WO2021084734A1 - Protocol conversion device and working machine - Google Patents

Protocol conversion device and working machine Download PDF

Info

Publication number
WO2021084734A1
WO2021084734A1 PCT/JP2019/043007 JP2019043007W WO2021084734A1 WO 2021084734 A1 WO2021084734 A1 WO 2021084734A1 JP 2019043007 W JP2019043007 W JP 2019043007W WO 2021084734 A1 WO2021084734 A1 WO 2021084734A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
communication
protocol
interface
communication protocol
Prior art date
Application number
PCT/JP2019/043007
Other languages
French (fr)
Japanese (ja)
Inventor
伸夫 長坂
憲司 渡邉
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to JP2021554023A priority Critical patent/JP7279182B2/en
Priority to PCT/JP2019/043007 priority patent/WO2021084734A1/en
Publication of WO2021084734A1 publication Critical patent/WO2021084734A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols

Definitions

  • the present disclosure relates to a protocol conversion device that converts a communication protocol and a working machine including the protocol conversion device.
  • Patent Document 1 describes a technique relating to a processing plant that performs petroleum processing or chemical processing.
  • the processing plant of Patent Document 1 analyzes big data input / output by switches, sensors, controllers and the like used in the processing plant.
  • the processing plant is connected to other processing plants via a gateway to send and receive big data.
  • the gateway converts the communication protocol between different processing plants to send and receive data.
  • a protocol conversion device such as the gateway described above, it is possible to connect two devices having different communication protocols, for example, the first device and the second device.
  • the information not supported by the communication protocol of the second device may be discarded without being converted by the protocol conversion device.
  • the problem is that the information is lost.
  • This disclosure has been made in view of the above problems, and even if the information to be converted into a protocol includes information that is not supported by the communication protocol after conversion, that information is output to another device. It is an object of the present invention to provide a protocol conversion device and a working machine capable of providing the same.
  • the first interface for inputting the data of the first communication protocol from the device to be converted and the data of the first communication protocol input by the first interface are secondly communicated. It is included in the conversion processing unit that converts to protocol data, the second interface that outputs the data of the second communication protocol after conversion by the conversion processing unit, and the data of the first communication protocol before conversion.
  • a protocol conversion device including a third interface for outputting unconverted information, which is information not included in the data of the second communication protocol after being converted by the conversion processing unit, is disclosed.
  • the content of the present disclosure is useful not only as a protocol conversion device but also as a working machine equipped with a protocol conversion device.
  • unconverted information that is not converted by the protocol conversion of the conversion processing unit can be output from the third interface. Therefore, even if the information not supported by the second communication protocol is included in the data of the first communication protocol, the information can be transferred to the device connected to the third interface as unconverted information.
  • FIG. 1 is a plan view showing a schematic configuration of the component mounting system 10 of the present embodiment.
  • FIG. 2 is a perspective view showing a schematic configuration of the component mounting machine 20 and the loader 13.
  • the left-right direction of FIG. 1 will be referred to as the X direction
  • the vertical direction (front-back direction) will be referred to as the Y direction
  • the X direction and the direction perpendicular to the Y direction will be referred to as the Z direction.
  • the component mounting system 10 includes a production line 11, a loader 13, and a management computer 15.
  • the production line 11 has a plurality of component mounting machines 20 arranged in the X direction, and mounts electronic components on the substrate 17.
  • the substrate 17 is carried out from the component mounting machine 20 on the left side shown in FIG. 1 to the component mounting machine 20 on the right side, and electronic components are mounted during the transportation.
  • the component mounting machine 20 includes an apparatus main body portion 21, a substrate transport device 22, a feeder base 23, a head portion 25, and a head moving mechanism 27.
  • the substrate transfer device 22 is provided on the upper portion of the device main body 21, and conveys the substrate 17 in the X direction.
  • the feeder table 23 is provided on the front surface of the device main body 21, and is an L-shaped table when viewed from the side.
  • the feeder base 23 includes slots (not shown) arranged in a plurality of X directions.
  • a feeder 29 for supplying electronic components is mounted in each slot of the feeder base 23.
  • the feeder 29 is, for example, a tape feeder that supplies electronic components from a tape that houses the electronic components at a predetermined pitch.
  • the head portion 25 includes a suction nozzle (not shown) that sucks the electronic component supplied from the feeder 29, and mounts the electronic component sucked by the suction nozzle on the substrate 17.
  • the head moving mechanism 27 moves the head portion 25 to arbitrary positions in the X direction and the Y direction on the apparatus main body portion 21. More specifically, the head moving mechanism 27 includes an X-axis slide mechanism 27A that moves the head portion 25 in the X direction and a Y-axis slide mechanism 27B that moves the head portion 25 in the Y direction.
  • the X-axis slide mechanism 27A is attached to the Y-axis slide mechanism 27B.
  • the Y-axis slide mechanism 27B has a Y-axis linear motor 41 (FIG. 3) as a drive source.
  • the X-axis slide mechanism 27A moves to an arbitrary position in the Y direction based on the drive of the Y-axis linear motor 41. Further, the X-axis slide mechanism 27A has an X-axis linear motor 43 (FIG. 3) as a drive source.
  • the head portion 25 is attached to the X-axis slide mechanism 27A and moves to an arbitrary position in the X direction based on the drive of the X-axis linear motor 43. Therefore, the head portion 25 moves to an arbitrary position on the apparatus main body portion 21 as the X-axis slide mechanism 27A and the Y-axis slide mechanism 27B are driven.
  • the head portion 25 is attached to the X-axis slide mechanism 27A via a connector and can be attached and detached with one touch, and can be changed to a different type of head portion 25, for example, a dispenser head or the like. Therefore, the head portion 25 of the present embodiment is removable from the device main body portion 21. Further, the head portion 25 includes a plurality of rotary servomotors 51 (see FIG. 3) as a drive source for driving the suction nozzle. By driving the rotary servomotor 51, the head portion 25 rotates the suction nozzles around the Z-axis, moves them up and down in the Z-axis direction, replaces the positions of the plurality of suction nozzles, and the like.
  • a mark camera for photographing the substrate 17 and a parts camera (not shown) for photographing electronic parts sucked and held by the suction nozzle are fixed to the head portion 25.
  • the controller 45 (see FIG. 3) of the device main body 21 processes the image of the mark camera and acquires information about the board 17, an error in the mounting position, and the like. Further, the controller 45 processes the image of the parts camera and acquires an error of the holding position of the electronic component in the suction nozzle.
  • the configuration of the head portion 25 described above is an example.
  • the head portion 25 may include various sensors, relays, switches, and the like in addition to or in place of an imaging device such as a mark camera.
  • an upper guide rail 31, a lower guide rail 33, a rack gear 35, and a non-contact power feeding coil 37 are provided on the front surface of the component mounting machine 20.
  • the upper guide rail 31 is a rail having a U-shaped cross section extending in the X direction, and the opening faces downward.
  • the lower guide rail 33 is a rail having an L-shaped cross section extending in the X direction, a vertical surface is attached to the front surface of the component mounting machine 20, and a horizontal plane extends forward.
  • the rack gear 35 is a gear provided in the lower part of the lower guide rail 33, extending in the X direction, and having a plurality of vertical grooves engraved on the front surface.
  • the upper guide rail 31, lower guide rail 33, and rack gear 35 of the component mounting machine 20 can be detachably connected to the upper guide rail 31, lower guide rail 33, and rack gear 35 of the adjacent component mounting machine 20. Therefore, the component mounting machine 20 can increase or decrease the number of the component mounting machines 20 lined up on the production line 11.
  • the non-contact power feeding coil 37 is a coil provided above the upper guide rail 31 and arranged along the X direction, and supplies electric power to the loader 13.
  • the loader 13 is a device that automatically replenishes and collects the feeder 29 from the component mounting machine 20, and includes a grip portion (not shown) that clamps the feeder 29.
  • the loader 13 is provided with an upper roller (not shown) inserted into the upper guide rail 31 and a lower roller (not shown) inserted into the lower guide rail 33. Further, the loader 13 is provided with a motor as a drive source. A gear that meshes with the rack gear 35 is attached to the output shaft of the motor.
  • the loader 13 includes a power receiving coil that receives power from the non-contact power feeding coil 37 of the component mounting machine 20. The loader 13 supplies the electric power received from the non-contact power feeding coil 37 to the motor.
  • the loader 13 can move in the X direction (left-right direction) by rotating the gear with the motor. Further, the loader 13 can rotate the rollers in the upper guide rail 31 and the lower guide rail 33 and move in the X direction while maintaining the positions in the vertical direction and the front-rear direction.
  • the management computer 15 shown in FIG. 1 is a device that comprehensively manages the component mounting system 10.
  • the component mounting machine 20 of the production line 11 starts the electronic component mounting work based on the management of the management computer 15.
  • the component mounting machine 20 performs mounting work of electronic components by the head portion 25 while transporting the substrate 17.
  • the management computer 15 also monitors the number of remaining electronic components in the feeder 29.
  • the management computer 15 determines that the feeder 29 needs to be replenished, for example, the management computer 15 displays an instruction on the screen for setting the feeder 29 containing the parts type that needs to be replenished in the loader 13. The user confirms the screen and sets the feeder 29 in the loader 13.
  • the management computer 15 When the management computer 15 detects that the desired feeder 29 is set in the loader 13, the management computer 15 instructs the loader 13 to start the replenishment work.
  • the loader 13 moves to the front of the component mounting machine 20 instructed, sandwiches the feeder 29 set by the user with the grip portion, and mounts the feeder 29 in the slot of the feeder base 23.
  • a new feeder 29 is replenished to the component mounting machine 20.
  • the loader 13 holds the feeder 29, which has run out of parts, between the gripping portions and pulls it out from the feeder base 23 to collect it. In this way, the loader 13 can automatically replenish the new feeder 29 and collect the out-of-parts feeder 29.
  • FIG. 3 is a block diagram showing a configuration of a multiplex communication system applied to the component mounting machine 20.
  • the device main body 21 of the component mounting machine 20 is fixedly provided at a place where the component mounting machine 20 is installed.
  • the X-axis slide mechanism 27A, the Y-axis slide mechanism 27B, and the head portion 25 described above are provided in the head moving mechanism 27 that is relatively movable with respect to the device main body portion 21, and the Y-axis linear motor 41 and the X-axis described above are provided.
  • a linear motor 43 for use, a plurality of rotary servomotors 51, and the like are provided.
  • the apparatus main body 21 includes a controller 45, a Y-axis linear servo amplifier 46, an X-axis linear servo amplifier 47, and a multi-axis rotary servo amplifier 48.
  • the component mounting machine 20 operates the head portion 25 and the like based on the control of the controller 45 to mount the electronic components on the substrate 17.
  • the controller 45 is mainly composed of a computer equipped with a CPU, RAM, and the like.
  • the controller 45 is a slave circuit of a Y-axis linear servo amplifier 46, an X-axis linear servo amplifier 47, and a multi-axis rotary servo amplifier 48 (hereinafter, may be referred to as amplifiers 46, 47, 49) by means of a field network cable 53. (Not shown) is connected.
  • the field network referred to here is, for example, an industrial network such as MECHATROLINK (registered trademark) -III, in which the controller 45 serves as the master and constructs a network for transmitting and receiving data to and from the slave circuits of the amplifiers 46 to 48.
  • the purpose is to reduce the cost of network construction by realizing the integration (reduction) of wiring.
  • Each of the amplifiers 46 to 48 is connected to the multiplexing communication device 57 by the encoder cable 55.
  • the multiplex communication device 57 provided in the device main body 21 is connected to the multiplex communication device 59 provided in the head moving mechanism 27 by a multiplex communication cable 60.
  • the multiplex communication cable 60 is, for example, a LAN cable compliant with the communication standard of Gigabit Ethernet (registered trademark) or a USB cable compliant with the communication standard of USB (Universal Serial Bus) 3.0.
  • the component mounting machine 20 uses the multiplexing communication device 59 to convert the encoder signals of each motor (Y-axis linear motor 41, X-axis linear motor 43, rotary servomotor 51) provided in the head moving mechanism 27 into frame data FRMD.
  • the multiplexing communication device 57 demultiplexes the received frame data FRMD and separates the encoder signals corresponding to each motor.
  • the multiplexing communication device 57 transmits the separated individual encoder signals to the corresponding amplifiers 46 to 48.
  • the controller 45 controls each motor of the head moving mechanism 27 via amplifiers 46 to 48.
  • the Y-axis linear servo amplifier 46 controls the Y-axis linear motor 41 of the head moving mechanism 27.
  • the head moving mechanism 27 is provided with a linear scale 61 that detects the position of the X-axis slide mechanism 27A that moves on the guide rail along the Y-axis direction in response to the drive of the Y-axis linear motor 41.
  • the linear scale 61 is connected to the protocol conversion device 65 via the encoder cable 63.
  • the linear scale 61 outputs an encoder signal such as the position (Y coordinate value) of the X-axis slide mechanism 27A in the Y-axis direction to the protocol conversion device 65 in response to the inquiry information received from the Y-axis linear servo amplifier 46, for example. To do.
  • the protocol conversion device 65 is connected to the multiplexing communication device 59 via an encoder cable 67.
  • the protocol conversion device 65 transmits the encoder signal of the linear scale 61 to the Y-axis linear servo amplifier 46 via the multiplexing communication devices 57 and 59.
  • the Y-axis linear servo amplifier 46 transfers the encoder signal received from the protocol conversion device 65 to the controller 45 via the field network cable 53.
  • the controller 45 determines the rotation position of the Y-axis linear motor 41 (moving position of the X-axis slide mechanism 27A in the Y-axis direction) based on the encoder signal of the linear scale 61, and determines the determined control content in the Y-axis linear. Notify the servo amplifier 46.
  • the Y-axis linear servo amplifier 46 is connected to the Y-axis linear motor 41 by a power line 69, for example, and can control the electric power supplied to the Y-axis linear motor 41.
  • the Y-axis linear servo amplifier 46 controls the electric power supplied to the Y-axis linear motor 41 based on the control content received from the controller 45, and controls the operation of the Y-axis linear motor 41.
  • the head moving mechanism 27 moves the X-axis slide mechanism 27A to an arbitrary position in the Y direction in response to the drive of the Y-axis linear motor 41.
  • the X-axis linear servo amplifier 47 controls the X-axis linear motor 43 of the head moving mechanism 27.
  • the head moving mechanism 27 is provided with a linear scale 71 that detects the position of the head portion 25 that moves on the guide rail along the X-axis direction in response to the drive of the X-axis linear motor 43.
  • the linear scale 71 is connected to the protocol conversion device 75 via an encoder cable 73.
  • the protocol conversion device 75 is connected to the multiplexing communication device 59 via an encoder cable 77.
  • the encoder signal of the linear scale 71 is output to the multiplexing communication device 59 via the protocol conversion device 75 and the encoder cable 77.
  • the X-axis linear servo amplifier 47 is connected to the X-axis linear motor 43 via a power line 79.
  • the controller 45 controls the electric power supplied from the X-axis linear servo amplifier 47 to the X-axis linear motor 43 based on the encoder signal of the linear scale 71, and controls the operation of the X-axis linear motor 43.
  • the head moving mechanism 27 moves the head portion 25 to an arbitrary position in the X direction in response to the drive of the X-axis linear motor 43.
  • the plurality of rotary type servomotors 51 (hereinafter, may be referred to as "servomotors”) have, for example, a plurality of output shafts corresponding to each rotary type servomotor 51, and the suction nozzle of the head portion 25 is Z. Move in the axial direction, rotate around the Z axis, etc.
  • the rotary encoder 81 provided in each of the plurality of rotary servomotors 51 outputs an encoder signal such as the rotation position of each rotary servomotor 51 to the multiplexing communication device 59 via the encoder cable 83.
  • the multi-axis rotary servo amplifier 48 controls each of the plurality of rotary servo motors 51 based on the encoder signals received via the multiplex communication devices 57 and 59.
  • the rotary type servomotor 51 is a servomotor driven by a three-phase AC having coils of U-phase, V-phase, and W-phase.
  • the coils of each phase of the rotary servomotor 51 are connected to the multi-axis rotary servo amplifier 48 via the power line 85.
  • the rotary servomotor 51 is driven by a three-phase alternating current supplied from the multi-axis rotary servo amplifier 48 through the power line 85.
  • the configuration of the multiplex communication system shown in FIG. 3 is an example.
  • the multiplex communication devices 57 and 59 may transmit and receive data of a camera (parts camera or the like), a sensor, a relay, a switch, etc. included in the head portion 25 by multiplexing the frame data FRMD.
  • the multiplex communication devices 57 and 59 may multiplex and transmit / receive only the data of the protocol conversion device 65 and the protocol conversion device 75.
  • the component mounting machine 20 may transmit and receive the data of the rotary encoder 81 on a line different from the multiplex communication.
  • the protocol conversion devices 65 and 75 included in the component mounting machine 20 of the present embodiment will be described.
  • the linear scales 61 and 71 of the present embodiment are connected to the multiplexing communication device 59 via the protocol conversion devices 65 and 75.
  • the protocol conversion devices 65 and 75 are devices that convert between the data communication protocol transmitted and received by the encoder cables 63 and 73 and the data communication protocol transmitted and received by the encoder cables 67 and 77.
  • the protocol conversion devices 65 and 75 have the same configuration as each other. Therefore, in the following description, the protocol conversion device 65 will be mainly described, and the description of the protocol conversion device 75 will be omitted as appropriate. Further, the same components of FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • FIG. 4 shows the connection configuration of the protocol conversion device 65.
  • the protocol conversion device 65 is connected to the linear scale 61 via the encoder cable 63.
  • the protocol conversion device 65 includes a first interface 91 for connecting the encoder cable 63.
  • the first interface 91 is, for example, an interface for executing serial communication of the RS-485 communication standard.
  • the linear scale 61 transmits data to and from the protocol conversion device 65 by communication conforming to the first communication protocol CP1.
  • the first communication protocol CP1 is, for example, a communication protocol compliant with the communication standard of EnDat (registered trademark).
  • the linear scale 61 transmits and receives, for example, position information D1, error message D2, and diagnostic data D3 to and from the protocol conversion device 65 based on the data of the first communication protocol CP1.
  • the first communication protocol CP1 is not limited to EnDat (registered trademark), and may be another communication protocol that can be used with the linear scale 61.
  • the position information D1 is, for example, an encoder signal indicating a position (Y coordinate value) in the Y-axis direction detected by the linear scale 61.
