WO2021089054A1 - 卫星通信方法和相关通信设备 - Google Patents

卫星通信方法和相关通信设备 Download PDF

Info

Publication number
WO2021089054A1
WO2021089054A1 PCT/CN2020/127590 CN2020127590W WO2021089054A1 WO 2021089054 A1 WO2021089054 A1 WO 2021089054A1 CN 2020127590 W CN2020127590 W CN 2020127590W WO 2021089054 A1 WO2021089054 A1 WO 2021089054A1
Authority
WO
WIPO (PCT)
Prior art keywords
common
parameter
parameters
timing advance
calculation parameter
Prior art date
Application number
PCT/CN2020/127590
Other languages
English (en)
French (fr)
Inventor
王晓鲁
罗禾佳
徐晨蕾
周建伟
施学良
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20885884.5A priority Critical patent/EP4044762A4/en
Publication of WO2021089054A1 publication Critical patent/WO2021089054A1/zh
Priority to US17/737,840 priority patent/US20220263570A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18578Satellite systems for providing broadband data service to individual earth stations
    • H04B7/18589Arrangements for controlling an end to end session, i.e. for initialising, synchronising or terminating an end to end link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • H04J3/067Details of the timestamp structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/005Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by adjustment in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • This application relates to the field of communication technology, in particular to satellite communication methods, terminal equipment, satellite communication equipment, and computer storage media.
  • Satellite communication has significant advantages such as global coverage, long-distance transmission, flexible networking, convenient deployment and freedom from geographical conditions, so it has been widely used in maritime communications, positioning and navigation, disaster relief, scientific experiments, video broadcasting, and ground Observation and other fields.
  • the fifth-generation mobile network (5G) on the ground will have a complete industrial chain, a huge user group, and a flexible and efficient application service model. Therefore, the integration of satellite communication systems and 5G networks to complement each other's strengths to form a seamless global sea, land, air, and sky integrated communication network to meet the ubiquitous business needs of users is the future of communication development An important direction.
  • the satellite communication system uses Non-Geostationary Earth Orbit (NGEO) satellites.
  • NGEO Non-Geostationary Earth Orbit
  • the satellite mobile communication system can be divided into a geostationary (GEO, Earth Orbit) system, a medium orbit (MEO, Medium Earth Orbit) satellite communication system, and a low orbit (LEO, Low Earth Orbit) satellite communication system. system.
  • GEO geostationary Earth Orbit
  • MEO Medium Earth Orbit
  • LEO Low Earth Orbit
  • the industry divides the modes of satellite communication into: a staring mode (steerable mode) and a non-staring mode.
  • a staring mode steererable mode
  • a non-staring mode In the gaze mode, the satellite beam or the coverage area of the cell is unchanged for a certain period of time. Conversely, in the non-gaze mode, the satellite's beam or cell coverage area moves along with the satellite's movement.
  • the advantage of the gaze mode is that if the user terminal (UE, User Equipment) does not move much in the beam or cell, then there is no need to perform beam or cell switching during the satellite's viewable time.
  • the UE In the non-gaze mode, the UE needs to perform beam or cell switching more frequently.
  • the distance between the satellite and the beam or the reference point in the cell will always change, which easily affects the common timing advance determined by the satellite based on the reference point. (Common TA, Common timing advance) timeliness.
  • the embodiment of the present application provides a satellite communication method and related communication equipment.
  • an embodiment of the present application provides a satellite communication method, which may include: a terminal (satellite communication terminal) receiving a first common timing advance common TA parameter and a first common TA variation calculation parameter.
  • the first common TA parameter is used to obtain the first common TA.
  • the first common TA variation calculation parameter is used to update the first common TA to obtain an updated common TA.
  • the terminal uses the updated common TA to send the random access preamble sequence.
  • the first common timing advance common TA parameter may be the first common TA itself, or any one or more parameters that can be calculated to obtain the first common TA.
  • the first common TA variation calculation parameter may be related to the moment when the random access preamble sequence is sent or related to the real-time position of the satellite.
  • the first common TA change amount calculation parameter includes, for example, the common TA change amount or rate of change, and of course, it can also be other types of common TA change amount calculation parameters.
  • receiving the first common timing advance common TA parameter and the first common TA variation calculation parameter may include: receiving a message carrying N sets of common TA parameters and N sets of common TA variation calculation parameters. There is a one-to-one correspondence between the N sets of common TA parameters and the N sets of common TA variation calculation parameters.
  • N is a positive integer, for example, N is equal to 1, 2, 3, 3, 4, 5, 8, 9, 10, 12, 13, 53 or other values.
  • the first common TA parameter is one of the N sets of common TA parameters.
  • Each group of common TA parameters includes one or more common TA parameters.
  • the first common TA variation calculation parameter is a common TA variation calculation parameter corresponding to the first common TA parameter.
  • Each group of common TA variation calculation parameters includes one or more common TA variation calculation parameters.
  • the common TA used by the terminal to send the random access preamble sequence is obtained by updating the common TA based on the common TA variation calculation parameter. Since the common TA variation is considered, the updated common TA is relatively Fixed common TA is more time-sensitive, which is beneficial to reduce the probability of crosstalk between related codes. Further, it is beneficial to prevent the random access signal from reaching the satellite base station early, thereby solving the problem that the TA in the RAR does not support negative value indication.
  • the first common TA parameter is, for example, a group of the N sets of common TA parameters that meet the Doppler threshold judgment condition or the Doppler change rate threshold judgment condition or the position interval threshold judgment condition. common TA parameters.
  • Doppler thresholds form multiple Doppler threshold intervals
  • One group of common TA parameters in the common TA parameters is the first common TA parameter.
  • Other situations can be deduced by analogy.
  • the common TA variation calculation parameters can be various, which will be described with specific examples below.
  • TA_full TA_common+(t2-t1)*KTA.
  • TA_full represents the updated common TA
  • the TA_common represents the first common TA
  • the first common TA variation calculation parameter includes KTA, where the KTA represents the change rate of the common timing advance over time, and the t1 represents The first common timing advances the transmission time of the common TA parameter, and the t2 represents the transmission time of the random access preamble sequence.
  • the terminal further receives a time stamp, which is used to indicate the sending time t1 of the common TA parameter of the first common timing advance.
  • the terminal receives the first common TA or the first common TA change calculation parameter sent by the network side through the system information block SIB or the remaining minimum system information RMSI; the SIB has a change period, and the change period is within the change period.
  • the periodic signal is sent repeatedly, and the content remains unchanged.
  • the start frame of the change period has certain constraints.
  • the first commonTA or the first commonTA variation calculation parameter received by the terminal is updated or changed, which occurs at the start frame of the change period. Therefore, the transmission time t1 of the common TA parameter in advance of the first common timing may be determined by the start frame of the change period of the system message block SIB.
  • TA_full TA_common+ ⁇ TA_initial+ ⁇ TA_diff.
  • TA_full represents the updated common TA
  • the TA_common represents the first common TA
  • the first common TA variation calculation parameters include ⁇ TA_initial and ⁇ TA_diff
  • the ⁇ TA_initial represents the initial common timing difference (wherein, the initial common
  • the timing difference may be the amount of change in the timing advance at the time when the first random access preamble sequence is allowed to be sent)
  • the ⁇ TA_diff represents the amount of change in the timing advance of t2 relative to ⁇ TA_initial
  • the t2 represents the random access preamble.
  • the sending moment of the sequence When t2 is the moment when the first random access preamble sequence is allowed to be sent, then ⁇ TA_diff is equal to 0 at this time.
  • TA_full TA_common+ ⁇ TA1.
  • TA_full represents the updated common TA
  • the TA_common represents the first common TA
  • the first common TA variation calculation parameter includes the ⁇ TA1
  • the first common TA variation calculation parameter includes common TAs corresponding to multiple times.
  • TA variation calculation parameter the ⁇ TA1 represents the common TA variation calculation parameter corresponding to the t2 included in the first common TA variation calculation parameter
  • the t2 represents the transmission of the random access preamble sequence time.
  • an embodiment of the present application provides a terminal, including:
  • the receiving unit is configured to receive the first common timing advance common TA parameter and the first common TA variation calculation parameter, where the first common TA parameter is used to obtain the first common TA, and the first common TA variation calculation parameter is used for The updated common TA is obtained by updating the first common TA.
  • the sending unit is used to send the random access preamble sequence using the updated common TA.
  • the receiving unit is specifically configured to receive a message carrying N sets of common TA parameters and N sets of common TA variation calculation parameters, the N sets of common TA parameters and the N sets of common TAs
  • the change amount calculation parameters correspond one-to-one; wherein, the N is a positive integer;
  • the first common TA parameter is one of the N sets of common TA parameters, and each set of common TA parameters includes one or more common TA parameters;
  • the first common TA change amount calculation parameter is a common TA change amount calculation parameter corresponding to the first common TA change amount calculation parameter, and each group of common TA change amount calculation parameters includes one or more common TA change amount calculation parameters.
  • the first common TA parameter is a group of the N sets of common TA parameters that meet the Doppler threshold judgment condition or the Doppler change rate threshold judgment condition or the position interval threshold judgment condition common TA parameters.
  • the common TA variation calculation parameters can be different parameters, which are described in specific examples below.
  • TA_full TA_common+(t2-t1)*KTA.
  • TA_full represents the updated common TA
  • the TA_common represents the first common TA
  • the first common TA variation calculation parameter includes KTA, where the KTA represents the change rate of the common timing advance over time, and the t1 represents The first common timing advances the transmission time of the common TA parameter, and the t2 represents the transmission time of the random access preamble sequence.
  • the terminal further receives a time stamp, which is used to indicate the sending time t1 of the common TA parameter of the first common timing advance.
  • the terminal receives the first common TA or the first common TA change calculation parameter sent by the network side through the system information block SIB or the remaining minimum system information RMSI; the SIB has a change period, and the change period is within the change period.
  • the broadcast is repeatedly sent, and the content remains unchanged.
  • the start frame of the change period has certain constraints.
  • the first commonTA or the first commonTA variation calculation parameter received by the terminal is updated or changed, which occurs at the start frame of the change period. Therefore, the transmission time t1 of the common TA parameter in advance of the first common timing may be determined by the start frame of the change period of the system message block SIB.
  • TA_full TA_common+ ⁇ TA_initial+ ⁇ TA_diff.
  • TA_full represents the updated common TA
  • the TA_common represents the first common TA
  • the first common TA variation calculation parameters include ⁇ TA_initial and ⁇ TA_diff
  • the ⁇ TA_initial represents the initial common timing difference (wherein, the initial common
  • the timing difference may be the amount of change in the timing advance at the time when the first random access preamble sequence is allowed to be sent)
  • the ⁇ TA_diff represents the amount of change in the timing advance of t2 relative to ⁇ TA_initial
  • the t2 represents the random access preamble.
  • the sending moment of the sequence When t2 is the moment when the first random access preamble sequence is allowed to be sent, then ⁇ TA_diff is equal to 0 at this time.
  • TA_full TA_common+ ⁇ TA1.
  • TA_full represents the updated common TA
  • the TA_common represents the first common TA
  • the first common TA variation calculation parameter includes the ⁇ TA1
  • the first common TA variation calculation parameter includes common TAs corresponding to multiple times.
  • TA variation calculation parameter the ⁇ TA1 represents the common TA variation calculation parameter corresponding to the t2 included in the first common TA variation calculation parameter
  • the t2 represents the transmission of the random access preamble sequence time.
  • an embodiment of the present application provides a satellite communication method, including: a satellite communication device (for example, a satellite or a ground station) obtains a first common timing advance common TA parameter and a first common TA variation calculation parameter.
  • the satellite communication device sends the first common timing advance common TA parameter and the first common TA variation calculation parameter, the first common TA parameter is used to obtain the first common TA, and the first common TA variation calculation parameter is used to The first common TA is updated to obtain an updated common TA, and the updated common TA is used by the terminal to send a random access preamble sequence.
  • the sending the first common timing advance common TA and the first common TA variation calculation parameter includes sending a message carrying N sets of common TA parameters and N sets of common TA variation calculation parameters.
  • the N sets of common TA parameters and the N sets of common TA variation calculation parameters have a one-to-one correspondence.
  • N is a positive integer, for example, N is equal to 1, 2, 3, 3, 4, 5, 8, 9, 10, 12, 13, 53 or other values.
  • the first common TA parameter is one of the N sets of common TA parameters, and each set of common TA parameters includes one or more common TA parameters.
  • the first common TA change amount calculation parameter is a common TA change amount calculation parameter corresponding to the first common TA change amount calculation parameter, and each group of common TA change amount calculation parameters includes one or more common TA change amount calculation parameters.
  • the first common TA parameter is, for example, one of the N groups of common TA parameters that meet the Doppler threshold judgment condition or the Doppler change rate threshold judgment condition or the position interval threshold judgment condition.
  • Group common TA parameters are, for example, one of the N groups of common TA parameters that meet the Doppler threshold judgment condition or the Doppler change rate threshold judgment condition or the position interval threshold judgment condition.
  • an embodiment of the present application provides a satellite communication device, which may include:
  • the obtaining unit is configured to obtain the first common timing advance common TA parameter and the first common TA variation calculation parameter.
  • the sending unit is configured to send the first common timing advance common TA parameter and the first common TA variation calculation parameter, where the first common TA parameter is used to obtain the first common TA, and the first common TA variation calculation parameter is used for For the updated common TA obtained by updating the first common TA, the updated common TA is used by the terminal to send the random access preamble sequence.
  • the sending unit is specifically configured to send a message carrying N sets of common TA parameters and N sets of common TA variation calculation parameters, the N sets of common TA parameters and the N sets of common TAs
  • the change amount calculation parameters correspond one-to-one; wherein, the N is a positive integer;
  • the first common TA parameter is one of the N sets of common TA parameters, and each set of common TA parameters includes one or more common TA parameters;
  • the first common TA change amount calculation parameter is a common TA change amount calculation parameter corresponding to the first common TA change amount calculation parameter, and each group of common TA change amount calculation parameters includes one or more common TA change amount calculation parameters.
  • an embodiment of the present application provides a satellite communication method including:
  • the terminal receives the position indication of the first reference point.
  • the terminal calculates the common TA based on the satellite real-time position and the position indication of the first reference point; the terminal uses the common TA to send a random access preamble sequence.
  • the receiving the first reference point position indication includes: receiving a message carrying M reference point position indications, the M reference point position indications include the first reference point position indication, and the The first reference point indicated by the first reference point position indication is the reference point closest to the terminal among the M reference points.
  • an embodiment of the present application provides a terminal, which may include:
  • the receiving unit is configured to receive the position indication of the first reference point.
  • the calculation unit is configured to calculate the common TA based on the satellite real-time position and the position indication of the first reference point.
  • the sending unit is configured to use the common TA to send a random access preamble sequence.
  • the receiving the first reference point position indication includes: receiving a message carrying M reference point position indications, the M reference point position indications include the first reference point position indication, and the The first reference point indicated by the first reference point position indication is the reference point closest to the terminal among the M reference points.
  • an embodiment of the present application provides a satellite communication method, including:
  • the satellite communication device obtains the position indication of the first reference point.
  • the satellite communication device sends the first reference point position indication, where the first reference point position indication is used to calculate the common TA according to the real-time position of the satellite, where the common TA is used by the terminal to send random access Leader sequence.
  • the sending the first reference point position indication includes: sending a message carrying M reference point position indications, the M reference point position indications include the first reference point position indication, and the The first reference point indicated by the first reference point position indication is the reference point closest to the terminal among the M reference points.
  • an embodiment of the present application provides a satellite communication device, including:
  • the obtaining unit is used to obtain the position indication of the first reference point.
  • the sending unit sends the first reference point position indication, the first reference point position indication is used to calculate the common TA according to the real-time position of the satellite, and the common TA is used by the terminal to send a random access preamble sequence.
  • the embodiments of the present application also provide a satellite communication device (such as a terminal device or a ground base station or a satellite), which may include: a processor and a memory coupled to each other; wherein the processor is used to call the storage in the memory
  • a satellite communication device such as a terminal device or a ground base station or a satellite
  • the processor is used to call the storage in the memory
  • a computer program for executing, for example, part or all of the steps of any one of the first aspect or the third aspect or the fifth aspect or the seventh aspect.
  • an embodiment of the present application also provides a computer-readable storage medium that stores a computer program, wherein the computer program is executed by a processor to accomplish any of the above aspects Part or all of the steps of the method.
  • the embodiments of the present application also provide a computer program product including instructions.
  • the satellite communication equipment can execute part or all of the steps of the above methods. .
  • an embodiment of the present application further provides a communication device including: an input interface circuit, a logic circuit, and an output interface circuit; the logic circuit is used to perform part or all of the steps of any one of the above aspects.
  • an embodiment of the present application further provides a communication device including: at least one input terminal, a signal processor, and at least one output terminal; wherein the signal processor is used to execute any one of the above aspects Some or all of the steps.
  • Fig. 1-A is a schematic diagram of a satellite communication scenario provided by an embodiment of the present application.
  • Fig. 1-B is a schematic diagram of a scene of a gaze mode provided by an embodiment of the present application.
  • Fig. 1-C is a schematic diagram of a scene in a non-gaze mode provided by an embodiment of the present application.
  • Fig. 1-D is a schematic diagram of Common TA of a satellite broadcast common timing advance provided by an embodiment of the present application.
  • Fig. 1-E is a schematic diagram of the relationship between the minimum round-trip delay and the minimum elevation angle provided by an embodiment of the present application.
  • Figure 1-F is a schematic diagram of the timing of uplink random access signals received at different locations according to an embodiment of the present application.
  • Fig. 1-G is a schematic diagram of satellite movement provided by an embodiment of the present application.
  • Fig. 1-H is a schematic diagram of a feeder link and a service link of satellite communication provided by an embodiment of the present application.
  • Fig. 2 is a schematic flowchart of a satellite communication method provided by an embodiment of the present application.
  • FIG. 3-A is a schematic diagram of the timing of downlink data frames on the satellite side according to an embodiment of the present application.
  • Fig. 3-B is a schematic diagram of another satellite-side downlink data frame timing provided by an embodiment of the present application.
  • Figure 3-C is a schematic diagram of another satellite-side downlink data frame timing provided by an embodiment of the present application.
  • Fig. 3-D is a schematic diagram of another satellite-side downlink data frame timing provided by an embodiment of the present application.
  • Fig. 3-E is a schematic diagram of another mapping relationship between a DV value and a parameter group provided by an embodiment of the present application.
  • FIG. 3-F is a schematic diagram of another mapping relationship between a DV value and a reference point provided by an embodiment of the present application.
  • Fig. 3-G is a schematic diagram of curve fitting of the minimum round-trip delay versus time provided by an embodiment of the present application.
  • Fig. 4 is a schematic flowchart of another satellite communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a satellite communication device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another terminal provided by an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of another satellite communication device provided by an embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of another satellite communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another satellite communication device provided by an embodiment of the present application.
  • Fig. 11 is a schematic structural diagram of another satellite communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of determining a timing advance value according to a start frame of a change period according to an embodiment of the present application.
  • FIG. 13 is another schematic diagram of determining the timing advance value according to the start frame of the change period provided by an embodiment of the present application.
  • terrestrial 5G will have a complete industrial chain, a huge user group, and a flexible and efficient application service model. Therefore, the satellite communication system and the 5G network are merged with each other and complement each other to form a seamless global sea, land, air, and space integrated integrated communication network to meet the ubiquitous business needs of users. It is an important part of the future communication development. Important direction.
