WO2021027346A1 - 公共定时提前的指示方法、装置、设备及存储介质 - Google Patents

公共定时提前的指示方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2021027346A1
WO2021027346A1 PCT/CN2020/089682 CN2020089682W WO2021027346A1 WO 2021027346 A1 WO2021027346 A1 WO 2021027346A1 CN 2020089682 W CN2020089682 W CN 2020089682W WO 2021027346 A1 WO2021027346 A1 WO 2021027346A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
common
offset
indication information
scaling
Prior art date
Application number
PCT/CN2020/089682
Other languages
English (en)
French (fr)
Inventor
徐晨蕾
罗禾佳
周建伟
王晓鲁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20852676.4A priority Critical patent/EP4009718A4/en
Publication of WO2021027346A1 publication Critical patent/WO2021027346A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18519Operations control, administration or maintenance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • This application relates to the field of communication technology, and in particular to a method, device, device, and storage medium for indicating public timing advance.
  • the current satellite communication system has certain advantages compared to the ground communication system.
  • the satellite communication system has a long communication distance, a large coverage area, and a bandwidth of communication frequency. It can provide users with communication services at any time and anywhere. Therefore, the application prospects of satellite communication systems are also expanding.
  • the uplink data frame sent by the terminal has a certain delay when it reaches the network equipment, in order to keep the terminal’s uplink data frame and the network equipment’s downlink data frame Synchronization requires the network device to send a Timing Advance (TA) value to the terminal, and the terminal sends uplink data according to the TA value.
  • TA Timing Advance
  • the TA value reflects the signal round-trip transmission delay between the terminal and the network device.
  • This application provides a method, device, equipment and storage medium for indicating public timing advance to save the signaling overhead of network equipment indicating the public TA value.
  • this application provides a method for indicating public timing advance.
  • the network device sends first indication information for indicating the public TA value to the terminal, and correspondingly, the terminal receives the first indication sent by the network device Information, and determine the public TA value associated with a satellite coverage area in the satellite communication system indicated by the network device according to the first indication information, and the public TA value is used to characterize the reference point in the satellite coverage area and the network The round-trip transmission delay between devices. Since the network device does not need to directly send the public TA value itself, the signaling overhead required for the indication information is smaller than that of the public TA value itself. Therefore, the signaling overhead for the network device to indicate the public TA value is saved.
  • the first indication information includes index information of the common TA value; the terminal according to the index information of the common TA value and the correspondence between the index information set and the common TA value set, Determine the common TA value; the index information includes second indication information for indicating the altitude of the satellite orbit, third indication information for indicating the type of satellite communication system, and fourth indication information for indicating the serial number of the satellite coverage area At least one of them. Since the number of bits of the index number of the common TA value is much less than the number of bits of the common TA value, the indication overhead of the common TA value can be effectively saved.
  • the network device before the terminal sends the random access preamble to the network device, the network device sends the indication information for indicating the common TA value to the terminal, so that the terminal can use the common TA value as the random access preamble. Therefore, the problem of the random access preamble occupies a lot of resources and the network equipment detects the high complexity of the random access preamble.
  • the first indication information includes index information of the scaling value of the common TA value; the index information of the scaling value of the terminal according to the common TA value, and the index information set and the common TA
  • the corresponding relationship between the set of scaling values determines the scaling value of the common TA value; further, the common TA value is determined according to the scaling value of the common TA value and the scaling coefficient of the common TA value.
  • the first indication information includes a scaling value of the common TA value.
  • the terminal determines the common TA value according to the scaling value of the common TA value and the scaling coefficient of the common TA value.
  • the solution provided by this embodiment saves signaling overhead compared to directly sending the common TA value.
  • the scaling value of the common TA value and the scaling factor of the common TA value can have multiple indication methods, and the indication common is also improved. The flexibility of TA value and the flexibility of signaling configuration.
  • the first indication information further includes index information of the scaling factor of the common TA value; the terminal determines the scaling factor of the common TA value according to the scaling value of the common TA value and the scaling factor of the common TA value.
  • the scaling factor of the public TA value may be determined according to the index information of the scaling factor of the public TA value and the correspondence between the index information set and the scaling factor set.
  • the first indication information includes index information of the reference TA value corresponding to the common TA value; the terminal according to the index information of the reference TA value corresponding to the common TA value and index information
  • the corresponding relationship between the set and the set of reference TA values determine the reference TA value corresponding to the common TA value; further, determine the common TA value according to the reference TA value corresponding to the common TA value and at least one offset
  • the common TA value is the sum of the reference TA value corresponding to the common TA value and at least one of the offsets.
  • the first indication information includes index information of the scaling value of the reference TA value corresponding to the common TA value; the terminal according to the scaling value of the reference TA value corresponding to the common TA value The index information and the corresponding relationship between the index information set and the reference TA scaling value set, determine the scaling value of the reference TA value corresponding to the common TA value; further, according to the scaling value of the reference TA value corresponding to the common TA value Determine the reference TA value corresponding to the common TA value by the scaling factor of the reference TA value corresponding to the common TA value; determine the common TA value according to the reference TA value corresponding to the common TA value and at least one offset
  • the common TA value is the sum of the reference TA value corresponding to the common TA value and at least one of the offsets.
  • the first indication information includes a scaling value of the reference TA value corresponding to the common TA value; the terminal according to the scaling value of the reference TA value corresponding to the common TA value and the common TA value
  • the scaling factor of the reference TA value corresponding to the TA value determines the reference TA value corresponding to the common TA value; further, determining the common TA value according to the reference TA value corresponding to the common TA value and at least one offset,
  • the common TA value is the sum of the reference TA value corresponding to the common TA value and at least one of the offsets.
  • the TA value and at least one offset to indicate the common TA value By referring to the TA value and at least one offset to indicate the common TA value, not only the indication accuracy of indicating the common TA value is improved, but also the bit overhead required for the indication can be further reduced.
  • introducing the scaling factor of the reference TA value and/or the scaling factor of the at least one offset on the basis of the reference TA value and at least one offset can further reduce the signaling overhead while ensuring the indication accuracy. And improve the flexibility of indicating the common TA value.
  • the same time unit or different time units are used through different offsets, so that the network device only needs to indicate the time unit that is several times the offset, so that the network device It can minimize the total offset indication overhead.
  • the first indication information further includes index information corresponding to the scaling factor of the reference TA value corresponding to the common TA value; the terminal is scaled according to the reference TA value corresponding to the common TA value Value and the scaling factor of the reference TA value corresponding to the common TA value, before determining the reference TA value corresponding to the common TA value, the index information corresponding to the scaling factor of the reference TA value corresponding to the common TA value And the corresponding relationship between the index information set and the scaling coefficient set, and the scaling coefficient of the reference TA value corresponding to the common TA value is determined.
  • the first indication information further includes at least one of the offsets.
  • the first indication information further includes at least one index information of the offset; the terminal determines the common TA value according to the reference TA value corresponding to the common TA value and the at least one offset Before the TA value, at least one offset may be determined according to the index information of at least one offset and the correspondence between the index information set and the offset set.
  • the first indication information further includes index information of at least one scaling value of the offset; the terminal according to the reference TA value corresponding to the common TA value and at least one offset
  • at least one of the offsets may also be determined according to the index information of the at least one offset scaling value and the correspondence between the index information set and the offset scaling value set The scaling value of the offset; determining at least one offset according to at least one scaling value of the offset and at least one scaling coefficient of the offset.
  • the first indication information further includes at least one scaling value of the offset; the terminal determines the scale value of the offset according to the reference TA value corresponding to the common TA value and the at least one offset.
  • at least one offset may be determined according to at least one scaling value of the offset and at least one scaling factor of the offset.
  • the first indication information further includes index information of at least one scaling factor of the offset; the terminal according to at least one scaling value of the offset and at least one of the offsets Before determining at least one of the offsets, it is also possible to determine at least one index information according to the index information of at least one of the offsets and the corresponding relationship between the index information set and the set of scaling factors. The scaling factor of the offset.
  • the index information includes second indication information for indicating the altitude of the satellite orbit, third indication information for indicating the type of satellite communication system, and fourth indication information for indicating the serial number of the satellite coverage area At least one of them.
  • the first indication information includes a differential TA value; correspondingly, the terminal determines the common TA value according to the differential TA value and a reference TA value, and the common TA value is The sum of the reference TA value and the difference TA value.
  • the first indication information includes the scaling value of the differential TA value; correspondingly, the terminal determines the scaling value of the differential TA value and the scaling factor of the differential TA value.
  • the differential TA value further, the terminal determines the common TA value according to the differential TA value and a reference TA value, and the common TA value is the sum of the reference TA value and the differential TA value.
  • the first indication information includes the index number of the differential TA value; accordingly, the terminal uses the index number of the differential TA value and the difference between the index information set and the differential TA value set.
  • the difference TA value is determined, further, the terminal determines the common TA value according to the difference TA value and the reference TA value, and the common TA value is the reference TA value and the difference TA The sum of the values.
  • the first indication information includes the index number of the scaling value of the differential TA value; correspondingly, the terminal according to the index number of the scaling value of the differential TA value and the index information set are The corresponding relationship between the set of differential TA value scaling values, determining the scaling value of the differential TA value; determining the differential TA value according to the scaling value of the differential TA value and the scaling factor of the differential TA value, further, The terminal determines the common TA value according to the differential TA value and the reference TA value, where the common TA value is the sum of the reference TA value and the differential TA value.
  • the first indication information further includes the reference TA value.
  • the first indication information further includes the index number of the reference TA value.
  • the first indication information further includes a scaling value of the reference TA value.
  • the first indication information further includes the index number of the scaling value of the reference TA value.
  • the terminal receives signaling issued by a network device; the terminal determines the public TA value or the reference TA value according to the signaling.
  • the signaling includes at least one of random access response window signaling and contention resolution timer signaling; wherein, the random access response window signaling includes RAR window length, and The contention resolution timer signaling includes a contention resolution timer length, the RAR window length is related to the common TA value or the reference TA value, and the contention resolution timer length is related to the common TA value or the reference TA. Value related.
  • the signaling includes the first delay offset1 between the random access preamble and the start of the RAR window, the second delay offset2 between the L2/L3 message and the random access response, and the contention resolution timer. At least one of the third delay offset3 between the start time and the L2/L3 message; wherein, offset1, offset2, and offset3 are respectively related to the common TA value or the reference TA value.
  • the signaling includes a transmission interval K1 between PDSCH and PUCCH, and/or a transmission interval K2 between PDCCH and PUSCH; wherein, K1 and K2 are respectively related to the common TA value or The reference TA value is related.
  • the terminal receives a specific parameter related to the satellite or a specific parameter in a satellite communication system sent by a network device; the terminal is based on the specific parameter and a preset geometric formula or fitting formula The common TA value is calculated.
  • the specific parameters include: satellite orbit height and angle information in the satellite communication system; correspondingly, the geometric formula is the relationship between the common TA value, the satellite orbit height and the angle information The functional relationship.
  • the angle information in the satellite communication system includes at least one of an elevation angle, a half-opening angle, and a geocentric angle.
  • the specific parameters include: a first angle, a second angle, and a third angle; wherein, the first angle is the angle between the first plane and the satellite orbital plane, and the first angle A plane is a plane that includes the center of the earth, a predetermined point on the ground, and a first point.
  • the first point is a projection point of the predetermined point on the ground on a first arc, and the first arc is a satellite orbit Projection line on the ground;
  • the second angle is the angle between the first straight line and the second straight line, the first straight line passes through the center of the earth and the predetermined point on the ground, and the second straight line passes through the center of the earth and the first point;
  • the third angle is the geocentric angle between the satellite and the first point at the current moment.
  • the specific parameters include: a geocentric angle and a coefficient in a fitting formula; the fitting formula is a functional relationship between the common TA value and the coefficient;
  • the geometric formula is the functional relationship between the common TA value, the first angle, the second angle, and the third angle; the first angle, the second angle, and the third angle are used for Represents the relative position between the ground preset point and the satellite.
  • this application provides a method for indicating public timing advance, which includes:
  • the network device generates first indication information
  • the network device sends the first indication information, the first indication information is used to indicate the common timing advance TA value in the satellite communication system, and the common TA value is used to characterize the reference point and the network device in the satellite coverage area The round-trip transmission delay between.
  • the method before the network device generates the first indication information, the method further includes: the network device generates a correspondence between an index information set and a common TA value set; wherein, the first The indication information includes index information of the common TA value.
  • the method before the network device generates the first indication information, the method further includes:
  • the first indication information includes index information of a reference TA value corresponding to the common TA value
  • the common TA value is the sum of the reference TA value corresponding to the common TA value and at least one of the offsets.
  • the method before the network device generates the first indication information, the method further includes:
  • the network device generates a correspondence between the index information set and the offset set
  • the first indication information further includes at least one index information of the offset.
  • the present application provides a communication device including a module, component or circuit for implementing the public timing advance indication method of the first aspect or the second aspect.
  • this application provides a communication device, including:
  • the processor and the transceiver, the processor and the transceiver communicate with each other through internal connections;
  • the processor is configured to perform processing steps in the method described in the first aspect or the second aspect
  • the transceiver is configured to perform transceiving steps in the method described in the first aspect or the second aspect.
  • the communication device in the fourth aspect may be a network device or a terminal, or a component (such as a chip or a circuit) of the network device or the terminal.
  • the present application provides a communication device, including: an input interface circuit, a logic circuit, and an output interface circuit, wherein the logic circuit is used to execute the method described in the first aspect or the second aspect.
  • the present application provides a computer-readable storage medium in which a computer program is stored, and the computer program includes instructions for executing the method according to the first aspect or the second aspect.
  • the present application provides a computer program, which includes instructions for executing the method described in the first aspect or the second aspect.
  • the program in the seventh aspect may be stored in whole or in part on a storage medium that is packaged with the processor, or may be stored in part or in a memory that is not packaged with the processor.
  • an embodiment of the present application further provides a system, including the communication device described in the third aspect, the fourth aspect, or the fifth aspect.
  • an embodiment of the present application further provides a processor, which includes: at least one circuit, configured to execute the method according to the first aspect or the second aspect.
  • the terminal receives the indication information for indicating the common timing advance TA value in the satellite communication system from the network device, and determines the common TA value according to the indication information, because the indication information is compared with the common TA value
  • the required signaling overhead is relatively small, and therefore, the signaling overhead for the network device to indicate the common TA value is saved.
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the application
  • Fig. 2 is a schematic diagram of synchronization of an uplink data frame and a downlink data frame in the prior art
  • FIG. 3 is a schematic diagram of a satellite communication system provided by an embodiment of this application.
  • Figure 4 is a random access procedure in the LTE/NR protocol in the prior art
  • FIG. 5 is a flowchart of a method for indicating public timing advance provided by an embodiment of this application.
  • Fig. 6 is a schematic diagram of another satellite communication system provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of still another satellite communication system provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of a random access response window length provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of a first delay offset1 between a random access preamble and the start of a RAR window according to an embodiment of this application.
  • FIG. 10 is a schematic diagram of a second delay offset2 between an L2/L3 message and a random access response according to an embodiment of this application;
  • FIG. 11 is a schematic diagram of a third delay offset3 between the start time of the contention resolution timer and the L2/L3 message according to an embodiment of the application;
  • FIG. 12 is a schematic diagram of a transmission interval K1 between PDSCH and PUCCH according to an embodiment of this application;
  • FIG. 13 is a schematic diagram of a transmission interval K2 between PDCCH and PUSCH according to an embodiment of this application;
  • FIG. 14 is a schematic diagram of still another satellite communication system provided by an embodiment of this application.
  • 15 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 16 is a schematic structural diagram of still another communication device provided by an embodiment of this application.
  • FIG. 17 is a schematic structural diagram of yet another communication device provided by an embodiment of this application.
  • FIG. 18 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • FIG. 19 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the application.
  • the communication system shown in FIG. 1 mainly includes a network device 11 and a terminal 12.
  • the network device 11 may be a network-side device, for example, an access point (AP) of a wireless local area network (Wireless Local Area Network, WLAN), or a 4G evolved base station (evolved Node B, eNB or eNodeB) , Next-generation communication base stations, such as 5G New Radio Access Technology (NR) base stations (next generation Node B, gNB) or small stations, micro stations, relay stations, sending and receiving points (Transmission and Reception Point, TRP), Road Side Unit (RSU), etc.
  • AP access point
  • WLAN Wireless Local Area Network
  • 4G evolved base station evolved Node B, eNB or eNodeB
  • Next-generation communication base stations such as 5G New Radio Access Technology (NR) base stations (next generation Node B, gNB) or small stations, micro stations, relay stations, sending and receiving points (Transmission and Reception Point, TRP), Road Side Unit (RSU), etc.
  • NR New Radio Access Technology
  • the base station of 4G communication system is called Long Term Evolution (LTE) eNB
  • the base station of 5G communication system is called NR gNB
  • the base station that supports both 4G communication system and 5G communication system is called evolved long-term For Evolutional Long Term Evolution (eLTE) eNBs, these names are only for convenience of distinction and do not have a restrictive meaning.
  • the terminal 12 is also called User Equipment (UE), which is a device that provides users with voice and/or data connectivity, such as handheld devices with wireless connectivity, vehicle-mounted devices, and car and Vehicle (vehicle to vehicle, V2V) communication capability vehicles, etc.
  • UE User Equipment
  • Common terminals include, for example, mobile phones, tablet computers, notebook computers, palmtop computers, mobile internet devices (MID), wearable devices, such as smart watches, smart bracelets, and pedometers.
  • Multiple refers to two or more, and other measure words are similar.
  • “And/or” describes the corresponding relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone.
  • the character “/” generally indicates that the associated objects are in an "or” relationship.
  • terminals 12 included in the communication system shown in FIG. 1 are merely an example, and the embodiment of the present application is not limited thereto. For example, it may also include more terminals 12 communicating with the network device 11. For concise description, they will not be described one by one in the drawings.
  • the communication system shown in FIG. 1 although the network device 11 and the terminal 12 are shown, the communication system may not be limited to include the network device 11 and the terminal 12, for example, may also include core network nodes or Devices that carry virtualized network functions, etc., are obvious to those skilled in the art, and will not be repeated here.
  • embodiments of this application are not only applicable to 4G wireless communication systems, vehicle-to-everything (V2X) communication systems, device-to-device (D2D) communication systems, subsequent evolutionary communication systems of LTE, 5G communication systems, and other systems that may appear in the future, can also be applied to satellite communication systems.
  • V2X vehicle-to-everything
  • D2D device-to-device
  • subsequent evolutionary communication systems of LTE, 5G communication systems, and other systems that may appear in the future can also be applied to satellite communication systems.
  • the terminal when a terminal communicates with a network device, the terminal sends an uplink data frame to the network device, and the network device sends a downlink data frame to the terminal. Because there is a certain distance between the terminal and the network device, the uplink data frame sent by the terminal has a certain delay when it reaches the network device. In order to keep the uplink data frame of the terminal synchronized with the downlink data frame of the network device, the network device needs to give The terminal sends a TA value, and the terminal sends an uplink data frame according to the TA value. As shown in Figure 2, the uplink data frame sent by the terminal is transmitted before the corresponding downlink data frame of the terminal.
  • the time that the uplink data frame is transmitted earlier than the downlink data frame is recorded as the timing advance TA.
  • the TA value reflects the relationship between the terminal and the network device. The signal round-trip transmission delay. In this way, when the network device receives the uplink data frame, the boundary of the uplink data frame is exactly aligned with the boundary of the downlink data frame. In addition, it is also necessary to ensure that the frame numbers of the uplink data frame and the row data frame are the same. Therefore, the TA value can be used to keep the uplink data frame of the terminal synchronized with the downlink data frame of the network device.
  • the embodiment of the present application takes a satellite communication system as an example.
  • 20 represents a coverage area of a satellite, and multiple terminals may exist in the coverage area.
  • 21 represents a reference point in the coverage area.
  • the reference point may be a point closest to the satellite in the coverage area.
  • the reference point may also be recorded as the near end.
  • 22 indicates any point in the coverage area except the reference point.
  • 22 indicates the point farthest from the satellite in the coverage area.
  • point 22 can also be recorded as the far end.
  • d1 represents the distance between the near end and the satellite
  • d2 represents the distance between the far end and the satellite.
  • the TA value required for the terminal to communicate with the satellite is the signal round-trip transmission delay between the terminal and the network device.
  • a part of the transmission distance of the satellite communication system is public.
  • the distance d1 between the near end and the satellite can be taken as the common transmission distance in the coverage area 20.
  • a public round-trip transmission delay will be generated when the signal is transmitted back and forth over the common transmission distance.
  • the public round-trip transmission delay is recorded as the common TA value.
  • the terminal-specific TA value is the difference between the total round-trip transmission delay of the terminal and the common round-trip transmission delay.
  • the common TA value of multiple terminals located in the same coverage area may be the same.
  • the public TA value can be determined by the type of satellite communication system and the distance between the satellite or ground station and a certain reference point.
  • Figure 3 when a terminal communicates with a satellite, the terminal needs to use a common TA value and a terminal-specific TA value.
  • the process for the terminal to obtain the public TA value and the terminal-specific TA value is introduced below.
  • Figure 4 shows the random access process in the LTE/NR protocol in the prior art. Specifically, in step 1, the terminal sends a random access preamble to the network device, and the random access preamble can be a specific set of A leader sequence selected in. Step 2.
  • the network device sends a random access response to the terminal.
  • the random access response may include the preamble sequence identifier, TA value, backoff indication (Backoff), initial uplink resource transmission grant (UL-grant), and cell wireless network temporary identification (Cell-RadioNetworkTemporaryIdentifier, C-RNTI).
  • Step 3 The terminal sends a Layer 2/Layer 3 (L2/L3) message to the network device.
  • the L2/L3 message may include the C-RNTI and the terminal identifier.
  • the network device sends a contention resolution message to the terminal.
  • the absolute TA value between the terminal and the satellite that is, the total round-trip transmission delay of the terminal as described above is relatively large.
  • the absolute TA value can be divided into two parts, one is the common TA value, and the other is the terminal-specific TA value. Therefore, when the random access procedure in the LTE/NR protocol as shown in Figure 4 is applied to the satellite communication system, the network device can send the public TA value to the terminal before step 1, and the random access response described in step 2 It carries the unique TA value of the terminal.
  • d3 is much smaller than d1
  • the terminal-specific TA value is much smaller than the public TA value.
  • the public TA value is also relatively large. . If the network device directly sends the public TA value, the number of bits corresponding to the public TA value will be many, which will undoubtedly bring about greater signaling overhead.
  • an embodiment of the present application provides a method for indicating a common TA value, which will be introduced below in conjunction with specific embodiments.
