WO2021095494A1 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
WO2021095494A1
WO2021095494A1 PCT/JP2020/040008 JP2020040008W WO2021095494A1 WO 2021095494 A1 WO2021095494 A1 WO 2021095494A1 JP 2020040008 W JP2020040008 W JP 2020040008W WO 2021095494 A1 WO2021095494 A1 WO 2021095494A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
single crystal
crystal semiconductor
semiconductor layer
charge
Prior art date
Application number
PCT/JP2020/040008
Other languages
English (en)
French (fr)
Inventor
克弥 能澤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2021555981A priority Critical patent/JPWO2021095494A1/ja
Publication of WO2021095494A1 publication Critical patent/WO2021095494A1/ja
Priority to US17/722,452 priority patent/US20220238576A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14607Geometry of the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier working in avalanche mode, e.g. avalanche photodiode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • This disclosure relates to an imaging device.
  • the image sensor is composed of units called pixels and includes a plurality of pixels arranged in two dimensions. Each pixel has a photoelectric conversion element that generates a signal charge by irradiation with light, and a charge storage region that stores the signal charge generated in the photoelectric conversion element.
  • the photoelectric conversion element there is a laminated image sensor using a photoelectric conversion material such as an organic semiconductor, a semiconductor type carbon nanotube, or a semiconductor quantum dot.
  • an imaging device capable of suppressing a decrease in sensitivity in imaging in a wavelength region located on the longer wavelength side than the visible light region.
  • the imaging apparatus of the present disclosure comprises a plurality of pixels, each of which comprises a first single crystal semiconductor layer that transmits light, a first electrode, and the like. It includes a photoelectric conversion layer that is in contact with the first single crystal semiconductor layer and is located between the first single crystal semiconductor layer and the first electrode and that absorbs the light.
  • the imaging device it is possible to suppress a decrease in sensitivity of the imaging device in imaging in a wavelength region located on the longer wavelength side than the visible light region, particularly in the near infrared region.
  • FIG. 1 is a graph showing the wavelength dependence of the transmittance when there is no reflection loss.
  • FIG. 2 is a schematic diagram illustrating the device structure of the pixels of the image pickup apparatus according to the first embodiment of the present disclosure.
  • FIG. 3 is a circuit diagram showing a configuration example of a readout circuit according to the first embodiment of the present disclosure.
  • FIG. 4A is a diagram showing filter characteristics of a long-pass filter.
  • FIG. 4B is a diagram showing the filter characteristics of the bandpass filter.
  • FIG. 5 is a schematic diagram illustrating the device structure of the pixels of the image pickup apparatus according to the modified example of the first embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram illustrating the device structure of the pixels of the image pickup apparatus according to the second embodiment of the present disclosure.
  • FIG. 1 is a graph showing the wavelength dependence of the transmittance when there is no reflection loss.
  • FIG. 2 is a schematic diagram illustrating the device structure of the pixels of the image pickup apparatus according to the first embodiment of the present
  • FIG. 7 is a circuit diagram showing a configuration example of a readout circuit according to the second embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram illustrating the device structure of the pixels of the image pickup apparatus according to the modified example of the second embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram illustrating the device structure of the pixels of the image pickup apparatus according to the third embodiment of the present disclosure.
  • FIG. 10 is a block diagram showing a configuration example of the distance image acquisition system according to the third embodiment of the present disclosure.
  • FIG. 11 is a diagram for explaining the operating principle of the distance image acquisition system according to the third embodiment of the present disclosure.
  • FIG. 12 is a schematic view illustrating the device structure of the pixels of the image pickup apparatus according to the fourth embodiment of the present disclosure.
  • the laminated image sensor has a structure in which a photoelectric conversion layer formed of a photoelectric conversion material is sandwiched between a pair of electrodes, and a bias voltage is applied between the pair of electrodes. This bias voltage separates the positive and negative charges generated in the photoelectric conversion layer. As a result, one of the positive charge and the negative charge can be pulled out to the transparent electrode side and the other to the counter electrode side.
  • the electrode material of one of the pair of electrodes has transparency to the wavelength intended in the photoelectric conversion.
  • An electrode formed from an electrode material having such transparency is called a transparent electrode.
  • Indium tin oxide, so-called ITO is widely used as a material for transparent electrodes.
  • the transparent electrode is formed by forming an ITO film by sputtering, and its crystallographic state is a polycrystalline or amorphous state.
  • the other electrode, which is not a transparent electrode, is called a counter electrode.
  • the signal charge is collected by the counter electrode and transported to the charge storage region. In a stacked image sensor, this charge storage region is typically formed in a single crystal semiconductor layer.
  • Patent Document 1 and Patent Document 2 disclose a configuration in which the photoelectric conversion layer is in direct contact with a single crystal silicon substrate.
  • Patent Document 3 discloses an image pickup apparatus including a first photoelectric conversion unit formed in a single crystal silicon substrate and a second photoelectric conversion unit located above the photoelectric conversion unit. The second photoelectric conversion unit is formed of an inorganic material, and the first photoelectric conversion unit functions as an optical filter that selectively absorbs light in a specific wavelength range.
  • Patent Document 4 discloses an infrared photodetector and an imaging device including a visible photodetector located above the infrared photodetector and formed in a silicon substrate. This visible light detection element functions as an optical filter that selectively absorbs visible light.
  • ITO which is a conventional transparent electrode material
  • FIG. 1 shows the wavelength dependence of the transmittance when an ITO film having a thickness of 1000 nanometers has no reflection loss.
  • the transmittance when there is no reflection loss will be referred to as "ideal transmittance".
  • the ideal transmittance of a film for wavelengths of 1200 nanometers or less is 50% or more.
  • the ideal transmittance for wavelengths of 1200 nanometers or more is 50% or less.
  • the ideal transmittance of the ITO film changes slightly depending on the raw material and the film forming conditions, but the above-mentioned tendency does not change. The longer the wavelength, the lower the ideal transmittance. For example, the ideal transmittance for a wavelength of 1400 nanometers is about 10%.
  • a conventional laminated image sensor that uses an ITO film as a transparent electrode can perform photoelectric conversion of only the light that has passed through the ITO film. Therefore, it is impossible to achieve a quantum efficiency of 50% or more for light having a wavelength of 1200 nanometers or more.
  • quantum efficiency is expressed by the ratio of the number of captured signal charges to the number of photons of incident light. Since the sensitivity of the image sensor basically depends on the quantum efficiency, it is difficult to realize high sensitivity for light having a wavelength of 1200 nanometers or more according to the conventional stacked image sensor.
  • the present inventor has found a novel structure capable of suppressing a decrease in sensitivity in imaging in a wavelength region located on the longer wavelength side than the visible light region, particularly in the near infrared region. ..
  • the visible light region has a wavelength range of approximately 400 nanometers to 700 nanometers
  • the near infrared region has a wavelength range of approximately 700 nanometers to 2500 nanometers.
  • the image pickup apparatus includes a plurality of pixels.
  • Each of the plurality of pixels The first single crystal semiconductor layer that transmits light and With the first electrode
  • a photoelectric conversion layer that absorbs light and is in contact with the first single crystal semiconductor layer and is located between the first single crystal semiconductor layer and the first electrode. including.
  • the imaging device According to the imaging device according to item 1, it is possible to suppress a decrease in sensitivity in imaging in a wavelength region located on the longer wavelength side than the visible light region, particularly in the near infrared region.
  • the imaging device is a bias that applies a bias voltage to the photoelectric conversion layer that is electrically connected to at least one selected from the group consisting of the first single crystal semiconductor layer and the first electrode.
  • a voltage control circuit may be further provided.
  • a bias voltage for example, it becomes easier to collect positive charges at the counter electrode, and it becomes easier to collect negative charges at the first single crystal semiconductor layer.
  • each of the plurality of pixels is located in the first single crystal semiconductor layer and includes a charge storage region for accumulating charges generated in the photoelectric conversion layer. May be good.
  • kTC noise can be reduced by forming a portion for collecting charges and a charge storage region in the first single crystal semiconductor layer.
  • each of the plurality of pixels may include a read-out circuit that is located in the first single crystal semiconductor layer and reads out the charge accumulated in the charge storage region.
  • the readout circuit can be integrated in the first single crystal semiconductor layer.
  • each of the plurality of pixels is The second single crystal semiconductor layer and It is located in the first single crystal semiconductor layer and includes a charge storage region for accumulating charges generated in the photoelectric conversion layer.
  • the first electrode may be located between the first single crystal semiconductor layer and the second single crystal semiconductor layer.
  • each of the plurality of pixels may include a read-out circuit that is located in the second single crystal semiconductor layer and reads out the charge accumulated in the charge storage region.
  • the readout circuit can be integrated in the second single crystal semiconductor layer.
  • each of the plurality of pixels is On-chip lens and A filter layer located between the on-chip lens and the first single crystal semiconductor layer and selectively transmitting light in a specific wavelength range, May include.
  • the image pickup apparatus when the image pickup apparatus is irradiated with light, the light absorption in the single crystal semiconductor layer can be suppressed, and more light can reach the photoelectric conversion layer.
  • the filter layer has a filter characteristic in which the filter layer has a transmission region in the specific wavelength range and a cutoff region in a wavelength range shorter than the specific wavelength range. You may be doing it.
  • a long-pass filter can be applied to the filter layer.
  • the filter layer has a transmission region in the specific wavelength range, a first blocking region in a wavelength range shorter than the specific wavelength range, and the specific wavelength. It may have a filter characteristic having a second cutoff region in a wavelength range longer than the range.
  • a bandpass filter can be applied to the filter layer.
  • the filter layer may have a filter characteristic having a blocking region in a wavelength range in which the first single crystal semiconductor layer has a high absorption coefficient.
  • noise and malfunction that may occur due to the first single crystal semiconductor layer absorbing light can be suppressed.
  • the first single crystal semiconductor layer is formed of silicon.
  • the photoelectric conversion layer may absorb light having a wavelength of 1100 nanometers or more.
  • the absorptivity can be made substantially 0 in the wavelength range of 1100 nanometers or more, and as a result, more light is emitted to the photoelectric conversion layer when detecting near infrared rays. Can be reached.
  • the photoelectric conversion layer may be formed of a material selected from the group consisting of organic semiconductors, semiconductor-type carbon nanotubes, and semiconductor quantum dots.
  • each of the plurality of pixels is A charge collection region located in the first single crystal semiconductor layer and collecting charges generated by the photoelectric conversion layer, and a charge collection region.
  • the first charge storage region which is located in the first single crystal semiconductor layer and stores the charge, is different from the charge collection region.
  • a second charge storage region which is located in the first single crystal semiconductor layer and stores the charge, unlike the charge collection region, With the second electrode electrically isolated from the first charge storage region, With the third electrode electrically isolated from the second charge storage region, A first channel region located between the charge collection region and the first charge storage region, A second channel region located between the charge collection region and the second charge storage region, May include.
  • the second electrode may be located in the vicinity of the first charge storage region, and the third electrode may be located in the vicinity of the second charge storage region.
  • the imaging apparatus according to item 1 or 2 may further include an avalanche amplification mechanism capable of generating avalanche amplification.
  • the avalanche amplification mechanism is A first region located in the first single crystal semiconductor layer and collecting charges generated by the photoelectric conversion layer, and A second region located in the first single crystal semiconductor layer and in contact with the first region is included.
  • the polarity of the first region may be different from the polarity of the second region.
  • the avalanche amplification mechanism further includes a third region located in the first single crystal semiconductor layer and in contact with the second region.
  • the polarity of the third region is the same as the polarity of the second region.
  • the dopant concentration in the third region may be higher than the dopant concentration in the second region.
  • FIG. 2 is a schematic view illustrating the device structure of the pixel Px of the image pickup apparatus 100A according to the first embodiment.
  • a part of the image pickup apparatus 100A is taken out and its cross section is schematically shown, and the portion constituting the pixel Px is shown by a broken line.
  • FIG. 3 is a circuit diagram showing a configuration example of the read circuit 40.
  • the image pickup apparatus 100A includes, for example, a plurality of pixels Px arranged in two dimensions.
  • the number of pixels Px can be in the millions or tens of millions. However, the number and arrangement of pixels Px are arbitrary. If the image pickup device has at least one pixel Px, the image pickup device can be used as a photodetector. If the array of pixels Px is one-dimensional, the image pickup apparatus 100A can be used as, for example, a line sensor.
  • the outline of the structure and operation of the imaging device 100A is as follows.
  • the image pickup apparatus 100A has a structure in which the signal charge collected in the single crystal semiconductor layer 20 which is the first single crystal semiconductor layer is stored in the charge storage region 21A formed in the same single crystal semiconductor layer 20.
  • the signal charge generated in the photoelectric conversion layer 30 is collected in the single crystal semiconductor layer 20 and accumulated in the charge storage region 21A formed in the same single crystal semiconductor layer 20.
  • the signal charge accumulated in the charge storage region 21A is read out by the reading circuit 40 and sent to the column signal processing circuit 44.
  • the image pickup apparatus 100A includes a plurality of pixels Px and an insulating layer 10 arranged in two dimensions.
  • the image pickup apparatus 100A may further include a column signal processing circuit 44 and the like, which will be described later.
  • Each pixel Px has a single crystal semiconductor layer 20, a photoelectric conversion layer 30, a counter electrode 35, and an on-chip lens 50.
  • the on-chip lens 50 functions to improve the imaging characteristics depending on the situation. However, the arrangement is not essential.
  • the image pickup apparatus 100A may include a support substrate that supports a laminated structure of a plurality of pixels Px and an insulating layer 10.
  • the single crystal semiconductor layer 20 is arranged above the insulating layer 10 and is located between the on-chip lens 50 and the insulating layer 10.
  • An example of the material of the single crystal semiconductor layer 20 is single crystal silicon.
  • Other examples of the material of the single crystal semiconductor layer 20 include single crystal gallium arsenide, single crystal germanium, single crystal gallium nitride, and single crystal silicon germanium.
  • the single crystal semiconductor layer 20 transmits light and has a significant transmittance with respect to a wavelength subject to photoelectric conversion by the photoelectric conversion layer 30 described later, that is, a intended wavelength.
  • Significant transmittance means an ideal transmittance that enables imaging by photoelectric conversion by the photoelectric conversion layer 30.
  • An example of the standard is an ideal transmittance of 50% or more. The higher the ideal transmittance of the photoelectric conversion layer 30, the lower the illuminance of the image.
  • the intended wavelength in the photoelectric conversion corresponds to the wavelength of the light absorbed by the photoelectric conversion layer 30. When the photoelectric conversion layer absorbs light of a certain wavelength, it is not necessary for the photoelectric conversion layer to exhibit 100% absorption rate with respect to the wavelength.
  • the single crystal semiconductor has a wavelength called the absorption edge wavelength ⁇ g.
  • the absorption edge wavelength ⁇ g is a wavelength corresponding to the energy of the band gap.
  • the absorption coefficient is substantially 0 for light having a wavelength of ⁇ g or more, and light having a wavelength of ⁇ g or more is transmitted through the single crystal semiconductor layer.
  • the absorption edge wavelength of single crystal silicon is about 1100 nanometers.
  • the absorption edge wavelength of single crystal gallium arsenide is about 1000 nanometers.
  • the absorption edge wavelength of single crystal gallium nitride is about 376 nanometers.
  • the material of the single crystal semiconductor layer 20 a material having an absorption edge wavelength ⁇ g shorter than the intended wavelength in photoelectric conversion is selected.
  • the selection of such a material has the effect of suppressing the generation of unintended charges due to light absorption in the single crystal semiconductor layer 20.
  • the single crystal semiconductor layer 20 is formed from single crystal gallium nitride
  • the absorption coefficient of the single crystal semiconductor layer 20 can be made substantially 0 in the entire visible light region.
  • the single crystal semiconductor layer 20 is formed from single crystal silicon
  • the absorption coefficient of the single crystal semiconductor layer 20 can be made substantially 0 in the wavelength range of 1100 nanometers or more.
  • the wavelength range of 1100 nanometers or more includes a range from 1350 nanometers to 1450 nanometers in which sunlight is strongly attenuated, or a wavelength of around 1500 nanometers widely used in optical fiber communication.
  • the material of the single crystal semiconductor layer 20 may be a material having an absorption edge wavelength ⁇ g longer than the intended wavelength in photoelectric conversion.
  • a material having an absorption edge wavelength ⁇ g longer than the intended wavelength in photoelectric conversion For example, in the case of an indirect transition type semiconductor such as single crystal silicon, if the thickness of the single crystal semiconductor layer 20 is thin, the absorption of light can be suppressed even at a wavelength shorter than the absorption edge.
  • FIG. 1 the ideal transmittance of a single crystal silicon film having a thickness of 1000 nanometers is shown.
  • the ideal transmittance of single crystal gallium arsenide is also shown.
  • a single crystal silicon film with a thickness of 1000 nanometers exhibits an ideal transmittance of 50% or more for wavelengths of about 550 nanometers or more, and an ideal transmittance of 90% or more for wavelengths of 800 nanometers or more. .. Therefore, when a single crystal silicon film having a thickness of 1000 nanometers is formed as the single crystal semiconductor layer 20, 90% or more of light having a wavelength of 800 nanometers or more is ideally transmitted through the single crystal semiconductor layer 20.
  • the photoelectric conversion layer 30 can be reached.
  • the photoelectric conversion layer 30 is located between the single crystal semiconductor layer 20 and the counter electrode 35. More specifically, the photoelectric conversion layer 30 is in contact with the single crystal semiconductor layer 20, and is sandwiched between the charge storage region 21A formed in the single crystal semiconductor layer 20 and the counter electrode 35.
  • the photoelectric conversion layer 30 absorbs the light transmitted through the single crystal semiconductor layer 20.
  • the photoelectric conversion layer 30 absorbs light having a wavelength of 1100 nanometers or more.
  • the photoelectric conversion layer 30 can absorb light having a wavelength having a sufficient ideal transmittance even if it is shorter than the absorption edge wavelength ⁇ g of the single crystal semiconductor layer 20.
  • the portion composed of the single crystal semiconductor layer 20, the photoelectric conversion layer 30, and the counter electrode 35 is referred to as a "photoelectric conversion unit".
  • a part of the single crystal semiconductor layer 20 functions as a conventional pixel electrode.
  • the photoelectric conversion layer 30 and the counter electrode 35 are located in the insulating layer 10.
  • the single crystal semiconductor layer 20 is located on the side where light is incident on the photoelectric conversion portion with respect to the photoelectric conversion layer 30, and the counter electrode 35 is located on the opposite side of the single crystal semiconductor layer 20 with respect to the photoelectric conversion layer 30. There is.
  • the counter electrode 35 does not need to be transparent to the light incident on the photoelectric conversion unit.
  • the counter electrode 35 may be formed of a metal such as Al or Ag, a metal nitride such as TiN, or the like. Further, the counter electrode 35 may be formed of a material that reflects light incident on the photoelectric conversion layer 30.