  • a user terminal accesses a data network (DN, Data Network) and so on by accessing a satellite communication network, and uses services provided by an operator or a third party on the DN.
  • DN Data Network
  • the user terminal, user equipment, terminal equipment, terminal, satellite communication terminal, etc. in the embodiments of the present application may be collectively referred to as UE. That is, unless otherwise specified, the UEs described later in the embodiments of this application can be replaced with user terminals, user equipment, terminal equipment, terminals, satellite communication terminals (terminals in satellite communication scenarios), and of course they can also interact with each other. exchange.
  • Satellites have signal processing capabilities (regenerative mode) or satellites transparently forward user signals (transparent mode) to ground base stations (ground base stations can also be called ground stations or satellite communication ground base stations, etc.) to achieve wide-area coverage communication scenarios .
  • signal processing capabilities regenerative mode
  • satellites transparently forward user signals transparent mode
  • ground base stations can also be called ground stations or satellite communication ground base stations, etc.
  • Fig. 1-B is a schematic diagram of the steerable mode.
  • Figure 1-C is a schematic diagram of the non-gaze mode.
  • the gaze mode the satellite beam or the coverage area of the cell is unchanged for a certain period of time.
  • the non-gaze mode the beam of the satellite or the coverage area of the cell moves along with the movement of the satellite.
  • the advantage of the gaze mode is that if the user terminal (UE) does not move much in the beam or cell, then there is no need to do beam or cell switching during the visible window of the satellite.
  • the UE In the non-gaze mode, the UE needs to perform beam or cell switching more frequently.
  • the distance between the satellite and the beam or the reference point in the cell will always change, which affects the common timing advance determined by the satellite according to the reference point ( Common TA) timeliness.
  • Figure 1-D illustrates a possible way of common timing advance (Common TA) for satellite broadcasting. It is assumed that the satellite moves along the orbit and passes through 1/2/3/4 positions in turn. At different locations, the satellite broadcasts a common timing advance (Common TA) based on the distance between it and the reference point.
  • the reference point can be the closest point to the satellite in the beam or the cell.
  • the common timing advance can be the round-trip delay between the satellite and the reference point.
  • Figure 1-D the satellite moves from position 1 to position 4.
  • Figure 1-E Figure 1-E illustrates a relationship between the minimum round-trip delay in the beam or cell and the minimum elevation angle in the beam or cell. As the satellite moves in the beam or cell The minimum elevation angle will change. As the satellite moves, the minimum round-trip delay changes.
  • the movement of the satellite will produce the biggest round-trip delay change rate of 40us/s.
  • Figure 1-D when the satellite broadcasts the common timing advance at position 1, the satellite moves to another position, such as position 2, after 160 ms. At this time, the distance between the satellite and the reference point changes, and the position becomes smaller. If the UE near the reference point uses the common timing advance broadcast by the satellite at position 1 to send the random access preamble, then the timing advance used by the UE will be greater than the round-trip delay between the UE and the satellite. 6.4us. This will cause inter-symbol interference (ISI, Inter-Symbol Interference) between signals. For example, as shown in Figure 1-F.
  • ISI Inter-Symbol Interference
  • the received preamble will arrive earlier than the expected arrival timing, which will interfere with the reception of the previous signal.
  • the timing advance command (TA Command, Timing Advance Command) in the random access response (RAR, Random Access Response) sent to the UE by the ground base station can only indicate a positive value. Therefore, When the UE sends a message 3 (message 3) for resolving contention, it cannot make accurate timing adjustments.
  • the random access preamble sequence may also be referred to as a random access preamble signal or an uplink random access preamble sequence or an uplink random access preamble signal.
  • the satellite broadcast common timing is used when the UE is used to send the preamble.
  • the public timing advance that has been broadcast may be greater than the public timing advance that the UE really needs to use when sending the preamble, which will cause the inaccurate timing advance of ISI and subsequent uplink signals, that is, the timeliness of the public timing advance. .
  • the following further discusses how to solve the problem that ISI may be generated or may occupy more time-frequency resources; how to solve the problem that the TA command carried in the RAR cannot indicate a negative value, so the uplink timing of the message 3 cannot be accurately adjusted, and so on.
  • Fig. 1-H is a schematic diagram of a feeder link and a service link of satellite communication provided by an embodiment of the present application.
  • a feeder link and a service link of satellite communication provided by an embodiment of the present application.
  • the UE and the base station move faster in a larger cell in terrestrial communications. The following description mainly focuses on the scenario of the satellite communication system.
  • a satellite communication method may include:
  • a satellite communication device (such as a satellite or a satellite ground station) obtains the first common TA parameter and the first common TA variation calculation parameter.
  • the satellite communication device sends (such as broadcast or unicast) the first common TA parameter and the first common TA variation calculation parameter.
  • the first common TA parameter is used to obtain the first common TA
  • the first common TA variation calculation parameter can be used to update the first common TA to obtain an updated common TA.
  • the updated common TA is used by the terminal to send the random access preamble sequence.
  • the first common timing advance common TA parameter may be the first common TA itself, or any one or more parameters that can be calculated to obtain the first common TA.
  • the first common TA variation calculation parameter is related to the moment of sending the random access preamble sequence or is related to the real-time position of the satellite.
  • the common TA variation calculation parameters can be calculated through the system information block 1 (System Information Block, SIB) SIB1 or the remaining minimum system information (Remaining Minimum SI, RMSI), other systems At least one of information (Other System Information, OSI), Main Information Block (MIB), and other information blocks are sent to the UE (broadcast or multicast). If it is sent during the radio resource control (Radio Resource Control, RRC) connection phase, the network side can additionally include the RRC, Downlink Control Information (DCI), group DCI, and Media Access Control (MAC) elements. Or at least one of timing advance commands (Timing Advance Command, TAC), or transmitted along with data or in a separately allocated physical downlink shared channel (Physical Downlink Shared Channel, PDSCH).
  • the terminal receives the first common timing advance common TA parameter and the first common TA variation calculation parameter sent by the satellite communication device.
  • the first common TA parameter is used to obtain the first common TA
  • the first common TA variation calculation parameter is used to update the first common TA to obtain an updated common TA.
  • the terminal may use the first common TA variation calculation parameter to update the first common TA to obtain the updated common TA.
  • the terminal uses the updated common TA to send the random access preamble sequence.
  • receiving the first common timing advance common TA parameter and the first common TA variation calculation parameter includes: receiving a message carrying N sets of common TA parameters and N sets of common TA variation calculation parameters, the N sets of common TA parameters One-to-one correspondence with the N sets of common TA variation calculation parameters.
  • N is a positive integer, for example, N is equal to 1, 2, 3, 3, 4, 5, 8, 9, 10, 12, 13, 53 or other values.
  • the first common TA parameter is one of the N sets of common TA parameters, and each set of common TA parameters includes one or more common TA parameters.
  • the first common TA change amount calculation parameter is a common TA change amount calculation parameter corresponding to the first common TA change amount calculation parameter, and each group of common TA change amount calculation parameters includes one or more common TA change amount calculation parameters.
  • the first common TA parameter is a group of common TA parameters that meet the Doppler threshold judgment condition or the Doppler change rate threshold judgment condition or the position interval threshold judgment condition among the N groups of common TA parameters.
  • TA_full TA_common+(t2-t1)*KTA.
  • TA_full represents the updated common TA
  • the TA_common represents the first common TA
  • the first common TA variation calculation parameter includes KTA, where the KTA represents the change rate of the common timing advance over time, and the t1 represents The first common timing advances the transmission time (for example, obtained from ephemeris information) or the reception time of the common TA parameter, and the t2 represents the transmission time of the random access preamble sequence.
  • TA_full TA_common+ ⁇ TA_initial+ ⁇ TA_diff.
  • TA_full represents the updated common TA
  • the TA_common represents the first common TA
  • the first common TA variation calculation parameters include ⁇ TA_initial and ⁇ TA_diff
  • the ⁇ TA_initial represents the initial common timing difference (wherein, the initial common
  • the timing difference may be the amount of change in the timing advance at the time when the first random access preamble sequence is allowed to be sent)
  • the ⁇ TA_diff represents the amount of change in the timing advance of t2 relative to ⁇ TA_initial
  • the t2 represents the random access preamble.
  • the sending moment of the sequence When t2 is the moment when the first random access preamble sequence is allowed to be sent, then ⁇ TA_diff is equal to 0 at this time.
  • TA_full TA_common+ ⁇ TA1.
  • TA_full represents the updated common TA
  • the TA_common represents the first common TA
  • the first common TA variation calculation parameter includes the ⁇ TA1
  • the first common TA variation calculation parameter includes common TAs corresponding to multiple times.
  • TA variation calculation parameter the ⁇ TA1 represents the common TA variation calculation parameter corresponding to the t2 included in the first common TA variation calculation parameter
  • the t2 represents the transmission of the random access preamble sequence time.
  • the common TA used by the terminal to send the random access preamble sequence is obtained by updating the common TA based on the common TA variation calculation parameter. Since the common TA variation is considered, the updated common TA is relatively Fixed common TA is more time-sensitive, which is beneficial to reduce the probability of crosstalk between related codes. Further, it is beneficial to prevent the random access signal from reaching the satellite base station early, thereby solving the problem that the TA in the RAR does not support negative value indication.
  • Points 8 and 9 are the closest and furthest points from the satellite. Depending on the location of the satellite, 8 may become the furthest point, and point 9 may be the closest point.
  • the satellite can calculate the reference point used in common TA, which can be selected as the beam or the point closest to the satellite in the cell. For example, when the satellite is at position 1, the satellite calculates the round-trip delay through points 1 and 8, and can use this value as the value of common TA for broadcasting.
  • the value of the broadcast common TA can also be increased or decreased by an offset value on this basis (the offset value considers the height of the UE, etc.).
  • the manifestation of the Common TA parameter may also be, for example, one-way delay, or one-way distance or round-trip distance.
  • the common TA parameter is the common TA of satellite broadcasting.
  • the UE may use a full TA (full TA) or may use a UE-specific TA (UE-level TA) to send a random access preamble sequence.
  • Full TA represents the timing advance value used by the UE when the network side (satellite or base station) does not compensate for the received uplink signal sent by the UE;
  • UE-specific TA represents the network side performs the uplink signal sent by the received UE.
  • the timing advance value used by the UE during delay compensation.
  • the delay compensation of the uplink signal by the network side can be understood as delay processing for the receiving window of the uplink signal sent by the UE.
  • the common TA change amount calculation parameter may be the common TA change rate KTA or the common TA change amount, etc.
  • the common TA change rate KTA can be used as a common TA change calculation parameter to obtain the timing advance full TA used when the UE sends the random access preamble sequence.
  • the following takes the common TA change amount calculation parameter including the common TA change rate KTA as an example.
  • the satellite base station In the case of broadcasting the common TA, the satellite base station also broadcasts the change rate KTA of the common TA for use when the UE sends the random access preamble sequence to update the common TA.
  • the full TA used by the UE to send the random access preamble sequence can have the following possible meanings:
  • the full TA used by the UE may be the TA of the service link part.
  • the full TA used by the UE may be the TA of the service link+feeder link.
  • the full TA used by the UE may be the TA of the service link part.
  • the UE may determine the timing advance full TA used when sending the random access preamble sequence according to the common TA and the common timing advance change rate KTA.
  • TA_full TA_common+(t2-t1)*KTA.
  • TA_common represents the common timing advance received by the UE and sent by the network side.
  • t1 is the time when the satellite transmits TA_common.
  • the ephemeris information can carry the time when the ephemeris information is sent, and based on this, the time when the satellite sends TA_common can also be known.
  • t1 represents the time when the UE receives TA_common, and the satellite needs to compensate for the time delay of the signal from the satellite to the UE when sending TA_common, that is, adjust TA_common through the offset value when sending TA_common.
  • the satellite base station also sends a time stamp when broadcasting TA_common, and this time stamp represents the time t1 when TA_common is broadcast.
  • the UE may obtain the common timing advance TA_common value by broadcasting, and the time t1 of sending TA_common is equal to the sending time of sending the broadcast message carrying the TA_common.
  • the time indicated by t1 may be an absolute time or a relative time.
  • the difference can be a fixed time value or a varying time value (it can be positive or negative or zero).
  • the network side (which can be a satellite or ground station) performs delay compensation when receiving the signal sent by the UE (that is, the delay operation is performed on the receiving window of the network side to receive the signal sent by the UE), and the delay compensation value It can be equal to or not equal to the round-trip delay of the feeder link.
  • t0 can be equal to the delay compensation performed by the network side when receiving the signal sent by the UE; if the delay compensation value is equal to the round-trip delay of the feeder link, the t0 value is equal to the round-trip delay of the feeder link.
  • the UE after receiving the timestamp t1, the UE obtains the timing advance value used for sending the uplink signal according to the timestamp t1.
  • t2 represents the time when the UE uses the full TA to send the uplink random access preamble sequence.
  • t2 represents the moment when the UE sends the uplink signal
  • the moment may be an absolute time or a relative time.
  • the absolute time may be UTC time when the UE is sending an uplink signal.
  • the relative time may be the time when the network side receives the uplink signal after the UE sends the uplink signal, for example, the UTC time when the network side receives the uplink signal.
  • the variation of the common TA may be used as the common TA variation calculation parameter to obtain the timing advance full TA used when the UE sends the random access preamble sequence.
  • the satellite base station when the satellite base station broadcasts the common TA, it also broadcasts the timing advance difference ⁇ TA1, ⁇ TA2, ⁇ TA3.. corresponding to the random access occasion (RO, RACH occasion) for the UE to send the random access preamble sequence.
  • the timing advance value used when the satellite base station broadcasts the common TA.
  • the UE determines the timing advance full TA used when sending the random access preamble sequence according to the common TA and the timing advance change ⁇ TA.
  • the UE determines the timing advance used according to the random access timing used:
  • TA_full TA_common+ ⁇ TA1 (UE sends random access preamble sequence in RO1)
  • TA_full TA_common+ ⁇ TA1+ ⁇ TA2 (UE sends random access preamble sequence in RO2)
  • TA_full TA_common+ ⁇ TA1+ ⁇ TA2+ ⁇ TA3 (UE sends random access preamble sequence in RO3)
  • TA_full TA_common+ ⁇ TA1+ ⁇ TA2+ ⁇ TA3+ ⁇ TA4 (UE sends random access preamble sequence in RO3)
  • TA_full TA_common+ ⁇ TA1+ ⁇ TA2+ ⁇ TA3+ ⁇ TA4...+ ⁇ TAn (UE sends random access preamble sequence on ROn)
  • TA_common represents the value of the common timing advance received by the UE.
  • ⁇ TA1, ⁇ TA2, etc. represent the common TA variation between ROs.
  • RO1 is the moment when the random access preamble sequence is allowed to be sent first.
  • RO2 is the moment when the random access preamble sequence is allowed to be sent second, and so on.
  • ⁇ TA1, ⁇ TA2, etc. may also be used to represent the amount of change in the common TA between different RO times and the time when the satellite base station sends the common TA. Therefore, the UE determines the timing advance to be used according to the random access timing used, which is expressed as:
  • TA_full TA_common+ ⁇ TA1 (UE sends random access preamble sequence in RO1).
  • TA_full TA_common+ ⁇ TA2 (UE sends random access preamble sequence in RO2).
  • TA_full TA_common+ ⁇ TA3 (UE sends random access preamble sequence in RO3).
  • TA_full TA_common+ ⁇ TA4 (UE sends random access preamble sequence in RO4).
  • TA_full TA_common+ ⁇ TAn (UE sends random access preamble sequence on ROn).
  • FIG. 3-A is a schematic diagram of the timing of downlink data frames on the satellite side. See Figure 3-A.
  • GNSS Global Navigation Satellite System
  • a UE without the Global Navigation Satellite System (GNSS) function can calculate the full TA according to the above method (for example, the Global Positioning System (GPS) is a type of GNSS) to send random access Into the leader sequence.
  • GPS Global Positioning System
  • a UE with GPS it can calculate TA based on the ephemeris and its own location information.
  • the random access preamble sequences received on different ROs correspond to the random access preamble sequences sent using different update common TAs.
  • the satellite base station when the satellite base station broadcasts the common TA, it broadcasts the initial common timing difference ⁇ TA_initial and the timing advance variation ⁇ TA_diff related to the random access timing, which is used by the UE to update the timing advance value when sending the random access preamble sequence. .
  • TA_full TA_common+ ⁇ TA_initial (send preamble in RO1).
  • TA_full TA_common+ ⁇ TA_initial+ ⁇ TA_diff (send preamble in RO2).
  • TA_full TA_common+ ⁇ TA_initial+2* ⁇ TA_diff (send preamble in RO3).
  • TA_full TA_common+ ⁇ TA_initial+(n-1)* ⁇ TA_diff (send preamble in ROn).
  • ⁇ TA_initial represents the common TA change amount when the UE sends the random access preamble sequence in RO1.
  • ⁇ TA_diff represents the common TA variation of the UE in the time interval between two adjacent ROs.
  • Figure 3-B is a schematic diagram of another downlink data frame timing on the satellite side. See Figure 3-B.
  • the UE uses different ROs to send random access signals, the corresponding updated common TA value is used.
  • the UE without GPS can calculate the full TA according to the above method to send the random access preamble sequence.
  • the random access preamble sequences received on different ROs correspond to the random access preamble sequences sent using different update common TAs.
  • the common TA change amount calculation parameter may be the change rate KTA of common TA or the change amount of common TA, etc.
  • the common TA change rate KTA can be used as a common TA change amount calculation parameter to obtain UE-specific TA.
  • the following takes the common TA change amount calculation parameter including the common TA change rate KTA as an example.
  • the satellite side compensates for the common timing advance of the uplink signal, that is, the amount of the common timing advance that the satellite base station delays the reception window backward when receiving the uplink signal, and the UE side does not need to make timing advance compensation for this part of the time delay.
  • the amount of public time delay that the satellite compensates for the uplink signal changes. For example, when the satellite moves from position 1 to position 2, the public time delay of the uplink signal gradually becomes smaller.
  • the UE only needs to compensate for the amount of time delay excluding the common timing advance.
  • the random access preamble sequence can be sent directly. If the UE has positioning capabilities, the UE can calculate the Full TA based on the ephemeris information and its own location information, and then subtract the satellite-side compensated common timing advance (Compensated Common TA), where TA_compensated represents the satellite-side compensated common timing advance .
  • Compensated Common TA represents the satellite-side compensated common timing advance .
  • the satellite can broadcast the size of the compensated common TA, and the satellite can determine the compensated common TA according to its location and the position of the reference point. For example, an offset value can be added or reduced based on the round-trip time delay between the satellite and the position of the reference point (the offset value can consider the height of the UE, etc.).
  • the satellite base station When the satellite base station broadcasts its compensated TA_compensated, it also broadcasts its rate of change KTA for the UE with positioning function to calculate the timing advance adjustment value it needs to use, and use the timing advance adjustment value to send random access data.
  • the network side compensation common timing advance TA_compensated can be calculated according to the following formula:
  • TA_compensated TA_common+(t2-t1)*KTA.
  • TA_common is the common timing advance compensated at time t1 of satellite broadcasting.
  • t1 is the time when the satellite transmits the common timing advance.
  • the ephemeris information carries the time when the ephemeris information is sent, and based on this, the time when the satellite sends the public timing advance can also be known.
  • t1 represents the time when the UE receives the common timing advance, and the satellite compensates for the time delay of the signal from the satellite to the UE when sending the common timing advance, that is, the common timing advance is adjusted by the offset value when the common timing advance is transmitted.
  • the satellite sends a timestamp at the same time when the broadcast common timing advances. The timestamp indicates the time when the broadcast common timing advances.
  • the satellite sends the TA_common value by broadcasting, and the time t1 when the TA_common is sent is equal to the time when the broadcast message carrying the TA_common is sent.
  • the time indicated by t1 may be an absolute time or a relative time.
  • t2 is the time when the UE uses the UE-specific TA to send the uplink random access preamble sequence. Or t2 is the moment when the satellite base station receives the random access preamble sequence. Since the UE can calculate the propagation delay of the signal from the UE to the satellite base station through the ephemeris information and its own position information, it can be obtained that the satellite receives the random access preamble sequence. time.
  • TA_cal is the complete timing advance calculated by the UE according to the ephemeris information and its own location information, and then subtract TA_compensated to obtain the UE-specific TA to be used, denoted as TA_speci.
  • TA_speci TA_cal-TA_compensated.
  • the network side can indicate to the UE whether to use the full TA or UE-specific TA while broadcasting the common TA.
  • the common TA change rate KTA can be used as a common TA change amount calculation parameter to obtain UE-specific TA.
  • the satellite base station When the satellite base station broadcasts its compensated common timing advance TA_compensated, it also broadcasts the timing advance difference ⁇ TA1, ⁇ TA2, ⁇ TA3... corresponding to the random access timing for the UE to update when sending the random access preamble sequence.
  • the timing advance value When the satellite base station broadcasts its compensated common timing advance TA_compensated, it also broadcasts the timing advance difference ⁇ TA1, ⁇ TA2, ⁇ TA3... corresponding to the random access timing for the UE to update when sending the random access preamble sequence.
