WO2021084778A1 - Film-like adhesive, method for evaluating ease of cutting of same, dicing/die-bonding integrated film, method for manufacturing same, and semiconductor device - Google Patents

Film-like adhesive, method for evaluating ease of cutting of same, dicing/die-bonding integrated film, method for manufacturing same, and semiconductor device Download PDF

Info

Publication number
WO2021084778A1
WO2021084778A1 PCT/JP2020/013478 JP2020013478W WO2021084778A1 WO 2021084778 A1 WO2021084778 A1 WO 2021084778A1 JP 2020013478 W JP2020013478 W JP 2020013478W WO 2021084778 A1 WO2021084778 A1 WO 2021084778A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
adhesive
adhesive layer
dicing
sample
Prior art date
Application number
PCT/JP2020/013478
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 山中
美千子 彼谷
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to JP2021554056A priority Critical patent/JP7476903B2/en
Priority to KR1020227014434A priority patent/KR20220088866A/en
Priority to US17/771,020 priority patent/US20230005782A1/en
Priority to CN202080074707.0A priority patent/CN114600225A/en
Publication of WO2021084778A1 publication Critical patent/WO2021084778A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • H01L2221/68336Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding involving stretching of the auxiliary support post dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68377Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support with parts of the auxiliary support remaining in the finished device

