WO2021093572A1 - 一种高粘结性的水性pvdf浆料和制备方法及其应用 - Google Patents

一种高粘结性的水性pvdf浆料和制备方法及其应用 Download PDF

Info

Publication number
WO2021093572A1
WO2021093572A1 PCT/CN2020/123945 CN2020123945W WO2021093572A1 WO 2021093572 A1 WO2021093572 A1 WO 2021093572A1 CN 2020123945 W CN2020123945 W CN 2020123945W WO 2021093572 A1 WO2021093572 A1 WO 2021093572A1
Authority
WO
WIPO (PCT)
Prior art keywords
pvdf
silicon carbide
aqueous
slurry
water
Prior art date
Application number
PCT/CN2020/123945
Other languages
English (en)
French (fr)
Inventor
王成豪
李正林
贡晶晶
张立斌
尚文滨
Original Assignee
江苏厚生新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏厚生新能源科技有限公司 filed Critical 江苏厚生新能源科技有限公司
Priority to KR1020217037937A priority Critical patent/KR102421795B1/ko
Publication of WO2021093572A1 publication Critical patent/WO2021093572A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2237Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/14Carbides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of lithium ion battery diaphragm production, in particular to a high-cohesive aqueous PVDF slurry and a preparation method and application thereof.
  • the diaphragm is an indispensable key material for the electrode. Although it does not participate in the electrochemical reaction in the battery, the battery’s capacity, cycle performance and charge-discharge current density and other key properties are directly related to the diaphragm. The improvement of the diaphragm’s performance will improve The overall performance of lithium batteries plays an important role.
  • the diaphragm mainly plays the role of connecting the electrode active material, the conductive agent and the electrode current collector to maintain the integrity of the electrode structure. In lithium batteries, the diaphragm can isolate the positive and negative electrodes after absorbing the electrolyte to prevent short circuits, but at the same time Allow the conduction of lithium ions. When overcharged or the temperature rises, the diaphragm should also have high temperature self-closing performance to block current conduction and prevent explosion.
  • PVDF polyvinylidene fluoride
  • the adhesive ability of the glued diaphragm to the electrode current collector has a great relationship with the coating amount of PVDF.
  • the diaphragm The increase in air permeability increases the risk of blocking the diaphragm, which increases the internal resistance of the lithium battery, reduces the magnification, and decreases the cycle performance. Therefore, a thinner coating and better adhesion of PVDF is required. Slurry.
  • Chinese Patent No. CN201811140887.9 discloses a method for preparing a ceramic-coated separator for lithium ion batteries.
  • the ceramic-coated separator includes a polymer porous base film, a polymer glue coated on one or both sides of the base film surface, The ceramic coating applied on the surface of the polymer glue liquid and the PVDF and its copolymer glue liquid coated on the surface of the ceramic coating and the other side of the base film surface.
  • the multi-layer design increases the adhesion between the ceramic coating and the polymer porous base film.
  • Another Chinese patent number CN201810623817.2 discloses a separator and a preparation method thereof and a lithium-sulfur battery.
  • the separator includes a substrate separator, and water-based adhesive layers are formed on both sides of the substrate separator; on one side of the substrate separator A water-based thermal conductive material layer is formed on the water-based glue layer on the surface.
  • the negative electrode of the lithium-sulfur battery is opposite to the water-based thermal conductive material layer, and the positive electrode is opposite to the water-based glue layer.
  • the slurries are all water-based slurries, which are conducive to the formation of bonding force between the positive electrode and the separator, making the battery core better shaped, and also helping to alleviate the dissolution and diffusion of polysulfide ions.
  • the thickness of the separator coating is virtually increased, and the porosity of the coating is inconsistent, which increases the tortuosity of the pore diameter of the composite separator, which leads to an increase in the internal resistance of the lithium battery.
  • the electrochemical performance is reduced, and the bonding performance between the composite diaphragm and the battery positive electrode sheet and the negative electrode sheet is poor, and the battery performance cannot reach the desired effect.
  • the purpose of the present invention is to provide a highly adhesive water-based PVDF slurry and a preparation method and application thereof.
  • a highly cohesive water-based PVDF slurry including the following raw materials by weight percentage: 3 to 7% dispersant, 1 to 5% wetting agent, 5 to 10% co-binder, 0.5 to 3% defoamer , 0.1 to 3% anti-settling agent, 15 to 25% PVDF and 0.05 to 2.5% silicon carbide, the balance is water, the added amount of silicon carbide and the added amount of PVDF is 1:10 to 300 by mass ratio.
  • the chemical properties of silicon carbide (SiC) ceramics are stable, the thermal conductivity is as high as 490W/mK, the thermal expansion coefficient is small, and the dielectric constant is high.
  • SiC is dispersed in the aqueous PVDF slurry, and a large number of heat conduction paths are generated inside the PVDF, forming a large number of microcapacitor structures. Therefore, the diaphragm coated with the aqueous PVDF slurry of the present invention is in the process of thermocompression polymerization and bonding.
  • the high thermal conductivity of SiC can quickly transfer external heat to the inside of the PVDF slurry, speed up the bonding of the PVDF slurry, thereby improving the bonding performance of the water-based PVDF slurry, and reduce the powder falling, peeling, and shedding of the water-based PVDF slurry And other abnormal phenomena.
