WO2021090880A1 - バイオマス由来の樹脂層を備えた積層体及び断熱容器 - Google Patents

バイオマス由来の樹脂層を備えた積層体及び断熱容器 Download PDF

Info

Publication number
WO2021090880A1
WO2021090880A1 PCT/JP2020/041354 JP2020041354W WO2021090880A1 WO 2021090880 A1 WO2021090880 A1 WO 2021090880A1 JP 2020041354 W JP2020041354 W JP 2020041354W WO 2021090880 A1 WO2021090880 A1 WO 2021090880A1
Authority
WO
WIPO (PCT)
Prior art keywords
density
foaming
layer
biomass
polyethylene resin
Prior art date
Application number
PCT/JP2020/041354
Other languages
English (en)
French (fr)
Inventor
友央 上野
嘉貢 西野
宏行 高野
Original Assignee
日清食品ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020184583A external-priority patent/JP2021075056A/ja
Application filed by 日清食品ホールディングス株式会社 filed Critical 日清食品ホールディングス株式会社
Publication of WO2021090880A1 publication Critical patent/WO2021090880A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/46Applications of disintegrable, dissolvable or edible materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation

Definitions

  • the present invention relates to a laminate having a biomass-derived resin layer, an effervescent laminate, and an effervescent heat insulating container.
  • Insulated containers are generally used for food and drink containers such as cup noodle containers and coffee cups.
  • a container made of expanded polystyrene has been known as a heat insulating container used for this purpose, but there is a problem that the container is bulky and dust increases because the entire container is foamed.
  • the strength is lower than that of a paper container, and there is a problem that it is easily damaged when transported with hard contents (noodle lumps, etc.) in it.
  • a polyethylene resin having a low melting point is laminated on the outer wall surface of the paper container and heated to foam the polyethylene resin by utilizing the vapor pressure of the moisture contained in the paper as the base material.
  • a technique for producing a foamed heat insulating sheet is disclosed (Patent Documents 1 to 3).
  • bioethanol is produced from grains, converted into ethylene gas, and used as a raw material for various plastics (ethylene glycol, which is a raw material for polyethylene and PET).
  • plastics ethylene glycol, which is a raw material for polyethylene and PET.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to produce a laminate and a foam laminate having a small environmental load and good heat insulating properties.
  • the present inventors have at least a foam layer made of a low-density polyolefin resin having a density of 0.91 g / cm 3 or more and less than 0.93 g / cm 3 , a paper substrate layer, and a density of 0.93 g / cm 3 or more and 0.97 g /.
  • a foamed laminate comprising a non-foamed layer made of a medium-high density polyolefin resin of cm 3 or less in order, wherein the low-density polyolefin resin and / or the medium-high density polyolefin resin contains a biomass polyethylene resin and the degree of biomass is 5% or more. It has been found that the above-mentioned problems can be solved by a laminate characterized by being present.
  • Example 1 The configuration (before foaming) of Example 1 is described in a cross-sectional view.
  • the configuration (before foaming) of Example 6 is described in a cross-sectional view.
  • a foamed laminate comprising the following non-foamed layers made of medium-high density polyolefin resin in order, in which the low-density polyolefin resin and / or the medium-high density polyolefin resin contains a biomass polyethylene resin and has a biomass degree of 5% or more. It relates to a laminated body characterized by. The details will be described below.
  • the basis weight of the paper base material is preferably 150 to 400 g / m 2, and more preferably 250 to 350 g / m 2 .
  • the water content contained in the paper base material is preferably 5 to 10% by weight, more preferably 6 to 8% by weight.
  • Non-coated paper is manufactured by adding fillers such as clay, talc, titanium dioxide, calcium carbonate, and aluminum hydroxide powder to the raw material pulp, and adding sizing agents, paper strength enhancers, fixing agents, etc. as necessary. be able to. Further, in order to improve the paper surface strength, a chemical such as a styrene resin, a styrene / maleic acid resin, starch, carboxymethylated cellulose, polyvinyl alcohol, or polyacrylamide may be applied to the surface.
  • a coating liquid containing a pigment such as calcium carbonate, titanium dioxide, aluminum hydroxide and an adhesive such as polyvinyl alcohol, styrene / butadiene latex, and methyl methacrylate / butadiene latex is prepared and coated on the surface. It can be obtained by working.
  • Foamed layer in the foamed layer ⁇ br/> present invention has a density of 0.91 g / cm 3 or more, made of a low density polyolefin resin is less than 0.93 g / cm 3.
  • a low-density polyolefin resin having a low melting point for the foamed layer it is possible to foam only the foamed layer without foaming the non-foamed layer during the foaming process.
  • the low-density polyolefin resin and / or the medium-high-density polyolefin resin contains a biomass polyethylene resin and has a biomass degree of 5% or more.