Definitions

  • the present disclosure relates to a film-like adhesive and a method for evaluating its fragmentability, a dicing / die-bonding integrated film and a method for manufacturing the same, and a semiconductor device.
  • Patent Document 1 discloses a dicing die bonding film having a function of fixing a semiconductor wafer in a dicing process and a function of adhering a semiconductor chip to a substrate in a dicing process.
  • the semiconductor wafer and the die bonding film are separated into individual pieces to obtain a chip with an adhesive piece.
  • Patent Documents 2 and 3 a method of forming a planned cutting line on the processing target by a laser and then cutting the processing target along the planned cutting line is known (see Patent Documents 2 and 3).
  • the process of fragmenting the wafer in this way is called stealth dicing.
  • Patent Documents 4 and 5 study the mechanical properties or thermal properties of a dicing film (adhesive layer) applied to stealth dicing.
  • the present disclosure provides a method capable of evaluating the breakability of a film-like adhesive under low temperature conditions in which cooling expansion is carried out easily and with excellent reproducibility.
  • the present disclosure also provides a film-like adhesive that is satisfactorily divided by cooling expand, and also provides a dicing / die-bonding integrated film provided with this as an adhesive layer, a method for producing the same, and a semiconductor device.
  • the fracture coefficient m and the fracture resistance R by a fracture test (anti-folding strength test), which is a relatively simple method, under low temperature conditions (-15 ° C to 0 ° C).
  • the results of the split test are highly reproducible. Therefore, even if the breakability of a plurality of film-like adhesives for which the breakability should be evaluated is not actually evaluated, the breakability of the film-like adhesive can be evaluated simply by acquiring the data of the break coefficient m and the break resistance R. can do.
  • the present disclosure is provided on a base material layer, a pressure-sensitive adhesive layer having a first surface facing the base material layer and a second surface on the opposite side thereof, and a second surface of the pressure-sensitive adhesive layer.
  • the present invention relates to a method for producing a dicing / die bonding integrated film including an adhesive layer.
  • the splitting coefficient m is more than 0 and 70 or less.
  • One aspect of the disclosure relates to film-like adhesives that can be applied to the manufacturing process of semiconductor devices in which cooling expansion is performed.
  • the film-like adhesive in the cutting evaluation methods carried out under the following conditions, the cleaving factor m is greater than 0 70 or less and and fracture resistance R is less than 0N / mm 2 Ultra-40N / mm 2.
  • Sample width 5 mm
  • Sample length 23 mm
  • Relative velocity between indentation jig and sample 10 mm / min
  • this disclosure relates to a dicing / die bonding integrated film. That is, this dicing / die bonding integrated film has a base material layer, a pressure-sensitive adhesive layer having a first surface facing the base material layer and a second surface on the opposite side thereof, and a second pressure-sensitive adhesive layer. It is provided with an adhesive layer provided on the surface, and the adhesive layer is made of the film-like adhesive.
  • One aspect of the present disclosure is a semiconductor device containing the film-like adhesive.
  • a method capable of evaluating the breakability of a film-like adhesive under low temperature conditions in which cooling expansion is carried out easily and with excellent reproducibility Further, according to the present disclosure, a film-like adhesive that is satisfactorily divided by cooling expand is provided, and a dicing / die-bonding integrated film provided with this as an adhesive layer, a method for producing the same, and a semiconductor device are provided. Will be done.
  • FIG. 1 (a) is a plan view schematically showing an embodiment of the dicing / die bonding integrated film according to the present disclosure, and FIG. 1 (b) is taken along line BB of FIG. 1 (a). It is a schematic cross-sectional view. 2 (a) and 2 (b) are cross-sectional views schematically showing a process of manufacturing a chip with an adhesive piece. 3 (a) and 3 (b) are cross-sectional views schematically showing a process of manufacturing a chip with an adhesive piece.
  • FIG. 4 is a perspective view schematically showing a sample in a state of being fixed to a jig. FIG.
  • FIG. 5 is a cross-sectional view schematically showing a state in which a load is applied to a sample by a pushing jig.
  • FIG. 6 is a graph schematically showing an example of the result of the cutting test.
  • FIG. 7 is a graph plotting the results of Examples and Comparative Examples.
  • FIG. 8 is a graph plotting the results of the split test performed eight times each in Example 4 and Comparative Example 4.
  • FIG. 9 is a graph showing the results of three tensile tests on a sample of a film-like adhesive in a low temperature environment.
  • (meth) acrylic acid means acrylic acid or methacrylic acid
  • (meth) acrylate means acrylate or the corresponding methacrylate
  • a or B may include either A or B, or both.
  • the term “layer” includes not only a structure having a shape formed on the entire surface but also a structure having a shape partially formed when observed as a plan view.
  • the term “process” is used not only as an independent process but also as a term as long as the desired action of the process is achieved even when it cannot be clearly distinguished from other processes. included.
  • the numerical range indicated by using "-” indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the content of each component in the composition is the total amount of the plurality of substances present in the composition unless otherwise specified, when a plurality of substances corresponding to each component are present in the composition.
  • the exemplary materials may be used alone or in combination of two or more unless otherwise specified.
  • the upper limit value or the lower limit value of the numerical range of one step may be replaced with the upper limit value or the lower limit value of the numerical range of another step.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • the film-like adhesive according to the present embodiment is attached to the surface F2 on the opposite side of the circuit surface F1 of the semiconductor wafer Wa in the manufacturing process of the semiconductor device (FIGS. 1 (a) and 1 (b)). reference).
  • a dicing / die bonding integrated film including an adhesive layer made of a film-like adhesive will be described.
  • FIG. 1A is a plan view showing a dicing / diebonding integrated film according to the present embodiment
  • FIG. 1B is a schematic cross-sectional view taken along the line BB of FIG. 1A. is there.
  • the dicing / die bonding integrated film 10 (hereinafter, simply referred to as “film 10” in some cases) includes a base material layer 1, a first surface 2a facing the base material layer 1, and a second surface on the opposite side thereof.
  • the pressure-sensitive adhesive layer 2 having the surface 2b and the adhesive layer 5 provided so as to cover the central portion of the second surface 2b of the pressure-sensitive adhesive layer 2 are provided in this order.
  • the film 10 includes a step of forming a line to be cut on the semiconductor wafer Wa by a laser, a step of separating the semiconductor wafer Wa and the adhesive layer 5 by cooling expansion thereafter, and a chip with an adhesive piece formed thereby. It is applied to the manufacturing process of a semiconductor device including a pick-up process.
  • the protective film 20 is attached to the circuit surface F1 of the semiconductor wafer Wa.
  • the semiconductor wafer Wa is irradiated with a laser to form a plurality of scheduled cutting lines (stealth dicing).
  • the semiconductor wafer Wa is subjected to back grinding and polishing.
  • the film 10 is attached so that the adhesive layer 5 is in contact with the surface F2 of the semiconductor wafer Wa.
  • the dicing ring DR is attached to the second surface 2b of the pressure-sensitive adhesive layer 2. Then, the semiconductor wafer Wa and the adhesive layer 5 are separated by cooling expansion under a temperature condition of ⁇ 15 ° C. to 0 ° C.
  • tension is applied to the base material layer 1 by pushing up the inner region 1a of the dicing ring DR in the base material layer 1 with the ring Ra.
  • the semiconductor wafer Wa is divided along the planned cutting line, and the adhesive layer 5 is also divided accordingly, so that a plurality of chips 8 with adhesive pieces can be obtained on the surface of the adhesive layer 2.
  • FIG. 3A is a cross-sectional view schematically showing how the inner region 1a is heated by blowing the heater H.
  • the adhesive piece-cleaning chip 8 is pushed up with the push-up jig 42 to adhere from the adhesive layer 2.
  • the tip 8 with the adhesive piece is peeled off, and the tip 8 with the adhesive piece is sucked and picked up by the suction collet 44.
  • the picked-up chip 8 with an adhesive piece is conveyed to an assembly device (not shown) of a semiconductor device and crimped onto a circuit board or the like.
  • the adhesive layer 5 included in the film 10 has a splitting coefficient m of more than 0 and 70 or less and a breaking resistance R of 0 N / mm 2 in a splitting property evaluation method using the results of a splitting test conducted under the following conditions. It is super 40 N / mm 2 or less.
  • Sample width 5 mm
  • Sample length 23 mm
  • Relative velocity between indentation jig and sample 10 mm / min
  • the fracture test is classified as a bending strength test, and includes a step of pushing the central part of the sample until the sample breaks with both ends fixed.
  • the sample S is subjected to a cutting test in a state of being sandwiched and fixed between a pair of jigs 12 and 12.
  • the pair of jigs 12, 12 are made of, for example, thick paper having sufficient strength, and each has a rectangular opening 12a in the center.
  • a load is applied to the central portion of the sample S in the fixed state by the pushing jig 15 (see FIG. 5).
  • the sample S may be any one obtained by cutting out a film-like adhesive to be evaluated, and it is not necessary to prepare a sample by laminating a plurality of adhesive pieces cut out from the film-like adhesive. That is, the thickness of the sample S may be the same as the thickness of the film-like adhesive.
  • the width of the sample S (Ws in FIG. 4) is, for example, 1 to 30 mm and may be 3 to 8 mm. The width may be set to an appropriate level according to the situation of the measuring device.
  • the length of the sample S (Ls in FIG. 3) is, for example, 5 to 50 mm, and may be 10 to 30 mm or 6 to 9 mm. The length of the sample S depends on the size of the opening 12a of the jig 12. The shape of the jig 12 and the size of the sample S may be other than those described above as long as the cutting test can be performed.
  • the push jig 15 is made of a columnar member having a conical tip portion 15a.
  • the diameter of the push jig 15 (R in FIG. 5) is, for example, 3 to 15 mm, and may be 5 to 10 mm.
  • the angle of the tip portion 15a ( ⁇ in FIG. 5) is, for example, 40 to 120 °, and may be 60 to 100 °.
  • the split test is carried out in a constant temperature bath set to a predetermined temperature.
  • the constant temperature bath may be set to a constant temperature in the range of ⁇ 15 ° C. to 0 ° C. (assumed cooling expand temperature).
  • As the constant temperature bath for example, TLF-R3-F-W-PL-S manufactured by Aitec Co., Ltd. can be used.
  • An autograph for example, AZT-CA01 manufactured by A & D Co., Ltd., load cell 50N, compression mode) is used to obtain a breaking work W, a breaking strength P, and a breaking elongation L.
  • the relative speed between the pushing jig 15 and the sample S is, for example, 1 to 100 mm / min, and may be 5 to 20 mm / min. If this relative velocity is too fast, it tends to be difficult to obtain sufficient data on the breaking process, and if it is too slow, the stress is relaxed and it tends to be difficult to reach breaking.
  • the pushing distance of the jig 15 is, for example, 1 to 50 mm, and may be 5 to 30 mm. If the pushing distance is too short, it tends not to be cut.
  • FIG. 6 is a graph showing an example of the result of the cutting test.
  • the cutting work W is an area surrounded when a graph is created with the vertical axis as the load and the horizontal axis as the amount of pushing until the sample S breaks.
  • the breaking strength P is the load when the sample S is broken.
  • the split elongation L is the amount of elongation of the sample S when the sample S is broken.
  • the split elongation L may be calculated by using a trigonometric function from the pushing distance when the sample S is broken and the width of the opening 12a of the jig 12.
  • the split coefficient m (dimensionless) is more than 0 and 70 or less, preferably 10 to 60, and more preferably 15 to 55.
  • the split coefficient m is a parameter relating to the stretchability of the film-like adhesive under low temperature conditions.
  • the splitting coefficient m exceeds 70, the splitting property becomes insufficient due to the excessive stretchability of the film-like adhesive.
  • the split coefficient m is 15 or more, the stress propagation property is good.
  • Fracture resistance R as described above, 0N / mm 2 Ultra-40N / mm 2 or less, preferably not more than 0N / mm 2 Ultra-35N / mm 2, more preferably 1 ⁇ 30N / mm 2.
  • breaking resistance R exceeds 40 N / mm 2 , the breaking property becomes insufficient due to the excessive strength of the film-like adhesive.
  • the breaking resistance R is 20 N / mm 2 or more, even better breakability can be obtained by good stress propagation in low temperature expanding. Stealth dicing can be satisfactorily performed by selecting a film-like adhesive having a breaking coefficient m and a breaking resistance R in the above ranges.
  • the film-like adhesive will be described below.
  • an adhesive containing an epoxy resin, an epoxy resin curing agent, and a (meth) acrylic copolymer having an epoxy group will be described.
  • the film-like adhesive containing these components has excellent adhesiveness between the chip and the substrate and between the chip and the chip. Further, it is possible to impart electrode embedding property, wire embedding property, and the like to this film-like adhesive, and it is also possible to impart adhesiveness at a low temperature in the die bonding step.
  • epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, and bisphenol F novolac type epoxy resin.
  • Dicyclopentadiene skeleton-containing epoxy resin Dicyclopentadiene skeleton-containing epoxy resin, stillben-type epoxy resin, triazine skeleton-containing epoxy resin, fluorene skeleton-containing epoxy resin, triphenolphenolmethane-type epoxy resin, biphenyl-type epoxy resin, xylylene-type epoxy resin, biphenyl-aralkyl-type epoxy resin, Examples thereof include naphthalene-type epoxy resins, polyfunctional phenols, and polycyclic aromatic diglycidyl ether compounds such as anthracene. These may be used individually by 1 type or in combination of 2 or more type.
  • the epoxy resin curing agent may be, for example, a phenol resin.
  • the phenol resin can be used without particular limitation as long as it has a phenolic hydroxyl group in the molecule.
  • examples of the phenol resin include phenols such as phenol, cresol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol and aminophenol, and / or naphthols such as ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene, and formaldehyde and the like.
  • Phenols such as novolak type phenol resin, allylated bisphenol A, allylated bisphenol F, allylated naphthalenediol, phenol novolac, and phenol obtained by condensing or cocondensing with a compound having an aldehyde group of
  • a phenol aralkyl resin synthesized from naphthols and dimethoxyparaxylene or bis (methoxymethyl) biphenyl, a naphthol aralkyl resin, and the like can be mentioned. These may be used individually by 1 type or in combination of 2 or more type.
  • the (meth) acrylic copolymer having an epoxy group may be a copolymer prepared by adjusting glycidyl (meth) acrylate as a raw material in an amount of 0.5 to 6% by mass with respect to the obtained copolymer. ..
  • the balance of the glycidyl (meth) acrylate may be an alkyl (meth) acrylate having an alkyl group having 1 to 8 carbon atoms such as methyl (meth) acrylate, and a mixture of styrene, acrylonitrile and the like.
  • the alkyl (meth) acrylate may include ethyl (meth) acrylate and / or butyl (meth) acrylate.
  • the mixing ratio of each component can be adjusted in consideration of the Tg (glass transition point) of the obtained (meth) acrylic copolymer having an epoxy group.
  • Tg glass transition point
  • the upper limit of Tg of the (meth) acrylic copolymer having an epoxy group may be, for example, 30 ° C.
  • the weight average molecular weight of the (meth) acrylic copolymer having an epoxy group may be 100,000 or more, and may be 300,000 to 3 million or 500,000 to 2 million. When the weight average molecular weight is 3 million or less, it tends to be possible to control the decrease in the filling property between the semiconductor chip and the support substrate.
  • the weight average molecular weight is a polystyrene-equivalent value using a calibration curve made of standard polystyrene by gel permeation chromatography (GPC).
  • the curing accelerator may further contain a curing accelerator such as a tertiary amine, imidazoles, or a quaternary ammonium salt, if necessary.
  • a curing accelerator such as a tertiary amine, imidazoles, or a quaternary ammonium salt, if necessary.
  • the curing accelerator include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, and 1-cyanoethyl-2-phenylimidazolium trimellitate. These may be used individually by 1 type or in combination of 2 or more type.
  • the film-like adhesive may further contain an inorganic filler, if necessary.
  • the inorganic filler include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, aluminum borate whisker, boron nitride, and crystalline material.
  • examples include silica and amorphous silica. These may be used individually by 1 type or in combination of 2 or more type.
  • the film-like adhesive is obtained by dissolving or dispersing the above components in a solvent to form a varnish, applying it on a support, heating it, and removing the solvent.
  • a plastic film such as polytetrafluoroethylene, polyethylene terephthalate, polyethylene, polypropylene, polymethylpentene, or polyimide can be used, and these supports can also be used by releasing the surface. it can.
  • the solvent is not particularly limited, but in consideration of volatility during film production, methanol, ethanol, 2-methoxyethanol, 2-butoxyethanol, methylethylketone, acetone, methylisobutylketone, 2-ethoxyethanol, toluene, xylene. It is preferable to use a solvent having a relatively low boiling point such as. Further, in order to improve the coating film property, a solvent having a relatively high boiling point such as dimethylacetamide, dimethylformamide, N-methylpyrrolidone and cyclohexanone can be added.
  • varnish containing an inorganic filler it is preferable to use a raker, a three-roll, a ball mill, a bead mill, etc. in consideration of the dispersibility of the inorganic filler, and these can also be used in combination. Further, by mixing the inorganic filler and the low molecular weight substance in advance and then blending the high molecular weight substance, it is possible to shorten the mixing time. Further, after the varnish is formed, air bubbles in the varnish can be removed by vacuum degassing or the like.
  • a known method can be used, and examples thereof include a knife coating method, a roll coating method, a spray coating method, a gravure coating method, a bar coating method, and a curtain coating method.
  • the adhesive layer 5 formed on the support may be attached to the pressure-sensitive adhesive layer 2 by hot roll laminating, or the adhesive layer 5 may be formed on the surface of the pressure-sensitive adhesive layer 2 by printing.
  • the thickness of the film-like adhesive is not particularly limited, but is preferably 3 to 150 ⁇ m, more preferably 4 to 140 ⁇ m, and even more preferably 5 to 135 ⁇ m. If the thickness of the film-like adhesive (thickness of sample S) is 3 ⁇ m or less, the breaking strength P tends to be too small and the data stability tends to be insufficient, and if it exceeds 150 ⁇ m, the sample S tends to be insufficient. Data tends to be inadequate due to difficulty in installation. From the viewpoint of data stability and handling, the thickness of the film-like adhesive is particularly preferably about 3 to 135 ⁇ m.
  • the cutting work W (N ⁇ mm) can be adjusted by, for example, increasing or decreasing the content of the (meth) acrylic copolymer.
  • the breaking strength P (N) can be adjusted, for example, by increasing or decreasing the content of the inorganic filler.
  • the split elongation L (mm) can be adjusted, for example, by increasing or decreasing the content of the (meth) acrylic copolymer.
  • the base material layer 1 and the pressure-sensitive adhesive layer 2 included in the film 10 are also referred to as a dicing film.
  • the base material layer 1 is made of, for example, a plastic film such as a polytetrafluoroethylene film, a polyethylene terephthalate film, a polyethylene film, a polypropylene film, a polymethylpentene film, or a polyimide film.
  • the surface of the base material layer 1 may be subjected to surface treatment such as primer coating, ⁇ V treatment, corona discharge treatment, polishing treatment, and etching treatment, if necessary.
  • the thickness of the base material layer 1 is, for example, 60 to 150 ⁇ m, preferably 70 to 130 ⁇ m. As the base material layer 1, a material that does not break during cooling expansion is applied.
  • the pressure-sensitive adhesive layer 2 may be, for example, a pressure-sensitive type or an ultraviolet curable type. It is preferable that the pressure-sensitive adhesive layer 2 has a pressure-sensitive adhesive force so that the adhesive chip 8 does not scatter during cooling expansion, and has excellent peelability in the subsequent pick-up step.
  • the dicing / die bonding integrated film 10 including the film-like adhesive as the adhesive layer 5 is exemplified, but the film-like adhesive may be used alone.
  • a dicing / die-bonding integrated film having a film-like adhesive according to Examples and Comparative Examples described later as an adhesive layer was prepared. Then, the fragmentability of the adhesive layer was evaluated under the following conditions. ⁇ Thickness of silicon wafer: 30 ⁇ m ⁇ Chip size that is separated by stealth dicing: length 10 mm x width 10 mm ⁇ Temperature of cooling expand: Same temperature as the constant temperature bath of the split test of Examples and Comparative Examples ⁇ Push-up by the expansion ring: 10 mm -Evaluation criteria: The silicon wafer after being pushed up by the expanding ring was irradiated with light.
  • the one through which light passes between adjacent chips with adhesive pieces (the one in which the silicon wafer and the adhesive layer are divided) is designated as "A", and the one in which light does not pass (the one in which the silicon wafer and the adhesive layer are divided). Those that have not been) are designated as "B".
  • Example 1 A composition containing the following components was prepared.
  • [Epoxy resin] -O-cresol novolac type epoxy resin manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: YDCN-700-10, epoxy equivalent 210 g / eq, softening point 80 ° C.
  • 22 parts by mass-bisphenol F type epoxy resin (DIC) Made by Co., Ltd., trade name EXA-830CRP, epoxy equivalent 160 g / eq, liquid at 25 ° C): 20 parts by mass [epoxy resin curing agent] -Phenol resin (manufactured by Mitsui Chemicals, Inc., trade name: XLC-LL, softening point: 75 ° C.): 32 parts by mass [silane coupling agent] ⁇ 3-Mercaptopropyltrimethoxysilane (manufactured by Momentive Performance Materials Japan GK, trade
  • curing accelerator (1-cyanoethyl-2-phenylimidazole, Shikoku Kasei Kogyo Co., Ltd., trade name: 2PZ-CN) : 0.1 parts by mass
  • Example 2 A film-like adhesive was obtained in the same manner as in Example 1 except that the thickness was 50 ⁇ m instead of 60 ⁇ m. The breakability of this film-like adhesive was evaluated at a temperature of 0 ° C. The results are shown in Table 1.
  • Example 3 A composition containing the following components was prepared.
  • [Epoxy resin] -O-Cresol novolac type epoxy resin manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: YDCN-700-10, epoxy equivalent 210 g / eq, softening point 80 ° C.
  • 6 parts by mass [epoxy resin curing agent]
  • -Phenol resin manufactured by Air Water Co., Ltd., product name: SK resin-HE100-C
  • 3 parts by mass-Phenol resin manufactured by Nippon Kayaku Co., Ltd., product name: GPH-103
  • 3 parts by mass [silane cup Ring agent] -3-Mercaptopropyltrimethoxysilane manufactured by Momentive Performance Materials Japan GK, trade name: A-189): 0.5 parts by mass-Phenylaminopropyltrimethoxysilane (Momentive Performance Materials
  • curing accelerator (1-cyanoethyl-2-phenylimidazole, Shikoku Kasei Kogyo Co., Ltd., trade name: 2PZ-CN) : 0.01 parts by mass
  • Example 4 A film-like adhesive was obtained in the same manner as in Example 3 except that the thickness was 20 ⁇ m instead of 7 ⁇ m. The breakability of this film-like adhesive was evaluated at a temperature of ⁇ 10 ° C. The results are shown in Table 1.
  • curing accelerator (1-cyanoethyl-2-phenylimidazole, Shikoku Kasei Kogyo Co., Ltd., trade name: 2PZ-CN) : 0.01 parts by mass
  • curing accelerator (1-cyanoethyl-2-phenylimidazole, Shikoku Kasei Kogyo Co., Ltd., trade name: 2PZ-CN) : 0.03 parts by mass
  • Comparative Example 3 The breakability of the film-like adhesive (thickness 7 ⁇ m) obtained in the same manner as in Comparative Example 1 was evaluated at a temperature of ⁇ 10 ° C. The results are shown in Table 2.
  • Comparative Example 4 A film-like adhesive was obtained in the same manner as in Comparative Example 1, except that the thickness was 20 ⁇ m instead of 7 ⁇ m. The breakability of this film-like adhesive was evaluated at a temperature of ⁇ 10 ° C. The results are shown in Table 2.
  • FIG. 7 is a graph plotting the results of Examples and Comparative Examples.
  • FIG. 8 is a graph plotting the results of the split test performed eight times each in Example 4 and Comparative Example 4. From this graph, it can be said that the reproducibility of the above-mentioned cutting test is sufficiently high.
  • FIG. 9 is a graph showing the results of three tensile tests on a sample of a film-like adhesive (width 10 mm ⁇ length 100 mm ⁇ thickness 60 ⁇ m) at a temperature of ⁇ 15 ° C. As shown in FIG. 9, in the conventional low-temperature tensile test, there is a large variation between tests, and it is difficult to evaluate the breakability of the film-like adhesive from this result.
  • a method capable of evaluating the breakability of a film-like adhesive under low temperature conditions in which cooling expansion is carried out easily and with excellent reproducibility Further, according to the present disclosure, a film-like adhesive that is satisfactorily divided by cooling expand is provided, and a dicing / die-bonding integrated film provided with this as an adhesive layer, a method for producing the same, and a semiconductor device are provided. Will be done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Dicing (AREA)

Abstract

One aspect of the present disclosure is a method for evaluating the ease of cutting of a film-like adhesive under low-temperature conditions in which cooling expansion is performed, said method including: a step for preparing a specimen having a cross-sectional area A (mm2) from the film-like adhesive; a step for obtaining the cutting work W (N·mm), the cutting strength P (N), and the cutting elongation L (mm) of the specimen by a cutting test under low-temperature conditions in the range of -15°C to 0°C; a step for obtaining a cutting factor m expressed by equation (1); and a step for obtaining the cutting resistance R (N/mm2) expressed by equation (2). Equation (1): m = W/[1000×(P×L)] Equation (2): R = P/A

