carbon dioxide. It can be carried out by a fixed bed flow type reaction method in which gas (reaction gas) is circulated.
 アルカンの脱水素反応におけるW/Fは、0.001g・min/ml以上1000g・min/ml以下であることが好ましい。該W/Fは、0.01g・min/ml以上がより好ましく、一方、100g・min/ml以下であることがより好ましい。
 なお、Wは反応管内に充填された触媒質量(g)であり、Fは触媒が充填された反応管内へ流通させるアルカン及び二酸化炭素を含む混合ガス(反応ガス)の流通速度(ml/min)である。すなわち、W/Fは、反応管内に流れる混合ガス(反応ガス)の流通速度に対する反応管内に充填された触媒質量であり、以下の式で表される。
The W / F in the dehydrogenation reaction of alkanes is preferably 0.001 g · min / ml or more and 1000 g · min / ml or less. The W / F is more preferably 0.01 g · min / ml or more, and more preferably 100 g · min / ml or less.
W is the mass (g) of the catalyst filled in the reaction tube, and F is the flow rate (ml / min) of the mixed gas (reaction gas) containing alcan and carbon dioxide to be distributed in the reaction tube filled with the catalyst. Is. That is, W / F is the mass of the catalyst filled in the reaction tube with respect to the flow rate of the mixed gas (reaction gas) flowing in the reaction tube, and is represented by the following formula.
 W/F=(反応管内に充填された触媒量[g])/(反応管内に流れる混合ガスの流通速度[ml/min]) W / F = (Amount of catalyst filled in the reaction tube [g]) / (Flow rate of mixed gas flowing in the reaction tube [ml / min])
 該W/Fが0.001g・min/ml以上であることにより、触媒に対するアルカンの反応時間をより確保することができ、アルカンの転化率を向上することができる。また、該W/Fが1000g・min/ml以下であることにより、触媒に対するアルカンの反応時間が過剰になることをより防ぐことができ、さらに生成したアルケンが触媒上で反応し、二酸化炭素になることによる選択率の低下をより防ぐことができる。 When the W / F is 0.001 g · min / ml or more, the reaction time of the alkane with the catalyst can be further secured, and the conversion rate of the alkane can be improved. Further, when the W / F is 1000 g · min / ml or less, it is possible to further prevent the reaction time of the alkane with the catalyst from becoming excessive, and the produced alkene reacts on the catalyst to carbon dioxide. It is possible to prevent a decrease in the selectivity due to the above.
 以下、実施例及び比較例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
 (実施例1)
 まず、次のようにして、触媒(Ni-C/γ-Al23触媒)を作製した。
 γ-Alに対するNiの仕込み量が20質量%となるように、水15質量部に、硝酸ニッケル・6水和物(和光純薬工業株式会社)を3.89質量部加え溶解させて水溶液を得た。
 その後、この水溶液に、γ-Al23(日本軽金属株式会社)を4質量部加えて混合した。次いで、この混合物を加熱し、水を蒸発させ固体を得た。得られた固体を粉砕し、110℃で12時間真空乾燥した。
 粉砕後の固体を、さらに550℃で1時間焼成(昇温速度1℃/分)を行った。得られた固体を再度、粉砕し、粉末状の触媒前駆体1(ニッケルが担持されたγ-Al23)を得た。
(Example 1)
First, a catalyst (Ni—C / γ-Al 2 O 3 catalyst) was prepared as follows.
Nickel nitrate hexahydrate (Wako Pure Chemical Industries, Ltd.) was added in an amount of 3.89 parts by mass and dissolved in 15 parts by mass of water so that the amount of Ni charged with respect to γ-Al 2 O 3 was 20% by mass. To obtain an aqueous solution.
Then, 4 parts by mass of γ-Al 2 O 3 (Nippon Light Metal Co., Ltd.) was added to this aqueous solution and mixed. The mixture was then heated to evaporate the water to give a solid. The obtained solid was pulverized and vacuum dried at 110 ° C. for 12 hours.
The pulverized solid was further calcined at 550 ° C. for 1 hour (heating rate 1 ° C./min). The obtained solid was pulverized again to obtain a powdery catalyst precursor 1 (nickel-supported γ-Al 2 O 3 ).
 得られた触媒前駆体1を、固定床流通式の反応装置に設置された、直径9mm、長さが35mmの石英製の反応管内に詰め、ヘリウムを流通させながら550℃まで加熱した。その後、ヘリウム85.8体積%、イソブタン14.2体積%を含む前処理ガスをW/Fが0.12g・min/mlとなるように各条件を設定した。このようにして、前処理ガスを反応管内に3時間流通し、触媒前駆体1に炭素が担持されたNi-C/γ-Al23触媒を得た。