  • Fig. 5 is a flowchart of a method for indicating public timing advance provided by this application. As shown in FIG. 5, the method for indicating public timing advance in this embodiment includes the following steps:
  • the terminal receives first indication information from the network device, where the first indication information is used to indicate the common timing advance TA value in the satellite communication system.
  • the network device may specifically be a satellite in a satellite communication system, or it may be a ground station 23 in a satellite communication system as shown in FIG. 6.
  • the satellite may send the indication information for indicating the common TA value by broadcasting before the terminal randomly accesses, and here, the indication information is recorded as the first indication information.
  • the first indication information may be carried in broadcast information such as system information block (System Information Block, SIB) 1, other system information (Other System Information, OSI), and master information block (Master Information Block, MIB). That is to say, the satellite does not send the public TA value itself, but sends the indication information used to indicate the public TA value.
  • SIB system Information Block
  • OSI System Information
  • MIB master information block
  • the differential TA value is also called the differential common TA value
  • the differential common TA value is recorded as the differential TA value to facilitate the distinction between the common TA value and the differential common TA value
  • the reference TA value is also called the reference common TA value
  • the reference common TA value is recorded as the reference TA value to facilitate the distinction between the common TA value and the reference common TA value.
  • the common TA value indicated by the satellite through the first indication information may be a common TA value associated with a certain coverage area of the satellite, and there may be one or more common TA values associated with a certain coverage area.
  • each of the multiple common TA values may be a TA value at a different reference position in the coverage area.
  • the terminal can select a public TA value from the multiple public TA values through parameter information obtained by local measurement or parameter information issued by network equipment.
  • the parameter information may specifically be Doppler frequency deviation, Doppler frequency deviation change rate, relative angle between the terminal and the satellite, etc.
  • the relative angle between the terminal and the satellite may specifically include the half-opening angle and communication as shown in FIG. Angles such as elevation and geocentric angle.
  • the terminal with the positioning function can also select a common TA value from the multiple common TA values according to the positioning information.
  • FIG. 7 is a schematic diagram of a scenario of a satellite communication system provided by an embodiment of this application.
  • the satellite has the signal processing capability, and the satellite can transparently forward the signal sent by the mobile terminal to the ground station, thus realizing the communication scenario of wide area coverage.
  • the aforementioned certain coverage area may specifically be a certain area of a plurality of areas in which the entire coverage area of the satellite is divided into various angles as shown in FIG. 7.
  • Each area may specifically be a satellite cell or a projection area of a beam of the satellite on the ground.
  • each area may be a projection area of multiple beams of the satellite on the ground or multiple satellite cells.
  • each area may be a partial area of a projection area of a satellite beam on the ground or a partial area of a satellite cell.
  • a satellite cell is usually a projection area of one or more satellite beams on the ground.
  • Each area corresponds to one or more terminals.
  • the satellite can also send broadcast information carrying the first indication information multiple times, and the time interval for each broadcast information transmission may be equal or unequal.
  • the terminal determines the public TA value according to the first indication information, where the public TA value is used to characterize the round-trip transmission delay between the reference point in the satellite coverage area and the network device.
  • the satellite Since the satellite carries the first indication information through the broadcast information, when the terminal receives the broadcast information, it can determine the common TA value according to the first indication information in the broadcast information.
  • the terminal can use the common TA value as the pre-compensated TA value for uplink data transmission. For example, when the terminal sends a random access preamble to the satellite, the terminal uses the common TA value as the transmission uplink data value. The TA value is pre-compensated. When the terminal sends a random access preamble, the common TA value is used as the transmission TA value.
  • the network device can also use RRC information, Downlink Control Information (DCI), Media Access Control (MAC) elements, and Timing Advance Command (Timing Advance Command). , TAC), and at least one of the separately allocated physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) carries the updated TA value.
  • DCI Downlink Control Information
  • MAC Media Access Control
  • TAC Timing Advance Command
  • the terminal receives the indication information for indicating the TA value of the common timing advance in the satellite communication system from the network device, and determines the common TA value according to the indication information, because the indication information is different from the common TA value itself.
  • the required signaling overhead is small, and therefore, the signaling overhead for the network device to indicate the common TA value is saved.
  • the method further includes:
  • Step 1 The terminal sends a random access preamble to the network equipment.
  • the random access preamble may specifically be a preamble sequence selected by the terminal from a specified set, and then the network equipment receives the random access preamble sent by the terminal, and performs the preamble reception position check Detect and acquire the uplink TA value, and generate first indication information, where the first indication information is used to indicate the common timing advance TA value in the satellite communication system.
  • the network device may also obtain the corresponding relationship between the index information set and the common TA value set.
  • the common TA value index table described in 1 or Table 2 will not be repeated here.
  • the common TA value index table may be generated by the terminal, or may be sent to the terminal after being generated by the network device.
  • the first indication information may include index information of the common TA value.
  • the terminal receives the first indication information, it determines the public TA value according to the index information of the public TA value and the public TA value index table described in Table 1 or Table 2 below. The specific process is as follows. Repeat it again.
  • the index information may specifically be an index number.
  • the network device may also obtain the corresponding relationship between the index information set and the reference TA value set.
  • the reference TA value may be a common TA value in the index table.
  • the index table may be generated by the terminal, or may be sent to the terminal after being generated by the network device.
  • the first indication information includes index information of the reference TA value corresponding to the common TA value.
  • the terminal When the terminal receives the first indication information, it determines the reference TA value corresponding to the common TA value according to the index information of the reference TA value corresponding to the common TA value and the corresponding relationship as described in Table 4, and further, according to the The reference TA value corresponding to the common TA value and at least one of the offsets are determined to determine the common TA value.
  • the common TA value is the sum of the reference TA value and at least one of the offsets.
  • the network device may also obtain the corresponding relationship between the index information set and the offset set.
  • the corresponding relationship refer to the corresponding relationship described in Table 5 used by the following terminal.
  • the first indication information may further include at least one index information of the offset.
  • the terminal may further determine at least one reference TA value based on the index information of the at least one offset and the corresponding relationship described in Table 5.
  • the offset further, the common TA value is determined according to the reference TA value corresponding to the common TA value and at least one of the offsets.
  • the common TA value is the reference TA value and at least one of the offsets. The sum of the shifts.
  • Step 2 The network device sends a random access response to the terminal, where the random access response includes the first indication information; in addition, the random access response may also include one or more of the following information: preamble sequence Identification, TA value, backoff indication (Backoff), initial uplink resource transmission grant (UL-grant), cell radio network temporary identifier (Cell-RadioNetworkTemporaryIdentifier, C-RNTI).
  • preamble sequence Identification TA value
  • backoff indication Backoff
  • UL-grant initial uplink resource transmission grant
  • C-RNTI cell radio network temporary identifier
  • the first indication information described in the foregoing embodiment includes index information of the common TA value, and the index information may specifically be an index number.
  • the terminal can determine the common TA value according to the index number of the common TA value and the common TA value index table. Specifically, the terminal may query the public TA value index table according to the index number of the public TA value to obtain the public TA value corresponding to the index number.
  • the common TA value index table can have different forms, and one possible form is the correspondence shown in Table 1 below.
  • the network device indicates the index number of a certain public TA value to the terminal according to the correspondence relationship in Table 1, and the terminal determines the public TA value indicated by the network device according to the correspondence relationship between the index number and Table 1.
  • the index number Public TA value 0 CommonTA 0 1 CommonTA 1 ... ... n CommonTA n
  • the common TA value index table is the correspondence shown in Table 2 below.
  • x 1 is the second indication information used to indicate the satellite orbit height
  • x 2 is the third indication information used to indicate the type of the satellite communication system
  • x 3 is the fourth indication information used to indicate the serial number of the coverage area.
  • the index number of the common TA value may specifically be at least one of x 1 , x 2 , and x 3 .
  • the indication information of multiple parameters can be combined as the index number of the common TA value.
  • the index number of the common TA value is not limited to include at least one of x 1 , x 2 , and x 3 , and may also include indication information of other parameters.
  • the network device may also send an indication message to the terminal to indicate that some parameters are used as the index number.
  • the indication information may include 3 bits, which correspond to x 1 , x 2 , and x 3 in order from left to right. If 0 indicates that it can be used as an index number, and 1 indicates that it is not used as an index number, then 001 indicates x 1.
  • x 2 is used as an index number, and x 3 is not used as an index number.
  • the terminal only needs to query the public TA value index table shown in Table 2 according to x 1 , x 2 to determine the corresponding to x 1 , x 2 Public TA value.
  • the common TA value index table shown in Table 1 or Table 2 may be pre-appointed by the terminal and the network device, or issued by the network device to the terminal.
  • the index number of the public TA value is used to indicate the public TA value. Since the number of bits of the index number of the public TA value is much less than the number of bits of the public TA value, the indication overhead of the public TA value can be effectively saved.
  • the network device before the terminal sends the random access preamble to the network device, the network device sends the indication information for indicating the common TA value to the terminal, so that the terminal can use the common TA value as the random access preamble. Therefore, the problem of the random access preamble occupies a lot of resources and the network equipment detects the high complexity of the random access preamble.
  • the first indication information described in the foregoing embodiment may include the index number of the scaling value of the common TA value.
  • the scaling factor can be a factor greater than 0 and less than 1.
  • the scaling factor is 1/2 n
  • the scaling value of the common TA value the common TA value ⁇ 1/2 n
  • the number of bits of the scaling value of the common TA value will be reduced by n bits compared to the number of bits of the common TA value . It can be seen that this indication mode can save part of the signaling overhead.
  • the scaling factor of the common TA value is 0.0001, and the scaling value of the common TA value is 1 time unit.
  • the terminal determines the scaling value of the common TA value corresponding to the index number according to the index number of the scaling value of the common TA value in the first indication information and the index table of the scaling value of the common TA value, and further, according to The scaling value of the common TA value and the scaling factor of the common TA value determine the common TA value.
  • the index table of the scaling value of the common TA value can be specifically referred to as shown in Table 2, and the specific corresponding relationship will not be repeated here.
  • the index table of the scaling value of the common TA value may be pre-appointed by the terminal and the network device, or issued by the network device to the terminal.
  • the terminal since the first indication information includes the index number, the terminal needs to use the index table when determining the common TA value.
  • the first indication information may not include the index number, but the scaling value of the common TA value.
  • the terminal can use the scaling value of the common TA value and the The scaling factor of the common TA value determines the common TA value. For example, if the scaling value of the common TA value is 1 time unit and the scaling factor is 0.0001, then the common TA value is the scaling value of the common TA value divided by the scaling factor, that is, 10,000 time units.
  • the scaling factor of the public TA value described above may be pre-appointed by the terminal and the network device. Alternatively, the scaling factor may be directly sent by the network device to the terminal. In this case, the first indication information and the scaling factor may be carried in the same message or in different messages. When the first indication information and the scaling factor are carried in different messages, if the network device needs to indicate the common TA value multiple times, the transmission interval of the first indication information and the scaling factor may be the same or different.
  • the scaling factor of the common TA value and the scaling factor of the terminal-specific TA value as described above can be configured uniformly by the network device, or can be configured independently. When configured independently, the scaling factor of the common TA value can be the same as that of the terminal The scaling factor of the unique TA value is the same or different.
  • the network device may also indicate the scaling factor of the common TA value to the terminal through the index number and the scaling factor index table.
  • the above-mentioned first indication information may also include the index number of the scaling factor of the common TA value.
  • the network device may carry the first indication information and the index number of the scaling factor of the common TA value in different SIB messages.
  • the terminal Before determining the common TA value according to the scaling value of the common TA value and the scaling factor of the common TA value, the terminal may determine the scaling factor of the common TA value according to the index number of the scaling factor of the common TA value and the scaling factor index table .
  • the scaling factor index table can be the corresponding relationship shown in Table 3 below, or the scaling factor index table can also refer to the form shown in Table 2, and the specific corresponding relationship will not be repeated here.
  • the zoom factor index table shown in Table 3 is only a schematic description of the correspondence between index numbers and zoom factors. In actual applications, the number of index numbers and the value of the zoom factor can be adjusted according to the needs of the application scenario. .
  • the scaling factor index table may be pre-appointed by the terminal and the network device, or issued by the network device to the terminal.
  • the scaling factor of the common TA value may also be implicitly indicated by other parameters such as subcarrier width and preamble structure.
  • the width of the subcarrier 2 ⁇ ⁇ 15KHz, the common scale factor value TA is 1/2 ⁇ .
  • the network device uses the scaling value of the common TA value to indicate the common TA value to the terminal.
  • the network device sends the scaling value of the common TA value and the index number of the scaling factor of the common TA value to the terminal, and the scaling value of the common TA value and the index number of the scaling factor are carried in different SIB messages.
  • the scaling value of the common TA value is 10000 time units
  • the index number of the scaling factor is 0, and the terminal knows that the specific scaling factor is 1/2 according to Table 3.
  • the terminal determines that the common TA value is 2 ⁇ 10,000 time units, namely 2 ⁇ 10000 ⁇ 16 ⁇ 64 ⁇ T c .
  • the common TA value is indicated by the scaling value of the common TA value, which saves signaling overhead compared to directly sending the common TA value.
  • the scaling value of the common TA value and the scaling factor of the common TA value can be indicated in multiple ways , It also improves the flexibility of indicating the common TA value and the flexibility of signaling configuration.
  • the common TA value required by the terminal may not be in the common TA value index table, or the scaling value of the common TA value required by the terminal may not be in the scaling value index table of the common TA value.
  • Table 4 is an example of the public TA value index table.
  • the public TA value index table includes the correspondence between the joint index number and the public TA value.
  • the network device can update the public TA value index table, or use the public TA value index table
  • the existing 7680 close to 7685 and at least one offset indicate the common TA value to the terminal.
  • the common TA value close to the common TA value required by the terminal is recorded as the reference TA value.
  • 7680 is the reference TA value of 7685.
  • the common TA value required by the terminal reference TA value+(offset 1+...+offset N), where the offset may be a positive value or a negative value.
  • the manner in which the network device indicates the reference TA value is the same as the manner in which the network device indicates the common TA value described in the foregoing embodiment.
  • the first indication information includes the index number of the reference TA value
  • the terminal queries the corresponding reference TA value through the index number and the reference TA value index table
  • the reference TA value index table may refer to the table 4 shows the form.
  • the first indication information includes the index number of the scale value of the reference TA value, and the terminal queries the scale value of the corresponding reference TA value through the index number and the index table of the scale value of the reference TA value Further, the reference TA value is determined according to the scaling value of the reference TA value and the scaling factor of the reference TA value. In another possible implementation manner, the first indication information includes a scaling value of the reference TA value, and the terminal determines the reference TA value according to the scaling value of the reference TA value and the scaling factor of the reference TA value.
  • the indication mode of the scaling factor of the reference TA value is the same as the indication mode of the scaling factor of the common TA value in the foregoing embodiment, and will not be repeated here.
  • the process of the terminal determining the reference TA value according to the first indication information is the same as the process of determining the common TA value according to the first indication information in the above embodiment, here No longer.
  • the network device may directly send at least one offset to the terminal.
  • the network device may send the index number of at least one offset to the terminal.
  • the network device may send a scaling value of at least one offset to the terminal.
  • the network device may send the index number of the scaling value of at least one offset to the terminal.
  • the terminal when the network device sends the index number of at least one offset to the terminal, the terminal needs to query the offset index table according to the index number of the at least one offset to obtain at least one offset. Or, when the network device sends the index number of the scaling value of at least one offset to the terminal, the terminal needs to query the index table of the scaling value of the offset according to the index number of the scaling value of the at least one offset to obtain at least one offset.
  • the zoom value of the shift amount wherein, the form of the offset index table or the index table of the scaling value of the offset may be a form similar to Table 1, or a form similar to Table 2.
  • the offset index table or the offset scaling value index table may be pre-appointed by the terminal and the network device, or the offset index table or the offset scaling value index table is set by the network device Sent to the terminal.
  • the information used by the network device to indicate the reference TA value and the information used to indicate at least one offset may be carried in the same message.
  • the first indication information may not only include the index number of the reference TA value and the reference TA value. The index number of the scaling value or the scaling value of the reference TA value.
  • the first indication information may also include at least one offset, at least one offset index, at least one offset scaling value, or at least one offset The index number of the scaling value of the offset.
  • the information used by the network device to indicate the reference TA value and the information used to indicate the at least one offset may also be carried in different messages.
  • different offsets can be indicated in the same way.
  • the network device needs to indicate offset 1 and offset 2 to the terminal, and the network device can The offset 1 and the offset 2 are indicated by the offset index number.
  • the network device sends the offset 1 index and the offset 2 index number to the terminal.
  • different offsets can also be indicated by different indication methods. For example, when the network device indicates offset 1, it sends offset 1 to the terminal; when the network device indicates offset 2, it sends offset 1 to the terminal.
  • the time units of different offsets can be the same or different. For example, the offset 1 uses the system time slot length as the time unit, and the offset 2 uses T c as the time unit.
  • the time unit is not limited to the system time slot length or T c as the unit, but can also be the system frame time length, system symbol length, and self-defined time granularity as the unit, or commonly used track information, such as
  • the track height is used as the index of the time unit. For example, if the orbit height is 600 kilometers, it means that the time unit is the transmission delay of the sub-satellite point corresponding to the 600 kilometers orbit.
  • the network device when the network device sends the scale value of the reference TA value and/or the scale value of at least one offset to the terminal, the network device indicates the manner in which the scale factor of the reference TA value or the scale factor of at least one offset is The same is true for the manner in which the network device indicates the scaling factor of the common TA value described in the foregoing embodiment, which will not be repeated here.
  • the corresponding scaling factor index table may specifically refer to the scaling factor index table described in the foregoing embodiment.
  • the network device can indicate the scaling factor of the reference TA value and the scaling factor of at least one offset in the same indicating manner, or use a different indicating manner to indicate the scaling factor of the reference TA value and at least one offset
  • the scaling factor of the quantity may be carried in the same signaling or message, or carried in different signaling or messages.
  • the scaling factor of the reference TA value, the scaling factor of at least one offset, and the aforementioned scaling factor of the terminal-specific TA value may be configured by the network device in a unified manner, or may be configured independently.
  • the scaling factor of the reference TA value, the scaling factor of at least one offset, and the aforementioned scaling factor of the terminal-specific TA value may be partly the same, all of the same, or different from each other.
  • the time interval at which the network device sends the scaling factor of the reference TA value and the time interval at which the scaling factor of at least one offset is sent may be the same or different.
  • the information used by the network device to indicate the scaling factor of the reference TA value and/or the scaling factor of at least one offset, the information indicating the reference TA value, and the information indicating the at least one offset may be carried in the same In the message, for example, the first indication information can also be carried in different messages.
  • the network device uses the reference TA value and at least one offset to indicate the common TA value.
  • the common TA value reference TA value+offset 1.
  • the network device carries the index number of the reference TA value, the scale value of the offset 1, and the index number of the scale factor of the offset 1 in the same SIB message for broadcasting.
  • the terminal receives the SIB message, it obtains the index number of the reference TA value, the scaling value of the offset 1, and the index number of the scaling factor of the offset 1 from the SIB message.
  • the index number of the reference TA value is the joint index number
  • the joint index number is 001.
  • the reference TA value is 9681.
  • 9681 means 9681 time units. If one time unit is equal to 16 ⁇ 64 ⁇ T c , then the reference TA value is equal to 9681 ⁇ 16 ⁇ 64 ⁇ T c .
  • the scaling value of the offset 1 is 2, that is, 2 time units, and one time unit is equal to 16 ⁇ 64 ⁇ T c , the scaling value of the offset 1 is equal to 2 ⁇ 16 ⁇ 64 ⁇ T c .
  • the scaling factor corresponding to 0 is 1/2. Therefore, the offset 1 is 2 ⁇ 2 ⁇ 16 ⁇ 64 ⁇ T c and the common TA value is (9681+2 ⁇ 2) ⁇ 16 ⁇ 64 ⁇ T c .
  • the common TA value is indicated by referring to the TA value and at least one offset, which not only improves the indication accuracy of indicating the common TA value, but also can further reduce the bit overhead required for indication.
  • introducing the scaling factor of the reference TA value and/or the scaling factor of the at least one offset on the basis of the reference TA value and at least one offset can further reduce the signaling overhead while ensuring the indication accuracy. And improve the flexibility of indicating the common TA value.
  • the same time unit or different time units are used through different offsets, so that the network device only needs to indicate the time unit that is several times the offset, so that the network device It can minimize the total offset indication overhead.
  • the differential TA value common TA value-reference TA value, where the reference TA value is similar to the reference TA value in the above embodiment, and the differential TA value is similar to the bias in the above embodiment. Shift. Therefore, when the network device indicates the common TA value, it may indicate only the differential TA value, or simultaneously indicate the differential TA value and the reference TA value. When indicating the difference TA value and the reference TA value at the same time, the way of indicating the difference TA value and the way of indicating the reference TA value may be the same or different. For example, when the network device indicates the differential TA value, it sends the index number of the differential TA value to the terminal.
  • the network device When the network device indicates the reference TA value, it sends the scaled value of the reference TA value to the terminal.
  • the information used to indicate the differential TA value and the information used to indicate the reference TA value may be carried in the same signaling or message, or may be carried in different signaling or messages.
  • the network device uses different signaling to independently configure the differential TA value and the reference TA value.
  • the configuration of the differential TA value is not related to the configuration of the reference TA value.
  • the network device needs to indicate the common TA value multiple times, the network device needs to configure multiple differential TA values and multiple reference TA values.
  • the transmission interval for the information indicating the differential TA value and the reference TA value The information transmission interval can be the same or different.
  • the following introduces the various ways of network equipment indicating the differential TA value.
  • the first indication information includes the differential TA value.
  • the first indication information includes the scaling value of the differential TA value.
  • the first indication information includes the index number of the differential TA value.
  • the first indication information includes the index number of the scaling value of the differential TA value.
  • the terminal When the network device indicates the differential TA value through the index number of the differential TA value, the terminal needs to determine the differential TA value according to the index number of the differential TA value and the differential TA value index table.
  • the differential TA value index table may be in the form shown in Table 5 below, or may refer to the joint index method shown in Table 2.
  • the reference TA value may be a value agreed upon by the network device and the terminal, or may be indicated by the network device.
  • the specific indication mode is similar to the indication mode of the reference TA value in the foregoing embodiment, and will not be repeated here.
  • the network device may also send the relevant information of the reference point to the terminal, and the terminal may determine the reference TA value according to the relevant information of the reference point.
  • the relevant information of the reference point may be the location of the reference point.
  • the serial number of the satellite coverage area The terminal queries the index table shown in Table 1 through the serial number to obtain the reference TA value.
  • the relevant information of the reference point may be an angle or time parameter as shown in FIG. 7, and the terminal may calculate the reference TA value according to the angle or time parameter according to an agreed formula.