  • the error message D2 is, for example, an error message when an erroneous Y coordinate position is detected, a warning message when an operation exceeding the allowable range of the internal parameters of the linear scale 61 is detected, and the like.
  • the diagnostic data D3 is data that can diagnose (can be used for diagnosis) the operating state of the linear scale 61 and the Y-axis linear motor 41.
  • the diagnostic data D3 is, for example, a value that evaluates the operation of the head of the linearly moving linear scale 61 scanning the scale (read portion), a value that evaluates the gap between the linear head and the scale, and the like.
  • the protocol conversion device 65 is connected to the Y-axis linear servo amplifier 46 via the encoder cable 94.
  • the encoder cable 94 is a representation of a communication line including the encoder cable 67 shown in FIG. 3, multiplex communication (multiplex communication devices 57, 59), and encoder cable 55.
  • the protocol conversion device 65 includes a second interface 93 for connecting the encoder cable 94 (the encoder cable 67 in the configuration of FIG. 3).
  • the second interface 93 is, for example, an interface for executing serial communication of the RS-485 communication standard.
  • the protocol conversion device 65 transmits data to and from the Y-axis linear servo amplifier 46 by communication conforming to the second communication protocol CP2.
  • the second communication protocol CP2 is a communication protocol that can be used in the Y-axis linear servo amplifier 46, and is a communication protocol different from the first communication protocol CP1 of the linear scale 61 (encoder cable 63).
  • the second communication protocol CP2 is, for example, a communication protocol conforming to the communication standard of ⁇ -LINK (registered trademark) -I.
  • the second communication protocol CP2 is not limited to ⁇ -LINK (registered trademark) -I, and may be another communication protocol that can be used in the servo amplifier.
  • the protocol conversion device 65 includes a conversion processing unit 95 as a processing circuit for converting a communication protocol.
  • the conversion processing unit 95 is, for example, a processing block constructed by a field programmable gate array (FPGA) 97.
  • the protocol conversion device 65 reads the configuration information from the ROM (not shown) included in the protocol conversion device 65 and constructs the processing block of the conversion processing unit 95.
  • the conversion processing unit 95 protocol-converts the data of the first communication protocol CP1 input from the first interface 91 into the data of the second communication protocol CP2, and outputs the data from the second interface 93.
  • the logic circuit for constructing the conversion processing unit 95 of the present disclosure is not limited to the FPGA 97, and may be another logic circuit such as a programmable logic device (PLD) or a composite programmable logic device (CPLD). Further, the conversion processing unit 95 is not limited to a logic circuit, and may be, for example, an integrated circuit (ASIC) for a specific application specialized in processing communication data. Further, the conversion processing unit 95 may execute the program on the CPU and execute the protocol conversion by software processing. Further, the conversion processing unit 95 may have a configuration in which a logic circuit, an ASIC, and software processing are combined.
  • PLD programmable logic device
  • CPLD composite programmable logic device
  • the Y-axis linear servo amplifier 46 of the present embodiment is manufactured by, for example, a manufacturer different from the manufacturer of the linear scale 61.
  • the types of data supported by the linear scale 61 (first communication protocol CP1) and the types of data supported by the Y-axis linear servo amplifier 46 (second communication protocol CP2) are different. In this case, information may be lost due to protocol conversion.
  • the Y-axis linear servo amplifier 46 uses, for example, diagnostic data D3 among the three data (position information D1, error message D2, and diagnostic data D3) included in the data of the first communication protocol CP1. Not supported. Therefore, even if the protocol conversion device 65 converts the diagnostic data D3 into a protocol, it cannot be output from the second interface 93, or even if it is output, the Y-axis linear servo amplifier 46 cannot be processed. The diagnostic data D3 may be lost by protocol conversion due to the difference in communication protocol.
  • the protocol conversion device 65 of the present embodiment includes a third interface 99 as an interface for outputting the diagnostic data D3 that may be lost due to the protocol conversion on another line.
  • the third interface 99 is connected to the controller 45 via the communication cable 101.
  • the protocol conversion device 65 transmits the diagnostic data D3 to the controller 45 via the third interface 99 and the communication cable 101.
  • the communication method for transmitting the diagnostic data D3 is not particularly limited, but for example, a communication method by communication of an industrial network can be adopted.
  • the industrial network referred to here is, for example, EtherCAT (registered trademark).
  • the industrial network of the present disclosure is not limited to EtherCAT (registered trademark), and other industrial networks (communication standards) such as MECHATROLINK (registered trademark) -III and Profinet (registered trademark) can be adopted.
  • the FPGA 97 includes, for example, an IP core that functions as a slave of EtherCAT (registered trademark), and can communicate with the master (not shown) of the controller 45 via the communication cable 101.
  • the FPGA 97 controls the slave, writes the diagnostic data D3 in the communication data writing area of EtherCAT (registered trademark), and transmits the diagnostic data D3 to the controller 45.
  • the controller 45 can perform control based on the diagnostic data D3 by reading the diagnostic data D3 from the communication data received by the master.
  • the communication cable 101 may have multiplex communication in which a part or all of the communication is via the multiplex communication devices 57 and 59.
  • the diagnostic data D3 may be multiplexed and transmitted to the frame data FRMD together with the position information D1, the error message D2, the signal of the rotary encoder 81, and the like.
  • the protocol conversion device 65 and the multiplexing communication device 59 are connected by a communication cable 101 to multiplex the diagnostic data D3.
  • the multiplexing communication device 57 may output the diagnostic data D3 separated from the frame data FRMD to the controller 45.
  • the communication for transmitting the diagnostic data D3 is not limited to the wired communication, and may be wireless communication.
  • FIG. 6 shows the connection configuration of the protocol conversion device 65 of the comparative example.
  • the protocol conversion device 65 does not have an interface for outputting the diagnostic data D3
  • the diagnostic data D3 is discarded by the protocol conversion device 65 or the like. Further, even if the diagnostic data D3 is output from the second interface 93, it will be discarded on the Y-axis linear servo amplifier 46 side. As a result, the protocol conversion causes the loss of diagnostic data D3, which is not supported by the second communication protocol CP2.
  • FIG. 7 shows the connection configuration of the second comparative example.
  • the linear scale 61 includes a processing circuit (eg, ASIC) capable of performing protocol conversion.
  • the linear scale 61 converts, for example, the data of the first communication protocol CP1 compliant with the communication standard of EnDat (registered trademark) into the second communication protocol CP2 compliant with the communication standard of ⁇ -LINK (registered trademark) -I. Then output to the encoder cable 94. Also in this case, there is no interface for outputting the diagnostic data D3, and the diagnostic data D3 is discarded on the linear scale 61. Further, even if the diagnostic data D3 is output from the linear scale 61, it will be discarded on the Y-axis linear servo amplifier 46 side.
  • the protocol conversion device 65 of the present embodiment converts the data of the first communication protocol CP1 (position information D1, error message D2) into the data of the second communication protocol CP2. Output to the Y-axis linear servo amplifier 46.
  • the Y-axis linear servo amplifier 46 transfers the power of the Y-axis linear motor 41 based on the position information D1 received from the linear scale 61 and the command input from the controller 45 via the field network cable 53. Can be controlled (feedback control, etc.). Further, the controller 45 can execute an error notification to the user based on the error message D2 input from the Y-axis linear servo amplifier 46 via the field network cable 53.
  • the operation display device 105 is connected to the controller 45 via the communication cable 103.
  • the communication cable 103 is, for example, a communication cable that performs communication conforming to the RS-232C standard.
  • the operation display device 105 is provided on the front surface of the device of the component mounting machine 20, for example, and includes a touch panel, an operation switch, and the like.
  • the controller 45 Based on the error message D2 input from the Y-axis linear servo amplifier 46, the controller 45 displays an error message for notifying the operation error of the Y-axis linear motor 41 and a warning message for notifying the abnormality of the detection position. It can be displayed on 105.
  • the protocol conversion device 65 transmits the diagnostic data D3, which may be lost by the protocol conversion, to the controller 45 via the industrial network (communication cable 101).
  • the controller 45 can determine the operating state of the linear scale 61 and the Y-axis linear motor 41 based on the diagnostic data D3, and can predict a failure based on the determination result. For example, when the controller 45 detects that the operation abnormality of the linear scale 61 or the Y-axis linear motor 41 is increasing based on the diagnostic data D3, or is predicted to increase (linear scale 61). (It is expected that a failure will occur), a message requesting maintenance and a message prompting the replacement of parts can be displayed on the operation display device 105.
  • the controller 45 detects that the gap between the linear head and the scale is fluctuating based on the diagnostic data D3, the controller 45 indicates that the width of the gap, the fixed state of the head, etc. should be confirmed. It may be displayed on the device 105. Further, when the controller 45 detects a decrease in sensitivity of the linear scale 61 (decrease in output value, etc.) based on the diagnostic data D3, the controller 45 displays on the operation display device 105 that the sensitivity should be adjusted. Is also good. As a result, the user can perform appropriate maintenance such as inspection, adjustment, and parts replacement of the linear scale 61 and the Y-axis linear motor 41. It is possible to prevent stopping due to an abnormal operation.
  • the diagnostic data D3 that diagnoses the operating state of the linear scale 61 is used as the unconverted information.
  • the operating state of the linear scale 61 can be determined by processing the diagnostic data D3 in the controller 45 connected to the third interface 99. It is possible to detect an operation abnormality of the linear scale 61, which could not be detected when the diagnostic data D3 was lost, based on the diagnostic data D3.
  • the content of the processing based on the above-mentioned diagnostic data D3 is an example.
  • the controller 45 may transmit the diagnostic data D3 to the management computer 15 shown in FIG. Further, the controller 45 may transmit the determination result based on the diagnostic data D3 to the management computer 15. Further, when the controller 45 detects a decrease in sensitivity based on the diagnostic data D3, the controller 45 may automatically adjust the sensitivity by changing the amplification factor of the amplifier included in the linear scale 61 or the like.
  • the types of protocols of the first communication protocol CP1 and the second communication protocol CP2 described above are examples, and various communication protocols capable of transmitting the encoder signal of the linear scale 61 can be adopted.
  • the content of data transmitted / received by the first communication protocol CP1 and the second communication protocol CP2 is also an example.
  • the unconverted information of the present disclosure is not limited to the diagnostic data D3. Therefore, any information that may be lost due to the difference between the first communication protocol CP1 and the second communication protocol CP2 and that can be utilized by a device other than the Y-axis linear servo amplifier 46 such as the controller 45 is disclosed in the present disclosure. It may be transmitted to the outside from the third interface 99 as unconverted information.
  • FIG. 5 shows a connection configuration of another example protocol conversion device 65A.
  • the protocol conversion device 65A may be provided in the controller 45.
  • the first interface 91 of the protocol conversion device 65A and the linear scale 61 may be connected to the encoder cable 63, that is, the linear scale 61 may be connected to the controller 45.
  • the encoder cable 63 may be a communication path via multiplex communication (multiplex communication devices 57, 59).
  • the linear scale 61 and the controller 45 may be directly connected by a communication cable conforming to the communication standard of EnDat (registered trademark).
  • the third interface 99 of the protocol conversion device 65A is connected to the CPU 107 included in the controller 45 via the communication bus 109.
  • the communication bus 109 is, for example, an Avalon® bus.
  • the CPU 107 can receive the diagnostic data D3 from the protocol conversion device 65A via the communication bus 109. Therefore, the communication line for transmitting the diagnostic data D3 is not limited to the wired communication cable 101 (see FIG. 4), but may be a CPU bus such as the communication bus 109. Also in this case, the controller 45 can determine the operating state of the linear scale 61 from the diagnostic data D3 received from the protocol conversion device 65A to the CPU 107.
  • an interface that outputs diagnostic data D3 can be adopted by communication via an industrial network or a bus. According to this, the diagnostic data D3 can be output to an external device and processed by the communication of the industrial network or the bus.
  • the component mounting machine 20 of the present embodiment includes protocol conversion devices 65 and 65A, and executes control based on the data (position information D1, error message D2) of the second communication protocol CP2 and the diagnostic data D3. According to this, while performing the work based on the data of the second communication protocol CP2, the diagnostic data D3 which is not supported by the device (Y-axis linear servo amplifier 46) connected to the second interface 93 is utilized. It is possible to execute processing such as determination of the operating state.
  • the component mounting machine 20 is connected to the third interface 99, inputs diagnostic data D3, predicts a failure of the linear scale 61 based on the input diagnostic data D3, and executes a response according to the predicted result.
  • the controller 45 is provided. According to this, the controller 45 connected to the third interface 99 can predict the failure of the linear scale 61 and take an appropriate response (prompting the replacement of the linear scale 61, etc.) according to the predicted result. For example, it is possible to give notice of a failure of the linear scale 61, control to prevent the failure (sensitivity adjustment, etc.), and notify specific measures to prevent the failure (confirmation of a gap, etc.).
  • the component mounting machine 20 is connected to the Y-axis linear motor 41, the linear scale 61, and the second interface 93, and is connected to the second interface 93, and the Y-axis linear is based on the linear scale signal (position information D1 or the like) detected by the linear scale 61. It includes a Y-axis linear servo amplifier 46 that controls the operation of the motor 41. According to this, communication between the linear scale 61 and the Y-axis linear servo amplifier 46 is performed while the protocol conversion device 65 converts the protocol. The diagnostic data D3 that is not converted by this protocol conversion is output from the protocol conversion device 65.
  • the protocol conversion device 65 diagnoses it. It can be output as data D3.
  • Information on the Y-axis linear motor 41 and the linear scale 61 can be detected and processed from the diagnostic data D3.
  • the protocol conversion device 65A shown in FIG. 5 may output an error message D2 to the CPU 107 via the communication bus 109, for example.
  • the controller 45 can execute processing based on the error message D2 (display processing of the operation display device 105, etc.).
  • the protocol conversion device 65A may output the error message D2 to the CPU 107 in the first communication protocol CP1 format, or may convert the error message D2 into the second communication protocol CP2 and then output the error message D2 to the CPU 107.
  • the protocol conversion device 65A is connected to the Y-axis linear servo amplifier 46 by the encoder cable 111 connected to the second interface 93.
  • the encoder cable 111 is, for example, a communication cable arranged in the device main body 21 (see FIG. 3) and connecting the controller 45 and the Y-axis linear servo amplifier 46.
  • the protocol conversion device 65A outputs the position information D1 converted to the second communication protocol CP2 to the Y-axis linear servo amplifier 46 via the encoder cable 111.
  • the Y-axis linear servo amplifier 46 can execute the control of the Y-axis linear motor 41 based on the position information D1.
  • the protocol conversion device 65A may convert the error message D2 into the data of the second communication protocol CP2 and output it to the Y-axis linear servo amplifier 46 via the encoder cable 111.
  • the parts mounting machine 20 is an example of a working machine.
  • the Y-axis linear motor 41 and the X-axis linear motor 43 are examples of linear motors.
  • the controller 45 is an example of a processing device.
  • the Y-axis linear servo amplifier 46 and the X-axis linear servo amplifier 47 are examples of servo amplifiers.
  • the linear scales 61 and 71 are examples of devices to be converted.
  • the diagnostic data D3 is an example of unconverted information.
  • the protocol conversion device 65 converts the data of the first interface 91 for inputting the data of the first communication protocol CP1 from the linear scale 61 and the data of the first communication protocol CP1 into the data of the second communication protocol CP2.
  • a conversion processing unit 95 for conversion is provided.
  • the protocol conversion device 65 outputs diagnostic data D3 that does not execute protocol conversion from the third interface 99 to the controller 45.
  • the protocol conversion device 65 converts the data of the first communication protocol CP1 input from the linear scale 61 to be converted into the data of the second communication protocol CP2 and outputs the data from the second interface 93. Further, the protocol conversion device 65 uses the third interface 99 to provide diagnostic data D3 that is included in the data of the first communication protocol CP1 before conversion but is not included in the data of the second communication protocol CP2 after conversion. Output from. As a result, the diagnostic data D3 that is not converted by the protocol conversion of the conversion processing unit 95 can be output from the third interface 99 to the controller 45. Therefore, even if the information not supported by the second communication protocol CP2 is included in the data of the first communication protocol CP1, the information can be transferred to the device connected to the third interface 99 as unconverted information.
  • the present disclosure is not limited to the above-described embodiment, and various improvements and changes can be made without departing from the spirit of the present disclosure.
  • the component mounting machine 20 does not have to be provided with a multiplex communication system (multiplex communication devices 57, 59, etc.).
  • the Y-axis linear servo amplifier 46 and the protocol conversion device 65, the X-axis linear servo amplifier 47 and the protocol conversion device 75, the multi-axis rotary servo amplifier 48 and the rotary encoder 81 may be connected by separate wired cables. ..
  • the linear scales 61 and 71 are adopted as the device to be converted in the present disclosure, but the present invention is not limited to this.
  • the rotary encoder 81 may be adopted as the device to be converted.
  • a protocol conversion device 65 is provided between the rotary encoder 81 and the multiplex communication device 59, and is supported by the first communication protocol CP1 of the rotary encoder 81, and is supported by the second communication protocol CP2 of the multi-axis rotary servo amplifier 48. Unsupported unconverted information may be transmitted to the controller 45.
  • a sensor, a camera, or the like may be adopted as the device to be converted, and the protocol conversion device 65 may be provided between the non-control target such as the sensor and the control device that controls the sensor or the like. Then, the protocol conversion device 65 may transfer unconverted information that is not supported by the control device to another device.
  • linear scales 61 and 71 and the rotary encoder 81 may be, for example, an encoder of a method of serially transmitting data such as position information (serial transmission method), and transmit pulses of each phase of A, B, and Z in parallel.
  • An encoder of a method parallel transmission method
  • the component mounting machine 20 for mounting electronic components on the substrate 17 has been described as an example of the working machine of the present disclosure, but the present invention is not limited to this.
  • the working machine for example, a solder printing device for applying solder to the substrate 17, a machine tool for cutting or the like, an articulated robot provided with an arm, or the like may be adopted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