  • the biomass polyethylene resin refers to a polyethylene resin synthesized from plant-derived ethylene.
  • the plant-derived ethylene can be produced by a well-known method using ethanol or the like obtained by fermenting a plant (corn, sugar cane, tapioca, etc.) as a raw material.
  • biomass degree carbon concentration derived from biomass in the polyolefin resin
  • C14 radiocarbon
  • Carbon dioxide in the atmosphere contains a certain amount of C14, and the content of C14 in plants that grow by taking in carbon dioxide in the atmosphere is about the same.
  • fossil fuel contains almost no C14. Therefore, the carbon concentration "biomass degree" derived from biomass in the polyolefin resin can be calculated by measuring the ratio of C14 contained in the polyolefin resin.
  • the biomass degree will be 100%, and if it is produced only from the raw material derived from fossil fuel, the biomass degree will be 0%.
  • the melt flow rate of the low-density polyethylene resin (hereinafter, may be referred to as “MFR”) is preferably 8 to 28 g / 10 minutes, more preferably 10 to 20 g / 10 minutes. Within this range, the foaming of the polyethylene resin is stable, so that the heat insulating property and the appearance after foaming are good.
  • the non-foamed layer is made of a medium-high density polyolefin resin having a density of 0.93 g / cm 3 or more and 0.97 g / cm 3 or less.
  • a medium-high-density polyolefin resin having a high melting point for the non-foamed layer it is possible to foam only the foamed layer without foaming the non-foamed layer during the foaming process.
  • the low-density polyolefin resin and / or the medium-high-density polyolefin resin contains a biomass polyethylene resin and has a biomass degree of 5% or more.
  • an intermediate layer may be provided between the paper base material layer and the non-foaming layer.
  • a polylactic acid film, a PET film, a CPP film, an OPP film, a nylon film and the like, and a barrier film in which aluminum oxide and the like are vapor-deposited on these films can be appropriately selected and used. Any of these films can be preferably used regardless of whether the film is a fossil fuel-derived raw material or a plant-derived raw material.
  • Extrusion Laminating Conditions As the extrusion laminating method, a single laminating method, a tandem laminating method, a sandwich laminating method, a coextruding laminating method, or the like can be appropriately selected.
  • the temperature of the polyethylene resin (directly below the T die) at the time of laminating is preferably 260 to 350 ° C, more preferably 280 to 330 ° C. Within this range, the lamination strength between the polyethylene resin layer and the paper base material and the appearance after foaming can be made suitable. Further, it is preferable to control the surface temperature of the cooling roll in the range of 10 to 50 ° C.
  • the thickness of the polyethylene resin layer after laminating is not particularly limited, but is preferably 30 to 150 ⁇ m, more preferably 40 to 100 ⁇ m. Within this range, the polyethylene resin layer after foaming can have a sufficient thickness, so that the heat insulating property is good.
  • the pick-up speed is preferably 40 m / min or more, more preferably 60 m / min.
  • the tensile speed is preferably 130 m / min or less, more preferably 110 m / min or less.
  • the air gap refers to the distance from the T-die extrusion port to the nip roll.
  • the air gap during the laminating process is widened too much, the polyethylene resin will neck in and the productivity will decrease. Therefore, the air gap is preferably 250 mm or less, more preferably 200 mm or less.
  • the present invention it is preferable to surface-treat the polyethylene resin with ozone gas and / or oxygen gas while passing through the air gap.
  • ozone gas and / or oxygen gas By surface-treating with ozone gas and / or oxygen gas, the formation of an oxide film can be promoted and the adhesive force with the base material layer can be improved.
  • the amount of ozone gas and / or oxygen gas to be treated is not particularly limited, but 0.5 mg / m 2 or more is preferable from the viewpoint of promoting the oxidation of the polyethylene resin.
  • Polyethylene resin As the low-density polyethylene resin and the high-density polyethylene resin, biomass polyethylene manufactured by Brasschem was used to prepare polyethylene resins (B-LDPE, B-HDPE1 to 3) derived from biomass.
  • the density of polyethylene resin (g / cm 3 ) is as shown in Table 1.
  • Example 1 B-HDPE1 was laminated by extrusion lamination on one side of a paper base material to provide a non-foamed layer having a thickness of 40 ⁇ m.
  • Step 2 B-LDPE was laminated by extrusion lamination on the surface opposite to the non-foamed layer of the paper base material, and a foamed layer (before foaming) having a thickness of 70 ⁇ m was provided to provide a laminated body (Example 1).
  • the details of the processing conditions are as follows.
  • Step 1 Paper substrate: Moisture content 23 g / m 2 , Basis weight 320 g / m 2 Extrusion temperature (T die outlet temperature): 320 ° C
  • Step 2 Extrusion temperature (T die outlet temperature): 310 ° C