  • the counter electrode 35 may have a reflectance of, for example, 80% or more with respect to light having a wavelength of 1100 nanometers or more. Examples of such materials are Al or Au.
  • the counter electrode 35 When the counter electrode 35 exhibits a high reflectance of, for example, 80% or more with respect to light having a wavelength of 1100 nanometers or more, the light that has passed through the photoelectric conversion layer 30 is brought to the side of the single crystal semiconductor layer 20 by the counter electrode 35. It can be directed and reflected, and more light can be contributed to photoelectric conversion. That is, it is expected that higher-sensitivity imaging can be realized in the near-infrared region.
  • the photoelectric conversion layer 30 absorbs light to generate hole-electron pairs containing positive and negative charges.
  • the single crystal semiconductor layer 20 collects one of the hole-electron pairs, and the counter electrode 35 collects the other of the hole-electron pairs.
  • the charge collected in the single crystal semiconductor layer 20 is accumulated in the charge storage region 21A.
  • the charge storage region 21A exists independently in the single crystal semiconductor layer 20 for each pixel Px.
  • the charge storage region 21A may be in direct contact with the photoelectric conversion layer 30.
  • the charge collection region which is a portion of the single crystal semiconductor layer 20 in contact with the photoelectric conversion layer 30, collects only the charge
  • the charge storage region 21A is provided at a location away from the photoelectric conversion layer 30 within a range in which the charge can move. It may be arranged.
  • the charge collection region and the charge storage region 21A may be connected via the region of the single crystal semiconductor layer 20, or may be electrically connected by a conductive plug.
  • both the charge collecting region and the charge storage region 21 are formed on the same single crystal semiconductor layer 20, and both are electrically connected by the single crystal semiconductor without using a metal, the charges collected in the charge collecting region are charged. Can be completely transferred to the charge storage region 21. Further, when the charge storage region 21 is formed of a single crystal semiconductor, the charge accumulated in the charge storage region 21 can be completely eliminated. Such characteristics are effective in reducing noise generated by unintentional remaining of a part of the collected or accumulated electric charge, that is, so-called kTC noise.
  • the charge storage region 21A formed inside the single crystal semiconductor layer 20 is formed by changing the polarity of the impurity doping from the peripheral region thereof.
  • the charge storage region 21A may be doped so as to be p-type, and the peripheral region thereof may be doped so as to be n-type.
  • the charge storage region 21A may be doped so as to be n-type, and the peripheral region thereof may be doped so as to be p-type.
  • the charge stored in the charge storage region 21A is finally transferred to the column signal processing circuit 44 shown in FIG. Details of the column signal processing circuit 44 will be described later.
  • a further charge storage region 21B different from the charge storage region 21A may be formed inside the single crystal semiconductor layer 20.
  • the electrical conductivity of the channel region of the transfer transistor formed between the charge storage region 21A and the charge storage region 21B can be controlled by the potential applied to the gate electrode.
  • the charge accumulated in the charge storage region 21A can move to the charge storage region 21B through the channel of the transfer transistor.
  • the charge storage region 21B is not essential.
  • the photoelectric conversion layer 30 contains a photoelectric conversion material having a significant absorption coefficient with respect to the intended wavelength in the photoelectric conversion.
  • Significant absorption coefficient means the absorption coefficient required to achieve sufficient sensitivity to allow imaging for the intended wavelength.
  • Examples of photoelectric conversion materials are organic semiconductors, semiconductor-type carbon nanotubes, and semiconductor quantum dots.
  • the photoelectric conversion layer 30 may include an electron blocking layer or a hole blocking layer (not shown). These blocking layers can prevent an unintended charge from being injected into the photoelectric conversion layer 30 from an electrode or the like.
  • An example of a material for an electron blocking layer is PEDOT: PSS, and an example of a material for a hole blocking layer is C60.
  • the photoelectric conversion layer 30 may contain a material having a quantum nanostructure having a quantum confinement effect.
  • Quantum nanostructures refer to structures that exhibit quantum size effects one-dimensionally, two-dimensionally, or three-dimensionally.
  • An example of a material having quantum nanostructures is carbon nanotubes. Carbon nanotubes have a structure similar to that of rounded graphene, and have a diameter in the nanometer region and are seamless and generally cylindrical. A structure in which one cylinder is particularly called a single-walled carbon nanotube, and a structure in which a plurality of cylinders are nested is called a multi-walled carbon nanotube. Many of the electronic and optical properties of single-walled carbon nanotubes are determined by the chirality specified by the chiral index. Single-walled carbon nanotubes exhibit metallic or semiconducting properties depending on their chirality.
  • the electron energy in single-walled carbon nanotubes is specified only by the wave number in the tube axial direction due to the periodicity due to the cylindrical shape of the tube. That is, the electronic state of the single-walled carbon nanotube is one-dimensional.
  • the band structure of single-walled carbon nanotubes is characteristic in that subbands, which are energy levels diverging from the density of states, are discretely expressed. Such a singularity in the density of states is called a Van Hove singularity.
  • the absorption spectrum of single-walled carbon nanotubes shows a steep peak at the wavelength corresponding to the energy between the subbands.
  • the optical transition between the first subbands counted from the Fermi level is the first optical transition
  • the optical transition between the second subbands is the second optical transition.
  • organic semiconductors examples include phthalocyanines such as lead phthalocyanine or copper phthalocyanine, low molecular weight semiconductors such as naphthalocyanines, and semiconductor polymers such as P3HT, PDDTT or PDTTP. Photoelectric conversion materials using organic semiconductors are described in detail in, for example, the literature (Journal of Materials Chemistry C, 2018, 6, 3499). For reference, all disclosures of that document are incorporated herein by reference.
  • Semiconductor-type carbon nanotubes show the semiconductivity of single-walled carbon nanotubes.
  • Single-walled carbon nanotubes are characterized by chirality and have different unique resonance absorption wavelengths depending on the chirality.
  • Semiconductor-type carbon nanotubes exhibit a specifically large absorption coefficient with respect to this resonance absorption wavelength.
  • semiconductor-type carbon nanotubes having a chiral index of (9,8) exhibit resonance absorption at wavelengths of around 800 nanometers and around 1410 nanometers.
  • Semiconductor-type carbon nanotubes having a chiral index of (7, 6) exhibit resonance absorption at wavelengths of around 650 nanometers and around 1130 nanometers.
  • the values of each wavelength shown in Table 1 are merely examples, and an error of about 50 nanometers may occur from the measured values.
  • a semiconductor quantum dot is a structure having a semiconductor core having a diameter of several nanometers to several tens of nanometers, and is composed of several tens of atoms.
  • An example of a semiconductor core material is a quantum dot composed of cadmium sulfide, lead sulfide, cadmium selenide, and lead selenate. Quantum mechanical effects occur by limiting the size of semiconductors from a few nanometers to a few tens of nanometers.
  • Semiconductor quantum dots exhibit resonant absorption for shorter wavelengths than bulk semiconductors.
  • Semiconductor quantum dots exhibit a three-dimensional quantum confinement effect. The resonance absorption wavelength of semiconductor quantum dots is mainly determined by the material of the core and the size of the core.
  • the surface of the semiconductor quantum dot can be modified with a dispersant, a ligand, or the like.
  • Semiconductor quantum dots represented by the chemical formula of APbX 3, may be a quantum dot having a perovskite structure.
  • A is cesium is one selected from the group consisting of methyl ammonium and formamidinium
  • X is chlorine, bromine or iodine.
  • the excitons and electrons are three-dimensionally confined in the space, and their density of states is discretized unlike in the case of bulk. Further, as the particle size becomes smaller, this quantum confinement effect increases and the energy gap expands. Therefore, even if the raw materials are the same, by using the quantum dots, it is possible to realize an energy gap larger than the energy gap at the time of bulk, and it is possible to adjust the energy gap according to the particle size. is there.
  • the width of the absorption peak at the first optical transition can vary greatly depending on the raw material and its particle size. Therefore, when, for example, a semiconductor quantum dot is selected as the photoelectric conversion material of the photoelectric conversion layer, the resonance absorption wavelength that specifically exhibits the absorption coefficient in the photoelectric conversion layer 30 can be adjusted by adjusting the raw material and the particle size thereof. It is possible.
  • the photoelectric conversion layer 30 may contain another molecule in addition to the organic semiconductor, the semiconductor-type carbon nanotube, and the semiconductor quantum dot.
  • the photoelectric conversion layer 30 may contain fullerenes such as C60 and PCBM together with an organic semiconductor and a semiconductor-type carbon nanotube. Since C60 and PCBM do not absorb infrared light, they do not contribute to photoelectric conversion in the infrared region.
  • electron-hole pairs are generated by the photoelectric conversion layer 30 absorbing light.
  • the single crystal semiconductor layer 20 collects one of the electron-hole pairs, and the counter electrode 35 collects the other of the electron-hole pairs.
  • the single crystal semiconductor layer 20 collects positive charges and the counter electrode 35 collects negative charges. The efficiency of collecting this charge may be increased by applying a bias voltage between the single crystal semiconductor layer 20 and the counter electrode 35.
  • the insulating layer 10 typically has a laminated structure in which a plurality of interlayer insulating layers are laminated. Each layer constituting the insulating layer 10 is formed of, for example, silicon dioxide.
  • the insulating layer 10 may have a multi-layer wiring internally including a wiring 11 extending in a direction perpendicular to the paper surface and a wiring 12 extending in a direction along the paper surface.
  • the multilayer wiring is located below the single crystal semiconductor layer 20.
  • the multilayer wiring is formed of, for example, Cu or the like, and includes vias (not shown) that connect wirings of different layers to each other.
  • the charge storage region in the single crystal semiconductor layer 20 is electrically connected to the readout circuit 40 via the wirings 11 and 12.
  • the counter electrode 35 is electrically connected to the bias voltage control mechanism 43 via the wirings 11 and 12.
  • the read-out circuit 40 reads out the charge accumulated in the charge storage region.
  • the read circuit 40 includes a reset transistor 41A, a transfer transistor 41B, a read transistor 41C, an amplification transistor 41D, and a selection transistor 41E.
  • the transfer transistor 41B and the read transistor 41C are not indispensable.
  • the readout circuit 40 is formed inside the single crystal semiconductor layer 20 in which the charge storage region 21A exists.
  • the channel region, source region, and drain region of each transistor can be integrated in the single crystal semiconductor layer 20.
  • Each transistor is, for example, an n-channel MOSFET or a p-channel MOSFET.
  • the readout circuit 40 is connected to a bias voltage control mechanism 43 including bias voltage control circuits 43A and 43B, and a column signal processing circuit 44. Only the gate 41Bg of the transfer transistor 41B in the read circuit 40 is shown in FIG.
  • a bias voltage control circuit 43A is connected to the counter electrode 35 of the photoelectric conversion unit, and a bias voltage control circuit 43B is connected to the single crystal semiconductor layer 20 via a reset transistor 41A.
  • the bias voltage control circuit 43A supplies a constant voltage to the counter electrode 35. As a result, the potential of the counter electrode 35 is kept constant.
  • the bias voltage control circuit 43B applies a predetermined reset voltage to the charge storage region 21A. By keeping the reset transistor 41A on until just before exposure, the potential of the charge storage region 21A can be set as a reference value.
  • bias voltage control circuits 43A and 43B By applying different voltages to the counter electrode 35 and the charge storage region 21A by the two bias voltage control circuits 43A and 43B, a desired bias voltage is applied to the photoelectric conversion layer 30 sandwiched between the counter electrode 35 and the charge storage region 21A. Can be applied.
  • Each example of the bias voltage control circuits 43A, 43B is a constant voltage source, a variable voltage source or a ground wire.
  • the bias voltage control circuits 43A and 43B may be internal circuits of the image pickup apparatus 100A, or may be circuits externally connected to the image pickup apparatus 100A.
  • the bias voltage control mechanism 43 is not essential, and the application of the bias voltage is not essential.
  • the bias voltage control mechanism 43 may have the function of an electronic shutter.
  • the reset transistor 41A initializes the potential of the charge storage region 21A to a reference value.
  • the gate of the reset transistor 41A is electrically connected to the reset signal line 42l.
  • a vertical scanning circuit (not shown) controls the on / off of the reset transistor 41A via the reset signal line 42l.
  • One of the source or drain of the reset transistor 41A is connected to the bias voltage control circuit 43B, and the other is connected to the charge storage region 21A.
  • the transfer transistor 41B transfers the charge accumulated in the charge storage region 21A to the charge storage region 21B.
  • the gate of the transfer transistor 41B is electrically connected to the transfer control line 42m.
  • the vertical scanning circuit controls the on / off of the transfer transistor 41B via the transfer control line 42m.
  • One of the source or drain of the transfer transistor 41B is connected to the charge storage region 21A, and the other is connected to the charge storage region 21B.
  • the read transistor 41C transfers the charge accumulated in the charge storage region 21B to the floating diffusion node FD.
  • the gate of the read transistor 41C is electrically connected to the read control line 42n.
  • the vertical scanning circuit controls the on / off of the read transistor 41C via the read control line 42n.
  • One of the source and drain of the read transistor 41C is connected to the floating diffusion node FD, and the other is connected to the charge storage region 21B.
  • the amplification transistor 41D functions as a source follower that outputs a signal corresponding to the potential of the floating diffusion node FD.
  • the gate of the amplification transistor 41D is connected to the floating diffusion node FD.
  • One of the source or drain of the amplification transistor 41D is connected to the power supply line 45, and the other is connected to one of the source or drain of the selection transistor 41E.
  • the selection transistor 41E selects the amplification transistor 41D to be connected to the column signal processing circuit 44 from among the plurality of amplification transistors 41D provided for each pixel.
  • the gate of the selection transistor 41E is electrically connected to the address control line 42o.
  • the vertical scanning circuit controls the on / off of the selection transistor 41E via the address control line 42o.
  • One of the source or drain of the selection transistor 41E is connected to the other of the source or drain of the amplification transistor 41D, and the other of the source or drain of the selection transistor 41E is connected to the column signal processing circuit 44 via the output signal line 42p. There is.
  • the column signal processing circuit 44 functions as a charge measuring device.
  • the column signal processing circuit 44 includes an analog-to-digital conversion circuit and is connected to the output signal line 42p.
  • the column signal processing circuit 44 may further include a circuit that performs noise suppression signal processing represented by correlated double sampling.
  • the column signal processing circuit 44 may be a circuit formed in the single crystal semiconductor layer 20.
  • the column signal processing circuit 44 may be a circuit formed inside a single crystal semiconductor layer different from the single crystal semiconductor layer 20, or may be a circuit externally connected to the image pickup apparatus 100A. Good.
  • the operation of the image pickup apparatus 100A will be described below.
  • An example in which the single crystal semiconductor layer 20 collects positive charges among charge pairs will be described.
  • the single crystal semiconductor layer 20 collects negative charges the polarity and the like may be appropriately changed. Since the means is obvious to those skilled in the art, detailed description thereof will be omitted.
  • the incident light is collected by the on-chip lens 50, passes through the single crystal semiconductor layer 20, and reaches the photoelectric conversion layer 30.
  • the light incident on the photoelectric conversion layer 30 is absorbed, and positive and negative charge pairs are generated on the photoelectric conversion layer 30.
  • the positive charge is collected on the single crystal semiconductor layer 20, and the negative charge is collected on the counter electrode 35.
  • the positive charge collected in the single crystal semiconductor layer 20 is accumulated in the charge storage region 21A.
  • the charge storage region 21A is in a floating state.
  • the positive charge generated in the photoelectric conversion layer 30 is accumulated in the charge storage region 21A, and the potential of the charge storage region 21A changes according to the amount of the charge.
  • the transfer transistor 41B is turned on to transfer the charge accumulated in the charge storage region 21A to the charge storage region 21B.
  • the read transistor 41C By turning on the read transistor 41C, the charge accumulated in the charge storage region 21B is transferred to the floating diffusion node FD.
  • the output of the amplification transistor 41D changes according to the amount of charge transferred to the floating diffusion node FD.
  • the column signal processing circuit 44 processes the output signal output from the amplification transistor 41D selected by the selection transistor 41E, and finally measures the amount of charge.
  • the charge storage regions 21A and 21B are formed in the same single crystal semiconductor layer 20. While measuring the amount of charge accumulated in the charge storage region 21B, new charges can be accumulated in the charge storage region 21A. That is, it is possible to perform exposure at the same time as measuring the amount of electric charge, and a so-called global shutter function is realized.
  • the pixel Px may further have a filter layer 60 and a protective layer 70.
  • the protective layer 70, the filter layer 60, and the on-chip lens 50 are laminated on the single crystal semiconductor layer 20 in this order.
  • the transmittance characteristics of the filter layer 60 will be described in detail with reference to FIGS. 4A and 4B.
  • FIG. 4A is a diagram showing the filter characteristics of the long pass filter.
  • FIG. 4B is a diagram showing the filter characteristics of the bandpass filter.
  • the filter layer 60 is located between the on-chip lens 50 and the single crystal semiconductor layer 20, and selectively transmits light in a specific wavelength range.
  • the transmittance of the filter layer 60 has wavelength dependence.
  • a long pass filter or a band pass filter can be applied to the filter layer 60.
  • the wavelength range in which the filter exhibits significantly high transparency is referred to as "transmission range”
  • the wavelength range in which the filter exhibits significantly low transparency is referred to as "blocking range”.
  • Significantly high permeability means, for example, 90% or more transmittance
  • significantly low permeability means, for example, 10% or less transmittance.
  • a filter having a transmission range in a wavelength range longer than a specific wavelength with a lower limit and a cutoff range in a wavelength range with an upper limit shorter than the specific wavelength is defined as a long-pass filter.
  • a filter having a transmission range in a specific wavelength range and having a cutoff range in both a shorter wavelength range and a longer wavelength range with the wavelength range in between is defined as a bandpass filter.
  • the filter layer 60 may be a bandpass filter or a longpass filter as long as the wavelength intended for imaging is included in the transmission region.
  • An example of a specific wavelength is the absorption edge wavelength ⁇ g.
  • a filter having a blocking region in the wavelength range in which the single crystal semiconductor layer 20 has a high absorption coefficient may be applied to the filter layer 60.
  • the upper limit of the wavelength range that defines the cutoff region of the long-pass filter may be a wavelength longer than the absorption edge wavelength ⁇ g of the single crystal semiconductor layer 20.
  • FIG. 4A shows such a transmittance characteristic of the long pass filter.
  • the lower limit of the wavelength range that defines the transmission region of the bandpass filter may be a wavelength longer than the absorption edge wavelength ⁇ g of the single crystal semiconductor layer 20.
  • FIG. 4B shows such a transmittance characteristic of the bandpass filter.
  • the wavelength intended for imaging is 1400 nanometers and the single crystal semiconductor layer 20 is formed of single crystal silicon. Since the absorption edge wavelength ⁇ g of the single crystal silicon is 1100 nanometers, the entire wavelength range in which the single crystal silicon has a high absorption coefficient is included in the cutoff region of the filter. In the case of a long pass filter, for example, the transmission range may be set in the wavelength range from 1200 nanometers to 1600 nanometers, and the cutoff range may be set in the wavelength range from 350 nanometers to 1100 nanometers.
  • the transmission range is set in the wavelength range from 1350 nanometers to 1450 nanometers
  • the cutoff range is in the wavelength range excluding the above transmission range in the range from 350 nanometers to 1600 nanometers. Can be set.