Provided are a protocol conversion device and a working machine with which, even when information on which protocol is to be converted contains information not supported by a converted communication protocol, the information can be output to another device. The protocol conversion device comprises: a first interface which inputs data of a first communication protocol from a device to be converted; a conversion processing unit which converts the data of the first communication protocol input by the first interface into data of a second communication protocol; a second interface which outputs the data of the second communication protocol that has been converted by the conversion processing unit; and a third interface which outputs unconverted information that is information contained in the data of the first communication protocol before conversion and is not contained in the data of the second communication protocol that has been converted by the conversion processing unit.

Description

プロトコル変換装置及び作業機Protocol converter and work equipment
 本開示は、通信プロトコルの変換を行うプロトコル変換装置及びそのプロトコル変換装置を備える作業機に関するものである。 The present disclosure relates to a protocol conversion device that converts a communication protocol and a working machine including the protocol conversion device.
 従来、異なる通信規格の通信プロトコルを変換する技術が種々提案されている。例えば、特許文献1には、石油処理や化学処理を行う処理プラントに係る技術が記載されている。特許文献1の処理プラントは、処理プラントで利用するスイッチ、センサ、コントローラなどで入出力されるビッグデータの分析を行う。処理プラントは、ゲートウェイを介して他の処理プラントと接続され、ビッグデータの送受信を行う。ゲートウェイは、異なる処理プラント間で、通信プロトコルの変換を行ってデータを送受信する。 Conventionally, various technologies for converting communication protocols of different communication standards have been proposed. For example, Patent Document 1 describes a technique relating to a processing plant that performs petroleum processing or chemical processing. The processing plant of Patent Document 1 analyzes big data input / output by switches, sensors, controllers and the like used in the processing plant. The processing plant is connected to other processing plants via a gateway to send and receive big data. The gateway converts the communication protocol between different processing plants to send and receive data.
特開2014-170552号公報Japanese Unexamined Patent Publication No. 2014-170552
 上記したゲートウェイのようなプロトコル変換装置を用いることで、通信プロトコルの異なる2つの装置、例えば第1装置と第2装置を接続することができる。この場合に、第1装置の通信プロトコルでサポートされている情報であっても、第2装置の通信プロトコルでサポートされていない情報が、プロトコル変換装置で変換されず破棄等される虞がある。しかしながら、第2装置の通信プロトコルでサポートされていない情報であっても他の装置で活用できる情報がある場合、その情報が消失されることが問題となる。 By using a protocol conversion device such as the gateway described above, it is possible to connect two devices having different communication protocols, for example, the first device and the second device. In this case, even if the information is supported by the communication protocol of the first device, the information not supported by the communication protocol of the second device may be discarded without being converted by the protocol conversion device. However, even if the information is not supported by the communication protocol of the second device, if there is information that can be utilized by another device, the problem is that the information is lost.
 本開示は、上記の課題に鑑みてなされたものであり、プロトコル変換する情報の中に変換後の通信プロトコルがサポートしていない情報が含まれていたとしても、その情報を他の装置へ出力できるプロトコル変換装置及び作業機を提供することを目的とする。 This disclosure has been made in view of the above problems, and even if the information to be converted into a protocol includes information that is not supported by the communication protocol after conversion, that information is output to another device. It is an object of the present invention to provide a protocol conversion device and a working machine capable of providing the same.
 上記課題を解決するために、本明細書は、変換対象の装置から第1通信プロトコルのデータを入力する第1インタフェースと、前記第1インタフェースで入力した前記第1通信プロトコルのデータを第2通信プロトコルのデータに変換する変換処理部と、前記変換処理部で変換した後の前記第2通信プロトコルのデータを出力する第2インタフェースと、変換前の前記第1通信プロトコルのデータに含まれている情報で、前記変換処理部で変換した後の前記第2通信プロトコルのデータに含まれていない情報である未変換情報を出力する第3インタフェースと、を備えるプロトコル変換装置を開示する。 In order to solve the above problems, in the present specification, the first interface for inputting the data of the first communication protocol from the device to be converted and the data of the first communication protocol input by the first interface are secondly communicated. It is included in the conversion processing unit that converts to protocol data, the second interface that outputs the data of the second communication protocol after conversion by the conversion processing unit, and the data of the first communication protocol before conversion. A protocol conversion device including a third interface for outputting unconverted information, which is information not included in the data of the second communication protocol after being converted by the conversion processing unit, is disclosed.
 なお、本開示の内容は、プロトコル変換装置としての実施だけでなく、プロトコル変換装置を備える作業機として実施しても有益である。 It should be noted that the content of the present disclosure is useful not only as a protocol conversion device but also as a working machine equipped with a protocol conversion device.
 本開示のプロトコル変換装置、作業機によれば、変換処理部のプロトコル変換で変換されない未変換情報を、第3インタフェースから出力することができる。従って、第2通信プロトコルでサポートしていない情報が第1通信プロトコルのデータに含まれていたとしても、その情報を未変換情報として第3インタフェースに接続された装置へ転送できる。 According to the protocol conversion device and the working machine of the present disclosure, unconverted information that is not converted by the protocol conversion of the conversion processing unit can be output from the third interface. Therefore, even if the information not supported by the second communication protocol is included in the data of the first communication protocol, the information can be transferred to the device connected to the third interface as unconverted information.
本実施形態の部品装着システムの概略構成を示す平面図である。It is a top view which shows the schematic structure of the component mounting system of this embodiment. 部品装着機及びローダの概略構成を示す斜視図である。It is a perspective view which shows the schematic structure of the component mounting machine and a loader. 部品装着機の多重通信システムを説明するためのブロック図である。It is a block diagram for demonstrating the multiplex communication system of a component mounting machine. プロトコル変換装置の接続構成を示すブロック図である。It is a block diagram which shows the connection structure of a protocol conversion apparatus. 別例のプロトコル変換装置の接続構成を示すブロック図である。It is a block diagram which shows the connection structure of the protocol conversion apparatus of another example. 比較例のプロトコル変換装置の接続構成を示すブロック図である。It is a block diagram which shows the connection structure of the protocol conversion apparatus of the comparative example. 第2比較例の接続構成を示すブロック図である。It is a block diagram which shows the connection structure of the 2nd comparative example.
 以下、本開示の一実施形態について図面を参照しながら説明する。図1は、本実施形態の部品装着システム10の概略構成を示す平面図である。図2は、部品装着機20及びローダ13の概略構成を示す斜視図である。なお、以下の説明では、図1の左右方向をX方向と称し、上下方向(前後方向)をY方向と称し、X方向及びY方向に垂直な方向をZ方向と称して説明する。 Hereinafter, one embodiment of the present disclosure will be described with reference to the drawings. FIG. 1 is a plan view showing a schematic configuration of the component mounting system 10 of the present embodiment. FIG. 2 is a perspective view showing a schematic configuration of the component mounting machine 20 and the loader 13. In the following description, the left-right direction of FIG. 1 will be referred to as the X direction, the vertical direction (front-back direction) will be referred to as the Y direction, and the X direction and the direction perpendicular to the Y direction will be referred to as the Z direction.
 図1に示すように、部品装着システム10は、生産ライン11と、ローダ13と、管理コンピュータ15とを備えている。生産ライン11は、X方向に並べられた複数の部品装着機20を有し、基板17に対する電子部品の装着等を行う。基板17は、例えば、図1に示す左側の部品装着機20から右側の部品装着機20へと搬出され、搬送中に電子部品の装着等を実行される。 As shown in FIG. 1, the component mounting system 10 includes a production line 11, a loader 13, and a management computer 15. The production line 11 has a plurality of component mounting machines 20 arranged in the X direction, and mounts electronic components on the substrate 17. For example, the substrate 17 is carried out from the component mounting machine 20 on the left side shown in FIG. 1 to the component mounting machine 20 on the right side, and electronic components are mounted during the transportation.
 図2に示すように、部品装着機20は、装置本体部21と、基板搬送装置22と、フィーダ台23と、ヘッド部25と、ヘッド移動機構27とを備える。基板搬送装置22は、装置本体部21の上部に設けられ、基板17をX方向に搬送する。フィーダ台23は、装置本体部21の前面に設けられ、側面視がL字状の台である。フィーダ台23は、X方向に複数配列されたスロット(図示略)を備える。フィーダ台23の各スロットには、電子部品を供給するフィーダ29が装着される。フィーダ29は、例えば、電子部品を所定のピッチで収容するテープから電子部品を供給するテープフィーダである。 As shown in FIG. 2, the component mounting machine 20 includes an apparatus main body portion 21, a substrate transport device 22, a feeder base 23, a head portion 25, and a head moving mechanism 27. The substrate transfer device 22 is provided on the upper portion of the device main body 21, and conveys the substrate 17 in the X direction. The feeder table 23 is provided on the front surface of the device main body 21, and is an L-shaped table when viewed from the side. The feeder base 23 includes slots (not shown) arranged in a plurality of X directions. A feeder 29 for supplying electronic components is mounted in each slot of the feeder base 23. The feeder 29 is, for example, a tape feeder that supplies electronic components from a tape that houses the electronic components at a predetermined pitch.
 ヘッド部25は、フィーダ29から供給された電子部品を吸着する吸着ノズル(図示略)を備え、吸着ノズルで吸着した電子部品を基板17に装着する。ヘッド移動機構27は、装置本体部21上において、X方向及びY方向の任意の位置にヘッド部25を移動させる。詳述すると、ヘッド移動機構27は、ヘッド部25をX方向に移動させるX軸スライド機構27Aと、ヘッド部25をY方向に移動させるY軸スライド機構27Bとを備える。X軸スライド機構27Aは、Y軸スライド機構27Bに取り付けられている。Y軸スライド機構27Bは、駆動源としてY軸用リニアモータ41(図3)を有している。X軸スライド機構27Aは、Y軸用リニアモータ41の駆動に基づいてY方向の任意の位置に移動する。また、X軸スライド機構27Aは、駆動源としてX軸用リニアモータ43(図3)を有している。ヘッド部25は、X軸スライド機構27Aに取り付けられ、X軸用リニアモータ43の駆動に基づいてX方向の任意の位置に移動する。従って、ヘッド部25は、X軸スライド機構27A及びY軸スライド機構27Bの駆動にともなって装置本体部21上の任意の位置に移動する。 The head portion 25 includes a suction nozzle (not shown) that sucks the electronic component supplied from the feeder 29, and mounts the electronic component sucked by the suction nozzle on the substrate 17. The head moving mechanism 27 moves the head portion 25 to arbitrary positions in the X direction and the Y direction on the apparatus main body portion 21. More specifically, the head moving mechanism 27 includes an X-axis slide mechanism 27A that moves the head portion 25 in the X direction and a Y-axis slide mechanism 27B that moves the head portion 25 in the Y direction. The X-axis slide mechanism 27A is attached to the Y-axis slide mechanism 27B. The Y-axis slide mechanism 27B has a Y-axis linear motor 41 (FIG. 3) as a drive source. The X-axis slide mechanism 27A moves to an arbitrary position in the Y direction based on the drive of the Y-axis linear motor 41. Further, the X-axis slide mechanism 27A has an X-axis linear motor 43 (FIG. 3) as a drive source. The head portion 25 is attached to the X-axis slide mechanism 27A and moves to an arbitrary position in the X direction based on the drive of the X-axis linear motor 43. Therefore, the head portion 25 moves to an arbitrary position on the apparatus main body portion 21 as the X-axis slide mechanism 27A and the Y-axis slide mechanism 27B are driven.
 また、ヘッド部25は、X軸スライド機構27Aにコネクタを介して取り付けられ、ワンタッチで着脱可能であり、種類の異なるヘッド部25、例えば、ディスペンサヘッド等に変更できる。従って、本実施形態のヘッド部25は、装置本体部21に対して着脱可能となっている。また、ヘッド部25は、吸着ノズルを駆動するための駆動源として複数のロータリ型サーボモータ51(図3参照)を備える。ヘッド部25は、ロータリ型サーボモータ51を駆動することで、例えば、吸着ノズルをZ軸周りに回転、Z軸方向へ上下に移動、複数の吸着ノズルの位置の入れ替え等させる。 Further, the head portion 25 is attached to the X-axis slide mechanism 27A via a connector and can be attached and detached with one touch, and can be changed to a different type of head portion 25, for example, a dispenser head or the like. Therefore, the head portion 25 of the present embodiment is removable from the device main body portion 21. Further, the head portion 25 includes a plurality of rotary servomotors 51 (see FIG. 3) as a drive source for driving the suction nozzle. By driving the rotary servomotor 51, the head portion 25 rotates the suction nozzles around the Z-axis, moves them up and down in the Z-axis direction, replaces the positions of the plurality of suction nozzles, and the like.
 また、ヘッド部25には、例えば、基板17を撮影するためのマークカメラや吸着ノズルに吸着保持した電子部品を撮像するパーツカメラ(図示略)が固定されている。装置本体部21のコントローラ45(図3参照)は、マークカメラの画像を処理し、基板17に関する情報、装着位置の誤差等を取得する。また、コントローラ45は、パーツカメラの画像を処理し、吸着ノズルにおける電子部品の保持位置の誤差等を取得する。尚、上記したヘッド部25の構成は、一例である。ヘッド部25は、マークカメラなどの撮像装置に加え又は替えて各種のセンサ、リレー、スイッチ等を備えても良い。 Further, for example, a mark camera for photographing the substrate 17 and a parts camera (not shown) for photographing electronic parts sucked and held by the suction nozzle are fixed to the head portion 25. The controller 45 (see FIG. 3) of the device main body 21 processes the image of the mark camera and acquires information about the board 17, an error in the mounting position, and the like. Further, the controller 45 processes the image of the parts camera and acquires an error of the holding position of the electronic component in the suction nozzle. The configuration of the head portion 25 described above is an example. The head portion 25 may include various sensors, relays, switches, and the like in addition to or in place of an imaging device such as a mark camera.
 また、図2に示すように、部品装着機20の前面には、上部ガイドレール31と、下部ガイドレール33と、ラックギヤ35と、非接触給電コイル37とが設けられている。上部ガイドレール31は、X方向に延びる断面U字状のレールであり、開口部が下を向いている。下部ガイドレール33は、X方向に延びる断面L字状のレールであり、垂直面が部品装着機20の前面に取り付けられ、水平面が前方に伸び出している。ラックギヤ35は、下部ガイドレール33の下部に設けられ、X方向に延び、前面に複数の縦溝が刻まれたギヤである。部品装着機20の上部ガイドレール31、下部ガイドレール33及びラックギヤ35は、隣接する部品装着機20の上部ガイドレール31、下部ガイドレール33及びラックギヤ35と着脱可能に連結することができる。このため、部品装着機20は、生産ライン11に並んだ部品装着機20の数を増減することができる。非接触給電コイル37は、上部ガイドレール31の上部に設けられ、X方向に沿って配置されたコイルであり、ローダ13への電力の供給を行う。 Further, as shown in FIG. 2, an upper guide rail 31, a lower guide rail 33, a rack gear 35, and a non-contact power feeding coil 37 are provided on the front surface of the component mounting machine 20. The upper guide rail 31 is a rail having a U-shaped cross section extending in the X direction, and the opening faces downward. The lower guide rail 33 is a rail having an L-shaped cross section extending in the X direction, a vertical surface is attached to the front surface of the component mounting machine 20, and a horizontal plane extends forward. The rack gear 35 is a gear provided in the lower part of the lower guide rail 33, extending in the X direction, and having a plurality of vertical grooves engraved on the front surface. The upper guide rail 31, lower guide rail 33, and rack gear 35 of the component mounting machine 20 can be detachably connected to the upper guide rail 31, lower guide rail 33, and rack gear 35 of the adjacent component mounting machine 20. Therefore, the component mounting machine 20 can increase or decrease the number of the component mounting machines 20 lined up on the production line 11. The non-contact power feeding coil 37 is a coil provided above the upper guide rail 31 and arranged along the X direction, and supplies electric power to the loader 13.
 ローダ13は、部品装着機20に対するフィーダ29の補充及び回収を自動で行う装置であり、フィーダ29をクランプする把持部(図示略)を備える。ローダ13には、上部ガイドレール31に挿入される上部ローラ(図示略)と、下部ガイドレール33に挿入される下部ローラ(図示略)とが設けられている。また、ローダ13には、駆動源としてモータが設けられている。モータの出力軸には、ラックギヤ35と噛み合うギヤが取り付けられている。ローダ13は、部品装着機20の非接触給電コイル37から電力の供給を受ける受電コイルを備えている。ローダ13は、非接触給電コイル37から受電した電力をモータに供給する。これにより、ローダ13は、モータによってギヤを回転させることで、X方向(左右方向)へ移動することができる。また、ローダ13は、上部ガイドレール31及び下部ガイドレール33内でローラを回転させ、上下方向や前後方向の位置を保持しながらX方向へ移動することができる。 The loader 13 is a device that automatically replenishes and collects the feeder 29 from the component mounting machine 20, and includes a grip portion (not shown) that clamps the feeder 29. The loader 13 is provided with an upper roller (not shown) inserted into the upper guide rail 31 and a lower roller (not shown) inserted into the lower guide rail 33. Further, the loader 13 is provided with a motor as a drive source. A gear that meshes with the rack gear 35 is attached to the output shaft of the motor. The loader 13 includes a power receiving coil that receives power from the non-contact power feeding coil 37 of the component mounting machine 20. The loader 13 supplies the electric power received from the non-contact power feeding coil 37 to the motor. As a result, the loader 13 can move in the X direction (left-right direction) by rotating the gear with the motor. Further, the loader 13 can rotate the rollers in the upper guide rail 31 and the lower guide rail 33 and move in the X direction while maintaining the positions in the vertical direction and the front-rear direction.