Description

フィルム状接着剤及びその分断性評価方法、ダイシング・ダイボンディング一体型フィルム及びその製造方法、並びに半導体装置Film-like adhesive and its fragmentability evaluation method, dicing / die bonding integrated film and its manufacturing method, and semiconductor device
 本開示は、フィルム状接着剤及びその分断性評価方法、ダイシング・ダイボンディング一体型フィルム及びその製造方法、並びに半導体装置に関する。 The present disclosure relates to a film-like adhesive and a method for evaluating its fragmentability, a dicing / die-bonding integrated film and a method for manufacturing the same, and a semiconductor device.
 IC等の半導体装置は、例えば、以下の工程を経て製造される。まず、ダイシング用粘着シートに半導体ウェハを貼り付け、その状態で半導体ウェハを半導体チップに個片化する(ダイシング工程)。その後、ピックアップ工程、圧着工程及びダイボンディング工程等が実施される。特許文献1は、ダイシング工程において半導体ウェハを固定する機能と、ダイボンディング工程において半導体チップを基板と接着させる機能とを併せ持つダイシング・ダイボンディングフィルムを開示する。ダイシング工程において、半導体ウェハ及びダイボンディングフィルム(フィルム状接着剤)を個片化することで、接着剤片付きチップが得られる。 Semiconductor devices such as ICs are manufactured through the following steps, for example. First, the semiconductor wafer is attached to the adhesive sheet for dicing, and the semiconductor wafer is separated into semiconductor chips in that state (dicing step). After that, a pick-up process, a crimping process, a die bonding process, and the like are carried out. Patent Document 1 discloses a dicing die bonding film having a function of fixing a semiconductor wafer in a dicing process and a function of adhering a semiconductor chip to a substrate in a dicing process. In the dicing step, the semiconductor wafer and the die bonding film (film-like adhesive) are separated into individual pieces to obtain a chip with an adhesive piece.
 従来、半導体ウェハ及び接着剤層のダイシングは、ブレード等による物理的な切断によって実施されてきた。近年、半導体パッケージの高集積化に伴ってウェハの薄膜化が進展している。これに起因して、ダイシング工程中のチップ割れ等の不具合が発生しやすくなっている。厚さ50μm以下のウェハを対象とするダイシング工程においては、高い歩留まりを維持する観点から、従来の物理的な切断方法に替わる新たな加工方法が開発されている。 Conventionally, dicing of semiconductor wafers and adhesive layers has been carried out by physical cutting with a blade or the like. In recent years, the thinning of wafers has progressed along with the high integration of semiconductor packages. Due to this, defects such as chip cracking during the dicing process are likely to occur. In the dicing process for wafers having a thickness of 50 μm or less, a new processing method has been developed in place of the conventional physical cutting method from the viewpoint of maintaining a high yield.
 新しい加工方法の一つとして、加工対象物にレーザによって切断予定ラインを形成した後、加工対象物を切断予定ラインに沿って切断する方法が知られている(特許文献2,3参照)。この方法でウェハを個片化するプロセスはステルスダイシングと称される。特許文献4,5では、ステルスダイシングに適用されるダイシングフィルム(粘着剤層)の機械特性又は熱特性について検討がなされている。 As one of the new processing methods, a method of forming a planned cutting line on the processing target by a laser and then cutting the processing target along the planned cutting line is known (see Patent Documents 2 and 3). The process of fragmenting the wafer in this way is called stealth dicing. Patent Documents 4 and 5 study the mechanical properties or thermal properties of a dicing film (adhesive layer) applied to stealth dicing.
特開2008-218571号公報Japanese Unexamined Patent Publication No. 2008-218571 特開2002-192370号公報Japanese Unexamined Patent Publication No. 2002-192370 特開2003-338467号公報Japanese Unexamined Patent Publication No. 2003-338467 特開2015-211080号公報Japanese Unexamined Patent Publication No. 2015-211080 特開2016-115775号公報Japanese Unexamined Patent Publication No. 2016-115775
 ステルスダイシングに適用されるダイシングフィルムについては、その機械特性又は熱特性を評価することで、ステルスダイシングへの適用性をある程度見積もることができる。(特許文献4,5参照)。一方、本発明者らの検討によると、ダイボンディングフィルム(フィルム状接着剤)については、その機械特性又は熱特性に関する測定値のばらつきが大きいため、ステルスダイシングへの適用性を評価することが困難であり、また、フィルム状接着剤の改良の方向性を導くこともできていない。例えば、引張試験によってフィルム状接着剤の破断強度を測定しても、試料の取り付け時の歪み等に起因して破断点がばらついて測定値が安定しない。また、複数のフィルム状接着剤をラミネートして厚みを増す加工をして試料を準備すると、この準備に手間がかかるし、試料の良否が測定値に影響してフィルム状接着剤の正確な分断性を評価することができない。 For a dicing film applied to stealth dicing, the applicability to stealth dicing can be estimated to some extent by evaluating its mechanical properties or thermal properties. (See Patent Documents 4 and 5). On the other hand, according to the study by the present inventors, it is difficult to evaluate the applicability of the die bonding film (film-like adhesive) to stealth dicing because the measured values regarding the mechanical properties or the thermal properties vary widely. Moreover, it has not been possible to guide the direction of improvement of the film-like adhesive. For example, even if the breaking strength of the film-like adhesive is measured by a tensile test, the breaking points vary due to distortion at the time of mounting the sample, and the measured value is not stable. In addition, if a sample is prepared by laminating a plurality of film-like adhesives to increase the thickness, this preparation takes time and effort, and the quality of the sample affects the measured value, and the film-like adhesive is accurately divided. The sex cannot be evaluated.
 本開示は、冷却エキスパンドが実施される低温条件下におけるフィルム状接着剤の分断性を簡便且つ優れた再現性で評価できる方法を提供する。また、本開示は、冷却エキスパンドによって良好に分断されるフィルム状接着剤を提供するとともに、これを接着剤層として備えるダイシング・ダイボンディング一体型フィルム及びその製造方法、並びに半導体装置を提供する。 The present disclosure provides a method capable of evaluating the breakability of a film-like adhesive under low temperature conditions in which cooling expansion is carried out easily and with excellent reproducibility. The present disclosure also provides a film-like adhesive that is satisfactorily divided by cooling expand, and also provides a dicing / die-bonding integrated film provided with this as an adhesive layer, a method for producing the same, and a semiconductor device.
 本開示の一側面は、冷却エキスパンドが実施される低温条件下におけるフィルム状接着剤の分断性評価方法である。この分断性評価方法は、フィルム状接着剤から断面積A(mm)の試料を準備する工程と、-15℃~0℃の範囲の低温条件下において割断試験によって試料の割断仕事W(N・mm)、割断強度P(N)及び割断伸びL(mm)を求める工程と、下記式(1)で表される割断係数mを求める工程と、下記式(2)で表される割断抵抗R(N/mm)を求める工程とを含む。
 m=W/[1000×(P×L)]・・・(1)
 R=P/A・・・(2)
One aspect of the present disclosure is a method for evaluating the breakability of a film-like adhesive under low temperature conditions in which cooling expansion is carried out. This splitting property evaluation method includes a step of preparing a sample having a cross-sectional area A (mm 2 ) from a film-like adhesive and a splitting test of the sample under low temperature conditions in the range of -15 ° C. to 0 ° C. W (N). -Mm), the step of obtaining the breaking strength P (N) and the breaking elongation L (mm), the step of obtaining the breaking coefficient m represented by the following formula (1), and the breaking resistance represented by the following formula (2). It includes a step of obtaining R (N / mm 2).
m = W / [1000 × (P × L)] ・ ・ ・ (1)
R = P / A ... (2)
 本発明者らの検討によれば、低温条件下(-15℃~0℃)において、比較的簡便な手法である割断試験(抗折強度試験)によって割断係数m及び割断抵抗Rを求めることができるとともに、割断試験の結果の再現性が高い。このため、分断性を評価すべき複数のフィルム状接着剤について実際に分断性を評価しなくても、割断係数m及び割断抵抗Rのデータを取得するだけでフィルム状接着剤の分断性を評価することができる。 According to the study by the present inventors, it is possible to obtain the fracture coefficient m and the fracture resistance R by a fracture test (anti-folding strength test), which is a relatively simple method, under low temperature conditions (-15 ° C to 0 ° C). In addition to being able to do this, the results of the split test are highly reproducible. Therefore, even if the breakability of a plurality of film-like adhesives for which the breakability should be evaluated is not actually evaluated, the breakability of the film-like adhesive can be evaluated simply by acquiring the data of the break coefficient m and the break resistance R. can do.
 本開示の一側面は、基材層と、基材層と対面する第1の面及びその反対側の第2の面を有する粘着剤層と、粘着剤層の第2の面上に設けられた接着剤層とを備えるダイシング・ダイボンディング一体型フィルムの製造方法に関する。この製造方法は、基材層と粘着剤層の積層体であるダイシングフィルムを準備する工程と、以下の条件下で実施される上記分断性評価方法において、割断係数mが0超70以下であり且つ割断抵抗Rが0N/mm超40N/mm以下であるフィルム状接着剤を選定する工程と、上記フィルム状接着剤からなる接着剤層をダイシングフィルムの粘着剤層側の表面に形成する工程とを含む。
<条件>
 試料の幅:5mm
 試料の長さ:23mm
 押し込み冶具と試料の相対速度:10mm/分
One aspect of the present disclosure is provided on a base material layer, a pressure-sensitive adhesive layer having a first surface facing the base material layer and a second surface on the opposite side thereof, and a second surface of the pressure-sensitive adhesive layer. The present invention relates to a method for producing a dicing / die bonding integrated film including an adhesive layer. In this production method, in the step of preparing a dicing film which is a laminate of the base material layer and the pressure-sensitive adhesive layer and the above-mentioned fragmentability evaluation method carried out under the following conditions, the splitting coefficient m is more than 0 and 70 or less. and fracture resistance R to form a step of selecting a film-like adhesive or less 0N / mm 2 ultra-40N / mm 2, the surface of the pressure-sensitive adhesive layer side of the adhesive layer of a dicing film comprising the film-like adhesive Including the process.
<Conditions>
Sample width: 5 mm
Sample length: 23 mm
Relative velocity between indentation jig and sample: 10 mm / min
 上記製造方法によれば、低温条件下における分断性が良好なフィルム状接着剤を接着剤層として使用するため、ステルスダイシングに適したダイシング・ダイボンディング一体型フィルムを得ることができる。 According to the above manufacturing method, since a film-like adhesive having good breakability under low temperature conditions is used as the adhesive layer, a dicing / die bonding integrated film suitable for stealth dicing can be obtained.
 本開示の一側面は、冷却エキスパンドが実施される半導体装置の製造プロセスに適用さえるフィルム状接着剤に関する。このフィルム状接着剤は、以下の条件下で実施される上記分断性評価方法において、割断係数mが0超70以下であり且つ割断抵抗Rが0N/mm超40N/mm以下である。
<条件>
 試料の幅:5mm
 試料の長さ:23mm
 押し込み冶具と試料の相対速度:10mm/分
One aspect of the disclosure relates to film-like adhesives that can be applied to the manufacturing process of semiconductor devices in which cooling expansion is performed. The film-like adhesive, in the cutting evaluation methods carried out under the following conditions, the cleaving factor m is greater than 0 70 or less and and fracture resistance R is less than 0N / mm 2 Ultra-40N / mm 2.
<Conditions>
Sample width: 5 mm
Sample length: 23 mm
Relative velocity between indentation jig and sample: 10 mm / min
 本開示の一側面はダイシング・ダイボンディング一体型フィルムに関する。すなわち、このダイシング・ダイボンディング一体型フィルムは、基材層と、基材層と対面する第1の面及びその反対側の第2の面を有する粘着剤層と、粘着剤層の第2の面上に設けられた接着剤層とを備え、接着剤層が上記フィルム状接着剤からなる。本開示の一側面は上記フィルム状接着剤を含む半導体装置である。 One aspect of this disclosure relates to a dicing / die bonding integrated film. That is, this dicing / die bonding integrated film has a base material layer, a pressure-sensitive adhesive layer having a first surface facing the base material layer and a second surface on the opposite side thereof, and a second pressure-sensitive adhesive layer. It is provided with an adhesive layer provided on the surface, and the adhesive layer is made of the film-like adhesive. One aspect of the present disclosure is a semiconductor device containing the film-like adhesive.
 本開示によれば、冷却エキスパンドが実施される低温条件下におけるフィルム状接着剤の分断性を簡便且つ優れた再現性で評価できる方法が提供される。また、本開示によれば、冷却エキスパンドによって良好に分断されるフィルム状接着剤が提供されるとともに、これを接着剤層として備えるダイシング・ダイボンディング一体型フィルム及びその製造方法、並びに半導体装置が提供される。 According to the present disclosure, there is provided a method capable of evaluating the breakability of a film-like adhesive under low temperature conditions in which cooling expansion is carried out easily and with excellent reproducibility. Further, according to the present disclosure, a film-like adhesive that is satisfactorily divided by cooling expand is provided, and a dicing / die-bonding integrated film provided with this as an adhesive layer, a method for producing the same, and a semiconductor device are provided. Will be done.
図1(a)は本開示に係るダイシング・ダイボンディング一体型フィルムの一実施形態を模式的に示す平面図であり、図1(b)は、図1(a)のB-B線に沿った模式断面図である。FIG. 1 (a) is a plan view schematically showing an embodiment of the dicing / die bonding integrated film according to the present disclosure, and FIG. 1 (b) is taken along line BB of FIG. 1 (a). It is a schematic cross-sectional view. 図2(a)及び図2(b)は、接着剤片付きチップを製造する過程を模式的に示す断面図である。2 (a) and 2 (b) are cross-sectional views schematically showing a process of manufacturing a chip with an adhesive piece. 図3(a)及び図3(b)は、接着剤片付きチップを製造する過程を模式的に示す断面図である。3 (a) and 3 (b) are cross-sectional views schematically showing a process of manufacturing a chip with an adhesive piece. 図4は冶具に固定された状態の試料を模式的に示す斜視図である。FIG. 4 is a perspective view schematically showing a sample in a state of being fixed to a jig. 図5は押し込み冶具によって試料に荷重を加えている状態を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a state in which a load is applied to a sample by a pushing jig. 図6は割断試験の結果の一例を模式的に示すグラフである。FIG. 6 is a graph schematically showing an example of the result of the cutting test. 図7は実施例及び比較例の結果をプロットしたグラフである。FIG. 7 is a graph plotting the results of Examples and Comparative Examples. 図8は実施例4及び比較例4においてそれぞれ8回ずつ実施した割断試験の結果をプロットしたグラフである。FIG. 8 is a graph plotting the results of the split test performed eight times each in Example 4 and Comparative Example 4. 図9は低温環境下においてフィルム状接着剤の試料について3回の引張試験の結果を示すグラフである。FIG. 9 is a graph showing the results of three tensile tests on a sample of a film-like adhesive in a low temperature environment.
 以下、図面を参照しつつ、本開示の実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。なお、本明細書において、「(メタ)アクリル酸」とは、アクリル酸又はメタクリル酸を意味し、「(メタ)アクリレート」とは、アクリレート又はそれに対応するメタクリレートを意味する。「A又はB」とは、AとBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments. In addition, in this specification, "(meth) acrylic acid" means acrylic acid or methacrylic acid, and "(meth) acrylate" means acrylate or the corresponding methacrylate. "A or B" may include either A or B, or both.
 本明細書において「層」との語は、平面図として観察したときに、全面に形成されている形状の構造に加え、一部に形成されている形状の構造も包含される。また、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。また、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。 In the present specification, the term "layer" includes not only a structure having a shape formed on the entire surface but also a structure having a shape partially formed when observed as a plan view. Further, in the present specification, the term "process" is used not only as an independent process but also as a term as long as the desired action of the process is achieved even when it cannot be clearly distinguished from other processes. included. Further, the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
 本明細書において組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。また、例示材料は特に断らない限り単独で用いてもよいし、二種以上を組み合わせて用いてもよい。また、本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。 In the present specification, the content of each component in the composition is the total amount of the plurality of substances present in the composition unless otherwise specified, when a plurality of substances corresponding to each component are present in the composition. means. Further, the exemplary materials may be used alone or in combination of two or more unless otherwise specified. Further, in the numerical range described stepwise in the present specification, the upper limit value or the lower limit value of the numerical range of one step may be replaced with the upper limit value or the lower limit value of the numerical range of another step. Further, in the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