  • the filter characteristics of the filter layer 60 are determined so that all or most of the wavelength range in which the single crystal semiconductor layer 20 has a high absorption coefficient is a blocking region, light absorption in the single crystal semiconductor layer 20 can be suppressed. And more light can reach the photoelectric conversion layer 30. As a result, noise and malfunction can be reduced without impairing the sensitivity of the image pickup apparatus.
  • the filter layer 60 is not essential.
  • the protective layer 70 may be, for example, a silicon oxide film or a transparent film having low permeability of water, oxygen, etc. such as a silicon nitride film.
  • the protective layer 70 has the effect of suppressing changes in device characteristics over time.
  • this embodiment it is possible to suppress a decrease in sensitivity in imaging in a wavelength region located on the longer wavelength side than the visible light region, particularly in the near infrared region. Noise and malfunction can be reduced without compromising the sensitivity of the imaging device.
  • FIG. 5 is a schematic diagram illustrating the device structure of the pixel Px of the image pickup apparatus 100B according to the modified example of the first embodiment.
  • the portion constituting the pixel Px is shown by a broken line.
  • the pixel Px of the image pickup device 100B has the above-mentioned image pickup device 100A in that the counter electrode 35 and the charge storage region 21A formed in the single crystal semiconductor layer 20 are electrically connected via a wiring layer. It is different from the configuration of the pixel Px.
  • the differences from the image pickup apparatus 100A will be mainly described, and common description will be omitted.
  • the amount of charge collected on the counter electrode 35 is measured.
  • the counter electrode 35 and the charge storage region 21A formed in the single crystal semiconductor layer 20 are electrically connected via the wirings 11 and 12.
  • the positive charge collected on the counter electrode 35 side moves to the charge storage region 21A through the wirings 11 and 12 and is stored.
  • the amount of charge is measured by the column signal processing circuit 44.
  • the region 25 is electrically connected to an external power source, an external constant potential line, or the like, and the electric charge collected in the region 25 is discharged to the outside of the single crystal semiconductor layer 20.
  • the photoelectric conversion layer 30 is sandwiched between the region 25 of the photoelectric conversion layer 30 and the counter electrode 35.
  • the region 25 and the charge storage region 21A may be electrically separated.
  • the polarity of the doping impurities in the region 25 may be different from the polarity of the doping impurities in the charge storage region 21A, or an insulating region may be provided between the two regions. This electrical separation makes it possible to prevent or suppress the charge collected in the region 25 from moving to the charge storage region 21A. Also in this modification, the same effect as described above can be obtained.
  • FIG. 6 is a schematic view illustrating the device structure of the pixel Px of the image pickup apparatus 100C according to the second embodiment.
  • the portion constituting the pixel Px is shown by a broken line.
  • FIG. 7 is a circuit diagram showing a configuration example of the readout circuit 40C according to the present embodiment.
  • the pixel Px of the image pickup apparatus 100C has a single crystal semiconductor layer 80 which is a second single crystal semiconductor layer different from the single crystal semiconductor layer 20, and also has a charge storage region 21A formed inside the layer. In that respect, it is different from the configuration of the pixel Px of the image pickup apparatus 100A according to the first embodiment 1.
  • the differences from the image pickup apparatus 100A will be mainly described, and common description will be omitted.
  • the charge collected in the counter electrode 35 is accumulated in the charge storage region 21A formed in other than the single crystal semiconductor layer 20 and measured.
  • the charge storage region 21A is formed inside, for example, another single crystal semiconductor layer 80 different from the single crystal semiconductor layer 20.
  • the pixel Px further has a single crystal semiconductor layer 80 located on the opposite side of the single crystal semiconductor layer 20 with respect to the insulating layer 10.
  • the single crystal semiconductor layer 80, the insulating layer 10, the photoelectric conversion layer 30 and the single crystal semiconductor layer 20 are laminated in this order, and the insulating layer 10 and the photoelectric conversion layer 30 are sandwiched between the two single crystal semiconductor layers 20 and 80. It has been.
  • the single crystal semiconductor layer 20 is electrically connected to the bias voltage control circuit 48 that controls the voltage.
  • the bias voltage control circuit 48 is a constant voltage power supply, a variable voltage power supply, a ground wire, or the like.
  • the electrical connection can be realized by providing a contact portion on any of the upper surface, the side surface, and the lower surface of the single crystal semiconductor layer 20.
  • a method such as a wire bond can be used as a method of providing the contact portion on the upper surface.
  • a wiring for connecting to the bias voltage control circuit 48 is provided inside the insulator 10, and the wiring is connected to the single crystal semiconductor layer 20 in a portion where the photoelectric conversion layer 30 does not exist. May be good.
  • the counter electrode 35 is connected to the charge storage region 21A formed inside the single crystal semiconductor layer 80 via the wiring 12.
  • the counter electrode 35 collects, for example, the positive charges generated in the photoelectric conversion layer 30.
  • the positive charge collected on the counter electrode 35 moves to the charge storage region 21A through the wiring 12 and is stored.
  • the charge storage region 21B may be formed in the charge storage region 21A together with the charge storage region 21A, but it is not essential.
  • the readout circuit 40C can be formed in the single crystal semiconductor layer 80.
  • the channel region, source region, and drain region of each transistor can be integrated in the single crystal semiconductor layer 80.
  • the readout circuit 40C includes a reset transistor 41A, a transfer transistor 41B, an amplification transistor 41D, and a selection transistor 41E.
  • the transfer transistor 41B is not indispensable.
  • the read-out circuit 40C may further include a read-out transistor that transfers the charge stored in the charge storage region 21B to the floating diffusion node FD, similarly to the read-out circuit 40 according to the first embodiment.
  • the floating diffusion node FD is connected to the bias voltage control circuit 49 that controls the voltage via the reset transistor 41A.
  • the bias voltage control circuit 49 When the bias voltage control circuit 49 is electrically connected to the floating diffusion node FD, the voltage of the floating diffusion node FD is set to a specified value.
  • the bias voltage control circuit 49 may be composed of a constant voltage line, a constant voltage power supply, or the like.
  • the reset transistor 41A cuts off the electrical connection between the floating diffusion node FD and the bias voltage control circuit 49, which allows charge to be stored in the floating diffusion node FD.
  • the bias voltage control circuit 49 is electrically connected to the floating diffusion node FD, and the voltage of the floating diffusion node FD is set to a specified value.
  • the voltage of the counter electrode 35 can be set to a specified value by using the bias voltage control circuit 49.
  • FIG. 8 is a schematic diagram illustrating the device structure of the pixel Px of the image pickup apparatus 100D according to the modified example of the second embodiment.
  • the insulating layer 10 includes a first portion 10A and a second portion 10B.
  • a laminated structure of the first portion 10A of the insulating layer 10 and the single crystal semiconductor layer 80, and a laminated structure of the second portion 10B of the insulating layer 10, the photoelectric conversion layer 30, and the single crystal semiconductor layer 20 are individually produced.
  • the image pickup apparatus 100D is obtained by laminating the two individually prepared laminated structures. According to this modification, the manufacturing process of the image pickup apparatus can be simplified.
  • FIG. 9 is a schematic view illustrating the device structure of the pixel Px of the image pickup apparatus 100E according to the third embodiment.
  • the portion constituting the pixel Px is shown by a broken line.
  • the imaging device 100E according to the third embodiment can be designed mainly for acquiring a distance image.
  • the photoelectric conversion layer 30 is in direct contact with the region 25 in the single crystal semiconductor layer 20, or is electrically connected to the region 25 via a layer in which charges can be transferred.
  • the positive or negative charge generated by the photoelectric conversion in the photoelectric conversion layer 30 can move from the photoelectric conversion layer 30 to the region 25.
  • doping may be performed so that the region 25 becomes p-type.
  • doping may be performed so that the region 25 becomes n-type.
  • the electrode 99 is arranged in the insulating layer 10 other than the region of the pixel Px and is in contact with the single crystal semiconductor layer 20.
  • the electrode 99 is an electrode for controlling the potential of the single crystal semiconductor layer 20.
  • An internal electric field corresponding to the voltage determined by the potential of the electrode 99 and the potential of the electrode 35 is generated inside the photoelectric conversion layer 30.
  • the photoelectric conversion layer 30 absorbs light to generate hole-electron pairs containing positive and negative charges. Due to the internal electric field, one moves to the region 25 in the single crystal semiconductor layer 20 and the other moves to the electrode 35. As described above, among the positive charges and negative charges generated in the photoelectric conversion layer 30, the charges that do not move to the region 25 are collected by the electrode 35.
  • At least two or more charge storage regions 21 are formed in the single crystal semiconductor layer 20 with respect to the photoelectric conversion layer 30 possessed by each pixel Px.
  • two charge storage regions 21A and 21B are formed.
  • Electrodes 98A and electrodes 98B are arranged in the insulating layer 10 in the vicinity of the charge storage regions 21A and 21B, respectively.
  • the charge storage region 21A and the electrode 98A are electrically insulated, and the charge storage region 21B and the electrode 98B are electrically insulated.
  • no direct current flows between the charge storage region 21A and the electrode 98A, and between the charge storage region 21B and the electrode 98B, respectively.
  • one or more additional charge storage regions may be formed in the single crystal semiconductor layer 20. That is, the number of charge storage regions that can be formed in the single crystal semiconductor layer 20 is not limited to two, and may be three or four or more.
  • a channel region 90A is formed between the region 25 and the charge storage region 21A, and a channel region 90B is formed between the region 25 and the charge storage region 21B.
  • the electrical conductivity of the channel region 90A can be controlled by the voltage applied to the electrode 98A.
  • the electrical conductivity of the channel region 90B can be controlled by the voltage applied to the electrode 98B.
  • the channel region 90A can be brought into a conductive state. As a result, the charge can be transferred between the region 25 and the charge storage region 21A. Further, by applying a voltage in a second voltage range different from the first voltage range to the electrode 98A, the channel region 90A can be cut off. As a result, it is possible to prohibit the transfer of charge between the region 25 and the charge storage region 21A.
  • the channel region 90B can be made conductive by applying a voltage within the third voltage range to the electrode 98B. As a result, the charge can be transferred between the region 25 and the charge storage region 21B. Further, by applying a voltage in a fourth voltage range different from the third voltage range to the electrode 98B, the channel region 90B can be cut off. As a result, it is possible to prohibit the transfer of charge between the region 25 and the charge storage region 21B.
  • the first voltage range may be the same as or different from the third voltage range.
  • the second voltage range may be the same as or different from the fourth voltage range.
  • the voltage applied to the electrode 98A and the voltage applied to the electrode 98B can be controlled independently or synchronously. For example, if a voltage within the first voltage range is applied to the electrode 98A and a voltage within the fourth voltage range is applied to the electrode 98B, the charge in the region 25 can move to the charge storage region 21A, but the charge. It cannot move to the storage area 21B. Similarly, if a voltage within the second voltage range is applied to the electrode 98A and a voltage within the third voltage range is applied to the electrode 98B, the charge in the region 25 can move to the charge storage region 21B. It cannot move to the charge storage region 21A.
  • the charges generated in the photoelectric conversion layer 30 can be transferred to the charge storage region 21A according to the generation time. It is possible to distribute the charge to the charge storage region 21B. Further, for example, if a further charge storage region is formed in the single crystal semiconductor layer 20, the charge generated in the photoelectric conversion layer 30 can be distributed to each of the three charge storage regions according to the generation time.
  • the electrical conductivity of the channel region 90A can be controlled by the voltage applied to the electrode 98A.
  • the region 25, the charge storage region 21A, the channel region 90A, and the electrode 98A function as the source region, drain region, channel, and gate electrode of the field effect transistor, respectively.
  • the electrical conductivity of the channel region 90B can be controlled by the voltage applied to the electrode 98B. This means that the region 25, the charge storage region 21B, the channel region 90B, and the electrode 98B function as the source region, drain region, channel, and gate electrode of the field effect transistor, respectively.
  • this field effect transistor is, for example, to dope the region 25, the charge storage region 21A and the charge storage region 21B to the same polarity, dope the channel regions 90A and 90B to a polarity different from that of the region 25, and further to the electrode 98A. This can be achieved by forming a thin insulating layer between the channel region 90A and between the electrode 98B and the channel region 90B, respectively.
  • the charge storage area 21A and / or the charge storage area 21B can be electrically connected to the constant potential line or the ground line via the wirings 11 and 12. This electrical connection allows the charge stored in the charge storage region to be released and reset.
  • FIG. 10 is a block diagram showing a configuration example of the distance image acquisition system 200 according to the present embodiment.
  • FIG. 11 is a diagram for explaining the operating principle of the distance image acquisition system 200 according to the present embodiment.
  • the first voltage range, the second voltage range, the third voltage range, and the fourth voltage range described above are the arrows (I), (II), (III), and (IV), respectively. It is indicated by.
  • the distance image acquisition system 200 includes a light source 201, optical systems 202 and 203, and an image pickup device 204.
  • the image pickup device 204 for example, the above-mentioned image pickup device 100E can be adopted.
  • the light source 201 may include, for example, a laser diode and / or a light emitting diode controlled by a drive current.
  • the light source 201 generates, for example, light L1 whose intensity changes with time, that is, AM-modulated light, and emits the light.
  • the optical system 202 has a function of shaping the light L1 whose intensity changes with time emitted from the light source 201 and irradiating the subject O. Since this function is basically the same as that of a general illumination optical system, detailed description thereof will be omitted.
  • the optical system 203 has a function of forming an image of the reflected light L2 from the subject O irradiated with the light L1 on the image pickup apparatus 204. Since this is also basically the same as a general imaging optical system, detailed description thereof will be omitted.
  • the principle of acquiring an image by the distance image acquisition system 200 is equivalent to the principle used in a general TOF (Time Of Flight) image sensor.
  • the light source 201 generates and emits light L1 whose intensity changes with a period T.
  • light L1 having an intensity of 0 during the T / 2 period and a constant intensity during the remaining T / 2 period is emitted from the light source 201.
  • the subject O is irradiated with the light L1 shaped by the optical system 202, and the light L2 which is the reflected light from the subject O is imaged on the image pickup apparatus 204 by using the optical system 203.
  • an image of the subject O is formed on the pixel array of the image pickup apparatus 204.
  • the light L2 reflected from the portion of the subject O corresponding to the formed image is incident on each pixel Px of the image pickup apparatus 204.
  • the intensity of the light L2 incident on each pixel Px changes in the same period T as the light L1.
  • the phase changes depending on the sum of the distance from the optical system 202 to the subject O and the distance from the subject O to the optical system 203. In this way, the phase includes the distance information to the subject O.
  • the applied voltage A applied to the electrode 98A and the applied voltage B applied to the electrode 98B of each pixel px of the image pickup apparatus 204 are changed as illustrated in FIG. More specifically, during the period of T / 2, the applied voltage A in the first voltage range (I) is applied to the electrode 98A, and the applied voltage B in the fourth voltage range (IV) is applied to the electrode 98B. ..
  • the applied voltage A in the second voltage range (II) is applied to the electrode 98A, and the applied voltage B in the third voltage range (III) is applied to the electrode 98B.
  • charges generated in the photoelectric conversion layer 30 is collected as a charge A in the charge accumulation region 21A in the period T A
  • charges generated in the photoelectric conversion layer 30 in the period T B is collected as a charge B in the charge storage region 21B To.
  • the ratio of the charge B generated in the charge A and duration T B generated in the period T A is determined depending on the phase of light L2 at each pixel Px. Therefore, the phase of the light L2 in each pixel Px is determined by measuring the amount of charge A collected in the charge storage area 21A and the amount of charge B collected in the charge storage area 21B, respectively. Can be done. Based on the phase, it is possible to calculate the sum of the distance from the optical system 202 to the subject O and the distance from the subject O to the optical system 203.
  • the image pickup device 100E can be used as a device for acquiring a distance image, particularly as an image pickup device mounted on an autonomous driving vehicle. Further, according to the image pickup apparatus 100E, as in other embodiments, the sensitivity is higher with respect to light having a long wavelength of, for example, 1400 nanometers, as compared with a conventional laminated image sensor using an ITO film as a transparent electrode. Can be realized. As a result, high sensitivity can be obtained even in the near infrared region.
  • FIG. 12 is a schematic view illustrating the device structure of the pixel Px of the image pickup apparatus 100F according to the fourth embodiment.
  • the portion constituting the pixel Px is shown by a broken line.
  • the imaging device 100F includes an avalanche amplification mechanism.
  • the avalanche amplification mechanism may be composed of, for example, two regions 401 and 402 in the single crystal semiconductor layer 20 as described later.
  • the photoelectric conversion layer 30 is in direct contact with the region 401 in the single crystal semiconductor layer 20, or is electrically connected to the region 401 via a layer in which charges can be transferred.
  • the positive or negative charge generated by the photoelectric conversion in the photoelectric conversion layer 30 can move from the photoelectric conversion layer 30 to the region 401.
  • Region 401 is formed from a single crystal semiconductor and has p-type or n-type polarity.
  • the region 401 is in contact with the region 402.
  • the region 402, like the region 401, is formed from a single crystal semiconductor and has a p-type or n-type polarity. The polarity of region 402 is different from that of region 401.
  • the region 403 can be further formed in the single crystal semiconductor layer 20.
  • the area 403 is in contact with the area 402 and not in contact with the area 401.
  • Region 403, like regions 401 and 402, is formed from a single crystal semiconductor and has p-type or n-type polarity.
  • the polarity of region 403 is the same as the polarity of region 402.
  • the dopant concentration in region 403 is higher than the dopant concentration in region 402.
  • the region 403 is electrically connected to the electrode 404 formed in the insulating layer 10.
  • At least one of the electrode 35 or the electrode 404 can be electrically connected to, for example, a column signal processing circuit 44, a current amount measuring circuit (not shown) or a current generation detecting circuit (not shown).
  • a separation region or trench 410 may be arranged to obtain electrical insulation between two adjacent pixels Px, if desired.
  • a potential difference is provided between the area 401 and the area 402 by a voltage control circuit (not shown).
  • the internal electric field generated by this potential difference accelerates the electric charge passing near the boundary between the region 401 and the region 402, whereby avalanche amplification can be generated. That is, the region 401 and the region 402 can function as an avalanche amplification mechanism.
  • This avalanche amplification can occur due to the charge generated in the photoelectric conversion layer 30. Therefore, the electric charge generated in the photoelectric conversion layer 30 can be amplified. As a result, for example, it becomes possible to image weak light in a dark place such as at night.
  • the avalanche amplification mechanism may be operated in the so-called Geiger mode. That is, normally, the current state can be set to an off state in which no current flows. When the electric charge generated in the photoelectric conversion layer 30 reaches the avalanche amplification mechanism, the current state can be changed from the off state to the on state in which the current flows. If the current generation time is detected by the current generation detection circuit, the image pickup device 100F can be operated as a so-called direct TOF sensor.
  • the image pickup apparatus of the present disclosure can obtain high sensitivity even in the near infrared region, it is used for applications such as machine vision, outdoor monitoring such as automatic driving, and medical treatment, which require imaging in that region. It is possible.

