WO2021084686A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2021084686A1
WO2021084686A1 PCT/JP2019/042801 JP2019042801W WO2021084686A1 WO 2021084686 A1 WO2021084686 A1 WO 2021084686A1 JP 2019042801 W JP2019042801 W JP 2019042801W WO 2021084686 A1 WO2021084686 A1 WO 2021084686A1
Authority
WO
WIPO (PCT)
Prior art keywords
image sensor
thermal image
signal line
information
wireless lan
Prior art date
Application number
PCT/JP2019/042801
Other languages
English (en)
French (fr)
Inventor
弥史 大田
慶行 高島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112019007870.4T priority Critical patent/DE112019007870T5/de
Priority to JP2021553985A priority patent/JP7150190B2/ja
Priority to PCT/JP2019/042801 priority patent/WO2021084686A1/ja
Priority to US17/629,842 priority patent/US11994312B2/en
Priority to CN201980101601.2A priority patent/CN114585863B/zh
Publication of WO2021084686A1 publication Critical patent/WO2021084686A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature

Definitions

  • the present invention relates to an air conditioner that transmits indoor information captured by a thermal image sensor to an external electronic device.
  • an air conditioner having an indoor unit provided with a driveable thermal image sensor and a wireless LAN communication unit has been known.
  • the wireless LAN communication unit of such an air conditioner transmits the thermal image sensor information based on the thermal information of the room to be air-conditioned obtained by the thermal image sensor to the server connected to the network.
  • the server performs processing based on the transmitted thermal image sensor information to generate and store the indoor thermal image information.
  • the user can confirm the indoor situation by referring to the thermal image information stored in the server using a mobile terminal or the like.
  • the air conditioner transmits not only the thermal image sensor information but also the operation information of the refrigerant circuit of the air conditioner to the external device. These operation information and thermal image sensor information are large amounts of data.
  • the information sent from the air conditioner to the external device includes the operation information of the refrigerant circuit, etc. in addition to the thermal image sensor information based on the thermal information obtained by the thermal image sensor.
  • the capacity is increasing.
  • the thermal information obtained by the thermal image sensor has a relatively large capacity.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an air conditioner capable of improving the communication speed of thermal image sensor information.
  • the compressor, the load side heat exchanger, the expansion valve and the heat source side heat exchanger are connected by a pipe, and the refrigerant circuit in which the refrigerant circulates in the pipe and the air conditioning target.
  • the thermal image sensor that acquires the thermal information in the room, the operation information signal line that transmits the operation information of the refrigerant circuit, and the thermal image sensor information based on the thermal information in the room that is the air conditioning target acquired by the thermal image sensor.
  • Thermal image sensor information to be transmitted The interface board connector connecting the signal lines, the operation information transmitted by the operation information signal line connected to the interface board connector, and the thermal image sensor information connected to the interface board connector. It includes a wireless LAN communication unit including a wireless LAN interface for separately transmitting the thermal image sensor information transmitted by a signal line to an external electronic device.
  • the operation information is separately transmitted to the wireless LAN interface via the operation information signal line and the thermal image sensor information is transmitted via the thermal image sensor information signal line. Then, the wireless LAN interface transmits the thermal image sensor information based on the thermal information separately from the operation information.
  • the thermal image sensor information can be sequentially transmitted as soon as it is received without the process of dividing the thermal image sensor information and the operation information, so that the communication speed of the thermal image sensor information can be improved. Further, since the communication speed of the thermal image sensor information can be improved, the responsiveness of the thermal image information referred to by the user can also be improved.
  • FIG. 5 is a flowchart for explaining a method of transmitting thermal image sensor information and operation information of the wireless LAN interface of the air conditioner according to the first embodiment. It is a figure for demonstrating the indoor substrate of the indoor unit of the air conditioner which concerns on Embodiment 1. FIG. It is a functional block diagram for demonstrating the function of the server which stores the thermal image sensor information of the air conditioner which concerns on Embodiment 1.
  • FIG. 5 is a flowchart for explaining a method of transmitting thermal image sensor information and operation information of the wireless LAN interface of the air conditioner according to the first embodiment.
  • FIG. is a figure for demonstrating the indoor substrate of the indoor unit of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a functional block diagram for demonstrating the function of the server which stores the thermal image sensor information of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a figure which shows the range of the detection area in the room to be air-conditioned of the thermal image sensor of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a figure which shows the example of the thermal image displayed on the smartphone of the room to be air-conditioned of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a figure which shows the relationship between the 1st room board and the 2nd room board of the room unit of the air conditioner which concerns on Embodiment 2, and the wireless LAN interface board of a wireless LAN communication part.
  • FIG. 1 is a diagram showing an external configuration of an indoor unit 1 of the air conditioner according to the first embodiment.