  • Examples 2-5 Example 2 to 5 were manufactured by changing the materials used for the foamed layer and the non-foamed layer as shown in Table 2. The conditions other than the material (extrusion temperature, take-up speed, etc.) are the same as in Example 1.
  • Comparative Example 1 Comparative Example 1 was produced by changing B-HDPE1 in Example 1 to Petrosen LW04-1 and B-LDPE to Petrosen 07C03C. The conditions other than the material (extrusion temperature, take-up speed, etc.) are the same as in Example 1.
  • Petrosen LW04-1 and Petrosen 07C03C are as follows.
  • Petrosen LW04-1 Tosoh, medium density polyethylene resin derived from fossil fuel, MFR 4.3g / 10 minutes, density 940kg / m 3
  • Petrosen 07C03C Tosoh, low density polyethylene resin derived from fossil fuel, MFR 14g / 10 minutes, density 918kg / m 3
  • the appearance of the foamed layer and the non-foamed layer of Examples 1 to 5 was evaluated as follows based on Comparative Example 1.
  • Foamed layer (after laminating, before foaming step): Compared with Comparative Example 1, it was confirmed whether or not the thickness of the polyethylene resin layer was uneven, and when it was equal to or higher than that of Comparative Example 1, it was evaluated as “good”.
  • Foamed layer (after foaming step): Compared with Comparative Example 1, it was confirmed whether the foamed layer was uniformly foamed and whether the unevenness was conspicuous, and when it was equal to or higher than that of Comparative Example 1, it was evaluated as "good”. did.
  • Non-foamed layer Compared with Comparative Example 1, it was confirmed whether or not the thickness of the polyethylene resin layer was uneven, and when it was equal to or greater than that of Comparative Example 1, it was evaluated as “good”.
  • Example 6 A PET film (manufactured by Toyobo Co., Ltd., E5100, 12 ⁇ m) coated with an anchor coating agent on a paper base material and a bonded surface was extruded and laminated with petrosen LW14A (15 ⁇ m) and bonded. (Step 1-2) After applying the anchor coating agent to the non-laminated surface on the PET film side, petrosene LW14A (20 ⁇ m, PET film side) and B-HDPE3 (20 ⁇ m) are laminated by coextrusion lamination to form a non-foamed layer. Provided.
  • Step 2 B-LDPE was laminated by extrusion lamination on the surface opposite to the non-foamed layer of the paper base material, and a foamed layer (before foaming) having a thickness of 70 ⁇ m was provided to provide a laminated body (Example 6). Manufactured.
  • E5100 Polyethylene terephthalate resin derived from fossil fuel, manufactured by Toyobo Co., Ltd., thickness 12 ⁇ m
  • Petrosen LW14A Tosoh, medium density polyethylene resin derived from fossil fuel, MFR 10g / 10 minutes, density 933kg / m 3
  • Step 1-2 Anchor coating agent: manufactured by Toyo Morton, EL-540 / CAT-RT32 Extrusion temperature (T die outlet temperature): 320 ° C Pick-up speed (lamination speed): 80m / min Air gap: 130mm
  • Step 2 Extrusion temperature (T die outlet temperature): 310 ° C Pick-up speed (lamination speed): 60m / min Air gap: 80mm Foam layer (before foaming) thickness: 70 ⁇ m
  • Example 7 B-HDPE3 in Example 6 was changed to Petrosen LW04-1 to produce Example 7.
  • Comparative Example 2 Comparative Example 2 was produced by changing B-HDPE3 in Example 6 to Petrosen LW04-1 and B-LDPE to Petrosen 07C03C.
  • Example 3 B-LDPE in Example 3 was changed to a mixture of B-LDPE and Petrosene 07C03C to produce Examples 8 to 18.
  • Table 3 shows the mixing ratio of the mixture and the evaluation results.
  • Example 5 The appearance of the foamed layer and the non-foamed layer of Examples 8 to 18 was evaluated as follows based on Example 5.
  • Non-foamed layer Compared with Example 5, it was confirmed whether or not the thickness of the polyethylene resin layer was uneven, and when it was equal to or more than that of Example 5, it was evaluated as “good”.
  • Example 3 B-HDPE3 in Example 3 was changed to a mixture of B-HDPE3 and Petrosene LW04-1, and Examples 19 to 29 were produced.
  • Table 4 shows the mixing ratio of the mixture and the evaluation results.
  • Example 4 The appearance of the foamed layer and the non-foamed layer of Examples 19 to 29 was evaluated as follows based on Example 4.
  • Non-foamed layer Compared with Example 4, it was confirmed whether the thickness of the polyethylene resin layer was uneven, and when it was equal to or more than that of Example 4, it was evaluated as “good”.
  • Example 6 the B-LDPE in Example 6 was changed to a mixture of B-LDPE and Petrosene 07C03C (the compounding ratio was the same as in Examples 8 to 18), and the appearances of the foamed layer and the non-foamed layer were evaluated. It was as good as in Example 6.
  • B-HDPE3 in Example 6 was changed to a mixture of B-HDPE3 and Petrosene LW04-1 (the compounding ratio was the same as in Examples 19 to 29), and the appearances of the foamed layer and the non-foamed layer were evaluated. However, it was as good as in Example 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、環境負荷が小さく、断熱性が良好な積層体および発泡積層体を製造することを目的とするものである。本発明者らは、少なくとも、密度0.91g/cm3以上、0.93g/cm3未満の低密度ポリオレフィン樹脂からなる発泡層と、紙基材層と、密度0.93g/cm3以上、0.97g/cm3以下の中高密度ポリオレフィン樹脂からなる非発泡層とを順に備える発泡積層体であって、低密度ポリオレフィン樹脂および/または中高密度ポリオレフィン樹脂がバイオマスポリエチレン樹脂を含み、且つバイオマス度が5%以上であることを特徴とする積層体により上記課題を解決し得ることを見出した。