Abstract

本開示の撮像装置は複数の画素を備える。複数の画素のそれぞれは、光を透過する第1単結晶半導体層と、第1電極と、第1単結晶半導体層に接しており、第1単結晶半導体層と第1電極との間に位置する、光を吸収する光電変換層と、を含む。

Description

撮像装置
 本開示は撮像装置に関する。
 イメージセンサは、画素と呼ばれる単位から構成され、二次元に配列された複数の画素を備える。各画素は、光の照射によって信号電荷を発生させる光電変換素子と、光電変換素子において発生した信号電荷を蓄積する電荷蓄積領域とを有する。光電変換素子として、有機半導体、半導体型カーボンナノチューブ、または半導体量子ドット等の光電変換材料を利用した積層型イメージセンサがある。
特許第5585232号公報 特開2015-153962号公報 特開2015-037121号公報 特開2018-181957号公報
 可視光領域よりも長波長側に位置する波長領域での撮像において感度低下を抑制することが可能な撮像装置を提供する。
 本開示の撮像装置は、非限定的で例示的な実施形態において、複数の画素を備え、前記複数の画素のそれぞれは、光を透過する第1単結晶半導体層と、第1電極と、前記第1単結晶半導体層に接しており、前記第1単結晶半導体層と前記第1電極との間に位置する、前記光を吸収する光電変換層と、を含む。
 本開示の例示的な実施形態によれば、可視光領域よりも長波長側に位置する波長領域、特に近赤外領域での撮像において撮像装置の感度低下を抑制することが可能となる。
図1は、反射損失が無い場合における透過率の波長依存性を示すグラフである。 図2は、本開示の第1の実施形態に係る撮像装置の画素のデバイス構造を例示する模式図である。 図3は、本開示の第1の実施形態に係る読み出し回路の構成例を示す回路図である。 図4Aは、ロングパスフィルターのフィルター特性を示す図である。 図4Bは、バンドパスフィルターのフィルター特性を示す図である。 図5は、本開示の第1の実施形態の変形例に係る撮像装置の画素のデバイス構造を例示する模式図である。 図6は、本開示の第2の実施形態に係る撮像装置の画素のデバイス構造を例示する模式図である。 図7は、本開示の第2の実施形態に係る読み出し回路の構成例を示す回路図である。 図8は、本開示の第2の実施形態の変形例に係る撮像装置の画素のデバイス構造を例示する模式図である。 図9は、本開示の第3の実施形態に係る撮像装置の画素のデバイス構造を例示する模式図である。 図10は、本開示の第3の実施形態に係る距離画像取得システムの構成例を示すブロック図である。 図11は、本開示の第3の実施形態に係る距離画像取得システムの動作原理を説明するための図である。 図12は、本開示の第4の実施形態に係る撮像装置の画素のデバイス構造を例示する模式図である。
 まず、本開示の実施形態を説明する前に、本開示の基礎となった本発明者の知見を説明する。
 積層型イメージセンサは、光電変換材料から形成された光電変換層を一対の電極で挟み込む構造を有しており、一対の電極間にバイアス電圧を印加する。このバイアス電圧によって、光電変換層内に発生した正電荷と負電荷とが分離される。その結果、正電荷または負電荷の一方を透明電極側に、他方を対向電極側に引き抜くことが可能になる。
 光電変換層に光を到達させるために、一対の電極のうちの一方の電極材料は、光電変換において意図される波長に対し透過性を有する。このような透過性を有する電極材料から形成された電極は、透明電極と呼ばれる。透明電極の材料として、酸化インジウム錫、いわゆるITOが広く用いられている。透明電極は、ITOをスパッタリングで成膜することにより形成され、その結晶学的状態は多結晶またはアモルファス状態である。透明電極ではない他方の電極は、対向電極と呼ばれる。イメージセンサにおいて、信号電荷はこの対向電極で収集されて電荷蓄積領域に輸送される。積層型イメージセンサにおいて、この電荷蓄積領域は、典型的には、単結晶半導体層内に形成される。
 特許文献1及び特許文献2は、光電変換層が単結晶シリコン基板に直接接する構成を開示している。特許文献3は、単結晶シリコン基板内に形成された第1の光電変換部、および光電変換部の上方に位置する第2の光電変換部を備える撮像装置を開示している。この第2の光電変換部は無機材料から形成されており、第1の光電変換部は、特定の波長範囲の光を選択的に吸収する光フィルターとして機能する。特許文献4は、赤外光検出素子、および、赤外光検出素子の上方に位置し、シリコン基板内に形成された可視光検出素子を備える撮像装置を開示している。この可視光検出素子は可視光を選択的に吸収する光フィルターとして機能する。
 従来の透明電極材料であるITOには、可視光領域においては高い透過性が得られるが、近赤外領域においては低い透過率しか得られないという課題がある。均一な膜厚を有する層の透過率は、一般に、数1に記載の式によって与えられる。反射率は負にはならないので、100%-(吸収率)が透過率の上限となる。
[数1]
  (透過率)=100%-(反射率)-(吸収率)
 図1において、厚さ1000ナノメートルのITO膜が反射損失を有しない場合における透過率の波長依存性が示されている。以下、反射損失が無い場合における透過率を「理想透過率」と呼ぶこととする。1200ナノメートル以下の波長に対する膜の理想透過率は50%以上である。一方、1200ナノメートル以上の波長に対する理想透過率は50%以下である。ITO膜の理想透過率は原料及び成膜条件などによって多少の変化を示すが、上述した傾向は変わらない。波長が長くなるほど理想透過率は低下し、例えば1400ナノメートルの波長に対する理想透過率は10%程度である。
 透明電極にITO膜を利用した従来の積層型イメージセンサは、ITO膜を透過した光のみ光電変換することが可能である。そのため、1200ナノメートル以上の波長の光に対し、50%以上の量子効率を実現することは不可能である。ここで、量子効率は、入射光の光子数に対する信号電荷の捕捉数の比率によって表される。イメージセンサの感度は基本的に量子効率に依存するので、従来の積層型イメージセンサによれば、1200ナノメートル以上の波長の光に対し高い感度を実現することは困難である。
 本発明者は上記の知見に基づいて、可視光領域よりも長波長側に位置する波長領域、特に近赤外領域での撮像において感度低下を抑制することが可能となる新規な構造を見出した。例えば、可視光領域は、概ね400ナノメートルから700ナノメートルまでの波長範囲であり、近赤外領域は、概ね700ナノメートルから2500ナノメートルまでの波長範囲である。
 本開示の一態様の概要は、以下の項目に記載のとおりである。
 [項目1]
 本開示の項目1に係る撮像装置は、複数の画素を備える。前記複数の画素のそれぞれは、
 光を透過する第1単結晶半導体層と、
 第1電極と、
 前記第1単結晶半導体層に接しており、前記第1単結晶半導体層と前記第1電極との間に位置する、前記光を吸収する光電変換層と、
を含む。
 項目1に記載の撮像装置によると、可視光領域よりも長波長側に位置する波長領域、特に近赤外領域での撮像において感度低下を抑制することが可能となる。
 [項目2]
 項目1に記載の撮像装置は、前記第1単結晶半導体層および前記第1電極からなる群から選択される少なくとも1つに電気的に接続された、前記光電変換層にバイアス電圧を印加するバイアス電圧制御回路をさらに備えていてもよい。
 項目2に記載の撮像装置によると、バイアス電圧を印加すれば、例えば対向電極で正電荷をより収集し易くなり、第1単結晶半導体層で負電荷をより収集し易くなる。
 [項目3]
 項目1または2に記載の撮像装置において、前記複数の画素のそれぞれは、前記第1単結晶半導体層内に位置し、前記光電変換層で生成される電荷を蓄積する電荷蓄領域を含んでいてもよい。
 項目3に記載の撮像装置によると、電荷の収集を行う部分と電荷蓄積領域とを第1単結晶半導体層内に形成することによって、kTCノイズを低減することができる。
 [項目4]
 項目3に記載の撮像装置において、前記複数の画素のそれぞれは、前記第1単結晶半導体層内に位置し、前記電荷蓄領域に蓄積される前記電荷を読み出す読み出し回路を含んでいてもよい。
 項目4に記載の撮像装置によると、第1単結晶半導体層に読み出し回路を集積化することが可能となる。
 [項目5]
 項目1または2に記載の撮像装置において、前記複数の画素のそれぞれは、
 第2単結晶半導体層と、
 前記第1単結晶半導体層内に位置し、前記光電変換層で生成される電荷を蓄積する電荷蓄領域と、を含み、
 前記第1電極は、前記第1単結晶半導体層と前記第2単結晶半導体層との間に位置してもよい。
 項目5に記載の撮像装置によると、撮像装置のバリエーションが提供される。
 [項目6]
 項目5に記載の撮像装置において、前記複数の画素のそれぞれは、前記第2単結晶半導体層内に位置し、前記電荷蓄領域に蓄積される前記電荷を読み出す読み出し回路を含んでいてもよい。
 項目6に記載の撮像装置によると、第2単結晶半導体層に読み出し回路を集積化することが可能となる。
 [項目7]
 項目1から6のいずれかに記載の撮像装置において、前記複数の画素のそれぞれは、
 オンチップレンズと、
 前記オンチップレンズと前記第1単結晶半導体層との間に位置し、特定の波長範囲の光を選択的に透過するフィルター層と、
を含んでいてもよい。
 項目7に記載の撮像装置によると、撮像装置に光が照射されるときに単結晶半導体層における光吸収を抑制し、より多くの光を光電変換層に到達させることができる。
 [項目8]
 項目7に記載の撮像装置において、前記フィルター層は、前記フィルター層は、前記特定の波長範囲に透過域を有し、前記特定の波長範囲よりも短い波長範囲に遮断域を有するフィルター特性を有していてもよい。
 項目8に記載の撮像装置によると、フィルター層にロングパスフィルターを適用することができる。
 [項目9]
 項目7に記載の撮像装置において、前記フィルター層は、前記特定の波長範囲に透過域を有し、前記特定の波長範囲よりも短い波長範囲に第1の遮断域を有し、前記特定の波長範囲よりも長い波長範囲に第2の遮断域を有するフィルター特性を有していてもよい。
 項目9に記載の撮像装置によると、フィルター層にバンドパスフィルターを適用することができる。
 [項目10]
 項目7に記載の撮像装置において、前記フィルター層は、前記第1単結晶半導体層が高い吸収係数を有する波長範囲に遮断域を有するフィルター特性を有していてもよい。
 項目10に記載の撮像装置によると、第1単結晶半導体層が光を吸収することに起因して発生し得るノイズ及び誤動作を抑制できる。
 [項目11]
 項目1から10のいずれかに記載の撮像装置において、前記第1単結晶半導体層はシリコンから形成されており、
 前記光電変換層は1100ナノメートル以上の波長を有する光を吸収してもよい。
 項目11に記載の撮像装置によると、1100ナノメートル以上の波長範囲で吸収率を実質的に0とすることができ、その結果、近赤外を検出する場合においてより多くの光を光電変換層に到達させることができる。
 [項目12]
 項目1から11のいずれかに記載の撮像装置において、前記光電変換層は、有機半導体、半導体型カーボンナノチューブおよび半導体量子ドットからなる群から選択される材料から形成されていてもよい。
 項目12に記載の撮像装置によると、光電変換層の材料のバリエーションが提供される。
 [項目13]
 項目1または2に記載の撮像装置において、前記複数の画素のそれぞれは、
 前記第1単結晶半導体層内に位置し、前記光電変換層で生成される電荷を収集する電荷収集領域と、
 前記第1単結晶半導体層内に位置し、前記電荷収集領域とは異なり、前記電荷を蓄積する第1電荷蓄積領域と、
 前記第1単結晶半導体層内に位置し、前記電荷収集領域とは異なり、前記電荷を蓄積する第2電荷蓄積領域と、
 前記第1電荷蓄積領域から電気的に絶縁された第2電極と、
 前記第2電荷蓄積領域から電気的に絶縁された第3電極と、
 前記電荷収集領域と前記第1電荷蓄積領域との間に位置する第1チャネル領域と、
 前記電荷収集領域と前記第2電荷蓄積領域との間に位置する第2チャネル領域と、
を含んでいてもよい。
 項目13に記載の撮像装置において、前記第2電極は前記第1電荷蓄積領域の近傍に位置し、前記第3電極は前記第2電荷蓄積領域の近傍に位置していてもよい。
 [項目14]
 項目13に記載の撮像装置において、前記第2電極に印加する電圧を制御することによって、前記電荷収集領域から前記第1電荷蓄積領域への前記第1チャネル領域における前記電荷の移動が制御され、
 前記第3電極に印加する電圧を制御することによって、前記電荷収集領域から前記第2電荷蓄積領域への前記第2チャネル領域における前記電荷の移動が制御されてもよい。
 [項目15]
 項目1または2に記載の撮像装置は、アバランシェ増幅を発生させることが可能なアバランシェ増幅機構をさらに備えていてもよい。
 [項目16]
 項目15に記載の撮像装置において、前記アバランシェ増幅機構は、
  前記第1単結晶半導体層内に位置し、前記光電変換層で生成される電荷を収集する第1領域と、
  前記第1単結晶半導体層内に位置し、前記第1領域に接する第2領域と、を含み、
 前記第1領域の極性は前記第2領域の極性とは異なっていてもよい。
 [項目17]
 項目16に記載の撮像装置において、前記アバランシェ増幅機構は、前記第1単結晶半導体層内に位置し、前記第2領域に接する第3領域をさらに含み、
 前記第3領域の極性は前記第2領域の極性と同じであり、
 前記第3領域のドーパント濃度は前記第2領域のドーパント濃度よりも高くてもよい。
 以下、図面を参照しながら、本開示の実施形態を詳細に説明する。なお、以下で説明する実施形態は、いずれも包括的または具体的な例を示す。以下の実施形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。本明細書において説明される種々の態様は、矛盾が生じない限り互いに組み合わせることが可能である。また、以下の実施形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。以下の説明において、実質的に同じ機能を有する構成要素は共通の参照符号で示し、説明を省略することがある。また、図面が過度に複雑になることを避けるために、一部の要素の図示を省略することがある。
 特定の方向または位置を示す用語(例えば、「上」、「下」、「右」、「左」およびそれらの用語を含む別の用語)を用いる場合がある。しかしながら、それらの用語は、参照した図面における相対的な方向または位置をわかり易さのために用いているに過ぎない。参照した図面における「上」、「下」等の用語による相対的な方向または位置の関係が同一であれば、実際の製品等において、参照した図面と同一の配置でなくてもよい。
 (第1の実施形態)
 図2は、第1の実施形態に係る撮像装置100Aの画素Pxのデバイス構造を例示する模式図である。図2には、撮像装置100Aの一部を取り出してその断面が模式的に示され、画素Pxを構成する部分が破線で示されている。図3は、読み出し回路40の構成例を示す回路図である。撮像装置100Aは、例えば二次元に配列された複数の画素Pxを含む。画素Pxの数は数百万または数千万個であり得る。ただし、画素Pxの数および配置は任意である。撮像装置が少なくとも1つの画素Pxを有していれば、その撮像装置を光検出素子として利用することができる。画素Pxの配列が一次元であれば、撮像装置100Aを例えばラインセンサとして利用することができる。
 撮像装置100Aの構造・動作の概要は以下のとおりである。
 撮像装置100Aは、第1単結晶半導体層である単結晶半導体層20において収集した信号電荷を同じ単結晶半導体層20内に形成された電荷蓄積領域21Aに蓄積する構造を備える。光電変換層30内に発生した信号電荷は単結晶半導体層20において収集され、同じ単結晶半導体層20内に形成された電荷蓄積領域21Aに蓄積される。電荷蓄積領域21Aに蓄積された信号電荷は読み出し回路40によって読み出され、カラム信号処理回路44に送られる。