  • the reference TA value in this embodiment is a common TA value associated with a certain satellite coverage area.
  • the reference TA value may have various forms, for example, it may be satellite-specific, cell-specific, beam-specific, etc. In addition, other forms are not excluded.
  • the satellite-specific format usually uses the TA value of the sub-satellite point as the reference TA value
  • the cell-specific format usually uses the TA value of the point closest to the satellite in the cell as the reference TA value.
  • the network device uses a specific example to introduce the method for the network device to indicate the differential TA value to the terminal.
  • the network device broadcasts the differential TA value in the SIB message.
  • the terminal receives the SIB message, it obtains the differential TA value from the SIB message.
  • the differential TA value is 546, it represents 546 time units. If a time unit is equal to 16 ⁇ 64 ⁇ T c , the differential TA value is equal to 546 ⁇ 16 ⁇ 64 ⁇ T c .
  • the reference TA value is a value pre-appointed by the terminal and the network device, for example, the TA value of the sub-satellite point of a satellite with an orbit height of 600 kilometers is used as the reference TA value, the reference TA value is equal to 7680 ⁇ 16 ⁇ 64 ⁇ T c , the terminal can determine that the public TA value is (7680+546) ⁇ 16 ⁇ 64 ⁇ T c .
  • the network device indicates to the terminal the difference between the common TA value and the reference TA value.
  • the common TA value is divided into two parts: the reference TA value and the differential TA value.
  • the reference TA value is a predetermined value
  • the network device only needs to indicate the differential TA value to the terminal, so that the signaling overhead is minimized.
  • the reference TA value is not a pre-agreed value, the flexibility of indicating the common TA value is improved by different indicating the reference TA value and the differential TA value.
  • the public TA value is a value indicated by the network device.
  • the public TA value may also be a value determined by the terminal according to some signaling issued by the network device. Among them, these signalings may be issued by the network equipment before the terminal random access, or may be issued by the network equipment during the RRC connection phase.
  • the following takes the signaling sent by the network device before the random access of the terminal as an example for schematic description.
  • the network device carries random access response (Random Access Response, RAR) window signaling (ra-ResponseWindow signaling) and contention resolution timer signaling (ra-ContentionResolutionTimer signaling) in SIB1 At least one of them.
  • RAR Random Access Response
  • ra-ResponseWindow signaling includes the RAR window length.
  • the RAR window length is related to the common TA value.
  • the length of the RAR window can be expressed as the sum of the common TA value and the offset.
  • the offset is related to factors such as the maximum round-trip delay difference in the satellite coverage area associated with the common TA value, and the signal processing delay of the network device.
  • the maximum round-trip delay difference may be the difference between the signal round-trip delay at the far end and the signal round-trip delay at the near end as shown in FIG. 3.
  • the ra-ContentionResolutionTimer signaling includes the contention resolution timer length. Specifically, as shown in Figure 4, after the terminal sends an L2/L3 message to the network device, the terminal starts the contention resolution timer. If the contention resolution timer expires and the terminal has not received the contention resolution message from the network device, it determines Competition resolution failed. Due to the large transmission delay in the satellite communication system, the common TA value is a factor that affects the length of the contention resolution timer, that is, the length of the contention resolution timer is related to the common TA value.
  • the terminal when the terminal receives ra-ResponseWindow signaling and/or ra-ContentionResolutionTimer signaling, it can determine the common TA value according to the length of the RAR window and/or the length of the contention resolution timer according to certain rules. Alternatively, when the terminal has obtained the public TA value, it can also derive the length of the RAR window and/or the length of the contention resolution timer according to certain rules.
  • the network device sends to the terminal the first delay offset1 between the random access preamble and the start of the RAR window, offset1, the second delay offset2 between the L2/L3 message and the random access response, and the contention resolution timer. At least one of the third delay offset3 between the start time and the L2/L3 message.
  • offset1 is shown in Figure 9
  • offset2 is shown in Figure 10
  • offset3 is shown in Figure 11.
  • the offset1, offset2, and offset3 can be carried in different signaling or messages, and can also be carried in the same signaling or message.
  • offset1, offset2, and offset3 are respectively related to the common TA value.
  • the terminal when the terminal receives at least one of offset1, offset2, and offset3, it can determine the common TA value according to at least one of offset1, offset2, and offset3 according to certain rules. TA value. Or, when the terminal has obtained the common TA value, it can also derive at least one of offset1, offset2, and offset3 according to certain rules.
  • the network device can send the physical uplink control channel (Physical uplink control channel (ACKnowledgement, ACK) of the hybrid automatic repeat reQuest (Hybrid Automatic Repeat reQuest, HARQ)) to the terminal.
  • the transmission interval K1 between the Uplink Control Channel (PUCCH), and/or the network device sends the terminal the distance between the Physical Downlink Control Channel (PDCCH) and the Physical Uplink Shared Channel (PUSCH) Transmission interval K2.
  • K1 can specifically be the time interval from when the network device sends the PDSCH to when the network device receives the PUCCH.
  • K1-TA The time interval between the terminal receiving the PDSCH and the terminal sending the PUCCH is K1-TA.
  • K2 may specifically be the time interval from the network device sending the PDCCH to the network device receiving the PUSCH, and the time interval from the terminal receiving the PDCCH to the terminal sending the PUSCH is K2-TA.
  • K1 and K2 can be carried in different signaling or messages, and can also be carried in the same signaling or message. Among them, K1 and K2 are respectively related to the common TA value.
  • the terminal when the terminal receives K1 and/or K2, the common TA value can be determined according to K1 and/or K2 according to certain rules. Or, when the terminal has obtained the public TA value, it can also derive K1 and/or K2 according to certain rules.
  • K1 and K2 in the satellite communication system needs to consider the influence of the large transmission delay difference, that is, the ground
  • the values of K1 and K2 defined in the communication system are no longer applicable to satellite communication systems.
  • the K1 and K2 used in the satellite communication system need to be increased or an increment added to the existing definition.
  • K1. K2 can be specifically configured through RRC signaling, but the configuration parameters need to be redesigned.
  • the above-mentioned RAR window length, contention resolution timer length, offset1, offset2, offset3, K1, K2 and other parameters can be recorded as parameters related to the common TA value.
  • the reference TA value described in the foregoing embodiment may also be determined by the parameters related to the common TA value described in this embodiment.
  • the network device sends a signaling that carries parameters related to the common TA value to the terminal. After receiving the signaling, the terminal obtains the related parameters in the signaling, and determines the reference TA value according to the related parameters. Further, according to the reference The TA value and at least one offset calculate the common TA value.
  • a specific example is used to introduce a method for a network device to indicate a public TA value through a parameter related to the public TA value.
  • the network device carries the ra-ResponseWindow signaling and an offset in different SIB messages, and broadcasts the corresponding SIB messages.
  • the RAR window length in the ra-ResponseWindow signaling is used to indicate the reference TA value.
  • the offset is 480, it represents 480 time units. If one time unit is equal to 16 ⁇ 64 ⁇ T c , then the offset is equal to 480 ⁇ 16 ⁇ 64 ⁇ T c .
  • the common TA value reference TA value-(offset 1+...+offset N), therefore, the common TA value determined by the terminal is (19200-480) ⁇ 16 ⁇ 64 ⁇ T c .
  • the network device sends the parameters related to the public TA value to the terminal, so that the terminal calculates the public TA value according to the parameters related to the public TA value, making full use of the relevant parameters in the signaling issued by the network device, and further saving The signaling overhead required to indicate the common TA value.
  • the network device can deliver some specific parameters in the satellite communication system to the terminal, and the terminal can calculate the common TA value according to the specific parameters and the corresponding geometric formula or fitting formula.
  • This embodiment does not limit the manner in which the network device indicates a specific parameter.
  • the network device may directly send a specific parameter, or send the scaling value of a specific parameter, or send the index number of the specific parameter, or send the index number of the scaling value of the specific parameter Wait.
  • different specific parameters can be indicated in different or the same way.
  • the indication information of different specific parameters may be carried in the same signaling or message, or may be carried in different signaling or messages.
  • the transmission time interval of the indication information of different specific parameters may be the same or different.
  • the network device sends the satellite orbit height, angle information, or function expression of the angle information to the terminal, where the angle information may include the elevation angle, the half-opening angle, the geocentric angle, etc. as shown in FIG. 7 .
  • the geocentric angle Take the geocentric angle as an example for schematic illustration.
  • the satellite orbit height sent by the network device to the terminal is denoted as h
  • the cosine function of the geocentric angle sent by the network device to the terminal is cos ⁇ , where ⁇ is the geocentric angle.
  • the terminal can calculate the public TA value according to the following formula (1):
  • Common Delay represents the public TA value
  • c represents the speed of light
  • r represents the radius of the earth, where the radius of the earth r may be a quantity known by the terminal, or it may be issued to the terminal by a network device.
  • O represents the center of the earth
  • S represents a satellite whose orbit is a circular orbit
  • the distance between the center of the earth O and the satellite S is recorded as R
  • A represents the ground prediction.
  • Set point that is, a fixed point on the ground, assuming that the terminal is at point A.
  • the arc passing through reference point A'and point B is the projection of the satellite orbit on the ground.
  • the reference point A' represents the projection of point A on the arc.
  • the radius of the earth can be denoted as r.
  • the distance between the reference point A'and the center of the earth O is r
  • the distance between the point A and the center of the earth O is r.
  • is the angle between the plane, that is, the angle between the plane OAA' and the satellite orbital plane, where the satellite orbital plane refers to the plane passing through the center of the earth O, reference point A', point B, and point D.
  • is the angle between the plane
  • the satellite orbital plane refers to the plane passing through the center of the earth O, reference point A', point B, and point D.
  • ⁇ COD.
  • Point C is the projection point of point A on a plane perpendicular to the satellite orbit plane
  • point D is the projection point of satellite S on a plane perpendicular to the satellite orbit plane.
  • is the projection angle of the satellite orbit plane at point A, that is, the angle between OA and OA' ⁇ AOA'.
  • the geocentric angle between the satellite S and the reference point A'at the current time can be used , Where ⁇ represents the relative angular velocity of the satellite S and the reference point A'.
  • the point S' represents the intersection of the line between the satellite S and the center of the earth O and the arc passing through the reference point A'and the point B.
  • angle ⁇ , angle ⁇ or angle ⁇ , and angle Or angle The equivalent representation of can be used to indicate the relative position between point A and satellite S.
  • AB 2 r 2 sin 2 ⁇
  • Common Delay represents the public TA value
  • c represents the speed of light
  • the terminal can calculate the public TA value by substituting formula (6).
  • the distance R between the center of the earth O and the satellite S and the radius r of the earth may be quantities known by the terminal, or may also be issued to the terminal by a network device.
  • the public TA value changes with time. Therefore, the network device only needs to deliver the aforementioned parameters to the terminal once at time t 0 , and the terminal can continuously follow (6) Calculate the common TA value at each moment.
  • the relationship between the geocentric angle ⁇ and the common TA value can be fitted into a form similar to a quadratic function curve, which can be expressed as the following formula (7):
  • TA( ⁇ ) represents the function value related to the common TA value and the geocentric angle ⁇
  • a, b, and c are function coefficients respectively.
  • the network device can send a, b, c, ⁇ to the terminal, or send some parameters in a, b, c, and ⁇ to the terminal.
  • the terminal can determine the public TA value according to the parameters issued by the network device and formula (7) .
  • the specific parameters in the satellite communication system sent by the network device to the terminal are not limited to the parameters described in this embodiment, but may also be other information, such as Doppler frequency offset information, other angle information, time information, etc. And when the parameters issued by the network device are different, the terminal needs to use different formulas or fitting functions to calculate the common TA value.
  • the network device sends the satellite orbit height and the cosine value of the geocentric angle between the terminal and the satellite at the current moment to the terminal.
  • the satellite orbit height and the cosine value of the geocentric angle are carried in different SIB messages. Assuming that the satellite orbit height is 600 kilometers, the cosine of the geocentric angle between the terminal and the satellite at the current moment is 0.962.
  • the network device sends specific parameters in the satellite communication system to the terminal, so that the terminal can calculate the public TA value according to the specific parameters and the agreed formula or fitting function, and can even calculate the public TA value that changes over time.
  • the signaling overhead is saved and the flexibility of indicating the public TA value is improved.
  • the several indication methods of the public TA value described in the foregoing embodiment may be applicable to different types of satellite communication systems.
  • it can be applied to regenerative satellite communication systems and transparent forwarding satellite communication systems.
  • the regenerative satellite communication system and the transparent transmission satellite communication system are divided according to the processing capacity of the satellite.
  • the satellite in the transparent transmission satellite communication system only transparently transmits the signal and moves the spectrum, and does not involve the processing of the signal itself.
  • the satellite in the regenerative satellite communication system can extract the original baseband signal, and use the information for routing exchange and system configuration.
  • the transparent transmission satellite communication system and the regenerative satellite communication system coexist and develop.
  • satellite communication systems are not limited to the two types of regeneration and transparent forwarding.
  • different types of satellite communication systems can be classified according to different classification standards.
  • satellite communication systems can be divided into geostationary Earth Orbit (GEO) systems, Medium Earth Orbit (MEO) satellite communication systems, and Low Earth Orbit (LEO) satellite communication systems based on the satellite orbit height.
  • GEO geostationary Earth Orbit
  • MEO Medium Earth Orbit
  • LEO Low Earth Orbit
  • the satellite communication system can be divided into a non-staring satellite communication system and a staring satellite communication system.
  • the satellite beam angle is adjusted in a certain way, and the satellite can realize continuous observation of fixed points on the ground by switching the beam angle.
  • the several indication methods of the public TA value described in the above embodiments can also be applied to other types of satellite communication systems.
  • the several indication methods of the public TA value described in the foregoing embodiment are not only applicable to the scenario where the network device indicates the public TA value to the terminal before the terminal sends the random access preamble to the network device.
  • the network device may directly send the unique TA value to the terminal, or may also use several indication methods similar to the public TA value described in the foregoing embodiment to indicate the unique TA value to the terminal.
  • the above-mentioned public TA value is introduced by taking a regenerative satellite communication system and a transparent transmission satellite communication system as examples.
  • the above-mentioned public TA value may specifically be the public TA value of the user link.
  • the user link refers to the link between the terminal and the satellite, such as the user link between the terminal at the remote end 22 and the satellite as shown in FIG. 6.
  • the public TA value described above is composed of two parts, one part is the public TA value of the user link in the satellite coverage area, and the other part is the public TA value of the feeder link.
  • the feeder link refers to the link between the ground station and the satellite, such as the feeder link between the ground station 23 and the satellite as shown in FIG. 6.
  • the public TA value of the feeder link can have the following different manifestations:
  • the common TA value of the feeder link is visible to the terminal.
  • the public TA value indicated by the network device may be the sum of the public TA value of the user link and the public TA value of the feeder link. . That is, the common TA value indicated by the network device is the total common TA value of the user link and the feeder link. The total public TA value may be time-varying. In this case, the network device needs to update the public TA value indicated to the terminal.
  • the public TA value indicated by the network device is the public TA value of the user link or the public TA value of the feeder link, that is, the public TA value of the user link and the public TA value of the feeder link are divided Segment indicated.
  • the indication mode of the public TA value of the user link and the indication mode of the public TA value of the feeder link can be the same , Can also be different.
  • the indication mode for indicating the public TA value of the user link can be any of the above-mentioned embodiments; the indication mode for indicating the public TA value of the feeder link can specifically be that the network device sends the ground station and satellite to the terminal. According to the relative position information of the ground station and the satellite, the terminal calculates the public TA value of the feeder link according to the agreed formula.
  • the network device can indicate to the terminal the two-part value of the public TA value of the user link and the public TA value of the feeder link.
  • the network device can use any of the indications in the above embodiments. Way to indicate.
  • the public TA value of the feeder link the public TA value of the feeder link indicated by the network device to the terminal can be 0, can be the TA value corresponding to the maximum distance between the satellite and the ground station, can be other specific values, or can Is an invalid message.
  • the network device may also use any of the indication methods in the foregoing embodiments to indicate the public TA value of the feeder link.
  • the public TA value of the feeder link may also be a value predetermined by the terminal and the network device, or may also be a value directly issued by the network device.
  • the network device segment indicates the public TA value of the user link and the public TA value of the feeder link
  • some parameters of the feeder link can be set to specific preset values to indicate whether the common TA value of the feeder link is valid, for example, the angle information used by the feeder link is set to not belong to A certain value of [- ⁇ , ⁇ ] indicates that the common TA value of the feeder link is invalid.
  • the operations or steps implemented by the terminal can also be implemented by components (such as chips or circuits) that can be used in the terminal, and the operations or steps implemented by the network device can also be implemented by the network device.
  • the components (such as chips or circuits) of the device are implemented.
  • Figure 15 shows a schematic diagram of the structure of a communication device.
  • the communication device may be used to implement the method of the corresponding part of the network device or the method of the corresponding part of the terminal described in the foregoing method embodiment. For details, refer to the description in the foregoing method embodiment.
  • the communication device 150 may include one or more processors 151, and the processor 151 may also be referred to as a processing unit, which may implement certain control functions.
  • the processor 151 may be a general-purpose processor or a special-purpose processor.
  • the processor 151 may also store an instruction 153, and the instruction may be executed by the processor, so that the communication device 150 executes the corresponding terminal or network device described in the above method embodiment. method.
  • the communication device 150 may include a circuit, and the circuit may implement the sending or receiving or communication function in the foregoing method embodiment.
  • the communication device 150 may include one or more memories 152, on which instructions 154 or intermediate data are stored, and the instructions 154 may be executed on the processor to enable the communication device 150 to execute The method described in the above method embodiment.
  • other related data may also be stored in the memory.
  • instructions and/or data may also be stored in the processor.
  • the processor and memory can be provided separately or integrated together.
  • the communication device 150 may further include a transceiver 155.
  • the processor 151 may be referred to as a processing unit.
  • the transceiver 155 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., for implementing the transceiver function of the communication device.
  • the transceiver may send the first indication information to the terminal.
  • the transceiver can further complete other corresponding communication functions.
  • the processor is used to complete the corresponding determination or control operation, and optionally, can also store corresponding instructions in the memory.
  • the transceiver is used to receive first indication information, and the processor is used to determine the common TA value according to the first indication information.
  • the transceiver may also be used to complete other related communication operations, and the processor may also be used to complete other corresponding determination or control operations.
  • corresponding instructions can also be stored in the memory.
  • the processor and transceiver described in this application can be implemented in integrated circuit (IC), analog IC, radio frequency integrated circuit RFIC, mixed signal IC, application specific integrated circuit (ASIC), printed circuit board ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various 1C process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), and P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (Bipolar Junction Transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device may be an independent device or may be part of a larger device.
  • the device may be:
  • the IC collection may also include storage components for storing data and/or instructions;
  • ASIC such as modem (MSM)
  • FIG. 16 is a schematic structural diagram of still another communication device provided by an embodiment of this application.
  • the communication device 160 includes: a receiving module 1601 and a processing module 1602; wherein, the receiving module 1601 is used to receive first indication information from a network device, and the first indication information is used to indicate the information in the satellite communication system Common timing advance TA value; the processing module 1602 is configured to determine the common TA value according to the first indication information, and the common TA value is used to characterize the round-trip transmission delay between the reference point in the satellite coverage area and the network device .
  • the first indication information includes index information of the common TA value; the processing module 1602 is specifically configured to: according to the index information of the common TA value, and the index information set and the common TA value set Determine the common TA value; the index information includes second indication information used to indicate the satellite orbit height, third indication information used to indicate the type of satellite communication system, and the serial number of the satellite coverage area At least one of the fourth indication information.
  • the first indication information includes index information of the scaling value of the common TA value; the processing module 1602 is specifically configured to: according to the index information of the scaling value of the common TA value and an index information set The corresponding relationship with the common TA scaling value set is to determine the scaling value of the common TA value; the common TA value is determined according to the scaling value of the common TA value and the scaling coefficient of the common TA value.
  • the first indication information includes a scaling value of the common TA value; the processing module 1602 is specifically configured to: according to the scaling value of the common TA value and the scaling factor of the common TA value, Determine the common TA value.
  • the first indication information further includes index information of the scaling factor of the common TA value; the processing module 1602 determines the scaling factor of the common TA value according to the scaling value of the common TA value and the scaling factor of the common TA value. Before the common TA value, it is also used to determine the scaling factor of the common TA value according to the index information of the scaling factor of the common TA value and the correspondence between the index information set and the scaling factor set.
  • the first indication information includes index information of a reference TA value corresponding to the common TA value; the processing module 1602 is specifically configured to: according to the index information of the reference TA value corresponding to the common TA value and index information The corresponding relationship between the set and the set of reference TA values, determine the reference TA value corresponding to the common TA value; determine the common TA value according to the reference TA value corresponding to the common TA value and at least one offset, so The common TA value is a sum of a reference TA value corresponding to the common TA value and at least one of the offsets.
  • the first indication information includes index information of the scaling value of the reference TA value corresponding to the common TA value; the processing module 1602 is specifically configured to: according to the scaling value of the reference TA value corresponding to the common TA value The index information and the corresponding relationship between the index information set and the reference TA scaling value set, determine the scaling value of the reference TA value corresponding to the common TA value; according to the scaling value of the reference TA value corresponding to the common TA value and the corresponding The scaling factor of the reference TA value corresponding to the common TA value, determining the reference TA value corresponding to the common TA value; determining the common TA value according to the reference TA value corresponding to the common TA value and at least one offset,
  • the common TA value is the sum of the reference TA value corresponding to the common TA value and at least one of the offsets.
  • the first indication information includes the scaling value of the reference TA value corresponding to the common TA value; the processing module 1602 is specifically configured to: according to the scaling value of the reference TA value corresponding to the common TA value and the common TA value The scaling factor of the reference TA value corresponding to the TA value is determined to determine the reference TA value corresponding to the common TA value; the common TA value is determined according to the reference TA value corresponding to the common TA value and at least one offset, the The common TA value is the sum of the reference TA value corresponding to the common TA value and at least one of the offsets.
  • the first indication information further includes index information corresponding to the scaling factor of the reference TA value corresponding to the common TA value; the processing module 1602 is configured to calculate the scaling value and the scaling factor of the reference TA value corresponding to the common TA value.
  • the scaling factor of the reference TA value corresponding to the common TA value is further used for determining the index information corresponding to the scaling factor of the reference TA value corresponding to the common TA value before determining the reference TA value corresponding to the common TA value, and The corresponding relationship between the index information set and the scaling factor set determines the scaling factor of the reference TA value corresponding to the common TA value.
  • the first indication information further includes at least one of the offsets.