Description

バイオマス由来の樹脂層を備えた積層体及び断熱容器
本発明は、バイオマス由来の樹脂層を備えた積層体、発泡積層体及び発泡断熱容器に関するものである。
カップ麺用の容器、コーヒーカップ等の飲食用容器では、一般的に断熱容器が使用されている。従来、この用途に使用される断熱容器としては、発泡ポリスチレン製の容器が知られていたが、容器全体を発泡させているため嵩が大きく、ゴミが増加するという問題があった。また、紙製の容器比べると強度が低く、硬い内容物(麺塊等)を入れたまま輸送すると破損しやすいという課題があった。
この課題を解決するため、紙容器の外壁面に低融点のポリエチレン樹脂をラミネートして、加熱することにより、基材である紙に含まれている水分の蒸気圧を利用してポリエチレン樹脂を発泡させて発泡断熱シートを製造する技術が開示されている(特許文献1~3)。
一方、持続可能な開発目標(SDGs)を達成すべく、化石燃料からの脱却が望まれており、その一つの手段としてバイオマス素材の活用が提案されている。例えば、ポリ乳酸(PLA)について商業化が進んでいる。 しかしながら、プラスチックとしての特性がポリエチレンやPETのような汎用プラスチックと大きく異なるため、PLAが用いられる用途は一部に限られていた。
そこで、穀物からバイオエタノールを製造し、これをエチレンガスに変えて、様々なプラスチック(ポリエチレン、PETの原料であるエチレングリコール)の原料として用いる方法が提案されている。ところが、このようなプラスチックについて、現行製品からの代替が可能なのかどうかについては十分に検討がなされてこなかった。
特開2006-282257公報 特開2014-133337公報 特開2015-214365号公報
本発明は、上記のような事情に鑑みてなされたものであり、環境負荷が小さく、断熱性が良好な積層体および発泡積層体を製造することにある。
本発明者らは、少なくとも、密度0.91g/cm3以上、0.93g/cm3未満の低密度ポリオレフィン樹脂からなる発泡層と、紙基材層と、密度0.93g/cm3以上、0.97g/cm3以下の中高密度ポリオレフィン樹脂からなる非発泡層とを順に備える発泡積層体であって、低密度ポリオレフィン樹脂および/または中高密度ポリオレフィン樹脂がバイオマスポリエチレン樹脂を含み、且つバイオマス度が5%以上であることを特徴とする積層体により上記課題を解決し得ることを見出した。
本発明の完成により、環境負荷が小さく、断熱性が良好な積層体、発泡積層体及び発泡断熱容器を製造することが可能となった。
実施例1の構成(発泡前)を断面図で説明したものである。 実施例6の構成(発泡前)を断面図で説明したものである。
本発明は、少なくとも、密度0.91g/cm3以上、0.93g/cm3未満の低密度ポリオレフィン樹脂からなる発泡層と、紙基材層と、密度0.93g/cm3以上、0.97g/cm3以下の中高密度ポリオレフィン樹脂からなる非発泡層とを順に備える発泡積層体であって、低密度ポリオレフィン樹脂および/または中高密度ポリオレフィン樹脂がバイオマスポリエチレン樹脂を含み、且つバイオマス度が5%以上であることを特徴とする積層体に関するものである。以下、詳細について説明を行う。
紙基材
本発明の積層体を構成する紙基材には特に限定はないが、非塗工紙、塗工紙などを使用することができる。また、容器としての強靭さを実現する観点から紙基材の坪量は150~400g/m好ましく、更に好ましくは、250~350g/mである。さらに、ポリエチレンを好適に発泡させる観点から紙基材に含まれる水分は5~10重量%が好ましく、6~8重量%がより好ましい。
非塗工紙は、原料パルプにクレー、タルク、二酸化チタン、炭酸カルシウム、水酸化アルミニウム粉末等の填料を加え、必要に応じてサイズ剤、紙力増強剤、定着剤等を添加して製造することができる。また、紙面強度を向上させるため、スチレン系樹脂、スチレン・マレイン酸樹脂、澱粉、カルボキシメチル化セルロース、ポリビニルアルコール、ポリアクリルアミド等の薬品を表面に塗工してもよい。
塗工紙としては、炭酸カルシウム、二酸化チタン、水酸化アルミニウム等の顔料と、ポリビニルアルコール、スチレン・ブタジエンラテックス、メチルメタクリレート・ブタジエンラテックス等の接着剤とを含む塗工液を調整し、表面に塗工することで得ることができる。
発泡層
本発明において発泡層は、密度0.91g/cm3以上、0.93g/cm3未満の低密度ポリオレフィン樹脂からなる。発泡層に融点の低い低密度ポリオレフィン樹脂を用いることで、発泡加工の際に、非発泡層を発泡させることなく、発泡層のみを発泡させることができる。
さらに、本発明においては、前記低密度ポリオレフィン樹脂および/または中高密度ポリオレフィン樹脂がバイオマスポリエチレン樹脂を含み、且つバイオマス度が5%以上であることが必要である。
ここで、バイオマスポリエチレン樹脂とは、植物由来のエチレンから合成されたポリエチレン樹脂を指す。なお、植物由来のエチレンは、植物(トウモロコシ、サトウキビ、タピオカ等)を発酵させて得られたエタノール等を原料として、周知の方法により製造することができる。
また、「バイオマス度」(ポリオレフィン樹脂中のバイオマス由来の炭素濃度)とは、放射性炭素(C14)測定によりバイオマス由来の炭素の含有量を測定した値である。大気中の二酸化炭素にはC14が一定量含まれており、大気中の二酸化炭素を取り入れて成長する植物のC14の含有量も同程度である。一方、化石燃料にはC14が殆ど含まれていない。したがって、ポリオレフィン樹脂に含まれるC14の割合を測定することにより、ポリオレフィン樹脂中のバイオマス由来の炭素濃度「バイオマス度」を算出することができる。