 撮像装置100Aは、二次元に配列された複数の画素Pxおよび絶縁層10を備える。撮像装置100Aは、さらに、後述するカラム信号処理回路44などを備え得る。各画素Pxは、単結晶半導体層20、光電変換層30、対向電極35およびオンチップレンズ50を有する。オンチップレンズ50は状況により撮像特性を改善する機能を果たす。ただし、その配置は必須ではない。図示はされないが、撮像装置100Aは、複数の画素Pxおよび絶縁層10の積層構造を支持する支持基板を備えていてもよい。
 単結晶半導体層20は、絶縁層10の上方に配置され、オンチップレンズ50と絶縁層10との間に位置している。単結晶半導体層20の材料の例は単結晶シリコンである。単結晶半導体層20の材料のその他の例として、単結晶ガリウム砒素、単結晶ゲルマニウム、単結晶窒化ガリウム、及び単結晶シリコンゲルマニウムなどが挙げられる。
 単結晶半導体層20は光を透過し、後述する光電変換層30による光電変換の対象となる波長、つまり、意図された波長に対し、有意な透過率を有する。有意な透過率とは、光電変換層30による光電変換で撮像が可能になる理想透過率を意味する。その基準の例は50%以上の理想透過率である。光電変換層30の理想透過率が高いほど低照度における撮像が可能になる。光電変換における意図された波長は、光電変換層30が吸収する光の波長に相当する。なお、光電変換層がある波長の光を吸収するというとき、光電変換層がその波長に対し100%の吸収率を示すことは必要ではない。
 単結晶半導体には吸収端波長λgとよばれる波長が存在する。吸収端波長λgはバンドギャップのエネルギーに相当する波長である。λg以上の波長の光に対し吸収係数は実質的に0となり、λg以上の波長の光は単結晶半導体層を透過する。例えば、単結晶シリコンの吸収端波長は約1100ナノメートルである。単結晶ガリウム砒素の吸収端波長は約1000ナノメートルである。単結晶窒化ガリウムの吸収端波長は約376ナノメートルである。
 本実施形態において、単結晶半導体層20の材料として、光電変換における意図された波長よりも短い吸収端波長λgを有する材料が選択される。そのような材料の選択は、単結晶半導体層20における光吸収によって意図しない電荷が発生することを抑制する効果をもたらす。例えば、単結晶半導体層20を単結晶窒化ガリウムから形成すれば、可視光領域の全範囲において単結晶半導体層20の吸収係数を実質的に0とすることが可能となる。または、単結晶半導体層20を単結晶シリコンから形成すれば、1100ナノメートル以上の波長範囲において単結晶半導体層20の吸収係数を実質的に0とすることが可能となる。1100ナノメートル以上の波長範囲は、太陽光が強く減衰する1350ナノメートルから1450ナノメートルまでの範囲、または、光ファイバ通信において広く利用されている1500ナノメートル前後の波長を含む。
 単結晶半導体層20の材料は、光電変換における意図された波長よりも長い吸収端波長λgを有する材料であってもよい。例えば、単結晶シリコンのような間接遷移型半導体の場合において、単結晶半導体層20の厚さが薄ければ、吸収端よりも短い波長であってもその光の吸収を抑えることができる。
 再び図1を参照する。図1において、厚さ1000ナノメートルの単結晶シリコン膜の理想透過率が示されている。参考として、単結晶ガリウム砒素の理想透過率も示されている。厚さ1000ナノメートルの単結晶シリコン膜は、約550ナノメートル以上の波長に対し50%以上の理想透過率を示し、800ナノメートル以上の波長に対しては90%以上の理想透過率を示す。そのため、単結晶半導体層20として厚さ1000ナノメートルの単結晶シリコン膜を形成した場合、理想的には、800ナノメートル以上の波長を有する光の90%以上が単結晶半導体層20を透過し光電変換層30に到達することができる。
 光電変換層30は単結晶半導体層20と対向電極35との間に位置している。より具体的には、光電変換層30は単結晶半導体層20に接しており、単結晶半導体層20に形成された電荷蓄積領域21Aと対向電極35とに挟まれている。光電変換層30は、単結晶半導体層20を透過した光を吸収する。単結晶半導体層20がシリコンから形成される場合において、光電変換層30は1100ナノメートル以上の波長を有する光を吸収する。または、光電変換層30は、単結晶半導体層20の吸収端波長λgよりも短くても十分な理想透過率を示す波長の光を吸収し得る。
 本明細書において、単結晶半導体層20、光電変換層30および対向電極35によって構成される部分を「光電変換部」と呼ぶこととする。単結晶半導体層20の一部は従来の画素電極として機能する。光電変換層30および対向電極35は絶縁層10内に位置している。単結晶半導体層20は、光電変換層30に対して光電変換部に光が入射する側に位置し、対向電極35は光電変換層30に対して単結晶半導体層20の反対側に位置している。
 対向電極35は光電変換部に入射する光に対する透過性を必要としない。対向電極35は、AlまたはAgなどの金属、またはTiNなどの金属窒化物などから形成され得る。また、対向電極35は、光電変換層30に入射する光を反射する材料から形成されていてもよい。対向電極35は、1100ナノメートル以上の波長を有する光に対して例えば80%以上の反射率を有し得る。そのような材料の例はAlまたはAuである。1100ナノメートル以上の波長を有する光に対して対向電極35が例えば80%以上の高い反射率を示すことにより、光電変換層30を通過した光を対向電極35によって単結晶半導体層20の側に向けて反射させることができ、より多くの光を光電変換に寄与させることが可能となる。すなわち、近赤外領域においてより高感度の撮像を実現できることが期待される。
 光電変換層30が光を吸収することによって正電荷および負電荷を含む正孔-電子対が発生する。単結晶半導体層20は、正孔-電子対の一方を収集し、対向電極35は正孔-電子対の他方を収集する。単結晶半導体層20において収集された電荷は電荷蓄積領域21Aに蓄積される。本実施形態において、電荷蓄積領域21Aは画素Pxごとに独立して単結晶半導体層20内に存在する。電荷蓄積領域21Aは光電変換層30に直接的に接していてもよい。または、光電変換層30に接する単結晶半導体層20の部分である電荷収集領域が電荷の収集のみを行い、電荷の移動が可能な範囲において光電変換層30から離れた場所に電荷蓄積領域21Aを配置してもよい。例えば、電荷収集領域と電荷蓄積領域21Aとは、単結晶半導体層20の領域を介して接続されてもよいし、導電性プラグにより電気的に接続されてもよい。
 電荷収集領域と電荷蓄積領域21とがともに同一の単結晶半導体層20に形成され、かつ、両者が金属を介さず単結晶半導体によって電気的に接続される場合、電荷収集領域で収集された電荷を電荷蓄積領域21に完全に転送することができる。また、電荷蓄積領域21が単結晶半導体から形成されている場合、そこに蓄積した電荷を完全に排除することができる。このような特性は、収集または蓄積した電荷の一部が意図せず残留することにより起因して発生するノイズ、いわゆるkTCノイズを低減することに有効である。
 単結晶半導体層20の内部に形成された電荷蓄積領域21Aは、その周辺領域とは不純物ドープの極性を変えることによって形成される。例えば、単結晶半導体層20が正電荷を収集する場合、電荷蓄積領域21Aがp型となるようにドーピングし、その周辺領域がn型となるようにドーピングすればよい。単結晶半導体層20が負電荷を収集する場合、電荷蓄積領域21Aがn型となるようにドーピングし、その周辺領域がp型となるようにドーピングすればよい。電荷蓄積領域21Aに蓄積された電荷は、図3に示されるカラム信号処理回路44に最終的に転送される。カラム信号処理回路44の詳細は後述する。
 電荷蓄積領域21Aとは異なるさらなる電荷蓄積領域21Bが単結晶半導体層20の内部に形成されていてもよい。後で詳しく説明するが、電荷蓄積領域21Aと電荷蓄積領域21Bとの間に形成される転送トランジスタのチャネル領域の電気伝導度は、ゲート電極に印加する電位によって制御できる。これにより、電荷蓄積領域21Aに蓄積された電荷は、転送トランジスタのチャネルを通って電荷蓄積領域21Bに移動することが可能となる。ただし、電荷蓄積領域21Bは必須でない。
 光電変換層30は、光電変換における意図された波長に対し有意な吸収係数を有する光電変換材料を含む。有意な吸収係数とは、意図された波長に対して撮像を可能とする十分な感度を実現するために必要な吸収係数を意味する。光電変換材料の例は、有機半導体、半導体型カーボンナノチューブ、半導体量子ドットである。
 光電変換層30は、電子ブロッキング層または正孔ブロッキング層(不図示)を含み得る。これらのブロッキング層により、電極等から光電変換層30に意図しない電荷が注入することを防ぐことができる。電子ブロッキング層の材料の例はPEDOT:PSSであり、正孔ブロッキング層の材料の例はC60である。
 光電変換層30は、量子閉じ込め効果を持つ量子ナノ構造を有する材料を含有し得る。量子ナノ構造とは、一次元的、二次元的または三次元的に量子サイズ効果を発現する構造を指す。量子ナノ構造を有する材料の例は、カーボンナノチューブである。カーボンナノチューブは、グラフェンを丸めたような構造を有し、直径がナノメートル領域の、継ぎ目のない概ね円筒状である。円筒が1つの構造を特に単層カーボンナノチューブと呼び、複数の円筒が入れ子になった構造を多層カーボンナノチューブと呼ぶ。単層カーボンナノチューブの電子的特性および光学的特性の多くは、カイラル指数によって指定されるカイラリティによって決まる。単層カーボンナノチューブは、カイラリティに応じて金属的な性質または半導体的な性質を示す。
 単層カーボンナノチューブ中の電子のエネルギーは、チューブが円筒状であることによる周期性に起因してチューブ軸方向の波数のみによって指定される。すなわち、単層カーボンナノチューブの電子状態は、一次元的である。単層カーボンナノチューブのバンド構造は、状態密度の発散するエネルギー準位であるサブバンドが離散的に発現する点で特徴的である。状態密度におけるこのような特異点は、Van Hove特異点と呼ばれる。
 単層カーボンナノチューブの吸収スペクトルは、このサブバンド間のエネルギーに相当する波長において急峻なピークを示す。カーボンナノチューブにおいては、フェルミ準位から数えて1番目のサブバンド間の光学遷移が第1光学遷移であり、2番目のサブバンド間の光学遷移が第2光学遷移である。
 有機半導体の例は、鉛フタロシアニンまたは銅フタロシアニン等のフタロシアニン類、ナフタロシアニン類等の低分子半導体、P3HT、PDDTTまたはPDTTP等の半導体性ポリマーである。有機半導体による光電変換材料は、例えば、文献(Journal of Materials Chemistry C, 2018, 6, 3499)に詳細に記載されている。参考のため、その文献の開示内容のすべてを本明細書に援用する。
 半導体型カーボンナノチューブは、単層カーボンナノチューブのうちの半導体性を示すものである。単層カーボンナノチューブはカイラリティによって特徴付けられ、カイラリティに応じて異なる固有の共鳴吸収波長を有する。半導体型カーボンナノチューブは、この共鳴吸収波長に対し特異的に大きな吸収係数を示す。例えば(9,8)のカイラル指数を有する半導体型カーボンナノチューブは、800ナノメートル前後および1410ナノメートル前後の波長に対し共鳴吸収を示す。(7,6)のカイラル指数を有する半導体型カーボンナノチューブは、650ナノメートル前後および1130ナノメートル前後の波長に対し共鳴吸収を示す。なお、表1に示す各波長の値は、あくまでも一例であり、実測値と50ナノメートル程度の誤差が生じることもあり得る。
Figure JPOXMLDOC01-appb-T000001
 半導体量子ドットは、直径が数ナノメートルから数十ナノメートル程度の大きさである半導体のコアを有する構造体であり、数十個程度の原子から構成される。半導体のコアの材料の例は、硫化カドミウム、硫化鉛、セレン化カドミウム、セレン化鉛からなる量子ドットである。半導体の大きさを数ナノメートルから数十ナノメートルに制限することにより、量子力学的効果が生じる。半導体量子ドットは、バルク状態の半導体に比べて短い波長に対し共鳴的吸収を示す。半導体量子ドットは三次元的な量子閉じ込め効果を示す。半導体量子ドットの共鳴吸収波長は、主にコアの材料およびコアの大きさによって決定される。
 半導体量子ドットの表面には、分散剤、配位子による修飾などが付与され得る。半導体量子ドットは、APbXの化学式で示される、ペロブスカイト構造を有する量子ドットであってもよい。ここで、APbXの化学式中、Aは、セシウム、メチルアンモニウムおよびホルムアミジニウムからなる群から選択される1つであり、Xは、塩素、臭素またはヨウ素である。
 粒子の粒径が励起子のボーア半径程度以下になると、励起子、電子が三次元的に空間に閉じ込められ、その状態密度は、バルクのときと異なり離散化される。また、粒径が小さくなるとこの量子閉じ込め効果が増大してエネルギーギャップが拡大する。したがって、同一の原料であっても量子ドットの形態とすることにより、バルク時のエネルギーギャップよりも大きなエネルギーギャップを実現することができ、かつ、その粒径によってエネルギーギャップを調整することが可能である。
 半導体量子ドットにおいて、第1光学遷移における吸収ピークの幅は、その原料およびその粒径によって大きく変化し得る。したがって、光電変換層の光電変換材料として例えば半導体量子ドットを選択した場合、その原料および粒径を調整することによって、光電変換層30において特異的に吸収係数を示す共鳴吸収波長を調整することが可能である。
 光電変換層30は、有機半導体、半導体型カーボンナノチューブ、半導体量子ドットの他に、別の分子を含有し得る。例えば、光電変換層30は、有機半導体と半導体型カーボンナノチューブと共に、C60、PCBM等のフラーレン類等を含み得る。C60及びPCBMは赤外光を吸収しないために、赤外領域における光電変換に寄与しない。
 上述したとおり、光電変換層30が光を吸収することにより電子正孔対が発生する。単結晶半導体層20は電子正孔対の一方を収集し、対向電極35は電子正孔対の他方を収集する。本実施形態において、単結晶半導体層20が正電荷を収集し、対向電極35が負電荷を収集する。この電荷を収集する効率は、単結晶半導体層20と対向電極35との間にバイアス電圧を印加することによって高くなる場合がある。
 正電荷はより電位が低い側に移動するという性質を示し、負電荷はより電位が高い側に移動するという性質を示す。そのため、対向電極35の電位を相対的に下げ、または、単結晶半導体層20の電位を相対的に上げるようにバイアス電圧を印加すれば、対向電極35は正電荷を収集し易くなり、単結晶半導体層20は負電荷を収集し易くなる。これとは逆に、対向電極35の電位を相対的に上げ、または、単結晶半導体層20の電位を相対的に下げるようにバイアス電圧を印加すれば、対向電極35は負電荷を収集し易くなり、単結晶半導体層20は正電荷を収集し易くなる。ここで、相対的にとは、バイアス電圧を印加しない状態と比較した場合である。バイアス電圧は、例えば、単結晶半導体層20および/または対向電極35に接続された、図3に示されるバイアス電圧制御機構43を用いて印加することができる。バイアス電圧制御機構43の詳細は後述する。
 絶縁層10は、典型的には、複数の層間絶縁層が積層された積層構造を有する。絶縁層10を構成する各層は、例えば、二酸化シリコンから形成される。絶縁層10は、紙面に垂直な方向に延びる配線11と、紙面に沿った方向に延びる配線12とを含む多層配線を内部に有し得る。多層配線は単結晶半導体層20の下方に位置している。多層配線は例えばCuなどから形成され、異なる層の配線間を互いに接続するビア(不図示)などを含む。単結晶半導体層20内の電荷蓄積領域は配線11、12を介して読み出し回路40に電気的に接続されている。対向電極35は、配線11、12を介してバイアス電圧制御機構43に電気的に接続されている。