 また、得られた触媒(Ni-C/γ-Al触媒)の粉末X線解析測定を行った。X線解析測定は、SmartLab/R/INP/DX(株式会社リガク製)を用いた。測定条件は、X線源としてCu-Kα線を用い、管電圧45kV、管電流150mAで行った。Niの結晶子径算出には、2θ=44°の(112)面に帰属されるピークを用いて算出した。
The obtained catalyst precursor 1 was packed in a quartz reaction tube having a diameter of 9 mm and a length of 35 mm installed in a fixed-bed circulation type reactor, and heated to 550 ° C. while circulating helium. Then, each condition was set so that the W / F of the pretreatment gas containing 85.8% by volume of helium and 14.2% by volume of isobutane was 0.12 g · min / ml. In this way, the pretreatment gas was circulated in the reaction tube for 3 hours to obtain a Ni—C / γ-Al 2 O 3 catalyst in which carbon was supported on the catalyst precursor 1.
In addition, powder X-ray analysis measurement of the obtained catalyst (Ni—C / γ-Al 2 O 3 catalyst) was performed. For the X-ray analysis measurement, SmartLab / R / INP / DX (manufactured by Rigaku Co., Ltd.) was used. The measurement conditions were Cu-Kα ray as an X-ray source, a tube voltage of 45 kV, and a tube current of 150 mA. The crystallite diameter of Ni was calculated using the peak attributed to the (112) plane at 2θ = 44 °.
 次に、この触媒を用いて、以下のようにしてイソブタンからイソブテンを製造した。
 上記のようにして得られた触媒をそのまま反応管に充填した状態で、ヘリウム73.7体積%、イソブタン14.2体積%、二酸化炭素12.1体積%に調整した反応ガスを流通した。その際、W/Fが0.017g・min/mlとなるように各条件を設定した。
 反応ガスの流通を開始して6時間後の反応管出口ガスをガスクロマトグラフィーで測定し、イソブタン転化率、イソブテン選択率およびイソブテン収率を求めた。結果を表1に示す。
Next, using this catalyst, isobutene was produced from isobutane as follows.
With the catalyst obtained as described above filled in the reaction tube as it was, a reaction gas adjusted to 73.7% by volume of helium, 14.2% by volume of isobutane, and 12.1% by volume of carbon dioxide was circulated. At that time, each condition was set so that the W / F was 0.017 g · min / ml.
The reaction tube outlet gas 6 hours after the start of the reaction gas flow was measured by gas chromatography to determine the isobutane conversion rate, isobutene selectivity and isobutene yield. The results are shown in Table 1.
 なお、「W/F」は以下の式で表される。
 W/F=反応管に充填された触媒前駆体もしくは触媒の量(g)/反応管内へ供給される炭素含有ガスもしくは反応ガスの供給速度(ml/min)
In addition, "W / F" is expressed by the following formula.
W / F = Amount of catalyst precursor or catalyst filled in the reaction tube (g) / Supply rate of carbon-containing gas or reaction gas supplied into the reaction tube (ml / min)
 また、イソブタン転化率、イソブテン選択率およびイソブテン収率は以下の式で表される。
 イソブタン転化率(%)=(反応したイソブタンのモル数)/(供給したイソブタンのモル数)
 イソブテン選択率(%)=(製造したイソブテンのモル数)/(反応したイソブタンのモル数)
 イソブテン収率(%)=(製造したイソブテンのモル数)/(供給したイソブタンのモル数)
The isobutane conversion rate, isobutene selectivity and isobutene yield are represented by the following formulas.
Isobutane conversion rate (%) = (number of moles of reacted isobutane) / (number of moles of supplied isobutane)
Isobutene selectivity (%) = (number of moles of produced isobutane) / (number of moles of reacted isobutane)
Isobutene yield (%) = (number of moles of produced isobutane) / (number of moles of supplied isobutane)
 (実施例2)
 前処理ガスの流通時間を5時間に変更した以外は、実施例1と同様の方法で触媒(Ni-C/γ-Al23触媒)を作製し、続いて実施例1と同様の方法によりイソブテンの製造を行った。
 また、得られた触媒(Ni-C/γ-Al触媒)を熱重量・示差熱同時測定(TG-DTA)を用いて1000℃まで昇温し、その際の重量減少から担持されている炭素量の測定を行った。なお、この際の重量変化では、200℃まで加熱した際の重量減少は吸着した水の脱離によるものであったため、200℃から1000℃までの昇温過程での重量減少量を担持した炭素によるものとして計算した。続いて、走査電子顕微鏡(SEM)を用いて触媒の炭素は繊維状炭素となっていることを確認した(図1及び図2にSEM画像を示す)。繊維状炭素の平均直径は、41.9nmであった。結果を表1に示す。