 図1に示す管理コンピュータ15は、部品装着システム10を統括的に管理する装置である。例えば、生産ライン11の部品装着機20は、管理コンピュータ15の管理に基づいて、電子部品の装着作業を開始する。部品装着機20は、基板17を搬送しながらヘッド部25によって電子部品の装着作業を行う。また、管理コンピュータ15は、フィーダ29の残りの電子部品の数を監視する。管理コンピュータ15は、例えば、フィーダ29の補給が必要であると判断すると、補給が必要な部品種を収容したフィーダ29をローダ13にセットする指示を画面に表示する。ユーザは、画面を確認して、フィーダ29をローダ13にセットする。管理コンピュータ15は、所望のフィーダ29がローダ13にセットされたことを検出すると、ローダ13に対して補給作業の開始を指示する。ローダ13は、指示を受けた部品装着機20の前方まで移動し、ユーザによってセットされたフィーダ29を把持部で挟持してフィーダ台23のスロットに装着する。これにより、新たなフィーダ29が部品装着機20に補給される。また、ローダ13は、部品切れになったフィーダ29を把持部で挟持してフィーダ台23から引き出して回収する。このようにして、新たなフィーダ29の補給及び部品切れとなったフィーダ29の回収を、ローダ13によって自動的行うことができる。 The management computer 15 shown in FIG. 1 is a device that comprehensively manages the component mounting system 10. For example, the component mounting machine 20 of the production line 11 starts the electronic component mounting work based on the management of the management computer 15. The component mounting machine 20 performs mounting work of electronic components by the head portion 25 while transporting the substrate 17. The management computer 15 also monitors the number of remaining electronic components in the feeder 29. When the management computer 15 determines that the feeder 29 needs to be replenished, for example, the management computer 15 displays an instruction on the screen for setting the feeder 29 containing the parts type that needs to be replenished in the loader 13. The user confirms the screen and sets the feeder 29 in the loader 13. When the management computer 15 detects that the desired feeder 29 is set in the loader 13, the management computer 15 instructs the loader 13 to start the replenishment work. The loader 13 moves to the front of the component mounting machine 20 instructed, sandwiches the feeder 29 set by the user with the grip portion, and mounts the feeder 29 in the slot of the feeder base 23. As a result, a new feeder 29 is replenished to the component mounting machine 20. Further, the loader 13 holds the feeder 29, which has run out of parts, between the gripping portions and pulls it out from the feeder base 23 to collect it. In this way, the loader 13 can automatically replenish the new feeder 29 and collect the out-of-parts feeder 29.
 次に、部品装着機20が備える多重通信システムについて説明する。図3は、部品装着機20に適用される多重通信システムの構成を示すブロック図である。部品装着機20の装置本体部21は、部品装着機20を設置する場所に固定的に設けられる。上記したX軸スライド機構27A、Y軸スライド機構27B及びヘッド部25は、装置本体部21に対して相対的に可動するヘッド移動機構27に設けられ、上記したY軸用リニアモータ41、X軸用リニアモータ43、複数のロータリ型サーボモータ51などを備える。また、装置本体部21は、コントローラ45と、Y軸リニア用サーボアンプ46と、X軸リニア用サーボアンプ47と、多軸ロータリ用サーボアンプ48とを備える。 Next, the multiplex communication system included in the component mounting machine 20 will be described. FIG. 3 is a block diagram showing a configuration of a multiplex communication system applied to the component mounting machine 20. The device main body 21 of the component mounting machine 20 is fixedly provided at a place where the component mounting machine 20 is installed. The X-axis slide mechanism 27A, the Y-axis slide mechanism 27B, and the head portion 25 described above are provided in the head moving mechanism 27 that is relatively movable with respect to the device main body portion 21, and the Y-axis linear motor 41 and the X-axis described above are provided. A linear motor 43 for use, a plurality of rotary servomotors 51, and the like are provided. The apparatus main body 21 includes a controller 45, a Y-axis linear servo amplifier 46, an X-axis linear servo amplifier 47, and a multi-axis rotary servo amplifier 48.
 部品装着機20は、コントローラ45の制御に基づいてヘッド部25等を動作させ、基板17に対する電子部品の装着を行なう。コントローラ45は、CPU、RAM等を備えたコンピュータを主体として構成されている。コントローラ45は、フィールドネットワーク用ケーブル53によりY軸リニア用サーボアンプ46、X軸リニア用サーボアンプ47、多軸ロータリ用サーボアンプ48(以下、アンプ46,47,49という場合がある)のスレーブ回路(図示略)と接続されている。ここでいうフィールドネットワークとは、例えば、MECHATROLINK(登録商標)-IIIなどの産業用ネットワークであり、コントローラ45がマスターとなり、各アンプ46~48のスレーブ回路とデータの送受信を行うネットワークを構築し、配線の統合(削減)等を実現してネットワーク構築のコスト低減を図るものである。 The component mounting machine 20 operates the head portion 25 and the like based on the control of the controller 45 to mount the electronic components on the substrate 17. The controller 45 is mainly composed of a computer equipped with a CPU, RAM, and the like. The controller 45 is a slave circuit of a Y-axis linear servo amplifier 46, an X-axis linear servo amplifier 47, and a multi-axis rotary servo amplifier 48 (hereinafter, may be referred to as amplifiers 46, 47, 49) by means of a field network cable 53. (Not shown) is connected. The field network referred to here is, for example, an industrial network such as MECHATROLINK (registered trademark) -III, in which the controller 45 serves as the master and constructs a network for transmitting and receiving data to and from the slave circuits of the amplifiers 46 to 48. The purpose is to reduce the cost of network construction by realizing the integration (reduction) of wiring.
 アンプ46~48の各々は、エンコーダ用ケーブル55により多重通信装置57に接続されている。装置本体部21に設けられた多重通信装置57は、ヘッド移動機構27に設けられた多重通信装置59と多重通信用ケーブル60で接続されている。多重通信用ケーブル60は、例えばGigabit Etherenet(登録商標)の通信規格に準拠したLANケーブルやUSB(Universal Serial Bus)3.0の通信規格に準拠したUSBケーブルである。部品装着機20は、ヘッド移動機構27に設けられた各モータ(Y軸用リニアモータ41、X軸用リニアモータ43、ロータリ型サーボモータ51)のエンコーダ信号を多重通信装置59によりフレームデータFRMDに多重化し、多重通信用ケーブル60を介して多重通信装置57に送信する。多重通信装置57は、受信したフレームデータFRMDの多重化を解除し、各モータに対応するエンコーダ信号を分離する。多重通信装置57は、分離した個々のエンコーダ信号を対応するアンプ46~48に送信する。 Each of the amplifiers 46 to 48 is connected to the multiplexing communication device 57 by the encoder cable 55. The multiplex communication device 57 provided in the device main body 21 is connected to the multiplex communication device 59 provided in the head moving mechanism 27 by a multiplex communication cable 60. The multiplex communication cable 60 is, for example, a LAN cable compliant with the communication standard of Gigabit Ethernet (registered trademark) or a USB cable compliant with the communication standard of USB (Universal Serial Bus) 3.0. The component mounting machine 20 uses the multiplexing communication device 59 to convert the encoder signals of each motor (Y-axis linear motor 41, X-axis linear motor 43, rotary servomotor 51) provided in the head moving mechanism 27 into frame data FRMD. It is multiplexed and transmitted to the multiplexing communication device 57 via the multiplexing communication cable 60. The multiplexing communication device 57 demultiplexes the received frame data FRMD and separates the encoder signals corresponding to each motor. The multiplexing communication device 57 transmits the separated individual encoder signals to the corresponding amplifiers 46 to 48.
 コントローラ45は、アンプ46~48を介してヘッド移動機構27の各モータを制御する。Y軸リニア用サーボアンプ46は、ヘッド移動機構27のY軸用リニアモータ41を制御する。ヘッド移動機構27には、Y軸用リニアモータ41の駆動に応じてY軸方向に沿ったガイドレール上を移動するX軸スライド機構27Aの位置を検出するリニアスケール61が設けられている。リニアスケール61は、エンコーダ用ケーブル63を介してプロトコル変換装置65に接続されている。リニアスケール61は、例えば、Y軸リニア用サーボアンプ46から受信した問い合わせ情報に応じて、X軸スライド機構27AのY軸方向の位置(Y座標値)等のエンコーダ信号をプロトコル変換装置65に出力する。プロトコル変換装置65は、エンコーダ用ケーブル67を介して多重通信装置59と接続されている。プロトコル変換装置65は、多重通信装置57,59を介してリニアスケール61のエンコーダ信号をY軸リニア用サーボアンプ46に送信する。Y軸リニア用サーボアンプ46は、プロトコル変換装置65から受信したエンコーダ信号を、フィールドネットワーク用ケーブル53を介してコントローラ45に転送する。 The controller 45 controls each motor of the head moving mechanism 27 via amplifiers 46 to 48. The Y-axis linear servo amplifier 46 controls the Y-axis linear motor 41 of the head moving mechanism 27. The head moving mechanism 27 is provided with a linear scale 61 that detects the position of the X-axis slide mechanism 27A that moves on the guide rail along the Y-axis direction in response to the drive of the Y-axis linear motor 41. The linear scale 61 is connected to the protocol conversion device 65 via the encoder cable 63. The linear scale 61 outputs an encoder signal such as the position (Y coordinate value) of the X-axis slide mechanism 27A in the Y-axis direction to the protocol conversion device 65 in response to the inquiry information received from the Y-axis linear servo amplifier 46, for example. To do. The protocol conversion device 65 is connected to the multiplexing communication device 59 via an encoder cable 67. The protocol conversion device 65 transmits the encoder signal of the linear scale 61 to the Y-axis linear servo amplifier 46 via the multiplexing communication devices 57 and 59. The Y-axis linear servo amplifier 46 transfers the encoder signal received from the protocol conversion device 65 to the controller 45 via the field network cable 53.
 コントローラ45は、リニアスケール61のエンコーダ信号に基づいて、Y軸用リニアモータ41の回転位置等(X軸スライド機構27AのY軸方向の移動位置)を決定し、決定した制御内容をY軸リニア用サーボアンプ46に通知する。Y軸リニア用サーボアンプ46は、例えば、Y軸用リニアモータ41と動力線69で接続されており、Y軸用リニアモータ41に供給する電力を制御可能となっている。Y軸リニア用サーボアンプ46は、コントローラ45から受信した制御内容に基づいてY軸用リニアモータ41に供給する電力を制御し、Y軸用リニアモータ41の動作を制御する。ヘッド移動機構27は、Y軸用リニアモータ41の駆動に応じて、X軸スライド機構27AをY方向の任意の位置に移動させる。 The controller 45 determines the rotation position of the Y-axis linear motor 41 (moving position of the X-axis slide mechanism 27A in the Y-axis direction) based on the encoder signal of the linear scale 61, and determines the determined control content in the Y-axis linear. Notify the servo amplifier 46. The Y-axis linear servo amplifier 46 is connected to the Y-axis linear motor 41 by a power line 69, for example, and can control the electric power supplied to the Y-axis linear motor 41. The Y-axis linear servo amplifier 46 controls the electric power supplied to the Y-axis linear motor 41 based on the control content received from the controller 45, and controls the operation of the Y-axis linear motor 41. The head moving mechanism 27 moves the X-axis slide mechanism 27A to an arbitrary position in the Y direction in response to the drive of the Y-axis linear motor 41.
 同様に、X軸リニア用サーボアンプ47は、ヘッド移動機構27のX軸用リニアモータ43を制御する。ヘッド移動機構27には、X軸用リニアモータ43の駆動に応じてX軸方向に沿ったガイドレール上を移動するヘッド部25の位置を検出するリニアスケール71が設けられている。リニアスケール71は、エンコーダ用ケーブル73を介してプロトコル変換装置75に接続されている。プロトコル変換装置75は、エンコーダ用ケーブル77を介して多重通信装置59に接続されている。リニアスケール71のエンコーダ信号は、プロトコル変換装置75、エンコーダ用ケーブル77を介して多重通信装置59に出力される。X軸リニア用サーボアンプ47は、動力線79を介してX軸用リニアモータ43に接続されている。コントローラ45は、リニアスケール71のエンコーダ信号に基づいて、X軸リニア用サーボアンプ47からX軸用リニアモータ43に供給する電力を制御し、X軸用リニアモータ43の動作を制御する。ヘッド移動機構27は、X軸用リニアモータ43の駆動に応じて、ヘッド部25をX方向の任意の位置に移動させる。 Similarly, the X-axis linear servo amplifier 47 controls the X-axis linear motor 43 of the head moving mechanism 27. The head moving mechanism 27 is provided with a linear scale 71 that detects the position of the head portion 25 that moves on the guide rail along the X-axis direction in response to the drive of the X-axis linear motor 43. The linear scale 71 is connected to the protocol conversion device 75 via an encoder cable 73. The protocol conversion device 75 is connected to the multiplexing communication device 59 via an encoder cable 77. The encoder signal of the linear scale 71 is output to the multiplexing communication device 59 via the protocol conversion device 75 and the encoder cable 77. The X-axis linear servo amplifier 47 is connected to the X-axis linear motor 43 via a power line 79. The controller 45 controls the electric power supplied from the X-axis linear servo amplifier 47 to the X-axis linear motor 43 based on the encoder signal of the linear scale 71, and controls the operation of the X-axis linear motor 43. The head moving mechanism 27 moves the head portion 25 to an arbitrary position in the X direction in response to the drive of the X-axis linear motor 43.
 複数のロータリ型サーボモータ51(以下、「サーボモータ」という場合がある)は、例えば、各ロータリ型サーボモータ51に対応する複数の出力軸を有しており、ヘッド部25の吸着ノズルをZ軸方向へ移動、Z軸周りに回転等させる。複数のロータリ型サーボモータ51の各々に設けられたロータリエンコーダ81は、各ロータリ型サーボモータ51の回転位置などのエンコーダ信号を、エンコーダ用ケーブル83を介して多重通信装置59に出力する。多軸ロータリ用サーボアンプ48は、多重通信装置57,59を介して受信したエンコーダ信号に基づいて、複数のロータリ型サーボモータ51の各々を制御する。例えば、ロータリ型サーボモータ51は、U相、V相、W相の各相のコイルを有する三相交流で駆動するサーボモータである。ロータリ型サーボモータ51の各相のコイルは、動力線85を介して多軸ロータリ用サーボアンプ48に接続されている。ロータリ型サーボモータ51は、多軸ロータリ用サーボアンプ48から動力線85を通じて供給される三相交流に応じて駆動する。 The plurality of rotary type servomotors 51 (hereinafter, may be referred to as "servomotors") have, for example, a plurality of output shafts corresponding to each rotary type servomotor 51, and the suction nozzle of the head portion 25 is Z. Move in the axial direction, rotate around the Z axis, etc. The rotary encoder 81 provided in each of the plurality of rotary servomotors 51 outputs an encoder signal such as the rotation position of each rotary servomotor 51 to the multiplexing communication device 59 via the encoder cable 83. The multi-axis rotary servo amplifier 48 controls each of the plurality of rotary servo motors 51 based on the encoder signals received via the multiplex communication devices 57 and 59. For example, the rotary type servomotor 51 is a servomotor driven by a three-phase AC having coils of U-phase, V-phase, and W-phase. The coils of each phase of the rotary servomotor 51 are connected to the multi-axis rotary servo amplifier 48 via the power line 85. The rotary servomotor 51 is driven by a three-phase alternating current supplied from the multi-axis rotary servo amplifier 48 through the power line 85.
 尚、図3に示す多重通信システムの構成は、一例である。例えば、多重通信装置57,59は、ヘッド部25が備えるカメラ(パーツカメラなど)、センサ、リレー、スイッチ等のデータを、フレームデータFRMDに多重化して送受信しても良い。また、多重通信装置57,59は、プロトコル変換装置65やプロトコル変換装置75のデータのみを多重化して送受信しても良い。この場合、部品装着機20は、ロータリエンコーダ81のデータを、多重通信とは別回線で送受信しても良い。 The configuration of the multiplex communication system shown in FIG. 3 is an example. For example, the multiplex communication devices 57 and 59 may transmit and receive data of a camera (parts camera or the like), a sensor, a relay, a switch, etc. included in the head portion 25 by multiplexing the frame data FRMD. Further, the multiplex communication devices 57 and 59 may multiplex and transmit / receive only the data of the protocol conversion device 65 and the protocol conversion device 75. In this case, the component mounting machine 20 may transmit and receive the data of the rotary encoder 81 on a line different from the multiplex communication.
 次に、本実施形態の部品装着機20が備えるプロトコル変換装置65,75について説明する。上記したように本実施形態のリニアスケール61,71は、プロトコル変換装置65,75を介して多重通信装置59に接続されている。プロトコル変換装置65,75は、エンコーダ用ケーブル63,73で送受信されるデータの通信プロトコルと、エンコーダ用ケーブル67,77で送受信されるデータの通信プロトコルとを変換する装置である。プロトコル変換装置65,75は、互いに同様の構成となっている。このため、以下の説明では、主にプロトコル変換装置65について説明し、プロトコル変換装置75についての説明を適宜省略する。また、図3の同様の構成については、同一符号を付し、その説明を適宜省略する。 Next, the protocol conversion devices 65 and 75 included in the component mounting machine 20 of the present embodiment will be described. As described above, the linear scales 61 and 71 of the present embodiment are connected to the multiplexing communication device 59 via the protocol conversion devices 65 and 75. The protocol conversion devices 65 and 75 are devices that convert between the data communication protocol transmitted and received by the encoder cables 63 and 73 and the data communication protocol transmitted and received by the encoder cables 67 and 77. The protocol conversion devices 65 and 75 have the same configuration as each other. Therefore, in the following description, the protocol conversion device 65 will be mainly described, and the description of the protocol conversion device 75 will be omitted as appropriate. Further, the same components of FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
 図4は、プロトコル変換装置65の接続構成を示している。図4は、説明が繁雑となるのを避けるため、多重通信(多重通信装置59,57)の図示を省略している。図4に示すように、プロトコル変換装置65は、エンコーダ用ケーブル63を介してリニアスケール61と接続されている。プロトコル変換装置65は、エンコーダ用ケーブル63を接続するための第1インタフェース91を備えている。第1インタフェース91は、例えば、RS-485通信規格のシリアル通信を実行するインタフェースである。 FIG. 4 shows the connection configuration of the protocol conversion device 65. In FIG. 4, the illustration of multiplex communication (multiplex communication devices 59 and 57) is omitted in order to avoid complicated explanation. As shown in FIG. 4, the protocol conversion device 65 is connected to the linear scale 61 via the encoder cable 63. The protocol conversion device 65 includes a first interface 91 for connecting the encoder cable 63. The first interface 91 is, for example, an interface for executing serial communication of the RS-485 communication standard.
 リニアスケール61は、プロトコル変換装置65との間で第1通信プロトコルCP1に準拠した通信によりデータを伝送する。第1通信プロトコルCP1は、例えば、EnDat(登録商標)の通信規格に準拠した通信プロトコルである。リニアスケール61は、第1通信プロトコルCP1のデータにより、例えば、位置情報D1、エラーメッセージD2、診断用データD3をプロトコル変換装置65との間で送受信する。尚、第1通信プロトコルCP1は、EnDat(登録商標)に限らず、リニアスケール61で利用可能な他の通信プロトコルでも良い。 The linear scale 61 transmits data to and from the protocol conversion device 65 by communication conforming to the first communication protocol CP1. The first communication protocol CP1 is, for example, a communication protocol compliant with the communication standard of EnDat (registered trademark). The linear scale 61 transmits and receives, for example, position information D1, error message D2, and diagnostic data D3 to and from the protocol conversion device 65 based on the data of the first communication protocol CP1. The first communication protocol CP1 is not limited to EnDat (registered trademark), and may be another communication protocol that can be used with the linear scale 61.