  • the first indication information further includes at least one index information of the offset; the processing module 1602 determines the common TA according to the reference TA value corresponding to the common TA value and the at least one offset. Before the value, it is also used to determine at least one offset according to the index information of the at least one offset and the correspondence between the index information set and the offset set.
  • the first indication information further includes index information of at least one scaling value of the offset; the processing module 1602 determines the value of the offset according to the reference TA value corresponding to the common TA value and at least one offset. Before the common TA value, it is also used to: determine at least one offset according to the index information of the at least one offset scaling value and the correspondence between the index information set and the offset scaling value set The scaling value of at least one offset is determined according to at least one scaling value of the offset and at least one scaling factor of the offset.
  • the first indication information further includes at least one scaling value of the offset; the processing module 1602 determines the common TA according to the reference TA value corresponding to the common TA value and the at least one offset. Before the value, it is also used to determine at least one offset according to at least one scaling value of the offset and at least one scaling coefficient of the offset.
  • the first indication information further includes index information of at least one scaling factor of the offset; the processing module 1602 is based on the scaling value of the at least one offset and at least one of the offset.
  • the scaling factor before determining at least one of the offsets, is also used to determine at least one set of scaling factors according to the index information of the scaling factor of the at least one offset and the correspondence between the index information set and the scaling factor set. The scaling factor of the offset.
  • the index information includes at least one of second indication information used to indicate the satellite orbit height, third indication information used to indicate the type of satellite communication system, and fourth indication information used to indicate the serial number of the satellite coverage area .
  • the first indication information includes a differential TA value; correspondingly, the terminal determines the common TA value according to the differential TA value and a reference TA value, and the common TA value is The sum of the reference TA value and the difference TA value.
  • the first indication information includes the scaling value of the differential TA value; correspondingly, the terminal determines the scaling value of the differential TA value and the scaling factor of the differential TA value.
  • the differential TA value further, the terminal determines the common TA value according to the differential TA value and a reference TA value, and the common TA value is the sum of the reference TA value and the differential TA value.
  • the first indication information includes the index number of the differential TA value; accordingly, the terminal uses the index number of the differential TA value and the difference between the index information set and the differential TA value set.
  • the difference TA value is determined, further, the terminal determines the common TA value according to the difference TA value and the reference TA value, and the common TA value is the reference TA value and the difference TA The sum of the values.
  • the first indication information includes the index number of the scaling value of the differential TA value; correspondingly, the terminal according to the index number of the scaling value of the differential TA value and the index information set are The corresponding relationship between the set of differential TA value scaling values, determining the scaling value of the differential TA value; determining the differential TA value according to the scaling value of the differential TA value and the scaling factor of the differential TA value, further, The terminal determines the common TA value according to the differential TA value and the reference TA value, where the common TA value is the sum of the reference TA value and the differential TA value.
  • the first indication information further includes the reference TA value.
  • the first indication information further includes the index number of the reference TA value.
  • the first indication information further includes a scaling value of the reference TA value.
  • the first indication information further includes the index number of the scaling value of the reference TA value.
  • the terminal receives signaling issued by a network device; the terminal determines the common TA value or the reference TA value according to the signaling.
  • the signaling includes at least one of random access response window signaling and contention resolution timer signaling; wherein, the random access response window signaling includes RAR window length, and The contention resolution timer signaling includes a contention resolution timer length, the RAR window length is related to the common TA value or the reference TA value, and the contention resolution timer length is related to the common TA value or the reference TA. Value related.
  • the signaling includes the first delay offset1 between the random access preamble and the start of the RAR window, the second delay offset2 between the L2/L3 message and the random access response, and the contention resolution timer. At least one of the third delay offset3 between the start time and the L2/L3 message; wherein, offset1, offset2, and offset3 are respectively related to the common TA value or the reference TA value.
  • the signaling includes a transmission interval K1 between PDSCH and PUCCH, and/or a transmission interval K2 between PDCCH and PUSCH; wherein, K1 and K2 are respectively related to the common TA value or The reference TA value is related.
  • the terminal receives a specific parameter related to the satellite or a specific parameter in a satellite communication system sent by a network device; the terminal is based on the specific parameter and a preset geometric formula or fitting formula The common TA value is calculated.
  • the specific parameters include: satellite orbit height and angle information in the satellite communication system; correspondingly, the geometric formula is the relationship between the common TA value, the satellite orbit height and the angle information The functional relationship.
  • the angle information in the satellite communication system includes at least one of an elevation angle, a half-opening angle, and a geocentric angle.
  • the specific parameters include: a first angle, a second angle, and a third angle; wherein, the first angle is the angle between the first plane and the satellite orbital plane, and the first angle A plane is a plane that includes the center of the earth, a predetermined point on the ground, and a first point.
  • the first point is a projection point of the predetermined point on the ground on a first arc, and the first arc is a satellite orbit Projection line on the ground;
  • the second angle is the angle between the first straight line and the second straight line, the first straight line passes through the center of the earth and the predetermined point on the ground, and the second straight line passes through the ground The center and the first point;
  • the third angle is the geocentric angle between the satellite and the first point at the current moment.
  • the specific parameters include: the geocentric angle and the coefficient in the fitting formula; the fitting formula is the functional relationship between the common TA value and the coefficient; correspondingly, the The geometric formula is the functional relationship between the common TA value, the first angle, the second angle, and the third angle; the first angle, the second angle, and the third angle are used to represent the ground The relative position between the preset point and the satellite.
  • the communication device of the embodiment shown in FIG. 16 can be used to implement the technical solutions of the above method embodiments.
  • the communication device may be a terminal or It is a component of the terminal (such as a chip or circuit).
  • the embodiment of the present application also provides another communication device.
  • the communication device includes a generating module and a sending module, wherein the generating module is used to generate the first indication information; the sending module is used to send the first indication information, and the first indication information is used to indicate the common timing in the satellite communication system
  • the advance TA value, and the common TA value is used to characterize the round-trip transmission delay between the reference point in the satellite coverage area and the network device.
  • the method before the network device generates the first indication information, the method further includes: the network device generates a correspondence between an index information set and a common TA value set; wherein, the first The indication information includes index information of the common TA value.
  • the method before the network device generates the first indication information, the method further includes: the network device generates a correspondence between an index information set and a reference TA value set; wherein, the first indication information An indication information includes index information of the reference TA value corresponding to the common TA value, and the common TA value is the sum of the reference TA value corresponding to the common TA value and at least one of the offsets.
  • the method before the network device generates the first indication information, the method further includes: the network device generates a correspondence between an index information set and an offset set; wherein, the first indication information An indication information also includes at least one index information of the offset.
  • the communication device of this embodiment can be used to implement the technical solutions of the above method embodiments.
  • the communication device can be a network device or a network.
  • a component of a device (such as a chip or circuit).
  • the division of the various modules of the communication device shown in FIG. 16 above is only a division of logical functions, and may be fully or partially integrated into one physical entity during actual implementation, or may be physically separated.
  • these modules can all be implemented in the form of software called by processing elements; they can also be implemented in the form of hardware; part of the modules can be implemented in the form of software called by the processing elements, and some of the modules can be implemented in the form of hardware.
  • the processing module may be a separately established processing element, or it may be integrated in a communication device, such as a certain chip of a terminal. In addition, it may also be stored in the memory of the communication device in the form of a program. The processing element calls and executes the functions of the above modules.
  • each step of the above method or each of the above modules can be completed by hardware integrated logic circuits in the processor element or instructions in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as: one or more application specific integrated circuits (ASIC), or one or more microprocessors (digital singnal processor, DSP), or, one or more field programmable gate arrays (Field Programmable Gate Array, FPGA), etc.
  • ASIC application specific integrated circuits
  • DSP digital singnal processor
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call programs.
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 17 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • the communication device may specifically be a network device.
  • the network device includes: an antenna 171, a radio frequency device 172, and a baseband device 173.
  • the antenna 171 is connected to the radio frequency device 172.
  • the radio frequency device 172 receives the information sent by the terminal through the antenna 171, and sends the information sent by the terminal to the baseband device 173 for processing.
  • the baseband device 173 processes the terminal information and sends it to the radio frequency device 172
  • the radio frequency device 172 processes the terminal information and sends it to the terminal via the antenna 171.
  • the above communication device may be located in the baseband device 173.
  • the above modules are implemented in the form of a processing element scheduler.
  • the baseband device 173 includes a processing element and a storage element.