 本実施形態に係るフィルム状接着剤は、半導体装置の製造プロセスにおいて、半導体ウェハWaの回路面F1の反対側の面F2に貼り付けられるものである(図1(a)及び図1(b)参照)。ここでは、フィルム状接着剤からなる接着剤層を備えるダイシング・ダイボンディング一体型フィルムについて説明する。 The film-like adhesive according to the present embodiment is attached to the surface F2 on the opposite side of the circuit surface F1 of the semiconductor wafer Wa in the manufacturing process of the semiconductor device (FIGS. 1 (a) and 1 (b)). reference). Here, a dicing / die bonding integrated film including an adhesive layer made of a film-like adhesive will be described.
 図1(a)は、本実施形態に係るダイシング・ダイボンディング一体型フィルムを示す平面図であり、図1(b)は、図1(a)のB-B線に沿った模式断面図である。ダイシング・ダイボンディング一体型フィルム10(以下、場合により、単に「フィルム10」という。)は、基材層1と、基材層1と対面する第1の面2a及びその反対側の第2の面2bを有する粘着剤層2と、粘着剤層2の第2の面2bの中央部を覆うように設けられた接着剤層5とをこの順序で備える。フィルム10は、レーザによって半導体ウェハWaに切断予定ラインを形成する工程と、その後の冷却エキスパンドによって半導体ウェハWa及び接着剤層5を個片化する工程と、これによって形成された接着剤片付きチップをピックアップする工程とを含む半導体装置の製造プロセスに適用されるものである。 FIG. 1A is a plan view showing a dicing / diebonding integrated film according to the present embodiment, and FIG. 1B is a schematic cross-sectional view taken along the line BB of FIG. 1A. is there. The dicing / die bonding integrated film 10 (hereinafter, simply referred to as “film 10” in some cases) includes a base material layer 1, a first surface 2a facing the base material layer 1, and a second surface on the opposite side thereof. The pressure-sensitive adhesive layer 2 having the surface 2b and the adhesive layer 5 provided so as to cover the central portion of the second surface 2b of the pressure-sensitive adhesive layer 2 are provided in this order. The film 10 includes a step of forming a line to be cut on the semiconductor wafer Wa by a laser, a step of separating the semiconductor wafer Wa and the adhesive layer 5 by cooling expansion thereafter, and a chip with an adhesive piece formed thereby. It is applied to the manufacturing process of a semiconductor device including a pick-up process.
 接着剤片付きチップ8の作製方法の一例について説明する。まず、半導体ウェハWaの回路面F1に保護フィルム20を貼り付ける。半導体ウェハWaにレーザを照射して複数本の切断予定ラインを形成する(ステルスダイシング)。その後、半導体ウェハWaに対してバックグラインディング及びポリッシングの処理をする。次いで、図2(a)に示すように、半導体ウェハWaの面F2に接着剤層5が接するようにフィルム10を貼り付ける。また、粘着剤層2の第2の面2bに対してダイシングリングDRを貼り付ける。その後、-15℃~0℃の温度条件下での冷却エキスパンドによって、半導体ウェハWa及び接着剤層5を個片化する。図2(b)に示すように、基材層1におけるダイシングリングDRの内側領域1aをリングRaで突き上げることによって基材層1に張力を付与する。これにより、半導体ウェハWaが切断予定ラインに沿って分断されるとともに、これに伴って接着剤層5も分断され、粘着剤層2の表面上に複数の接着剤片付きチップ8が得られる。 An example of a method for manufacturing the adhesive chip 8 will be described. First, the protective film 20 is attached to the circuit surface F1 of the semiconductor wafer Wa. The semiconductor wafer Wa is irradiated with a laser to form a plurality of scheduled cutting lines (stealth dicing). After that, the semiconductor wafer Wa is subjected to back grinding and polishing. Next, as shown in FIG. 2A, the film 10 is attached so that the adhesive layer 5 is in contact with the surface F2 of the semiconductor wafer Wa. Further, the dicing ring DR is attached to the second surface 2b of the pressure-sensitive adhesive layer 2. Then, the semiconductor wafer Wa and the adhesive layer 5 are separated by cooling expansion under a temperature condition of −15 ° C. to 0 ° C. As shown in FIG. 2B, tension is applied to the base material layer 1 by pushing up the inner region 1a of the dicing ring DR in the base material layer 1 with the ring Ra. As a result, the semiconductor wafer Wa is divided along the planned cutting line, and the adhesive layer 5 is also divided accordingly, so that a plurality of chips 8 with adhesive pieces can be obtained on the surface of the adhesive layer 2.
 基材層1におけるダイシングリングDRの内側領域1aを加熱することによって内側領域1aを収縮させる。図3(a)は、ヒーターHのブローによって内側領域1aを加熱している様子を模式的に示す断面図である。内側領域1aを環状に収縮させて基材層1に張力を付与することで、隣接する接着剤片付きチップ8の間隔を広げることができる。これにより、ピックアップエラーの発生をより一層抑制できるとともに、ピックアップ工程における接着剤片付きチップ8の視認性を向上させることができる。必要に応じて紫外線照射によって粘着剤層2の粘着力を低下させた後、図3(b)に示すにように、突き上げ冶具42で接着剤片付きチップ8を突き上げることによって粘着剤層2から接着剤片付きチップ8をはく離させるとともに、接着剤片付きチップ8を吸引コレット44で吸引してピックアップする。ピックアップされた接着剤片付きチップ8は、半導体装置の組立装置(不図示)に搬送され、回路基板等に圧着される。 The inner region 1a is contracted by heating the inner region 1a of the dicing ring DR in the base material layer 1. FIG. 3A is a cross-sectional view schematically showing how the inner region 1a is heated by blowing the heater H. By contracting the inner region 1a in an annular shape to apply tension to the base material layer 1, the distance between the adjacent chips with adhesive pieces 8 can be widened. As a result, the occurrence of a pickup error can be further suppressed, and the visibility of the adhesive chip 8 in the pickup process can be improved. After reducing the adhesive strength of the adhesive layer 2 by irradiating with ultraviolet rays as necessary, as shown in FIG. 3 (b), the adhesive piece-cleaning chip 8 is pushed up with the push-up jig 42 to adhere from the adhesive layer 2. The tip 8 with the adhesive piece is peeled off, and the tip 8 with the adhesive piece is sucked and picked up by the suction collet 44. The picked-up chip 8 with an adhesive piece is conveyed to an assembly device (not shown) of a semiconductor device and crimped onto a circuit board or the like.
 フィルム10が備える接着剤層5は、以下の条件下で実施される割断試験の結果を利用した分断性評価方法において、割断係数mが0超70以下であり且つ割断抵抗Rが0N/mm超40N/mm以下である。
<条件>
 試料の幅:5mm
 試料の長さ:23mm
 押し込み冶具と試料の相対速度:10mm/分
The adhesive layer 5 included in the film 10 has a splitting coefficient m of more than 0 and 70 or less and a breaking resistance R of 0 N / mm 2 in a splitting property evaluation method using the results of a splitting test conducted under the following conditions. It is super 40 N / mm 2 or less.
<Conditions>
Sample width: 5 mm
Sample length: 23 mm
Relative velocity between indentation jig and sample: 10 mm / min
 以下、割断試験について説明する。割断試験は抗折強度試験に分類されるものであり、試料の両端を固定した状態で試料が破断するまで試料の中央部を押し込む工程を含む。図4に示すように、試料Sは一対の冶具12,12に挟まれて固定された状態で割断試験に供される。一対の冶具12,12は、例えば、十分な強度を有する厚紙からなり、中央に矩形の開口12aをそれぞれ有する。固定された状態の試料Sの中央部に押し込み冶具15によって荷重を加える(図5参照)。 The cutting test will be explained below. The fracture test is classified as a bending strength test, and includes a step of pushing the central part of the sample until the sample breaks with both ends fixed. As shown in FIG. 4, the sample S is subjected to a cutting test in a state of being sandwiched and fixed between a pair of jigs 12 and 12. The pair of jigs 12, 12 are made of, for example, thick paper having sufficient strength, and each has a rectangular opening 12a in the center. A load is applied to the central portion of the sample S in the fixed state by the pushing jig 15 (see FIG. 5).
 試料Sは評価対象のフィルム状接着剤を切り出したものであればよく、フィルム状接着剤から切り出した複数の接着剤片を積層して試料を作製しなくてもよい。すなわち、試料Sの厚さは、フィルム状接着剤の厚さと同じであってもよい。試料Sの幅(図4におけるWs)は、例えば、1~30mmであり、3~8mmであってもよい。測定装置の状況に応じて適当な幅に設定すればよい。試料Sの長さ(図3におけるLs)は、例えば、5~50mmであり、10~30mm又は6~9mmであってもよい。試料Sの長さは冶具12の開口12aのサイズに依存する。なお、冶具12の形状及び試料Sのサイズは、割断試験を実施できる限り、上記のもの以外であってもよい。 The sample S may be any one obtained by cutting out a film-like adhesive to be evaluated, and it is not necessary to prepare a sample by laminating a plurality of adhesive pieces cut out from the film-like adhesive. That is, the thickness of the sample S may be the same as the thickness of the film-like adhesive. The width of the sample S (Ws in FIG. 4) is, for example, 1 to 30 mm and may be 3 to 8 mm. The width may be set to an appropriate level according to the situation of the measuring device. The length of the sample S (Ls in FIG. 3) is, for example, 5 to 50 mm, and may be 10 to 30 mm or 6 to 9 mm. The length of the sample S depends on the size of the opening 12a of the jig 12. The shape of the jig 12 and the size of the sample S may be other than those described above as long as the cutting test can be performed.
 押し込み冶具15は、円錐状の先端部15aを有する円柱状部材からなる。押し込み冶具15の直径(図5におけるR)は、例えば、3~15mmであり、5~10mmであってもよい。先端部15aの角度(図5におけるθ)は、例えば、40~120°であり、60~100°であってもよい。 The push jig 15 is made of a columnar member having a conical tip portion 15a. The diameter of the push jig 15 (R in FIG. 5) is, for example, 3 to 15 mm, and may be 5 to 10 mm. The angle of the tip portion 15a (θ in FIG. 5) is, for example, 40 to 120 °, and may be 60 to 100 °.
 割断試験は、所定の温度に設定された恒温槽内で実施される。恒温槽は、-15℃~0℃の範囲の一定の温度(想定される冷却エキスパンドの温度)に設定すればよい。恒温槽として、例えば、株式会社アイテック社製、TLF-R3-F-W-PL-Sを使用できる。オートグラフ(例えば、株式会社エーアンドデイ製のAZT-CA01、ロードセル50N、圧縮モード)を使用し、割断仕事W、割断強度P及び割断伸びLを得る。 The split test is carried out in a constant temperature bath set to a predetermined temperature. The constant temperature bath may be set to a constant temperature in the range of −15 ° C. to 0 ° C. (assumed cooling expand temperature). As the constant temperature bath, for example, TLF-R3-F-W-PL-S manufactured by Aitec Co., Ltd. can be used. An autograph (for example, AZT-CA01 manufactured by A & D Co., Ltd., load cell 50N, compression mode) is used to obtain a breaking work W, a breaking strength P, and a breaking elongation L.
 押し込み冶具15と試料Sの相対速度は、例えば、1~100mm/分であり、5~20mm/分であってもよい。この相対速度が速すぎると割断過程のデータが十分に取得できない傾向にあり、遅すぎると応力が緩和して割断に至りにくい傾向にある。冶具15の押し込み距離は、例えば、1~50mmであり、5~30mmであってもよい。押し込み距離が短すぎると割断に至らない傾向にある。評価対象のフィルム状接着剤について、複数の試料を準備し、割断試験を複数回行って試験結果の安定性を確認することが好ましい。 The relative speed between the pushing jig 15 and the sample S is, for example, 1 to 100 mm / min, and may be 5 to 20 mm / min. If this relative velocity is too fast, it tends to be difficult to obtain sufficient data on the breaking process, and if it is too slow, the stress is relaxed and it tends to be difficult to reach breaking. The pushing distance of the jig 15 is, for example, 1 to 50 mm, and may be 5 to 30 mm. If the pushing distance is too short, it tends not to be cut. For the film-like adhesive to be evaluated, it is preferable to prepare a plurality of samples and perform a split test a plurality of times to confirm the stability of the test results.
 図6は割断試験の結果の一例を示すグラフである。図6に示すように、割断仕事Wは、縦軸を荷重とし、横軸を試料Sが破断するまでの押し込み量でグラフを作成したときに囲まれた面積である。割断強度Pは、試料Sが破断したときの荷重である。割断伸びLは試料Sが破断したときの試料Sの伸び量である。割断伸びLは、試料Sが破断したときの押し込み距離と冶具12の開口12aの幅から三角関数を用いて算出すればよい。 FIG. 6 is a graph showing an example of the result of the cutting test. As shown in FIG. 6, the cutting work W is an area surrounded when a graph is created with the vertical axis as the load and the horizontal axis as the amount of pushing until the sample S breaks. The breaking strength P is the load when the sample S is broken. The split elongation L is the amount of elongation of the sample S when the sample S is broken. The split elongation L may be calculated by using a trigonometric function from the pushing distance when the sample S is broken and the width of the opening 12a of the jig 12.
 割断試験によって得られた割断仕事W(N・mm)、割断強度P(N)及び割断伸びL(mm)の値から、式(1)及び式(2)より割断係数m(無次元)及び割断抵抗R(N/mm)を求める。
 m=W/[1000×(P×L)]・・・(1)
 R=P/A・・・(2)
From the values of the breaking work W (N ・ mm), the breaking strength P (N) and the breaking elongation L (mm) obtained by the breaking test, the breaking coefficient m (dimensionless) and the breaking coefficient m (dimensionless) from the equations (1) and (2). The breaking resistance R (N / mm 2 ) is obtained.
m = W / [1000 × (P × L)] ・ ・ ・ (1)
R = P / A ... (2)
 本発明者らの検討によると、以下の条件下で割断試験を実施したとき、割断係数mが0超70以下であり且つ割断抵抗Rが0N/mm超40N/mm以下であるフィルム状接着剤は、実際にステルスダイシングにおいて冷却エキスパンドをしたときに優れた分断性を有する。
<条件>
 試料の幅:5mm
 試料の長さ:23mm
 押し込み冶具と試料の相対速度:10mm/分
According to the study of the present inventors, when carrying out the fracture test under the following conditions, and the cleaving factor m is greater than 0 70 or less and fracture resistance R 0N / mm 2 Ultra-40N / mm 2 or less is filmy The adhesive has excellent splittability when actually cooled and expanded in stealth dicing.
<Conditions>
Sample width: 5 mm
Sample length: 23 mm
Relative velocity between indentation jig and sample: 10 mm / min
 割断係数m(無次元)は、上記のとおり、0超70以下であり、好ましくは10~60であり、より好ましくは15~55である。割断係数mは低温条件下におけるフィルム状接着剤の延伸性に関するパラメータである。割断係数mが70を超えると、フィルム状接着剤の過度な延伸性により、分断性が不十分となる。なお、割断係数mが15以上であると、応力の伝播性が良好となる。割断抵抗Rは、上記のとおり、0N/mm超40N/mm以下であり、好ましくは0N/mm超35N/mm以下であり、より好ましくは1~30N/mmである。割断抵抗Rが40N/mmを超えると、フィルム状接着剤の過度な強度により、分断性が不十分となる。なお、割断抵抗Rが20N/mm以上であると、低温エキスパンドにおいて良好な応力伝播によってより一層優れた分断性が得られる。フィルム状接着剤として、割断係数m及び割断抵抗Rが上記範囲であるものを選定することで、ステルスダイシングを良好に実施できる。 As described above, the split coefficient m (dimensionless) is more than 0 and 70 or less, preferably 10 to 60, and more preferably 15 to 55. The split coefficient m is a parameter relating to the stretchability of the film-like adhesive under low temperature conditions. When the splitting coefficient m exceeds 70, the splitting property becomes insufficient due to the excessive stretchability of the film-like adhesive. When the split coefficient m is 15 or more, the stress propagation property is good. Fracture resistance R, as described above, 0N / mm 2 Ultra-40N / mm 2 or less, preferably not more than 0N / mm 2 Ultra-35N / mm 2, more preferably 1 ~ 30N / mm 2. If the breaking resistance R exceeds 40 N / mm 2 , the breaking property becomes insufficient due to the excessive strength of the film-like adhesive. When the breaking resistance R is 20 N / mm 2 or more, even better breakability can be obtained by good stress propagation in low temperature expanding. Stealth dicing can be satisfactorily performed by selecting a film-like adhesive having a breaking coefficient m and a breaking resistance R in the above ranges.
 以下、フィルム状接着剤について説明する。フィルム状接着剤の一例として、エポキシ樹脂と、エポキシ樹脂硬化剤と、エポキシ基を有する(メタ)アクリル共重合体とを含有する接着剤について説明する。これらの成分を含むフィルム状接着剤は、チップと基板との間、チップとチップとの間の接着性に優れる。また、このフィルム状接着剤に対して電極埋め込み性及びワイヤー埋め込み性等を付与することも可能であるとともに、ダイボンディング工程における低温での接着性を付与することも可能である。 The film-like adhesive will be described below. As an example of the film-like adhesive, an adhesive containing an epoxy resin, an epoxy resin curing agent, and a (meth) acrylic copolymer having an epoxy group will be described. The film-like adhesive containing these components has excellent adhesiveness between the chip and the substrate and between the chip and the chip. Further, it is possible to impart electrode embedding property, wire embedding property, and the like to this film-like adhesive, and it is also possible to impart adhesiveness at a low temperature in the die bonding step.
 エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、ジシクロペンタジエン骨格含有エポキシ樹脂、スチルベン型エポキシ樹脂、トリアジン骨格含有エポキシ樹脂、フルオレン骨格含有エポキシ樹脂、トリフェノールフェノールメタン型エポキシ樹脂、ビフェニル型エポキシ樹脂、キシリレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、多官能フェノール類、アントラセン等の多環芳香族類のジグリシジルエーテル化合物などが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いてもよい。 Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, and bisphenol F novolac type epoxy resin. , Dicyclopentadiene skeleton-containing epoxy resin, stillben-type epoxy resin, triazine skeleton-containing epoxy resin, fluorene skeleton-containing epoxy resin, triphenolphenolmethane-type epoxy resin, biphenyl-type epoxy resin, xylylene-type epoxy resin, biphenyl-aralkyl-type epoxy resin, Examples thereof include naphthalene-type epoxy resins, polyfunctional phenols, and polycyclic aromatic diglycidyl ether compounds such as anthracene. These may be used individually by 1 type or in combination of 2 or more type.