 位置情報D1は、例えば、リニアスケール61で検出したY軸方向の位置(Y座標値)等を示すエンコーダ信号である。エラーメッセージD2は、例えば、誤ったY座標位置を検出した場合のエラーメッセージ、リニアスケール61の内部パラメータの許容範囲を超える動作を検出した場合の警告メッセージなどである。また、診断用データD3は、リニアスケール61やY軸用リニアモータ41の動作状態を診断可能な(診断に用いることができる)データである。診断用データD3は、例えば、直線移動するリニアスケール61のヘッドがスケール(被読取部)を走査する動作を評価した値、リニアヘッドとスケールとの間のギャップを評価した値などである。 The position information D1 is, for example, an encoder signal indicating a position (Y coordinate value) in the Y-axis direction detected by the linear scale 61. The error message D2 is, for example, an error message when an erroneous Y coordinate position is detected, a warning message when an operation exceeding the allowable range of the internal parameters of the linear scale 61 is detected, and the like. Further, the diagnostic data D3 is data that can diagnose (can be used for diagnosis) the operating state of the linear scale 61 and the Y-axis linear motor 41. The diagnostic data D3 is, for example, a value that evaluates the operation of the head of the linearly moving linear scale 61 scanning the scale (read portion), a value that evaluates the gap between the linear head and the scale, and the like.
 また、プロトコル変換装置65は、エンコーダ用ケーブル94を介してY軸リニア用サーボアンプ46と接続されている。このエンコーダ用ケーブル94は、図3に示すエンコーダ用ケーブル67、多重通信(多重通信装置57,59)、エンコーダ用ケーブル55を含む通信線を1つにまとめて図示したものである。プロトコル変換装置65は、エンコーダ用ケーブル94(図3の構成であればエンコーダ用ケーブル67)を接続するための第2インタフェース93を備えている。第2インタフェース93は、例えば、RS-485通信規格のシリアル通信を実行するインタフェースである。 Further, the protocol conversion device 65 is connected to the Y-axis linear servo amplifier 46 via the encoder cable 94. The encoder cable 94 is a representation of a communication line including the encoder cable 67 shown in FIG. 3, multiplex communication (multiplex communication devices 57, 59), and encoder cable 55. The protocol conversion device 65 includes a second interface 93 for connecting the encoder cable 94 (the encoder cable 67 in the configuration of FIG. 3). The second interface 93 is, for example, an interface for executing serial communication of the RS-485 communication standard.
 プロトコル変換装置65は、Y軸リニア用サーボアンプ46との間で第2通信プロトコルCP2に準拠した通信によりデータを伝送する。この第2通信プロトコルCP2は、Y軸リニア用サーボアンプ46で利用可能な通信プロトコルであり、リニアスケール61(エンコーダ用ケーブル63)の第1通信プロトコルCP1とは異なる通信プロトコルである。第2通信プロトコルCP2は、例えば、Σ-LINK(登録商標)-Iの通信規格に準拠した通信プロトコルである。尚、第2通信プロトコルCP2は、Σ-LINK(登録商標)-Iに限らず、サーボアンプで利用可能な他の通信プロトコルでも良い。 The protocol conversion device 65 transmits data to and from the Y-axis linear servo amplifier 46 by communication conforming to the second communication protocol CP2. The second communication protocol CP2 is a communication protocol that can be used in the Y-axis linear servo amplifier 46, and is a communication protocol different from the first communication protocol CP1 of the linear scale 61 (encoder cable 63). The second communication protocol CP2 is, for example, a communication protocol conforming to the communication standard of Σ-LINK (registered trademark) -I. The second communication protocol CP2 is not limited to Σ-LINK (registered trademark) -I, and may be another communication protocol that can be used in the servo amplifier.
 プロトコル変換装置65は、通信プロトコルを変換する処理回路として、変換処理部95を備えている。変換処理部95は、例えば、フィールドプログラマブルゲートアレイ(FPGA)97によって構築される処理ブロックである。プロトコル変換装置65は、例えば、プロトコル変換装置65が備えるROM(図示略)からコンフィグレーション情報を読み出して変換処理部95の処理ブロックを構築する。変換処理部95は、第1インタフェース91から入力した第1通信プロトコルCP1のデータを第2通信プロトコルCP2のデータにプロトコル変換し、第2インタフェース93から出力する。 The protocol conversion device 65 includes a conversion processing unit 95 as a processing circuit for converting a communication protocol. The conversion processing unit 95 is, for example, a processing block constructed by a field programmable gate array (FPGA) 97. The protocol conversion device 65, for example, reads the configuration information from the ROM (not shown) included in the protocol conversion device 65 and constructs the processing block of the conversion processing unit 95. The conversion processing unit 95 protocol-converts the data of the first communication protocol CP1 input from the first interface 91 into the data of the second communication protocol CP2, and outputs the data from the second interface 93.
 尚、本開示の変換処理部95を構築する論理回路は、FPGA97に限らず、例えば、プログラマブルロジックデバイス(PLD)、複合プログラマブルロジックデバイス(CPLD)といった他の論理回路でも良い。また、変換処理部95は、論理回路に限らず、例えば、通信データの処理に特化した特定用途向け集積回路(ASIC)でも良い。また、変換処理部95は、CPUでプログラムを実行しソフトウェア処理によりプロトコル変換を実行しても良い。また、変換処理部95は、論理回路、ASIC、ソフトウェア処理を組み合わせた構成でもよい。 The logic circuit for constructing the conversion processing unit 95 of the present disclosure is not limited to the FPGA 97, and may be another logic circuit such as a programmable logic device (PLD) or a composite programmable logic device (CPLD). Further, the conversion processing unit 95 is not limited to a logic circuit, and may be, for example, an integrated circuit (ASIC) for a specific application specialized in processing communication data. Further, the conversion processing unit 95 may execute the program on the CPU and execute the protocol conversion by software processing. Further, the conversion processing unit 95 may have a configuration in which a logic circuit, an ASIC, and software processing are combined.
 ここで、本実施形態のY軸リニア用サーボアンプ46は、例えば、リニアスケール61の製造メーカとは異なる製造メーカで製造されている。そして、リニアスケール61(第1通信プロトコルCP1)でサポートされているデータの種類と、Y軸リニア用サーボアンプ46(第2通信プロトコルCP2)でサポートされているデータの種類が異なっている。この場合、プロトコル変換によって情報が消失する場合がある。 Here, the Y-axis linear servo amplifier 46 of the present embodiment is manufactured by, for example, a manufacturer different from the manufacturer of the linear scale 61. The types of data supported by the linear scale 61 (first communication protocol CP1) and the types of data supported by the Y-axis linear servo amplifier 46 (second communication protocol CP2) are different. In this case, information may be lost due to protocol conversion.
 詳述すると、Y軸リニア用サーボアンプ46は、例えば、第1通信プロトコルCP1のデータに含まれる3つのデータ(位置情報D1、エラーメッセージD2、診断用データD3)のうち、診断用データD3をサポートしていない。このため、プロトコル変換装置65が、仮に、診断用データD3をプロトコル変換しても、第2インタフェース93から出力できない、あるいは、出力してもY軸リニア用サーボアンプ46が処理できない状態となる。診断用データD3は、通信プロトコルの違いによってプロトコル変換で消失される可能性がある。 More specifically, the Y-axis linear servo amplifier 46 uses, for example, diagnostic data D3 among the three data (position information D1, error message D2, and diagnostic data D3) included in the data of the first communication protocol CP1. Not supported. Therefore, even if the protocol conversion device 65 converts the diagnostic data D3 into a protocol, it cannot be output from the second interface 93, or even if it is output, the Y-axis linear servo amplifier 46 cannot be processed. The diagnostic data D3 may be lost by protocol conversion due to the difference in communication protocol.
 そこで、本実施形態のプロトコル変換装置65は、プロトコル変換によって消失する可能性がある診断用データD3を別回線で出力するためのインタフェースとして、第3インタフェース99を備える。第3インタフェース99は、通信ケーブル101を介してコントローラ45と接続されている。プロトコル変換装置65は、第3インタフェース99及び通信ケーブル101を介して診断用データD3をコントローラ45へ送信する。 Therefore, the protocol conversion device 65 of the present embodiment includes a third interface 99 as an interface for outputting the diagnostic data D3 that may be lost due to the protocol conversion on another line. The third interface 99 is connected to the controller 45 via the communication cable 101. The protocol conversion device 65 transmits the diagnostic data D3 to the controller 45 via the third interface 99 and the communication cable 101.
 診断用データD3を送信する通信方式は、特に限定されないが、例えば、産業用ネットワークの通信による通信方式を採用できる。ここでいう産業用ネットワークとは、例えば、EtherCAT(登録商標)である。なお、本開示の産業用ネットワークとしては、EtherCAT(登録商標)に限らず、例えば、MECHATROLINK(登録商標)-IIIやProfinet(登録商標)等の他の産業用ネットワーク(通信規格)を採用できる。FPGA97は、例えば、EtherCAT(登録商標)のスレーブとして機能するIPコアを備え、通信ケーブル101を介してコントローラ45のマスター(図示略)と通信可能となっている。FPGA97は、スレーブを制御して、EtherCAT(登録商標)の通信データの書き込み領域に診断用データD3を書き込んでコントローラ45へ送信する。コントローラ45は、マスターで受信した通信データから診断用データD3を読み出すことで診断用データD3に基づく制御が可能となる。 The communication method for transmitting the diagnostic data D3 is not particularly limited, but for example, a communication method by communication of an industrial network can be adopted. The industrial network referred to here is, for example, EtherCAT (registered trademark). The industrial network of the present disclosure is not limited to EtherCAT (registered trademark), and other industrial networks (communication standards) such as MECHATROLINK (registered trademark) -III and Profinet (registered trademark) can be adopted. The FPGA 97 includes, for example, an IP core that functions as a slave of EtherCAT (registered trademark), and can communicate with the master (not shown) of the controller 45 via the communication cable 101. The FPGA 97 controls the slave, writes the diagnostic data D3 in the communication data writing area of EtherCAT (registered trademark), and transmits the diagnostic data D3 to the controller 45. The controller 45 can perform control based on the diagnostic data D3 by reading the diagnostic data D3 from the communication data received by the master.
 また、通信ケーブル101は、その一部又は全部の通信が多重通信装置57,59を介した多重通信でも良い。例えば、診断用データD3を、位置情報D1、エラーメッセージD2やロータリエンコーダ81の信号などと合せてフレームデータFRMDに多重化して送信しても良い。具体的には、プロトコル変換装置65と多重通信装置59を通信ケーブル101で接続して診断用データD3を多重化する。また、多重通信装置57は、フレームデータFRMDから分離した診断用データD3をコントローラ45へ出力しても良い。また、診断用データD3を送信する通信は、有線通信に限らず、無線通信でも良い。 Further, the communication cable 101 may have multiplex communication in which a part or all of the communication is via the multiplex communication devices 57 and 59. For example, the diagnostic data D3 may be multiplexed and transmitted to the frame data FRMD together with the position information D1, the error message D2, the signal of the rotary encoder 81, and the like. Specifically, the protocol conversion device 65 and the multiplexing communication device 59 are connected by a communication cable 101 to multiplex the diagnostic data D3. Further, the multiplexing communication device 57 may output the diagnostic data D3 separated from the frame data FRMD to the controller 45. Further, the communication for transmitting the diagnostic data D3 is not limited to the wired communication, and may be wireless communication.
 図6は、比較例のプロトコル変換装置65の接続の構成を示している。図6に示すように、プロトコル変換装置65が、診断用データD3を出力するインタフェースを備えていない場合、診断用データD3がプロトコル変換装置65で破棄等されてしまう。また、仮に、第2インタフェース93から診断用データD3を出力してもY軸リニア用サーボアンプ46側で破棄等されてしまう。結果として、プロトコル変換によって第2通信プロトコルCP2でサポートされていない診断用データD3が消失する。 FIG. 6 shows the connection configuration of the protocol conversion device 65 of the comparative example. As shown in FIG. 6, if the protocol conversion device 65 does not have an interface for outputting the diagnostic data D3, the diagnostic data D3 is discarded by the protocol conversion device 65 or the like. Further, even if the diagnostic data D3 is output from the second interface 93, it will be discarded on the Y-axis linear servo amplifier 46 side. As a result, the protocol conversion causes the loss of diagnostic data D3, which is not supported by the second communication protocol CP2.
 図7は、第2比較例の接続構成を示している。図7の接続構成では、リニアスケール61が、プロトコル変換を実行できる処理回路(例えば、ASIC)を備えている。リニアスケール61は、例えば、EnDat(登録商標)の通信規格に準拠した第1通信プロトコルCP1のデータを、Σ-LINK(登録商標)-Iの通信規格に準拠した第2通信プロトコルCP2に変換してからエンコーダ用ケーブル94に出力する。この場合にも、診断用データD3を出力するインタフェースがなく診断用データD3がリニアスケール61で破棄等される。また、仮にリニアスケール61から診断用データD3を出力してもY軸リニア用サーボアンプ46側で破棄等されてしまう。 FIG. 7 shows the connection configuration of the second comparative example. In the connection configuration of FIG. 7, the linear scale 61 includes a processing circuit (eg, ASIC) capable of performing protocol conversion. The linear scale 61 converts, for example, the data of the first communication protocol CP1 compliant with the communication standard of EnDat (registered trademark) into the second communication protocol CP2 compliant with the communication standard of Σ-LINK (registered trademark) -I. Then output to the encoder cable 94. Also in this case, there is no interface for outputting the diagnostic data D3, and the diagnostic data D3 is discarded on the linear scale 61. Further, even if the diagnostic data D3 is output from the linear scale 61, it will be discarded on the Y-axis linear servo amplifier 46 side.
 これに対し、図4に示すように、本実施形態のプロトコル変換装置65は、第1通信プロトコルCP1のデータ(位置情報D1、エラーメッセージD2)を、第2通信プロトコルCP2のデータに変換してY軸リニア用サーボアンプ46へ出力する。これにより、Y軸リニア用サーボアンプ46は、リニアスケール61から受信した位置情報D1と、コントローラ45からフィールドネットワーク用ケーブル53を介して入力した指令に基づいて、Y軸用リニアモータ41の電力を制御(フィードバック制御など)できる。また、コントローラ45は、Y軸リニア用サーボアンプ46からフィールドネットワーク用ケーブル53を介して入力したエラーメッセージD2に基づいて、ユーザへのエラー報知などを実行できる。 On the other hand, as shown in FIG. 4, the protocol conversion device 65 of the present embodiment converts the data of the first communication protocol CP1 (position information D1, error message D2) into the data of the second communication protocol CP2. Output to the Y-axis linear servo amplifier 46. As a result, the Y-axis linear servo amplifier 46 transfers the power of the Y-axis linear motor 41 based on the position information D1 received from the linear scale 61 and the command input from the controller 45 via the field network cable 53. Can be controlled (feedback control, etc.). Further, the controller 45 can execute an error notification to the user based on the error message D2 input from the Y-axis linear servo amplifier 46 via the field network cable 53.
 図4に示すように、例えば、コントローラ45には、通信ケーブル103を介して操作表示装置105が接続されている。通信ケーブル103は、例えば、RS-232C規格に準拠した通信を行なう通信ケーブルである。操作表示装置105は、例えば、部品装着機20の装置の前面に設けられ、タッチパネル、操作スイッチなどを備えている。コントローラ45は、Y軸リニア用サーボアンプ46から入力したエラーメッセージD2に基づいて、Y軸用リニアモータ41の動作エラーを報知するエラーメッセージや、検出位置の異常を報知する警告メッセージを操作表示装置105に表示することができる。 As shown in FIG. 4, for example, the operation display device 105 is connected to the controller 45 via the communication cable 103. The communication cable 103 is, for example, a communication cable that performs communication conforming to the RS-232C standard. The operation display device 105 is provided on the front surface of the device of the component mounting machine 20, for example, and includes a touch panel, an operation switch, and the like. Based on the error message D2 input from the Y-axis linear servo amplifier 46, the controller 45 displays an error message for notifying the operation error of the Y-axis linear motor 41 and a warning message for notifying the abnormality of the detection position. It can be displayed on 105.
 さらに、プロトコル変換装置65は、プロトコル変換で消失する可能性がある診断用データD3を産業用ネットワーク(通信ケーブル101)によりコントローラ45へ送信する。これにより、コントローラ45は、診断用データD3に基づいて、リニアスケール61やY軸用リニアモータ41の動作状態を判定、判定結果に基づく故障の予想等ができる。例えば、コントローラ45は、診断用データD3に基づいて、リニアスケール61やY軸用リニアモータ41の動作異常が増加していることを検知した場合、あるいは増加することが予測される(リニアスケール61の故障が発生すると予想される)場合、メンテナンスをしてほしい旨のメッセージや部品の交換を促すメッセージを操作表示装置105に表示できる。また、コントローラ45は、診断用データD3に基づいて、リニアヘッドとスケールとのギャップが変動していることを検出すると、ギャップの幅、ヘッドの固定状態等の確認をしてほしい旨を操作表示装置105に表示しても良い。また、コントローラ45は、診断用データD3に基づいて、リニアスケール61の感度の低下(出力値の低下など)を検出した場合に、感度を調整してほしい旨を操作表示装置105に表示しても良い。これにより、ユーザは、リニアスケール61やY軸用リニアモータ41の検査、調整、部品交換などの適切な保守を実行することができる。動作異常による停止を未然に防ぐことができる。 Further, the protocol conversion device 65 transmits the diagnostic data D3, which may be lost by the protocol conversion, to the controller 45 via the industrial network (communication cable 101). As a result, the controller 45 can determine the operating state of the linear scale 61 and the Y-axis linear motor 41 based on the diagnostic data D3, and can predict a failure based on the determination result. For example, when the controller 45 detects that the operation abnormality of the linear scale 61 or the Y-axis linear motor 41 is increasing based on the diagnostic data D3, or is predicted to increase (linear scale 61). (It is expected that a failure will occur), a message requesting maintenance and a message prompting the replacement of parts can be displayed on the operation display device 105. Further, when the controller 45 detects that the gap between the linear head and the scale is fluctuating based on the diagnostic data D3, the controller 45 indicates that the width of the gap, the fixed state of the head, etc. should be confirmed. It may be displayed on the device 105. Further, when the controller 45 detects a decrease in sensitivity of the linear scale 61 (decrease in output value, etc.) based on the diagnostic data D3, the controller 45 displays on the operation display device 105 that the sensitivity should be adjusted. Is also good. As a result, the user can perform appropriate maintenance such as inspection, adjustment, and parts replacement of the linear scale 61 and the Y-axis linear motor 41. It is possible to prevent stopping due to an abnormal operation.
 また、本実施形態では未変換情報として、リニアスケール61の動作状態を診断した診断用データD3を用いる。これによれば、第3インタフェース99に接続したコントローラ45において診断用データD3を処理することで、リニアスケール61の動作状態を判定することができる。診断用データD3を消失していた時には検出できなかったリニアスケール61の動作異常を診断用データD3に基づいて検出することが可能となる。 Further, in the present embodiment, the diagnostic data D3 that diagnoses the operating state of the linear scale 61 is used as the unconverted information. According to this, the operating state of the linear scale 61 can be determined by processing the diagnostic data D3 in the controller 45 connected to the third interface 99. It is possible to detect an operation abnormality of the linear scale 61, which could not be detected when the diagnostic data D3 was lost, based on the diagnostic data D3.