  • the indoor unit 1 of the air conditioner is provided with a thermal image sensor 54, which is a diode sensor that acquires thermal information in the room to be air-conditioned and is controlled to be rotationally driveable.
  • a wireless LAN (Local Area Network) communication unit 3 that transmits thermal image sensor information based on the thermal information of the room to be air-conditioned acquired by the thermal image sensor 54 to an external device is built-in. ing. Details of the thermal image sensor information will be described later.
  • FIG. 2 is a diagram showing the relationship between the indoor board 2 of the indoor unit 1 of the air conditioner according to the first embodiment and the wireless LAN interface board 30 of the wireless LAN communication unit 3 (see FIG. 2 described later).
  • the indoor board 2 of the indoor unit 1 of the air conditioner is provided with the first indoor board connector 21 and the second indoor board connector 22.
  • the first indoor board connector 21 connects the operation information signal line 13 for transmitting the operation information of the air conditioner.
  • This operation information is the operation information of the air conditioner, for example, the operation information of the refrigerant circuit of the air conditioner.
  • the operating information of the refrigerant circuit includes, for example, the operating frequency of the compressor, the discharge temperature, the switching state of the refrigerant flow path switching device, the state information of the outdoor fan and the indoor fan, and the like. Further, the operation information may include temperature information of the indoor temperature sensor and the outdoor temperature sensor, setting information of the remote controller of the air conditioner, time information, and the like.
  • the operation information signal line 13 is covered with the first cable 11.
  • the second indoor board connector 22 connects the thermal image sensor information signal line 14 that transmits the thermal image sensor information of the air conditioner.
  • This thermal image sensor information is thermal image sensor information based on the thermal information in the room to be air-conditioned acquired by the thermal image sensor 54 of the air conditioner.
  • the thermal image sensor information may include temperature information, time information, and the like of the indoor temperature sensor and the outdoor temperature sensor.
  • the thermal image sensor information signal line 14 is covered with the second cable 12.
  • the wireless LAN communication unit 3 has a wireless LAN interface board 30.
  • the wireless LAN interface board 30 is provided with a first interface board connector 31, a second interface board connector 32, and a wireless LAN interface 33.
  • the first interface board connector 31 connects the operation information signal line 13.
  • the operation information transmitted by the operation information signal line 13 is input to the wireless LAN interface 33.
  • the second interface board connector 32 connects the thermal image sensor information signal line 14.
  • Thermal image sensor information The thermal image sensor information transmitted by the signal line 14 is input to the wireless LAN interface 33.
  • the first interface board connector 31 and the second interface board connector 32 may be one interface board connector CC.
  • the operation information signal line 13 and the thermal image sensor information signal line 14 are connected to one interface board connector CC.
  • the cables of the operation information signal line 13 and the thermal image sensor information signal line 14 connected to the interface board connector CC are bifurcated into the first indoor board connector 21 and the second indoor board connector 22.
  • the wireless LAN interface 33 has operation information transmitted by the operation information signal line 13 connected to the first interface board connector 31 and heat transmitted by the thermal image sensor information signal line 14 connected to the second interface board connector 32.
  • the image sensor information is transmitted separately to the smartphone 4, which is an external device, using the wireless LAN network.
  • a router may be provided separately from the smartphone 4, and the smartphone 4 may be used as an operating device.
  • the transmission speed of the thermal image sensor information to the wireless LAN interface 33 via the thermal image sensor information signal line 14 is higher than the transmission speed of the operation information to the wireless LAN interface 33 via the operation information signal line 13. is there.
  • SPI Serial Peripheral Interface
  • the operation information signal line 13 is transmitted at a lower speed than SPI communication, and a different communication method is used.
  • the smartphone 4 plays a role as a router and an operation terminal of the wireless LAN network, and is connected to the Internet 5 via an access point (not shown) of a public line.
  • a server 6 is connected to the Internet 5. That is, the indoor unit 1 can communicate with the smartphone 4 and the server 6 by the wireless LAN communication unit 3.
  • the thermal image sensor information and operation information input from the indoor unit 1 to the smartphone 4 are input to the server 6 via the Internet 5.
  • the server 6 performs a predetermined process described later on the input thermal image sensor information and stores it as thermal image information. Further, the server 6 stores the input driving information and outputs it to the smartphone 4.
  • FIG. 3 is a flowchart for explaining a method of transmitting thermal image sensor information and operation information of the wireless LAN interface 33 of the indoor unit 1 of the air conditioner according to the first embodiment.
  • the wireless LAN interface 33 determines whether or not the thermal image sensor information has been received (S1). When it is determined that the thermal image sensor information has been received in step S1 (YES in S1), the thermal image sensor information is transmitted to the smartphone 4 (S2). After transmitting the thermal image sensor information in step S2, the process proceeds to step S3.