  • the timing advance value When the satellite base station broadcasts its compensated common timing advance TA_compensated, it also broadcasts the timing advance difference ⁇ TA1, ⁇ TA2, ⁇ TA3... corresponding to the random access timing for the UE to update when sending the random access preamble sequence.
  • the network side compensation common timing advance TA_compensated can be calculated according to the following formula:
  • TA_compensated TA_common+ ⁇ TA1 (UE sends random access preamble sequence in RO1).
  • TA_compensated TA_common+ ⁇ TA1+ ⁇ TA2 (UE sends random access preamble sequence in RO2).
  • TA_compensated TA_common+ ⁇ TA1+ ⁇ TA2+ ⁇ TA3 (UE sends random access preamble sequence in RO3).
  • TA_compensated TA_common+ ⁇ TA1+ ⁇ TA2+ ⁇ TA3+ ⁇ TA4 (UE sends random access preamble sequence in RO3).
  • TA_compensated TA_common+ ⁇ TA1+ ⁇ TA2+ ⁇ TA3+ ⁇ TA4...+ ⁇ TAn (UE sends random access preamble sequence in ROn).
  • TA_common represents the value of the common timing advance received by the UE.
  • ⁇ TA1, ⁇ TA2, etc. represent the common TA variation between ROs.
  • TA_cal is the complete timing advance calculated by the UE according to the ephemeris information and its own location information, and then subtract TA_compensated to obtain the UE-specific TA to be used, denoted as TA_speci.
  • TA_speci TA_cal-TA_compensated.
  • the UE may use the full TA or UE-specific TA, it can indicate to the UE whether to use the full TA or UE-specific TA while broadcasting the common TA.
  • Figure 3-C is another schematic diagram of the timing of downlink data frames on the satellite side. See Figure 3-C.
  • the satellite base station side can compensate for the updated common TA when receiving random access signals.
  • Figure 3-D is another schematic diagram of the timing of downlink data frames on the satellite side. See Figure 3-D.
  • the satellite base station side can compensate for the updated common TA when receiving random access signals.
  • the embodiment of the present application also provides a method for implicitly indicating the sending time and calculating the timing advance. That is, the time when the network side sends TA_common can be implicitly indicated.
  • the broadcast signal sent by the network side has a modification period (modification period), and the periodic signal is repeatedly sent during the modification period, and the content remains unchanged.
  • the network side sends the common timing advance value TA_common or the rate of change KTA in a broadcast message, if the TA_common or KTA value is updated or changed, the TA_common value or KTA value will also be updated at the start frame of the update period mentioned above.
  • the UE can calculate the timing advance value used for sending the uplink signal (for example, sending the random access preamble sequence) by using the information of the above-mentioned starting frame.
  • the base station or the network side (which can be a ground station or a satellite) updates the TA_common value in a certain subframe in the system frame 16.
  • the time t1 when the updated TA_common is sent for the first time can be obtained, that is, the system frame 16. It is the start frame of the change cycle.
  • the UE After receiving the updated TA_common value, the UE sends an uplink signal in the uplink frame 17, and the time of sending the uplink signal is t2.
  • the UE may obtain whether the system information updates the system information in the next change cycle according to the system information change notification, where the system information that may be updated includes SIB1, SIB2, SIB3, and so on.
  • time t1 as shown in FIG. 12 may be the time when the UE receives TA_common in the start frame of the change cycle.
  • the TA_common change caused by the position change during the propagation delay period between the base station and the UE can be compensated by the base station (satellite or ground station) when sending TA_common; or t1 can be the base station (satellite or ground station) in the change cycle start frame Time when TA_common was sent.
  • the time t2 shown in FIG. 12 may be the time when the UE is sending an uplink signal.
  • the time t1 when TA_common is updated is the time at which the base station (satellite or ground station) sends TA_common in the start frame of the change period.
  • the time t2 when the base station receives the uplink signal in FIG. 13. The UE side can obtain the time interval T_interval according to the position of the frame where the uplink signal is sent and the position of the frame where the UE receives the downlink signal.
  • TA_compensated TA_common+(t2-t1)*KTA, t1 and t2 are also It can be determined according to the start frame of the above-mentioned change period.
  • the sending time t1 at which the network side sends TA_common is implicitly indicated, and the network side does not need to send t1 by sending a time stamp, thereby saving signaling overhead.
  • the satellite base station can simultaneously broadcast the common timing advance obtained from these reference points and the rate of change corresponding to each common timing advance.
  • the satellite base station broadcasts judgment thresholds corresponding to these common timing advances, such as a Doppler threshold or a Doppler rate of change threshold or multiple position interval thresholds.
  • the UE determines the common timing advance and the common timing advance change rate that it should use according to the Doppler offset value or the Doppler change rate value obtained by detecting the downlink signal or the rough positioning information.
  • the satellite (regenerative mode) moves from 1 to 7, and the satellite orbit is circular.
  • the satellite broadcasts the common TA at the position 1/2/3/4/5/6/7 and provides it to the UE to send random access signals.
  • Satellite base station side When there are multiple reference points, the common TA of multiple reference points and the corresponding common TA change rate are broadcast at the same time. Among them, in order for the UE to be able to distinguish which common TA is used and its rate of change. It is necessary to broadcast a corresponding judgment threshold, such as a Doppler threshold or a Doppler change rate threshold or multiple position interval thresholds.
  • a corresponding judgment threshold such as a Doppler threshold or a Doppler change rate threshold or multiple position interval thresholds.
  • the UE detects the Doppler offset value or the Doppler change rate value or rough positioning information obtained by detecting the downlink signal to determine the common timing advance and the common timing advance change rate that it should use.
  • the base station broadcasts four sets of common TA and common TA change rate, as shown in Figure 3-E. And the corresponding judgment threshold (Doppler value) DV1, DV2, DV3. Among them, when the UE detects that the frequency offset DV of the downlink signal is within a different range, it selects the common timing advance value and the common timing advance change rate of the corresponding group, as shown in Figure 3-E.
  • Doppler value judgment threshold
  • Network side Satellite broadcast coverage beam or reference point position information in the cell.
  • the UE without GPS calculates the common timing advance value used when sending the access preamble according to the position of the reference point and the satellite ephemeris information.
  • a GPS-equipped UE can calculate the timing advance value used when sending the access preamble based on the ephemeris information and its own location information.
  • Network side The satellite broadcasts the positions of multiple reference points and judgment thresholds to a beam or cell at the same time, such as Doppler threshold or Doppler change rate threshold Or multiple location interval thresholds.
  • the UE side The UE detects the Doppler offset value or the Doppler change rate value or rough positioning information obtained by detecting the downlink signal to determine the reference point position it should use. Then combine the satellite ephemeris information to calculate the common TA used when sending random access signals.
  • the UE without GPS calculates the common timing advance value used when sending the access preamble according to the position of the reference point and the satellite ephemeris information.
  • a GPS-equipped UE can calculate the timing advance value used when sending the access preamble based on the ephemeris information and its own location information.
  • a satellite base station broadcasts the positions of four reference points in a beam, as shown in Figure 3-F. And the corresponding judgment threshold (Doppler value) DV1, DV2, DV3. Among them, when the UE detects that the frequency offset DV of the downlink signal is within a different range, it selects the corresponding reference point and its position information, as shown in Figure 3-F.
  • Doppler value Doppler value
  • the satellite is connected to a certain ground station for a certain period of time to transmit data.
  • the distance between the satellite and the ground station changes, which will affect the common TA or delay of the UE-satellite-ground station link.
  • the service link public delay is unchanged, and the feeder link changes with time.
  • the service link public time delay changes, and the feeder link time changes.
  • the base station can broadcast the location information of the ground station for the UE to calculate the delay information of the feeder link.
  • the UE can use the sum of the feeder link delay and the service link delay to adjust the TA and send the random access preamble sequence.
  • the network side can broadcast a common timing advance change function or timing advance change rate function to the UE, and the UE uses the function to update the used common timing advance.
  • the network side may broadcast the coefficients of a common timing advance variation function to the UE, and the UE uses these coefficients to generate a function.
  • the optional network side can broadcast a starting time t0 of this function, that is, the UE substitutes the time t0 into the function to calculate the change of the common timing advance.
  • the UE can use the ephemeris information to know the time when the coefficient of the function is sent, and use this as the starting time to substitute into the function to calculate the change in the common timing advance.
  • the change in the common timing advance is calculated by substituting it into the function to calculate the change in the common timing advance with 0 seconds from the moment when the UE receives the function coefficient.
  • the UE side uses these coefficients and the agreed function expression to generate a function:
  • FIG. 3-G which compares the function curve with the actual minimum round-trip delay change in the beam. It can be seen that the fitted function curve can better reflect the change of the minimum round-trip delay in the beam with time. .
  • the UE can update the change of common TA in real time according to the curve. This embodiment is also suitable for displaying the time delay of the feeder link in the gaze mode and the non-gaze mode.
  • the function coefficient can be sent to the UE to inform the UE of feeder link delay changes.
  • FIG. 4 is a schematic flowchart of a satellite communication method exemplified in an embodiment of this application.
  • a satellite communication method may include:
  • the satellite communication device obtains a first reference point position indication; sends the first reference point position indication, and the first reference point position indication is used to calculate the common TA according to the real-time position of the satellite, and the common TA is terminal Used to send random access preamble sequence.
  • the terminal receives the first reference point position indication; the common TA is calculated based on the satellite real-time position and the first reference point position indication.
  • receiving a first reference point position indication includes: receiving a message carrying M reference point position indications, the M reference point position indications include the first reference point position indication, and the first reference point position indication is The indicated first reference point is the reference point closest to the terminal among the M reference points, and M is a positive integer.
  • the satellite base station broadcasts the location information of the reference point in its coverage beam or cell.
  • the UE can calculate the real-time common TA value according to the position information of the reference point and the real-time satellite position (the satellite position can come from the ephemeris information).
  • the values of TA_full and TA_compensated can be calculated by the UE according to the position information of the reference point and the ephemeris information.
  • the satellite base station When the satellite base station broadcasts the position information of multiple reference points in a beam or cell, the satellite base station simultaneously broadcasts the judgment thresholds corresponding to these common timing advances, such as Doppler threshold or Doppler rate of change threshold or multiple Location interval threshold.
  • the UE determines the position information of the reference point that it should use according to the Doppler offset value or the Doppler rate of change value or the rough positioning information obtained by detecting the downlink signal. Then calculate the corresponding TA_full or TA_compensated value.
  • the common TA parameter and the common TA variation calculation parameter can be sent in the RRC connection phase.
  • the network side device for example, a satellite communication device
  • the common TA parameter and the common TA variation calculation parameter may change.
  • the network side needs to send updated common TA parameters and/or common TA variation calculation parameters to the terminal.
  • the network side directly sends the updated common TA parameter and/or common TA variation calculation parameter to the terminal.
  • the network side can send the updated common TA parameter and the common TA variation calculation parameter to the terminal separately, that is, they are not sent at the same time; or the network side can send the updated common TA parameter and the common TA variation calculation parameter to the terminal at the same time .
  • the network side sends the common TA parameter and/or the common TA variation calculation parameter update difference to the terminal. After the terminal receives the update difference, it will be compared with the common TA parameter previously used or the previous network side sent to the terminal. The TA parameter and/or the common TA change calculation parameter are added/subtracted to obtain the updated common TA parameter and/or common TA change calculation parameter. For example, taking the common TA and common TA change rates for example, the network side sends the common TA update difference and/or the common TA change rate update difference to the terminal, and the terminal will compare it with the one currently used (or the previous network side) after receiving it.
  • This implementation method can save signaling overhead.
  • the updated common TA parameter and/or common TA variation calculation parameter (or the update difference of the common TA parameter and/or common TA variation calculation parameter) can be transmitted in the above broadcast, multicast, and unicast signaling, for example At least one of the broadcast information including the system information block SIB1, other system messages OSI, the main system information block MIB, etc. may be broadcast or multicast sent by the network device to the terminal.
  • the broadcast information including the system information block SIB1, other system messages OSI, the main system information block MIB, etc.
  • the network device can perform RRC signaling (for example, RRC setup (RRCsetup) message, RRC reconfiguration signaling (RRCReconfiguration), RRC resume signaling (RRCResume), etc.), downlink control information DCI, At least one of the group DCI, medium access control control element MAC CE, and timing advance command TAC carries this information, or is unicast or multicast sent to the UE along with data transmission or in a separately allocated PDSCH bearer.
  • RRC signaling for example, RRC setup (RRCsetup) message, RRC reconfiguration signaling (RRCReconfiguration), RRC resume signaling (RRCResume), etc.
  • RRC signaling for example, RRC setup (RRCsetup) message, RRC reconfiguration signaling (RRCReconfiguration), RRC resume signaling (RRCResume), etc.
  • RRCReconfiguration RRC resume signaling
  • TAC timing advance command
  • the network side adds a new variable field to the random access general configuration (RACH-ConfigGeneric) parameter, such as TA-rate, which represents the common TA change rate, where the RACH-ConfigGeneric parameter is in the broadcast message or
  • RACH-ConfigGeneric random access general configuration
  • TA-rate which represents the common TA change rate
  • the RRC message is sent to the terminal to provide the terminal with the general parameters used in the random access process and subsequent communication.
  • variable fields such as TA-rate or TA-rate update value or TA-rate update difference to other broadcast or multicast signaling with similar functions to realize the transmission/update of the common TA change rate.
  • the function and effect E.g:
  • the network side can determine the representation range of TA-rate according to the maximum rate of change of the satellite position (including the orbital height range, the communication angle range, etc.) and the round-trip delay (or one-way delay) between the reference points, TA-rate It can be positive, negative or zero.
  • the TA-rate uses 0.315us as the dimensional unit, and the TA-rate represents the range from -127 to 127, which requires 8-bit signaling to represent.
  • RACH-ConfigGeneric parameters (including the common timing advance change rate TA-rate) can be transmitted in SIB1, RRC setup signaling (RRCSetup), RRC reconfiguration signaling (RRCReconfiguration), RRC recovery signaling (RRCResume), etc. It can ensure that the terminal can receive the common TA change rate value during the initial access phase and the connection state handover, and establish accurate uplink time synchronization.
  • RRCSetup RRC setup signaling
  • RRCReconfiguration RRC reconfiguration signaling
  • RRCResume RRC recovery signaling
  • a new variable field TA-rate-update is defined in the MAC CE signaling to indicate the common TA change rate value or the common TA change rate value update value or the common TA change rate value update difference.
  • MAC CE signaling can send common TA change rate-related values to each terminal or a group of terminals, which can indicate to the terminal more flexibly. It can achieve the purpose of using different common TA change rate values or update values between different terminals or different groups of terminals.
  • an embodiment of the present application provides a terminal 500, including:
  • the receiving unit 510 is configured to receive a first common timing advance common TA parameter and a first common TA variation calculation parameter, where the first common TA parameter is used to obtain a first common TA, and the first common TA variation calculation parameter The updated common TA is used to update the first common TA.
  • the sending unit 520 is configured to use the updated common TA to send the random access preamble sequence.
  • each module in the terminal 500 can be used to cooperate to implement part or all of the steps of any method executed by the terminal in the embodiment shown in FIG. 2.
  • an embodiment of the present application provides a satellite communication device 600, which may include:
  • the obtaining unit is configured to obtain the first common timing advance common TA parameter and the first common TA variation calculation parameter.
  • the sending unit is configured to send the first common timing advance common TA parameter and the first common TA variation calculation parameter, where the first common TA parameter is used to obtain the first common TA, and the first common TA variation calculation parameter is used for For the updated common TA obtained by updating the first common TA, the updated common TA is used by the terminal to send the random access preamble sequence.
  • each module in the satellite communication device 600 can be used to cooperate to implement part or all of the steps of any method executed by the terminal in the embodiment shown in FIG. 2.
  • an embodiment of the present application provides a terminal 700, which may include:
  • the receiving unit 710 is configured to receive the first reference point position indication.
  • the calculation unit 720 is configured to calculate a common TA based on the satellite real-time position and the position indication of the first reference point.
  • the sending unit 730 is configured to use the common TA to send a random access preamble sequence.
  • the receiving the first reference point position indication includes: receiving a message carrying M reference point position indications, the M reference point position indications include the first reference point position indication, and the The first reference point indicated by the first reference point position indication is the reference point closest to the terminal among the M reference points.
  • each module in the terminal 700 can be used to cooperate to implement part or all of the steps of any method executed by the terminal in the embodiment shown in FIG. 4.
  • each module in the terminal 700 can be used to cooperate to implement part or all of the steps of any method executed by the terminal in the embodiment shown in FIG. 2.
  • the receiving unit 710 is configured to receive the first common timing advance common TA parameter and the first common TA variation calculation parameter, where the first common TA parameter is used to obtain the first common TA, and the first common TA changes The quantity calculation parameter is used to update the first common TA to obtain the updated common TA;
  • the calculation unit 720 is configured to update the first common TA according to the first common TA change calculation parameter, so as to obtain the updated common TA;
  • the sending unit 730 is configured to use the updated common TA to send the random access preamble sequence.
  • an embodiment of the present application provides a satellite communication device 800, including:
  • the obtaining unit 810 is configured to obtain the position indication of the first reference point.
  • the sending unit 820 is configured to send the first reference point position indication, where the first reference point position indication is used to calculate the common TA according to the real-time position of the satellite, where the common TA is used by the terminal to send random access Into the leader sequence.
  • each module in the terminal 800 can be used to cooperate to implement part or all of the steps of any method executed by the terminal in the embodiment shown in FIG. 4.
  • an embodiment of the present application also provides a satellite communication device 900 (satellite communication device 900 such as a terminal device or a ground base station or satellite, etc.), which may include a processor 910 and a memory 920 coupled to each other.
  • the processor is configured to call a computer program stored in the memory to execute part or all of the steps of any method provided in the embodiments of the present application.
  • the embodiments of the present application also provide a computer-readable storage medium, the computer-readable storage medium stores a computer program, wherein the computer program is executed by a processor to complete any of the methods provided in the embodiments of the present application Part or all of the steps.
  • the embodiments of the present application also provide a computer program product including instructions.
  • the satellite communication device can execute part or all of the steps of any method provided in the embodiments of the present application. .
  • an embodiment of the present application further provides a communication device 1000, including: an input interface circuit 1001, a logic circuit 1002, and an output interface circuit 103; wherein the logic circuit is used to execute any one of the embodiments provided in this application Part or all of the steps of the method. .
  • an embodiment of the present application further provides a communication device 1100, including at least one input terminal 1101, a signal processor 1101, and at least one output terminal 1103; wherein, the signal processor 1102 is configured to execute the embodiment of the present application Part or all of the steps of any one of the methods provided.
  • the embodiment of the present application also provides a computer-readable storage medium, and the computer-readable storage medium stores a computer program, and the computer program is executed by hardware (such as a processor, etc.) to implement any device in the embodiment of the present application. Part or all of the steps of any method performed.
  • the embodiments of the present application also provide a computer program product including instructions, which when the computer program product runs on a computer device, cause the computer device to execute part or all of the steps of any one of the above aspects.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (such as a floppy disk, a hard disk, and a magnetic tape), an optical medium (such as an optical disk), or a semiconductor medium (such as a solid-state hard disk).
  • the disclosed device may also be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored or not implemented.
  • the displayed or discussed indirect coupling or direct coupling or communication connection between each other may be through some interfaces, indirect coupling or communication connection between devices or units, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. . Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the functional units in the embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may also be implemented in the form of software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • a number of instructions are included to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media may include, for example: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disks or optical disks and other storable program codes. Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