 尚、上記した診断用データD3に基づく処理の内容は、一例である。例えば、コントローラ45は、図1に示す管理コンピュータ15へ診断用データD3を送信しても良い。また、コントローラ45は、管理コンピュータ15へ診断用データD3に基づく判定結果を送信しても良い。また、コントローラ45は、診断用データD3に基づいて感度の低下を検出した場合、リニアスケール61が備えるアンプの増幅率等を変更して自動で感度を調整しても良い。 The content of the processing based on the above-mentioned diagnostic data D3 is an example. For example, the controller 45 may transmit the diagnostic data D3 to the management computer 15 shown in FIG. Further, the controller 45 may transmit the determination result based on the diagnostic data D3 to the management computer 15. Further, when the controller 45 detects a decrease in sensitivity based on the diagnostic data D3, the controller 45 may automatically adjust the sensitivity by changing the amplification factor of the amplifier included in the linear scale 61 or the like.
 また、上記した第1通信プロトコルCP1及び第2通信プロトコルCP2のプロトコルの種類は、一例であり、リニアスケール61のエンコーダ信号を伝送可能な様々な通信プロトコルを採用できる。また、第1通信プロトコルCP1や第2通信プロトコルCP2で送受信されるデータの内容も一例である。本開示の未変換情報は、診断用データD3に限らない。従って、第1通信プロトコルCP1と第2通信プロトコルCP2の違いから消失する可能性のある情報で、コントローラ45などのY軸リニア用サーボアンプ46以外の装置で活用できる情報であれば、本開示の未変換情報として第3インタフェース99から外部へ送信しても良い。 Further, the types of protocols of the first communication protocol CP1 and the second communication protocol CP2 described above are examples, and various communication protocols capable of transmitting the encoder signal of the linear scale 61 can be adopted. Further, the content of data transmitted / received by the first communication protocol CP1 and the second communication protocol CP2 is also an example. The unconverted information of the present disclosure is not limited to the diagnostic data D3. Therefore, any information that may be lost due to the difference between the first communication protocol CP1 and the second communication protocol CP2 and that can be utilized by a device other than the Y-axis linear servo amplifier 46 such as the controller 45 is disclosed in the present disclosure. It may be transmitted to the outside from the third interface 99 as unconverted information.
 また、図4に示す接続形態は、一例である。図5は、別例のプロトコル変換装置65Aの接続構成を示している。図5に示すように、例えば、プロトコル変換装置65Aをコントローラ45内に設けても良い。プロトコル変換装置65Aの第1インタフェース91と、リニアスケール61をエンコーダ用ケーブル63、即ち、リニアスケール61をコントローラ45に接続しても良い。この場合、エンコーダ用ケーブル63は、多重通信(多重通信装置57,59)を介した通信経路でも良い。あるいは、リニアスケール61と、コントローラ45とを、EnDat(登録商標)の通信規格に準拠した通信ケーブルで直接接続しても良い。 The connection form shown in FIG. 4 is an example. FIG. 5 shows a connection configuration of another example protocol conversion device 65A. As shown in FIG. 5, for example, the protocol conversion device 65A may be provided in the controller 45. The first interface 91 of the protocol conversion device 65A and the linear scale 61 may be connected to the encoder cable 63, that is, the linear scale 61 may be connected to the controller 45. In this case, the encoder cable 63 may be a communication path via multiplex communication (multiplex communication devices 57, 59). Alternatively, the linear scale 61 and the controller 45 may be directly connected by a communication cable conforming to the communication standard of EnDat (registered trademark).
 また、プロトコル変換装置65Aの第3インタフェース99は、コントローラ45が備えるCPU107と通信バス109を介して接続されている。通信バス109は、例えば、Avalon(登録商標)バスである。CPU107は、通信バス109を介してプロトコル変換装置65Aから診断用データD3を受信可能となっている。従って、診断用データD3を送信する通信回線は、通信ケーブル101(図4参照)などの有線に限らず、通信バス109などのCPUバスでも良い。この場合にも、コントローラ45は、プロトコル変換装置65AからCPU107へ受信した診断用データD3により、リニアスケール61の動作状態を判定することができる。 Further, the third interface 99 of the protocol conversion device 65A is connected to the CPU 107 included in the controller 45 via the communication bus 109. The communication bus 109 is, for example, an Avalon® bus. The CPU 107 can receive the diagnostic data D3 from the protocol conversion device 65A via the communication bus 109. Therefore, the communication line for transmitting the diagnostic data D3 is not limited to the wired communication cable 101 (see FIG. 4), but may be a CPU bus such as the communication bus 109. Also in this case, the controller 45 can determine the operating state of the linear scale 61 from the diagnostic data D3 received from the protocol conversion device 65A to the CPU 107.
 従って、本開示の第2インタフェース93としては、産業用ネットワーク又はバスを介した通信により、診断用データD3を出力するインタフェースを採用できる。これによれば、産業用ネットワーク又はバスの通信により、診断用データD3を外部の装置に出力し処理させることができる。 Therefore, as the second interface 93 of the present disclosure, an interface that outputs diagnostic data D3 can be adopted by communication via an industrial network or a bus. According to this, the diagnostic data D3 can be output to an external device and processed by the communication of the industrial network or the bus.
 また、本実施形態の部品装着機20は、プロトコル変換装置65,65Aを備え、第2通信プロトコルCP2のデータ(位置情報D1、エラーメッセージD2)及び診断用データD3に基づく制御を実行する。これによれば、第2通信プロトコルCP2のデータに基づいて作業を行いながら、第2インタフェース93に接続された装置(Y軸リニア用サーボアンプ46)がサポートしていない診断用データD3を活用して動作状態の判定等の処理を実行できる。 Further, the component mounting machine 20 of the present embodiment includes protocol conversion devices 65 and 65A, and executes control based on the data (position information D1, error message D2) of the second communication protocol CP2 and the diagnostic data D3. According to this, while performing the work based on the data of the second communication protocol CP2, the diagnostic data D3 which is not supported by the device (Y-axis linear servo amplifier 46) connected to the second interface 93 is utilized. It is possible to execute processing such as determination of the operating state.
 また、部品装着機20は、第3インタフェース99に接続され診断用データD3を入力し、入力した診断用データD3に基づいてリニアスケール61の故障を予想し、予想した結果に応じた対応を実行するコントローラ45を備える。これによれば、第3インタフェース99に接続されたコントローラ45によって、リニアスケール61の故障を予想し、予想結果に応じた適切な対応(リニアスケール61の交換を促すなど)を実行できる。例えば、リニアスケール61の故障の予告、故障を未然に防止する制御(感度調整など)、故障を未然に防ぐための具体的な対策内容の報知(ギャップの確認など)を行うことができる。 Further, the component mounting machine 20 is connected to the third interface 99, inputs diagnostic data D3, predicts a failure of the linear scale 61 based on the input diagnostic data D3, and executes a response according to the predicted result. The controller 45 is provided. According to this, the controller 45 connected to the third interface 99 can predict the failure of the linear scale 61 and take an appropriate response (prompting the replacement of the linear scale 61, etc.) according to the predicted result. For example, it is possible to give notice of a failure of the linear scale 61, control to prevent the failure (sensitivity adjustment, etc.), and notify specific measures to prevent the failure (confirmation of a gap, etc.).
 また、部品装着機20は、Y軸用リニアモータ41と、リニアスケール61と、第2インタフェース93に接続されリニアスケール61で検出したリニアスケール信号(位置情報D1など)に基づいてY軸用リニアモータ41の動作を制御するY軸リニア用サーボアンプ46と、を備える。これによれば、リニアスケール61とY軸リニア用サーボアンプ46との間の通信を、プロトコル変換装置65でプロトコル変換しながら行う。このプロトコル変換で変換されない診断用データD3を、プロトコル変換装置65から出力する。これにより、Y軸リニア用サーボアンプ46の第2通信プロトコルCP2でサポートしていない診断用データD3がリニアスケール61の第1通信プロトコルCP1のデータに含まれていても、プロトコル変換装置65から診断用データD3として出力できる。Y軸用リニアモータ41やリニアスケール61に関する情報を、診断用データD3から検出し処理できる。 Further, the component mounting machine 20 is connected to the Y-axis linear motor 41, the linear scale 61, and the second interface 93, and is connected to the second interface 93, and the Y-axis linear is based on the linear scale signal (position information D1 or the like) detected by the linear scale 61. It includes a Y-axis linear servo amplifier 46 that controls the operation of the motor 41. According to this, communication between the linear scale 61 and the Y-axis linear servo amplifier 46 is performed while the protocol conversion device 65 converts the protocol. The diagnostic data D3 that is not converted by this protocol conversion is output from the protocol conversion device 65. As a result, even if the diagnostic data D3 not supported by the second communication protocol CP2 of the Y-axis linear servo amplifier 46 is included in the data of the first communication protocol CP1 of the linear scale 61, the protocol conversion device 65 diagnoses it. It can be output as data D3. Information on the Y-axis linear motor 41 and the linear scale 61 can be detected and processed from the diagnostic data D3.
 また、図5に示すプロトコル変換装置65Aは、例えば、通信バス109を介してエラーメッセージD2をCPU107に出力しても良い。これにより、コントローラ45は、エラーメッセージD2に基づく処理(操作表示装置105の表示処理など)を実行できる。この場合、プロトコル変換装置65Aは、エラーメッセージD2を、第1通信プロトコルCP1形式のままCPU107へ出力しても良く、第2通信プロトコルCP2に変換してからCPU107へ出力しても良い。 Further, the protocol conversion device 65A shown in FIG. 5 may output an error message D2 to the CPU 107 via the communication bus 109, for example. As a result, the controller 45 can execute processing based on the error message D2 (display processing of the operation display device 105, etc.). In this case, the protocol conversion device 65A may output the error message D2 to the CPU 107 in the first communication protocol CP1 format, or may convert the error message D2 into the second communication protocol CP2 and then output the error message D2 to the CPU 107.
 また、図5に示すように、プロトコル変換装置65Aは、第2インタフェース93に接続されたエンコーダ用ケーブル111によりY軸リニア用サーボアンプ46に接続されている。エンコーダ用ケーブル111は、例えば、装置本体部21(図3参照)内に配設され、コントローラ45とY軸リニア用サーボアンプ46を接続する通信ケーブルである。プロトコル変換装置65Aは、第2通信プロトコルCP2に変換した位置情報D1を、エンコーダ用ケーブル111を介してY軸リニア用サーボアンプ46へ出力する。これにより、Y軸リニア用サーボアンプ46は、位置情報D1に基づくY軸用リニアモータ41の制御を実行できる。尚、プロトコル変換装置65Aは、エラーメッセージD2を第2通信プロトコルCP2のデータに変換し、エンコーダ用ケーブル111を介してY軸リニア用サーボアンプ46へ出力しても良い。 Further, as shown in FIG. 5, the protocol conversion device 65A is connected to the Y-axis linear servo amplifier 46 by the encoder cable 111 connected to the second interface 93. The encoder cable 111 is, for example, a communication cable arranged in the device main body 21 (see FIG. 3) and connecting the controller 45 and the Y-axis linear servo amplifier 46. The protocol conversion device 65A outputs the position information D1 converted to the second communication protocol CP2 to the Y-axis linear servo amplifier 46 via the encoder cable 111. As a result, the Y-axis linear servo amplifier 46 can execute the control of the Y-axis linear motor 41 based on the position information D1. The protocol conversion device 65A may convert the error message D2 into the data of the second communication protocol CP2 and output it to the Y-axis linear servo amplifier 46 via the encoder cable 111.
 因みに、部品装着機20は、作業機の一例である。Y軸用リニアモータ41、X軸用リニアモータ43は、リニアモータの一例である。コントローラ45は、処理装置の一例である。Y軸リニア用サーボアンプ46、X軸リニア用サーボアンプ47は、サーボアンプの一例である。リニアスケール61,71は、変換対象の装置の一例である。診断用データD3は、未変換情報の一例である。 By the way, the parts mounting machine 20 is an example of a working machine. The Y-axis linear motor 41 and the X-axis linear motor 43 are examples of linear motors. The controller 45 is an example of a processing device. The Y-axis linear servo amplifier 46 and the X-axis linear servo amplifier 47 are examples of servo amplifiers. The linear scales 61 and 71 are examples of devices to be converted. The diagnostic data D3 is an example of unconverted information.
 以上、詳細に説明した本実施形態によれば以下の効果を奏する。
 本実施形態の一態様では、プロトコル変換装置65は、リニアスケール61から第1通信プロトコルCP1のデータを入力する第1インタフェース91と、第1通信プロトコルCP1のデータを第2通信プロトコルCP2のデータに変換する変換処理部95と、を備える。プロトコル変換装置65は、プロトコル変換を実行しない診断用データD3を第3インタフェース99からコントローラ45へ出力する。
According to the present embodiment described in detail above, the following effects are obtained.
In one aspect of the present embodiment, the protocol conversion device 65 converts the data of the first interface 91 for inputting the data of the first communication protocol CP1 from the linear scale 61 and the data of the first communication protocol CP1 into the data of the second communication protocol CP2. A conversion processing unit 95 for conversion is provided. The protocol conversion device 65 outputs diagnostic data D3 that does not execute protocol conversion from the third interface 99 to the controller 45.
 プロトコル変換装置65は、変換対象のリニアスケール61から入力した第1通信プロトコルCP1のデータを第2通信プロトコルCP2のデータに変換し第2インタフェース93から出力する。また、プロトコル変換装置65は、変換前の第1通信プロトコルCP1のデータに含まれている一方、変換後の第2通信プロトコルCP2のデータに含まれていない診断用データD3を、第3インタフェース99から出力する。これにより、変換処理部95のプロトコル変換で変換されない診断用データD3を、第3インタフェース99からコントローラ45へ出力することができる。従って、第2通信プロトコルCP2でサポートしていない情報が第1通信プロトコルCP1のデータに含まれていたとしても、その情報を未変換情報として第3インタフェース99に接続された装置へ転送できる。 The protocol conversion device 65 converts the data of the first communication protocol CP1 input from the linear scale 61 to be converted into the data of the second communication protocol CP2 and outputs the data from the second interface 93. Further, the protocol conversion device 65 uses the third interface 99 to provide diagnostic data D3 that is included in the data of the first communication protocol CP1 before conversion but is not included in the data of the second communication protocol CP2 after conversion. Output from. As a result, the diagnostic data D3 that is not converted by the protocol conversion of the conversion processing unit 95 can be output from the third interface 99 to the controller 45. Therefore, even if the information not supported by the second communication protocol CP2 is included in the data of the first communication protocol CP1, the information can be transferred to the device connected to the third interface 99 as unconverted information.
 なお、本開示は上記の実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲内での種々の改良、変更が可能であることは言うまでもない。
 例えば、部品装着機20は、多重通信システム(多重通信装置57,59など)を備えなくとも良い。例えば、Y軸リニア用サーボアンプ46とプロトコル変換装置65、X軸リニア用サーボアンプ47とプロトコル変換装置75、多軸ロータリ用サーボアンプ48とロータリエンコーダ81を別々の有線ケーブルで接続しても良い。
 また、上記実施形態では、本開示の変換対象の装置としてリニアスケール61,71を採用したが、これに限らない。例えば、変換対象の装置として、ロータリエンコーダ81を採用しても良い。この場合、ロータリエンコーダ81と多重通信装置59の間にプロトコル変換装置65を設け、ロータリエンコーダ81の第1通信プロトコルCP1でサポートされており、多軸ロータリ用サーボアンプ48の第2通信プロトコルCP2でサポートされていない未変換情報を、コントローラ45へ送信しても良い。
 あるいは、変換対象の装置として、センサ、カメラなどを採用し、センサ等の非制御対象と、センサ等を制御する制御装置の間にプロトコル変換装置65を設けても良い。そして、プロトコル変換装置65は、制御装置でサポートしていない未変換情報を他の装置へ転送しても良い。
 また、リニアスケール61,71及びロータリエンコーダ81は、例えば、位置情報などのデータをシリアルで伝送する方式(シリアル伝送方式)のエンコーダでも良く、A,B,Zの各相のパルスをパラレルに伝送する方式(パラレル伝送方式)のエンコーダでもよい。
 また、上記実施形態では、本開示の作業機として、電子部品を基板17に装着する部品装着機20を例に説明したが、これに限らない。作業機として、例えば、はんだを基板17に塗布するはんだ印刷装置、切削等を行う工作機械、アームを備える多関節ロボットなどを採用しても良い。
Needless to say, the present disclosure is not limited to the above-described embodiment, and various improvements and changes can be made without departing from the spirit of the present disclosure.
For example, the component mounting machine 20 does not have to be provided with a multiplex communication system ( multiplex communication devices 57, 59, etc.). For example, the Y-axis linear servo amplifier 46 and the protocol conversion device 65, the X-axis linear servo amplifier 47 and the protocol conversion device 75, the multi-axis rotary servo amplifier 48 and the rotary encoder 81 may be connected by separate wired cables. ..
Further, in the above embodiment, the linear scales 61 and 71 are adopted as the device to be converted in the present disclosure, but the present invention is not limited to this. For example, the rotary encoder 81 may be adopted as the device to be converted. In this case, a protocol conversion device 65 is provided between the rotary encoder 81 and the multiplex communication device 59, and is supported by the first communication protocol CP1 of the rotary encoder 81, and is supported by the second communication protocol CP2 of the multi-axis rotary servo amplifier 48. Unsupported unconverted information may be transmitted to the controller 45.
Alternatively, a sensor, a camera, or the like may be adopted as the device to be converted, and the protocol conversion device 65 may be provided between the non-control target such as the sensor and the control device that controls the sensor or the like. Then, the protocol conversion device 65 may transfer unconverted information that is not supported by the control device to another device.
Further, the linear scales 61 and 71 and the rotary encoder 81 may be, for example, an encoder of a method of serially transmitting data such as position information (serial transmission method), and transmit pulses of each phase of A, B, and Z in parallel. An encoder of a method (parallel transmission method) may be used.
Further, in the above-described embodiment, the component mounting machine 20 for mounting electronic components on the substrate 17 has been described as an example of the working machine of the present disclosure, but the present invention is not limited to this. As the working machine, for example, a solder printing device for applying solder to the substrate 17, a machine tool for cutting or the like, an articulated robot provided with an arm, or the like may be adopted.
 20 部品装着機(作業機)、41 Y軸用リニアモータ(リニアモータ)、43 X軸用リニアモータ(リニアモータ)、45 コントローラ(処理装置)46 Y軸リニア用サーボアンプ(サーボアンプ)、47 X軸リニア用サーボアンプ(サーボアンプ)、61,71 リニアスケール(変換対象の装置)、65,65A プロトコル変換装置、91 第1インタフェース、93 第2インタフェース、99 第3インタフェース、95 変換処理部、CP1 第1通信プロトコル、CP2 第2通信プロトコル。 20 Parts mounting machine (working machine), 41 Y-axis linear motor (linear motor), 43 X-axis linear motor (linear motor), 45 Controller (processing device) 46 Y-axis linear servo amplifier (servo amplifier), 47 X-axis linear servo amplifier (servo amplifier), 61, 71 linear scale (device to be converted), 65, 65A protocol conversion device, 91 first interface, 93 second interface, 99 third interface, 95 conversion processing unit, CP1 first communication protocol, CP2 second communication protocol.