(Example 2)
A catalyst (Ni—C / γ-Al 2 O 3 catalyst) was prepared by the same method as in Example 1 except that the flow time of the pretreatment gas was changed to 5 hours, and subsequently, the same method as in Example 1. Isobutene was produced in the above.
Further, the obtained catalyst (Ni-C / γ-Al 2 O 3 catalyst) was heated to 1000 ° C. using simultaneous thermogravimetric and differential thermal measurement (TG-DTA), and was supported from the weight reduction at that time. The amount of carbon used was measured. In the weight change at this time, since the weight loss when heated to 200 ° C. was due to the desorption of adsorbed water, the carbon carrying the weight loss amount in the heating process from 200 ° C. to 1000 ° C. Calculated as due to. Subsequently, using a scanning electron microscope (SEM), it was confirmed that the carbon of the catalyst was fibrous carbon (SEM images are shown in FIGS. 1 and 2). The average diameter of the fibrous carbon was 41.9 nm. The results are shown in Table 1.
 (実施例3)
 前処理ガスの流通時間を7時間に変更した以外は、実施例1と同様の方法で触媒(Ni-C/γ-Al23触媒)を作製し、続いて実施例1と同様の方法によりイソブテンの製造を行った。結果を表1に示す。
(Example 3)
A catalyst (Ni—C / γ-Al 2 O 3 catalyst) was prepared by the same method as in Example 1 except that the flow time of the pretreatment gas was changed to 7 hours, and subsequently, the same method as in Example 1. Isobutene was produced in the above. The results are shown in Table 1.
 (比較例1)
 前処理ガスを流通させなかったこと以外は、実施例1と同様の方法によりNi/γ-Al23触媒を作製し、続いて実施例1と同様の方法によりイソブテンの製造を行った。結果を表1に示す。
(Comparative Example 1)
A Ni / γ-Al 2 O 3 catalyst was produced by the same method as in Example 1 except that the pretreatment gas was not circulated, and then isobutylene was produced by the same method as in Example 1. The results are shown in Table 1.
 (比較例2)
 前処理ガスをヘリウム80.0体積%、水素20.0体積%を含むガスに変更し、W/Fを0.0042g・min/mlとし、前処理ガスの流通時間を1時間となるように各条件を変更した以外は、実施例1と同様の方法によりNi/γ-Al23触媒を作製し、続いて実施例1と同様の方法でイソブテンの製造を行った。結果を表1に示す。
(Comparative Example 2)
Change the pretreatment gas to a gas containing 80.0% by volume of helium and 20.0% by volume of hydrogen, set the W / F to 0.0042 g · min / ml, and set the flow time of the pretreatment gas to 1 hour. A Ni / γ-Al 2 O 3 catalyst was produced by the same method as in Example 1 except that each condition was changed, and then isobutene was produced by the same method as in Example 1. The results are shown in Table 1.
 (比較例3)
 前処理ガスの流通時間を5時間に変更した以外は、比較例2と同様の方法によりNi/γ-Al23触媒を作製し、続いて実施例1と同様の方法でイソブテンの製造を行った。
結果を表1に示す。
(Comparative Example 3)
A Ni / γ-Al 2 O 3 catalyst was prepared by the same method as in Comparative Example 2 except that the flow time of the pretreatment gas was changed to 5 hours, and then isobutylene was produced by the same method as in Example 1. went.
The results are shown in Table 1.
 (比較例4)
 前処理ガスの流通時間を1時間に変更した以外は、実施例1と同様の方法によりNi/γ-Al23触媒を作製し、続いて実施例1と同様の方法でイソブテンの製造を行った。
結果を表1に示す。
(Comparative Example 4)
A Ni / γ-Al 2 O 3 catalyst was prepared by the same method as in Example 1 except that the flow time of the pretreatment gas was changed to 1 hour, and then isobutylene was produced by the same method as in Example 1. went.
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 