具体的には、ポリエチレン樹脂を、バイオマス由来のエチレンのみで製造すれば、バイオマス度は100%となり、化石燃料由来の原料のみで製造すればバイオマス度は0%となる。
低密度ポリエチレン樹脂のメルトフローレート(以下、「MFR」という場合がある)は、8~28g/10分が好ましく、10~20g/10分がより好ましい。この範囲であれば、ポリエチレン樹脂の発泡が安定するため、断熱性や発泡後の外観が良好である。
非発泡層
本発明において非発泡層は、密度0.93g/cm3以上、0.97g/cm3以下の中高密度ポリオレフィン樹脂からなる。非発泡層に融点の高い中高密度ポリオレフィン樹脂を用いることで、発泡加工の際に、非発泡層を発泡させることなく、発泡層のみを発泡させることができる。
さらに、本発明においては、前記低密度ポリオレフィン樹脂および/または中高密度ポリオレフィン樹脂がバイオマスポリエチレン樹脂を含み、且つバイオマス度が5%以上であることが必要である。
さらに、紙基材層と、非発泡層の間に、中間層を設けることもできる。中間層としては、ポリ乳酸フィルム、PETフィルム、CPPフィルム、OPPフィルムおよびナイロンフィルム等、並びにこれらのフィルムに酸化アルミニウム等を蒸着したバリアフィルムなどを適宜選択して用いることができる。なお、これらのフィルムには、化石燃料由来の原料であるか、植物由来の原料であるかを問わず、いずれも好適に用いることができる。
押出ラミネート条件
押出ラミネートの方法としては、シングルラミネート法、タンデムラミネート法、サンドウィッチラミネート法、共押出ラミネート法などを適宜選択することができる。
ラミネート時のポリエチレン樹脂の(Tダイ直下)温度としては、260~350℃が好ましく、280~330℃がより好ましい。この範囲であれば、ポリエチレン樹脂層と紙基材間のラミネート強度や、発泡後の外観を好適なものとすることができる。また、冷却ロールの表面温度は10~50℃の範囲で制御することが好ましい。
ラミネート後(発泡前)のポリエチレン樹脂層の厚みには特に限定はないが、30~150μmが好ましく、40~100μmがより好ましい。この範囲であれば、発泡後のポリエチレン樹脂層に充分な厚みを持たせることができるため、断熱性が良好である。
また、引取速度が遅すぎると、生産性が悪いため、引取速度は40m/分以上が好ましく、60m/分がより好ましい。
一方、引取速度が速すぎると、ポリエチレン樹脂がネックインしやすく生産性が低下しやすい。したがって、引張速度は130m/分以下が好ましく、110m/分以下がより好ましい。
次に、エアギャップについて説明する。ここで、エアギャップとはTダイの押出口からニップロールまでの距離を指す。
ラミネート加工時のエアギャップを広げすぎるとポリエチレン樹脂がネックインして生産性が低下すため、エアギャップは250mm以下が好ましく、200mm以下がより好ましい。
本発明では、ポリエチレン樹脂がエアギャップを通過している間に、オゾンガス及び/又は酸素ガスで表面処理することが好ましい。オゾンガス及び/又は酸素ガスで表面処理することにより、酸化被膜の形成を促進し、基材層との接着力を向上させることができる。オゾンガス及び/又は酸素ガスの処理量には特に限定はないが、ポリエチレン樹脂の酸化を促進する観点で0.5mg/m2以上が好ましい。
ポリエチレン樹脂
低密度ポリエチレン樹脂および高密度ポリエチレン樹脂として、ブラスケム社製のバイオマスポリエチレンを用いて、バイオマス由来のポリエチレン樹脂(B-LDPE、B-HDPE1~3)を調整した。ポリエチレン樹脂の密度(g/cm3)は表1の通りである。
Figure JPOXMLDOC01-appb-T000001
実施例1
(工程1)紙基材の片面に、B-HDPE1を押出ラミネートによって積層し、厚さ40μmの非発泡層を設けた。(工程2)紙基材の非発泡層とは逆の面に、B-LDPEを押出ラミネートによって積層し、厚さ70μmの発泡層(発泡加工前)を設けて、積層体(実施例1)を製造した。加工条件の詳細は以下の通りである。
(工程1)
紙基材:水分量23g/m2、坪量320g/m2
押出温度(Tダイ出口温度):320℃
引取速度(ラミネート速度):60m/分
エアギャップ:80mm
(工程2)
押出温度(Tダイ出口温度):310℃
引取速度(ラミネート速度):60m/分
エアギャップ:80mm
実施例2~5
発泡層及び非発泡層に用いる素材を表2の通り変更して実施例2~5を製造した。なお、素材以外の条件(押出温度、引取速度等)は実施例1と同様である。
比較例1
実施例1におけるB-HDPE1をペトロセンLW04-1に、B-LDPEをペトロセン07C03Cに変更して比較例1を製造した。なお、素材以外の条件(押出温度、引取速度等)は実施例1と同様である。
ペトロセンLW04-1およびペトロセン07C03Cの詳細は以下の通りである。
ペトロセンLW04-1:東ソー社製、化石燃料由来の中密度ポリエチレン樹脂、MFR4.3g/10分、密度940kg/m3
ペトロセン07C03C:東ソー社製、化石燃料由来の低密度ポリエチレン樹脂、MFR 14g/10分、密度918kg/m3
Figure JPOXMLDOC01-appb-T000002
発泡工程
積層体(実施例1~5及び比較例1)を120℃で6分間加熱して、発泡層を形成した。
実施例1~5のラミネート後(発泡工程前)の外観、及び発泡工程後の外観は、いずれも比較例1と同様に良好であり、バイオマス原料を用いることによる差はなかった。
実施例1~5の発泡層と非発泡層について、比較例1を基準に、以下の通り外観を評価した。
発泡層(ラミネート後、発泡工程前):比較例1と比較して、ポリエチレン樹脂層の厚みに斑がないかどうかを確認し、比較例1と同等以上の場合には“良好”とした。