 エポキシ樹脂硬化剤は、例えば、フェノール樹脂であってよい。フェノール樹脂は、分子内にフェノール性水酸基を有するものであれば特に制限なく用いることができる。フェノール樹脂としては、例えば、フェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール類及び/又はα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂、アリル化ビスフェノールA、アリル化ビスフェノールF、アリル化ナフタレンジオール、フェノールノボラック、フェノール等のフェノール類及び/又はナフトール類とジメトキシパラキシレン又はビス(メトキシメチル)ビフェニルから合成されるフェノールアラルキル樹脂、ナフトールアラルキル樹脂などが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いてもよい。 The epoxy resin curing agent may be, for example, a phenol resin. The phenol resin can be used without particular limitation as long as it has a phenolic hydroxyl group in the molecule. Examples of the phenol resin include phenols such as phenol, cresol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol and aminophenol, and / or naphthols such as α-naphthol, β-naphthol and dihydroxynaphthalene, and formaldehyde and the like. Phenols such as novolak type phenol resin, allylated bisphenol A, allylated bisphenol F, allylated naphthalenediol, phenol novolac, and phenol obtained by condensing or cocondensing with a compound having an aldehyde group of Alternatively, a phenol aralkyl resin synthesized from naphthols and dimethoxyparaxylene or bis (methoxymethyl) biphenyl, a naphthol aralkyl resin, and the like can be mentioned. These may be used individually by 1 type or in combination of 2 or more type.
 エポキシ基を有する(メタ)アクリル共重合体は、原料としてグリシジル(メタ)アクリレートを、得られる共重合体に対し0.5~6質量%となる量に調整された共重合体であってよい。当該量が0.5質量%以上であると、高い接着力が得られ易くなる傾向にあり、当該量が6質量%以下であると、ゲル化を抑制できる傾向にある。グリシジル(メタ)アクリレートの残部はメチル(メタ)アクリレート等の炭素数1~8のアルキル基を有するアルキル(メタ)アクリレート、及びスチレン、アクリロニトリル等の混合物であってよい。アルキル(メタ)アクリレートは、エチル(メタ)アクリレート及び/又はブチル(メタ)アクリレートを含んでいてよい。各成分の混合比率は、得られるエポキシ基を有する(メタ)アクリル共重合体のTg(ガラス転移点)を考慮して調整することができる。Tgが-10℃以上であると、Bステージ状態での接着フィルムのタック性が良好になる傾向にあり、取り扱い性に優れる傾向にある。エポキシ基を有する(メタ)アクリル共重合体のTgの上限値は、例えば、30℃であってよい。 The (meth) acrylic copolymer having an epoxy group may be a copolymer prepared by adjusting glycidyl (meth) acrylate as a raw material in an amount of 0.5 to 6% by mass with respect to the obtained copolymer. .. When the amount is 0.5% by mass or more, high adhesive strength tends to be easily obtained, and when the amount is 6% by mass or less, gelation tends to be suppressed. The balance of the glycidyl (meth) acrylate may be an alkyl (meth) acrylate having an alkyl group having 1 to 8 carbon atoms such as methyl (meth) acrylate, and a mixture of styrene, acrylonitrile and the like. The alkyl (meth) acrylate may include ethyl (meth) acrylate and / or butyl (meth) acrylate. The mixing ratio of each component can be adjusted in consideration of the Tg (glass transition point) of the obtained (meth) acrylic copolymer having an epoxy group. When the Tg is −10 ° C. or higher, the tackiness of the adhesive film in the B stage state tends to be good, and the handleability tends to be excellent. The upper limit of Tg of the (meth) acrylic copolymer having an epoxy group may be, for example, 30 ° C.
 エポキシ基を有する(メタ)アクリル共重合体の重量平均分子量は10万以上であってよく、30万~300万又は50万~200万であってよい。重量平均分子量が300万以下であると、半導体チップと支持基板との間の充填性の低下を制御できる傾向にある。重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)で標準ポリスチレンによる検量線を用いたポリスチレン換算値である。 The weight average molecular weight of the (meth) acrylic copolymer having an epoxy group may be 100,000 or more, and may be 300,000 to 3 million or 500,000 to 2 million. When the weight average molecular weight is 3 million or less, it tends to be possible to control the decrease in the filling property between the semiconductor chip and the support substrate. The weight average molecular weight is a polystyrene-equivalent value using a calibration curve made of standard polystyrene by gel permeation chromatography (GPC).
 硬化促進剤は、必要に応じて、第三級アミン、イミダゾール類、第四級アンモニウム塩類等の硬化促進剤を更に含有していてもよい。硬化促進剤としては、例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾリウムトリメリテートが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いてもよい。 The curing accelerator may further contain a curing accelerator such as a tertiary amine, imidazoles, or a quaternary ammonium salt, if necessary. Examples of the curing accelerator include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, and 1-cyanoethyl-2-phenylimidazolium trimellitate. These may be used individually by 1 type or in combination of 2 or more type.
 フィルム状接着剤は、必要に応じて、無機フィラーを更に含有してもよい。無機フィラーとしては、例えば、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、ほう酸アルミウイスカ、窒化ホウ素、結晶質シリカ、非晶質シリカ等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いてもよい。 The film-like adhesive may further contain an inorganic filler, if necessary. Examples of the inorganic filler include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, aluminum borate whisker, boron nitride, and crystalline material. Examples include silica and amorphous silica. These may be used individually by 1 type or in combination of 2 or more type.
 フィルム状接着剤は、上記成分を溶剤に溶解あるいは分散してワニスとし、支持体上に塗布、加熱し溶剤を除去することによって形成して得る。支持体としては、ポリテトラフルオロエチレン、ポリエチレンテレフタレート、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリイミド等のプラスチックのフィルムを使用することができ、これら支持体は、表面を離型処理して使用することもできる。 The film-like adhesive is obtained by dissolving or dispersing the above components in a solvent to form a varnish, applying it on a support, heating it, and removing the solvent. As the support, a plastic film such as polytetrafluoroethylene, polyethylene terephthalate, polyethylene, polypropylene, polymethylpentene, or polyimide can be used, and these supports can also be used by releasing the surface. it can.
 溶剤としては、特に限定されないが、フィルム作製時の揮発性等を考慮すると、メタノール、エタノール、2-メトキシエタノール、2-ブトキシエタノール、メチルエチルケトン、アセトン、メチルイソブチルケトン、2-エトキシエタノール、トルエン、キシレンなどの比較的低沸点の溶剤を使用するのが好ましい。また、塗膜性を向上させるために、ジメチルアセトアミド、ジメチルホルムアミド、N-メチルピロリドン、シクロヘキサノンなどの比較的高沸点の溶剤を加えることもできる。 The solvent is not particularly limited, but in consideration of volatility during film production, methanol, ethanol, 2-methoxyethanol, 2-butoxyethanol, methylethylketone, acetone, methylisobutylketone, 2-ethoxyethanol, toluene, xylene. It is preferable to use a solvent having a relatively low boiling point such as. Further, in order to improve the coating film property, a solvent having a relatively high boiling point such as dimethylacetamide, dimethylformamide, N-methylpyrrolidone and cyclohexanone can be added.
 無機フィラーを含むワニスの製造には、無機フィラーの分散性を考慮して、らいかい機、三本ロール、ボールミル又はビーズミルなどを使用するのが好ましく、これらを組み合せて使用することもできる。また、無機フィラーと低分子量物をあらかじめ混合した後、高分子量物を配合することによって、混合する時間を短縮することも可能となる。また、ワニスとした後、真空脱気等によってワニス中の気泡を除去することもできる。 For the production of varnish containing an inorganic filler, it is preferable to use a raker, a three-roll, a ball mill, a bead mill, etc. in consideration of the dispersibility of the inorganic filler, and these can also be used in combination. Further, by mixing the inorganic filler and the low molecular weight substance in advance and then blending the high molecular weight substance, it is possible to shorten the mixing time. Further, after the varnish is formed, air bubbles in the varnish can be removed by vacuum degassing or the like.
 支持体へのワニスの塗布方法としては、公知の方法を用いることができ、例えば、ナイフコート法、ロールコート法、スプレーコート法、グラビアコート法、バーコート法、カーテンコート法等が挙げられる。なお、支持体上に形成した接着剤層5をホットロールラミネートによって粘着剤層2に貼り合わせてもよいし、粘着剤層2の表面上に印刷によって接着剤層5を形成してもよい。 As a method of applying the varnish to the support, a known method can be used, and examples thereof include a knife coating method, a roll coating method, a spray coating method, a gravure coating method, a bar coating method, and a curtain coating method. The adhesive layer 5 formed on the support may be attached to the pressure-sensitive adhesive layer 2 by hot roll laminating, or the adhesive layer 5 may be formed on the surface of the pressure-sensitive adhesive layer 2 by printing.
 フィルム状接着剤(接着剤層5)の厚さは、特に限定されるものではないが、3~150μmが好ましく、より好ましくは4~140μmであり、更に好ましくは5~135μmである。フィルム状接着剤の厚さの厚さ(試料Sの厚さ)が3μm以下であると割断強度Pが小さすぎてデータの安定性が不十分となる傾向にあり、150μmを超えると試料Sの設置が難しいためにデータの安定性が不十分となる傾向にある。データの安定性と取り扱いの観点から、フィルム状接着剤の厚さは3~135μm程度であることが特に好ましい。 The thickness of the film-like adhesive (adhesive layer 5) is not particularly limited, but is preferably 3 to 150 μm, more preferably 4 to 140 μm, and even more preferably 5 to 135 μm. If the thickness of the film-like adhesive (thickness of sample S) is 3 μm or less, the breaking strength P tends to be too small and the data stability tends to be insufficient, and if it exceeds 150 μm, the sample S tends to be insufficient. Data tends to be inadequate due to difficulty in installation. From the viewpoint of data stability and handling, the thickness of the film-like adhesive is particularly preferably about 3 to 135 μm.
 本発明者らの検討によると、割断仕事W(N・mm)は、例えば、(メタ)アクリル共重合体の含有量を増減させることで調整することができる。割断強度P(N)は、例えば、無機フィラーの含有量を増減させることで調整することができる。割断伸びL(mm)は、例えば、(メタ)アクリル共重合体の含有量を増減させることで調整することができる。 According to the study by the present inventors, the cutting work W (N · mm) can be adjusted by, for example, increasing or decreasing the content of the (meth) acrylic copolymer. The breaking strength P (N) can be adjusted, for example, by increasing or decreasing the content of the inorganic filler. The split elongation L (mm) can be adjusted, for example, by increasing or decreasing the content of the (meth) acrylic copolymer.
 フィルム10が備える基材層1及び粘着剤層2はダイシングフィルムとも称される。基材層1は、例えば、ポリテトラフルオロエチレンフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルム、ポリイミドフィルム等のプラスチックフィルムからなる。基材層1の表面は、必要に応じてプライマー塗布、ΜV処理、コロナ放電処理、研磨処理、エッチング処理等の表面処理が施されていてもよい。基材層1の厚さは、例えば、60~150μmであり、好ましくは70~130μmである。基材層1として、冷却エキスパンド時に破断しないものを適用する。 The base material layer 1 and the pressure-sensitive adhesive layer 2 included in the film 10 are also referred to as a dicing film. The base material layer 1 is made of, for example, a plastic film such as a polytetrafluoroethylene film, a polyethylene terephthalate film, a polyethylene film, a polypropylene film, a polymethylpentene film, or a polyimide film. The surface of the base material layer 1 may be subjected to surface treatment such as primer coating, ΜV treatment, corona discharge treatment, polishing treatment, and etching treatment, if necessary. The thickness of the base material layer 1 is, for example, 60 to 150 μm, preferably 70 to 130 μm. As the base material layer 1, a material that does not break during cooling expansion is applied.
 粘着剤層2は、例えば、感圧型であっても紫外線硬化型であってもよい。粘着剤層2は、冷却エキスパンドの際には接着剤片付きチップ8が飛散しない粘着力を有し、その後のピックアップ工程においては優れた剥離性を有することが好ましい。 The pressure-sensitive adhesive layer 2 may be, for example, a pressure-sensitive type or an ultraviolet curable type. It is preferable that the pressure-sensitive adhesive layer 2 has a pressure-sensitive adhesive force so that the adhesive chip 8 does not scatter during cooling expansion, and has excellent peelability in the subsequent pick-up step.
 上記実施形態においては、接着剤層5としてフィルム状接着剤を備えるダイシング・ダイボンディング一体型フィルム10を例示したが、フィルム状接着剤を単独で使用してもよい。 In the above embodiment, the dicing / die bonding integrated film 10 including the film-like adhesive as the adhesive layer 5 is exemplified, but the film-like adhesive may be used alone.
 以下、本開示について実施例により具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present disclosure will be specifically described with reference to Examples, but the present invention is not limited thereto.
<フィルム状接着剤の分断性評価>
 後述の実施例及び比較例に係るフィルム状接着剤から接着剤片(幅5mm×長さ100mm)を切り出した。接着剤片を一対の冶具(厚紙)に固定するとともに、冶具からはみ出している接着剤片の箇所を除去した。これにより、評価対象の試料(幅5mm×長さ23mm)を得た。所定の温度条件に設定された恒温槽(株式会社アイテック社製、TLF-R3-F-W-PL-S)内において割断試験を実施した。すなわち、オートグラフ(株式会社エーアンドデイ社製、AZT-CA01、ロードセル50N)を用いて圧縮モード、速度10mm/分、押し込み距離5mmの条件で割断試験を実施し、フィルム状接着剤が破断したときの割断仕事W、割断強度P及び割断伸びLを求めた。上記の式(1)及び式(2)により、割断係数m及び割断抵抗Rを算出した。なお、各実施例及び各比較例について8回以上の割断試験を実施した。表1,2に記載の値は複数回の割断試験によって得られた結果の平均値である。
<Evaluation of breakability of film-like adhesive>
An adhesive piece (width 5 mm × length 100 mm) was cut out from the film-like adhesive according to Examples and Comparative Examples described later. The adhesive piece was fixed to a pair of jigs (cardboard), and the portion of the adhesive piece protruding from the jig was removed. As a result, a sample to be evaluated (width 5 mm × length 23 mm) was obtained. A split test was carried out in a constant temperature bath (TLF-R3-F-W-PL-S manufactured by Aitec Co., Ltd.) set to a predetermined temperature condition. That is, when the split test was carried out using an autograph (manufactured by A & D Co., Ltd., AZT-CA01, load cell 50N) under the conditions of compression mode, speed of 10 mm / min, and pushing distance of 5 mm, when the film-like adhesive broke. The breaking work W, the breaking strength P, and the breaking elongation L were obtained. The breaking coefficient m and the breaking resistance R were calculated by the above formulas (1) and (2). A split test was carried out eight or more times for each Example and each Comparative Example. The values shown in Tables 1 and 2 are the average values of the results obtained by the multiple cutting tests.
 上記分断性評価が冷却エキスパンドにおける分断性とマッチしていることを確認するため、後述の実施例及び比較例に係るフィルム状接着剤を接着剤層として備えるダイシング・ダイボンディング一体型フィルムをそれぞれ作製し、接着剤層の分断性を以下の条件で評価した。
・シリコンウェハの厚さ:30μm
・ステルスダイシングによって個片化するチップサイズ:縦10mm×横10mm
・冷却エキスパンドの温度:実施例及び比較例の割断試験の恒温槽と同じ温度
・エキスパンド用リングによる突き上げ:10mm
・評価基準:エキスパンド用リングによる突き上げ後のシリコンウェハに光を照射した。隣接する接着剤片付きチップの間を光が通るもの(シリコンウェハ及び接着剤層が分断されているもの)を「A」とし、光が通らない領域があるもの(シリコンウェハ及び接着剤層が分断されていないもの)を「B」とした。
In order to confirm that the above-mentioned fragmentability evaluation matches the fragmentability in the cooling expand, a dicing / die-bonding integrated film having a film-like adhesive according to Examples and Comparative Examples described later as an adhesive layer was prepared. Then, the fragmentability of the adhesive layer was evaluated under the following conditions.
・ Thickness of silicon wafer: 30 μm
・ Chip size that is separated by stealth dicing: length 10 mm x width 10 mm
・ Temperature of cooling expand: Same temperature as the constant temperature bath of the split test of Examples and Comparative Examples ・ Push-up by the expansion ring: 10 mm
-Evaluation criteria: The silicon wafer after being pushed up by the expanding ring was irradiated with light. The one through which light passes between adjacent chips with adhesive pieces (the one in which the silicon wafer and the adhesive layer are divided) is designated as "A", and the one in which light does not pass (the one in which the silicon wafer and the adhesive layer are divided). Those that have not been) are designated as "B".
<フィルム状接着剤の作製>
(実施例1)
 以下の成分を含む組成物を調製した。
[エポキシ樹脂]
・o-クレゾールノボラック型エポキシ樹脂(新日鐵住金化学株式会社製、商品名:YDCN-700-10、エポキシ当量210g/eq、軟化点80℃):22質量部
・ビスフェノールF型エポキシ樹脂(DIC株式会社製、商品名EXA-830CRP、エポキシ当量160g/eq、25℃で液状):20質量部
[エポキシ樹脂硬化剤]
・フェノール樹脂(三井化学株式会社製、商品名:XLC-LL、軟化点:75℃):32質量部
[シランカップリング剤]
・3-メルカプトプロピルトリメトキシシラン(モーメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、商品名:A-189):0.1質量部