  • the chlorine atom in PVDF is a strong electron withdrawing group, and on the surface of SiC, the surface of the silicon atom hybridized by sp3 carries a large amount of positive charge. The chlorine atom will adsorb the silicon atom through electrostatic action, resulting in uniform SiC ceramic particles Disperse in the PVDF long chain structure to form more microcapacitor structures.
  • the added amount of the silicon carbide and the added amount of PVDF is 1:20-100 in terms of mass ratio.
  • the proper amount of addition can ensure good bonding performance and electrochemical performance; if the addition amount of silicon carbide is too low, an effective amount of microcapacitor structure cannot be formed, and the improvement of bonding performance is limited; but if the addition amount of silicon carbide Too high, although part of the silicon carbide ceramic particles can be evenly dispersed in the PVDF, it will cause a lot of silicon carbide ceramic particles to have poor bonding with PVDF, and some of the silicon carbide ceramic particles are almost completely exposed outside the PVDF, and agglomerated particles It will also increase, resulting in more pores in the diaphragm, reducing electrochemical performance.
  • the dispersant is an alkali metal phosphate.
  • the alkali metal phosphates are one or more of sodium tripolyphosphate, sodium hexametaphosphate and sodium pyrophosphate.
  • Alkali metal phosphates dissociate in the water to produce positively charged ions, which are dispersed around the silicon carbide, so that the surface of the SiC ceramic particles has a strong positive charge, and generates a strong charge repulsion between each other to limit agglomeration and promote dispersion Therefore, the SiC ceramic particles can be stably dispersed in the aqueous PVDF slurry, forming a denser network in a limited volume, and the enhancement of positive charge also helps the SiC ceramic particles to be uniformly dispersed in the PVDF long-chain structure, making the lamellae
  • the indirect overlap is more obvious, forming more heat conduction paths that are conducive to heat transfer, and enhancing the thermal compression bonding performance.
  • the wetting agent is a mixture of one or more of anionic surfactants and nonionic surfactants.
  • the anionic surfactant is sodium alkyl aryl sulfonate, sodium butyl naphthalene sulfonate, sodium isethionate or sodium dodecyl sulfonate;
  • the non-ionic surfactant is long-chain fat Alcohol polyoxyethylene ether, alkylphenol polyoxyethylene ether, polyoxyethylene alkyl alcohol amide or fatty alcohol polyoxyethylene ether.
  • Adding a wetting agent can increase the interfacial tension of the SiC ceramic particles, improve the hydrophilicity of the water-based PVDF slurry and the wettability with the PVDF membrane, making it easier for the water-based PVDF slurry to be coated on the membrane and improve the coating layer The thickness uniformity.
  • auxiliary adhesive is an acrylic adhesive.
  • the defoamer is a higher alcohol fatty acid ester complex, polyoxyethylene polyoxypropylene pentaerythritol ether, polyoxyethylene polyoxypropanol amine ether, polyoxypropylene glycerol ether, polyoxypropylene polyoxyethylene glycerol One of ether and polydimethylsiloxane.
  • the above technical solution is adopted: adding a defoaming agent to reduce the amount of foam in the slurry, improving the coating quality of the coated membrane, and using a defoaming agent to reduce the wetting effect of the wetting agent, resulting in some areas of the aqueous PVDF slurry failing to interact with the membrane
  • the surface is wetted and dried to form a non-full coverage coating, thereby improving the permeability of the separator and improving battery performance.
  • the anti-settling agent is one of urea-modified polyamide and polyamide wax.
  • the addition of anti-settling agent can prevent the SiC ceramic particles from settling too quickly when they are stored in a static state.
  • the preparation method of the above-mentioned aqueous PVDF slurry includes the following steps:
  • the lithium battery separator includes a PVDF separator and the aqueous PVDF slurry coated on one or both sides of the PVDF separator.
  • aqueous PVDF slurry is applied to the lithium battery separator by means of roll coating, spray coating or dot coating.
  • the diaphragm coating is dried under the condition of 50-80 degrees Celsius.
  • the surface of the SiC ceramic particles has a strong positive charge, which generates a strong charge repulsion between each other, and promotes the stable dispersion of the SiC ceramic particles in the aqueous PVDF slurry.
  • a denser network is formed inside, and the enhancement of positive charge also helps the SiC ceramic particles to be evenly dispersed in the PVDF long-chain structure, making the overlap between the layers more obvious, forming more heat conduction paths that are conducive to heat transfer, and enhancing heat compression Bonding performance.
  • the present invention uses the interaction between dispersant, wetting agent, co-binder, defoamer, anti-settling agent, and silicon carbide without using N-methylpyrrolidone (NMP) as a solvent, reducing the battery
  • NMP N-methylpyrrolidone
  • a highly cohesive water-based PVDF slurry including the following raw materials by weight percentage: 3 to 7% dispersant, 1 to 5% wetting agent, 5 to 10% co-binder, 0.5 to 3% defoamer , 0.1 to 3% anti-settling agent, 15 to 25% PVDF and 0.05 to 2.5% silicon carbide, the balance is water, the added amount of silicon carbide and the added amount of PVDF is 1:10 to 300 by mass ratio.
  • the alkali metal phosphates are one or more of sodium tripolyphosphate, sodium hexametaphosphate and sodium pyrophosphate; the wetting agent is one of anionic surfactants and nonionic surfactants. One or more mixtures.
  • the anionic surfactant is sodium alkyl aryl sulfonate, sodium butyl naphthalene sulfonate, sodium isethionate or sodium dodecyl sulfonate;