発泡層(発泡工程後):比較例1と比較して、発泡層が均一に発泡しているかどうか、凹凸が目立つかどうかを確認し、比較例1と同等以上の場合には“良好”とした。
非発泡層:比較例1と比較して、ポリエチレン樹脂層の厚みに斑がないかどうかを確認し、比較例1と同等以上の場合には“良好”とした。
実施例6
(工程1-1)紙基材及び貼り合わせ面にアンカーコート剤を塗布したPETフィルム(東洋紡社製、E5100、12μm)を、ペトロセンLW14A(15μm)を押出ラミネートして貼り合わせた。(工程1-2)PETフィルム側の非積層面にアンカーコート剤を塗布した後に、ペトロセンLW14A(20μm、PETフィルム側)及びB-HDPE3(20μm)を共押出ラミネートによって積層し、非発泡層を設けた。(工程2)紙基材の非発泡層とは逆の面に、B-LDPEを押出ラミネートによって積層し、厚さ70μmの発泡層(発泡加工前)を設けて、積層体(実施例6)を製造した。
E5100及びペトロセンLW14Aの詳細は以下の通りである。
E5100:東洋紡社製、化石燃料由来のポリエチレンテレフタレート樹脂、厚さ12μm
ペトロセンLW14A:東ソー社製、化石燃料由来の中密度ポリエチレン樹脂、MFR10g/10分、密度933kg/m3
(工程1-1)
紙基材:水分量23g/m2、坪量320g/m2
押出温度(Tダイ出口温度):320℃
引取速度(ラミネート速度):80m/分
エアギャップ:130mm
(工程1-2)
アンカーコート剤:東洋モートン社製、EL-540/CAT-RT32
押出温度(Tダイ出口温度):320℃
引取速度(ラミネート速度):80m/分
エアギャップ:130mm
(工程2)
押出温度(Tダイ出口温度):310℃
引取速度(ラミネート速度):60m/分
エアギャップ:80mm
発泡層(発泡加工前)の厚さ:70μm
実施例7
実施例6におけるB-HDPE3をペトロセンLW04-1に変更して、実施例7を製造した。
比較例2
実施例6におけるB-HDPE3をペトロセンLW04-1に、B-LDPEをペトロセン07C03Cにそれぞれ変更して比較例2を製造した。
発泡工程
積層体(実施例6、実施例7及び比較例2)を120℃で6分間加熱して、発泡層を形成した。
発泡のタイミングや速度に多少の差はあるものの、発泡工程後の実施例6及び実施例7の外観は、比較例2と同様に良好であり、バイオマス原料を用いることによる差はなかった。
実施例6,7の発泡層と非発泡層について、比較例2を基準に、以下の通り外観を評価した。
発泡層(ラミネート後、発泡工程前):比較例2と比較して、ポリエチレン樹脂層の厚みに斑がないかどうかを確認し、比較例2と同等以上の場合には“良好”とした。
発泡層(発泡工程後):比較例2と比較して、発泡層が均一に発泡しているかどうか、凹凸が目立つかどうかを確認し、比較例2と同等以上の場合には“良好”とした。
非発泡層:比較例2と比較して、ポリエチレン樹脂層の厚みに斑がないかどうかを確認し、比較例1と同等以上の場合には“良好”とした。
その他の実施例
バイオマス由来のポリエチレン樹脂を、バイオマス由来のポリエチレン樹脂及び化石燃料由来のポリエチレン樹脂を併用したポリエチレン樹脂に置き換えて前記同様の実験を行った。詳細は以下の通りである。
まず、実施例3におけるB-LDPEを、B-LDPEとペトロセン07C03Cとの混合物に変更して、実施例8~18を製造した。混合物の配合比及び評価結果は表3の通りである。
実施例8~18の発泡層と非発泡層について、実施例5を基準に、以下の通り外観を評価した。
発泡層(ラミネート後、発泡工程前):実施例5と比較して、ポリエチレン樹脂層の厚みに斑がないかどうかを確認し、実施例5と同等以上の場合には“良好”とした。
発泡層(発泡工程後):実施例5と比較して、発泡層が均一に発泡しているかどうか、凹凸が目立つかどうかを確認し、実施例5と同等以上の場合には“良好”とした。
非発泡層:実施例5と比較して、ポリエチレン樹脂層の厚みに斑がないかどうかを確認し、実施例5と同等以上の場合には“良好”とした。
Figure JPOXMLDOC01-appb-T000003
次に、実施例3におけるB-HDPE3を、B-HDPE3とペトロセンLW04-1との混合物に変更して、実施例19~29を製造した。混合物の配合比及び評価結果は表4の通りである。
実施例19~29の発泡層と非発泡層について、実施例4を基準に、以下の通り外観を評価した。
発泡層(ラミネート後、発泡工程前):実施例4と比較して、ポリエチレン樹脂層の厚みに斑がないかどうかを確認し、実施例4と同等以上の場合には“良好”とした。
発泡層(発泡工程後):実施例4と比較して、発泡層が均一に発泡しているかどうか、凹凸が目立つかどうかを確認し、実施例4と同等以上の場合には“良好”とした。
非発泡層:実施例4と比較して、ポリエチレン樹脂層の厚みに斑がないかどうかを確認し、実施例4と同等以上の場合には“良好”とした。
Figure JPOXMLDOC01-appb-T000004
さらに、実施例6におけるB-LDPEを、B-LDPEとペトロセン07C03Cとの混合物(配合比は実施例8~18と同様)に変更して、発泡層及び非発泡層の外観を評価したが、実施例6と同様に良好だった。また、実施例6におけるB-HDPE3を、B-HDPE3とペトロセンLW04-1との混合物(配合比は実施例19~29と同様)に変更して、発泡層及び非発泡層の外観を評価したが、実施例6と同様に良好だった。
以上の結果より、バイオマス由来のポリエチレン樹脂と化石燃料由来のポリエチレン樹脂を併用しても、ラミネート後の外観や発泡工程後の外観には差が無く、良好であることが確認できた。







