Claims (28)

  1.  遷移金属と炭素が担体に担持され、前記炭素が繊維状炭素を含んでいることを特徴とする触媒。 A catalyst characterized in that a transition metal and carbon are supported on a carrier, and the carbon contains fibrous carbon.
  2.  担体に担持された炭素が繊維状炭素を含んでいない場合の前記担体に担持された遷移金属の結晶粒子径に対する、前記繊維状炭素を含んでいる場合の前記遷移金属の結晶子径の比が、0.80以下である請求項1に記載の触媒。 The ratio of the crystallite diameter of the transition metal when the carrier contains fibrous carbon to the crystal particle size of the transition metal supported on the carrier when the carbon supported on the carrier does not contain fibrous carbon. , 0.80 or less, according to claim 1.
  3.  前記遷移金属に対する前記炭素の量が510質量%以上2500質量%以下である、請求項1又は2記載の触媒。 The catalyst according to claim 1 or 2, wherein the amount of carbon with respect to the transition metal is 510% by mass or more and 2500% by mass or less.
  4.  前記触媒がアルカン脱水素用触媒である、請求項1から3のいずれか一項に記載の触媒。 The catalyst according to any one of claims 1 to 3, wherein the catalyst is an alkane dehydrogenation catalyst.
  5.  前記遷移金属がNiである、請求項1から4のいずれか一項に記載の触媒。 The catalyst according to any one of claims 1 to 4, wherein the transition metal is Ni.
  6.  前記担体が、シリカ、アルミナ、ジルコニア、及びチタニアからなる群から選ばれる少なくとも1種である、請求項1から5のいずれか一項に記載の触媒。 The catalyst according to any one of claims 1 to 5, wherein the carrier is at least one selected from the group consisting of silica, alumina, zirconia, and titania.
  7.  前記担体が、γ-アルミナである、請求項1から5のいずれか一項に記載の触媒。 The catalyst according to any one of claims 1 to 5, wherein the carrier is γ-alumina.
  8.  遷移金属化合物を含む溶液と担体を混合し、加熱して溶媒を除去して、触媒前駆体を得る工程と、
     前記触媒前駆体に、炭素含有ガスを接触させ、遷移金属と炭素が担持された触媒を形成する工程と、
    を含む、触媒の製造方法であって、
     前記触媒を形成する工程において、前記触媒前駆体に、炭素含有ガスを接触させることで、繊維状炭素を形成し、担持する、触媒の製造方法。
    A step of mixing a solution containing a transition metal compound and a carrier and heating to remove the solvent to obtain a catalyst precursor.
    A step of contacting the catalyst precursor with a carbon-containing gas to form a catalyst in which a transition metal and carbon are supported, and
    A method for producing a catalyst, including
    A method for producing a catalyst, which forms and supports fibrous carbon by bringing a carbon-containing gas into contact with the catalyst precursor in the step of forming the catalyst.
  9.  前記触媒前駆体を得る工程は、遷移金属化合物を溶解した溶液と担体を混合し、加熱して溶媒を蒸発して固体を得る工程と、該固体を粉砕して、粉末状の触媒前駆体を得る工程を含む、請求項8に記載の触媒の製造方法。 The steps of obtaining the catalyst precursor include a step of mixing a solution in which a transition metal compound is dissolved and a carrier and heating to evaporate the solvent to obtain a solid, and a step of crushing the solid to obtain a powdery catalyst precursor. The method for producing a catalyst according to claim 8, which comprises a step of obtaining the catalyst.