  • the processing element 1731 calls the program stored in the storage element 1732 to Perform the method in the above method embodiment.
  • the baseband device 173 may further include an interface 1733 for exchanging information with the radio frequency device 172, and the interface is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the above modules may be one or more processing elements configured to implement the above methods. These processing elements are provided on the baseband device 173.
  • the processing elements here may be integrated circuits, such as one or more One ASIC, or, one or more DSP, or, one or more FPGA, etc. These integrated circuits can be integrated together to form a chip.
  • the above modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the baseband device 173 includes an SOC chip for implementing the above method.
  • the processing element 1731 and the storage element 1732 can be integrated in the chip, and the processing element 1731 can call the stored program of the storage element 1732 to implement the above methods or the functions of the above modules; or, the chip can integrate at least one integrated circuit, using In order to realize the above methods or the functions of each of the above modules; or, it can be combined with the above implementations.
  • the functions of some modules are realized in the form of calling programs by processing elements, and the functions of some modules are realized in the form of integrated circuits.
  • the above communication device includes at least one processing element, a storage element and a communication interface, wherein at least one processing element is used to execute the method provided in the above method embodiment.
  • the processing element can execute part or all of the steps in the above method embodiments in the first way: that is, executing the program stored in the storage element; or in the second way: that is, through the integrated logic circuit of the hardware in the processing element.
  • the processing element here is the same as the above description, and it can be a general-purpose processor, such as a central processing unit (CPU), or one or more integrated circuits configured to implement the above methods, such as one or more specific Integrated circuit (Application Specific Integrated Circuit, ASIC), or, one or more microprocessors (digital digital processor, DSP), or, one or more Field Programmable Gate Array (Field Programmable Gate Array, FPGA), etc.
  • the storage element can be a memory or a collective term for multiple storage elements.
  • FIG. 18 is a schematic structural diagram of yet another communication device provided by an embodiment of this application.
  • the communication device 180 includes a processor 182 and a transceiving device 183.
  • the transceiving device 183 receives first indication information from a network device, and the first indication information is used to indicate the common timing advance TA value in the satellite communication system.
  • the processor 182 determines the public TA value according to the first indication information, and the public TA value is used to characterize the round-trip transmission delay between the reference point in the satellite coverage area and the network device. Further, it also includes a memory 181 for storing computer programs or instructions, and the processor 182 for calling the programs or instructions.
  • the communication device of the embodiment shown in FIG. 18 can be used to implement the technical solutions of the above method embodiments. For its implementation principles and technical effects, please refer to the related descriptions in the method embodiments, which will not be repeated here.
  • the communication device may be a terminal. It can also be a component of the terminal (such as a chip or a circuit).
  • the transceiver 183 may be connected to an antenna.
  • the transceiver 183 receives information sent by the network device through an antenna, and sends the information to the processor 182 for processing.
  • the processor 182 processes the data of the terminal and sends it to the network device through the transceiver 183.
  • the processor 182 may be used to implement corresponding functions in the processing module 1602 of the communication device shown in FIG. 16, and the transceiver device may be used to implement corresponding functions of the receiving module 1601 of the communication device shown in FIG.
  • part or all of the above modules can also be implemented in the form of an integrated circuit embedded on a certain chip of the terminal. And they can be implemented separately or integrated together. That is, the above modules can be configured as one or more integrated circuits that implement the above methods, for example: one or more application specific integrated circuits (ASIC), or one or more microprocessors (digital singnal processors). , DSP), or, one or more Field Programmable Gate Array (FPGA), etc.
  • ASIC application specific integrated circuits
  • DSP digital singnal processors
  • FPGA Field Programmable Gate Array
  • the embodiments of the present application also provide a computer-readable storage medium, which stores a computer program, which when running on a computer, causes the computer to execute the public timing advance indication method described in the above-mentioned embodiments.
  • embodiments of the present application also provide a computer program product, which includes a computer program, which when running on a computer, causes the computer to execute the public timing advance indication method described in the foregoing embodiment.
  • an embodiment of the present application further provides a processor, which includes: at least one circuit, configured to execute the public timing advance indication method as described in the foregoing embodiment.
  • an embodiment of the present application also provides a system, which includes the terminal and network equipment as described above.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk).
  • an embodiment of the present application also provides a communication device for implementing the method in the foregoing embodiment.
  • Part or all of the method in the foregoing embodiment can be implemented by hardware It can also be implemented by software.
  • the communication device 1000 includes: an input interface circuit 1002, a logic circuit 1004, an output interface circuit 1006, and also includes a transceiver 1008 and an antenna 1010, The transceiver 1008 transmits and receives data through the antenna 1010.
  • the logic circuit 1004 is used to execute the public timing advance indication method shown in FIG. 5.
  • the aforementioned communication device 1000 may be a chip or an integrated circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种公共定时提前的指示方法、装置、设备及存储介质,该方法包括:终端从网络设备接收第一指示信息,所述第一指示信息用于指示卫星通信***中的公共定时提前TA值;所述终端根据所述第一指示信息确定所述公共TA值,所述公共TA值用于表征卫星覆盖区域内的参考点与网络设备之间的往返传输时延。通过终端从网络设备接收用于指示卫星通信***中的公共定时提前TA值的指示信息,并根据该指示信息来确定公共TA值,由于指示信息相比于公共TA值本身而言所需的信令开销较小,因此,节省了网络设备指示公共TA值的信令开销。

Description

公共定时提前的指示方法、装置、设备及存储介质
本申请要求于2019年08月12日提交中国专利局、申请号为2019107415709、申请名称为“公共定时提前的指示方法、装置、设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及公共定时提前的指示方法、装置、设备及存储介质。
背景技术
当前卫星通信***相比于地面通信***具有一定的优势,例如,卫星通信***的通信距离远、覆盖面积大、通信频带宽、可以为用户提供任何时间、任何地点的通信服务。因此,卫星通信***的应用前景也在不断扩展。
在地面通信***中,由于终端和网络设备之间有一定的距离,因此,终端发送的上行数据帧在到达网络设备时存在一定的延迟,为了保持终端的上行数据帧与网络设备的下行数据帧同步,需要网络设备给终端发送定时提前(Timing Advance,TA)值,终端根据该TA值发送上行数据,该TA值反映了终端和网络设备之间的信号往返传输时延。
但是在卫星通信***中,由于终端和网络设备之间的距离非常远,因此,终端和网络设备之间的信号往返传输时延较大,导致反馈时延所需的信令开销也很大。
发明内容
本申请提供了一种公共定时提前的指示方法、装置、设备及存储介质,以节省网络设备指示公共TA值的信令开销。
第一方面,本申请提供了一种公共定时提前的指示方法,具体的,网络设备将用于指示公共TA值的第一指示信息发送给终端,相应的,终端接收网络设备发送的第一指示信息,并根据该第一指示信息确定网络设备所指示的卫星通信***中与某个卫星覆盖区域关联的公共TA值,该公共TA值用于表征该卫星覆盖区域内的参考点与所述网络设备之间的往返传输时延。由于网络设备不需要直接发送公共TA值本身,指示信息相比于公共TA值本身而言所需的信令开销较小,因此,节省了网络设备指示公共TA值的信令开销。
在一种可能的设计中,所述第一指示信息包括所述公共TA值的索引信息;终端根据所述公共TA值的索引信息、以及索引信息集合与公共TA值集合之间的对应关系,确定所述公共TA值;所述索引信息包括用于指示卫星轨道高度的第二指示信息、用于指示卫星通信***类型的第三指示信息、用于指示卫星覆盖区域序号的第四指示信息中的至少一个。由于公共TA值的索引号的比特数相比于公共TA值的比特数会少很多,因此,可以有效节省公共TA值的指示开销。另外,在卫星通信***中,当终端向网络设备发送随机接入前导之前,网络设备向终端发送用于指示公共TA值的指示信息,可使得终端将该公共TA值作为发送随机接入前导时的传输TA值,从而有效解决随机接入前导占用资源多、且网络设备检测随机接入前导复杂度较高的问题。
在一种可能的设计中,所述第一指示信息包括所述公共TA值的缩放值的索引信息;所述终 端根据所述公共TA值的缩放值的索引信息、以及索引信息集合与公共TA缩放值集合之间的对应关系,确定所述公共TA值的缩放值;进一步,根据所述公共TA值的缩放值和所述公共TA值的缩放系数,确定所述公共TA值。
在一种可能的设计中,所述第一指示信息包括所述公共TA值的缩放值。所述终端根据所述公共TA值的缩放值和所述公共TA值的缩放系数,确定所述公共TA值。通过本实施例提供的方案,相比于直接发送公共TA值节省了信令开销,另外,公共TA值的缩放值和公共TA值的缩放系数可以有多种指示方式,同时也提高了指示公共TA值的灵活性、以及信令配置的灵活性。
在一种可能的设计中,所述第一指示信息还包括所述公共TA值的缩放系数的索引信息;终端根据所述公共TA值的缩放值和所述公共TA值的缩放系数,确定所述公共TA值之前,还可以根据所述公共TA值的缩放系数的索引信息、以及索引信息集合和缩放系数集合之间的对应关系,确定所述公共TA值的缩放系数。
在一种可能的设计中,所述第一指示信息包括所述公共TA值对应的参考TA值的索引信息;所述终端根据所述公共TA值对应的参考TA值的索引信息、以及索引信息集合与参考TA值集合之间的对应关系,确定所述公共TA值对应的参考TA值;进一步,根据所述公共TA值对应的参考TA值和至少一个偏移量,确定所述公共TA值,所述公共TA值为所述公共TA值对应的参考TA值和至少一个所述偏移量的和。
在一种可能的设计中,所述第一指示信息包括所述公共TA值对应的参考TA值的缩放值的索引信息;所述终端根据所述公共TA值对应的参考TA值的缩放值的索引信息、以及索引信息集合与基准TA缩放值集合之间的对应关系,确定所述公共TA值对应的参考TA值的缩放值;进一步,根据所述公共TA值对应的参考TA值的缩放值和所述公共TA值对应的参考TA值的缩放系数,确定所述公共TA值对应的参考TA值;根据所述公共TA值对应的参考TA值和至少一个偏移量,确定所述公共TA值,所述公共TA值为所述公共TA值对应的参考TA值和至少一个所述偏移量的和。
在一种可能的设计中,所述第一指示信息包括所述公共TA值对应的参考TA值的缩放值;所述终端根据所述公共TA值对应的参考TA值的缩放值和所述公共TA值对应的参考TA值的缩放系数,确定所述公共TA值对应的参考TA值;进一步,根据所述公共TA值对应的参考TA值和至少一个偏移量,确定所述公共TA值,所述公共TA值为所述公共TA值对应的参考TA值和至少一个所述偏移量的和。通过参考TA值和至少一个偏移量来指示公共TA值,不仅提高了指示公共TA值的指示精度,同时还可以进一步减少指示所需的比特开销。另外,在参考TA值和至少一个偏移量的基础上引入参考TA值的缩放系数和/或至少一个偏移量的缩放系数,可在保证指示精度的基础上,进一步减小信令开销,并提高指示公共TA值的灵活性,另外,通过不同的偏移量采用相同的时间单元或不同的时间单元,使得网络设备只需要指示偏移量是几倍的时间单元即可,使得网络设备可最大程度的降低总的偏移量的指示开销。
在一种可能的设计中,所述第一指示信息还包括所述公共TA值对应的参考TA值的缩放系数对应的索引信息;所述终端根据所述公共TA值对应的参考TA值的缩放值和所述公共TA值对应的参考TA值的缩放系数,确定所述公共TA值对应的参考TA值之前,还可以根据所述公共TA值对应的参考TA值的缩放系数对应的索引信息、以及索引信息集合和缩放系数集合之间的对应关系,确定所述公共TA值对应的参考TA值的缩放系数。
在一种可能的设计中,所述第一指示信息还包括至少一个所述偏移量。
在一种可能的设计中,所述第一指示信息还包括至少一个所述偏移量的索引信息;终端根据所述公共TA值对应的参考TA值和至少一个偏移量,确定所述公共TA值之前,还可以根据至少一个所述偏移量的索引信息、以及索引信息集合与偏移量集合之间的对应关系,确定至少一个所述偏移量。
在一种可能的设计中,所述第一指示信息还包括至少一个所述偏移量的缩放值的索引信息;所述终端根据所述公共TA值对应的参考TA值和至少一个偏移量,确定所述公共TA值之前,还可以根据至少一个所述偏移量的缩放值的索引信息、以及索引信息集合与偏移量缩放值集合之间的对应关系,确定至少一个所述偏移量的缩放值;根据至少一个所述偏移量的缩放值和至少一个所述偏移量的缩放系数,确定至少一个所述偏移量。
在一种可能的设计中,所述第一指示信息还包括至少一个所述偏移量的缩放值;所述终端根据所述公共TA值对应的参考TA值和至少一个偏移量,确定所述公共TA值之前,还可以根据至少一个所述偏移量的缩放值和至少一个所述偏移量的缩放系数,确定至少一个所述偏移量。
在一种可能的设计中,所述第一指示信息还包括至少一个所述偏移量的缩放系数的索引信息;所述终端根据至少一个所述偏移量的缩放值和至少一个所述偏移量的缩放系数,确定至少一个所述偏移量之前,还可以根据至少一个所述偏移量的缩放系数的索引信息、以及索引信息集合与缩放系数集合之间的对应关系,确定至少一个所述偏移量的缩放系数。
在一种可能的设计中,所述索引信息包括用于指示卫星轨道高度的第二指示信息、用于指示卫星通信***类型的第三指示信息、用于指示卫星覆盖区域序号的第四指示信息中的至少一个。
在一种可能的设计中,所述第一指示信息中包括差分TA值;相应的,所述终端根据所述差分TA值和基准TA值,确定所述公共TA值,所述公共TA值为所述基准TA值和所述差分TA值的和。
在一种可能的设计中,所述第一指示信息中包括差分TA值的缩放值;相应的,所述终端根据所述差分TA值的缩放值和所述差分TA值的缩放系数,确定所述差分TA值,进一步,所述终端根据所述差分TA值和基准TA值,确定所述公共TA值,所述公共TA值为所述基准TA值和所述差分TA值的和。
在一种可能的设计中,所述第一指示信息中包括差分TA值的索引号;相应的,所述终端根据所述差分TA值的索引号、以及索引信息集合与差分TA值集合之间的对应关系,确定所述差分TA值,进一步,所述终端根据所述差分TA值和基准TA值,确定所述公共TA值,所述公共TA值为所述基准TA值和所述差分TA值的和。
在一种可能的设计中,所述第一指示信息中包括差分TA值的缩放值的索引号;相应的,所述终端根据所述差分TA值的缩放值的索引号、以及索引信息集合与差分TA值缩放值集合之间的对应关系,确定所述差分TA值的缩放值;根据所述差分TA值的缩放值和所述差分TA值的缩放系数,确定所述差分TA值,进一步,所述终端根据所述差分TA值和基准TA值,确定所述公共TA值,所述公共TA值为所述基准TA值和所述差分TA值的和。
在一种可能的设计中,所述第一指示信息还包括所述基准TA值。
在一种可能的设计中,所述第一指示信息还包括所述基准TA值的索引号。
在一种可能的设计中,所述第一指示信息还包括所述基准TA值的缩放值。
在一种可能的设计中,所述第一指示信息还包括所述基准TA值的缩放值的索引号。
在一种可能的设计中,所述终端接收网络设备下发的信令;所述终端根据所述信令确定所述 公共TA值或所述参考TA值。
在一种可能的设计中,所述信令包括随机接入响应窗口信令和竞争解决定时器信令中的至少一个;其中,所述随机接入响应窗口信令包括RAR窗口长度,所述竞争解决定时器信令包括竞争解决定时器长度,所述RAR窗口长度与所述公共TA值或所述参考TA值相关,所述竞争解决定时器长度与所述公共TA值或所述参考TA值相关。
在一种可能的设计中,所述信令包括随机接入前导与RAR窗口起点之间的第一延迟offset1、L2/L3消息与随机接入响应之间的第二延迟offset2、争解决定时器起始时刻与L2/L3消息之间的第三延迟offset3中的至少一个;其中,offset1、offset2和offset3分别与所述公共TA值或所述参考TA值相关。
在一种可能的设计中,所述信令包括PDSCH与PUCCH之间的传输间隔K1,和/或,PDCCH与PUSCH之间的传输间隔K2;其中,K1和K2分别与所述公共TA值或所述参考TA值相关。
在一种可能的设计中,所述终端接收网络设备发送的与卫星相关的特定参数或卫星通信***中的特定参数;所述终端根据所述特定参数以及预先设定的几何公式或拟合公式计算出所述公共TA值。
在一种可能的设计中,所述特定参数包括:卫星轨道高度和卫星通信***中的角度信息;相应的,所述几何公式是所述公共TA值、卫星轨道高度和所述角度信息之间的函数关系。
在一种可能的设计中,所述卫星通信***中的角度信息包括:仰角、半张角、地心角中的至少一种。
在一种可能的设计中,所述特定参数包括:第一角度、第二角度、第三角度;其中,所述第一角度是第一平面与卫星轨道面之间的夹角,所述第一平面是包括地心、地面预设点、第一点的平面,所述第一点是所述地面预设点在第一弧线上的投影点,所述第一弧线是卫星轨道在地面上的投影线;
所述第二角度为第一直线和第二直线之间的夹角,所述第一直线经过地心和所述地面预设点,所述第二直线经过地心和所述第一点;
所述第三角度为当前时刻卫星和所述第一点之间的地心角。
在一种可能的设计中,所述特定参数包括:地心角和拟合公式中的系数;所述拟合公式为所述公共TA值与所述系数之间的函数关系;
相应的,所述几何公式是所述公共TA值、第一角度、第二角度、第三角度之间的函数关系;所述第一角度、所述第二角度和所述第三角度用于表示所述地面预设点和卫星之间的相对位置。
第二方面,本申请提供一种公共定时提前的指示方法,该方法包括:
网络设备生成第一指示信息;
所述网络设备发送所述第一指示信息,所述第一指示信息用于指示卫星通信***中的公共定时提前TA值,所述公共TA值用于表征卫星覆盖区域内的参考点与网络设备之间的往返传输时延。
在一种可能的设计中,所述网络设备生成第一指示信息之前,所述方法还包括:所述网络设备生成索引信息集合与公共TA值集合之间的对应关系;其中,所述第一指示信息包括所述公共TA值的索引信息。
在一种可能的设计中,所述网络设备生成第一指示信息之前,所述方法还包括:
所述网络设备生成索引信息集合与参考TA值集合之间的对应关系;
其中,所述第一指示信息包括所述公共TA值对应的参考TA值的索引信息,所述公共TA值 为所述公共TA值对应的参考TA值和至少一个所述偏移量的和。
在一种可能的设计中,所述网络设备生成第一指示信息之前,所述方法还包括:
所述网络设备生成索引信息集合与偏移量集合之间的对应关系;
其中,所述第一指示信息还包括至少一个所述偏移量的索引信息。
第三方面,本申请提供一种通信装置,包括用于实现上述第一方面或第二方面的公共定时提前的指示方法的模块,部件或者电路。
第四方面,本申请提供一种通信装置,包括:
处理器和收发器,处理器和收发器通过内部连接互相通信;
所述处理器用于执行如第一方面或第二方面所述的方法中的处理步骤,所述收发器用于执行如第一方面或第二方面所述的方法中的收发步骤。
在一种可能的设计中,第四方面中的通信装置可以为网络设备或终端,也可以为网络设备或终端的部件(例如芯片或者电路)。
第五方面,本申请提供一种通信装置,包括::输入接口电路,逻辑电路,输出接口电路,其中,所述逻辑电路用于执行如第一方面或第二方面所述的方法。
第六方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,计算机程序包括用于执行如第一方面或第二方面所述的方法的指令。
第七方面,本申请提供一种计算机程序,计算机程序包括用于执行如第一方面或第二方面所述的方法的指令。
在一种可能的设计中,第七方面中的程序可以全部或者部分存储在与处理器封装在一起的存储介质上,也可以部分或者全部存储在不与处理器封装在一起的存储器上。