1・・・紙基材
2・・・非発泡層(B-HDPE)
3・・・発泡層(B-LDPE)
10・・紙基材
21・・非発泡層1(PETフィルム)
22・・非発泡層2(ラミネート1:紙-PETフィルム間)
23・・非発泡層3(ラミネート2:PETフィルム-B-HDPE間)
24・・非発泡層4(B-HDPE)
25・・アンカーコート層
30・・発泡層(B-LDPE)

Claims (3)

  1. 少なくとも、密度0.91g/cm3以上、0.93g/cm3未満の低密度ポリオレフィン樹脂からなる発泡層と、紙基材層と、密度0.93g/cm3以上、0.97g/cm3以下の中高密度ポリオレフィン樹脂からなる非発泡層とを順に備える積層体であって、
    低密度ポリオレフィン樹脂および/または中高密度ポリオレフィン樹脂がバイオマスポリエチレン樹脂を含み、且つバイオマス度が5%以上であることを特徴とする積層体。
  2. 請求項1記載の積層体を加熱発泡させてなる発泡積層体。
  3. 請求項2記載の発泡積層体からなる発泡断熱容器。
PCT/JP2020/041354 2019-11-06 2020-11-05 バイオマス由来の樹脂層を備えた積層体及び断熱容器 WO2021090880A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-201692 2019-11-06
JP2019201692 2019-11-06
JP2020184583A JP2021075056A (ja) 2019-11-06 2020-11-04 バイオマス由来の樹脂層を備えた積層体及び断熱容器
JP2020-184583 2020-11-04