  10.  前記炭素含有ガスが炭化水素を含む、請求項8又は9に記載の触媒の製造方法。 The method for producing a catalyst according to claim 8 or 9, wherein the carbon-containing gas contains a hydrocarbon.
  11.  前記炭化水素が、炭素数2~5のアルカンである、請求項10に記載の触媒の製造方法。 The method for producing a catalyst according to claim 10, wherein the hydrocarbon is an alkane having 2 to 5 carbon atoms.
  12.  前記炭化水素がイソブタンである、請求項10に記載の触媒の製造方法。 The method for producing a catalyst according to claim 10, wherein the hydrocarbon is isobutane.
  13.  前記炭素含有ガスに対する前記炭化水素の体積比率が1容積%以上30容積%以下である、請求項10から12のいずれか一項に記載の触媒の製造方法。 The method for producing a catalyst according to any one of claims 10 to 12, wherein the volume ratio of the hydrocarbon to the carbon-containing gas is 1% by volume or more and 30% by volume or less.
  14.  前記触媒前駆体に前記炭素含有ガスを接触させる際の温度が300℃以上1000℃以下である、請求項8から13のいずれか一項に記載の触媒の製造方法。 The method for producing a catalyst according to any one of claims 8 to 13, wherein the temperature at which the carbon-containing gas is brought into contact with the catalyst precursor is 300 ° C. or higher and 1000 ° C. or lower.
  15.  前記触媒前駆体に前記炭素含有ガスを接触させる際の炭素含有ガスの供給速度に対する触媒前駆体量の比(W/F)が0.03g・min/ml以上0.5g・min/ml以下である、請求項8から14のいずれか一項に記載の触媒の製造方法。 When the ratio (W / F) of the amount of the catalyst precursor to the supply rate of the carbon-containing gas when the carbon-containing gas is brought into contact with the catalyst precursor is 0.03 g · min / ml or more and 0.5 g · min / ml or less. The method for producing a catalyst according to any one of claims 8 to 14.
  16.  前記遷移金属がNiである、請求項8から15のいずれか一項に記載の触媒の製造方法。 The method for producing a catalyst according to any one of claims 8 to 15, wherein the transition metal is Ni.
  17.  前記担体が、シリカ、アルミナ、ジルコニア、及びチタニアからなる群から選ばれる少なくとも1種である、請求項8から16のいずれか一項に記載の触媒の製造方法。 The method for producing a catalyst according to any one of claims 8 to 16, wherein the carrier is at least one selected from the group consisting of silica, alumina, zirconia, and titania.
  18.  前記担体が、γ-アルミナである、請求項8から16のいずれか一項に記載の触媒の製造方法。 The method for producing a catalyst according to any one of claims 8 to 16, wherein the carrier is γ-alumina.
  19.  前記炭素含有ガスを接触させない場合の前記触媒前駆体上の遷移金属の結晶子径に対する、前記触媒に担持された遷移金属の結晶子径の比が0.80以下である、請求項8から18のいずれか一項に記載の触媒の製造方法。 Claims 8 to 18 indicate that the ratio of the crystallite diameter of the transition metal supported on the catalyst to the crystallite diameter of the transition metal on the catalyst precursor when the carbon-containing gas is not brought into contact is 0.80 or less. The method for producing a catalyst according to any one of the above.
  20.  請求項1から8のいずれか一項に記載の触媒を、アルカン及び二酸化炭素を含む混合ガスに接触させて、前記アルカンから不飽和炭化水素を製造する、不飽和炭化水素の製造方法。 A method for producing an unsaturated hydrocarbon, wherein the catalyst according to any one of claims 1 to 8 is brought into contact with a mixed gas containing alkane and carbon dioxide to produce an unsaturated hydrocarbon from the alkane.