  • step S1 determines whether or not the thermal image sensor information has been received. If it is determined in step S3 that the operation information has not been received (NO in S3), the process returns to step S1.
  • step S3 If it is determined that the thermal image sensor information has been received in step S3 (YES in S3), the operation information is transmitted to the smartphone 4 (S4), and the process returns to step S1.
  • the operation information in step S4 is transmitted at predetermined intervals (for example, 5 minutes). That is, the wireless LAN interface 33 separately transmits the thermal image sensor information and the operation information to the smartphone 4.
  • FIG. 4 is a diagram for explaining the indoor substrate 2 of the indoor unit 1 of the air conditioner according to the first embodiment.
  • one indoor board 2 includes a first indoor board connector 21, a second indoor board connector 22, a main CPU 23, a memory 24, and a sub CPU 26.
  • the main CPU 23 controls the entire air conditioner in cooperation with the control program 25 stored in the memory 24.
  • the main CPU 23 receives operation information from the refrigerant circuit 51, various sensors 52, and the like.
  • the refrigerant circuit 51 is a circuit in which at least the compressor 51a, the expansion valve 51b, the heat source side heat exchanger 51c, and the load side heat exchanger 51d are connected by a pipe, and the refrigerant circulates in the pipe.
  • the main CPU 23 outputs the input operation information to the wireless LAN interface board 30 of the wireless LAN communication unit 3 via the operation information signal line 13. Further, the main CPU 23 outputs control information to the refrigerant circuit 51 and the sensor drive unit 53.
  • the thermal image sensor 54 is driven by the sensor drive unit 53 so as to acquire thermal information in the room to be air-conditioned.
  • the memory 24 stores thermal information from the thermal image sensor 54, operating information from the refrigerant circuit 51, various sensors 52, and the like, and is also used as a work area.
  • the sub CPU 26 cooperates with the control program 25 stored in the memory 24 to perform a process of converting the thermal information from the thermal image sensor 54 into the thermal image sensor information.
  • the thermal image sensor information is a single thermal image of the room to be air-conditioned for the thermal information acquired by the thermal image sensor 54. That is, when the thermal image sensor 54 drives and acquires the thermal information in the room to be air-conditioned a plurality of times, the thermal image obtained by driving the thermal image sensor 54 a plurality of times is a single thermal image. It becomes sensor information.
  • the sub CPU 26 outputs the thermal image sensor information obtained based on the thermal information to the wireless LAN interface board 30 of the wireless LAN communication unit 3 via the thermal image sensor information signal line 14. If the previous thermal image sensor information cannot be sent at the right time and the acquisition of the latest thermal image sensor information precedes the transmission, the thermal image sensor information is overwritten in the memory 24 and the latest one is sent.
  • the sub CPU 26 may be dedicated hardware.
  • the sub CPU 26 may be, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof.
  • each of the functional units realized by the sub CPU 26 may be realized by individual hardware, or each functional unit may be realized by one hardware.
  • FIG. 5 is a functional block diagram for explaining the function of the server 6 in which the thermal image sensor information of the air conditioner according to the first embodiment is stored.
  • the server 6 has a transmission / reception unit 101, a thermal image information processing unit 102, an operation information processing unit 103, and a storage unit 104.
  • the transmission / reception unit 101 receives thermal image sensor information, operation information, thermal image request from the smartphone 4 from the wireless LAN communication unit 3 of the indoor unit 1. Further, the transmission / reception unit 101 transmits the thermal image information in response to the thermal image request to the smartphone 4, and transmits the control information based on the operation information to the wireless LAN communication unit 3 of the indoor unit 1 via the smartphone 4 which is a router. ..
  • the thermal image information processing unit 102 performs a predetermined process based on the thermal image sensor information from the wireless LAN communication unit 3 and converts the thermal image sensor information into thermal image information. For example, in the predetermined processing, processing such as synthesizing the thermal image sensor information and the camera image in the room to be air-conditioned is performed.
  • the thermal image information processing unit 102 stores the obtained thermal image information in the storage unit 104.
  • the thermal image information processing unit 102 acquires the corresponding thermal image sensor information from the memory (not shown) of the wireless LAN communication unit 3 via the Internet 5 and the smartphone 4. Then, the thermal image information processing unit 102 converts the corresponding thermal image sensor information acquired from the wireless LAN communication unit 3 into thermal image information, and transmits it from the transmission / reception unit 101 to the smartphone 4.
  • the driving information processing unit 103 stores the driving information from the wireless LAN communication unit 3 in the storage unit 104 and transmits it to the smartphone 4 via the Internet 5.