Publications (1)

Publication Number Publication Date
WO2021090880A1 true WO2021090880A1 (ja) 2021-05-14

Family

ID=75847982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041354 WO2021090880A1 (ja) 2019-11-06 2020-11-05 バイオマス由来の樹脂層を備えた積層体及び断熱容器

Country Status (2)

Country Link
JP (1) JP2022009813A (ja)
WO (1) WO2021090880A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7356763B1 (ja) 2022-10-17 2023-10-05 シーピー化成株式会社 積層シートおよび熱成形品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027171A (ja) * 2015-10-27 2016-02-18 大日本印刷株式会社 ポリオレフィン樹脂フィルム
JP2017154821A (ja) * 2016-02-29 2017-09-07 日本ポリエチレン株式会社 発泡性積層体用ポリエチレン系樹脂組成物、発泡性積層体およびその製造方法、発泡加工紙並びに断熱容器
JP2018051788A (ja) * 2016-09-26 2018-04-05 大日本印刷株式会社 積層体およびそれを備える包装製品
JP2018069683A (ja) * 2016-11-02 2018-05-10 東ソー株式会社 発泡用積層体及び発泡積層体
WO2019186640A1 (ja) * 2018-03-26 2019-10-03 大日本印刷株式会社 断熱容器用積層体、断熱容器、断熱容器用積層体の製造方法、および断熱容器の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027171A (ja) * 2015-10-27 2016-02-18 大日本印刷株式会社 ポリオレフィン樹脂フィルム
JP2017154821A (ja) * 2016-02-29 2017-09-07 日本ポリエチレン株式会社 発泡性積層体用ポリエチレン系樹脂組成物、発泡性積層体およびその製造方法、発泡加工紙並びに断熱容器
JP2018051788A (ja) * 2016-09-26 2018-04-05 大日本印刷株式会社 積層体およびそれを備える包装製品
JP2018069683A (ja) * 2016-11-02 2018-05-10 東ソー株式会社 発泡用積層体及び発泡積層体
WO2019186640A1 (ja) * 2018-03-26 2019-10-03 大日本印刷株式会社 断熱容器用積層体、断熱容器、断熱容器用積層体の製造方法、および断熱容器の製造方法

Also Published As

Publication number Publication date
JP2022009813A (ja) 2022-01-14

Similar Documents

Publication Publication Date Title
US8747986B2 (en) Gas-barrier heat-seal composite films and vacuum insulation panels comprising the same
US8734710B2 (en) Synergistic biopolymer blown film extrusion system and method
JP2013078928A (ja) 発泡積層体の製造方法及びその発泡積層体
JP5782895B2 (ja) 発泡性積層体、発泡加工紙及び断熱容器
JP4939496B2 (ja) ポリスチレン系樹脂積層発泡シートとその製造方法及びポリスチレン系樹脂積層発泡容器
WO2021090880A1 (ja) バイオマス由来の樹脂層を備えた積層体及び断熱容器
JP2021075056A (ja) バイオマス由来の樹脂層を備えた積層体及び断熱容器
JP6292928B2 (ja) 積層発泡シート、積層発泡シート製造方法、及び、容器
JP6331348B2 (ja) 発泡積層体の製造方法及びその発泡積層体
JP6206552B2 (ja) 発泡性積層体及び発泡加工紙ならびにそれを用いた断熱容器
JP5050911B2 (ja) 加熱発泡用積層体および発泡体
JP2014069530A (ja) 発泡積層体
JP6326778B2 (ja) 発泡積層体の製造方法及びその発泡積層体
JP6572529B2 (ja) 発泡積層体の製造方法及びその発泡積層体本発明は、発泡層が厚く、優れた断熱性を示す発泡積層体を高い生産効率で製造する方法に関するものである。
JP6331347B2 (ja) 発泡積層体の製造方法及び発泡積層体
JP6507705B2 (ja) 発泡積層体
JP6280718B2 (ja) 積層発泡シート、及び、容器
JP6069846B2 (ja) 発泡性積層体及びその製造方法並びにそれを用いた発泡加工紙及び断熱容器
JP5966478B2 (ja) 発泡性積層体及び発泡加工紙ならびにそれを用いた断熱容器
JP7070813B1 (ja) マット調積層フィルム、該マット調積層フィルムとプラスチック基材をラミネ-トしてなる積層体及びこれらを用いた包装材
JP2013031996A (ja) ポリスチレン系樹脂積層発泡シートとその製造方法及び成形容器
JP2022104378A (ja) 紙カップ用積層体、及び紙カップ
WO2020171032A1 (ja) 電子レンジ耐性を有する発泡断熱紙容器用シートの製造方法
US20210340709A1 (en) Method for producing sheet for heat-insulating foamed paper container
JP2010253763A (ja) 食品容器用積層材料及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20885371

Country of ref document: EP

Kind code of ref document: A1