本申请实施例提供卫星通信方法和相关设备。一种卫星通信方法包括:接收第一公共定时提前common TA参数和第一common TA变化量计算参数,所述第一common TA参数用于得到第一common TA,所述第一common TA变化量计算参数用于对所述第一common TA进行更新而得到更新的common TA;使用更新的common TA发送随机接入前导序列。本申请实施例提供的方案有利于提升发送随机接入前导序列所使用common TA的时效性,进而有利于降低码间串扰的产生几率。

Description

卫星通信方法和相关通信设备
本申请要求于2020年02月29日提交中国专利局、申请号为202010132351.3、申请名称为“卫星通信方法和相关通信设备”的中国专利申请和于2019年11月08日提交中国专利局、申请号为2019110900112、申请名称为“卫星通信方法和相关通信设备”的中国专利的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及卫星通信方法、终端设备、卫星通信设备和计算机存储介质等。
背景技术
卫星通信具有全球覆盖、远距离传输、组网灵活、部署方便和不受地理条件限制等显著优点,故而已经被广泛应用于海上通信、定位导航、抗险救灾、科学实验、视频广播和对地观测等多个领域。
未来地面第五代移动网络(5G)将具备完善的产业链、巨大的用户群体、灵活高效的应用服务模式等。因此,将卫星通信***与5G网络相互融合,取长补短,共同构成全球无缝覆盖的海、陆、空、天一体化综合通信网,满足用户无处不在的多种业务需求,是未来通信发展的一个重要方向。
卫星通信***使用非静止轨道(NGEO,Non-Geostationary Earth Orbit)卫星。根据卫星的轨道高度,具体可以将卫星移动通信***分为同步轨道(GEO,Geostationary Earth Orbit)***、中轨(MEO,Medium Earth Orbit)卫星通信***和低轨(LEO,Low Earth Orbit)卫星通信***。
此外,按照卫星波束是否随着卫星移动而相应移动,业内将卫星通信的模式分为:凝视模式(steerable mode)和非凝视模式。在凝视模式中,在某段时间内卫星的波束或小区的覆盖区域是不变的。相反的,在非凝视模式中,卫星的波束或小区的覆盖区域随着卫星运动而一起移动。
其中,凝视模式的优点是如果用户终端(UE,User Equipment)在波束或者小区内移动范围不大,那么在卫星的可视窗时间内可不用做波束或小区切换。而在非凝视模式中,UE需要更频繁的做波束或小区切换。不过,由于非凝视模式中卫星与波束或小区的相对位置关系一直发生变化,会造成卫星与波束或小区内的参考点之间的距离一直发生变化,容易影响卫星根据参考点确定的公共定时提前(Common TA,Common timing advance)的时效性。
发明内容
本申请实施例提供卫星通信方法和相关通信设备。
第一方面,本申请实施例提供一种卫星通信方法,可包括:终端(卫星通信终端)接收第一公共定时提前common TA参数和第一common TA变化量计算参数。所述第一common TA参数用于得到第一common TA。所述第一common TA变化量计算参数用于对所述第一common  TA进行更新而得到更新的common TA。终端使用更新的common TA发送随机接入前导序列。
其中,第一公共定时提前common TA参数可以是第一common TA本身,也可以是任何能够计算得到第一common TA的一个或多个参数。
第一common TA变化量计算参数可与发送随机接入前导序列的时刻相关或与卫星实时位置相关。第一common TA变化量计算参数例如包括common TA变化量或变化率等,当然也可为其他类型的common TA变化量计算参数。
在一些可能实施方式中,接收第一公共定时提前common TA参数和第一common TA变化量计算参数可包括:接收携带有N组common TA参数和N组common TA变化量计算参数的消息。其中,所述N组common TA参数和所述N组common TA变化量计算参数之间一一对应。
其中,所述N为正整数,例如N等于1、2、3、3、4、5、8、9、10、12、13、53或其它值。
其中,所述第一common TA参数为所述N组common TA参数中的其中一组common TA参数。每组common TA参数包括一个或多个common TA参数。
所述第一common TA变化量计算参数为与所述第一common TA参数对应的common TA变化量计算参数。每组common TA变化量计算参数包括一个或多个common TA变化量计算参数。
可以看出,上述方案中,终端发送随机接入前导序列使用的common TA,是基于common TA变化量计算参数对common TA进行更新而得到,由于考虑了common TA变化量,那么更新的common TA相对于固定common TA则更具有时效性,进而有利于降低相关码间串扰的产生几率。进一步的的,有利于避免随机接入信号早到达卫星基站,进而可解决RAR中的TA不支持负值指示的问题。
在一些可能实施方式中,所述第一common TA参数例如为所述N组common TA参数中的符合多普勒阈值判断条件或者多普勒变化率阈值判断条件或者位置区间阈值判断条件的一组common TA参数。
具体例如,多个多普勒阈值形成多个多普勒阈值区间,先确定当前多普勒值所落入的多普勒阈值区间,而落入的这个多普勒阈值区间则对应的N组common TA参数中的其中一组common TA参数,即为第一common TA参数。其他情况以此类推。
其中,common TA变化量计算参数可以是多种多样的,下面具体举例说明。
举例来说,TA_full=TA_common+(t2-t1)*KTA。
其中,TA_full表示更新的common TA,所述TA_common表示第一common TA,所述第一common TA变化量计算参数包括KTA,其中,所述KTA表示公共定时提前随时间的变化率,所述t1表示第一公共定时提前common TA参数的发送时刻,所述t2表示所述随机接入前导序列的发送时刻。
在一些可能的实施方式中,终端还接收一个时间戳,该时间戳用于表示所述第一公共定时提前common TA参数的发送时刻t1。
在一些可能的实施方式中,终端通过***信息块SIB或剩余最小***信息RMSI接收网络侧发送的所述第一common TA或第一common TA变化量计算参数;SIB具有变更周期, 在变更周期内周期信号进行重复发送,内容不变。所述变更周期的起始帧具有一定的约束条件。终端接收的第一commonTA或第一commonTA变化量计算参数发生更新或变化,在变更周期的起始帧发生。由此,所述第一公共定时提前common TA参数的发送时刻t1可以由所述***消息块SIB的变更周期的起始帧确定。
又举例来说,TA_full=TA_common+△TA_initial+△TA_diff。
其中,TA_full表示更新的common TA,所述TA_common表示第一common TA,所述第一common TA变化量计算参数包括△TA_initial和△TA_diff,所述△TA_initial表示初始公共定时差值(其中,初始公共定时差值可以是允许发送第1个随机接入前导序列的时刻的定时提前变化量),所述△TA_diff表示t2相对于△TA_initial的定时提前变化量,所述t2表示所述随机接入前导序列的发送时刻。当t2为允许发送第1个随机接入前导序列的时刻,那么此时△TA_diff等于0。
又举例来说,TA_full=TA_common+△TA1。
其中,TA_full表示更新的common TA,所述TA_common表示第一common TA,第一common TA变化量计算参数包括所述△TA1,其中,第一common TA变化量计算参数包括多个时刻分别对应的common TA变化量计算参数,所述△TA1表示所述第一common TA变化量计算参数中包括的与所述t2对应的common TA变化量计算参数,所述t2表示所述随机接入前导序列的发送时刻。
第二方面,本申请实施例提供一种终端,包括:
接收单元,用于接收第一公共定时提前common TA参数和第一common TA变化量计算参数,所述第一common TA参数用于得到第一common TA,所述第一common TA变化量计算参数用于对所述第一common TA进行更新而得到更新的common TA。
发送单元,用于使用更新的common TA发送随机接入前导序列。
在一些可能的实施方式中,所述接收单元具体用于,接收携带有N组common TA参数和N组common TA变化量计算参数的消息,所述N组common TA参数和所述N组common TA变化量计算参数一一对应;其中,所述N为正整数;
其中,所述第一common TA参数为所述N组common TA参数中的其中一组common TA参数,每组common TA参数包括一个或多个common TA参数;
所述第一common TA变化量计算参数为与所述第一common TA参数对应的common TA变化量计算参数,每组common TA变化量计算参数包括一个或多个common TA变化量计算参数。
在一些可能的实施方式中,所述第一common TA参数为所述N组common TA参数中的符合多普勒阈值判断条件或者多普勒变化率阈值判断条件或者位置区间阈值判断条件的一组common TA参数。
common TA变化量计算参数可以是不同的参数,下面具体举例说明。
举例来说,TA_full=TA_common+(t2-t1)*KTA。
其中,TA_full表示更新的common TA,所述TA_common表示第一common TA,所述第一common TA变化量计算参数包括KTA,其中,所述KTA表示公共定时提前随时间的变化 率,所述t1表示第一公共定时提前common TA参数的发送时刻,所述t2表示所述随机接入前导序列的发送时刻。
在一些可能的实施方式中,终端还接收一个时间戳,该时间戳用于表示所述第一公共定时提前common TA参数的发送时刻t1。
在一些可能的实施方式中,终端通过***信息块SIB或剩余最小***信息RMSI接收网络侧发送的所述第一common TA或第一common TA变化量计算参数;SIB具有变更周期,在变更周期内广播进行重复发送,内容不变。所述变更周期的起始帧具有一定的约束条件。终端接收的第一commonTA或第一commonTA变化量计算参数发生更新或变化,在变更周期的起始帧发生。由此,所述第一公共定时提前common TA参数的发送时刻t1可以由所述***消息块SIB的变更周期的起始帧确定。
又举例来说,TA_full=TA_common+△TA_initial+△TA_diff。
其中,TA_full表示更新的common TA,所述TA_common表示第一common TA,所述第一common TA变化量计算参数包括△TA_initial和△TA_diff,所述△TA_initial表示初始公共定时差值(其中,初始公共定时差值可以是允许发送第1个随机接入前导序列的时刻的定时提前变化量),所述△TA_diff表示t2相对于△TA_initial的定时提前变化量,所述t2表示所述随机接入前导序列的发送时刻。当t2为允许发送第1个随机接入前导序列的时刻,那么此时△TA_diff等于0。
又举例来说,TA_full=TA_common+△TA1。
其中,TA_full表示更新的common TA,所述TA_common表示第一common TA,第一common TA变化量计算参数包括所述△TA1,其中,第一common TA变化量计算参数包括多个时刻分别对应的common TA变化量计算参数,所述△TA1表示所述第一common TA变化量计算参数中包括的与所述t2对应的common TA变化量计算参数,所述t2表示所述随机接入前导序列的发送时刻。
第三方面,本申请实施例提供一种卫星通信方法,包括:卫星通信设备(例如如卫星或地面站)得到第一公共定时提前common TA参数和第一common TA变化量计算参数。卫星通信设备发送第一公共定时提前common TA参数和第一common TA变化量计算参数,所述第一common TA参数用于得到第一common TA,所述第一common TA变化量计算参数用于对所述第一common TA进行更新而得到更新的common TA,更新的common TA被终端用于发送随机接入前导序列。
在一些可能实施方式中,所述发送第一公共定时提前common TA和第一common TA变化量计算参数包括:发送携带有N组common TA参数和N组common TA变化量计算参数的消息。所述N组common TA参数和所述N组common TA变化量计算参数一一对应。
其中,所述N为正整数,例如N等于1、2、3、3、4、5、8、9、10、12、13、53或其它值。
其中,所述第一common TA参数为所述N组common TA参数中的其中一组common TA参数,每组common TA参数包括一个或多个common TA参数。
所述第一common TA变化量计算参数为与所述第一common TA参数对应的common TA变化量计算参数,每组common TA变化量计算参数包括一个或多个common TA变化量计算 参数。
在一些可能实施方式之中,所述第一common TA参数例如为所述N组common TA参数中的符合多普勒阈值判断条件或者多普勒变化率阈值判断条件或者位置区间阈值判断条件的一组common TA参数。
第四方面,本申请实施例提供一种卫星通信设备,可以包括:
获得单元,用于得到第一公共定时提前common TA参数和第一common TA变化量计算参数。
发送单元,用于发送第一公共定时提前common TA参数和第一common TA变化量计算参数,所述第一common TA参数用于得到第一common TA,所述第一common TA变化量计算参数用于对所述第一common TA进行更新而得到更新的common TA,更新的common TA被终端用于发送随机接入前导序列。
在一些可能的实施方式汇总,所述发送单元具体用于,发送携带有N组common TA参数和N组common TA变化量计算参数的消息,所述N组common TA参数和所述N组common TA变化量计算参数一一对应;其中,所述N为正整数;
其中,所述第一common TA参数为所述N组common TA参数中的其中一组common TA参数,每组common TA参数包括一个或多个common TA参数;
所述第一common TA变化量计算参数为与所述第一common TA参数对应的common TA变化量计算参数,每组common TA变化量计算参数包括一个或多个common TA变化量计算参数。
第五方面,本申请实施例提供一种卫星通信方法包括:
终端接收第一参考点位置指示。终端基于卫星实时位置和所述第一参考点位置指示计算得到common TA;终端使用所述common TA发送随机接入前导序列。
在一些可能实施方式中,所述接收第一参考点位置指示包括:接收携带有M个参考点位置指示的消息,所述M个参考点位置指示包括所述第一参考点位置指示,所述第一参考点位置指示所指示的第一参考点为M个参考点中距离终端最近的参考点。
第六方面,本申请实施例提供一种终端,可以包括:
接收单元,用于接收第一参考点位置指示。
计算单元,用于基于卫星实时位置和所述第一参考点位置指示计算得到common TA。
发送单元,用于使用所述common TA发送随机接入前导序列。
在一些可能实施方式中,所述接收第一参考点位置指示包括:接收携带有M个参考点位置指示的消息,所述M个参考点位置指示包括所述第一参考点位置指示,所述第一参考点位置指示所指示的第一参考点为M个参考点中距离终端最近的参考点。
第七方面,本申请实施例提供一种卫星通信方法,包括:
卫星通信设备得到第一参考点位置指示。
卫星通信设备发送所述第一参考点位置指示,其中,所述第一参考点位置指示被用于 配合卫星实时位置而计算得到common TA,其中,所述common TA被终端用于发送随机接入前导序列。
在一些可能实施方式中,所述发送第一参考点位置指示包括:发送携带有M个参考点位置指示的消息,所述M个参考点位置指示包括所述第一参考点位置指示,所述第一参考点位置指示所指示的第一参考点为M个参考点中距离终端最近的参考点。
第八方面,本申请实施例提供一种卫星通信设备,包括:
获得单元,用于得到第一参考点位置指示。
发送单元,发送所述第一参考点位置指示,所述第一参考点位置指示被用于配合卫星实时位置而计算得到common TA,所述common TA被终端用于发送随机接入前导序列。
第九方面,本申请实施例还提供一种卫星通信设备(如终端设备或地面基站或卫星),可以包括:相互耦合的处理器和存储器;其中,所述处理器用于调用所述存储器中存储的计算机程序,以执行例如第一方面或第三方面或第五方面或第七方面的任意一种方法的部分或全部步骤。
第十方面,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其中,所述计算机程序被处理器执行,以完成以上各方面的任意一种方法的部分或全部步骤。
第十一方面,本申请实施例还提供了一种包括指令的计算机程序产品,当所述计算机程序产品在用户设备上运行时,使得卫星通信设备能够执行以上各方面的方法的部分或者全部步骤。
第十二方面,本申请实施例还提供一种通信装置包括:输入接口电路,逻辑电路和输出接口电路;所述逻辑电路用于执行以上各方面的任意一种方法的部分或全部步骤。
第十三方面,本申请实施例还提供一种通信装置包括:至少一个输入端、信号处理器和至少一个输出端;其中,所述信号处理器,用于执行以上各方面的任意一种方法的部分或全部步骤。
附图说明
下面将对本申请实施例涉及的一些附图进行说明。
图1-A是本申请实施例提供的卫星通信的场景示意图。
图1-B是本申请实施例提供的凝视模式的场景示意图。
图1-C是本申请实施例提供的非凝视模式的场景示意图。
图1-D是本申请实施例提供的一种卫星广播公共定时提前Common TA的示意图。
图1-E是本申请实施例提供的一种最小往返时延与最小仰角间之间关系的示意图。
图1-F是本申请实施例提供的在不同位置接收到的上行随机接入信号定时的示意图。
图1-G是本申请实施例提供的卫星移动的示意图。
图1-H是本申请实施例提供的卫星通信的馈电链路和服务链路的示意图。
图2是本申请实施例提供的一种卫星通信方法的流程示意图。
图3-A是本申请实施例提供的一种卫星侧下行数据帧定时的示意图。
图3-B是本申请实施例提供的另一种卫星侧下行数据帧定时的示意图。
图3-C是本申请实施例提供的另一种卫星侧下行数据帧定时的示意图。
图3-D是本申请实施例提供的另一种卫星侧下行数据帧定时的示意图。
图3-E是本申请实施例提供的另一种DV值与参数组之间的映射关系示意图。
图3-F是本申请实施例提供的另一种DV值与参考点之间的映射关系示意图。
图3-G是本申请实施例提供的最小往返时延随时间变化的曲线拟合示意图。
图4是本申请实施例提供的另一种卫星通信方法的流程示意图。
图5是本申请实施例提供的一种终端的结构示意图。
图6是本申请实施例提供的一种卫星通信设备的结构示意图。
图7是本申请实施例提供的另一种终端的结构示意图。
图8是本申请实施例提供的另一种卫星通信设备的结构示意图。
图9是本申请实施例提供的另一种卫星通信设备的结构示意图。
图10是本申请实施例提供的另一种卫星通信设备的结构示意图。
图11是本申请实施例提供的另一种卫星通信设备的结构示意图。
图12是本申请实施例提供的一种根据变更周期起始帧确定定时提前值的示意图。
图13是本申请实施例提供的另一种根据变更周期起始帧确定定时提前值的示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
未来地面5G将具备完善产业链、巨大用户群体、灵活高效的应用服务模式等。因此将卫星通信***与5G网络相互融合,取长补短,共同构成全球无缝覆盖的海、陆、空、天一体化综合通信网,满足用户无处不在的多种业务需求,是未来通信发展的一个重要方向。
用户终端(UE,User Equipment)通过接入卫星通信网络访问数据网络(DN,Data Network)等等,使用DN上的由运营商或第三方提供的业务。
为方便说明,本申请实施例中用户终端、用户设备、终端设备、终端、卫星通信终端等可统称为UE。即若无特别说明,本申请实施例后文所描述的UE均可替换为用户终端、用户设备、终端设备、终端、卫星通信终端(卫星通信场景下的终端),当然它们之间也可相互互换。
参见图1-A,图1-A举例示出卫星通信的场景示意图。卫星具备信号处理能力(再生模式regenerative mode)或卫星将用户信号透明转发(透传模式transparent mode)到地面基站(地面基站也可称地面站或者卫星通信地面基站等)实现广域覆盖的通信场景。
参见图1-B和图1-C,图1-B为凝视模式(steerable mode)的示意图。图1-C为非凝 视模式的示意图。在凝视模式中,在某段时间内卫星的波束或小区的覆盖区域是不变的。在非凝视模式中,卫星的波束或小区的覆盖区域随着卫星运动而一起移动。
其中,凝视模式的优点是如果用户终端(UE)在波束或者小区内移动范围不大,那么在卫星的可视窗时间内可不用做波束或小区切换。而在非凝视模式中,UE需要更频繁的做波束或小区切换。不过,由于非凝视模式中卫星与波束或小区的相对位置关系一直发生变化,会造成卫星与波束或小区内的参考点之间的距离一直发生变化,影响卫星根据参考点确定的公共定时提前(Common TA)的时效性。
参见图1-D,图1-D举例示出了卫星广播公共定时提前(Common TA)的一种可能方式,假设卫星沿着轨道移动,依次通过1/2/3/4位置。在不同位置处,卫星根据它与参考点间的距离广播公共定时提前(Common TA)。参考点可选为波束或小区中距离卫星最近的点。公共定时提前可为卫星与参考点之间的往返时延。
在透明转发(transparent)模式的卫星通信中,随着卫星的运动,会造成卫星与参考点间的距离发生变化,同时引起往返时延的变化。例如图1-D所示,卫星从位置1向位置4的方向运动。如图1-E所示,图1-E举例示出了波束或小区中的最小往返时延与波束或小区中的最小仰角间之间的一种关系,随着卫星的运动波束或小区中的最小仰角会发生变化。随着卫星的运动,最小往返时延发生变化。