 図3を参照して読み出し回路40の構成例を説明する。読み出し回路40は電荷蓄領域に蓄積される電荷を読み出す。読み出し回路40は、リセットトランジスタ41A、転送トランジスタ41B、読み出しトランジスタ41C、増幅トランジスタ41Dおよび選択トランジスタ41Eを有する。ただし、転送トランジスタ41B、読み出しトランジスタ41Cは必須ではない。
 本実施形態において、読み出し回路40は、電荷蓄積領域21Aが存在する単結晶半導体層20の内部に形成されている。各トランジスタのチャネル領域、ソース領域およびドレイン領域は単結晶半導体層20において集積化することが可能である。各トランジスタは、例えばnチャネルMOSFETまたはpチャネルMOSFETである。読み出し回路40は、バイアス電圧制御回路43A、43Bを含むバイアス電圧制御機構43、およびカラム信号処理回路44に接続される。なお、読み出し回路40のうちの転送トランジスタ41Bのゲート41Bgのみが図2に示されている。
 光電変換部の対向電極35にはバイアス電圧制御回路43Aが接続され、単結晶半導体層20にはバイアス電圧制御回路43Bがリセットトランジスタ41Aを介して接続されている。バイアス電圧制御回路43Aは対向電極35に定電圧を供給する。これにより、対向電極35の電位は一定に保たれる。一方、バイアス電圧制御回路43Bは所定のリセット電圧を電荷蓄積領域21Aに与える。露光直前までリセットトランジスタ41Aをオン状態にしておくことで、電荷蓄積領域21Aの電位を基準値に設定することができる。2つのバイアス電圧制御回路43A、43Bが対向電極35と電荷蓄積領域21Aとにそれぞれ異なる電圧を与えることによって、対向電極35と電荷蓄積領域21Aとに挟まれた光電変換層30に所望のバイアス電圧を印加することができる。バイアス電圧制御回路43A、43Bのそれぞれの例は、定電圧源、可変電圧源または接地線である。バイアス電圧制御回路43A、43Bは、撮像装置100Aの内部回路であってもよいし、撮像装置100Aに外部接続される回路であってもよい。なお、バイアス電圧制御機構43は必須ではなく、バイアス電圧の印加も必須ではない。
 光電変換層30の材料の種類によっては、バイアス電圧を光電変換層に印加するときにおいてのみ有意な感度が得られる場合がある。そのような場合においてバイアス電圧制御機構43は電子シャッターの機能を有し得る。
 リセットトランジスタ41Aは、電荷蓄積領域21Aの電位を基準値に初期化する。リセットトランジスタ41Aのゲートは、リセット信号線42lに電気的に接続されている。垂直走査回路(不図示)が、リセット信号線42lを介してリセットトランジスタ41Aのオン・オフを制御する。リセットトランジスタ41Aのソースまたはドレインの一方は、バイアス電圧制御回路43Bに接続され、他方は電荷蓄積領域21Aに接続されている。
 転送トランジスタ41Bは、電荷蓄積領域21Aに蓄積された電荷を電荷蓄積領域21Bに転送する。転送トランジスタ41Bのゲートは、転送制御線42mに電気的に接続されている。垂直走査回路が、転送制御線42mを介して転送トランジスタ41Bのオン・オフを制御する。転送トランジスタ41Bのソースまたはドレインの一方は、電荷蓄積領域21Aに接続され、他方は電荷蓄積領域21Bに接続されている。
 読み出しトランジスタ41Cは、電荷蓄積領域21Bに蓄積された電荷をフローティングディフュージョンノードFDに転送する。読み出しトランジスタ41Cのゲートは、読み出し制御線42nに電気的に接続されている。垂直走査回路が、読み出し制御線42nを介して読み出しトランジスタ41Cのオン・オフを制御する。読み出しトランジスタ41Cのソースまたはドレインの一方は、フローティングディフュージョンノードFDに接続され、他方は電荷蓄積領域21Bに接続されている。
 増幅トランジスタ41DはフローティングディフュージョンノードFDの電位に応じた信号を出力するソースフォロワとして機能する。増幅トランジスタ41Dのゲートは、フローティングディフュージョンノードFDに接続されている。増幅トランジスタ41Dのソースまたはドレインの一方は電源線45に接続され、他方は選択トランジスタ41Eのソースまたはドレインの一方に接続されている。
 選択トランジスタ41Eは、画素ごとに設けられた複数の増幅トランジスタ41Dの中から、カラム信号処理回路44に接続する対象となる増幅トランジスタ41Dを選択する。選択トランジスタ41Eのゲートは、アドレス制御線42oに電気的に接続されている。垂直走査回路が、アドレス制御線42oを介して選択トランジスタ41Eのオン・オフを制御する。選択トランジスタ41Eのソースまたはドレインの一方は、増幅トランジスタ41Dのソースまたはドレインの他方に接続され、選択トランジスタ41Eのソースまたはドレインの他方は出力信号線42pを介してカラム信号処理回路44に接続されている。
 カラム信号処理回路44は電荷計量装置として機能する。カラム信号処理回路44はアナログ-デジタル変換回路を含み、出力信号線42pに接続される。カラム信号処理回路44は、相関二重サンプリングに代表される雑音抑圧信号処理を行う回路をさらに含み得る。カラム信号処理回路44は単結晶半導体層20内に形成された回路であり得る。または、カラム信号処理回路44は、単結晶半導体層20とは異なる別の単結晶半導体層の内部に形成された回路であってもよいし、撮像装置100Aに外部接続される回路であってもよい。
 以下、撮像装置100Aの動作を説明する。単結晶半導体層20が電荷対のうちの正電荷を収集する例を説明する。単結晶半導体層20が負電荷を収集する場合においては、極性などを適宜変更すればよい。その手段は当業者にとって自明であるので、その詳細な説明は省略する。
 入射光はオンチップレンズ50によって集光され、単結晶半導体層20を透過して光電変換層30に到達する。光電変換層30に入射した光は吸収され、正電荷および負電荷の電荷対が光電変換層30に発生する。正電荷は単結晶半導体層20に収集され、負電荷は対向電極35に収集される。単結晶半導体層20に収集された正電荷は電荷蓄積領域21Aに蓄積される。
 露光を開始するときに、リセットトランジスタ41Aをオフにすることによって、電荷蓄積領域21Aはフローティング状態となる。光電変換層30において発生した正電荷が電荷蓄積領域21Aに蓄積され、その電荷量に応じて電荷蓄積領域21Aの電位が変化する。露光が終了した後、転送トランジスタ41Bをオンにして、電荷蓄積領域21Aに蓄積した電荷を電荷蓄積領域21Bに転送する。
 読み出しトランジスタ41Cをオンにすることにより、電荷蓄積領域21Bに蓄積した電荷は、フローティングディフュージョンノードFDに転送される。増幅トランジスタ41Dの出力は、フローティングディフュージョンノードFDに転送された電荷量に応じて変化する。カラム信号処理回路44は、選択トランジスタ41Eによって選択された増幅トランジスタ41Dから出力される出力信号を処理し、最終的に電荷量を計測する。
 本実施形態によれば、電荷蓄積領域21A、21Bは、同じ単結晶半導体層20内に形成されている。電荷蓄積領域21Bに蓄積された電荷量を計測中に、電荷蓄積領域21Aに新たな電荷を蓄積することができる。つまり、電荷量の計測と同時に露光することが可能となり、いわゆるグルーバルシャッター機能が実現される。
 画素Pxは、フィルター層60および保護層70をさらに有し得る。図2に示される例において、保護層70、フィルター層60およびオンチップレンズ50がこの順番で単結晶半導体層20上に積層されている。
 図4A、図4Bを参照してフィルター層60の透過率特性を詳細に説明する。
 図4Aは、ロングパスフィルターのフィルター特性を示す図である。図4Bは、バンドパスフィルターのフィルター特性を示す図である。
 フィルター層60は、オンチップレンズ50と単結晶半導体層20との間に位置し、特定の波長範囲の光を選択的に透過する。フィルター層60の透過率は波長依存性を有する。フィルター層60にロングパスフィルターまたはバンドパスフィルターを適用することができる。フィルターが有意に高い透過性を示す波長範囲を「透過域」と記載し、フィルターが有意に低い透過性を示す波長範囲を「遮断域」と記載する。有意に高い透過性は例えば90%以上の透過率を意味し、有意に低い透過性は例えば10%以下の透過率を意味する。
 下限がある特定の波長よりも長い波長範囲に透過域を有し、かつ、上限がその特定の波長よりも短い波長範囲に遮断域を有するフィルターをロングパスフィルターと定義する。一方、ある特定の波長範囲に透過域を有し、かつ、その波長範囲を間に挟んだ、より短い波長範囲およびより長い波長範囲の両方に遮断域を有するフィルターをバンドパスフィルターと定義する。フィルター層60は、撮像において意図される波長が透過域に含まれる限りにおいて、バンドパスフィルターであっても、ロングパスフィルターであっても構わない。特定の波長の例は吸収端波長λgである。
 単結晶半導体層20が高い吸収係数を有する波長範囲に遮断域を有するフィルターをフィルター層60に適用してもよい。例えば、ロングパスフィルターの遮断域を規定する波長範囲の上限が、単結晶半導体層20の吸収端波長λgよりも長い波長であり得る。図4Aにはロングパスフィルターのそのような透過率特性が示されている。バンドパスフィルターの透過域を規定する波長範囲の下限が、単結晶半導体層20の吸収端波長λgよりも長い波長であり得る。図4Bにはバンドパスフィルターのそのような透過率特性が示されている。
 図4Aまたは図4Bに示される例において、撮像において意図される波長は1400ナノメートルであり、単結晶半導体層20は単結晶シリコンから形成されている場合を仮定している。単結晶シリコンの吸収端波長λgは1100ナノメートルであるので、単結晶シリコンが高い吸収係数を有する波長範囲はすべてフィルターの遮断域に含まれる。ロングパスフィルターの場合、例えば、透過域は1200ナノメートルから1600ナノメートルまでの波長範囲に設定され、遮断域は350ナノメートルから1100ナノメートルまでの波長範囲に設定され得る。バンドパスフィルターの場合、例えば、透過域は1350ナノメートルから1450ナノメートルまでの波長範囲に設定され、遮断域は350ナノメートルから1600ナノメートルまでの範囲のうちの上記透過域を除く波長範囲に設定され得る。
 単結晶半導体層20が光を吸収すると、それに起因して電荷が発生する恐れがある。この電荷は撮像装置の動作において意図しないものであるため、ノイズ及び誤動作の原因となり得る。したがって、単結晶半導体層20が高い吸収係数を有する波長範囲の全てまたは大部分が遮断域となるようにフィルター層60のフィルター特性を決定すれば、単結晶半導体層20における光吸収を抑制することができ、より多くの光を光電変換層30に到達させることができる。その結果、撮像装置の感度を損なわずに、ノイズ及び誤動作を低減できる。ただし、フィルター層60は必須ではない。
 保護層70は、例えばシリコン酸化膜、または、シリコン窒化膜等の水分、酸素等の透過性の低い透明膜であり得る。保護層70により、デバイス特性の経時変化を抑制する効果が得られる。
 本実施形態によれば、可視光領域よりも長波長側に位置する波長領域、特に近赤外領域での撮像において感度低下を抑制することが可能となる。撮像装置の感度を損なわずに、ノイズ及び誤動作を低減し得る。
 図5は、第1の実施形態の変形例に係る撮像装置100Bの画素Pxのデバイス構造を例示する模式図である。図5において、画素Pxを構成する部分が破線で示されている。撮像装置100Bの画素Pxは、対向電極35と、単結晶半導体層20内に形成された電荷蓄積領域21Aとが配線層を介して電気的に接続されている点で、上述した撮像装置100Aの画素Pxの構成とは異なる。以下、撮像装置100Aとの差異点を主に説明し、共通する説明は省略する。
 光電変換層30において発生した電荷対のうちの、対向電極35に収集された電荷の電荷量が計測される。本変形例において、対向電極35と、単結晶半導体層20内に形成された電荷蓄積領域21Aとが配線11、12を介して電気的に接続されている。例えば、対向電極35側で収集された正電荷は、配線11、12を通って電荷蓄積領域21Aに移動して蓄積される。最終的に、カラム信号処理回路44によって電荷量が計測される。
 光電変換層30に接する、単結晶半導体層20の部分によって規定された、電荷取集領域である領域25は、電荷蓄積領域21Aとは異なる領域である。領域25は外部電源または外部定電位線などに電気的に接続され、領域25において収集された電荷は単結晶半導体層20の外に排出される。光電変換層30は、光電変換層30の領域25と対向電極35とに挟まれている。領域25と電荷蓄積領域21Aとは電気的に分離されていてもよい。例えば、領域25のドーピング不純物の極性が、電荷蓄積領域21Aのドーピング不純物の極性と異なっていてもよいし、2つの領域の間に絶縁領域を設けるようにしてよい。この電気的な分離により、領域25において収集された電荷が電荷蓄積領域21Aに移動することを防止または抑制することが可能となる。本変形例においても、上述した効果と同じものが得られる。
 (第2の実施形態)
 図6は、第2の実施形態に係る撮像装置100Cの画素Pxのデバイス構造を例示する模式図である。図6において、画素Pxを構成する部分が破線で示されている。図7は、本実施形態に係る読み出し回路40Cの構成例を示す回路図である。撮像装置100Cの画素Pxは、単結晶半導体層20とは異なる第2単結晶半導体層である単結晶半導体層80を有し、かつ、その層の内部に形成された電荷蓄積領域21Aを有している点で、第1の実施形態1に係る撮像装置100Aの画素Pxの構成とは異なる。以下、撮像装置100Aとの差異点を主に説明し、共通する説明は省略する。
 光電変換層30において発生した電荷対のうちの、対向電極35に収集された電荷が単結晶半導体層20以外に形成された電荷蓄積領域21Aに蓄積され、計測される。電荷蓄積領域21Aは、例えば、単結晶半導体層20とは異なる別の単結晶半導体層80の内部に形成される。本実施形態において、画素Pxは、絶縁層10を基準として、単結晶半導体層20の反対側に位置する単結晶半導体層80をさらに有する。単結晶半導体層80、絶縁層10、光電変換層30および単結晶半導体層20がこの順番で積層されており、絶縁層10および光電変換層30は、2つの単結晶半導体層20、80に挟まれている。
 図7に示されるように、単結晶半導体層20は、その電圧を制御するバイアス電圧制御回路48と電気的に接続されている。バイアス電圧制御回路48は、定電圧電源、可変電圧電源または接地線等である。その電気的な接続は単結晶半導体層20の上面、側面、下面のいずれかに接触部を設けることで実現され得る。例えば、上面に接触部を設ける方法としてワイヤーボンド等の方法を用いることができる。下面に接触部を設ける方法として、バイアス電圧制御回路48に接続するための配線を絶縁体10の内部に設け、光電変換層30が存在しない部分においてその配線を単結晶半導体層20に接続させてもよい。
 対向電極35は、配線12を介して、単結晶半導体層80の内部に形成された電荷蓄積領域21Aに接続されている。対向電極35は、例えば、光電変換層30において発生する正電荷を収集する。対向電極35に収集された正電荷は、配線12を通って電荷蓄積領域21Aに移動し蓄積される。第1の実施形態と同様に、電荷蓄積領域21Bが、電荷蓄積領域21Aと共に電荷蓄積領域21Aに形成されていてもよいが、必須ではない。
 読み出し回路40Cは単結晶半導体層80内に形成され得る。各トランジスタのチャネル領域、ソース領域およびドレイン領域は単結晶半導体層80において集積化することが可能である。読み出し回路40Cは、リセットトランジスタ41A、転送トランジスタ41B、増幅トランジスタ41Dおよび選択トランジスタ41Eを有する。ただし、転送トランジスタ41Bは必須ではない。読み出し回路40Cは、第1の実施形態に係る読み出し回路40と同様に、電荷蓄積領域21Bに蓄積された電荷をフローティングディフュージョンノードFDに転送する読み出しトランジスタをさらに有し得る。