・3-ウレイドプロピルトリエトキシシラン(モーメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、商品名:A-1160):0.3質量部
[フィラー]
・シリカ(株式会社アドマテックス製):41質量部
[溶剤]
・シクロヘキサノン
<Making a film-like adhesive>
(Example 1)
A composition containing the following components was prepared.
[Epoxy resin]
-O-cresol novolac type epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: YDCN-700-10, epoxy equivalent 210 g / eq, softening point 80 ° C.): 22 parts by mass-bisphenol F type epoxy resin (DIC) Made by Co., Ltd., trade name EXA-830CRP, epoxy equivalent 160 g / eq, liquid at 25 ° C): 20 parts by mass [epoxy resin curing agent]
-Phenol resin (manufactured by Mitsui Chemicals, Inc., trade name: XLC-LL, softening point: 75 ° C.): 32 parts by mass [silane coupling agent]
・ 3-Mercaptopropyltrimethoxysilane (manufactured by Momentive Performance Materials Japan GK, trade name: A-189): 0.1 parts by mass ・ 3-Ureidopropyltriethoxysilane (Momentive Performance Material) Made by Z Japan GK, Product name: A-1160): 0.3 parts by mass [Filler]
-Silica (manufactured by Admatex Co., Ltd.): 41 parts by mass [solvent]
・ Cyclohexanone
 上記組成物に以下の成分を更に加えて混合した後、真空脱気することによってフィルム状接着剤用のワニスを調製した。
・アクリルゴム(ナガセケムテックス株式会社製、商品名:HTR-860P-3、重量平均分子量80万、ブチルアクリレート/エチルアクリレート/アクリロニトリル/グリシジルメタクリレート(質量比)=38.6/28.7/29.7/3.0、グリシジル基含有反復単位:3.0質量%):23質量部
・硬化促進剤(1-シアノエチル-2-フェニルイミダゾール、四国化成工業株式会社、商品名:2PZ-CN):0.1質量部
The following components were further added to the above composition and mixed, and then vacuum degassed to prepare a varnish for a film-like adhesive.
-Acrylic rubber (manufactured by Nagase ChemteX Corporation, trade name: HTR-860P-3, weight average molecular weight 800,000, butyl acrylate / ethyl acrylate / acrylonitrile / glycidyl methacrylate (mass ratio) = 38.6 / 28.7 / 29 .7 / 3.0, glycidyl group-containing repeating unit: 3.0% by mass): 23 parts by mass, curing accelerator (1-cyanoethyl-2-phenylimidazole, Shikoku Kasei Kogyo Co., Ltd., trade name: 2PZ-CN) : 0.1 parts by mass
 離型処理されたポリエチレンテレフタレートフィルム(厚さ38μm)の表面上にワニスを塗布した後、加熱によって溶剤を除去した。これにより、Bステージ状態のフィルム状接着剤(厚さ60μm)を得た。このフィルム状接着剤の分断性を温度0℃において評価した。表1に結果を示す。 After applying a varnish on the surface of the release-treated polyethylene terephthalate film (thickness 38 μm), the solvent was removed by heating. As a result, a film-like adhesive (thickness 60 μm) in the B stage state was obtained. The breakability of this film-like adhesive was evaluated at a temperature of 0 ° C. The results are shown in Table 1.
(実施例2)
 厚さを60μmとする代わりに50μmとしたことの他は、実施例1と同様にしてフィルム状接着剤を得た。このフィルム状接着剤の分断性を温度0℃において評価した。表1に結果を示す。
(Example 2)
A film-like adhesive was obtained in the same manner as in Example 1 except that the thickness was 50 μm instead of 60 μm. The breakability of this film-like adhesive was evaluated at a temperature of 0 ° C. The results are shown in Table 1.
(実施例3)
 以下の成分を含む組成物を調製した。
[エポキシ樹脂]
・o-クレゾールノボラック型エポキシ樹脂(新日鐵住金化学株式会社製、商品名:YDCN-700-10、エポキシ当量210g/eq、軟化点80℃):6質量部
[エポキシ樹脂硬化剤]
・フェノール樹脂(エア・ウォータ株式会社製、商品名:SKレジン-HE100-C):3質量部
・フェノール樹脂(日本化薬株式会社製、商品名:GPH-103):3質量部
[シランカップリング剤]
・3-メルカプトプロピルトリメトキシシラン(モーメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、商品名:A-189):0.5質量部
・フェニルアミノプロピルトリメトキシシラン(モーメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、商品名:Y9669):1質量部
[フィラー]
・シリカ(株式会社アドマテックス製):30質量部
[溶剤]
・シクロヘキサノン
(Example 3)
A composition containing the following components was prepared.
[Epoxy resin]
-O-Cresol novolac type epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: YDCN-700-10, epoxy equivalent 210 g / eq, softening point 80 ° C.): 6 parts by mass [epoxy resin curing agent]
-Phenol resin (manufactured by Air Water Co., Ltd., product name: SK resin-HE100-C): 3 parts by mass-Phenol resin (manufactured by Nippon Kayaku Co., Ltd., product name: GPH-103): 3 parts by mass [silane cup Ring agent]
-3-Mercaptopropyltrimethoxysilane (manufactured by Momentive Performance Materials Japan GK, trade name: A-189): 0.5 parts by mass-Phenylaminopropyltrimethoxysilane (Momentive Performance Materials) -Manufactured by Japan GK, product name: Y9669): 1 part by mass [filler]
-Silica (manufactured by Admatex Co., Ltd.): 30 parts by mass [solvent]
・ Cyclohexanone
 上記組成物に以下の成分を更に加えて混合した後、真空脱気することによってフィルム状接着剤用のワニスを調製した。
・アクリルゴム(ナガセケムテックス株式会社製、商品名:HTR-860P-3、重量平均分子量80万、ブチルアクリレート/エチルアクリレート/アクリロニトリル/グリシジルメタクリレート(質量比)=38.6/28.7/29.7/3.0、グリシジル基含有反復単位:3.0質量%):57質量部
・硬化促進剤(1-シアノエチル-2-フェニルイミダゾール、四国化成工業株式会社、商品名:2PZ-CN):0.01質量部
The following components were further added to the above composition and mixed, and then vacuum degassed to prepare a varnish for a film-like adhesive.
-Acrylic rubber (manufactured by Nagase ChemteX Corporation, trade name: HTR-860P-3, weight average molecular weight 800,000, butyl acrylate / ethyl acrylate / acrylonitrile / glycidyl methacrylate (mass ratio) = 38.6 / 28.7 / 29 .7 / 3.0, glycidyl group-containing repeating unit: 3.0% by mass): 57 parts by mass, curing accelerator (1-cyanoethyl-2-phenylimidazole, Shikoku Kasei Kogyo Co., Ltd., trade name: 2PZ-CN) : 0.01 parts by mass
 離型処理されたポリエチレンテレフタレートフィルム(厚さ38μm)の表面上に上記ワニスを塗布した後、加熱によって溶剤を除去した。これにより、Bステージ状態のフィルム状接着剤(厚さ7μm)を得た。このフィルム状接着剤の分断性を温度-5℃において評価した。表1に結果を示す。 After applying the above varnish on the surface of a release-treated polyethylene terephthalate film (thickness 38 μm), the solvent was removed by heating. As a result, a film-like adhesive (thickness 7 μm) in the B stage state was obtained. The breakability of this film-like adhesive was evaluated at a temperature of −5 ° C. The results are shown in Table 1.
(実施例4)
 厚さを7μmとする代わりに20μmとしたことの他は、実施例3と同様にしてフィルム状接着剤を得た。このフィルム状接着剤の分断性を温度-10℃において評価した。表1に結果を示す。
(Example 4)
A film-like adhesive was obtained in the same manner as in Example 3 except that the thickness was 20 μm instead of 7 μm. The breakability of this film-like adhesive was evaluated at a temperature of −10 ° C. The results are shown in Table 1.
(比較例1)
 以下の成分を含む組成物を調製した。
[エポキシ樹脂]
・o-クレゾールノボラック型エポキシ樹脂(新日鐵住金化学株式会社製、商品名:YDCN-700-10、エポキシ当量210g/eq、軟化点80℃):7質量部
[エポキシ樹脂硬化剤]
・フェノール樹脂(三井化学株式会社製、商品名:XLC-LL、軟化点:75℃):3質量部
[エポキシ樹脂硬化剤]
・フェノール樹脂(日本化薬株式会社製、商品名:GPH-103):4質量部
[シランカップリング剤]
・3-メルカプトプロピルトリメトキシシラン(モーメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、商品名:A-189):0.4質量部
・フェニルアミノプロピルトリメトキシシラン(モーメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、商品名:Y9669):1質量部
[フィラー]
・シリカ(株式会社アドマテックス製):16質量部
[溶剤]
・シクロヘキサノン
(Comparative Example 1)
A composition containing the following components was prepared.
[Epoxy resin]
-O-Cresol novolac type epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: YDCN-700-10, epoxy equivalent 210 g / eq, softening point 80 ° C.): 7 parts by mass [epoxy resin curing agent]
-Phenol resin (manufactured by Mitsui Chemicals, Inc., trade name: XLC-LL, softening point: 75 ° C.): 3 parts by mass [epoxy resin curing agent]
-Phenol resin (manufactured by Nippon Kayaku Co., Ltd., trade name: GPH-103): 4 parts by mass [silane coupling agent]
-3-Mercaptopropyltrimethoxysilane (manufactured by Momentive Performance Materials Japan GK, trade name: A-189): 0.4 parts by mass-Phenylaminopropyltrimethoxysilane (Momentive Performance Materials) -Manufactured by Japan GK, product name: Y9669): 1 part by mass [filler]
-Silica (manufactured by Admatex Co., Ltd.): 16 parts by mass [solvent]
・ Cyclohexanone
 上記組成物に以下の成分を更に加えて混合した後、真空脱気することによってフィルム状接着剤用のワニスを調製した。
・アクリルゴム(ナガセケムテックス株式会社製、商品名:HTR-860P-3、重量平均分子量80万、ブチルアクリレート/エチルアクリレート/アクリロニトリル/グリシジルメタクリレート(質量比)=38.6/28.7/29.7/3.0、グリシジル基含有反復単位:3.0質量%):68質量部
・硬化促進剤(1-シアノエチル-2-フェニルイミダゾール、四国化成工業株式会社、商品名:2PZ-CN):0.01質量部
The following components were further added to the above composition and mixed, and then vacuum degassed to prepare a varnish for a film-like adhesive.
-Acrylic rubber (manufactured by Nagase ChemteX Corporation, trade name: HTR-860P-3, weight average molecular weight 800,000, butyl acrylate / ethyl acrylate / acrylonitrile / glycidyl methacrylate (mass ratio) = 38.6 / 28.7 / 29 .7 / 3.0, glycidyl group-containing repeating unit: 3.0% by mass): 68 parts by mass, curing accelerator (1-cyanoethyl-2-phenylimidazole, Shikoku Kasei Kogyo Co., Ltd., trade name: 2PZ-CN) : 0.01 parts by mass
 離型処理されたポリエチレンテレフタレートフィルム(厚さ38μm)の表面上に上記ワニスを塗布した後、加熱によって溶剤を除去した。これにより、Bステージ状態のフィルム状接着剤(厚さ7μm)を得た。このフィルム状接着剤の分断性を温度-5℃において評価した。表2に結果を示す。 After applying the above varnish on the surface of a release-treated polyethylene terephthalate film (thickness 38 μm), the solvent was removed by heating. As a result, a film-like adhesive (thickness 7 μm) in the B stage state was obtained. The breakability of this film-like adhesive was evaluated at a temperature of −5 ° C. The results are shown in Table 2.
(比較例2)
 以下の成分を含む組成物を調製した。
[エポキシ樹脂]
・o-クレゾールノボラック型エポキシ樹脂(新日鐵住金化学株式会社製、商品名:YDCN-700-10、エポキシ当量210g/eq、軟化点80℃):13質量部
[エポキシ樹脂硬化剤]
・フェノール樹脂(三井化学株式会社製、商品名:XLC-LL、軟化点:75℃):11質量部
[シランカップリング剤]
・3-メルカプトプロピルトリメトキシシラン(モーメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、商品名:A-189):0.4質量部
・3-ウレイドプロピルトリエトキシシラン(モーメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、商品名:A-1160):1質量部
[フィラー]
・シリカ(日本アエロジル株式会社製):8質量部
[溶剤]
・シクロヘキサノン
(Comparative Example 2)
A composition containing the following components was prepared.
[Epoxy resin]
-O-Cresol novolac type epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: YDCN-700-10, epoxy equivalent 210 g / eq, softening point 80 ° C.): 13 parts by mass [epoxy resin curing agent]
-Phenol resin (manufactured by Mitsui Chemicals, Inc., trade name: XLC-LL, softening point: 75 ° C.): 11 parts by mass [silane coupling agent]
・ 3-Mercaptopropyltrimethoxysilane (manufactured by Momentive Performance Materials Japan GK, trade name: A-189): 0.4 parts by mass ・ 3-Ureidopropyltriethoxysilane (Momentive Performance Material) Made by Z Japan GK, Product Name: A-1160): 1 part by mass [Filler]
-Silica (manufactured by Nippon Aerosil Co., Ltd.): 8 parts by mass [solvent]
・ Cyclohexanone
 上記組成物に以下の成分を更に加えて混合した後、真空脱気することによってフィルム状接着剤用のワニスを調製した。
・アクリルゴム(ナガセケムテックス株式会社製、商品名:HTR-860P-3、重量平均分子量80万、ブチルアクリレート/エチルアクリレート/アクリロニトリル/グリシジルメタクリレート(質量比)=38.6/28.7/29.7/3.0、グリシジル基含有反復単位:3.0質量%):66質量部
・硬化促進剤(1-シアノエチル-2-フェニルイミダゾール、四国化成工業株式会社、商品名:2PZ-CN):0.03質量部
The following components were further added to the above composition and mixed, and then vacuum degassed to prepare a varnish for a film-like adhesive.
-Acrylic rubber (manufactured by Nagase ChemteX Corporation, trade name: HTR-860P-3, weight average molecular weight 800,000, butyl acrylate / ethyl acrylate / acrylonitrile / glycidyl methacrylate (mass ratio) = 38.6 / 28.7 / 29 .7 / 3.0, glycidyl group-containing repeating unit: 3.0% by mass): 66 parts by mass, curing accelerator (1-cyanoethyl-2-phenylimidazole, Shikoku Kasei Kogyo Co., Ltd., trade name: 2PZ-CN) : 0.03 parts by mass
 離型処理されたポリエチレンテレフタレートフィルム(厚さ38μm)の表面上に上記ワニスを塗布した後、加熱によって溶剤を除去した。これにより、Bステージ状態のフィルム状接着剤(厚さ10μm)を得た。このフィルム状接着剤の分断性を温度0℃において評価した。表2に結果を示す。 After applying the above varnish on the surface of a release-treated polyethylene terephthalate film (thickness 38 μm), the solvent was removed by heating. As a result, a film-like adhesive (thickness 10 μm) in the B stage state was obtained. The breakability of this film-like adhesive was evaluated at a temperature of 0 ° C. The results are shown in Table 2.
(比較例3)
 比較例1と同様にして得たフィルム状接着剤(厚さ7μm)の分断性を温度-10℃において評価した。表2に結果を示す。
(Comparative Example 3)
The breakability of the film-like adhesive (thickness 7 μm) obtained in the same manner as in Comparative Example 1 was evaluated at a temperature of −10 ° C. The results are shown in Table 2.
(比較例4)
 厚さを7μmとする代わりに20μmとしたことの他は、比較例1と同様にしてフィルム状接着剤を得た。このフィルム状接着剤の分断性を温度-10℃において評価した。表2に結果を示す。
(Comparative Example 4)
A film-like adhesive was obtained in the same manner as in Comparative Example 1, except that the thickness was 20 μm instead of 7 μm. The breakability of this film-like adhesive was evaluated at a temperature of −10 ° C. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示すとおり、実施例1~4は、割断係数mが70以下であり且つ割断抵抗Rが40N/mm以下であり、冷却エキスパンドによる分断性評価が「A」であった。これに対し、表2に示すとおり、比較例1~4は、割断係数mが70超であり且つ割断抵抗Rが40N/mm超であり、冷却エキスパンドによる分断性評価が「B」であった。実施例及び比較例で実施した割断試験の結果を利用した分断性評価は、冷却エキスパンドによる分断性評価の結果とマッチしているといえる。図7は実施例及び比較例の結果をプロットしたグラフである。 As shown in Table 1, in Examples 1 to 4, the splitting coefficient m was 70 or less, the breaking resistance R was 40 N / mm 2 or less, and the splittability evaluation by cooling expand was “A”. On the other hand, as shown in Table 2, in Comparative Examples 1 to 4, the splitting coefficient m was more than 70, the breaking resistance R was more than 40 N / mm 2 , and the breakability evaluation by cooling expand was “B”. It was. It can be said that the fragmentability evaluation using the results of the splitting tests carried out in the examples and the comparative examples matches the results of the splitting property evaluation by cooling expand. FIG. 7 is a graph plotting the results of Examples and Comparative Examples.
 図8は、実施例4及び比較例4においてそれぞれ8回ずつ実施した割断試験の結果をプロットしたグラフである。このグラフから、上記割断試験の再現性は十分易高いといえる。これに対し、図9は温度-15℃において、フィルム状接着剤の試料(幅10mm×長さ100mm×厚さ60μm)について3回の引張試験の結果を示すグラフである。図9に示すとおり、従来の低温引張試験では試験毎のバラツキが大きく、この結果からフィルム状接着剤の分断性を評価することは困難である。 FIG. 8 is a graph plotting the results of the split test performed eight times each in Example 4 and Comparative Example 4. From this graph, it can be said that the reproducibility of the above-mentioned cutting test is sufficiently high. On the other hand, FIG. 9 is a graph showing the results of three tensile tests on a sample of a film-like adhesive (width 10 mm × length 100 mm × thickness 60 μm) at a temperature of −15 ° C. As shown in FIG. 9, in the conventional low-temperature tensile test, there is a large variation between tests, and it is difficult to evaluate the breakability of the film-like adhesive from this result.
 本開示によれば、冷却エキスパンドが実施される低温条件下におけるフィルム状接着剤の分断性を簡便且つ優れた再現性で評価できる方法が提供される。また、本開示によれば、冷却エキスパンドによって良好に分断されるフィルム状接着剤が提供されるとともに、これを接着剤層として備えるダイシング・ダイボンディング一体型フィルム及びその製造方法、並びに半導体装置が提供される。 According to the present disclosure, there is provided a method capable of evaluating the breakability of a film-like adhesive under low temperature conditions in which cooling expansion is carried out easily and with excellent reproducibility. Further, according to the present disclosure, a film-like adhesive that is satisfactorily divided by cooling expand is provided, and a dicing / die-bonding integrated film provided with this as an adhesive layer, a method for producing the same, and a semiconductor device are provided. Will be done.
1…基材層、2…粘着剤層、5…接着剤層(フィルム状接着剤)、8…接着剤片付きチップ、10…ダイシング・ダイボンディング一体型フィルム、12…試料固定用の冶具、12a…開口、15…押し込み冶具、S…試料、Wa…半導体ウェハ 1 ... base material layer, 2 ... adhesive layer, 5 ... adhesive layer (film-like adhesive), 8 ... chip with adhesive piece, 10 ... dicing / die bonding integrated film, 12 ... jig for fixing sample, 12a ... Opening, 15 ... Pushing tool, S ... Sample, Wa ... Semiconductor wafer