  • the non-ionic surfactant is long-chain fat Alcohol polyoxyethylene ether, alkylphenol polyoxyethylene ether, polyoxyethylene alkyl alcohol amide or fatty alcohol polyoxyethylene ether;
  • the co-binder is an acrylic type binder;
  • the defoamer is high carbon Alcohol fatty acid ester compound, polyoxyethylene polyoxypropylene pentaerythritol ether, polyoxyethylene polyoxypropanol amine ether, polyoxypropylene glycerol ether, polyoxypropylene polyoxyethylene glycerol ether and polydimethylsiloxane
  • the anti-settling agent is one of urea-modified polyamide and polyamide wax.
  • the inventors have found through a lot of research that when the types of the wetting agent, defoamer and anti-settling agent are selected within the scope of the claims of the present invention, the adhesion performance of the aqueous PVDF slurry is Has little effect.
  • the preparation method of the above-mentioned aqueous PVDF slurry includes the following steps:
  • a high-cohesive water-based PVDF slurry including the following raw materials by weight percentage: 7% sodium tripolyphosphate, 5% sodium alkyl aryl sulfonate, 5% acrylic type binder, 3% higher alcohol fat
  • a high-cohesive water-based PVDF slurry including the following raw materials in weight percentage: 6% sodium hexametaphosphate, 4% sodium butyl naphthalene sulfonate, 6% acrylic type binder, 2% polyoxyethylene polyoxyethylene Propylene pentaerythritol ether, 0.5% polyamide wax, 20% PVDF and 0.2% silicon carbide, the balance being water, the added amount of the silicon carbide and the added amount of PVDF is 1:100 in terms of mass ratio.
  • a highly cohesive water-based PVDF slurry including the following raw materials by weight percentage: 5% sodium tripolyphosphate, 3% long-chain fatty alcohol polyoxyethylene ether, 7% acrylic type binder, 1.5% polyoxypropylene Glyceryl ether, 1% urea-modified polyamide, 20% PVDF and 0.5% silicon carbide, the balance being water, the added amount of the silicon carbide and the added amount of PVDF is 1:40 by mass ratio.
  • a high-cohesive water-based PVDF slurry including the following raw materials by weight percentage: 4% sodium pyrophosphate, 2% alkylphenol polyoxyethylene ether, 10% acrylic type binder, 1% polyoxypropylene polyoxyethylene Vinyl glycerol ether, 2% urea-modified polyamide, 20% PVDF and 1% silicon carbide, the balance being water, the addition amount of the silicon carbide and the addition amount of PVDF is 1:20 by mass ratio.
  • a high-cohesive water-based PVDF slurry including the following raw materials by weight percentage: 3% sodium pyrophosphate, 1% polyoxyethylene alkyl alcohol amide, 10% acrylic type adhesive, 0.5% polydimethyl silicon Oxyane, 3% urea modified polyamide, 25% PVDF and 2.5% silicon carbide, the balance being water, the added amount of the silicon carbide and the added amount of PVDF is 1:10 by mass ratio.
  • Comparative Example 1 is basically the same as Example 3, with the difference that: the raw materials of the aqueous PVDF slurry do not include silicon carbide, that is, an aqueous PVDF slurry including the following raw materials in weight percentage: 5% sodium tripolyphosphate, 3% Long-chain fatty alcohol polyoxyethylene ether, 7% acrylic type binder, 1.5% polyoxypropylene glycerol ether, 1% urea modified polyamide, 20% PVDF, and the balance is water.
  • the raw materials of the aqueous PVDF slurry do not include silicon carbide, that is, an aqueous PVDF slurry including the following raw materials in weight percentage: 5% sodium tripolyphosphate, 3% Long-chain fatty alcohol polyoxyethylene ether, 7% acrylic type binder, 1.5% polyoxypropylene glycerol ether, 1% urea modified polyamide, 20% PVDF, and the balance is water.
  • Comparative Example 2 is basically the same as Example 3, the difference is that: the aqueous PVDF slurry includes 5% sodium tripolyphosphate, 3% long-chain fatty alcohol polyoxyethylene ether, 7% acrylic type binder, 1.5% polyoxypropylene Glyceryl ether, 1% urea-modified polyamide, 20% PVDF and 0.05% silicon carbide, the balance being water, the added amount of the silicon carbide and the added amount of PVDF is 1:400 by mass.
  • Comparative Example 3 is basically the same as Example 3, the difference is: the aqueous PVDF slurry includes 5% sodium tripolyphosphate, 3% long-chain fatty alcohol polyoxyethylene ether, 7% acrylic type binder, 1.5% polyoxypropylene Glyceryl ether, 1% urea-modified polyamide, 20% PVDF and 4% silicon carbide, the balance being water, the added amount of silicon carbide and the added amount of PVDF is 1:5 by mass ratio.
  • Comparative Example 4 is basically the same as Example 3, with the difference that the raw material silicon carbide of the aqueous PVDF slurry is replaced with the same mass of silica, that is, the amount of silica added to that of PVDF is calculated by mass ratio It is 1:40.
  • the aqueous PVDF slurries obtained in Examples 1 to 5 and Comparative Examples 1 to 4 were applied to the PVDF separator of a lithium battery by roller coating, spraying or spot coating, and then the separator was dried at 50-80 degrees Celsius.
  • the thickness of the membrane after drying is about 3 ⁇ m; then the adhesive force of the membrane is measured by the adhesive force tester.
  • the measurement method refers to the 180° peel strength test method of GB/T2792-1998 pressure-sensitive adhesive tape; the specific method is: The pole piece is cut into 12mm wide and 20mm long sample strips and fixed on the aluminum plate. Stick the 3M transparent tape on the sample strip, pull down the tape at 180° with a universal tensile machine, and record the peel strength. The peeling speed is 5mm/min.
  • the specific measurement results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明属于锂离子电池隔膜生产技术领域,具体涉及一种高粘结性的水性PVDF浆料和制备方法及其应用,具体包括以下重量百分比的原料:3~7%分散剂、1~5%润湿剂、5~10%助粘结剂、0.5~3%消泡剂、0.1~3%防沉剂、15~25%PVDF和0.05~2.5%碳化硅,余量为水,所述碳化硅的添加量与PVDF的添加量按质量比计为1:10~300。通过将SiC均匀分散在PVDF长链中,形成大量的微电容结构,借助SiC高的热传导能力和桥联作用,可以将外界热量快速传递至PVDF浆料内部中,加快PVDF浆料的粘结,进而提高水性PVDF浆料的粘结性能,得到一种涂层较薄、又有较好粘接力的水性PVDF浆料。