Claims (8)

  1.  変換対象の装置から第1通信プロトコルのデータを入力する第1インタフェースと、
     前記第1インタフェースで入力した前記第1通信プロトコルのデータを第2通信プロトコルのデータに変換する変換処理部と、
     前記変換処理部で変換した後の前記第2通信プロトコルのデータを出力する第2インタフェースと、
     変換前の前記第1通信プロトコルのデータに含まれている情報で、前記変換処理部で変換した後の前記第2通信プロトコルのデータに含まれていない情報である未変換情報を出力する第3インタフェースと、
     を備えるプロトコル変換装置。
    The first interface for inputting the data of the first communication protocol from the device to be converted, and
    A conversion processing unit that converts the data of the first communication protocol input by the first interface into the data of the second communication protocol, and
    A second interface that outputs the data of the second communication protocol after conversion by the conversion processing unit, and
    A third that outputs unconverted information that is information included in the data of the first communication protocol before conversion and is not included in the data of the second communication protocol after conversion by the conversion processing unit. Interface and
    A protocol conversion device comprising.
  2.  前記未変換情報は、
     前記変換対象の装置の動作状態を診断した診断用データである、請求項1に記載のプロトコル変換装置。
    The unconverted information is
    The protocol conversion device according to claim 1, which is diagnostic data for diagnosing the operating state of the device to be converted.
  3.  前記第2インタフェースは、
     産業用ネットワーク又はバスを介した通信により、前記未変換情報を出力する、請求項1又は請求項2に記載のプロトコル変換装置。
    The second interface is
    The protocol conversion device according to claim 1 or 2, wherein the unconverted information is output by communication via an industrial network or a bus.
  4.  請求項1乃至請求項3の何れか1項に記載の前記プロトコル変換装置を備え、前記第2通信プロトコルのデータ及び前記未変換情報に基づく制御を実行する、作業機。 A working machine provided with the protocol conversion device according to any one of claims 1 to 3, which executes control based on the data of the second communication protocol and the unconverted information.
  5.  前記未変換情報は、
     前記変換対象の装置の動作状態を診断した診断用データであり、
     前記作業機は、
     前記第3インタフェースに接続され前記診断用データを入力し、入力した前記診断用データに基づいて前記変換対象の装置の故障を予想し、予想した結果に応じた対応を実行する処理装置を備える、請求項4に記載の作業機。
    The unconverted information is
    This is diagnostic data for diagnosing the operating state of the device to be converted.
    The working machine is
    It is provided with a processing device connected to the third interface, inputting the diagnostic data, predicting a failure of the device to be converted based on the input diagnostic data, and executing a response according to the predicted result. The working machine according to claim 4.
  6.  リニアモータと、
     前記変換対象の装置としてのリニアスケールと、
     前記第2インタフェースに接続され、前記リニアスケールで検出したリニアスケール信号に基づいて前記リニアモータの動作を制御するサーボアンプと、
     を備える、請求項4又は請求項5に記載の作業機。
    With a linear motor
    The linear scale as the device to be converted and
    A servo amplifier connected to the second interface and controlling the operation of the linear motor based on the linear scale signal detected by the linear scale.
    The working machine according to claim 4 or 5.
  7.  前記サーボアンプを制御するコントローラを備え、
     前記第3インタフェースは、
     産業用ネットワークを介した通信により前記コントローラへ前記未変換情報を送信する、請求項6に記載の作業機。
    A controller for controlling the servo amplifier is provided.
    The third interface is
    The working machine according to claim 6, wherein the unconverted information is transmitted to the controller by communication via an industrial network.
  8.  CPUを有し、前記サーボアンプを制御するコントローラを備え、
     前記プロトコル変換装置は、
     前記コントローラ内に設けられ、
     前記第3インタフェースは、
     バスを介した通信により前記CPUへ前記未変換情報を送信する、請求項6に記載の作業機。
    It has a CPU and has a controller that controls the servo amplifier.
    The protocol conversion device is
    Provided in the controller
    The third interface is
    The working machine according to claim 6, wherein the unconverted information is transmitted to the CPU by communication via a bus.
PCT/JP2019/043007 2019-11-01 2019-11-01 Protocol conversion device and working machine WO2021084734A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021554023A JP7279182B2 (en) 2019-11-01 2019-11-01 work machine
PCT/JP2019/043007 WO2021084734A1 (en) 2019-11-01 2019-11-01 Protocol conversion device and working machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/043007 WO2021084734A1 (en) 2019-11-01 2019-11-01 Protocol conversion device and working machine