卫星的移动会产生最大的往返时延变化率为40us/s。如图1-D所示,当卫星在位置1处广播公共定时提前,160ms后卫星运动到另一个位置,例如位置2。此时卫星与参考点间的距离发生变化,位置变小。如果此时参考点附近的UE使用卫星在位置1处广播的公共定时提前来发送随机接入前导序列(preamble),那么该UE使用的定时提前量会大于UE与卫星间的往返时延,约6.4us。这会引起信号间的码间串扰(ISI,Inter-Symbol Interference)。例如图1-F所示。接收到的preamble会比预期的到达定时提早到达,干扰前面信号的接收。与此同时,由于随机接入过程中,地面基站发给UE的随机接入响应(RAR,Random Access Response)中的定时提前指令(TA Command,Timing Advance Command)只能指示正值,因此,则在UE发送用于解决竞争的消息3(message 3)时不能对其进行准确的定时调整。
其中,随机接入前导序列也可称为随机接入前导信号或上行随机接入前导序列或上行随机接入前导信号。
在凝视模式的卫星通信中,卫星广播公共定时给UE用来发送preamble时使用。不过随着卫星的运动,已经广播的公共定时提前可能已经大于UE发送preamble时真正需要使用的公共定时提前,会造成ISI以及后续上行信号定时提前不准确的问题,即公共定时提前的时效性问题。
下面进一步探讨如何解决可能产生ISI或可能占用更多的时频资源的问题;如何解决RAR中携带的TA command不能指示负值,故而无法对message 3的上行定时进行准确调整的问题等等。
下面实施例方案可应用于非陆地通信中(例如卫星通信***)。具体可应用于非陆地通信中凝视模式下的服务链路(service link),同样,也还可适用于非凝视模式或凝视模式中的馈电链路(feeder link)。参见图1-H,图1-H是本申请实施例提供的卫星通信的馈电 链路和服务链路的示意图。当然,也还可以应用于陆地通信中较大的小区且UE与基站相互移动速度较快的场景。下面以卫星通信***场景为主进行描述。
参见图2,图2为本申请实施例举例的一种卫星通信方法的流程示意图。一种卫星通信方法可包括:
201.卫星通信设备(如卫星或卫星地面站)得到第一common TA参数和第一common TA变化量计算参数。卫星通信设备发送(如广播或单播)第一common TA参数和第一common TA变化量计算参数。
其中,所述第一common TA参数用于得到第一common TA,所述第一common TA变化量计算参数能够被用于对所述第一common TA进行更新而得到更新的common TA。更新的common TA被终端用于发送随机接入前导序列。
其中,第一公共定时提前common TA参数可以是第一common TA本身,也可以是任何能够计算得到第一common TA的一个或多个参数。
其中,第一common TA变化量计算参数与发送随机接入前导序列的时刻相关或与卫星实时位置相关。
common TA变化量计算参数(例如公共定时提前变化率或公共定时提前变化值)可以通过例如***信息块1(System Information Block,SIB)SIB1或剩余最小***信息(Remaining Minimum SI,RMSI)、其他***信息(Other System Information,OSI)、主信息块(Main Information Block,MIB)、等信息块中的至少一种向UE发送(广播或组播)。如果在无线资源控制(Radio Resource Control,RRC)连接阶段发送,网络侧可额外地在RRC、下行控制信息(Downlink Control Information,DCI)、组DCI、媒体接入控制(Media Access Control,MAC)元素或定时提前指令(Timing Advance Command,TAC)中的至少一种,或随数传或在单独分配的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)中传输。
202.终端接收卫星通信设备发送的第一公共定时提前common TA参数和第一common TA变化量计算参数。
其中,所述第一common TA参数用于得到第一common TA,所述第一common TA变化量计算参数用于对所述第一common TA进行更新而得到更新的common TA。
其中,例如可由终端使用所述第一common TA变化量计算参数对所述第一common TA进行更新而得到更新的common TA。
203.终端使用更新的common TA发送随机接入前导序列。
其中,接收第一公共定时提前common TA参数和第一common TA变化量计算参数例如包括:接收携带有N组common TA参数和N组common TA变化量计算参数的消息,所述N组common TA参数和所述N组common TA变化量计算参数一一对应。
其中,所述N为正整数,例如N等于1、2、3、3、4、5、8、9、10、12、13、53或其它值。
其中,所述第一common TA参数为所述N组common TA参数中的其中一组common TA参数,每组common TA参数包括一个或多个common TA参数。
所述第一common TA变化量计算参数为与所述第一common TA参数对应的common  TA变化量计算参数,每组common TA变化量计算参数包括一个或多个common TA变化量计算参数。
可以理解,当接收到多组common TA参数,那么可基于筛选条件,从中选出符合条件的一组common TA参数。具体例如,所述第一common TA参数为所述N组common TA参数中的符合多普勒阈值判断条件或者多普勒变化率阈值判断条件或者位置区间阈值判断条件的一组common TA参数。
其中,使用第一common TA变化量计算参数对所述第一common TA进行更新而得到更新的common TA的方式可以是多种多样的。
举例来说,TA_full=TA_common+(t2-t1)*KTA。
其中,TA_full表示更新的common TA,所述TA_common表示第一common TA,所述第一common TA变化量计算参数包括KTA,其中,所述KTA表示公共定时提前随时间的变化率,所述t1表示第一公共定时提前common TA参数的发送时刻(例如从星历信息可以获得)或接收时刻,所述t2表示所述随机接入前导序列的发送时刻。
又举例来说,TA_full=TA_common+△TA_initial+△TA_diff。
其中,TA_full表示更新的common TA,所述TA_common表示第一common TA,所述第一common TA变化量计算参数包括△TA_initial和△TA_diff,所述△TA_initial表示初始公共定时差值(其中,初始公共定时差值可以是允许发送第1个随机接入前导序列的时刻的定时提前变化量),所述△TA_diff表示t2相对于△TA_initial的定时提前变化量,所述t2表示所述随机接入前导序列的发送时刻。当t2为允许发送第1个随机接入前导序列的时刻,那么此时△TA_diff等于0。
又举例来说,TA_full=TA_common+△TA1。
其中,TA_full表示更新的common TA,所述TA_common表示第一common TA,第一common TA变化量计算参数包括所述△TA1,其中,第一common TA变化量计算参数包括多个时刻分别对应的common TA变化量计算参数,所述△TA1表示所述第一common TA变化量计算参数中包括的与所述t2对应的common TA变化量计算参数,所述t2表示所述随机接入前导序列的发送时刻。
可以看出,上述方案中,终端发送随机接入前导序列使用的common TA,是基于common TA变化量计算参数对common TA进行更新而得到,由于考虑了common TA变化量,那么更新的common TA相对于固定common TA则更具有时效性,进而有利于降低相关码间串扰的产生几率。进一步的的,有利于避免随机接入信号早到达卫星基站,进而可解决RAR中的TA不支持负值指示的问题。
下面通过一些具体的应用场景进行举例说明。
参见图1-G,假设卫星由1到7的位置运动且卫星轨道为圆形。假设卫星在位置1/2/3/4/5/6/7处广播common TA,提供给UE发送随机接入前导序列。点8和9是距离卫星最近和最远的点,根据卫星的位置不同有可能8变成最远的点,点9成为最近的点。其中,卫星可计算common TA时使用的参考点,可选为波束或小区中距离卫星最近的点。例如,卫星在位置1时,卫星通过点1和点8计算往返时延,并可以以此值作为common TA的取 值来进行广播。其中,需要注意的是,广播common TA的取值,也可为在此基础上进行增加或减少一个偏移值(偏移值考虑UE所在高度等)。Common TA参数的表现形式例如也可以是单程时延,或单程距离或往返距离。
此时假设common TA参数即为卫星广播的common TA。
其中,UE可能使用full TA(全TA)或可能使用UE-specific TA(UE级TA)来发送随机接入前导序列。full TA代表网络侧(卫星或基站)不对接收到的UE发送的上行信号做延时补偿时,UE所使用的定时提前值;UE-specific TA代表网络侧对接收到的UE发送的上行信号做延时补偿时,UE所使用的定时提前值。所述网络侧对上行信号做延时补偿可以理解为对接收UE发送的上行信号的接收窗做延时处理。
下面先以UE使用full TA(全TA)来发送随机接入前导序列为例。其中,common TA变化量计算参数可能是common TA的变化率KTA或common TA的变化量等。
一种可能的实现中,common TA的变化率KTA可以被作为common TA变化量计算参数来获取UE发送随机接入前导序列时所使用的定时提前量full TA。下面以common TA变化量计算参数包括common TA的变化率KTA为例。
卫星基站在广播common TA的情况下还广播common TA的变化率KTA,供UE发送随机接入前导序列时更新common TA时使用。
其中,UE使用的用于发送随机接入前导序列的full TA具体可以有如下的一些可能的含义理解:
在regenerative(再生)场景中,UE使用的full TA可以是service link部分的TA。
在transparent(透传)场景中,若网络侧(如卫星)不补偿feeder link部分的往返时延,那么UE使用的full TA可以是service link+feeder link部分的TA。
在transparent场景中,若网络侧(如卫星)补偿feeder link部分的往返时延,那么UE使用的full TA可以是service link部分的TA。
例如在UE侧,UE可根据common TA和公共定时提前变化率KTA确定发送随机接入前导序列时使用的定时提前量full TA。
具体例如:TA_full=TA_common+(t2-t1)*KTA。
其中,TA_common表示UE收到的网络侧发送的公共定时提前。
t1是卫星发送TA_common的时刻。当卫星同时广播星历信息与TA_common时,星历信息中可携带了发送星历信息的时间,据此也可以知道卫星发送TA_common的时间。或可以约定t1表示UE接收到TA_common的时间,需要卫星在发送TA_common时补偿信号由卫星到UE的时延,即在发送TA_common时通过偏移值调整TA_common。或者在没有星历信息协助的情况下,卫星基站在广播TA_common时还同时发送一个时间戳,这个时间戳表示广播TA_common的时刻t1。
一种可能的实现中,如前所述UE可以通过广播的方式获取公共定时提前TA_common值,发送TA_common的时刻t1等于发送承载该TA_common的广播消息的发送时刻。
一种可能的实现中,t1表示的时刻可以是绝对时间,或者是相对时间。例如,当t1为绝对时间,则可以为协调世界时(Coordinated Universal Time,UTC)时间;当t1为相对时间,则可以是相对于网络侧(可以是地面站或卫星)的时间,即t1=tx+t0,tx表示网络侧的绝 对时间,t0表示相对于网络侧的绝对时间的差值。该差值可以是一个固定时间值,也可以是一个变化时间值(可以是正值或负值或零)。
一种可能的实现中,网络侧(可以是卫星或地面站)在接收UE发送的信号时做延时补偿(即对网络侧接收UE发送信号的接收窗做延时操作),延时补偿值可以等于或不等于馈电链路的往返时延。此时t0可以等于网络侧在接收UE发送的信号做的延时补偿;如果延时补偿值等于馈电链路的往返时延,则t0值等于馈电链路的往返时延。
可理解的,UE在接收到时间戳t1后,根据时间戳t1得到发送上行信号使用的定时提前值。
其中,t2表示UE使用full TA发送上行随机接入前导序列的时刻。
可理解的,t2表示UE发送上行信号的时刻,该时刻可以是绝对时间或相对时间。例如,绝对时间可以是UE在发送上行信号的UTC时间。或者,相对时间可以是UE发送上行信号后,网络侧接收到该上行信号时的时间,例如网络侧接收到该上行信号的UTC时间。
一种可能的实现中,common TA的变化量可以被作为common TA变化量计算参数来获取UE发送随机接入前导序列时所使用的定时提前量full TA。下面又以common TA变化量计算参数为common TA的变化量为例。
例如,卫星基站在广播common TA的同时,广播与随机接入时机(RO,RACH occasion)相对应的定时提前差值△TA1、△TA2、△TA3..,以供UE发送随机接入前导序列时更新使用的定时提前值。
在UE侧,UE根据common TA和定时提前变化量△TA确定发送随机接入前导序列时使用的定时提前量full TA。
其中,UE根据使用的随机接入时机来确定使用的定时提前量:
TA_full=TA_common+△TA1              (UE在RO1发送随机接入前导序列)
TA_full=TA_common+△TA1+△TA2        (UE在RO2发送随机接入前导序列)
TA_full=TA_common+△TA1+△TA2+△TA3     (UE在RO3发送随机接入前导序列)
TA_full=TA_common+△TA1+△TA2+△TA3+△TA4  (UE在RO3发送随机接入前导序列)
……
TA_full=TA_common+△TA1+△TA2+△TA3+△TA4…+△TAn  (UE在ROn发送随机接入前导序列)
其中,TA_common表示UE收到的公共定时提前的值。△TA1、△TA2等表示RO之间的common TA变化量。RO1为允许第一个发送随机接入前导序列的时刻。RO2为允许第二个发送随机接入前导序列的时刻,以此类推。
又例如,也可以用△TA1、△TA2等表示不同RO时刻与卫星基站发送common TA时刻之间的common TA的变化量。因此,UE根据使用的随机接入时机来确定使用的定时提 前量表示为:
TA_full=TA_common+△TA1     (UE在RO1发送随机接入前导序列)。
TA_full=TA_common+△TA2     (UE在RO2发送随机接入前导序列)。
TA_full=TA_common+△TA3     (UE在RO3发送随机接入前导序列)。
TA_full=TA_common+△TA4     (UE在RO4发送随机接入前导序列)。
……
TA_full=TA_common+△TAn     (UE在ROn发送随机接入前导序列)。
图3-A为一种卫星侧下行数据帧定时的示意图,参见图3-A,UE使用不同的RO发送随机接入信号时,使用对应的更新后的common TA值。其中,无全球导航卫星***(Global Navigation Satellite System,GNSS)功能的UE可以根据上述方法计算full TA(例如,全球定位***(Global Positioning System,GPS)属于GNSS的一种),以此发送随机接入前导序列。对于有GPS的UE,其可以根据星历和自己的位置信息计算TA。在卫星基站侧,在不同RO上接收到的随机接入前导序列,分别对应了使用不同的更新common TA发送的随机接入前导序列。
又例如,卫星基站在广播common TA的同时,广播初始公共定时差值△TA_initial和与随机接入时机相关的定时提前变化量△TA_diff,供UE发送随机接入前导序列时更新使用的定时提前值。
UE侧在计算公共定时提前或网络侧补偿的公共定时提前时:
TA_full=TA_common+△TA_initial              (在RO1发送preamble)。
TA_full=TA_common+△TA_initial+△TA_diff        (在RO2发送preamble)。
TA_full=TA_common+△TA_initial+2*△TA_diff       (在RO3发送preamble)。
TA_full=TA_common+△TA_initial+(n-1)*△TA_diff     (在ROn发送preamble)。
其中,△TA_initial表示UE在RO1发送随机接入前导序列时common TA变化量。
其中,△TA_diff表示UE在相邻两个RO的时间间隔长度内的common TA变化量。
图3-B为另一种卫星侧下行数据帧定时的示意图,参见图3-B,UE使用不同的RO发送随机接入信号时,使用对应的更新后的common TA值。其中,无GPS的UE可以根据上述方法计算full TA,以此发送随机接入前导序列。对于有GPS的UE,其可以根据星历和自己的位置信息计算TA。在卫星基站侧,在不同RO上接收到的随机接入前导序列,分别对应了使用不同的更新common TA发送的随机接入前导序列。
下面又以UE使用UE-specific TA(UE级TA)来发送随机接入前导序列为例。common TA变化量计算参数可能是common TA的变化率KTA或common TA的变化量等。
一种可能的实现中,common TA的变化率KTA可以被作为common TA变化量计算参数来获取UE-specific TA。下面以common TA变化量计算参数包括common TA的变化率KTA为例。
卫星侧补偿上行信号的公共定时提前量,即卫星基站在接收上行信号时接收窗向后延时公共定时提前的量,UE侧不需对这一部分时延做定时提前补偿。但是随着卫星运动,卫星补偿上行信号的公共时延量发生变化。例如卫星从位置1运动到位置2,上行信号的公共时延逐渐变小。
这种情况下,UE只需补偿除去公共定时提前以外的时延量。对于没有定位能力的UE可直接发送随机接入前导序列。而如果UE有定位能力,那么UE可以根据星历信息和自己的位置信息计算Full TA,然后减去卫星侧补偿的公共定时提前(Compensated Common TA),这里用TA_compensated表示卫星侧补偿的公共定时提前。
为便于有定位能力的UE计算其应该使用的UE-specific TA,那么,卫星可以广播其补偿的common TA的大小,卫星可根据其所在位置和参考点位置确定补偿的common TA。例如可根据卫星与参考点位置间的往返时延,或在此基础上增加或减少一个偏移值(偏移值可考虑UE所在高度等)。
卫星基站在广播其补偿的TA_compensated的同时,广播其变化率KTA,供有定位功能的UE计算它需要使用的定时提前调整值,用该定时提前调整值发送随机接入数据。
网络侧补偿公共定时提前量TA_compensated可以按照以下式子计算:
TA_compensated=TA_common+(t2-t1)*KTA。
其中,TA_common是卫星广播的在t1时刻补偿的公共定时提前。
t1是卫星发送公共定时提前的时刻。当卫星同时广播星历信息与公共定时提前时,星历信息中携带了发送星历信息的时间,据此也可以知道卫星发送公共定时提前的时刻。或者可以约定t1表示UE接收到公共定时提前的时间,卫星在发送公共定时提前时补偿信号由卫星到UE的时延,即在发送公共定时提前时通过偏移值调整公共定时提前。或在没有星历信息协助的情况下,卫星在广播公共定时提前时,同时发送一个时间戳,时间戳表示广播公共定时提前的时刻。
一种可能的实现中,卫星通过广播的方式发送TA_common值,发送TA_common的时刻t1等于发送承载该TA_common的广播消息的发送时刻。
一种可能的实现中,t1表示的时刻可以是绝对时间,或者是相对时间。例如,当t1为绝对时间,则可以为UTC时间;当t1为相对时间,则可以是相对于网络侧(可以是地面站或卫星)的时间,即t1=tx+t0,tx表示网络侧的绝对时间,t0表示相对于网络侧的绝对时间的差值。该差值可以是一个固定时间值,也可以是一个变化时间值(可以是正值或负值或零)。t2是UE使用UE-specific TA发送上行随机接入前导序列的时刻。或t2是卫星基站接收到随机接入前导序列的时刻,由于UE可以通过星历信息和自己的位置信息计算信号由UE到卫星基站的传播时延,可以得到卫星接收到随机接入前导序列的时间。
假设TA_cal是UE根据星历信息和自己的位置信息计算得到的完整的定时提前量,然后减去TA_compensated得到要使用的UE-specific TA,表示为TA_speci。
即:TA_speci=TA_cal-TA_compensated。
如果UE可能使用full TA或UE-specific TA,那么网络侧可在广播common TA的同时,向UE指示是使用full TA还是UE-specific TA。
一种可能的实现中,common TA的变化率KTA可以被作为common TA变化量计算参数来获取UE-specific TA。下面以common TA变化量计算参数包括common TA的变化量为例。
卫星基站在广播其补偿的公共定时提前TA_compensated的同时,广播与随机接入时机相对应的定时提前差值△TA1、△TA2、△TA3...,供UE发送随机接入前导序列时更新使用的定时提前值。
网络侧补偿公共定时提前量TA_compensated可以按照以下式子计算:
TA_compensated=TA_common+△TA1     (UE在RO1发送随机接入前导序列)。
TA_compensated=TA_common+△TA1+△TA2   (UE在RO2发送随机接入前导序列)。
TA_compensated=TA_common+△TA1+△TA2+△TA3  (UE在RO3发送随机接入前导序列)。
TA_compensated=TA_common+△TA1+△TA2+△TA3+△TA4  (UE在RO3发送随机接入前导序列)。
TA_compensated=TA_common+△TA1+△TA2+△TA3+△TA4…+△TAn(UE在ROn发送随机接入前导序列)。