 フローティングディフュージョンノードFDはリセットトランジスタ41Aを介して電圧を制御するバイアス電圧制御回路49に接続されている。バイアス電圧制御回路49はフローティングディフュージョンノードFDに電気的に接続されたときに、フローティングディフュージョンノードFDの電圧を規定値にする。バイアス電圧制御回路49は、具体的には、定電圧線、定電圧電源等から構成され得る。リセットトランジスタ41Aは、フローティングディフュージョンノードFDとバイアス電圧制御回路49の間の電気的な接続を遮断し、これにより、フローティングディフュージョンノードFDに電荷を蓄積することが可能となる。一方、リセットトランジスタ41Aは、フローティングディフュージョンノードFDをリセットするときに、バイアス電圧制御回路49をフローティングディフュージョンノードFDに電気的に接続し、フローティングディフュージョンノードFDの電圧を規定値にする。なお、リセットトランジスタ41Aおよび転送トランジスタ41Bを共に導通状態にすることで、バイアス電圧制御回路49を用いて対向電極35の電圧を規定値にすることができる。
 図8は、第2の実施形態の変形例に係る撮像装置100Dの画素Pxのデバイス構造を例示する模式図である。絶縁層10は第1部分10Aおよび第2部分10Bを含む。絶縁層10の第1部分10Aと単結晶半導体層80との積層構造、および、絶縁層10の第2部分10Bと、光電変換層30と、単結晶半導体層20との積層構造を個別に作製し、個別に作製した2つの積層構造を貼り合わせることにより、撮像装置100Dが得られる。本変形例によれば、撮像装置の製造工程が簡素化され得る。
 (第3の実施形態)
 図9は、第3の実施形態に係る撮像装置100Eの画素Pxのデバイス構造を例示する模式図である。図9において、画素Pxを構成する部分が破線で示されている。第3の実施形態に係る撮像装置100Eは、主として距離画像を取得するために設計され得る。
 光電変換層30は、単結晶半導体層20内の領域25に直接接するか、または電荷が移動することが可能な層を介して領域25に電気的に繋がっている。光電変換層30内で光電変換により発生した正電荷または負電荷が、光電変換層30から領域25に移動することが可能である。例えば、正電荷が光電変換層30から領域25に移動することを可能とするならば、領域25がp型となるようにドーピングすればよい。一方、負電荷が光電変換層30から領域25に移動することを可能とするならば、領域25がn型となるようにドーピングすればよい。
 図示される例において、電極99が、画素Pxの領域以外の絶縁層10内に配置され、かつ、単結晶半導体層20に接している。電極99は単結晶半導体層20の電位を制御するための電極である。電極99の電位と電極35の電位とによって定まる電圧に応じた内部電界が光電変換層30の内部に発生する。光電変換層30が光を吸収することによって正電荷および負電荷を含む正孔-電子対が発生する。内部電界により、一方が単結晶半導体層20内の領域25に移動し、他方が電極35に移動する。このように、光電変換層30で発生した正電荷および負電荷のうちの、領域25に移動しない電荷は電極35によって収集される。
 本実施形態において、各画素Pxが有する光電変換層30に対し、少なくとも2つ以上の電荷蓄積領域21が単結晶半導体層20内に形成される。図示される例では、2つの電荷蓄積領域21A、21Bが形成されている。電荷蓄積領域21Aおよび21Bの近傍の絶縁層10内に、それぞれ、電極98Aおよび電極98Bが配置される。電荷蓄積領域21Aと電極98Aとは電気的に絶縁されており、電荷蓄積領域21Bと電極98Bとは電気的に絶縁されている。その結果、電荷蓄積領域21Aと電極98Aとの間、および電荷蓄積領域21Bと電極98Bとの間に、それぞれ、直流電流は流れない。ただし、電荷蓄積領域21A、21Bに加えて、1以上のさらなる電荷蓄積領域が単結晶半導体層20内に形成され得る。すなわち、単結晶半導体層20内に形成され得る電荷蓄積領域の数は、2つに限定されず、3つまたは4つ以上であり得る。
 領域25と電荷蓄積領域21Aとの間にチャネル領域90Aが形成され、領域25と電荷蓄積領域21Bとの間にチャネル領域90Bが形成される。チャネル領域90Aの電気伝導度は、電極98Aに印加する電圧によって制御することができる。同様に、チャネル領域90Bの電気伝導度は、電極98Bに印加する電圧によって制御することができる。
 より具体的に説明すると、第1の電圧範囲内の電圧を電極98Aに印加することで、チャネル領域90Aを導通状態にすることができる。その結果、領域25と電荷蓄積領域21Aとの間で電荷の移動が可能になる。また、第1の電圧範囲とは異なる第2の電圧範囲内の電圧を電極98Aに印加することで、チャネル領域90Aを遮断状態にすることができる。その結果、領域25と電荷蓄積領域21Aとの間で電荷の移動を禁止することが可能になる。
 チャネル領域90Aと同様に、第3の電圧範囲内の電圧を電極98Bに印加することで、チャネル領域90Bを導通状態にすることができる。その結果、領域25と電荷蓄積領域21Bとの間で電荷の移動が可能になる。また、第3の電圧範囲とは異なる第4の電圧範囲内の電圧を電極98Bに印加することで、チャネル領域90Bを遮断状態にすることができる。その結果、領域25と電荷蓄積領域21Bとの間で電荷の移動を禁止することが可能になる。第1の電圧範囲は、第3の電圧範囲と同じであってもよいし異なっていてもよい。同様に、第2の電圧範囲は、第4の電圧範囲と同じであってもよいし異なっていてもよい。
 電極98Aに印加する電圧と、電極98Bに印加する電圧とは独立にまたは同期して制御し得る。例えば、第1の電圧範囲内の電圧を電極98Aに印加し、第4の電圧範囲内の電圧を電極98Bに印加すれば、領域25内の電荷は電荷蓄積領域21Aには移動できるが、電荷蓄積領域21Bには移動できない。同様に、第2の電圧範囲内の電圧を電極98Aに印加し、第3の電圧範囲内の電圧を電極98Bに印加すれば、領域25内の電荷は電荷蓄積領域21Bには移動できるが、電荷蓄積領域21Aには移動できない。このように、電極98Aに印加する電圧と、電極98Bに印加する電圧とをそれぞれ適切に時間的に変化させれば、光電変換層30で発生した電荷を発生時刻に応じて電荷蓄積領域21Aと電荷蓄積領域21Bとに振り分けることが可能となる。さらに、例えば、単結晶半導体層20内にさらなる電荷蓄積領域を形成すれば、光電変換層30で発生した電荷を発生時刻に応じて3つの電荷蓄積領域にそれぞれ振り分けることが可能となる。
 上述したとおり、チャネル領域90Aの電気伝導度は、電極98Aに印加する電圧によって制御することが可能となる。これは、領域25、電荷蓄積領域21A、チャネル領域90A、電極98Aが、それぞれ、電界効果トランジスタのソース領域、ドレイン領域、チャネル、ゲート電極として機能することを意味する。同様に、チャネル領域90Bの電気伝導度は、電極98Bに印加する電圧によって制御することが可能となる。これは、領域25、電荷蓄積領域21B、チャネル領域90B、電極98Bが、それぞれ、電界効果トランジスタのソース領域、ドレイン領域、チャネル、ゲート電極として機能することを意味する。
 この電界効果トランジスタの機能は、例えば、領域25、電荷蓄積領域21Aおよび電荷蓄積領域21Bを同一極性にドーピングし、チャネル領域90A、90Bを領域25とは異なる極性にドーピングし、さらに、電極98Aとチャネル領域90Aとの間、および電極98Bとチャネル領域90Bとの間に、それぞれ、薄い絶縁層を形成することによって実現できる。
 電荷蓄積領域21Aおよび/または電荷蓄積領域21Bは、配線11、12を介して定電位線またはグランド線に電気的に接続され得る。この電気的な接続により、電荷蓄積領域に蓄積された電荷を放出してリセットすることができる。
 図10は、本実施形態に係る距離画像取得システム200の構成例を示すブロック図である。図11は、本実施形態に係る距離画像取得システム200の動作原理を説明するための図である。図11において、上述した、第1の電圧範囲、第2の電圧範囲、第3の電圧範囲および第4の電圧範囲が、それぞれ、矢印(I)、(II)、(III)および(IV)で示されている。
 距離画像取得システム200は、光源201、光学系202、203、および撮像装置204を備える。撮像装置204として、例えば、上述した撮像装置100Eを採用することができる。
 光源201は、例えば、駆動電流により制御するレーザーダイオードおよび/または発光ダイオードを備え得る。光源201は、例えば、時間的に強度が変化する光L1、つまりAM変調された光を生成して出射する。
 光学系202は、光源201から出射される、時間的に強度が変化する光L1を整形して被写体Oに照射する機能を有する。この機能は一般の照明光学系と基本的に同等であるので、詳細な説明は省略する。
 光学系203は、光L1で照射された被写体Oからの反射光L2を撮像装置204に結像する機能を有する。これも一般の撮像光学系と基本的に同等であるので、詳細な説明は省略する。
 図11を参照して距離画像取得システム200の動作原理を説明する。
 距離画像取得システム200による画像を取得する原理は、一般のTOF(Time Of Flight)イメージセンサで用いられる原理に等しい。光源201は、周期Tで強度が変化する光L1を生成して出射する。図示される例において、T/2の期間において強度が0であり、残りのT/2の期間において強度が一定である光L1が光源201から出射される。
 光学系202により整形された光L1で被写体Oを照射し、光学系203を用いて被写体Oからの反射光である光L2を撮像装置204に結像させる。これにより、被写体Oの像が撮像装置204の画素アレイ上に形成される。形成された像に対応する被写体Oの部分から反射された光L2が撮像装置204の各画素Pxに入射する。
 各画素Pxに入射する光L2の強度は、光L1と同じ周期Tで変化する。その位相は、光学系202から被写体Oまでの距離と、被写体Oから光学系203までの距離との和に依存して変化する。このように、位相は被写体Oまでの距離情報を含む。撮像装置204の各画素pxが有する電極98Aに印加する印加電圧Aおよび電極98Bに印加する印加電圧Bを、図11に例示されるようにそれぞれ変化させるとする。より詳細には、T/2の期間において第1の電圧範囲(I)内の印加電圧Aを電極98Aに印加し、第4の電圧範囲(IV)内の印加電圧Bを電極98Bに印加する。続いて、T/2の期間において第2の電圧範囲(II)内の印加電圧Aを電極98Aに印加し、第3の電圧範囲(III)内の印加電圧Bを電極98Bに印加する。その場合、期間Tにおいて光電変換層30で発生した電荷が電荷蓄積領域21Aに電荷Aとして収集され、期間Tにおいて光電変換層30で発生した電荷が電荷蓄積領域21Bに電荷Bとして収集される。
 期間Tで発生した電荷Aと期間Tで発生した電荷Bとの比は、各画素Pxにおける光L2の位相に応じて定まる。そのため、電荷蓄積領域21Aに収集された電荷Aの電荷量と、電荷蓄積領域21Bで収集された電荷Bの電荷量とをそれぞれ測定することにより、各画素Pxにおける光L2の位相を決定することができる。その位相に基づいて、光学系202から被写体Oまでの距離と、被写体Oから光学系203までの距離との和を算出することが可能となる。
 本実施形態に係る撮像装置100Eは、距離画像を取得する装置、特に、自動運転車両に搭載される撮像装置として利用できる。また、撮像装置100Eによれば、他の実施形態と同様に、透明電極にITO膜を利用した従来の積層型イメージセンサと比較して、例えば1400ナノメートルの長波長の光に対して高い感度を実現し得る。その結果、近赤外領域においても高い感度を得ることができる。
 (第4の実施形態)
 図12は第4の実施形態に係る撮像装置100Fの画素Pxのデバイス構造を例示する模式図である。図12において画素Pxを構成する部分が破線で示されている。
 第4の実施形態に係る撮像装置100Fは、アバランシェ増幅機構を備える。アバランシェ増幅機構は、後述するように単結晶半導体層20内の例えば2つの領域401、402から構成され得る。
 光電変換層30は、単結晶半導体層20内の領域401に直接接するか、または電荷が移動することが可能な層を介して領域401に電気的に繋がっている。光電変換層30内で光電変換により発生した正電荷または負電荷が、光電変換層30から領域401に移動することが可能である。領域401は単結晶半導体から形成され、p型またはn型の極性を有する。単結晶半導体層20内において領域401は領域402に接している。領域402は、領域401と同様に、単結晶半導体から形成され、p型またはn型の極性を有する。領域402の極性は領域401の極性とは相違する。
 本実施形態では、単結晶半導体層20内において領域403がさらに形成され得る。領域403は領域402には接し、領域401には接していない。領域403は、領域401、402と同様に、単結晶半導体から形成され、p型もしくはn型の極性を有する。領域403の極性は領域402の極性と同じである。ただし、領域403のドーパント濃度は領域402のドーパント濃度よりも高い。
 領域403は、絶縁層10内に形成される電極404に電気的に接続されている。電極35または電極404の少なくとも一方は、例えば、カラム信号処理回路44、電流量測定回路(不図示)または電流発生検出回路(不図示)に電気的に接続され得る。図示されるように、必要に応じて、隣接する2つの画素Pxの間の電気的な絶縁を得るために分離領域またはトレンチ410が配置されてもよい。
 領域401と領域402との間には電圧制御回路(不図示)により、電位差が与えられる。この電位差により発生する内部電界によって、領域401と領域402との境界近傍を通過する電荷は加速され、これにより、アバランシェ増幅を発生させることができる。すなわち、領域401および領域402はアバランシェ増幅機構として機能し得る。
 このアバランシェ増幅は、光電変換層30で発生する電荷に起因して生じ得る。そのため、光電変換層30で発生した電荷を増幅することができる。その結果、例えば、夜間などの暗所における微弱光の撮像を行うことが可能となる。また、アバランシェ増幅機構をいわゆるガイガーモードで動作させてもよい。つまり、通常は、電流状態を、電流が流れないオフ状態とすることができる。光電変換層30で発生した電荷がアバランシェ増幅機構に到達すると、電流状態を、オフ状態から電流が流れるオン状態に遷移させることができる。この電流発生時刻を電流発生検出回路で検出すれば、いわゆる直接TOFセンサーとして撮像装置100Fを動作させることが可能となる。
 本開示の撮像装置は、近赤外領域においても高い感度を得ることができために、その領域における撮像を必要とする、マシンビジョン、自動運転等の屋外監視、または医療などの用途に利用すること可能である。
10   :絶縁層
11、12   :配線
20   :単結晶半導体層(第1単結晶半導体層)
21A、21B  :電荷蓄積領域
30   :光電変換層
35   :対向電極
40、40C   :読み出し回路
41A  :リセットトランジスタ
41B  :転送トランジスタ
41C  :読み出しトランジスタ
41D  :増幅トランジスタ
41E  :選択トランジスタ
43   :バイアス電圧制御機構
43A  :バイアス電圧制御回路
43B  :バイアス電圧制御回路
44   :カラム信号処理回路
50   :オンチップレンズ
60   :フィルター層
70   :保護層
80   :単結晶半導体層(第2単結晶半導体層)
100A、100B、100C、100D、100E、100F、204  :撮像装置
200   :距離画像取得システム
201   :光源
202、203   :光学系