第八方面,本申请实施例还提供一种***,包括上述第三方面、第四方面或者第五方面所述的通信装置。
第九方面,本申请实施例还提供一种处理器,该处理器包括:至少一种电路,用于执行如第一方面或第二方面所述的方法。
可见,在以上各个方面,通过终端从网络设备接收用于指示卫星通信***中的公共定时提前TA值的指示信息,并根据该指示信息来确定公共TA值,由于指示信息相比于公共TA值本身而言所需的信令开销较小,因此,节省了网络设备指示公共TA值的信令开销。
附图说明
图1为本申请实施例提供的一种应用场景示意图;
图2为现有技术中的一种上行数据帧和下行数据帧同步的示意图;
图3为本申请实施例提供的一种卫星通信***的示意图;
图4为现有技术中LTE/NR协议中的随机接入流程;
图5为本申请实施例提供的一种公共定时提前的指示方法流程图;
图6为本申请实施例提供的另一种卫星通信***的示意图;
图7为本申请实施例提供的再一种卫星通信***的示意图;
图8为本申请实施例提供的一种随机接入响应窗口长度的示意图;
图9为本申请实施例提供的一种随机接入前导与RAR窗口起点之间的第一延迟offset1的示意图;
图10为本申请实施例提供的一种L2/L3消息与随机接入响应之间的第二延迟offset2的示意图;
图11为本申请实施例提供的一种争解决定时器起始时刻与L2/L3消息之间的第三延迟offset3的示意图;
图12为本申请实施例提供的一种PDSCH与PUCCH之间的传输间隔K1的示意图;
图13为本申请实施例提供的一种PDCCH与PUSCH之间的传输间隔K2的示意图;
图14为本申请实施例提供的再一种卫星通信***的示意图;
图15为本申请实施例提供的一种通信装置的结构示意图;
图16为本申请实施例提供的再一种通信装置的结构示意图;
图17为本申请实施例提供的又一种通信装置的结构示意图;
图18为本申请实施例提供的又一种通信装置的结构示意图;
图19为本申请实施例提供的又一种通信装置的结构示意图。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
本申请实施例可应用于各种类型的通信***。图1为本申请实施例提供的一种应用场景示意图。如图1所示的通信***,主要包括网络设备11和终端12。
其中,1)网络设备11可以是网络侧设备,例如,无线局域网(Wireless Local Area Network,WLAN)的接入点(Access Point,AP)、4G的演进型基站(Evolved Node B,eNB或eNodeB)、下一代通信的基站,如5G的新无线接入技术(New Radio Access Technology,NR)基站(next generation Node B,gNB)或小站、微站,还可以是中继站、发送和接收点(Transmission and Reception Point,TRP)、路边单元(Road Side Unit,RSU)等。在本实施例中,不同通信制式的通信***中的基站不同。为了区别起见,将4G通信***的基站称为长期演进(Long Term Evolution,LTE)eNB,5G通信***的基站称为NR gNB,既支持4G通信***又支持5G通信***的基站称为演进型长期演进(Evolutional Long Term Evolution,eLTE)eNB,这些名称仅为了方便区别,并不具有限制意义。
2)终端12又称之为用户设备(User Equipment,UE),是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备、具有车与车(vehicle to vehicle,V2V)通信能力的车辆等。常见的终端例如包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等。
3)“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的对应关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
需要说明的是,图1所示的通信***中所包含的终端12的数量和类型仅仅是一种举例,本申请实施例并不限制于此。例如,还可以包括更多的与网络设备11进行通信的终端12,为简明描述,不在附图中一一描述。此外,在如图1所示的通信***中,尽管示出了网络设备11和终端12,但是该通信***可以并不限于包括网络设备11和终端12,例如还可以包括核心网节点或用于承载虚拟化网络功能的设备等,这些对于本领域技术人员而言是显而易见的,在此不一一赘述。
需要说明的是,随着通信***的不断演进,未来可能出现的其他***中,上述各个网元的名称可能会发生变化,在这种情况下,本申请实施例提供的方案同样适用。
另外,本申请实施例不仅可应用于4G无线通信***、车对外界(vehicle to everything,V2X)通信***、设备到设备(Device-to-Device,D2D)通信***、LTE的后续演化通信***、5G通信***、以及未来可能出现的其他***等,还可应用于卫星通信***。
通常情况下,终端与网络设备通信时,终端向网络设备发送上行数据帧,网络设备向终端发送下行数据帧。由于终端与网络设备之间存在一定的距离,因此,终端发送的上行数据帧在到达网络设备时存在一定的延迟,为了保持终端的上行数据帧与网络设备的下行数据帧同步,需要网络设备给终端发送TA值,终端根据该TA值发送上行数据帧。如图2所示,终端发送的上行数据帧在该终端对应的下行数据帧之前传输,上行数据帧比下行数据帧提前传输的时间记为定时提前TA,TA值反映了终端和网络设备之间的信号往返传输时延。如此,当网络设备接收到该上行数据帧时,该上行数据帧的边界与下行数据帧的边界正好对齐,此外,还需要保证上行数据帧和行数据帧的帧号相同。因此,TA值可用于保持终端的上行数据帧与网络设备的下行数据帧同步。
本申请实施例以卫星通信***为例,如图3所示,20表示卫星的一个覆盖区域,该覆盖区域中可存在多个终端。21表示该覆盖区域中的一个参考点,具体的,该参考点可以是该覆盖区域中距离卫星最近的一个点,在这种情况下,该参考点也可记为近端。22表示该覆盖区域中除参考点之外的任意一点,例如,22表示该覆盖区域中距离卫星最远的一个点,在这种情况下,点22也可记为远端。如图3所示,d1表示近端与卫星之间的距离,d2表示远端与卫星之间的距离。假设有一个终端位于远端,则该终端与卫星通信时所需的TA值为终端和网络设备之间的信号往返传输时延。卫星通信***的一部分传输距离是公共的,如图3所示,可以将近端与卫星之间的距离d1作为覆盖区域20中的公共传输距离。相应的,信号在该公共传输距离上进行往返传输时会产生公共往返传输时延,此处,将该公共往返传输时延记为公共TA值。另外,如图3所示,d3=d2-d1,也就是说,d2=d3+d1。此处,将信号在d2上进行往返传输时产生的往返传输时延记为总往返传输时延,将信号在d3上进行往返传输时产生的往返传输时延记为终端特有TA值,因此,终端特有TA值为该终端的总往返传输时延与公共往返传输时延的差值。可以理解,位于同一个覆盖区域内的多个终端的公共TA值可以相同。具体的,该公共TA值可由卫星通信***的类型、以及卫星或地面站与某个参考点之间的距离确定。
根据图3可知,当终端与卫星通信时,该终端需要使用公共TA值和终端特有TA值。下面对终端获取公共TA值和终端特有TA值的过程进行介绍。如图4所示为现有技术中LTE/NR协议中的随机接入流程,具体的,步骤1,终端向网络设备发送随机接入前导,该随机接入前导具体可以是终端从规定的集合中选取的一个前导序列。步骤2,网络设备向终端发送随机接入响应,该随机接入响应中可包括前导序列标识、TA值、退避指示(Backoff)、初始上行资源传输许可(UL-grant)、小区无线网络临时标识(Cell-RadioNetworkTemporaryIdentifier,C-RNTI)。步骤3,终端向网络设备发送层2/层3(Layer 2/Layer 3,L2/L3)消息,该L2/L3消息中可包括C-RNTI、终端标识。步骤4,网络设备向终端发送竞争解决消息。
由于在卫星通信***中,终端与卫星之间的距离非常远,信号传输时延较大。因此,终端与卫星之间的绝对TA值即如上所述的终端的总往返传输时延较大。并且在卫星通信***中,绝对 TA值可以分为两部分,一部分是公共TA值,另一部分是终端特有TA值。因此,当如图4所示的LTE/NR协议中的随机接入流程应用到卫星通信***时,网络设备可以在步骤1之前向终端发送公共TA值,在步骤2所述的随机接入响应中携带终端特有TA值。但是,如图3可知,d3比d1小很多,也就是说,终端特有TA值比公共TA值小很多,由于终端与卫星之间的绝对TA值很大,因此,公共TA值也是比较大的。如果网络设备直接发送公共TA值,那么公共TA值对应的比特位数会很多,这样无疑会带来较大的信令开销。为了解决该问题,本申请实施例提供了一种公共TA值的指示方法,下面结合具体的实施例对该方法进行介绍。
图5为本申请提供的一种公共定时提前的指示方法流程图。如图5所示,本实施例所述的公共定时提前的指示方法包括如下步骤:
S501、终端从网络设备接收第一指示信息,所述第一指示信息用于指示卫星通信***中的公共定时提前TA值。
在本实施例中,网络设备具体可以是卫星通信***中的卫星,还可以是如图6所示的卫星通信***中的地面站23。下面以卫星为例进行示意性说明。具体的,卫星可以在终端随机接入之前,通过广播的方式发送用于指示公共TA值的指示信息,此处,将该指示信息记为第一指示信息。具体的,该第一指示信息可以承载于***消息块(System Information Block,SIB)1、其它***消息(Other System Information,OSI)、主信息块(Master Information Block,MIB)等广播信息中。也就是说,卫星并不是发送公共TA值本身,而是发送用于指示公共TA值的指示信息,具体的指示方式可以有多种,例如,指示公共TA值的索引号、指示公共TA值的缩放值、指示公共TA值和基准TA值的差分TA值、用约定的公式计算公共TA值等。下面实施例将逐一介绍每种指示方式。在本实施例及后续实施例中,差分TA值也叫做差分公共TA值,将差分公共TA值记为差分TA值是为了便于区分公共TA值和差分公共TA值。在本实施例及后续实施例中,基准TA值也叫做基准公共TA值,将基准公共TA值记为基准TA值是为了便于区分公共TA值和基准公共TA值。
具体的,卫星通过第一指示信息所指示的公共TA值可以是该卫星的某个覆盖区域所关联的公共TA值,而某个覆盖区域所关联的公共TA值可以是一个或多个。当某个覆盖区域所关联多个公共TA值时,该多个公共TA值中的每个公共TA值可以是该覆盖区域中不同参考位置的TA值。当卫星下发了多个公共TA值时,终端可通过本地测量得到的参数信息或网络设备下发的参数信息从该多个公共TA值中选择一个公共TA值。其中,该参数信息具体可以是多普勒频偏、多普勒频偏变化率、终端与卫星的相对角度等,终端与卫星的相对角度具体可以包括如图7所示的半张角、通信仰角、地心角等角度。另外,具有定位功能的终端还可以根据定位信息从该多个公共TA值中选择一个公共TA值。
如图7所示为本申请实施例提供的一种卫星通信***的场景示意图。卫星具备信号处理能力,且卫星可以将移动终端发出的信号透明转发给地面站,从而实现广域覆盖的通信场景。前面所述的某个覆盖区域具体可以是按照如图7所示的各种不同角度将卫星的整个覆盖区域划分成的多个区域中的某一个区域。每个区域具体可以是一个卫星小区或卫星的一个波束在地面上的投影区域。或者,每个区域可以是卫星的多个波束在地面上的投影区域或多个卫星小区。再或者,每个区域可以是卫星的一个波束在地面上的投影区域的部分区域或者一个卫星小区的部分区域。其中,一个卫星小区通常为卫星的一个或多个波束在地面上的投影区域。每个区域与一个或多个终端对应。
此外,卫星还可以多次发送承载有第一指示信息的广播信息,每次发送广播信息的时间间隔 可以相等,也可以不等。
S502、所述终端根据所述第一指示信息确定所述公共TA值,所述公共TA值用于表征卫星覆盖区域内的参考点与网络设备之间的往返传输时延。
由于卫星通过广播信息承载第一指示信息,因此,当终端接收到该广播信息时,可根据该广播信息中的第一指示信息确定公共TA值。当终端需要与卫星建立连接时,该终端可将该公共TA值作为传输上行数据的预补偿TA值,例如,该终端向卫星发送随机接入前导时,终端使用公共TA值作为传输上行数据的预补偿TA值,终端发送随机接入前导时,使用公共TA值作为传输TA值。
此外,在无线资源控制(Radio Resource Control,RRC)连接阶段,也就是如图4所示的随机接入之后,如果需要更新公共TA值,例如为了满足失步后快速重新同步预存公共TA值、星间切换等需求而更新公共TA值时,网络设备还可以在RRC信息、下行控制信息(Downlink Control Information,DCI)、媒体访问控制(Media Access Control,MAC)元素、定时提前命令(Timing Advance Command,TAC)、单独分配的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)中的至少一种信息中承载更新后的TA值。
本实施例通过终端从网络设备接收用于指示卫星通信***中的公共定时提前TA值的指示信息,并根据该指示信息来确定公共TA值,由于指示信息相比于公共TA值本身而言所需的信令开销较小,因此,节省了网络设备指示公共TA值的信令开销。
在上述实施例的基础上,在所述步骤S501之前,所述方法还包括:
步骤1、终端向网络设备发送随机接入前导,该随机接入前导具体可以是终端从规定的集合中选取的一个前导序列,然后网络设备接收终端发送的随机接入前导,进行前导接收位置的检测,获取上行TA值,生成第一指示信息,所述第一指示信息用于指示卫星通信***中的公共定时提前TA值。
在一种可能的方式中,网络设备在生成第一指示信息之前,该网络设备还可以获取索引信息集合与公共TA值集合之间的对应关系,该对应关系具体可以参照如下终端所使用的表1或表2所述的公共TA值索引表,此处不再赘述。其中,该公共TA值索引表可以是终端生成的,也可以是网络设备生成后发送给终端的。第一指示信息可包括公共TA值的索引信息。当终端接收到该第一指示信息时,根据该公共TA值的索引信息、以及如下表1或表2所述的公共TA值索引表,确定该公共TA值,具体过程如下所述此处不再赘述。其中,索引信息具体可以是索引号。
在另一种可能的方式中,网络设备在生成第一指示信息之前,该网络设备还可以获取索引信息集合与参考TA值集合之间的对应关系,该对应关系具体可以参照如下终端所使用的表4所述的索引表,该参考TA值可以是该索引表中的一个公共TA值。同理,该索引表可以是终端生成的,也可以是网络设备生成后发送给终端的。在这种情况下,第一指示信息包括该公共TA值对应的参考TA值的索引信息。当终端接收到该第一指示信息时,根据该公共TA值对应的参考TA值的索引信息以及如表4所述的对应关系,确定出该公共TA值对应的参考TA值,进一步,根据该公共TA值对应的参考TA值和至少一个所述偏移量,确定该公共TA值,具体的,该公共TA值为该参考TA值和至少一个所述偏移量的和。
在又一种可能的方式中,网络设备还可以获取索引信息集合与偏移量集合之间的对应关系,该对应关系具体可以参照如下终端所使用的表5所述的对应关系。相应的,该第一指示信息在包 括参考TA值的索引信息的基础上,还可以进一步包括至少一个所述偏移量的索引信息。当终端根据如下所述的内容确定出该公共TA值对应的参考TA值后,还可以进一步根据至少一个所述偏移量的索引信息和如表5所述的对应关系,确定出至少一个所述偏移量,进一步,根据该公共TA值对应的参考TA值和至少一个所述偏移量,确定该公共TA值,具体的,该公共TA值为该参考TA值和至少一个所述偏移量的和。
步骤2、网络设备向终端发送随机接入响应,所述随机接入响应包括所述第一指示信息;另外,该随机接入响应中可还可以包括下面的一种或者多种信息:前导序列标识、TA值、退避指示(Backoff)、初始上行资源传输许可(UL-grant)、小区无线网络临时标识(Cell-RadioNetworkTemporaryIdentifier,C-RNTI)。
下面对公共TA值的几种可能的指示方式进行介绍。
作为一种可能的实现方式,上述实施例中所述的第一指示信息中包括公共TA值的索引信息,该索引信息具体可以是索引号。在这种情况下,终端在接收到第一指示信息后,可根据该公共TA值的索引号和公共TA值索引表确定该公共TA值。具体的,该终端可根据该公共TA值的索引号在该公共TA值索引表中查询获得与该索引号对应的公共TA值。该公共TA值索引表可以有不同的形式,一种可能的形式是如下表1所示的对应关系。相应的,网络设备根据表1的对应关系向终端指示某一个公共TA值的索引号,终端根据该索引号和表1的对应关系确定该网络设备所指示的公共TA值。
表1
索引号 公共TA值
0 CommonTA 0
1 CommonTA 1
n CommonTA n
该公共TA值索引表的另一种可能的形式是如下表2所示的对应关系。其中,x 1是用于指示卫星轨道高度的第二指示信息,x 2是用于指示卫星通信***类型的第三指示信息,x 3是用于指示覆盖区域序号的第四指示信息。在这种情况下,公共TA值的索引号具体可以是x 1、x 2、x 3中的至少一个。也就是说,可以将多个参数的指示信息联合作为公共TA值的索引号。此外,该公共TA值的索引号不限于包括x 1、x 2、x 3中的至少一个,还可以包括其他参数的指示信息,只要是与卫星相关的参数的指示信息均可以作为公共TA值的索引号,例如,图7所示的各种不同角度的指示信息。
表2
Figure PCTCN2020089682-appb-000001
在一些应用场景中,可能不需要用x 1、x 2、x 3同时作为公共TA值的索引号,例如,只需要x 1、x 2、x 3中的一个或两个作为公共TA值的索引号即可,在这种情况下,网络设备还可以向终端发送一个用于指示部分参数作为索引号的指示信息。例如,该指示信息可包括3个比特,该3个比特从左到右依次与x 1、x 2、x 3对应,假设0指示可作为索引号,1指示不作为索引号,则001 表示x 1、x 2作为索引号、x 3不作为索引号,此时,终端只需要根据x 1、x 2查询表2所示的公共TA值索引表即可确定出x 1、x 2所对应的公共TA值。另外,表1或表2所示的公共TA值索引表可以是终端和网络设备预先约定好的,或者是由网络设备下发给终端的。
本实施例通过公共TA值的索引号指示公共TA值,由于公共TA值的索引号的比特数相比于公共TA值的比特数会少很多,因此,可以有效节省公共TA值的指示开销。另外,在卫星通信***中,当终端向网络设备发送随机接入前导之前,网络设备向终端发送用于指示公共TA值的指示信息,可使得终端将该公共TA值作为发送随机接入前导时的传输TA值,从而有效解决随机接入前导占用资源多、且网络设备检测随机接入前导复杂度较高的问题。
作为另一种可能的实现方式,上述实施例中所述的第一指示信息可包括公共TA值的缩放值的索引号。例如以表2为例,该表2中的x 1、x 2、x 3与公共TA值的缩放值对应,其中,公共TA值的缩放值=公共TA值×该公共TA值的缩放系数,该缩放系数可以是一个大于0且小于1的一个系数。例如,缩放系数为1/2 n时,公共TA值的缩放值=公共TA值×1/2 n,该公共TA值的缩放值的比特数相比于公共TA值的比特数将减少n比特。可见,这种指示方式可以节省部分信令开销。
例如,公共TA值为10000个时间单元,一个时间单元等于16·64·T c,T c=1/(Δf max·N f),其中Δf max=480·10 3Hz,N f=4096。该公共TA值的缩放系数为0.0001,则该公共TA值的缩放值为1个时间单元。相应的,终端根据第一指示信息中的该公共TA值的缩放值的索引号以及公共TA值的缩放值的索引表,确定出该索引号对应的该公共TA值的缩放值,进一步,根据该公共TA值的缩放值和该公共TA值的缩放系数,确定出该公共TA值。其中,公共TA值的缩放值的索引表具体可以参照表2所示,具体的对应关系此处不再赘述。公共TA值的缩放值的索引表可以是终端和网络设备预先约定好的,或者是由网络设备下发给终端的。
在上述实施例中,由于第一指示信息中包括索引号,因此,终端在确定公共TA值时需要用到索引表。作为另一种可能的实现方式,该第一指示信息中可以不包括索引号,而是包括该公共TA值的缩放值,在这种情况下,终端可根据该公共TA值的缩放值和该公共TA值的缩放系数,确定出该公共TA值。例如,该公共TA值的缩放值为1个时间单元,该缩放系数为0.0001,则该公共TA值为该公共TA值的缩放值除以该缩放系数即10000个时间单元。
其中,如上所述的公共TA值的缩放系数可以是终端和网络设备预先约定好的。或者,该缩放系数可以是由网络设备直接发送给终端的,在这种情况下,第一指示信息和缩放系数可以承载在相同的消息中,也可以承载于不同的消息中。当第一指示信息和缩放系数承载于不同的消息中时,若网络设备需要多次指示公共TA值,则第一指示信息和缩放系数的传输间隔可以相同,也可以不同。另外,该公共TA值的缩放系数和如上所述的终端特有TA值的缩放系数可以由网络设备进行统一配置,也可以分别独立配置,当独立配置时,该公共TA值的缩放系数可以与终端特有TA值的缩放系数相同,也可以不相同。
在一些实施例中,网络设备还可以通过索引号以及缩放系数索引表向终端指示公共TA值的缩放系数。在这种情况下,如上所述的第一指示信息还可以包括该公共TA值的缩放系数的索引号。或者,该网络设备可以将第一指示信息和该公共TA值的缩放系数的索引号承载在不同的SIB消息中。终端在根据该公共TA值的缩放值和该公共TA值的缩放系数确定该公共TA值之前,可 根据该公共TA值的缩放系数的索引号和缩放系数索引表确定该公共TA值的缩放系数。其中,该缩放系数索引表可以是如下表3所示的对应关系,或者该缩放系数索引表还可以参照表2所示的形式,具体对应关系此处不再赘述。
表3
索引号 缩放系数
0 1/2
1 1/4
2 1/8
3 1/16
可以理解,表3所示的缩放系数索引表只是索引号和缩放系数之间的对应关系的一种示意性说明,在实际应用中可以根据应用场景的需求调整索引号的数量以及缩放系数的数值。另外,缩放系数索引表可以是终端和网络设备预先约定好的,或者是由网络设备下发给终端的。
在另一些实施例中,公共TA值的缩放系数还可以通过子载波宽度、前导结构等其他参数进行隐式指示。例如,子载波宽度为2 μ·15KHz,公共TA值的缩放系数为1/2 μ
下面以一个具体的例子对网络设备采用公共TA值的缩放值向终端指示公共TA值的方法进行详细介绍。例如,网络设备向终端发送公共TA值的缩放值、以及该公共TA值的缩放系数的索引号,该公共TA值的缩放值和该缩放系数的索引号承载在不同的SIB消息中。其中,该公共TA值的缩放值为10000个时间单元,该缩放系数的索引号为0,终端根据表3可知具体的缩放系数为1/2,进一步,该终端确定该公共TA值为2×10000个时间单元,即2·10000·16·64·T c
本实施例通过公共TA值的缩放值指示公共TA值,相比于直接发送公共TA值节省了信令开销,另外,公共TA值的缩放值和公共TA值的缩放系数可以有多种指示方式,同时也提高了指示公共TA值的灵活性、以及信令配置的灵活性。
在一些场景中,终端所需的公共TA值可能并不在公共TA值索引表中,或者,终端所需的公共TA值的缩放值可能并不在公共TA值的缩放值的索引表中。以公共TA值索引表为例,表4是公共TA值索引表的一个示例,该公共TA值索引表中包括了联合索引号和公共TA值之间的对应关系。假设终端需要的公共TA值为7685个时间单元,但是在表4中并不存在7685,在这种情况下,网络设备可以更新该公共TA值索引表,或者是通过该公共TA值索引表中已存在的与7685接近的7680和至少一个偏移量向终端指示该公共TA值。此处,将与终端所需的公共TA值接近的公共TA值记为参考TA值。例如,7680是7685的参考TA值。此时,终端所需的公共TA值=参考TA值+(偏移量1+…+偏移量N),其中,偏移量可以是正值,也可以是负值。
表4
Figure PCTCN2020089682-appb-000002
Figure PCTCN2020089682-appb-000003
其中,网络设备指示参考TA值的方式同理于上述实施例所述的网络设备指示公共TA值的方式。例如,一种可能的实现方式中,第一指示信息中包括参考TA值的索引号,终端通过该索引号和参考TA值索引表查询相应的参考TA值,该参考TA值索引表可以参照表4所示的形式。另一种可能的实现方式中,第一指示信息中包括参考TA值的缩放值的索引号,终端通过该索引号和参考TA值的缩放值的索引表查询到相应的参考TA值的缩放值,进一步,根据该参考TA值的缩放值和该参考TA值的缩放系数,确定该参考TA值。又一种可能的实现方式中,第一指示信息中包括参考TA值的缩放值,该终端根据该参考TA值的缩放值和该参考TA值的缩放系数,确定该参考TA值。其中,参考TA值的缩放系数的指示方式同理于上述实施例中公共TA值的缩放系数的指示方式,此处不再赘述。相应的,对于每一种指示参考TA值的方式,终端根据第一指示信息确定参考TA值的过程同理于上述实施例所述的终端根据第一指示信息确定公共TA值的过程,此处不再赘述。
在本实施例中,由于公共TA值=参考TA值+(偏移量1+…+偏移量N),因此,网络设备不仅需要指示参考TA值,还需要指示至少一个偏移量。下面介绍一下至少一个偏移量的指示方式。
一种可能的方式中,网络设备可以向终端直接发送至少一个偏移量。
另一种可能的方式中,网络设备可以向终端发送至少一个偏移量的索引号。
又一种可能的方式中,网络设备可以向终端发送至少一个偏移量的缩放值。
再一种可能的方式中,网络设备可以向终端发送至少一个偏移量的缩放值的索引号。
需要说明的是,当网络设备向终端发送至少一个偏移量的索引号时,该终端需要根据至少一个偏移量的索引号查询偏移量索引表得到至少一个偏移量。或者,当网络设备向终端发送至少一个偏移量的缩放值的索引号时,该终端需要根据至少一个偏移量的缩放值的索引号查询偏移量的缩放值的索引表得到至少一个偏移量的缩放值。其中,偏移量索引表或偏移量的缩放值的索引表的形式可以是类似于表1的形式,或者是类似于表2的形式。另外,偏移量索引表或偏移量的缩放值的索引表可以是终端和网络设备预先约定好的,或者,偏移量索引表或偏移量的缩放值的索引表是由网络设备下发给终端的。
另外,网络设备用于指示参考TA值的信息和用于指示至少一个偏移量的信息可以承载在相同的消息中,例如,第一指示信息不仅可以包括参考TA值的索引号、参考TA值的缩放值的索引号或参考TA值的缩放值,另外,该第一指示信息还可以包括至少一个偏移量、至少一个偏移量 的索引号、至少一个偏移量的缩放值或至少一个偏移量的缩放值的索引号。或者,网络设备用于指示参考TA值的信息和用于指示至少一个偏移量的信息还可以承载在不同的消息中。
此外,当网络设备需要指示的偏移量为多个时,不同的偏移量可以采用相同的指示方式,例如,网络设备需要向终端指示偏移量1和偏移量2,该网络设备可以采用偏移量的索引号的方式指示偏移量1和偏移量2,具体的,该网络设备向终端发送偏移量1的索引号和偏移量2的索引号。此外,不同的偏移量还可以采用不同的指示方式进行指示,例如,网络设备指示偏移量1时,向终端发送偏移量1;当网络设备指示偏移量2时,向终端发送偏移量2的索引号。此外,不同的偏移量的时间单元可以相同,也可以不同。例如,偏移量1以***时隙长度为时间单元,偏移量2以T c为时间单元。另外,时间单元不限于以***时隙长度或T c为单位,还可以是以***帧时间长度、***符号长度、自定义的时间颗粒度为单位,或者,还可以采用常用的轨道信息,例如轨道高度作为时间单元的索引。例如,轨道高度为600千米,表示时间单元为600千米轨道对应的星下点传输时延。
可以理解的是,当网络设备向终端发送参考TA值的缩放值和/或至少一个偏移量的缩放值时,网络设备指示参考TA值的缩放系数或至少一个偏移量的缩放系数的方式同理于上述实施例所述的网络设备指示公共TA值的缩放系数的方式,此处不再一一赘述。另外,当网络设备通过索引号指示参考TA值的缩放系数或至少一个偏移量的缩放系数时,相应的缩放系数索引表具体可以参照上述实施例所述的缩放系数索引表。
此处需要说明的是,网络设备可通过相同的指示方式指示参考TA值的缩放系数和至少一个偏移量的缩放系数,或者采用不同的指示方式指示参考TA值的缩放系数和至少一个偏移量的缩放系数。另外,参考TA值的缩放系数和至少一个偏移量的缩放系数可以承载在相同的信令或消息中,或者承载在不同的信令或消息中。此外,参考TA值的缩放系数、至少一个偏移量的缩放系数和如上所述的终端特有TA值的缩放系数可以由网络设备进行统一配置,也可以分别独立配置。当独立配置时,参考TA值的缩放系数、至少一个偏移量的缩放系数和如上所述的终端特有TA值的缩放系数可以部分相同、全部相同或互不相同。另外,网络设备发送参考TA值的缩放系数的时间间隔和发送至少一个偏移量的缩放系数的时间间隔可以相同,也可以不同。
此外,网络设备用于指示参考TA值的缩放系数和/或至少一个偏移量的缩放系数的信息、用于指示参考TA值的信息和用于指示至少一个偏移量的信息可以承载在相同的消息中,例如第一指示信息,也可以承载在不同的消息中。
下面以一个具体的例子来说明一下网络设备使用参考TA值和至少一个偏移量来指示公共TA值的方法。例如,公共TA值=参考TA值+偏移量1。具体的,网络设备将参考TA值的索引号、偏移量1的缩放值、偏移量1的缩放系数的索引号承载在相同的SIB消息中进行广播。当终端接收到该SIB消息时,从该SIB消息中获取参考TA值的索引号、偏移量1的缩放值、偏移量1的缩放系数的索引号。假设参考TA值的索引号为联合索引号,该联合索引号为001,根据001查询如表4所示的索引表可知参考TA值为9681。9681即表示9681个时间单元,若一个时间单元等于16·64·T c,则参考TA值等于9681·16·64·T c。假设偏移量1的缩放值为2即2个时间单元,一个时间单元等于16·64·T c,则偏移量1的缩放值等于2·16·64·T c。假设偏移量1的缩放系数的索引号为0,根据表3可知0对应的缩放系数为1/2,因此,偏移量1为2·2·16·64·T c,公共TA值为(9681+2·2)·16·64·T c
本实施例通过参考TA值和至少一个偏移量来指示公共TA值,不仅提高了指示公共TA值的 指示精度,同时还可以进一步减少指示所需的比特开销。另外,在参考TA值和至少一个偏移量的基础上引入参考TA值的缩放系数和/或至少一个偏移量的缩放系数,可在保证指示精度的基础上,进一步减小信令开销,并提高指示公共TA值的灵活性,另外,通过不同的偏移量采用相同的时间单元或不同的时间单元,使得网络设备只需要指示偏移量是几倍的时间单元即可,使得网络设备可最大程度的降低总的偏移量的指示开销。