  21.  前記混合ガスにおいて、前記アルカンに対する前記二酸化炭素のモル比が0.1以上1.9以下である、請求項20に記載の不飽和炭化水素の製造方法。 The method for producing an unsaturated hydrocarbon according to claim 20, wherein in the mixed gas, the molar ratio of the carbon dioxide to the alkane is 0.1 or more and 1.9 or less.
  22.  前記アルカンが炭素数2~5のアルカンである、請求項20又は21に記載の不飽和炭化水素の製造方法。 The method for producing an unsaturated hydrocarbon according to claim 20 or 21, wherein the alkane is an alkane having 2 to 5 carbon atoms.
  23.  前記アルカンがイソブタンである、請求項20又は21に記載の不飽和炭化水素の製造方法。 The method for producing an unsaturated hydrocarbon according to claim 20 or 21, wherein the alkane is isobutane.
  24.  前記触媒に前記混合ガスを接触させる際の温度が300℃以上1000℃以下である、請求項20から23のいずれか一項に記載の不飽和炭化水素の製造方法。 The method for producing an unsaturated hydrocarbon according to any one of claims 20 to 23, wherein the temperature at which the mixed gas is brought into contact with the catalyst is 300 ° C. or higher and 1000 ° C. or lower.
  25.  前記触媒に前記混合ガスを接触させる際の混合ガスの供給速度に対する触媒量の比(W/F)が0.001g・min/ml以上1000g・min/ml以下である、請求項20から24のいずれか一項に記載の不飽和炭化水素の製造方法。 20 to 24, wherein the ratio (W / F) of the amount of the catalyst to the supply rate of the mixed gas when the mixed gas is brought into contact with the catalyst is 0.001 g · min / ml or more and 1000 g · min / ml or less. The method for producing an unsaturated hydrocarbon according to any one of the above.
  26.  請求項8から19のいずれか一項に記載の製造方法によって触媒を製造し、引き続き、得られた触媒に、アルカン及び二酸化炭素を含む混合ガスを接触させて、前記アルカンから不飽和炭化水素を製造する、不飽和炭化水素の製造方法。 A catalyst is produced by the production method according to any one of claims 8 to 19, and subsequently, the obtained catalyst is brought into contact with a mixed gas containing alkane and carbon dioxide to obtain unsaturated hydrocarbons from the alkane. A method for producing unsaturated hydrocarbons.
  27.  遷移金属化合物が担体に担持された触媒前駆体に、炭素含有ガスを接触させて、前記触媒前駆体に繊維状炭素を含む炭素を担持させ、遷移金属と繊維状炭素を含む炭素が担持された触媒を形成する工程と、
     得られた触媒に、アルカン及び二酸化炭素を含む混合ガスを接触させて、前記アルカンから不飽和炭化水素を製造する、不飽和炭化水素の製造方法。
    A carbon-containing gas was brought into contact with the catalyst precursor on which the transition metal compound was supported on the carrier, carbon containing fibrous carbon was supported on the catalyst precursor, and the transition metal and carbon containing fibrous carbon were supported. The process of forming the catalyst and
    A method for producing an unsaturated hydrocarbon, wherein the obtained catalyst is brought into contact with a mixed gas containing alkane and carbon dioxide to produce an unsaturated hydrocarbon from the alkane.
  28.  前記混合ガスにおいて、前記アルカンに対する前記二酸化炭素のモル比が0.1以上1.9以下である、請求項26又は27に記載の不飽和炭化水素の製造方法。
     