Description

一种高粘结性的水性PVDF浆料和制备方法及其应用 技术领域
本发明涉及锂离子电池隔膜生产技术领域,具体涉及一种高粘结性的水性PVDF浆料和制备方法及其应用。
背景技术
隔膜是电极必不可少的关键材料,尽管并不参与电池中的电化学反应,但电池的容量、循环性能和充放电电流密度等关键性能都与隔膜有着直接的关系,隔膜性能的改善对提高锂电池的综合性能起着重要作用。隔膜主要起到了连接电极活性物质、导电剂和电极集流体的作用,保持电极结构的完整性,在锂电池中,隔膜吸收电解液后,可隔离正、负极,以防止短路,但同时还要允许锂离子的传导。而在过度充电或者温度升高时,隔膜还要有高温自闭性能,以阻隔电流传导防止***。
目前,锂离子电池工业最常用的粘结剂是聚偏氟乙烯(PVDF),其具有抗氧化还原能力强,热稳定性好,易于分散等优点。但涂胶的隔膜对电极集流体的粘接能力与PVDF的涂覆量有很大的关系,涂覆量越高,粘接性越好,但是隔膜随着PVDF的涂覆量的增加,隔膜透气值增量较大,增加了隔膜的堵孔的风险,使锂电池的内阻增高,倍率降低,循环性能下降,因此需要一种较薄的涂层、又有较好粘接力的PVDF浆料。
中国专利号CN201811140887.9公开了一种锂离子电池用陶瓷涂覆隔膜的制备方法,陶瓷涂覆隔膜包括聚合物多孔基膜、涂覆于基膜表面一侧或者两侧的聚合物胶液、涂覆于聚合物胶液表面的陶瓷涂层和涂覆于陶瓷涂层表面与基膜表面另一侧的PVDF及其共聚物胶液。通过多层设计增大陶瓷涂层与聚合物多孔基膜的粘结力。另有中国专利号CN201810623817.2公开了一种隔膜及其制备方法和锂硫电池,隔膜包括基材隔膜,基材隔膜的两侧表面上形成有水系胶层;在所述基材隔膜一侧表面的水系胶层上形成有水系导热材料层。锂硫电池的负极与水系导热材料层相对,正极与水系胶层相对。浆料均为水系浆料,有利于正极和隔膜之间产生粘结力,使电芯更好成型,也有利于缓解多硫离子的溶解扩散。但以上两种隔膜在涂 覆多层结构的过程中,无形中增加了隔膜涂层的厚度,且涂层的孔隙率不一致,使复合隔膜的孔径曲折度增加,导致锂电池的内阻增高,电化学性能降低,且复合隔膜与电池正极片和负极片之间的粘结性能较差,电池性能达不到理想的效果。
发明内容
针对现有技术所存在的上述缺点,本发明目的在于提供一种高粘结性的水性PVDF浆料和制备方法及其应用。
一种高粘结性的水性PVDF浆料,包括以下重量百分比的原料:3~7%分散剂、1~5%润湿剂、5~10%助粘结剂、0.5~3%消泡剂、0.1~3%防沉剂、15~25%PVDF和0.05~2.5%碳化硅,余量为水,所述碳化硅的添加量与PVDF的添加量按质量比计为1:10~300。
采用上述的技术方案:碳化硅(SiC)陶瓷化学性能稳定,导热系数高达490W/mK,且热膨胀系数小,介电常数高。SiC分散在水性PVDF浆料中,在PVDF内部产生了大量的导热通路,形成了大量的微电容结构,因此,涂有本发明的水性PVDF浆料的隔膜在热压聚合粘结过程中,由于SiC高的热传导能力,可以将外界热量快速传递至PVDF浆料内部中,加快PVDF浆料的粘结,进而提高水性PVDF浆料的粘结性能,降低水性PVDF浆料的掉粉、剥离、脱落等异常现象。其次,PVDF中的氯原子是强的吸电子基团,而在SiC表面,通过sp3杂化的硅原子表面带有大量的正电荷,氯原子会通过静电作用吸附硅原子,致使SiC陶瓷微粒均匀分散在PVDF长链结构中,形成更多微电容结构,另一方面,PVDF和SiC这种紧密的相互作用起到桥联作用,有助于热量更快的传导至PVDF长链内,加强热传导效率,且SiC的添加不会增加膜层厚度,即使涂覆的PVDF浆料的膜层较薄,也依然具有良好的粘结性能。
进一步的,所述碳化硅的添加量与PVDF的添加量按质量比计为1:20~100。合适的添加量可以保证良好的粘结性能和电化学性能;若碳化硅的添加量过低,无法形成有效数量的微电容结构,对粘结性能的提升作用有限;但若碳化硅的添加量过高,虽然部分碳化硅陶瓷微粒能够均匀地分散在PVDF中,但是会导致多的碳化硅陶瓷微粒和PVDF的结合性较差,部分碳化硅陶瓷微粒几乎完全裸露在PVDF外,且团聚的微粒也将变多,致使隔膜内有较多 气孔存在,降低电化学性能。
进一步的,包括以下重量百分比的原料:5%分散剂、3%润湿剂、7%助粘结剂、1.5%消泡剂、1%防沉剂、20%PVDF和0.5%碳化硅,余量为水,所述碳化硅的添加量与PVDF的添加量按质量比计为1:40。
进一步的,所述分散剂为碱金属磷酸盐类。