其中,TA_common表示UE收到的公共定时提前的值。△TA1、△TA2等表示RO之间的common TA变化量。
假设TA_cal是UE根据星历信息和自己的位置信息计算得到的完整的定时提前量,然后减去TA_compensated得到要使用的UE-specific TA,表示为TA_speci。
即:TA_speci=TA_cal-TA_compensated。
如何UE可能使用full TA或UE-specific TA,那么可在广播common TA的同时,向UE指示是使用full TA还是UE-specific TA。
图3-C为另一种卫星侧下行数据帧定时的示意图,参见图3-C,卫星基站侧则可在接收随机接入信号时,可以相应的补偿更新后的common TA。
图3-D为另一种卫星侧下行数据帧定时的示意图,参见图3-D,卫星基站侧则可在接收随机接入信号时,可以相应的补偿更新后的common TA。
本申请实施例还提供一种隐式表示发送时刻和计算定时提前量的方法。即网络侧发送TA_common的发送时刻可以隐式的表示。
网络侧发送的广播信号(例如,SIB1、SIB2、SIB3、RMSI等等)具有变更周期(modification period),在变更周期内周期信号进行重复发送,内容不变。变更周期的起始帧有一定约束条件,例如,变更周期的起始帧满足SFN mod m=0,其中SFN表示***帧号(system frame number),mod表示取模运算,m是一个变更周期的***帧数。如 果m=16,那么只有在***帧号为16、32、48等16的倍数值时开始发送更新的广播信息,即这些帧号为变更周期的起始帧。
当网络侧在广播消息中发送公共定时提前值TA_common或变化率KTA时,如果TA_common或KTA值发生更新或变化,那么也会在上述的更新周期起始帧开始更新TA_common值或KTA值。
因此,UE可以利用上述起始帧的信息来计算得到发送上行信号(例如,发送随机接入前导序列)使用的定时提前值。例如,基站或网络侧(可以是地面站或卫星)在***帧16中的某个子帧中更新TA_common值,如图12所示,可以获取第一次发送更新TA_common的时刻t1,即***帧16是变更周期的起始帧。UE接收到更新的TA_common值后,在上行帧17中发送上行信号,发送上行信号的时刻为t2。进而,可以根据发送上行信号时间和UE侧接收到TA_common时间的差值得到时间间隔T_interval=t2-t1。UE发送上行信号使用的定时提前值TA_value为TA_value=TA_common+T_interval*KTA。
具体地,UE可以根据***信息变更通知得到***消息是否在下一个变更周期更新***信息,其中,可能更新的***信息包括SIB1,SIB2,SIB3等等。
在一种可能的实现中,如图12所示的t1时刻可以是UE在变更周期起始帧接收到TA_common的时刻。基站与UE间的传播时延期间的位置变化引起的TA_common变化可以由基站(卫星或地面站)在发送TA_common时补偿;或者t1时刻可以是基站(卫星或地面站)在变更周期起始帧中发送TA_common的时间。可理解的是,图12所示的t2时刻可以是UE在发送上行信号的时间。
在一种可能的实现中,如图13所示,更新TA_common的时刻t1为基站(卫星或地面站)在变更周期起始帧中发送TA_common的时间。图13中基站接收到上行信号的时刻t2。UE侧根据发送上行信号所在帧的位置以及UE接收到下行信号所在帧的位置,能够得到时间间隔T_interval。UE根据TA_value=TA_common+T_interval*KTA计算得到要使用的定时提前值TA_value。
可以理解的是,当UE使用full TA(全TA)来发送随机接入前导序列时,所使用的定时提前值TA_full=TA_common+(t2-t1)*KTA中的,t1,t2也可以根据上述变更周期的起始帧确定。
可以理解的是,当UE使用UE-specific TA(UE级TA)来发送随机接入前导序列时,网络侧补偿公共定时提前量TA_compensated=TA_common+(t2-t1)*KTA中的,t1,t2也可以根据上述变更周期的起始帧确定。
通过上述利用变更周期获得TA_common的变化量的方法,以隐式的方式表示了网络侧发送TA_common的发送时刻t1,网络侧无需通过发送时间戳等方式发送t1,从而节省了信令开销。
在另一些场景下,一个波束或小区中有多个参考点,同时广播多个参考点的common TA和相应的common TA变化率KTA。当一个波束或小区中有多个参考点之时,卫星基站可以同时广播根据这些参考点得到的公共定时提前,以及每个公共定时提前对应的变化率。与此同时,卫星基站广播与这些公共定时提前对应的判断阈值,例如多普勒(Doppler)阈值 或多普勒变化率阈值或多个位置区间阈值。UE根据检测下行信号得到的多普勒偏移值或多普勒变化率值或粗略的定位信息来判断其应该使用的公共定时提前以及公共定时提前变化率。
假设卫星(regenerative模式)由1到7的位置运动,且卫星轨道为圆形。假设卫星在位置1/2/3/4/5/6/7处广播common TA,提供给UE发送随机接入信号。
卫星基站侧:当有多个参考点时,同时广播多个参考点的common TA和相应的common TA变化率。其中,为了UE能够区分使用哪组common TA和其变化率。需要广播相应的判断阈值,例如多普勒(Doppler)阈值或多普勒变化率阈值或多个位置区间阈值。
UE侧:UE检测下行信号得到的多普勒偏移值或多普勒变化率值或粗略的定位信息来判断其应该使用的公共定时提前以及公共定时提前变化率。
例如,基站广播四组common TA和common TA变化率,图3-E所示。以及相应的判断阈值(多普勒值)DV1、DV2、DV3。其中,当UE检测到下行信号的频率偏移DV在不同的范围内,选择相应组的公共定时提前值和公共定时提前变化率,如图3-E所示。
需要指出的是,本场景中的区分使用对应哪个参考点的参数的方法同样适用于本发明的其它场景。
又参见图3-F,假设卫星(regenerative模式)由1到7的位置运动且卫星轨道为圆形。
网络侧:卫星广播覆盖波束或小区中的参考点位置信息。
UE侧:无GPS的UE根据参考点位置与卫星星历信息计算在发送接入前导时使用的公共定时提前值。有GPS的UE可以根据星历信息和自己的位置信息计算在发送接入前导时使用的定时提前值。
当一个波束或小区中有多个参考点时:网络侧:卫星向一个波束或小区中同时广播多个参考点的位置以及判断阈值,例如多普勒(Doppler)阈值或多普勒变化率阈值或多个位置区间阈值。
UE侧:UE检测下行信号得到的多普勒偏移值或多普勒变化率值或粗略的定位信息来判断其应该使用的参考点位置。然后结合卫星星历信息计算在发送随机接入信号时使用的common TA。
无GPS的UE根据参考点位置与卫星星历信息计算在发送接入前导时使用的公共定时提前值。有GPS的UE可以根据星历信息和自己的位置信息计算在发送接入前导时使用的定时提前值。
例如,卫星基站广播一个波束中的四个参考点的位置,如图3-F所示。以及相应的判断阈值(多普勒值)DV1、DV2、DV3。其中,当UE检测到下行信号的频率偏移DV在不同的范围内,选择相应的参考点及其位置信息,如图3-F所示。
此外,在某一段时间内卫星与某个地面站相连接,传输数据。在凝视模式和非凝视模式中,随着卫星的运动,卫星与地面站的距离发生变化,都会影响UE-卫星-地面站链路的common TA或时延。
对于非凝视模式,service link公共时延不变,feeder link时变。
对于凝视模式,service link公共时延时变,feeder link时变。
当卫星基站侧需要广播feeder link的时延时以及相应变化时,可以类似使用本申请中的举例上述方案和实施例。
其中,基站可以广播地面站的位置信息,供UE计算feeder link的时延信息。UE可以使用feeder link的时延与service link时延的和来调整TA,发送随机接入前导序列。
此外,网络侧可向UE广播一个公共定时提前的变化函数或定时提前变化率函数,UE利用该函数更新使用的公共定时提前。例如,网络侧可向UE广播一个公共定时提前变化函数的系数,UE利用这些系数生成一个函数。卫星基站向UE广播一个一元4次多项式函数的5个系数分别为a=1.239e-16;b=-1.221e-12;c=4.877e-09;d=-9.499e-06;e=0.01153。可选的网络侧可以广播一个这个函数的起始时间t0,即UE将t0时间代入到函数中计算公共定时提前的变化。或者,UE利用星历信息可以知道发送该函数系数的时间,以此为起始时间代入函数中计算公共定时提前的变化。或者,就以UE收到该函数系数时刻起为0秒代入函数计算公共定时提前的变化。
UE侧利用这些系数以及约定的函数表达式生成函数:
Y=a*x4+b*x3+c*x2+d*x+e
=1.239e-16*x4+(-1.221e-12)*x3+4.877e-09*x2+(-9.499e-06)*x+0.01153
参见图3-G,图3-G对比了该函数曲线与波束中实际最小往返时延变化的对比,可以看出该拟合函数曲线可以较好的体现波束中最小往返时延随时间的变化。UE可以根据该曲线实时更新common TA的变化。该实施例同样适用于展示凝视模式和非凝视模式中feeder link的时延随时间的变化。可以向UE发送函数系数来告知UE feeder link时延的变化。
参见图4,图4为本申请实施例举例的一种卫星通信方法的流程示意图。一种卫星通信方法可包括:
401.卫星通信设备得到第一参考点位置指示;发送所述第一参考点位置指示,所述第一参考点位置指示被用于配合卫星实时位置而计算得到common TA,所述common TA被终端用于发送随机接入前导序列。
402.终端接收第一参考点位置指示;基于卫星实时位置和所述第一参考点位置指示计算得到common TA。
403.使用所述common TA发送随机接入前导序列。
其中,接收第一参考点位置指示包括:接收携带有M个参考点位置指示的消息,所述M个参考点位置指示包括所述第一参考点位置指示,所述第一参考点位置指示所指示的第一参考点为M个参考点中距离终端最近的参考点,M为正整数。
在上述场景中,卫星基站广播其覆盖波束或小区中的参考点的位置信息。UE根据参考点位置信息和卫星实时位置(卫星位置可来自星历信息)能够计算实时的common TA数值。
其中,TA_full和TA_compensated的数值可以使用UE根据参考点位置信息和星历信息计算得到。
当卫星基站广播一个波束或小区中多个参考点的位置信息时,卫星基站同时广播与这些公共定时提前对应的判断阈值,例如多普勒(Doppler)阈值或多普勒变化率阈值或多个位 置区间阈值。UE根据检测下行信号得到的多普勒偏移值或多普勒变化率值或粗略的定位信息来判断其应该使用的参考点位置信息。进而计算相应的TA_full或TA_compensated的数值。
根据前文所述,common TA参数和common TA变化量计算参数可以在RRC连接阶段发送。在终端与网络侧的后续通信中,随着网络侧设备(例如,卫星通信设备)与终端间的位置关系发生变化,common TA参数和common TA变化量计算参数可能会发生变化。
因此,网络侧需要向终端发送更新的common TA参数和/或common TA变化量计算参数。
一种可能的实现中,网络侧直接向终端发送更新后的common TA参数和/或common TA变化量计算参数。可选的,网络侧可以分别向终端发送更新的common TA参数和common TA变化量计算参数,即不同时发送;或者,网络侧可以向终端同时发送更新的common TA参数和common TA变化量计算参数。
一种可能的实现中,网络侧向终端发送common TA参数和/或common TA变化量计算参数的更新差值,终端收到更新差值后,与之前使用或前一次网络侧向终端发送的common TA参数和/或common TA变化量计算参数相加/减后获得更新后的common TA参数和/或common TA变化量计算参数。例如,以common TA和common TA变化率为例,网络侧向终端发送common TA更新差值和/或common TA变化率更新差值,终端接收到后将其与当前使用的(或前一次网络侧向终端发送的)common TA值和/或common TA变化率值相加得到更新的common TA值和/或common TA变化率值,即更新的common TA值=使用的common TA值+common TA更新差值;更新的common TA变化率值=使用的common TA变化率值+common TA变化率更新差值。该实现方法能够节省信令开销。
更新的common TA参数和/或common TA变化量计算参数(或者,common TA参数和/或common TA变化量计算参数的更新差值)可以在上述广播、组播、单播信令中传输,例如可以在包括***信息块SIB1、其他***消息OSI、主***信息块MIB等的广播信息中的至少一种,由网络设备向终端广播或组播发送。此外,在无线资源控制RRC连接阶段,网络设备可以在RRC信令(例如,RRC建立(RRCsetup)消息、RRC重配信令(RRCReconfiguration)、RRC恢复信令(RRCResume)等)、下行控制信息DCI、组DCI、介质访问控制控制元素MAC CE、定时提前命令TAC中的至少一种信息中携带这些信息,或者随数据传输或在单独分配的PDSCH承载中向UE单播或组播发送。
一种可能的实现中,网络侧在随机接入通用配置(RACH-ConfigGeneric)参数中加入一个新的变量域,例如TA-rate,表示common TA变化率,其中,RACH-ConfigGeneric参数在广播消息或RRC消息中向终端发送,向终端提供随机接入过程以及后续通信中使用的通用参数。需要说明的是,还可以在其它类似功能的广播或组播信令中加入变量域如TA-rate或TA-rate更新值或TA-rate更新差值,实现对common TA变化率的发送/更新的功能和效果。例如:
RACH-ConfigGeneric::=       SEQUENCE{
prach-ConfigurationIndex     INTEGER(0..255),
TA-rate                      INTEGER(-127..127),
……
}
可选的,网络侧可以根据卫星位置(包括轨道高度范围、通信仰角范围等)和参考点间的往返时延(或单程时延)的最大变化率确定TA-rate的表示范围,TA-rate可以是正值,负值或零。例如,以卫星轨道高度600km为例,TA-rate以0.315us为量纲单位,TA-rate表示范围为-127~127,需要8比特信令来表示。
可以理解,如果假设不同的common TA变化率范围和时间量纲单位,TA-rate可以有不同的表示范围。例如,终端接收到TA-rate后,使用终端计算得到的服务链路TA值(例如,服务链路往返时延)加上或减去由TA-rate值得到的更新后的common TA值,最终得到终端使用的定时提前TA值,例如TA=TA_cal-/+(common TA+TA-rate*(t2-t1)*时间量纲单位)。其中,t1和t2可以是网络侧发送common TA的时刻和UE利用TA值发送上行数据的时刻。
可选的,RACH-ConfigGeneric参数(包括公共定时提前变化率TA-rate)可以在SIB1、RRC建立信令(RRCSetup)、RRC重配信令(RRCReconfiguration)、RRC恢复信令(RRCResume)等消息中传输,能够保证终端在初始接入阶段和连接态切换时能够接收到common TA变化率数值,建立准确的上行时间同步。
一种可能的实现中,在MAC CE信令中定义一个新的变量域TA-rate-update表示common TA变化率值或common TA变化率值更新值或common TA变化率值更新差值。例如,可以参考TA-rate的表示范围的确定方法,变量域TA-rate-update可以用8比特表示范围为-127~127。相比于广播信令,使用MAC CE信令可以向每个终端或一组终端发送common TA变化率相关值,可以更灵活地向终端指示。可以达到不同终端或不同组终端间使用不同的common TA变化率值或更新值的目的。
下面还提供一些设备的举例。
参见图5,本申请实施例提供一种终端500,包括:
接收单元510,用于接收第一公共定时提前common TA参数和第一common TA变化量计算参数,所述第一common TA参数用于得到第一common TA,所述第一common TA变化量计算参数用于对所述第一common TA进行更新而得到更新的common TA。
发送单元520,用于使用更新的common TA发送随机接入前导序列。
其中,终端500中的各个模块可用于配合实现图2所示实施例中由于终端执行的任意一种方法的部分或全部步骤。
参见图6,本申请实施例提供一种卫星通信设备600,可以包括:
获得单元,用于得到第一公共定时提前common TA参数和第一common TA变化量计算参数。
发送单元,用于发送第一公共定时提前common TA参数和第一common TA变化量计 算参数,所述第一common TA参数用于得到第一common TA,所述第一common TA变化量计算参数用于对所述第一common TA进行更新而得到更新的common TA,更新的common TA被终端用于发送随机接入前导序列。
其中,卫星通信设备600中的各个模块可用于配合实现图2所示实施例中由于终端执行的任意一种方法的部分或全部步骤。
参见图7,本申请实施例提供一种终端700,可以包括:
接收单元710,用于接收第一参考点位置指示。
计算单元720,用于基于卫星实时位置和所述第一参考点位置指示计算得到common TA。
发送单元730,用于使用所述common TA发送随机接入前导序列。
在一些可能实施方式中,所述接收第一参考点位置指示包括:接收携带有M个参考点位置指示的消息,所述M个参考点位置指示包括所述第一参考点位置指示,所述第一参考点位置指示所指示的第一参考点为M个参考点中距离终端最近的参考点。
其中,终端700中的各个模块可用于配合实现图4所示实施例中由于终端执行的任意一种方法的部分或全部步骤。
一种可能的实现中,终端700中各个模块可用于配合实现图2所示实施例中由终端执行的任意一种方法的部分或全部步骤。
此时,接收单元710,用于接收第一公共定时提前common TA参数和第一common TA变化量计算参数,所述第一common TA参数用于得到第一common TA,所述第一common TA变化量计算参数用于对所述第一common TA进行更新而得到更新的common TA;
计算单元720,用于根据第一common TA变化量计算参数对所述第一common TA进行更新,从而获得更新的common TA;
发送单元730,用于使用更新的common TA发送随机接入前导序列。
参见图8,本申请实施例提供一种卫星通信设备800,包括:
获得单元810,用于得到第一参考点位置指示。
发送单元820,发送所述第一参考点位置指示,其中,所述第一参考点位置指示被用于配合卫星实时位置而计算得到common TA,其中,所述common TA被终端用于发送随机接入前导序列。
其中,终端800中的各个模块可用于配合实现图4所示实施例中由于终端执行的任意一种方法的部分或全部步骤。
参见图9,本申请实施例还提供一种卫星通信设备900(卫星通信设备900如终端设备或地面基站或卫星等),可以包括:相互耦合的处理器910和存储器920。其中,所述处理器用于调用所述存储器中存储的计算机程序,以执行本申请实施例提供的任意一种方法的部分或全部步骤。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其中,所述计算机程序被处理器执行,以完成本申请实施例提供的任意一种方法 的部分或全部步骤。
本申请实施例还提供了一种包括指令的计算机程序产品,当所述计算机程序产品在用户设备上运行时,可以使得卫星通信设备执行本申请实施例提供的任意一种方法的部分或全部步骤。
参见图10,本申请实施例还提供一种通信装置1000,包括:输入接口电路1001,逻辑电路1002和输出接口电路103;其中,所述逻辑电路用于执行本申请实施例提供的任意一种方法的部分或全部步骤。。
参见图11,本申请实施例还提供一种通信装置1100,包括至少一个输入端1101、信号处理器1101和至少一个输出端1103;其中,所述信号处理器1102,用于执行本申请实施例提供的任意一种方法的部分或全部步骤。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被硬件(例如处理器等)执行,以实现本申请实施例中由任意设备执行的任意一种方法的部分或全部步骤。
本申请实施例还提供了一种包括指令的计算机程序产品,当所述计算机程序产品在计算机设备上运行时,使得所述这个计算机设备执行以上各方面的任意一种方法的部分或者全部步骤。
在上述实施例中,可全部或部分地通过软件、硬件、固件、或其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如软盘、硬盘、磁带)、光介质(例如光盘)、或者半导体介质(例如固态硬盘)等。在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,也可以通过其它的方式实现。例如以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可结合或者可以集成到另一个***,或一些特征可以忽略或不执行。另一点,所显示或讨论的相互之间的间接耦合或者直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的 部件可以是或者也可以不是物理单元,即可以位于一个地方,或者,也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例的方案的目的。
另外,在本申请各实施例中的各功能单元可集成在一个处理单元中,也可以是各单元单独物理存在,也可两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,或者也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质例如可包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或光盘等各种可存储程序代码的介质。