Claims (5)

  1.  冷却エキスパンドが実施される低温条件下におけるフィルム状接着剤の分断性評価方法であって、
     フィルム状接着剤から断面積A(mm)の試料を準備する工程と、
     -15℃~0℃の範囲の低温条件下において割断試験によって前記試料の割断仕事W(N・mm)、割断強度P(N)及び割断伸びL(mm)を求める工程と、
     下記式(1)で表される割断係数mを求める工程と、
     下記式(2)で表される割断抵抗R(N/mm)を求める工程と、
    を含む、分断性評価方法。
     m=W/[1000×(P×L)]・・・(1)
     R=P/A・・・(2)
    It is a method for evaluating the fragmentation property of a film-like adhesive under low temperature conditions in which cooling expansion is carried out.
    The process of preparing a sample with a cross-sectional area A (mm 2) from a film-like adhesive, and
    A step of obtaining the breaking work W (N · mm), breaking strength P (N), and breaking elongation L (mm) of the sample by a breaking test under a low temperature condition in the range of -15 ° C to 0 ° C.
    The process of obtaining the split coefficient m represented by the following equation (1) and
    The process of obtaining the breaking resistance R (N / mm 2) represented by the following formula (2) and
    Dividability evaluation method including.
    m = W / [1000 × (P × L)] ・ ・ ・ (1)
    R = P / A ... (2)
  2.  基材層と、前記基材層と対面する第1の面及びその反対側の第2の面を有する粘着剤層と、前記粘着剤層の前記第2の面上に設けられた接着剤層とを備えるダイシング・ダイボンディング一体型フィルムの製造方法であって、
     基材層と粘着剤層の積層体であるダイシングフィルムを準備する工程と、
     以下の条件下で実施される請求項1に記載の分断性評価方法において、割断係数mが0超70以下であり且つ割断抵抗Rが0N/mm超40N/mm以下であるフィルム状接着剤を選定する工程と、
     前記フィルム状接着剤からなる接着剤層を前記ダイシングフィルムの前記粘着剤層側の表面に形成する工程と、
    を含むダイシング・ダイボンディング一体型フィルムの製造方法。
    <条件>
     試料の幅:5mm
     試料の長さ:23mm
     押し込み冶具と試料の相対速度:10mm/分
    An adhesive layer having a base material layer, a first surface facing the base material layer and a second surface opposite to the base material layer, and an adhesive layer provided on the second surface of the pressure-sensitive adhesive layer. This is a method for manufacturing a dicing / die bonding integrated film.
    The process of preparing a dicing film, which is a laminate of a base material layer and an adhesive layer,
    In cutting evaluation method according to claim 1 which is carried out under the following conditions, the film-like adhesive cleaving factor m is greater than 0 70 or less and and fracture resistance R is less than 0N / mm 2 Ultra-40N / mm 2 The process of selecting an agent and
    A step of forming an adhesive layer made of the film-like adhesive on the surface of the dicing film on the side of the adhesive layer, and
    A method for manufacturing a dicing / die bonding integrated film including.
    <Conditions>
    Sample width: 5 mm
    Sample length: 23 mm
    Relative velocity between indentation jig and sample: 10 mm / min
  3.  冷却エキスパンドが実施される半導体装置の製造プロセスに適用さえるフィルム状接着剤であって、
     以下の条件下で実施される請求項1に記載の分断性評価方法において、割断係数mが0超70以下であり且つ割断抵抗Rが0N/mm超40N/mm以下であるフィルム状接着剤。
    <条件>
     試料の幅:5mm
     試料の長さ:23mm
     押し込み冶具と試料の相対速度:10mm/分
    A film-like adhesive that can be applied to the manufacturing process of semiconductor devices for which cooling expansion is carried out.
    In cutting evaluation method according to claim 1 which is carried out under the following conditions, the film-like adhesive cleaving factor m is greater than 0 70 or less and and fracture resistance R is less than 0N / mm 2 Ultra-40N / mm 2 Agent.
    <Conditions>
    Sample width: 5 mm
    Sample length: 23 mm
    Relative velocity between indentation jig and sample: 10 mm / min
  4.  基材層と、
     前記基材層と対面する第1の面及びその反対側の第2の面を有する粘着剤層と、
     前記粘着剤層の前記第2の面上に設けられた接着剤層と、
    を備え、
     前記接着剤層が請求項3に記載のフィルム状接着剤からなる、ダイシング・ダイボンディング一体型フィルム。
    Base layer and
    An adhesive layer having a first surface facing the base material layer and a second surface opposite to the first surface, and a pressure-sensitive adhesive layer.
    An adhesive layer provided on the second surface of the pressure-sensitive adhesive layer and
    With
    A dicing / die bonding integrated film in which the adhesive layer comprises the film-like adhesive according to claim 3.
  5.  請求項3に記載のフィルム状接着剤を含む、半導体装置。 A semiconductor device including the film-like adhesive according to claim 3.
PCT/JP2020/013478 2019-10-28 2020-03-25 Film-like adhesive, method for evaluating ease of cutting of same, dicing/die-bonding integrated film, method for manufacturing same, and semiconductor device WO2021084778A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021554056A JP7476903B2 (en) 2019-10-28 2020-03-25 Film-like adhesive and method for evaluating severability thereof, integrated dicing/die bonding film and method for manufacturing the same, and semiconductor device
KR1020227014434A KR20220088866A (en) 2019-10-28 2020-03-25 Film adhesive and its parting property evaluation method, dicing and die-bonding integrated film and manufacturing method thereof, and semiconductor device
US17/771,020 US20230005782A1 (en) 2019-10-28 2020-03-25 Film-like adhesive and method for evaluating ease of splitting, dicing/die-bonding integrated film and method for manufacturing, and semiconductor device
CN202080074707.0A CN114600225A (en) 2019-10-28 2020-03-25 Film-like adhesive, method for evaluating its breaking property, dicing die-bonding integrated film, method for manufacturing the same, and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019195277 2019-10-28
JP2019-195277 2019-10-28