进一步的,所述碱金属磷酸盐类为三聚磷酸钠、六偏磷酸钠和焦磷酸钠中的一种或多种。直接将SiC陶瓷微粒添加到水性PVDF浆料中,由于SiC陶瓷微粒比表面积大和多相的不兼容性易使得SiC陶瓷微粒发生团聚在浆料内部引入气孔,使得隔膜得损耗增高,耐压强度降低;碱金属磷酸盐类在水中解离产生带正电荷的离子,分散在碳化硅周围,使SiC陶瓷微粒表面带有强的正电荷,彼此之间产生较强的电荷排斥而限制团聚、促进分散,因此SiC陶瓷微粒能稳定的分散在水性PVDF浆料中,在有限的体积内形成更致密网络,且正电荷的增强也有助于SiC陶瓷微粒均匀分散在PVDF长链结构中,使得片层之间搭接更明显,形成更多有利于热量传递的导热通路,增强热压粘结性能。
进一步的,所述润湿剂为阴离子型表面活性剂和非离子型表面活性剂中的一种或多种的混合物。所述阴离子型表面活性剂为烷基芳基磺酸钠、丁基萘磺酸钠、羟乙基磺酸钠或十二烷基磺酸钠;所述非离子型表面活性剂为长链脂肪醇聚氧乙烯醚、烷基酚聚氧乙烯醚、聚氧乙烯烷基醇酰胺或脂肪醇聚氧乙烯醚。添加润湿剂可以增大SiC陶瓷微粒的界面张力,提高水性PVDF浆料的亲水性和与PVDF隔膜之间的润湿性,更易于水性PVDF浆料涂覆在隔膜上,提高涂覆层的厚度均匀性。
进一步的,所述助粘结剂为丙烯酸型粘结剂。
进一步的,所述消泡剂为高碳醇脂肪酸酯复合物、聚氧乙烯聚氧丙烯季戊四醇醚、聚氧乙烯聚氧丙醇胺醚、聚氧丙烯甘油醚、聚氧丙烯聚氧乙烯甘油醚和聚二甲基硅氧烷中的一种。
采用上述的技术方案:添加消泡剂减少浆料中泡沫数量,提高涂覆隔膜的涂覆质量,且利用消泡剂降低润湿剂的润湿效果,导致部分区域水性PVDF浆料无法与隔膜表面润湿,干燥后形成非全覆盖式涂层,从而改善隔膜的透气性,提高电池性能。
进一步的,所述防沉剂为脲改性聚酰胺、聚酰胺蜡中的一种。添加防沉剂可以防止SiC陶瓷微粒静置存放时过快沉降。
上述水性PVDF浆料的制备方法,包括以下步骤:
S1、将碳化硅、分散剂加入水中,超声分散,得到悬浊液A;
S2、将PVDF、防沉剂、消泡剂加入悬浊液A中,常温下搅拌,搅拌速率为100-200r/min,搅拌时间为30-40min,得到混合液B;
S3、将助粘结剂和润湿剂加入混合液B中,常温下搅拌,得到高粘结性的水性PVDF浆料。
上述水性PVDF浆料在制备锂电池隔膜中的应用,所述锂电池隔膜包括PVDF隔膜和涂覆于所述PVDF隔膜一侧或两侧的所述水性PVDF浆料。
进一步的,所述水性PVDF浆料通过辊涂、喷涂或者点涂的方式涂覆到锂电池隔膜上。
进一步的,所述涂覆后在50-80摄氏度条件下对隔膜涂层进行烘干。
采用本发明提供的技术方案,具有如下有益效果:
1、通过将SiC均匀分散在PVDF长链中,形成大量的微电容结构,借助SiC高的热传导能力和桥联作用,可以将外界热量快速传递至PVDF浆料内部中,加快PVDF浆料的粘结,进而提高水性PVDF浆料的粘结性能,得到一种涂层较薄、又有较好粘接力的水性PVDF浆料。
2、通过碱金属磷酸盐类解离使SiC陶瓷微粒表面带有强的正电荷,彼此之间产生较强的电荷排斥,促进SiC陶瓷微粒稳定的分散在水性PVDF浆料中,在有限的体积内形成更致密网络,且正电荷的增强也有助于SiC陶瓷微粒均匀分散在PVDF长链结构中,使得片层之间搭接更明显,形成更多有利于热量传递的导热通路,增强热压粘结性能。
3、利用消泡剂降低润湿剂的润湿效果,导致部分区域水性PVDF浆料无法与隔膜表面润湿,干燥后形成非全覆盖式涂层,从而改善隔膜的透气性,提高电池性能。
4、本发明通过分散剂、润湿剂、助粘结剂、消泡剂、防沉剂、碳化硅之间的相互作用,不需要使用N-甲基吡咯烷酮(NMP)做溶剂,降低了电池隔膜的吸液率,提高了电池性能。
具体实施方式
下面对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动条件下所获得的所有其它实施例,都属于本发明保护的范围。
一种高粘结性的水性PVDF浆料,包括以下重量百分比的原料:3~7%分散剂、1~5%润湿剂、5~10%助粘结剂、0.5~3%消泡剂、0.1~3%防沉剂、15~25%PVDF和0.05~2.5%碳化硅,余量为水,所述碳化硅的添加量与PVDF的添加量按质量比计为1:10~300。
所述碱金属磷酸盐类为三聚磷酸钠、六偏磷酸钠和焦磷酸钠中的一种或多种;所述润湿剂为阴离子型表面活性剂和非离子型表面活性剂中的一种或多种的混合物。所述阴离子型表面活性剂为烷基芳基磺酸钠、丁基萘磺酸钠、羟乙基磺酸钠或十二烷基磺酸钠;所述非离子型表面活性剂为长链脂肪醇聚氧乙烯醚、烷基酚聚氧乙烯醚、聚氧乙烯烷基醇酰胺或脂肪醇聚氧乙烯醚;所述助粘结剂为丙烯酸型粘结剂;所述消泡剂为高碳醇脂肪酸酯复合物、聚氧乙烯聚氧丙烯季戊四醇醚、聚氧乙烯聚氧丙醇胺醚、聚氧丙烯甘油醚、聚氧丙烯聚氧乙烯甘油醚和聚二甲基硅氧烷中的一种;所述防沉剂为脲改性聚酰胺、聚酰胺蜡中的一种。发明人经大量研究发现,当所述润湿剂、消泡剂和防沉剂的种类在本发明权利要求的范围内进行一种或多种的选择时,对水性PVDF浆料的粘结性能影响不大。
上述水性PVDF浆料的制备方法,包括以下步骤:
S1、将碳化硅、分散剂加入水中,超声分散,得到悬浊液A;S2、将PVDF、防沉剂、消泡剂加入悬浊液A中,常温下搅拌,搅拌速率为100-200r/min,搅拌时间为30-40min,得到混合液B;S3、将助粘结剂和润湿剂加入混合液B中,常温下搅拌,得到高粘结性的水性PVDF浆料。下述实施例和对比例采用该方法制备获得水性PVDF浆料。
实施例1
一种高粘结性的水性PVDF浆料,包括以下重量百分比的原料:7%三聚磷酸钠、5%烷基芳基磺酸钠、5%丙烯酸型粘结剂、3%高碳醇脂肪酸酯复合物、0.1%聚酰胺蜡、15%PVDF和0.05%碳化硅,余量为水,所述碳化硅的添加量与PVDF的添加量按质量比计为1:300。
实施例2
一种高粘结性的水性PVDF浆料,包括以下重量百分比的原料:6%六偏磷酸钠、4%丁基萘磺酸钠、6%丙烯酸型粘结剂、2%聚氧乙烯聚氧丙烯季戊四醇醚、0.5%聚酰胺蜡、20%PVDF和0.2%碳化硅,余量为水,所述碳化硅的添加量与PVDF的添加量按质量比计为1:100。
实施例3
一种高粘结性的水性PVDF浆料,包括以下重量百分比的原料:5%三聚磷酸钠、3%长链脂肪醇聚氧乙烯醚、7%丙烯酸型粘结剂、1.5%聚氧丙烯甘油醚、1%脲改性聚酰胺、20%PVDF和0.5%碳化硅,余量为水,所述碳化硅的添加量与PVDF的添加量按质量比计为1:40。
实施例4
一种高粘结性的水性PVDF浆料,包括以下重量百分比的原料:4%焦磷酸钠、2%烷基酚聚氧乙烯醚、10%丙烯酸型粘结剂、1%聚氧丙烯聚氧乙烯甘油醚、2%脲改性聚酰胺、20%PVDF和1%碳化硅,余量为水,所述碳化硅的添加量与PVDF的添加量按质量比计为1:20。
实施例5
一种高粘结性的水性PVDF浆料,包括以下重量百分比的原料:3%焦磷酸钠、1%聚氧乙烯烷基醇酰胺、10%丙烯酸型粘结剂、0.5%聚二甲基硅氧烷、3%脲改性聚酰胺、25%PVDF和2.5%碳化硅,余量为水,所述碳化硅的添加量与PVDF的添加量按质量比计为1:10。
对比例1
对比例1与实施例3基本相同,其区别在于:水性PVDF浆料的原料中不包括碳化硅,即一种水性PVDF浆料,包括以下重量百分比的原料:5%三聚磷酸钠、3%长链脂肪醇聚氧乙烯醚、7%丙烯酸型粘结剂、1.5%聚氧丙烯甘油醚、1%脲改性聚酰胺、20%PVDF,余量为水。
对比例2
对比例2与实施例3基本相同,其区别在于:水性PVDF浆料包括5%三聚磷酸钠、3%长链脂肪醇聚氧乙烯醚、7%丙烯酸型粘结剂、1.5%聚氧丙烯甘油醚、1%脲改性聚酰胺、20% PVDF和0.05%碳化硅,余量为水,所述碳化硅的添加量与PVDF的添加量按质量比计为1:400。
对比例3
对比例3与实施例3基本相同,其区别在于:水性PVDF浆料包括5%三聚磷酸钠、3%长链脂肪醇聚氧乙烯醚、7%丙烯酸型粘结剂、1.5%聚氧丙烯甘油醚、1%脲改性聚酰胺、20%PVDF和4%碳化硅,余量为水,所述碳化硅的添加量与PVDF的添加量按质量比计为1:5。
对比例4
对比例4与实施例3基本相同,其区别在于:将水性PVDF浆料的原料碳化硅替换为等质量的二氧化硅,即所述二氧化硅的添加量与PVDF的添加量按质量比计为1:40。
应用例 性能检测
将实施例1~5和对比例1~4得到的水性PVDF浆料通过辊涂、喷涂或者点涂的方式涂覆到锂电池PVDF隔膜上,之后在50-80摄氏度条件下对隔膜进行烘干,烘干后的隔膜厚度约为3μm;然后通过粘结力测试仪测定隔膜的粘接力,测定方法参考GB/T2792-1998压敏粘胶带180°剥离强度试验方法;具体做法为:将极片切成12mm宽,20mm长的样品条,并固定在铝板上。将3M透明胶带粘附在样品条上,使用万能拉力机180°拉下胶带,并记录剥离强度。剥离速度为5mm/min。具体测定结果见表1。
表1 水性PVDF浆料的性能数据
Figure PCTCN2020123945-appb-000001
Figure PCTCN2020123945-appb-000002
由表1可以看出,加入SiC陶瓷微粒后(实施例1~5),隔膜的粘结力有较大的提升,明显强于未加碳化硅的普通PVDF隔膜。随着碳化硅添加比例的升高,粘结性能逐渐提升,这是因为SiC陶瓷微粒具有良好的导热性,可以促进PVDF隔膜的热压粘结,从而使得破坏粘接体系时所需的剥离力大幅增加,显著提升PVDF隔膜的粘接强度,但是随着SiC陶瓷微粒的含量进一步提升,其分散性逐渐降低,此时尽管具有较高的粘结强度,但会导致电化学性能的降低,尤其是当SiC陶瓷微粒含量过高,如增加至对比例3的含量,则会导致部分碳化硅陶瓷微粒几乎完全裸露在PVDF外,形成团聚结构,致使隔膜内有较多气孔存在,显著降低电化学性能。对比例4相比于实施例3,将SiC替换为性质相近的SiO 2,由于SiO 2导热系数极低,只有7.6W/mK,无法在PVDF中形成微电容结构,对粘结性能基本无提升。因此,只有碳化硅与PVDF的良好配比才能保证锂电池的粘结性能和电化学性能。