    The method for producing an unsaturated hydrocarbon according to claim 26 or 27, wherein the molar ratio of carbon dioxide to the alkane in the mixed gas is 0.1 or more and 1.9 or less.
PCT/JP2020/042127 2019-11-14 2020-11-11 Catalyst and method for manufacturing same, and method for manufacturing unsaturated hydrocarbon WO2021095782A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080079057.9A CN114728272A (en) 2019-11-14 2020-11-11 Catalyst, method for producing same, and method for producing unsaturated hydrocarbon
JP2021556132A JPWO2021095782A1 (en) 2019-11-14 2020-11-11
KR1020227015941A KR20220078697A (en) 2019-11-14 2020-11-11 Catalyst and method for preparing same, and method for preparing unsaturated hydrocarbon

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-206232 2019-11-14
JP2019206232 2019-11-14
JP2020159945 2020-09-24
JP2020-159945 2020-09-24

Publications (1)

Publication Number Publication Date
WO2021095782A1 true WO2021095782A1 (en) 2021-05-20

Family

ID=75912674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042127 WO2021095782A1 (en) 2019-11-14 2020-11-11 Catalyst and method for manufacturing same, and method for manufacturing unsaturated hydrocarbon

Country Status (4)

Country Link
JP (1) JPWO2021095782A1 (en)
KR (1) KR20220078697A (en)
CN (1) CN114728272A (en)
WO (1) WO2021095782A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5876129A (en) * 1981-10-28 1983-05-09 ザ・スタンダ−ド・オイル・カンパニ− Removal of nitrogen oxide from gas stream
US20120136191A1 (en) * 2009-06-05 2012-05-31 Cambridge Enterprise Ltd. Catalyst and process
JP2013509290A (en) * 2009-10-29 2013-03-14 インフラ・テクノロジーズ・リミテッド Catalyst for synthesizing hydrocarbons from CO and H2 and method for producing the same
WO2018102394A1 (en) * 2016-12-01 2018-06-07 Southern Research Institute Mixed metal oxide catalysts and methods for olefin production in an oxidative dehydrogenation reaction process
JP2019025378A (en) * 2017-07-25 2019-02-21 住友金属鉱山株式会社 Composite material and manufacturing method therefor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0975732A (en) 1995-09-08 1997-03-25 Chiyoda Corp Dehydrogenation catalyst
JP2006342137A (en) * 2005-06-10 2006-12-21 Kansai Electric Power Co Inc:The Method for producing alkene
JP5135840B2 (en) * 2006-04-14 2013-02-06 三菱化学株式会社 Propylene production method
GB201020501D0 (en) * 2010-12-03 2011-01-19 Johnson Matthey Plc Dehydrogenation process
JP2013163647A (en) 2012-02-09 2013-08-22 Mitsui Chemicals Inc Method for producing unsaturated hydrocarbon and dehydrogenation catalyst used for the method
JP6037849B2 (en) 2013-01-25 2016-12-07 国立大学法人徳島大学 Method for producing oxidative dehydrogenation catalyst and method for producing alkene
WO2017001448A1 (en) 2015-06-29 2017-01-05 SMH Co., Ltd. Dehydrogenation catalyst and process utilizing the catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5876129A (en) * 1981-10-28 1983-05-09 ザ・スタンダ−ド・オイル・カンパニ− Removal of nitrogen oxide from gas stream
US20120136191A1 (en) * 2009-06-05 2012-05-31 Cambridge Enterprise Ltd. Catalyst and process
JP2013509290A (en) * 2009-10-29 2013-03-14 インフラ・テクノロジーズ・リミテッド Catalyst for synthesizing hydrocarbons from CO and H2 and method for producing the same
WO2018102394A1 (en) * 2016-12-01 2018-06-07 Southern Research Institute Mixed metal oxide catalysts and methods for olefin production in an oxidative dehydrogenation reaction process
JP2019025378A (en) * 2017-07-25 2019-02-21 住友金属鉱山株式会社 Composite material and manufacturing method therefor