Claims (62)

  1. 一种卫星通信方法,其特征在于,包括:
    接收第一公共定时提前common TA参数和第一common TA变化量计算参数,所述第一common TA参数用于得到第一common TA,所述第一common TA变化量计算参数用于对所述第一common TA进行更新而得到更新的common TA;
    使用所述更新的common TA发送随机接入前导序列。
  2. 根据权利要求1所述的方法,其特征在于,所述接收第一公共定时提前common TA参数和第一common TA变化量计算参数包括:
    接收携带有N组common TA参数和N组common TA变化量计算参数的消息,所述N组common TA参数和所述N组common TA变化量计算参数一一对应;
    其中,所述N为正整数;
    其中,所述第一common TA参数为所述N组common TA参数中的其中一组common TA参数,每组common TA参数包括一个或多个common TA参数;
    所述第一common TA变化量计算参数为与所述第一common TA参数对应的common TA变化量计算参数,每组common TA变化量计算参数包括一个或多个common TA变化量计算参数。
  3. 根据权利要求2所述的方法,其特征在于,所述第一common TA参数为所述N组common TA参数中的符合多普勒阈值判断条件或者多普勒变化率阈值判断条件或者位置区间阈值判断条件的一组common TA参数。
  4. 根据权利要求1至3任意一项所述的方法,其特征在于,
    TA_full=TA_common+(t2-t1)*KTA;
    其中,所述TA_full表示更新的common TA,所述TA_common表示所述第一common TA,所述第一common TA变化量计算参数包括所述KTA,其中,所述KTA表示公共定时提前随时间的变化率,所述t1表示所述第一公共定时提前common TA参数的发送时刻,所述t2表示所述随机接入前导序列的发送时刻。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    接收一个时间戳,所述时间戳用于表示所述第一公共定时提前common TA参数的发送时刻t1。
  6. 根据权利要求1或4所述的方法,其特征在于,所述接收第一公共定时提前common TA参数和第一common TA变化量计算参数,具体包括:
    通过***信息块SIB或剩余最小***信息RMSI接收所述第一common TA变化量计算参数;
    所述第一公共定时提前common TA参数的发送时刻t1由所述***消息块SIB的变更周期的起始帧确定。
  7. 根据权利要求1至3任意一项所述的方法,其特征在于,
    TA_full=TA_common+△TA_initial+△TA_diff;
    其中,所述TA_full表示所述更新的common TA,所述TA_common表示第一common TA,所述第一common TA变化量计算参数包括所述△TA_initial和所述△TA_diff,所述△TA_initial表示初始公共定时差值,所述△TA_diff表示t2相对于△TA_initial的定时提前变化量,所述t2表示所述随机接入前导序列的发送时刻。
  8. 根据权利要求1至3任意一项所述的方法,其特征在于,
    TA_full=TA_common+△TA1;
    其中,所述TA_full表示更新的common TA,所述TA_common表示第一common TA,所述第一common TA变化量计算参数包括所述△TA1,其中,所述第一common TA变化量计算参数包括多个时刻分别对应的common TA变化量计算参数,所述△TA1表示所述第一common TA变化量计算参数中包括的与所述t2对应的common TA变化量计算参数,所述t2表示所述随机接入前导序列的发送时刻。
  9. 一种卫星通信方法,其特征在于,包括:
    得到第一公共定时提前common TA参数和第一common TA变化量计算参数;
    发送所述第一公共定时提前common TA参数和所述第一common TA变化量计算参数,所述第一common TA参数用于得到第一common TA,所述第一common TA变化量计算参数用于对所述第一common TA进行更新而得到更新的common TA,所述更新的common TA被终端用于发送随机接入前导序列。
  10. 根据权利要求9所述的方法,其特征在于,所述发送第一公共定时提前common TA和第一common TA变化量计算参数包括:
    发送携带有N组common TA参数和N组common TA变化量计算参数的消息,所述N组common TA参数和所述N组common TA变化量计算参数一一对应;
    其中,所述N为正整数;
    其中,所述第一common TA参数为所述N组common TA参数中的其中一组common TA参数,每组common TA参数包括一个或多个common TA参数;
    所述第一common TA变化量计算参数为与所述第一common TA参数对应的common TA变化量计算参数,每组common TA变化量计算参数包括一个或多个common TA变化量计算参数。
  11. 根据权利要求10所述的方法,其特征在于,
    所述第一common TA参数为所述N组common TA参数中的符合多普勒阈值判断条件或者多普勒变化率阈值判断条件或者位置区间阈值判断条件的一组common TA参数。
  12. 一种卫星通信方法,其特征在于,包括:
    接收第一参考点位置指示;
    基于卫星实时位置和所述第一参考点位置指示计算得到common TA;
    使用所述common TA发送随机接入前导序列。
  13. 根据权利要求12所述的方法,其特征在于,
    所述接收第一参考点位置指示包括:接收携带有M个参考点位置指示的消息,所述M个参考点位置指示包括所述第一参考点位置指示,所述第一参考点位置指示所指示的第一参考点为M个参考点中距离终端最近的参考点。
  14. 一种卫星通信方法,其特征在于,包括:
    得到第一参考点位置指示;
    发送所述第一参考点位置指示,其中,所述第一参考点位置指示被用于配合卫星实时位置而计算得到common TA,所述common TA被终端用于发送随机接入前导序列。
  15. 根据权利要求14所述的方法,其特征在于,
    所述发送第一参考点位置指示包括:发送携带有M个参考点位置指示的消息,所述M个参考点位置指示包括所述第一参考点位置指示,所述第一参考点位置指示所指示的第一参考点为M个参考点中距离终端最近的参考点。
  16. 一种卫星通信的方法,其特征在于,包括:
    终端接收第二公共定时提前common TA参数和第二common TA变化率计算参数,所述第二common TA参数用于得到第二common TA,所述第二common TA变化量计算参数用于对所述第二common TA进行更新得到更新的第二common TA;
    根据更新的第二common TA发送上行信号。
  17. 根据权利要求16所述的方法,其特征在于,所述接收第二公共定时提前common TA参数和第二common TA变化量计算参数包括:
    接收携带有N组common TA参数和N组common TA变化量计算参数的消息,所述N组common TA参数和所述N组common TA变化量计算参数一一对应;
    其中,所述N为正整数;
    其中,所述第二common TA参数为所述N组common TA参数中的其中一组common TA参数,每组common TA参数包括一个或多个common TA参数;
    所述第二common TA变化量计算参数为与所述第二common TA参数对应的common TA变化量计算参数,每组common TA变化量计算参数包括一个或多个common TA变化量计算参数。
  18. 根据权利要求17所述的方法,其特征在于,
    所述第二common TA参数为所述N组common TA参数中的符合多普勒阈值判断条件或者多普勒变化率阈值判断条件或者位置区间阈值判断条件的一组common TA参数。
  19. 根据权利要求16至18任一项所述的方法,其特征在于,所述根据更新的第二common TA发送上行信号,包括:
    根据所述终端的位置信息和卫星星历信息得到第一定时提前量;
    根据所述更新的第二common TA和所述第一定时提前量得到第二定时提前量;
    使用所述第二定时提前量发送上行信号。
  20. 根据权利要求19所述的方法,其特征在于,
    TA_speci=TA_cal–(TA_common+(t2-t1)*KTA);
    其中,所述TA_speci表示所述第二定时提前量,TA_cal表示所述第一定时提前量,所述TA_common表示所述第二common TA,所述第二common TA变化量计算参数包括所述KTA,其中,所述KTA表示公共定时提前随时间的变化率,所述t1表示所述第二公共定时提前common TA参数的发送时刻,所述t2表示所述上行信号的发送时刻。
  21. 根据权利要求19所述的方法,其特征在于,
    TA_speci=TA_cal–(TA_common+△TA_initial+△TA_diff);
    其中,所述TA_speci表示所述第二定时提前量,TA_cal表示所述第一定时提前量,所述TA_common表示所述第二common TA,所述第二common TA变化量计算参数包括所述△TA_initial和所述△TA_diff,所述△TA_initial表示初始公共定时差值,所述△TA_diff表示t2相对于△TA_initial的定时提前变化量,所述t2表示所述上行信号的发送时刻。
  22. 根据权利要求19所述的方法,其特征在于,
    TA_speci=TA_cal–(TA_common+△TA1);
    其中,所述TA_speci表示所述第二定时提前量,TA_cal表示所述第一定时提前量,所述TA_common表示所述第二common TA,所述第二common TA变化量计算参数包括所述多个时刻分别对应的common TA变化量计算参数,所述△TA1表示所述第二common TA变化量计算参数中包括的与所述t2对应的common TA变化量计算参数,所述t2表示所述上行信号的发送时刻。
  23. 根据权利要求16至22任一项所述的方法,其特征在于,所述接收第二公共定时提前common TA参数和第二common TA变化率计算参数,包括
    接收第二公共定时提前common TA参数和第二common TA变化率计算参数的更新差值;
    根据所述更新差值获取新的公共定时提前common TA参数和第二common TA变化率计算参数。
  24. 一种卫星通信方法,其特征在于,包括:
    得到第二公共定时提前common TA参数和第二common TA变化量计算参数;
    发送所述第二公共定时提前common TA参数和所述第二common TA变化量计算参数,所述第二common TA参数用于得到第二common TA,所述第二common TA变化量计算参数用于对所述第二common TA进行更新而得到更新的第二common TA,所述更新的第二common TA被终端用于发送上行信号。
  25. 根据权利要求23所述的方法,其特征在于,所述发送第二公共定时提前common TA和第二common TA变化量计算参数包括:
    发送携带有N组common TA参数和N组common TA变化量计算参数的消息,所述N组common TA参数和所述N组common TA变化量计算参数一一对应;
    其中,所述N为正整数;
    其中,所述第二common TA参数为所述N组common TA参数中的其中一组common TA参数,每组common TA参数包括一个或多个common TA参数;
    所述第二common TA变化量计算参数为与所述第二common TA参数对应的common TA变化量计算参数,每组common TA变化量计算参数包括一个或多个common TA变化量计算参数。
  26. 一种终端,包括:
    接收单元,用于接收第一公共定时提前common TA参数和第一common TA变化量计算参数,所述第一common TA参数用于得到第一common TA,所述第一common TA变化量计算参数用于对所述第一common TA进行更新而得到更新的common TA;
    发送单元,用于使用所述更新的common TA发送随机接入前导序列。
  27. 根据权利要求26所述的终端,其特征在于,所述接收单元用于接收第一公共定时提前common TA参数和第一common TA变化量计算参数,包括:
    所述接收单元具体用于,接收携带有N组common TA参数和N组common TA变化量计算参数的消息,所述N组common TA参数和所述N组common TA变化量计算参数一一对应;
    其中,所述N为正整数;
    其中,所述第一common TA参数为所述N组common TA参数中的其中一组common TA参数,每组common TA参数包括一个或多个common TA参数;
    所述第一common TA变化量计算参数为与所述第一common TA参数对应的common TA变化量计算参数,每组common TA变化量计算参数包括一个或多个common TA变化量计算参数。
  28. 根据权利要求27所述的终端,其特征在于,所述第一common TA参数为所述N组common TA参数中的符合多普勒阈值判断条件或者多普勒变化率阈值判断条件或者位置区间阈值判断条件的一组common TA参数。
  29. 根据权利要求26至28任意一项所述的终端,其特征在于,
    TA_full=TA_common+(t2-t1)*KTA;
    其中,所述TA_full表示更新的common TA,所述TA_common表示第一common TA, 所述第一common TA变化量计算参数包括所述KTA,其中,所述KTA表示公共定时提前随时间的变化率,所述t1表示第一公共定时提前common TA参数的发送时刻,所述t2表示所述随机接入前导序列的发送时刻。
  30. 根据权利要求29所述的终端,其特征在于,
    所述接收单元还用于接收一个时间戳,所述时间戳用于表示所述第一公共定时提前common TA参数的发送时刻t1。
  31. 根据权利要求21至30任一项所述的终端,其特征在于,所述接收单元用于接收第一公共定时提前common TA参数和第一common TA变化量计算参数,具体包括:
    所述接收单元具体用于,通过***信息块SIB接收所述第一common TA变化量计算参数;
    所述第一公共定时提前common TA参数的发送时刻t1由所述***消息块SIB的变更周期的起始帧确定。
  32. 根据权利要求26至28任意一项所述的终端,其特征在于,
    TA_full=TA_common+△TA_initial+△TA_diff;
    其中,所述TA_full表示所述更新的common TA,所述TA_common表示所述第一common TA,所述第一common TA变化量计算参数包括所述△TA_initial和所述△TA_diff,所述△TA_initial表示初始公共定时差值,所述△TA_diff表示t2相对于△TA_initial的定时提前变化量,所述t2表示所述随机接入前导序列的发送时刻。
  33. 根据权利要求26至28任意一项所述的方法,其特征在于,
    TA_full=TA_common+△TA1;
    其中,所述TA_full表示所述更新的common TA,所述TA_common表示所述第一common TA,所述第一common TA变化量计算参数包括所述△TA1,其中,所述第一common TA变化量计算参数包括多个时刻分别对应的common TA变化量计算参数,所述△TA1表示所述第一common TA变化量计算参数中包括的与所述t2对应的common TA变化量计算参数,所述t2表示所述随机接入前导序列的发送时刻。
  34. 一种卫星通信设备,其特征在于,包括:
    获得单元,用于得到第一公共定时提前common TA参数和第一common TA变化量计算参数;
    发送单元,用于发送第一公共定时提前common TA参数和第一common TA变化量计算参数,所述第一common TA参数用于得到第一common TA,所述第一common TA变化量计算参数用于对所述第一common TA进行更新而得到更新的common TA,更新的common TA被终端用于发送随机接入前导序列。
  35. 根据权利要求34所述的设备,其特征在于,所述发送单元用于发送第一公共定时提前common TA和第一common TA变化量计算参数包括:
    所述发送单元具体用于,发送携带有N组common TA参数和N组common TA变化量 计算参数的消息,所述N组common TA参数和所述N组common TA变化量计算参数一一对应;
    其中,所述N为正整数;
    其中,所述第一common TA参数为所述N组common TA参数中的其中一组common TA参数,每组common TA参数包括一个或多个common TA参数;
    所述第一common TA变化量计算参数为与所述第一common TA参数对应的common TA变化量计算参数,每组common TA变化量计算参数包括一个或多个common TA变化量计算参数。
  36. 根据权利要求35所述的设备,其特征在于,
    所述第一common TA参数例如为所述N组common TA参数中的符合多普勒阈值判断条件或者多普勒变化率阈值判断条件或者位置区间阈值判断条件的一组common TA参数。
  37. 一种终端,其特征在于,包括:
    接收单元,用于接收第一参考点位置指示;
    计算单元,用于基于卫星实时位置和所述第一参考点位置指示计算得到common TA;
    发送单元,用于使用所述common TA发送随机接入前导序列。
  38. 根据权利要求37所述的终端,其特征在于,所述接收单元用于接收第一参考点位置指示,包括:
    所述接收单元具有用于,接收携带有M个参考点位置指示的消息,所述M个参考点位置指示包括所述第一参考点位置指示,所述第一参考点位置指示所指示的第一参考点为M个参考点中距离终端最近的参考点。
  39. 一种卫星通信设备,其特征在于,包括:
    获得单元,用于得到第一参考点位置指示;
    发送单元,用于发送所述第一参考点位置指示,其中,所述第一参考点位置指示被用于配合卫星实时位置而计算得到common TA,其中,所述common TA被终端用于发送随机接入前导序列。
  40. 根据权利要求39所述的设备,其特征在于,所述发送单元用于发送第一参考点位置指示包括:
    所述发送单元具体用于,发送携带有M个参考点位置指示的消息,所述M个参考点位置指示包括所述第一参考点位置指示,所述第一参考点位置指示所指示的第一参考点为M个参考点中距离终端最近的参考点。
  41. 一种终端,其特征在于,包括:
    接收单元,用于接收第二公共定时提前common TA参数和第二common TA变化率计算参数,所述第二common TA参数用于得到第二common TA,所述第二common TA变化量计算参数用于对所述第二common TA进行更新得到更新的第二common TA;
    发送单元,根据更新的第二common TA发送上行信号。
  42. 根据权利要求41所述的终端,其特征在于,
    所述接收单元具体用于,接收携带有N组common TA参数和N组common TA变化量计算参数的消息,所述N组common TA参数和所述N组common TA变化量计算参数一一对应;
    其中,所述N为正整数;
    其中,所述第二common TA参数为所述N组common TA参数中的其中一组common TA参数,每组common TA参数包括一个或多个common TA参数;
    所述第二common TA变化量计算参数为与所述第二common TA参数对应的common TA变化量计算参数,每组common TA变化量计算参数包括一个或多个common TA变化量计算参数。
  43. 根据权利要求41或42所述的终端,其特征在于,
    所述终端还包括处理单元用于,据所述终端的位置信息和卫星星历信息得到第一定时提前量;
    根据所述更新的第二common TA和所述第一定时提前量得到第二定时提前量;
    所述发送单元具体用于使用所述第二定时提前量发送上行信号。
  44. 根据权利要求43所述的终端,其特征在于,
    TA_speci=TA_cal–(TA_common+(t2-t1)*KTA);
    其中,所述TA_speci表示所述第二定时提前量,TA_cal表示所述第一定时提前量,所述TA_common表示所述第二common TA,所述第二common TA变化量计算参数包括所述KTA,其中,所述KTA表示公共定时提前随时间的变化率,所述t1表示所述第二公共定时提前common TA参数的发送时刻,所述t2表示所述上行信号的发送时刻。
  45. 根据权利要求43所述的终端,其特征在于,
    TA_speci=TA_cal–(TA_common+△TA_initial+△TA_diff);
    其中,所述TA_speci表示所述第二定时提前量,TA_cal表示所述第一定时提前量,所述TA_common表示所述第二common TA,所述第二common TA变化量计算参数包括所述△TA_initial和所述△TA_diff,所述△TA_initial表示初始公共定时差值,所述△TA_diff表示t2相对于△TA_initial的定时提前变化量,所述t2表示所述上行信号的发送时刻。
  46. 根据权利要求43所述的终端,其特征在于,
    TA_speci=TA_cal–(TA_common+△TA1);
    其中,所述TA_speci表示所述第二定时提前量,TA_cal表示所述第一定时提前量,所述TA_common表示所述第二common TA,所述第二common TA变化量计算参数包括所述多个时刻分别对应的common TA变化量计算参数,所述△TA1表示所述第二common TA变化量计算参数中包括的与所述t2对应的common TA变化量计算参数,所述t2表示所述上行信号的发送时刻。
  47. 一种卫星通信设备,其特征在于,包括:
    获取单元,用于得到第二公共定时提前common TA参数和第二common TA变化量计 算参数;
    发送单元,用于发送所述第二公共定时提前common TA参数和所述第二common TA变化量计算参数,所述第二common TA参数用于得到第二common TA,所述第二common TA变化量计算参数用于对所述第二common TA进行更新而得到更新的第二common TA,所述更新的第二common TA被终端用于发送上行信号。
  48. 根据权利要求47所述的设备,其特征在于,
    所述发送单元具体用于,发送携带有N组common TA参数和N组common TA变化量计算参数的消息,所述N组common TA参数和所述N组common TA变化量计算参数一一对应;
    其中,所述N为正整数;
    其中,所述第二common TA参数为所述N组common TA参数中的其中一组common TA参数,每组common TA参数包括一个或多个common TA参数;
    所述第二common TA变化量计算参数为与所述第二common TA参数对应的common TA变化量计算参数,每组common TA变化量计算参数包括一个或多个common TA变化量计算参数。
  49. 一种终端,其特征在于,包括:
    与存储器耦合的处理器;
    其中,所述处理器用于调用所述存储器中存储的计算机程序,以执行权利要求1至8或12至13或16至23中任意一项所述的方法。
  50. 一种卫星通信设备,其特征在于,包括:
    与存储器耦合的处理器;
    其中,所述处理器用于调用所述存储器中存储的计算机程序,以执行权利要求9至11,或者14至15,或者24至25任意一项所述的方法。
  51. 一种计算机可读存储介质,其特征在于,
    所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时,使得权利要求1至8任一项所述的方法被执行;
    权利要求9至11任一项所述的的方法被执行;
    权利要求12或13所述的方法被执行;
    权利要求14或15所述的方法被执行;
    权利要求16至23任一项所述的方法被执行;或者
    权利要求24或25所述的方法被执行。
  52. 一种通信装置,其特征在于,包括:
    至少一个输入端、信号处理器和至少一个输出端;
    其中,所述信号处理器,用于执行权利要求1-25任意一项所述的方法。
  53. 一种通信装置,包括:输入接口电路,逻辑电路和输出接口电路,
    所述输入接口用于接收第一公共定时提前common TA参数和第一common TA变化量计算参数;
    所述逻辑电路用于执行如权利要求1-8中任一项所述的方法得到更新的common TA;
    所述输出接口用于使用所述更新的common TA输出随机接入前导序列。
  54. 一种通信装置,包括:逻辑电路和输出接口电路,
    所述逻辑电路用于执行如权利要求9-11中任一项所述的方法得到第一公共定时提前common TA参数和第一common TA变化量计算参数;
    所述输出接口用于输出所述所述第一公共定时提前common TA参数和所述第一common TA变化量计算参数。
  55. 一种通信装置,包括:输入接口电路、逻辑电路和输出接口电路,
    所述输入接口电路用于接收第一参考点位置指示;
    所述逻辑电路用于执行如权利要求12或13所述的方法得到得到common TA;
    所述输出接口用于使用所述common TA输出随机接入前导序列。
  56. 一种通信装置,包括:逻辑电路和输出接口电路,
    所述逻辑电路用于执行如权利要求14或15所述的方法得到第一参考点位置指示;
    所述输出接口用于输出所述所述第一参考点位置指示。
  57. 一种通信装置,包括:输入接口电路,逻辑电路和输出接口电路,
    所述输入接口电路用于接收第二公共定时提前common TA参数和第二common TA变化率计算参数;
    所述逻辑电路用于执行如权利要求16至23任一项所述的方法得到更新的第二common TA;
    所述输出接口用于根据更新的第二common TA发送上行信号。
  58. 一种通信装置,包括:逻辑电路和输出接口电路,
    所述逻辑电路用于执行如权利要求24或25所述的方法得到第二公共定时提前common TA参数和第二common TA变化量计算参数;
    所述输出接口用于输出所述第二公共定时提前common TA参数和所述第二common TA 变化量计算参数。
  59. 一种计算机程序产品,当其在计算机上运行时,使得
    权利要求1至8任一项所述的方法被执行;
    权利要求9至11任一项所述的的方法被执行;
    权利要求12或13所述的方法被执行;
    权利要求14或15所述的方法被执行;
    权利要求16至21任一项所述的方法被执行;或者
    权利要求22或23所述的方法被执行。
  60. 一种通信***,其特征在于,包括如权利要求16至23任一项所述的终端,和/或,如权利要求24-26任一项所述的卫星通信设备。
  61. 一种通信***,其特征在于,包括如权利要求27或28所述的终端,和/或,如权利要求29或30所述的卫星通信设备。
  62. 一种通信***,其特征在于,包括如权利要求39或44所述的终端,和/或,如权利要求45或46所述的卫星通信设备。
PCT/CN2020/127590 2019-11-08 2020-11-09 卫星通信方法和相关通信设备 WO2021089054A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20885884.5A EP4044762A4 (en) 2019-11-08 2020-11-09 SATELLITE COMMUNICATION METHOD AND ASSOCIATED COMMUNICATION DEVICE
US17/737,840 US20220263570A1 (en) 2019-11-08 2022-05-05 Satellite communication method and related communication device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911090011 2019-11-08
CN201911090011.2 2019-11-08
CN202010132351.3 2020-02-29
CN202010132351.3A CN112788774B (zh) 2019-11-08 2020-02-29 卫星通信方法和相关通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/737,840 Continuation US20220263570A1 (en) 2019-11-08 2022-05-05 Satellite communication method and related communication device