Claims (10)

  1. 一种高粘结性的水性PVDF浆料,其特征在于,包括以下重量百分比的原料:3~7%分散剂、1~5%润湿剂、5~10%助粘结剂、0.5~3%消泡剂、0.1~3%防沉剂、15~25%PVDF和0.05~2.5%碳化硅,余量为水,所述碳化硅的添加量与PVDF的添加量按质量比计为1:10~300。
  2. 如权利要求1所述的高粘结性的水性PVDF浆料,其特征在于,所述碳化硅的添加量与PVDF的添加量按质量比计为1:20~100。
  3. 如权利要求1所述的高粘结性的水性PVDF浆料,其特征在于,包括以下重量百分比的原料:5%分散剂、3%润湿剂、7%助粘结剂、1.5%消泡剂、1%防沉剂、20%PVDF和0.5%碳化硅,余量为水,所述碳化硅的添加量与PVDF的添加量按质量比计为1:40。
  4. 如权利要求1所述的高粘结性的水性PVDF浆料,其特征在于,所述分散剂为碱金属磷酸盐类。
  5. 如权利要求4所述的高粘结性的水性PVDF浆料,其特征在于,所述碱金属磷酸盐类为三聚磷酸钠、六偏磷酸钠和焦磷酸钠中的一种或多种。
  6. 如权利要求1所述的高粘结性的水性PVDF浆料,其特征在于,所述润湿剂为阴离子型表面活性剂和非离子型表面活性剂中的一种或多种的混合物。
  7. 如权利要求1所述的高粘结性的水性PVDF浆料,其特征在于,所述助粘结剂为丙烯酸型粘结剂。
  8. 如权利要求1所述的高粘结性的水性PVDF浆料,其特征在于,所述消泡剂为高碳醇脂肪酸酯复合物、聚氧乙烯聚氧丙烯季戊四醇醚、聚氧乙烯聚氧丙醇胺醚、聚氧丙烯甘油醚、聚氧丙烯聚氧乙烯甘油醚和聚二甲基硅氧烷中的一种。
  9. 权利要求1~8任一项所述的水性PVDF浆料的制备方法,其特征在于,包括以下步骤:
    S1、将碳化硅、分散剂加入水中,超声分散,得到悬浊液A;
    S2、将PVDF、防沉剂、消泡剂加入悬浊液A中,常温下搅拌,搅拌速率为100-200r/min,搅拌时间为30-40min,得到混合液B;
    S3、将助粘结剂和润湿剂加入混合液B中,常温下搅拌,得到高粘结性的水性PVDF浆料。
  10. 权利要求1~8任一项所述的水性PVDF浆料在制备锂电池隔膜中的应用,其特征在于,所述锂电池隔膜包括PVDF隔膜和涂覆于所述PVDF隔膜一侧或两侧的所述水性PVDF浆料。
PCT/CN2020/123945 2019-11-11 2020-10-27 一种高粘结性的水性pvdf浆料和制备方法及其应用 WO2021093572A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020217037937A KR102421795B1 (ko) 2019-11-11 2020-10-27 고점착성의 수성 pvdf 슬러리와 제조방법 및 그 응용

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911094925.6A CN110993863B (zh) 2019-11-11 2019-11-11 一种高粘结性的水性pvdf浆料和制备方法及其应用
CN201911094925.6 2019-11-11

Publications (1)

Publication Number Publication Date
WO2021093572A1 true WO2021093572A1 (zh) 2021-05-20

Family

ID=70083716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123945 WO2021093572A1 (zh) 2019-11-11 2020-10-27 一种高粘结性的水性pvdf浆料和制备方法及其应用

Country Status (3)

Country Link
KR (1) KR102421795B1 (zh)
CN (1) CN110993863B (zh)
WO (1) WO2021093572A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117563886A (zh) * 2024-01-16 2024-02-20 泰州衡川新能源材料科技有限公司 一种锂电池隔膜涂水性pvdf点涂装置
CN117783893A (zh) * 2023-12-28 2024-03-29 江苏万锂达智能科技有限公司 一种锂电池储能监控***及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110993863B (zh) * 2019-11-11 2021-09-21 江苏厚生新能源科技有限公司 一种高粘结性的水性pvdf浆料和制备方法及其应用
DE102020130489A1 (de) * 2020-11-18 2022-05-19 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung Separator für Lithium-Ionen-Zelle mit hoher Wärmeleitfähigkeit
CN114464893A (zh) * 2021-12-14 2022-05-10 湖北钛时代新能源有限公司 一种方形圆柱复合钛电池制作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103515564A (zh) * 2013-10-15 2014-01-15 深圳市星源材质科技有限公司 一种复合隔膜及其制备方法
KR101480499B1 (ko) * 2013-11-06 2015-01-09 주식회사 포스코 전기화학 소자용 세퍼레이터, 이의 제조 방법 및 이를 포함하는 전기화학 소자
CN105449143A (zh) * 2014-10-13 2016-03-30 万向A一二三***有限公司 一种锂离子电池涂层隔膜及其制备方法
CN108389999A (zh) * 2018-01-23 2018-08-10 惠州市旭然新能源有限公司 有机、无机复合涂覆多孔性隔离膜、制备方法及其锂离子电池
CN108807819A (zh) * 2018-06-15 2018-11-13 珠海光宇电池有限公司 隔膜及其制备方法和锂硫电池
CN109037557A (zh) * 2018-08-01 2018-12-18 河北金力新能源科技股份有限公司 一种锂离子电池隔膜及其制备方法
CN109103397A (zh) * 2018-09-28 2018-12-28 河南福森新能源科技有限公司 一种锂离子电池用陶瓷涂覆隔膜的制备方法
CN110993863A (zh) * 2019-11-11 2020-04-10 江苏厚生新能源科技有限公司 一种高粘结性的水性pvdf浆料和制备方法及其应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140000911A (ko) * 2012-06-26 2014-01-06 주식회사 엘지화학 이종 세퍼레이터를 사용하는 전극 조립체 및 이를 구비한 리튬 이차전지
CN103000728B (zh) * 2012-12-03 2016-04-20 3M材料技术(合肥)有限公司 太阳能电池背板组件和太阳能电池组件
CN103117411A (zh) * 2013-01-30 2013-05-22 深圳邦凯新能源股份有限公司 锂离子电池及制作该锂离子电池的方法
JP6366564B2 (ja) * 2015-12-08 2018-08-01 キヤノンファインテックニスカ株式会社 転写材、記録物、それらの製造装置および製造方法
CN105504609A (zh) * 2015-12-28 2016-04-20 常州亚环环保科技有限公司 一种海苔渣制备碳化硅晶须复合聚四氟乙烯摩擦材料的方法
CN107516686A (zh) * 2016-06-15 2017-12-26 天津栋天新能源科技有限公司 一种太阳能电池用防静电导热粘结材料
CN108550762A (zh) * 2018-03-15 2018-09-18 桑顿新能源科技有限公司 一种三元锂离子电池的涂覆隔膜及其制备方法
CN109037551A (zh) * 2018-08-01 2018-12-18 河北金力新能源科技股份有限公司 一种锂离子电池隔膜及其制备方法
CN109880541A (zh) * 2019-01-28 2019-06-14 东莞市博恩复合材料有限公司 可快速固化且具高粘接强度的导热材料
CN109721365A (zh) * 2019-03-02 2019-05-07 管伟 一种基于碳化硅的新型复合陶瓷材料及其加工工艺