Also Published As

Publication number Publication date
CN114728272A (en) 2022-07-08
JPWO2021095782A1 (en) 2021-05-20
KR20220078697A (en) 2022-06-10

Similar Documents

Publication Publication Date Title
Liu et al. Metal-based catalysts for the non-oxidative dehydrogenation of light alkanes to light olefins
CN108290140B (en) Method for preparing dehydrogenation catalyst for straight-chain light hydrocarbon by using stable active metal compound
WO2021004424A9 (en) Molybdenum-based catalyst, preparation method therefor and use thereof
KR101921407B1 (en) Dehydrogenation catalysts and preparation method thereof
JP5543150B2 (en) Selective hydrogenation catalyst for aromatic nitro compounds, process for producing and regenerating the same, and process for selective hydrogenation of aromatic nitrated compounds using the same
WO2016136471A1 (en) Catalyst for 1, 3-butadiene synthesis, method for producing catalyst for 1, 3-butadiene synthesis, apparatus for producing 1, 3-butadiene, and method for producing 1, 3-butadiene
KR102046771B1 (en) Dehydrogenation catalyst
Li et al. Boron-promoted Cu/ZrO2 catalysts for hydrogenation of sec-butyl acetate: structural evolution and catalytic performance
WO2021095782A1 (en) Catalyst and method for manufacturing same, and method for manufacturing unsaturated hydrocarbon
WO2017159371A1 (en) Conjugated diene production method
JP4148775B2 (en) Catalyst with bimodal pore radius distribution
KR20200091014A (en) Method of preparing catalyst support and dehydrogenation catalysts
US11420191B2 (en) Shaped dehydrogenation catalysts and process for converting paraffins to corresponding olefins, using same
JP2016183126A (en) Method for producing conjugated diene
JP2013202564A (en) Composite oxide catalyst
KR102113122B1 (en) Method of preparing dehydrogenation catalysts
KR102610122B1 (en) Composite Catalyst Physically Mixed with Nickel Oxide and Method for Manufacturing the Same
Wang et al. One-pot synthesis of VOx/Al2 O3 as efficient catalysts for propanedehydrogenation
JP6037849B2 (en) Method for producing oxidative dehydrogenation catalyst and method for producing alkene
JP3963856B2 (en) Catalyst support for producing epoxide, catalyst for producing epoxide, and method for producing epoxide
JP7083988B2 (en) Manufacturing method of conjugated diene
JP2009148688A (en) Manufacturing method of hydrogen producing catalyst from hydrocarbon, catalyst manufactured by this method and hydrogen producing method using this catalyst
JP2018135289A (en) Method for producing conjugated diene
JPWO2017159570A1 (en) Method for producing unsaturated hydrocarbon and method for producing conjugated diene
WO2018154966A1 (en) Method for producing unsaturated hydrocarbon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886574

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021556132

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227015941

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886574

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 522432555

Country of ref document: SA