Publications (1)

Publication Number Publication Date
WO2021089054A1 true WO2021089054A1 (zh) 2021-05-14

Family

ID=75749969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127590 WO2021089054A1 (zh) 2019-11-08 2020-11-09 卫星通信方法和相关通信设备

Country Status (4)

Country Link
US (1) US20220263570A1 (zh)
EP (1) EP4044762A4 (zh)
CN (2) CN117255430A (zh)
WO (1) WO2021089054A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112312451B (zh) * 2019-07-29 2022-10-28 大唐移动通信设备有限公司 一种测量同步的方法、网络设备及终端设备
US11910339B2 (en) * 2020-10-23 2024-02-20 Centre Of Excellence In Wireless Technology Methods and systems for uplink time synchronization in non-terrestrial networks based communication
US20230029663A1 (en) * 2021-07-30 2023-02-02 Qualcomm Incorporated Full duplex random access channel communication
JPWO2023013008A1 (zh) * 2021-08-05 2023-02-09
US20240064679A1 (en) * 2022-08-22 2024-02-22 Qualcomm Incorporated Techniques for timing adjustment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010105435A1 (en) * 2009-03-20 2010-09-23 Huawei Technologies Co., Ltd. A method and device for improving network discovery and selection
EP2903358A1 (en) * 2012-09-27 2015-08-05 Kyocera Corporation Mobile communication system, user terminal, base station, and processor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3007500B1 (en) * 2010-03-12 2022-05-04 BlackBerry Limited Communication station and method for transmitting on a random access channel
US10897780B2 (en) * 2016-12-19 2021-01-19 Qualcomm Incorporated Random access channel (RACH) timing adjustment
CN108282198B (zh) * 2017-01-06 2021-11-19 华为技术有限公司 一种信号传输方法和装置
KR102656594B1 (ko) * 2019-01-11 2024-04-09 지티이 코포레이션 무선 통신의 타이밍 어드밴스 조정 스킴들
CN109788548B (zh) * 2019-02-19 2020-06-12 上海交通大学 时间提前补偿的卫星移动通信随机接入方法、***及介质
US20200351957A1 (en) * 2019-05-03 2020-11-05 Electronics And Telecommunications Research Institute Timing synchronization method and apparatus therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010105435A1 (en) * 2009-03-20 2010-09-23 Huawei Technologies Co., Ltd. A method and device for improving network discovery and selection
EP2903358A1 (en) * 2012-09-27 2015-08-05 Kyocera Corporation Mobile communication system, user terminal, base station, and processor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ETRI: "Discussion on uplink timing advance for NTN", 3GPP DRAFT; R1-1910998 DISCUSSION ON UPLINK TIMING ADVANCE FOR NTN - FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051789778 *
HUAWEI, HISILICON: "Discussion on Doppler compensation, timing advance and RACH for NTN", 3GPP DRAFT; R1-1910064, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 5 October 2019 (2019-10-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051788871 *
See also references of EP4044762A4

Also Published As

Publication number Publication date
CN112788774A (zh) 2021-05-11
CN117255430A (zh) 2023-12-19
EP4044762A1 (en) 2022-08-17
CN112788774B (zh) 2023-09-01
EP4044762A4 (en) 2022-12-28
US20220263570A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
WO2021089054A1 (zh) 卫星通信方法和相关通信设备
US20220393957A1 (en) Timing advance determining method and communication apparatus
US11792758B2 (en) Method and device for determining timing advance
WO2021027346A1 (zh) 公共定时提前的指示方法、装置、设备及存储介质
US11096129B2 (en) Method and signaling for optimized cell switch in earth fixed cells NTN configuration
US20230010343A1 (en) Ta determination method and apparatus, and terminal device
US11678288B2 (en) Synchronization of time sensitive communication hold-and-forward buffers with time sensitive communication assistance information
US20240031965A1 (en) Information transmission method, terminal device, and network device
US20230037533A1 (en) Method and apparatus for deriving cell reference location in a wireless communication system
CN116095810A (zh) 同步方法及装置
WO2021179704A1 (zh) 一种随机接入信道prach信号的传输方法及设备
US20230354438A1 (en) Wireless communication method and apparatus
CN113557770B (zh) 无线通信的方法、终端设备和网络设备
WO2022078412A1 (zh) 上行信号发送和接收方法及装置
EP4195799A1 (en) Timing offset parameter updating method, device, and system
CN114586422B (zh) 定时提前量的阈值调整方法及装置
WO2023221091A1 (en) Methods and apparatuses for mean ephemeris for discontinuous coverage
WO2024027221A1 (zh) 一种卫星网络中的同步方法及装置
WO2024152838A1 (zh) 通信方法、装置及存储介质
WO2022205002A1 (zh) 传输定时的调整方法、确定方法和终端设备
CN115052332B (zh) 信号传输方法、装置及存储介质
WO2024073979A1 (en) User equipment and method for performing sidelink positioning without sidelink positioning protocol session
US20240073763A1 (en) Method and apparatus for non-terrestrial network mobility in wireless communication system
WO2024027220A1 (zh) 一种卫星网络中的同步方法及装置
WO2023137704A1 (en) Methods and apparatuses of wireless communication in non-terrestrial network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020885884

Country of ref document: EP

Effective date: 20220513