Claims (17)

  1.  複数の画素を備え、
     前記複数の画素のそれぞれは、
      光を透過する第1単結晶半導体層と、
      第1電極と、
      前記第1単結晶半導体層に接しており、前記第1単結晶半導体層と前記第1電極との間に位置する、前記光を吸収する光電変換層と、
    を含む、撮像装置。
  2.  前記第1単結晶半導体層および前記第1電極からなる群から選択される少なくとも1つに電気的に接続された、前記光電変換層にバイアス電圧を印加するバイアス電圧制御回路をさらに備える、
     請求項1に記載の撮像装置。
  3.  前記複数の画素のそれぞれは、前記第1単結晶半導体層内に位置し、前記光電変換層で生成される電荷を蓄積する電荷蓄領域を含む、
     請求項1または2に記載の撮像装置。
  4.  前記複数の画素のそれぞれは、前記第1単結晶半導体層内に位置し、前記電荷蓄領域に蓄積される前記電荷を読み出す読み出し回路を含む、
     請求項3に記載の撮像装置。
  5.  前記複数の画素のそれぞれは、
      第2単結晶半導体層と、
      前記第1単結晶半導体層内に位置し、前記光電変換層で生成される電荷を蓄積する電荷蓄領域と、を含み、
     前記第1電極は、前記第1単結晶半導体層と前記第2単結晶半導体層との間に位置する、
     請求項1または2に記載の撮像装置。
  6.  前記複数の画素のそれぞれは、前記第2単結晶半導体層内に位置し、前記電荷蓄領域に蓄積される前記電荷を読み出す読み出し回路を含む、
     請求項5に記載の撮像装置。
  7.  前記複数の画素のそれぞれは、
      オンチップレンズと、
      前記オンチップレンズと前記第1単結晶半導体層との間に位置し、特定の波長範囲の光を選択的に透過するフィルター層と、
    を含む、
     請求項1から6のいずれかに記載の撮像装置。
  8.  前記フィルター層は、前記特定の波長範囲に透過域を有し、前記特定の波長範囲よりも短い波長範囲に遮断域を有するフィルター特性を有する、
     請求項7に記載の撮像装置。
  9.  前記フィルター層は、前記特定の波長範囲に透過域を有し、前記特定の波長範囲よりも短い波長範囲に第1の遮断域を有し、前記特定の波長範囲よりも長い波長範囲に第2の遮断域を有するフィルター特性を有する、
     請求項7に記載の撮像装置。
  10.  前記フィルター層は、前記第1単結晶半導体層が高い吸収係数を有する波長範囲に遮断域を有するフィルター特性を有する、
     請求項7に記載の撮像装置。
  11.  前記第1単結晶半導体層はシリコンから形成されており、
     前記光電変換層は1100ナノメートル以上の波長を有する光を吸収する、
     請求項1から10のいずれかに記載の撮像装置。
  12.  前記光電変換層は、有機半導体、半導体型カーボンナノチューブおよび半導体量子ドットからなる群から選択される材料から形成されている、
     請求項1から11のいずれかに記載の撮像装置。
  13.  前記複数の画素のそれぞれは、
      前記第1単結晶半導体層内に位置し、前記光電変換層で生成される電荷を収集する電荷収集領域と、
      前記第1単結晶半導体層内に位置し、前記電荷収集領域とは異なり、前記電荷を蓄積する第1電荷蓄積領域と、
      前記第1単結晶半導体層内に位置し、前記電荷収集領域とは異なり、前記電荷を蓄積する第2電荷蓄積領域と、
      前記第1電荷蓄積領域から電気的に絶縁された第2電極と、
      前記第2電荷蓄積領域から電気的に絶縁された第3電極と、
      前記電荷収集領域と前記第1電荷蓄積領域との間に位置する第1チャネル領域と、
      前記電荷収集領域と前記第2電荷蓄積領域との間に位置する第2チャネル領域と、
    を含む、
     請求項1または2に記載の撮像装置。
  14.  前記第2電極に印加する電圧を制御することによって、前記電荷収集領域から前記第1電荷蓄積領域への前記第1チャネル領域における前記電荷の移動が制御され、
     前記第3電極に印加する電圧を制御することによって、前記電荷収集領域から前記第2電荷蓄積領域への前記第2チャネル領域における前記電荷の移動が制御される、
     請求項13に記載の撮像装置。
  15.  アバランシェ増幅を発生させることが可能なアバランシェ増幅機構をさらに備える、
     請求項1または2に記載の撮像装置。
  16.  前記アバランシェ増幅機構は、
      前記第1単結晶半導体層内に位置し、前記光電変換層で生成される電荷を収集する第1領域と、
      前記第1単結晶半導体層内に位置し、前記第1領域に接する第2領域と、を含み、
     前記第1領域の極性は前記第2領域の極性とは異なる、
     請求項15に記載の撮像装置。
  17.  前記アバランシェ増幅機構は、前記第1単結晶半導体層内に位置し、前記第2領域に接する第3領域をさらに含み、
     前記第3領域の極性は前記第2領域の極性と同じであり、
     前記第3領域のドーパント濃度は前記第2領域のドーパント濃度よりも高い、
     請求項16に記載の撮像装置。
PCT/JP2020/040008 2019-11-15 2020-10-23 撮像装置 WO2021095494A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021555981A JPWO2021095494A1 (ja) 2019-11-15 2020-10-23
US17/722,452 US20220238576A1 (en) 2019-11-15 2022-04-18 Imaging device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019207226 2019-11-15
JP2019-207226 2019-11-15
JP2020-172685 2020-10-13
JP2020172685 2020-10-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/722,452 Continuation US20220238576A1 (en) 2019-11-15 2022-04-18 Imaging device

Publications (1)

Publication Number Publication Date
WO2021095494A1 true WO2021095494A1 (ja) 2021-05-20

Family

ID=75911982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040008 WO2021095494A1 (ja) 2019-11-15 2020-10-23 撮像装置

Country Status (3)

Country Link
US (1) US20220238576A1 (ja)
JP (1) JPWO2021095494A1 (ja)
WO (1) WO2021095494A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012004443A (ja) * 2010-06-18 2012-01-05 Sony Corp 固体撮像装置、電子機器
WO2017217240A1 (ja) * 2016-06-15 2017-12-21 ソニー株式会社 撮影装置、撮影方法、プログラム
JP2019009427A (ja) * 2017-06-23 2019-01-17 パナソニックIpマネジメント株式会社 光検出素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012004443A (ja) * 2010-06-18 2012-01-05 Sony Corp 固体撮像装置、電子機器
WO2017217240A1 (ja) * 2016-06-15 2017-12-21 ソニー株式会社 撮影装置、撮影方法、プログラム
JP2019009427A (ja) * 2017-06-23 2019-01-17 パナソニックIpマネジメント株式会社 光検出素子

Also Published As

Publication number Publication date
US20220238576A1 (en) 2022-07-28
JPWO2021095494A1 (ja) 2021-05-20

Similar Documents

Publication Publication Date Title
Xu et al. Photodetectors based on solution-processable semiconductors: Recent advances and perspectives
JP6509782B2 (ja) 画像センサ、前記画像センサを備える光電子システム、および前記画像センサを製造するための方法
JP6161018B2 (ja) 撮像装置
CN109997239B (zh) 光电转换元件和固态成像装置
JP7249548B2 (ja) 撮像装置
Ghosh et al. Recent advances in perovskite/2D materials based hybrid photodetectors
CN112823420B (zh) 基于胶体量子点的成像装置
US20210202558A1 (en) Light sensor and light detection system
JP7262011B2 (ja) 撮像装置及び撮像システム
WO2021095494A1 (ja) 撮像装置
JP2023164523A (ja) 撮像装置
WO2021200027A1 (ja) 撮像装置
CN114586182B (zh) 光电转换元件、电子设备及发光装置
WO2021176876A1 (ja) イメージセンサ及び撮像システム
JPWO2020170703A1 (ja) 撮像装置およびその駆動方法
WO2020080072A1 (ja) 光電変換素子およびイメージセンサ
WO2023157531A1 (ja) 光電変換素子および撮像装置
US11777050B2 (en) Optical sensor
JP7363935B2 (ja) 光電変換素子および固体撮像装置
CN117321781A (zh) 光电转换元件和摄像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887014

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021555981

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20887014

Country of ref document: EP

Kind code of ref document: A1