作为上述实施例的一个可替代方式是,差分TA值=公共TA值-基准TA值,其中,基准TA值类似于上述实施例中的参考TA值,差分TA值类似于上述实施例中的偏移量。因此,网络设备在指示公共TA值时,可以仅指示差分TA值,或者,同时指示差分TA值和基准TA值。当同时指示差分TA值和基准TA值时,指示差分TA值的方式和指示基准TA值的方式可以相同,也可以不同。例如,当网络设备指示差分TA值时,向终端发送差分TA值的索引号。当网络设备指示基准TA值时,向终端发送基准TA值的缩放值。另外,用于指示差分TA值的信息和用于指示基准TA值的信息可以承载在相同的信令或消息中,也可以承载在不同的信令或消息中。可选的,网络设备采用不同的信令对差分TA值和基准TA值独立配置,独立配置时,对差分TA值的配置和对基准TA值的配置不相关。当网络设备需要多次指示公共TA值时,网络设备需要配置多个差分TA值和多个基准TA值,具体的,用于指示差分TA值的信息的传输间隔和用于指示基准TA值的信息的传输间隔可以相同,也可以不同。
下面介绍一下网络设备指示差分TA值的多种方式。
一种可能的方式是,第一指示信息中包括差分TA值。
另一种可能的方式是,第一指示信息中包括差分TA值的缩放值。
再一种可能的方式是,第一指示信息中包括差分TA值的索引号。
又一种可能的方式是,第一指示信息中包括差分TA值的缩放值的索引号。
当网络设备通过差分TA值的索引号来指示差分TA值时,终端需要根据该差分TA值的索引号和差分TA值索引表确定该差分TA值。其中,差分TA值索引表具体可以是如下表5所示的形式,或者可以参照表2所示的联合索引方式。
表5
索引号 差分TA值
0 ΔCommonTA 0
1 ΔCommonTA 1
n ΔCommonTA n
在本实施例中,基准TA值可以是网络设备和终端约定的值,或者可以由网络设备进行指示,具体的指示方式和上述实施例中参考TA值的指示方式类似,此处不再赘述。另外,在本实施例中,网络设备还可以向终端发送基准点的相关信息,终端可根据该基准点的相关信息确定基准TA值,例如,该基准点的相关信息可以是该基准点所在的卫星覆盖区域的序号,终端通过该序号查询如表1所示的索引表获得基准TA值。或者,该基准点的相关信息可以是如图7所示的角度或时间参数等,则终端可根据角度或时间参数按照约定的公式计算得到基准TA值。
另外,本实施例中的基准TA值是与某个卫星覆盖区域关联的公共TA值。基准TA值可以具有多种形式,例如,可以是卫星特有、小区特有、波束特有等,此外也不排除还有其他形式。其 中,卫星特有形式通常是将星下点的TA值作为基准TA值,小区特有形式通常是将小区中与卫星的距离最近的一点的TA值作为基准TA值。
下面以一个具体的例子对网络设备向终端指示差分TA值的方法进行介绍。例如,网络设备将差分TA值承载在SIB消息中进行广播。当终端接收到该SIB消息时,从该SIB消息中获取差分TA值,假设该差分TA值为546即代表546个时间单元,若一个时间单元等于16·64·T c,则差分TA值等于546·16·64·T c。另外,若基准TA值是终端和网络设备预先约定的值,例如,以600千米的轨道高度的卫星的星下点TA值作为基准TA值,该基准TA值等于7680·16·64·T c,则该终端可确定公共TA值为(7680+546)·16·64·T c
本实施例通过网络设备向终端指示公共TA值与基准TA值之间的差值的方法,将公共TA值分为基准TA值和差分TA值两部分,当该基准TA值是预先约定的值时,网络设备只需向终端指示差分TA值,使得信令开销最小。当基准TA值不是预先约定的值时,通过对基准TA值和差分TA值的不同指示方式,提高了指示公共TA值的灵活性。
在上述实施例中,公共TA值是由网络设备指示的值,在本实施例中,公共TA值还可以是终端根据网络设备下发的一些信令确定的值。其中,这些信令可以是终端在随机接入之前由网络设备下发的,也可以是在RRC连接阶段由网络设备下发的。
下面以终端在随机接入之前,网络设备下发的信令为例进行示意性说明。
一种可能的方式是,网络设备在SIB1中承载随机接入响应(Random Access Response,RAR)窗口信令(即ra-ResponseWindow信令)和竞争解决定时器信令(即ra-ContentionResolutionTimer信令)中的至少一个。其中,ra-ResponseWindow信令中包括RAR窗口长度,如图8所示,RAR窗口长度与公共TA值相关。具体的,RAR窗口长度可表示为公共TA值与偏移量之和。其中,偏移量与该公共TA值关联的卫星覆盖区域中的最大往返时延差、以及网络设备的信号处理时延等因素有关。其中,该最大往返时延差可以是如图3所示的远端的信号往返时延和近端的信号往返时延的差值。ra-ContentionResolutionTimer信令中包括竞争解决定时器长度。具体的,如图4所示,终端向网络设备发送L2/L3消息后,终端启动竞争解决定时器,若竞争解决定时器超时,且终端仍未接收到网络设备的竞争解决消息时,则确定竞争解决失败。由于在卫星通信***中存在较大的传输时延,因此,公共TA值是影响竞争解决定时器长度的一个因素,也就是说,竞争解决定时器长度与公共TA值相关。
相应的,当终端接收到ra-ResponseWindow信令和/或ra-ContentionResolutionTimer信令时,可根据RAR窗口长度和/或竞争解决定时器长度按照一定的规则确定出公共TA值。或者,终端在已获取到公共TA值的情况下,还可以按照一定的规则推导出RAR窗口长度和/或竞争解决定时器长度。
另一种可能的方式是,网络设备向终端发送随机接入前导与RAR窗口起点之间的第一延迟offset1、L2/L3消息与随机接入响应之间的第二延迟offset2、争解决定时器起始时刻与L2/L3消息之间的第三延迟offset3中的至少一个。其中,offset1如图9所示,offset2如图10所示,offset3如图11所示。offset1、offset2和offset3可以承载在不同的信令或消息中,也可以承载在相同的信令或消息中。其中,offset1、offset2和offset3分别与公共TA值相关,因此,终端在接收到offset1、offset2和offset3中的至少一个时,可根据offset1、offset2和offset3中的至少一个按照一定的规则确定出该公共TA值。或者,终端在已获取到公共TA值的情况下,还可以按照一定的规则推导 出offset1、offset2和offset3中的至少一个。
在RRC连接阶段,网络设备需要更新公共TA值时,该网络设备可向终端发送PDSCH与传输混合自动重传(Hybrid Automatic Repeat reQuest,HARQ)确认字符(ACKnowledgement,ACK)的物理上行控制信道(Physical Uplink Control Channel,PUCCH)之间的传输间隔K1,和/或,网络设备向终端发送物理下行控制信道(Physical Downlink Control Channel,PDCCH)与物理上行共享信道(Physical Uplink Shared Channel,PUSCH)之间的传输间隔K2。其中,如图12所示,K1具体可以是从网络设备发送PDSCH到网络设备接收到PUCCH之间的时间间隔,由于TA值反映了终端和网络设备之间的信号往返传输时延,因此,从终端接收到PDSCH到该终端发送PUCCH之间的时间间隔为K1-TA。同理,如图13所示,K2具体可以是从网络设备发送PDCCH到该网络设备接收PUSCH之间的时间间隔,从终端接收到PDCCH到该终端发送PUSCH之间的时间间隔为K2-TA。具体的,K1和K2可以承载在不同的信令或消息中,也可以承载在相同的信令或消息中。其中,K1和K2分别与公共TA值相关,因此,当终端接收到K1和/或K2时,可根据K1和/或K2按照一定的规则确定出该公共TA值。或者,终端在已获取到公共TA值的情况下,还可以按照一定的规则推导出K1和/或K2。
需要注意的是,由于卫星通信***的上下行定时差与地面通信***存在巨大差异,因此,卫星通信***中的K1、K2取值需考虑较大传输时延差的影响,也就是说,地面通信***中定义的K1、K2取值不再适用于卫星通信***。卫星通信***中所使用的K1、K2需要在现有定义的基础上增大或者附加一个增量。例如,可以重新制定配置K1的相关参数,或者基于原有参数的配置附加一个约定值或者附加一个网络设备指示的增量,再或者使用RRC信令等方式灵活适配不同类型的卫星通信***中的K1。K2具体可以通过RRC信令进行配置,但需考虑重新设计配置参数。
在本实施例中,可以将如上所述的RAR窗口长度、竞争解决定时器长度、offset1、offset2、offset3、K1、K2等参数记为与公共TA值相关的参数。
可以理解的是,上述实施例所述的参考TA值也可以通过本实施例所述的与公共TA值相关的参数进行确定。例如,网络设备向终端发送承载有与公共TA值相关的参数的信令,终端接收到该信令后,获取该信令中的相关参数,并根据相关参数确定参考TA值,进一步,根据参考TA值和至少一个偏移量计算出公共TA值。
下面以一个具体的例子对网络设备通过与公共TA值相关的参数指示公共TA值的方法进行介绍。例如,网络设备将ra-ResponseWindow信令和一个偏移量分别承载在不同的SIB消息中,并广播相应的SIB消息。ra-ResponseWindow信令中的RAR窗口长度用于指示参考TA值。当该终端接收到相应的SIB消息时,从相应的SIB消息中分别获取ra-ResponseWindow信令和偏移量,假设该ra-ResponseWindow信令中包括的RAR窗口长度为10个时隙,例如,当子载波宽度为2 μ·15KHz时,时隙长度为T slot=1/2 μms。假设在本实施例中子载波宽度为15KHz,则10个时隙长度为10ms,10ms对应19200·16·64·T c,例如,参考TA值为19200·16·64·T c。另外,假设偏移量为480即代表480个时间单元,若一个时间单元等于16·64·T c,那么偏移量等于480·16·64·T c。另外,在本实施例中,公共TA值=参考TA值-(偏移量1+…+偏移量N),因此,终端确定出的公共TA值为(19200-480)·16·64·T c
本实施例通过网络设备向终端发送与公共TA值相关的参数,使得终端根据与公共TA值相关的参数计算出公共TA值,充分利用了网络设备下发的信令中的相关参数,进一步节省了指示公共TA值所需的信令开销。
作为上述实施例的另一种可替换方式,网络设备可向终端下发一些卫星通信***中的特定参数,终端可根据该特定参数以及相应的几何公式或拟合公式计算出公共TA值。本实施例不限定网络设备指示特定参数的方式,例如,该网络设备可以直接发送特定参数,或者发送特定参数的缩放值,或者发送特定参数的索引号,或者发送特定参数的缩放值的索引号等。当特定参数为多个时,不同的特定参数可以采用不同或相同的指示方式进行指示。不同的特定参数的指示信息可以承载在相同的信令或消息中,也可以承载在不同的信令或消息中。不同的特定参数的指示信息的传输时间间隔可以相同,也可以不同。
在一种可行的实现方式中,网络设备向终端发送卫星轨道高度、角度信息或角度信息的函数表达式,其中,角度信息可以包括如图7所示的仰角、半张角、地心角等。以地心角为例进行示意性说明。例如,网络设备向终端发送的卫星轨道高度记为h,网络设备向终端发送的地心角的余弦函数为cosα,其中,α为地心角。终端可根据如下公式(1)计算出公共TA值:
Figure PCTCN2020089682-appb-000004
其中,Common Delay表示公共TA值,c表示光速,r表示地球半径,其中,地球半径r可以是终端已知的量,或者,也可以由网络设备下发给终端。
在另一种可行的实现方式中,如图14所示,O表示地心,S表示运行轨道为圆形轨道的卫星,地心O与卫星S之间的距离记为R,A表示地面预设点,即地面上的一个固定点,假设终端在点A处。经过参考点A'和点B的弧线为卫星轨道在地面上的投影。参考点A'表示点A在该弧线上的投影。地球半径可记为r,例如,参考点A'和地心O之间的距离为r、点A和地心O之间的距离为r。参考点A'和点A之间的关系可以通过角度β和角度θ表述。其中,β为平面夹角,即平面OAA'和卫星轨道面之间的夹角,其中,卫星轨道面是指经过地心O、参考点A'、点B和点D的平面,具体的,β=∠COD。点C是点A在与卫星轨道面垂直的平面上的投影点,点D是卫星S在与卫星轨道面垂直的平面上的投影点。θ为点A的卫星轨道面投影角,即OA和OA'之间的夹角∠AOA'。其中,θ也可以通过弧长l AA'=θr等效表示。当前时刻t卫星S与参考点A'之间的地心角可以用
Figure PCTCN2020089682-appb-000005
表示,其中,ω表示卫星S与参考点A'的相对角速度。
Figure PCTCN2020089682-appb-000006
也可以通过弧长
Figure PCTCN2020089682-appb-000007
等效表示。其中,点S'表示卫星S与地心O之间的连线与经过参考点A'和点B的弧线的交点。其中,角度β、角度θ或角度θ的等效表示、以及角度
Figure PCTCN2020089682-appb-000008
或角度
Figure PCTCN2020089682-appb-000009
的等效表示可用于表示点A与卫星S之间的相对位置。
根据上述已知的参数,可确定AC=r cosθ,OC=r sinθ,
Figure PCTCN2020089682-appb-000010
由于VSAB是直角三角形,因此,SA 2=AB 2+SB 2,其中,AB 2可表示为如下公式(2):
AB 2=CD 2=OC 2+OD 2-2OC·ODcos∠COD   (2)
其中,OC 2=r 2sin 2θ,
Figure PCTCN2020089682-appb-000011
因此,AB 2还可表示为如下公式(3):
Figure PCTCN2020089682-appb-000012
另外,
Figure PCTCN2020089682-appb-000013
因此可以推到出如下公式(4):
Figure PCTCN2020089682-appb-000014
进一步,将
Figure PCTCN2020089682-appb-000015
代入公式(4)中可得到如下公式(5):
Figure PCTCN2020089682-appb-000016
进一步,根据如上公式(5)可得到如下公式(6):
Figure PCTCN2020089682-appb-000017
其中,Common Delay表示公共TA值,c表示光速。
例如,在某一时刻t 0,网络设备可以向终端发送角度β、角度θ、t 0时刻卫星S与参考点A'之间的地心角
Figure PCTCN2020089682-appb-000018
以及t 0时刻卫星S相对于参考点A'的运动方向,其中,角度θ可以替换为等效弧长l AA'=θr,地心角
Figure PCTCN2020089682-appb-000019
也可以替换为等效弧长
Figure PCTCN2020089682-appb-000020
终端在接收到这些参数后,代入公式(6)即可计算出公共TA值。其中,地心O与卫星S之间的距离R和地球半径r可以是终端已知的量,或者,也可以由网络设备下发给终端。可以理解的是,根据(6)可知公共TA值是随时间变化的,因此,网络设备只需要在t 0时刻向终端下发一次如前所述的参数,终端即可根据(6)不断的计算出每个时刻的公共TA值。
在又一种可行的实现方式中,可将地心角α和公共TA值之间的关系拟合成类似于二次函数曲线的形式,该二次函数曲线可表示为如下公式(7):
TA(α)=aα 2+b|α|+c      (7)
其中,TA(α)表示公共TA值与地心角α相关的函数值,a、b、c分别为函数系数。
网络设备可以向终端发送a、b、c、α,或者向终端发送a、b、c、α中的部分参数,终端根据网络设备下发的参数和公式(7)即可确定出公共TA值。
可以理解的是,网络设备向终端发送的卫星通信***中的特定参数不限于本实施例所述的参数,还可以是其他信息,例如,多普勒频偏信息、其它角度信息、时间信息等,并且网络设备下发的参数不同时,终端需要采用不同的公式或拟合函数计算公共TA值。
为了便于理解,下面以一个具体的例子对通过特定参数和约定公式或拟合函数计算公共TA值的方法进行介绍。例如,网络设备向终端发送卫星轨道高度和当前时刻终端与卫星之间的地心角的余弦值,具体的,卫星轨道高度和地心角的余弦值分别承载在不同的SIB消息中。假设卫星轨道高度为600千米,当前时刻终端与卫星之间的地心角的余弦值为0.962。相应的,终端将卫星轨道高度600和该地心角的余弦值0.962代入到公式(1)中,其中,地球半径r等于6378千米,地球半径r为已知量,计算得到公共TA值为12.88ms,根据如上所述的T c=1/(Δf max·N f),其中Δf max=480·10 3Hz,N f=4096,可确定出公共TA值为24730·16·64·T c
本实施例通过网络设备向终端发送卫星通信***中的特定参数,使得终端根据特定参数和约定公式或拟合函数即可计算出公共TA值,甚至可以计算出随时间变化的公共TA值,相比于网络设备直接发送公共TA值,节省了信令开销,且提高了指示公共TA值的灵活性。
需要说明的是,上述实施例所述的公共TA值的几种指示方式可以适用于不同类型的卫星通信***。例如,可以适用于再生卫星通信***和透明转发卫星通信***。再生卫星通信***和透明转发卫星通信***是按照卫星的处理能力进行划分的,具体的,透明转发卫星通信***中的卫星只是对信号进行透明传输和频谱搬移,不涉及对信号本身的处理。再生卫星通信***中的卫星能够提取原始基带信号,并利用信息进行路由交换和***配置。目前透明转发卫星通信***和再生卫星通信***共存发展。
此外,卫星通信***的类型不限于再生和透明转发这两种。具体的,根据不同的划分标准可划分出不同类型的卫星通信***。例如,根据卫星轨道高度可以将卫星通信***划分为同步轨道(Geostationary Earth Orbit,GEO)***,中轨(Medium Earth Orbit,MEO)卫星通信***和低轨 (Low Earth Orbit,LEO)卫星通信***。根据卫星波束是否随卫星运动而变化,可以将卫星通信***划分为非凝视卫星通信***和凝视卫星通信***。其中,在非凝视卫星通信***中,从卫星的角度来看自身的各波束角度不会随时间变化,地面固定点在卫星过顶期间会经历较为频繁的波束切换。在凝视卫星通信***中,卫星波束角度按一定方式进行调整,卫星通过波束角度切换能实现对地面固定点的连续观测。
另外,上述实施例所述的公共TA值的几种指示方式还可以适用于其他类型的卫星通信***。此外,上述实施例所述的公共TA值的几种指示方式不仅适用于终端向网络设备发送随机接入前导之前网络设备向终端指示公共TA值的这种场景。另外,也适用于终端随机接入之后的RRC连接阶段中网络设备更新公共TA值的这种场景。此外,针对终端的特有TA值,网络设备可以直接将特有TA值发送给终端,或者也可以采用类似于上述实施例所述的公共TA值的几种指示方式向终端指示特有TA值。
下面以再生卫星通信***和透明转发卫星通信***为例对如上所述的公共TA值进行介绍。
具体的,对于再生卫星通信***而言,如上所述的公共TA值具体可以是用户链路的公共TA值。该用户链路是指终端与卫星之间的链路,如图6所示的位于远端22的终端与卫星之间的用户链路。
对于透明转发卫星通信***而言,如上所述的公共TA值由两部分构成,其中一部分是卫星覆盖区域内用户链路的公共TA值,另一部分是馈电链路的公共TA值。该馈电链路是指地面站与卫星之间的链路,如图6所示的地面站23与卫星之间的馈电链路。
在透明转发卫星通信***中,馈电链路的公共TA值可以有如下几种不同的展现形式:
一种可能的展现形式是,馈电链路的公共TA值对于终端是可见的。在这种情况下,上述实施例所述的公共TA值的几种指示方式中,网络设备所指示的公共TA值可以是用户链路的公共TA值和馈电链路的公共TA值的和。也就是说,网络设备所指示的公共TA值是用户链路和馈电链路总的公共TA值。总的公共TA值可能具有时变性,这种情况下,需要网络设备更新向终端指示的公共TA值。
或者,网络设备所指示的公共TA值是用户链路的公共TA值或馈电链路的公共TA值,也就是说,用户链路的公共TA值和馈电链路的公共TA值是分段指示的。当网络设备分段指示用户链路的公共TA值和馈电链路的公共TA值时,指示用户链路的公共TA值的指示方式和指示馈电链路的公共TA值的指示方式可以相同,也可以不同。例如,指示用户链路的公共TA值的指示方式可以是上述实施例中的任一种指示方式;指示馈电链路的公共TA值的指示方式具体可以是网络设备向终端发送地面站与卫星的相对位置信息,终端根据地面站与卫星的相对位置信息并按照约定的公式计算馈电链路的公共TA值。
馈电链路的公共TA值的另一种可能的展现形式是,馈电链路的公共TA值对于终端是不可见的。例如,网络设备可以向终端指示用户链路的公共TA值和馈电链路的公共TA值两部分值,对于用户链路的公共TA值,网络设备可以采用上述实施例中的任一种指示方式进行指示。对于馈电链路的公共TA值,网络设备向终端指示的馈电链路的公共TA值可以是0、可以是卫星与地面站距离最大时对应的TA值、可以是其他特定值、或者可以是一个无效信息。网络设备也可以采用上述实施例中的任一种指示方式对该馈电链路的公共TA值进行指示。或者,该馈电链路的公共TA值也可以是终端和网络设备预定的值,或者也可以是网络设备直接下发的值。
当网络设备分段指示用户链路的公共TA值和馈电链路的公共TA值时,馈电链路的公共TA值是否有效是可以灵活配置的,例如,网络设备可以在指示信息中增加一个标志位,该标志位可 记为TransparentIndicateFlag,例如,当TransparentIndicateFlag=0时表示馈电链路的公共TA值无效,当TransparentIndicateFlag=1时表示馈电链路的公共TA值有效。或者,还可以将馈电链路的某些参数设置为特定的预设值,来指示馈电链路的公共TA值是否有效,例如,将馈电链路所使用的角度信息设置为不属于[-π,π]的某个值来表示馈电链路的公共TA值无效。
可以理解的是,上述实施例中的部分或全部步骤骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照上述实施例呈现的不同的顺序来执行,并且有可能并非要执行上述实施例中的全部操作。
可以理解的是,以上各个实施例中,由终端实现的操作或者步骤,也可以由可用于终端的部件(例如芯片或者电路)实现,由网络设备实现的操作或者步骤,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
图15给出了一种通信装置的结构示意图。通信装置可用于实现上述方法实施例中描述的网络设备对应部分的方法、或者终端对应部分的方法,具体参见上述方法实施例中的说明。
所述通信装置150可以包括一个或多个处理器151,所述处理器151也可以称为处理单元,可以实现一定的控制功能。所述处理器151可以是通用处理器或者专用处理器等。
在一种可选地设计中,处理器151也可以存有指令153,所述指令可以被所述处理器运行,使得所述通信装置150执行上述方法实施例中描述的对应于终端或者网络设备方法。
在又一种可能的设计中,通信装置150可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。
可选地,所述通信装置150中可以包括一个或多个存储器152,其上存有指令154或者中间数据,所述指令154可在所述处理器上被运行,使得所述通信装置150执行上述方法实施例中描述的方法。可选地,所述存储器中还可以存储有其他相关数据。可选地处理器中也可以存储指令和/或数据。所述处理器和存储器可以单独设置,也可以集成在一起。
可选地,所述通信装置150还可以包括收发器155。
所述处理器151可以称为处理单元。所述收发器155可以称为收发单元、收发机、收发电路、或者收发器等,用于实现通信装置的收发功能。
若该通信装置用于实现对应于图5中的网络设备的操作时,例如,可以由收发器向终端发送第一指示信息。收发器还可以进一步完成其他相应的通信功能。而处理器用于完成相应的确定或者控制操作,可选的,还可以在存储器中存储相应的指令。各个部件的具体的处理方式可以参考前述实施例的相关描述。
若该通信装置用于实现对应于图5所示实施例中的终端的操作时,收发器用于接收第一指示信息,处理器用于根据所述第一指示信息确定所述公共TA值。可选的,收发器还可以用于完成其他相关的通信操作,处理器还可以用于完成其他相应的确定或者控制操作。可选的,还可以在存储器中存储相应的指令。各个部件的具体的处理方式可以参考前述实施例的相关描述。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种1C工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、 双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
可选的,通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述设备可以是:
(1)独立的集成电路IC,或芯片,或,芯片***或子***;
(2)具有一个或多个IC的集合,可选地,该IC集合也可以包括用于存储数据和/或指令的存储部件;
(3)ASIC,例如调制解调器(MSM);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、蜂窝电话、无线设备、手持机、移动单元,网络设备等等;
(6)其他等等。
图16为本申请实施例提供的再一种通信装置的结构示意图。如图16所示,该通信装置160包括:接收模块1601和处理模块1602;其中,接收模块1601用于从网络设备接收第一指示信息,所述第一指示信息用于指示卫星通信***中的公共定时提前TA值;处理模块1602用于根据所述第一指示信息确定所述公共TA值,所述公共TA值用于表征卫星覆盖区域内的参考点与网络设备之间的往返传输时延。
在图16中,进一步地,所述第一指示信息包括所述公共TA值的索引信息;处理模块1602具体用于:根据所述公共TA值的索引信息、以及索引信息集合与公共TA值集合之间的对应关系,确定所述公共TA值;所述索引信息包括用于指示卫星轨道高度的第二指示信息、用于指示卫星通信***类型的第三指示信息、用于指示卫星覆盖区域序号的第四指示信息中的至少一个。
一种可能的方式中,所述第一指示信息包括所述公共TA值的缩放值的索引信息;处理模块1602具体用于:根据所述公共TA值的缩放值的索引信息、以及索引信息集合与公共TA缩放值集合之间的对应关系,确定所述公共TA值的缩放值;根据所述公共TA值的缩放值和所述公共TA值的缩放系数,确定所述公共TA值。
另一种可能的方式中,所述第一指示信息包括所述公共TA值的缩放值;处理模块1602具体用于:根据所述公共TA值的缩放值和所述公共TA值的缩放系数,确定所述公共TA值。
可选的,所述第一指示信息还包括所述公共TA值的缩放系数的索引信息;处理模块1602在根据所述公共TA值的缩放值和所述公共TA值的缩放系数,确定所述公共TA值之前,还用于:根据所述公共TA值的缩放系数的索引信息、以及索引信息集合和缩放系数集合之间的对应关系,确定所述公共TA值的缩放系数。
可选的,所述第一指示信息包括所述公共TA值对应的基准TA值的索引信息;处理模块1602具体用于:根据所述公共TA值对应的基准TA值的索引信息、以及索引信息集合与基准TA值集合之间的对应关系,确定所述公共TA值对应的基准TA值;根据所述公共TA值对应的基准TA值和至少一个偏移量,确定所述公共TA值,所述公共TA值为所述公共TA值对应的基准TA值和至少一个所述偏移量的和。
可选的,所述第一指示信息包括所述公共TA值对应的基准TA值的缩放值的索引信息;处理模块1602具体用于:根据所述公共TA值对应的基准TA值的缩放值的索引信息、以及索引信息集合与基准TA缩放值集合之间的对应关系,确定所述公共TA值对应的基准TA值的缩放值;根据所述公共TA值对应的基准TA值的缩放值和所述公共TA值对应的基准TA值的缩放系数,确定所述公共TA值对应的基准TA值;根据所述公共TA值对应的基准TA值和至少一个偏移量, 确定所述公共TA值,所述公共TA值为所述公共TA值对应的基准TA值和至少一个所述偏移量的和。
可选的,所述第一指示信息包括所述公共TA值对应的基准TA值的缩放值;处理模块1602具体用于:根据所述公共TA值对应的基准TA值的缩放值和所述公共TA值对应的基准TA值的缩放系数,确定所述公共TA值对应的基准TA值;根据所述公共TA值对应的基准TA值和至少一个偏移量,确定所述公共TA值,所述公共TA值为所述公共TA值对应的基准TA值和至少一个所述偏移量的和。
可选的,所述第一指示信息还包括所述公共TA值对应的基准TA值的缩放系数对应的索引信息;处理模块1602在根据所述公共TA值对应的基准TA值的缩放值和所述公共TA值对应的基准TA值的缩放系数,确定所述公共TA值对应的基准TA值之前,还用于:根据所述公共TA值对应的基准TA值的缩放系数对应的索引信息、以及索引信息集合和缩放系数集合之间的对应关系,确定所述公共TA值对应的基准TA值的缩放系数。
可选的,所述第一指示信息还包括至少一个所述偏移量。
可选的,所述第一指示信息还包括至少一个所述偏移量的索引信息;处理模块1602在根据所述公共TA值对应的基准TA值和至少一个偏移量,确定所述公共TA值之前,还用于:根据至少一个所述偏移量的索引信息、以及索引信息集合与偏移量集合之间的对应关系,确定至少一个所述偏移量。
可选的,所述第一指示信息还包括至少一个所述偏移量的缩放值的索引信息;处理模块1602在根据所述公共TA值对应的基准TA值和至少一个偏移量,确定所述公共TA值之前,还用于:根据至少一个所述偏移量的缩放值的索引信息、以及索引信息集合与偏移量缩放值集合之间的对应关系,确定至少一个所述偏移量的缩放值;根据至少一个所述偏移量的缩放值和至少一个所述偏移量的缩放系数,确定至少一个所述偏移量。
可选的,所述第一指示信息还包括至少一个所述偏移量的缩放值;处理模块1602在根据所述公共TA值对应的基准TA值和至少一个偏移量,确定所述公共TA值之前,还用于:根据至少一个所述偏移量的缩放值和至少一个所述偏移量的缩放系数,确定至少一个所述偏移量。