Publications (1)

Publication Number Publication Date
WO2021084778A1 true WO2021084778A1 (en) 2021-05-06

Family

ID=75714992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013478 WO2021084778A1 (en) 2019-10-28 2020-03-25 Film-like adhesive, method for evaluating ease of cutting of same, dicing/die-bonding integrated film, method for manufacturing same, and semiconductor device

Country Status (6)

Country Link
US (1) US20230005782A1 (en)
JP (1) JP7476903B2 (en)
KR (1) KR20220088866A (en)
CN (1) CN114600225A (en)
TW (1) TWI827827B (en)
WO (1) WO2021084778A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283925A (en) * 2008-04-22 2009-12-03 Hitachi Chem Co Ltd Dicing-tape-integrated type bonding sheet, manufacturing method thereof, and manufacturing method of semiconductor device
JP2019029465A (en) * 2017-07-28 2019-02-21 日東電工株式会社 Die-bonding film, dicing die-bonding film, and method for manufacturing semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3408805B2 (en) 2000-09-13 2003-05-19 浜松ホトニクス株式会社 Cutting origin region forming method and workpiece cutting method
JP4358502B2 (en) 2002-03-12 2009-11-04 浜松ホトニクス株式会社 Semiconductor substrate cutting method
JP4430085B2 (en) 2007-03-01 2010-03-10 日東電工株式会社 Dicing die bond film
JP2015211080A (en) 2014-04-24 2015-11-24 日東電工株式会社 Method for manufacturing semiconductor device
JP6445315B2 (en) 2014-12-12 2018-12-26 日東電工株式会社 Dicing sheet, dicing die-bonding film, and semiconductor device manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283925A (en) * 2008-04-22 2009-12-03 Hitachi Chem Co Ltd Dicing-tape-integrated type bonding sheet, manufacturing method thereof, and manufacturing method of semiconductor device
JP2019029465A (en) * 2017-07-28 2019-02-21 日東電工株式会社 Die-bonding film, dicing die-bonding film, and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
TW202117317A (en) 2021-05-01
TWI827827B (en) 2024-01-01
JP7476903B2 (en) 2024-05-01
CN114600225A (en) 2022-06-07
KR20220088866A (en) 2022-06-28
JPWO2021084778A1 (en) 2021-05-06
US20230005782A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
JP5556070B2 (en) Manufacturing method of semiconductor device using adhesive sheet integrated with dicing tape
JP7298613B2 (en) Semiconductor device manufacturing method, thermosetting resin composition, and dicing/die bonding integrated film
TWI390621B (en) Adhesive sheet for semiconductor and adhesive sheet for semiconductor integrated with dicing tape
JP5493460B2 (en) Manufacturing method of semiconductor device and dicing tape integrated adhesive sheet
JP2010074136A (en) Method of manufacturing semiconductor device
KR102602489B1 (en) Manufacturing method and adhesive film for semiconductor devices
WO2021084778A1 (en) Film-like adhesive, method for evaluating ease of cutting of same, dicing/die-bonding integrated film, method for manufacturing same, and semiconductor device
WO2020195981A1 (en) Production method for semiconductor device, die-bonding film, and dicing/die-bonding integrated adhesive sheet
WO2021130823A1 (en) Dicing/die-bonding integrated film, method for managing quality of same, and method for manufacturing semiconductor device
WO2020136904A1 (en) Adhesive film, integrated dicing/die bonding film, and method for producing semiconductor package
WO2022054718A1 (en) Filmy adhesive, adhesive sheet, and semiconductor device and production method therefor
WO2023157846A1 (en) Film-like adhesive and method for producing same, integrated dicing/die bonding film, and semiconductor device and method for producing same
JP2004256695A (en) Adhesive sheet, semiconductor device using the same and method for producing the same
WO2023048188A1 (en) Film adhesive, dicing and die-bonding two-in-one film, semiconductor device, and manufacturing method for same
WO2022186285A1 (en) Film adhesive, integrated dicing/die bonding film, semiconductor device, and method for producing semiconductor device
JP2022131481A (en) Evaluation method for die bonding film, die bonding film and dicing and die bonding integrated film
KR20230085855A (en) Film for protective film formation, sheet for protective film formation, composite sheet for protective film formation and device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881066

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554056

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/07/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20881066

Country of ref document: EP

Kind code of ref document: A1