Publications (1)

Publication Number Publication Date
WO2021084734A1 true WO2021084734A1 (en) 2021-05-06

Family

ID=75716091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043007 WO2021084734A1 (en) 2019-11-01 2019-11-01 Protocol conversion device and working machine

Country Status (2)

Country Link
JP (1) JP7279182B2 (en)
WO (1) WO2021084734A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134774A (en) * 2006-11-28 2008-06-12 Nec Corp Protocol conversion device
WO2011033611A1 (en) * 2009-09-15 2011-03-24 株式会社 東芝 Communication apparatus
JP2011228951A (en) * 2010-04-20 2011-11-10 Nec Corp Digital broadcast signal transmission system, converter, transmission circuit of converter, transmitter and transmission method
JP2014068321A (en) * 2012-09-27 2014-04-17 Nec Access Technica Ltd Transfer device, communication system, transfer method, and program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5086663B2 (en) * 2007-02-28 2012-11-28 株式会社東芝 Broadcast material management system and its material management method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134774A (en) * 2006-11-28 2008-06-12 Nec Corp Protocol conversion device
WO2011033611A1 (en) * 2009-09-15 2011-03-24 株式会社 東芝 Communication apparatus
JP2011228951A (en) * 2010-04-20 2011-11-10 Nec Corp Digital broadcast signal transmission system, converter, transmission circuit of converter, transmitter and transmission method
JP2014068321A (en) * 2012-09-27 2014-04-17 Nec Access Technica Ltd Transfer device, communication system, transfer method, and program

Also Published As

Publication number Publication date
JP7279182B2 (en) 2023-05-22
JPWO2021084734A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
US10300605B2 (en) Robot, controller, and robot system
JP4137862B2 (en) Measuring device and robot control device
CN107921625A (en) Tele-manipulator system
JP5416594B2 (en) Multi-axis drive driver control method, multi-axis drive driver, and multi-axis drive control system including the same
JP2007188246A (en) Motor control system
CN111656333B (en) Slave device, working machine, and method of storing log information
JP6461998B2 (en) Working machine
JP5910724B2 (en) Robot system
WO2021084734A1 (en) Protocol conversion device and working machine
WO2020136705A1 (en) Multiplex communication device and working machine
CN111247572B (en) Multiple device, robot, and method for switching connection of multiple devices
JP6596239B2 (en) Multiplexing communication device
JP6615018B2 (en) Multiplexed communication system and work machine
US6150786A (en) Controller for industrial machine
EP3742676B1 (en) Multiplexing device, working machine, and communication disconnection method
JP6870314B2 (en) Robots, drive devices, and printing devices
JP2018126838A (en) Transmission device and working robot
WO2021171549A1 (en) Work machine
JPWO2020100254A1 (en) Work machine and work system
JP5789006B2 (en) Overall control device and overall control method
WO2021095088A1 (en) Multiplex communication device and working machine
US20140374387A1 (en) Wireless transmission in the environment of a welding apparatus
JP5788644B2 (en) Overall control device and overall control method
CN115955146A (en) Motor control system, motor control device, and motor control method
JP2024060200A (en) Robot System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950980

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554023

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950980

Country of ref document: EP

Kind code of ref document: A1