可选的,所述第一指示信息还包括至少一个所述偏移量的缩放系数的索引信息;处理模块1602在根据至少一个所述偏移量的缩放值和至少一个所述偏移量的缩放系数,确定至少一个所述偏移量之前,还用于:根据至少一个所述偏移量的缩放系数的索引信息、以及索引信息集合与缩放系数集合之间的对应关系,确定至少一个所述偏移量的缩放系数。
可选的,所述索引信息包括用于指示卫星轨道高度的第二指示信息、用于指示卫星通信***类型的第三指示信息、用于指示卫星覆盖区域序号的第四指示信息中的至少一个。
在一种可能的设计中,所述第一指示信息中包括差分TA值;相应的,所述终端根据所述差分TA值和基准TA值,确定所述公共TA值,所述公共TA值为所述基准TA值和所述差分TA值的和。
在一种可能的设计中,所述第一指示信息中包括差分TA值的缩放值;相应的,所述终端根据所述差分TA值的缩放值和所述差分TA值的缩放系数,确定所述差分TA值,进一步,所述终端根据所述差分TA值和基准TA值,确定所述公共TA值,所述公共TA值为所述基准TA值和所述差分TA值的和。
在一种可能的设计中,所述第一指示信息中包括差分TA值的索引号;相应的,所述终端根 据所述差分TA值的索引号、以及索引信息集合与差分TA值集合之间的对应关系,确定所述差分TA值,进一步,所述终端根据所述差分TA值和基准TA值,确定所述公共TA值,所述公共TA值为所述基准TA值和所述差分TA值的和。
在一种可能的设计中,所述第一指示信息中包括差分TA值的缩放值的索引号;相应的,所述终端根据所述差分TA值的缩放值的索引号、以及索引信息集合与差分TA值缩放值集合之间的对应关系,确定所述差分TA值的缩放值;根据所述差分TA值的缩放值和所述差分TA值的缩放系数,确定所述差分TA值,进一步,所述终端根据所述差分TA值和基准TA值,确定所述公共TA值,所述公共TA值为所述基准TA值和所述差分TA值的和。
在一种可能的设计中,所述第一指示信息还包括所述基准TA值。
在一种可能的设计中,所述第一指示信息还包括所述基准TA值的索引号。
在一种可能的设计中,所述第一指示信息还包括所述基准TA值的缩放值。
在一种可能的设计中,所述第一指示信息还包括所述基准TA值的缩放值的索引号。
在一种可能的设计中,所述终端接收网络设备下发的信令;所述终端根据所述信令确定所述公共TA值或所述参考TA值。
在一种可能的设计中,所述信令包括随机接入响应窗口信令和竞争解决定时器信令中的至少一个;其中,所述随机接入响应窗口信令包括RAR窗口长度,所述竞争解决定时器信令包括竞争解决定时器长度,所述RAR窗口长度与所述公共TA值或所述参考TA值相关,所述竞争解决定时器长度与所述公共TA值或所述参考TA值相关。
在一种可能的设计中,所述信令包括随机接入前导与RAR窗口起点之间的第一延迟offset1、L2/L3消息与随机接入响应之间的第二延迟offset2、争解决定时器起始时刻与L2/L3消息之间的第三延迟offset3中的至少一个;其中,offset1、offset2和offset3分别与所述公共TA值或所述参考TA值相关。
在一种可能的设计中,所述信令包括PDSCH与PUCCH之间的传输间隔K1,和/或,PDCCH与PUSCH之间的传输间隔K2;其中,K1和K2分别与所述公共TA值或所述参考TA值相关。
在一种可能的设计中,所述终端接收网络设备发送的与卫星相关的特定参数或卫星通信***中的特定参数;所述终端根据所述特定参数以及预先设定的几何公式或拟合公式计算出所述公共TA值。
在一种可能的设计中,所述特定参数包括:卫星轨道高度和卫星通信***中的角度信息;相应的,所述几何公式是所述公共TA值、卫星轨道高度和所述角度信息之间的函数关系。
在一种可能的设计中,所述卫星通信***中的角度信息包括:仰角、半张角、地心角中的至少一种。
在一种可能的设计中,所述特定参数包括:第一角度、第二角度、第三角度;其中,所述第一角度是第一平面与卫星轨道面之间的夹角,所述第一平面是包括地心、地面预设点、第一点的平面,所述第一点是所述地面预设点在第一弧线上的投影点,所述第一弧线是卫星轨道在地面上的投影线;所述第二角度为第一直线和第二直线之间的夹角,所述第一直线经过地心和所述地面预设点,所述第二直线经过地心和所述第一点;所述第三角度为当前时刻卫星和所述第一点之间的地心角。
在一种可能的设计中,所述特定参数包括:地心角和拟合公式中的系数;所述拟合公式为所述公共TA值与所述系数之间的函数关系;相应的,所述几何公式是所述公共TA值、第一角度、 第二角度、第三角度之间的函数关系;所述第一角度、所述第二角度和所述第三角度用于表示所述地面预设点和卫星之间的相对位置。
图16所示实施例的通信装置可用于执行上述方法实施例的技术方案,其实现原理和技术效果可以进一步参考方法实施例中的相关描述,可选的,该通信装置可以是终端,也可以是终端的部件(例如芯片或者电路)。
另外,本申请实施例还提供另一种通信装置。该通信装置包括生成模块和发送模块,其中,该生成模块用于生成第一指示信息;发送模块,用于发送第一指示信息,所述第一指示信息用于指示卫星通信***中的公共定时提前TA值,所述公共TA值用于表征卫星覆盖区域内的参考点与网络设备之间的往返传输时延。
在一种可能的设计中,所述网络设备生成第一指示信息之前,所述方法还包括:所述网络设备生成索引信息集合与公共TA值集合之间的对应关系;其中,所述第一指示信息包括所述公共TA值的索引信息。
在另一种可能的设计中,所述网络设备生成第一指示信息之前,所述方法还包括:所述网络设备生成索引信息集合与参考TA值集合之间的对应关系;其中,所述第一指示信息包括所述公共TA值对应的参考TA值的索引信息,所述公共TA值为所述公共TA值对应的参考TA值和至少一个所述偏移量的和。
在又一种可能的设计中,所述网络设备生成第一指示信息之前,所述方法还包括:所述网络设备生成索引信息集合与偏移量集合之间的对应关系;其中,所述第一指示信息还包括至少一个所述偏移量的索引信息。
本实施例的通信装置可用于执行上述方法实施例的技术方案,其实现原理和技术效果可以进一步参考方法实施例中的相关描述,可选的,该通信装置可以是网络设备,也可以是网络设备的部件(例如芯片或者电路)。
应理解以上图16所示通信装置的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块以软件通过处理元件调用的形式实现,部分模块通过硬件的形式实现。例如,处理模块可以为单独设立的处理元件,也可以集成在通信装置,例如终端的某一个芯片中实现,此外,也可以以程序的形式存储于通信装置的存储器中,由通信装置的某一个处理元件调用并执行以上各个模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序的处理器。再如,这些模块可以集成在一起,以片上***(system-on-a-chip,SOC)的形式实现。
图17为本申请实施例提供的又一种通信装置的结构示意图。该通信装置具体可以是网络设备,如图17所示,该网络设备包括:天线171、射频装置172、基带装置173。天线171与射频装置172连接。在上行方向上,射频装置172通过天线171接收终端发送的信息,将终端发送的信息发送给基带装置173进行处理。在下行方向上,基带装置173对终端的信息进行处理,并发送给射频装置172,射频装置172对终端的信息进行处理后经过天线171发送给终端。
以上通信装置可以位于基带装置173,在一种实现中,以上各个模块通过处理元件调度程序的形式实现,例如基带装置173包括处理元件和存储元件,处理元件1731调用存储元件1732存储的程序,以执行以上方法实施例中的方法。此外,该基带装置173还可以包括接口1733,用于与射频装置172交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
在另一种实现中,以上这些模块可以是被配置成实施以上方法的一个或多个处理元件,这些处理元件设置于基带装置173上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA等。这些集成电路可以集成在一起,构成芯片。
例如,以上各个模块可以集成在一起,以片上***(system-on-a-chip,SOC)的形式实现,例如,基带装置173包括SOC芯片,用于实现以上方法。该芯片内可以集成处理元件1731和存储元件1732,由处理元件1731调用存储元件1732的存储的程序的形式实现以上方法或以上各个模块的功能;或者,该芯片内可以集成至少一个集成电路,用于实现以上方法或以上各个模块的功能;或者,可以结合以上实现方式,部分模块的功能通过处理元件调用程序的形式实现,部分模块的功能通过集成电路的形式实现。
不管采用何种方式,总之,以上通信装置包括至少一个处理元件,存储元件和通信接口,其中至少一个处理元件用于执行以上方法实施例所提供的方法。处理元件可以以第一种方式:即执行存储元件存储的程序的方式执行以上方法实施例中的部分或全部步骤;也可以以第二种方式:即通过处理元件中的硬件的集成逻辑电路结合指令的方式执行以上方法实施例中的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上方法实施例提供的方法。
这里的处理元件同以上描述,可以是通用处理器,例如中央处理器(Central Processing Unit,CPU),还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。存储元件可以是一个存储器,也可以是多个存储元件的统称。
图18为本申请实施例提供的又一种通信装置的结构示意图。如图18所示,通信装置180包括:处理器182和收发装置183,收发装置183从网络设备接收第一指示信息,所述第一指示信息用于指示卫星通信***中的公共定时提前TA值;处理器182根据所述第一指示信息确定所述公共TA值,所述公共TA值用于表征卫星覆盖区域内的参考点与网络设备之间的往返传输时延。进一步的,还包括存储器181,用于存储计算机程序或者指令,处理器182用于调用所述程序或者指令。
图18所示实施例的通信装置可用于执行上述方法实施例的技术方案,其实现原理和技术效果可以进一步参考方法实施例中的相关描述,此处不再赘述,该通信装置可以是终端,也可以是终端的部件(例如芯片或者电路)。
在图18中,收发装置183可以与天线连接。在下行方向上,收发装置183通过天线接收网络设备发送的信息,并将信息发送给处理器182进行处理。在上行方向上,处理器182对终端的数据进行处理,并通过收发装置183发送给网络设备。
可选的,处理器182可以用于实现如图16所示的通信装置的处理模块1602中的相应功能,收发装置可以用于实现图16所示的通信装置的接收模块1601的相应功能。或者,以上各个模块的部分或全部也可以通过集成电路的形式内嵌于该终端的某一个芯片上来实现。且它们可以单独实现,也可以集成在一起。即以上这些模块可以被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行上述实施例所述的公共定时提前的指示方法。
此外,本申请实施例还提供一种计算机程序产品,该计算机程序产品包括计算机程序,当其在计算机上运行时,使得计算机执行上述实施例所述的公共定时提前的指示方法。
此外,本申请实施例还提供一种处理器,该处理器包括:至少一种电路,用于执行如上述实施例所述的公共定时提前的指示方法。
另外,本申请实施例还提供一种***,该***包括如上所述的终端和网络设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk)等。
基于与本申请上述实施例提供的方法的同一发明构思,本申请实施例还提供了一种通信装置,用于实现上述实施例中的方法,上述实施例的方法中的部分或全部可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,参见图19所示,该通信装置1000包括:输入接口电路1002,逻辑电路1004,输出接口电路1006,还包括收发器1008和天线1010,收发器1008通过天线1010进行数据的收发。
其中,逻辑电路1004,用于执行图5所示的公共定时提前的指示方法,具体请见前面方法实施例中的描述,此处不再赘述。在具体实现时,上述通信装置1000可以是芯片或者集成电路。

Claims (22)

  1. 一种公共定时提前的指示方法,其特征在于,包括:
    终端从网络设备接收第一指示信息,所述第一指示信息用于指示卫星通信***中的公共定时提前TA值;
    所述终端根据所述第一指示信息确定所述公共TA值,所述公共TA值用于表征卫星覆盖区域内的参考点与所述网络设备之间的往返传输时延。
  2. 根据权利要求1所述的方法,其特征在于,所述第一指示信息包括所述公共TA值的索引信息;
    所述终端根据所述第一指示信息确定所述公共TA值,包括:
    所述终端根据所述公共TA值的索引信息、以及索引信息集合与公共TA值集合之间的对应关系,确定所述公共TA值;
    所述索引信息包括用于指示卫星轨道高度的第二指示信息、用于指示卫星通信***类型的第三指示信息、用于指示卫星覆盖区域序号的第四指示信息中的至少一个。
  3. 根据权利要求1所述的方法,其特征在于,所述第一指示信息包括所述公共TA值对应的参考TA值的索引信息;
    所述终端根据所述第一指示信息确定所述公共TA值,包括:
    所述终端根据所述公共TA值对应的参考TA值的索引信息、以及索引信息集合与参考TA值集合之间的对应关系,确定所述公共TA值对应的参考TA值;
    所述终端根据所述公共TA值对应的参考TA值和至少一个偏移量,确定所述公共TA值,所述公共TA值为所述公共TA值对应的参考TA值和至少一个所述偏移量的和。
  4. 根据权利要求1所述的方法,其特征在于,所述第一指示信息包括所述公共TA值对应的参考TA值的缩放值的索引信息;
    所述终端根据所述第一指示信息确定所述公共TA值,包括:
    所述终端根据所述公共TA值对应的参考TA值的缩放值的索引信息、以及索引信息集合与基准TA缩放值集合之间的对应关系,确定所述公共TA值对应的参考TA值的缩放值;
    所述终端根据所述公共TA值对应的参考TA值的缩放值和所述公共TA值对应的参考TA值的缩放系数,确定所述公共TA值对应的参考TA值;
    所述终端根据所述公共TA值对应的参考TA值和至少一个偏移量,确定所述公共TA值,所述公共TA值为所述公共TA值对应的参考TA值和至少一个所述偏移量的和。
  5. 根据权利要求1所述的方法,其特征在于,所述第一指示信息包括所述公共TA值对应的参考TA值的缩放值;
    所述终端根据所述第一指示信息确定所述公共TA值,包括:
    所述终端根据所述公共TA值对应的参考TA值的缩放值和所述公共TA值对应的参考TA值的缩放系数,确定所述公共TA值对应的参考TA值;
    所述终端根据所述公共TA值对应的参考TA值和至少一个偏移量,确定所述公共TA值,所述公共TA值为所述公共TA值对应的参考TA值和至少一个所述偏移量的和。
  6. 根据权利要求4或5所述的方法,其特征在于,所述第一指示信息还包括所述公共TA值对应的参考TA值的缩放系数对应的索引信息;
    所述终端根据所述公共TA值对应的参考TA值的缩放值和所述公共TA值对应的参考TA值 的缩放系数,确定所述公共TA值对应的参考TA值之前,所述方法还包括:
    所述终端根据所述公共TA值对应的参考TA值的缩放系数对应的索引信息、以及索引信息集合和缩放系数集合之间的对应关系,确定所述公共TA值对应的参考TA值的缩放系数。
  7. 根据权利要求3-6任一项所述的方法,其特征在于,所述第一指示信息还包括至少一个所述偏移量。
  8. 根据权利要求3-6任一项所述的方法,其特征在于,所述第一指示信息还包括至少一个所述偏移量的索引信息;
    所述终端根据所述公共TA值对应的参考TA值和至少一个偏移量,确定所述公共TA值之前,所述方法还包括:
    所述终端根据至少一个所述偏移量的索引信息、以及索引信息集合与偏移量集合之间的对应关系,确定至少一个所述偏移量。
  9. 根据权利要求3-6任一项所述的方法,其特征在于,所述第一指示信息还包括至少一个所述偏移量的缩放值的索引信息;
    所述终端根据所述公共TA值对应的参考TA值和至少一个偏移量,确定所述公共TA值之前,所述方法还包括:
    所述终端根据至少一个所述偏移量的缩放值的索引信息、以及索引信息集合与偏移量缩放值集合之间的对应关系,确定至少一个所述偏移量的缩放值;
    所述终端根据至少一个所述偏移量的缩放值和至少一个所述偏移量的缩放系数,确定至少一个所述偏移量。
  10. 根据权利要求3-6任一项所述的方法,其特征在于,所述第一指示信息还包括至少一个所述偏移量的缩放值;
    所述终端根据所述公共TA值对应的参考TA值和至少一个偏移量,确定所述公共TA值之前,所述方法还包括:
    所述终端根据至少一个所述偏移量的缩放值和至少一个所述偏移量的缩放系数,确定至少一个所述偏移量。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第一指示信息还包括至少一个所述偏移量的缩放系数的索引信息;
    所述终端根据至少一个所述偏移量的缩放值和至少一个所述偏移量的缩放系数,确定至少一个所述偏移量之前,所述方法还包括:
    所述终端根据至少一个所述偏移量的缩放系数的索引信息、以及索引信息集合与缩放系数集合之间的对应关系,确定至少一个所述偏移量的缩放系数。
  12. 根据权利要求3、4、6、8、9、11任一项所述的方法,其特征在于,所述索引信息包括用于指示卫星轨道高度的第二指示信息、用于指示卫星通信***类型的第三指示信息、用于指示卫星覆盖区域序号的第四指示信息中的至少一个。
  13. 一种公共定时提前的指示方法,其特征在于,包括:
    网络设备生成第一指示信息;
    所述网络设备发送所述第一指示信息,所述第一指示信息用于指示卫星通信***中的公共定时提前TA值,所述公共TA值用于表征卫星覆盖区域内的参考点与所述网络设备之间的往返传输时延。
  14. 根据权利要求13所述的方法,其特征在于,所述网络设备生成第一指示信息之前,所述方法还包括:
    所述网络设备获取索引信息集合与公共TA值集合之间的对应关系;
    其中,所述第一指示信息包括所述公共TA值的索引信息。
  15. 根据权利要求13所述的方法,其特征在于,所述网络设备生成第一指示信息之前,所述方法还包括:
    所述网络设备获取索引信息集合与参考TA值集合之间的对应关系;
    其中,所述第一指示信息包括所述公共TA值对应的参考TA值的索引信息,所述公共TA值为所述公共TA值对应的参考TA值和至少一个偏移量的和。
  16. 根据权利要求15所述的方法,其特征在于,所述网络设备生成第一指示信息之前,所述方法还包括:
    所述网络设备获取索引信息集合与偏移量集合之间的对应关系;
    其中,所述第一指示信息还包括至少一个所述偏移量的索引信息。
  17. 一种通信装置,其特征在于,包括用于执行权1-12或者13-16任意一项方法的单元。
  18. 一种通信装置,其特征在于,包括处理器和收发器,处理器和收发器通过内部连接互相通信;所述处理器用于执行权1-12或者13-16任意一项方法中的处理步骤。
  19. 一种通信装置,其特征在于,包括:输入接口电路,逻辑电路,输出接口电路,其中,所述逻辑电路用于执行如权利要求1-12或者13-16中任一项所述的方法。
  20. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序包括用于执行权1-12或者13-16任意一项方法的指令。
  21. 一种计算机程序,其特征在于,所述计算机程序包括用于权1-12或者13-16任意一项方法的指令。
  22. 一种处理器,其特征在于,该处理器包括:至少一种电路,用于执行如权利要求1-12或者13-16中任一项所述的方法。
PCT/CN2020/089682 2019-08-12 2020-05-11 公共定时提前的指示方法、装置、设备及存储介质 WO2021027346A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20852676.4A EP4009718A4 (en) 2019-08-12 2020-05-11 METHOD AND DEVICE, DEVICE AND STORAGE MEDIUM FOR INDICATION OF USUAL TIME SHIFT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910741570.9 2019-08-12
CN201910741570.9A CN112399546B (zh) 2019-08-12 2019-08-12 公共定时提前的指示方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021027346A1 true WO2021027346A1 (zh) 2021-02-18

Family

ID=74570884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089682 WO2021027346A1 (zh) 2019-08-12 2020-05-11 公共定时提前的指示方法、装置、设备及存储介质

Country Status (3)

Country Link
EP (1) EP4009718A4 (zh)
CN (1) CN112399546B (zh)
WO (1) WO2021027346A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112584483B (zh) * 2019-09-30 2022-01-14 华为技术有限公司 定时提前的指示方法、通信装置及存储介质
CN115250503A (zh) * 2021-04-27 2022-10-28 华为技术有限公司 一种通信参数的指示方法和装置
EP4290974A4 (en) * 2021-05-10 2024-04-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. TIME DOMAIN PARAMETER DETERMINATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
CN115643588A (zh) * 2021-07-19 2023-01-24 华为技术有限公司 一种通信方法及装置
EP4398656A1 (en) * 2021-09-03 2024-07-10 Beijing Xiaomi Mobile Software Co., Ltd. Timing advance value reporting method and apparatus, and storage medium
CN116074943A (zh) * 2021-10-30 2023-05-05 华为技术有限公司 一种定时提前ta确定方法及通信装置
CN117859380A (zh) * 2021-11-04 2024-04-09 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN114270962B (zh) * 2021-11-15 2024-07-16 北京小米移动软件有限公司 一种上行同步方法、装置及可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014126794A1 (en) * 2013-02-14 2014-08-21 Motorola Solutions, Inc. Method and device for consolidating location-dependent information in a radio access network
CN107197517A (zh) * 2017-08-02 2017-09-22 电子科技大学 基于ta分组的lte卫星上行链路同步方法
CN107333241A (zh) * 2017-08-02 2017-11-07 电子科技大学 基于lte体制的卫星移动通信上行发射端定时调整方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018045247A1 (en) * 2016-09-02 2018-03-08 Intel Corporation Physical random access channel (prach) design for unlicensed carriers in lte
US11202272B2 (en) * 2017-11-17 2021-12-14 Qualcomm Incorporated Beam-specific timing advance groups
CN110062455B (zh) * 2018-01-19 2021-09-03 中兴通讯股份有限公司 上行定时提前量的确定方法及装置、存储介质、电子装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014126794A1 (en) * 2013-02-14 2014-08-21 Motorola Solutions, Inc. Method and device for consolidating location-dependent information in a radio access network
CN107197517A (zh) * 2017-08-02 2017-09-22 电子科技大学 基于ta分组的lte卫星上行链路同步方法
CN107333241A (zh) * 2017-08-02 2017-11-07 电子科技大学 基于lte体制的卫星移动通信上行发射端定时调整方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4009718A4
THALES, FRAUNHOFER IIS: "NR-NTN: Analysis of the applicability of NR numerology to satellite communication TDOC", 3GPP DRAFT; RP-172277_NR NUMEROLOGY FOR NTN, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Lisbon, Portugal; 20171218 - 20171221, 17 December 2017 (2017-12-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051364968 *

Also Published As

Publication number Publication date
EP4009718A4 (en) 2022-09-28
CN112399546B (zh) 2022-11-18
EP4009718A1 (en) 2022-06-08
CN112399546A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
WO2021027346A1 (zh) 公共定时提前的指示方法、装置、设备及存储介质
US20230194648A1 (en) Method for positioning, terminal, and network-side device
EP4158828A1 (en) Sidelink resource pool configuration
WO2020220851A1 (zh) 一种通信方法、终端设备以及网络设备
WO2020063535A1 (zh) 一种参考时间确定方法及装置
WO2021168661A1 (zh) 信息传输方法、终端设备和网络设备
US20240031965A1 (en) Information transmission method, terminal device, and network device
EP4307767A1 (en) Wireless communication method, apparatus and system
WO2021155596A1 (zh) 信息指示方法、装置、设备、***及存储介质
WO2022078376A1 (zh) 一种更新参数的方法以及相关装置
US20230354438A1 (en) Wireless communication method and apparatus
WO2022078472A1 (en) Method of propagation delay compensation and related devices
TW202333481A (zh) 終端機、基地局及通信方法
WO2022028349A1 (en) Ue-based and ue-assisted positioning with downlink and uplink measurements for ue in idle or inactive mode
WO2022052561A1 (zh) 定时偏移参数更新方法、设备及***
CN114503703B (zh) 基于前导码的定位方法和设备
WO2021063173A1 (zh) 定时提前的指示方法、通信装置及存储介质
WO2022262506A1 (zh) 中继通信的方法、装置和***
WO2022198668A1 (zh) 物理随机接入信道prach的配置方法及其装置
WO2023130474A1 (zh) 无线通信方法、装置、设备、存储介质及程序产品
WO2024031590A1 (zh) 用于定位的无线通信方法、装置、设备、***及存储介质
US20240107480A1 (en) Signaling of feeder link and common delay in a non-terrestrial network
WO2021109807A1 (zh) 信息传输方法、通信装置及计算机可读存储介质
WO2024041085A1 (zh) 一种通信方法及设备
WO2022205002A1 (zh) 传输定时的调整方法、确定方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020852676

Country of ref document: EP

Effective date: 20220304