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103515564A (zh) * 2013-10-15 2014-01-15 深圳市星源材质科技有限公司 一种复合隔膜及其制备方法
KR101480499B1 (ko) * 2013-11-06 2015-01-09 주식회사 포스코 전기화학 소자용 세퍼레이터, 이의 제조 방법 및 이를 포함하는 전기화학 소자
CN105449143A (zh) * 2014-10-13 2016-03-30 万向A一二三***有限公司 一种锂离子电池涂层隔膜及其制备方法
CN108389999A (zh) * 2018-01-23 2018-08-10 惠州市旭然新能源有限公司 有机、无机复合涂覆多孔性隔离膜、制备方法及其锂离子电池
CN108807819A (zh) * 2018-06-15 2018-11-13 珠海光宇电池有限公司 隔膜及其制备方法和锂硫电池
CN109037557A (zh) * 2018-08-01 2018-12-18 河北金力新能源科技股份有限公司 一种锂离子电池隔膜及其制备方法
CN109103397A (zh) * 2018-09-28 2018-12-28 河南福森新能源科技有限公司 一种锂离子电池用陶瓷涂覆隔膜的制备方法
CN110993863A (zh) * 2019-11-11 2020-04-10 江苏厚生新能源科技有限公司 一种高粘结性的水性pvdf浆料和制备方法及其应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117783893A (zh) * 2023-12-28 2024-03-29 江苏万锂达智能科技有限公司 一种锂电池储能监控***及方法
CN117563886A (zh) * 2024-01-16 2024-02-20 泰州衡川新能源材料科技有限公司 一种锂电池隔膜涂水性pvdf点涂装置
CN117563886B (zh) * 2024-01-16 2024-03-19 泰州衡川新能源材料科技有限公司 一种锂电池隔膜涂水性pvdf点涂装置

Also Published As

Publication number Publication date
KR20210154845A (ko) 2021-12-21
CN110993863B (zh) 2021-09-21
CN110993863A (zh) 2020-04-10
KR102421795B1 (ko) 2022-07-19

Similar Documents

Publication Publication Date Title
WO2021093572A1 (zh) 一种高粘结性的水性pvdf浆料和制备方法及其应用
WO2018145666A1 (zh) 耐高温多种涂层的锂离子电池隔膜及其制备方法
WO2017185519A1 (zh) 一种锂离子电池用水性陶瓷涂覆隔膜及其制备方法
WO2019128146A1 (zh) 一种耐高温涂层复合隔膜及其制备方法和应用
CN113451708A (zh) 功能涂覆隔膜及其制备方法、锂离子电芯、锂离子电池包及其应用
JP2008034215A (ja) リチウム二次電池用正極とその製造方法、およびリチウム二次電池
WO2022057666A1 (zh) 一种正极片及电池
WO2023236401A1 (zh) 一种电池隔离膜及其制备方法、二次电池
JP7313362B2 (ja) バインダ分布が最適化した二次電池用負極及びこれを含む二次電池
CN107706337A (zh) 一种用于高镍三元锂离子电池的复合涂覆隔膜及其制备方法
CN112952297A (zh) 陶瓷隔膜及其制备方法和锂电池
CN111048781A (zh) 一种耐高压实的复合导电剂及其在锂离子电池中的应用
CN113161692A (zh) 陶瓷涂层、陶瓷涂覆隔膜及其制备方法与应用
TWI752384B (zh) 陶瓷隔離膜及其製備方法
CN114976492A (zh) 一种高粘结性聚合物复合涂覆隔膜及其制备方法
CN109616605B (zh) 一种锂离子电池隔膜及其制备方法
CN113451703B (zh) 高离子导通性复合凝胶聚合物隔膜及其制备方法
CN109378431B (zh) Pmma涂层浆料、pmma复合涂层隔膜及其制备方法
WO2023232154A1 (zh) 电池隔膜及其制备方法和电池
CN113764823A (zh) 高性能梯度复合凝胶聚合物隔膜及其制备方法
CN112751140A (zh) 一种提高锂离子电池电解液保液量和安全性能的隔膜功能涂层材料
CN114156600A (zh) 一种含混合导体涂层的隔膜及其制备方法和应用
JP3060632B2 (ja) 液式鉛蓄電池用セパレータ
CN112421186A (zh) 涂层隔膜及其制备方法和电化学装置
CN113555647A (zh) 用于锂离子电池的陶瓷隔膜、锂离子电池及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886565

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217037937

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886565

Country of ref document: EP

Kind code of ref document: A1