  • the smartphone 4 displays the driving information transmitted from the server 6 and transmits the operation information from the user to the indoor unit 1 via the wireless LAN communication unit 3.
  • FIG. 6 is a diagram showing the range RR of the detection region in the room to be air-conditioned of the thermal image sensor 54 of the air conditioner according to the first embodiment.
  • the shaded area indicates the range RR of the detection area where the temperature information of the thermal image sensor 54 can be acquired.
  • the white arrow indicates the moving direction when the thermal image sensor 54 is driven for the first time from the initial position, and the black arrow indicates the driving direction of the thermal image sensor 54.
  • FIG. 6A is a diagram showing a state in which the light of the thermal image sensor 54 is directed to the initial position.
  • the initial position is, for example, rotationally driven to a position where the temperature information on the leftmost side of the room to be air-conditioned can be measured.
  • the leftmost position is the position of the maximum value in the range in which the light of the thermal image sensor 54 does not shine on the indoor unit 1 itself.
  • the amount of drive of the thermal image sensor 54 to this position is predetermined. Then, the thermal image sensor 54 is rotationally driven based on this drive amount.
  • the sub CPU 26 acquires thermal information from the thermal image sensor 54 and stores the acquired thermal information in the memory 24. Next, the sub CPU 26 determines whether or not the heat information of the entire room has been acquired.
  • Whether or not the heat information of the entire room has been acquired is determined by, for example, as shown in FIG. 6 (C), when the thermal image sensor 54 starts rotationally driving the initial position from the leftmost side, the heat information on the rightmost side of the room. Judge whether the state is rotationally driven to the light that can measure. Similar to the initial position, the rightmost position is the maximum value of the range in which the light of the thermal image sensor 54 does not shine on the indoor unit 1 itself, and whether the drive amount or the number of drives has been stored in the memory 24 in advance and reached that position. Judge by whether or not.
  • the sub CPU 26 drives the thermal image sensor 54 to rotate by a certain amount.
  • the rotational drive amount is rotationally driven so that the light of the thermal image sensor 54 does not have at least a gap with the range of the detection region acquired last time.
  • the amount of one rotation drive is stored in the memory 24 in advance. After the drive, the sub CPU 26 again acquires the thermal information and stores the acquired thermal information in the memory 24.
  • the acquisition of the thermal information and the storage in the memory 24 are repeated while rotating the thermal image sensor 54 from left to right as shown in FIG. 6 (B2) until the thermal information of the entire room can be acquired.
  • the sub CPU 26 when it is determined that the sub CPU 26 has acquired the heat information of the entire room, the sub CPU 26 creates one piece of thermal image sensor information by combining the heat information of a plurality of locations stored in the memory 24 so far. The sub CPU 26 outputs one piece of thermal image sensor information to the thermal image sensor information signal line 14.
  • the sub CPU 26 drives the thermal image sensor 54 to the initial position and acquires thermal information again.
  • the sub CPU 26 returns the thermal image sensor 54 to the initial position after transmitting the thermal image sensor information.
  • the sub CPU 26 rotationally drives the thermal image sensor 54 from the left end shown in FIG. 6 (A) to the right end shown in FIG. 6 (C), and then returns the thermal image sensor 54 to the left end again.
  • the sub CPU 26 may acquire thermal information by rotationally driving the thermal image sensor 54 from the right end to the left end by a fixed amount after the thermal image sensor 54 reaches the right end and transmits the thermal image sensor information.
  • FIG. 7 is a diagram showing an example of a thermal image displayed on the smartphone 4 of the room to be air-conditioned of the air conditioner according to the first embodiment.
  • the date / time information and the camera image of the room to be air-conditioned may be combined with the thermal image information displayed on the smartphone 4. Further, the thermal image information may be created by the application program of the smartphone 4.
  • the operation information is separately transmitted to the wireless LAN interface 33 via the operation information signal line 13 and the thermal image sensor information via the thermal image sensor information signal line 14.
  • the thermal image sensor information can be sequentially transmitted without dividing the thermal image sensor information and the operation information, and the communication speed of the thermal image sensor information can be improved.
  • the transmission method of the thermal image sensor information is faster than the transmission method of the operation information. Therefore, the communication speed of the thermal image sensor information can be further improved. Since the transmission speed of the thermal image sensor information can be improved, the responsiveness of the thermal image information referred to by the user can also be improved.
  • FIG. 8 is a diagram showing the relationship between the first indoor board 2A and the second indoor board 2B of the indoor unit 1 of the air conditioner according to the second embodiment and the wireless LAN interface board 30 of the wireless LAN communication unit 3.
  • the difference from the first embodiment shown in FIG. 2 is that the wireless LAN communication unit 3 is connected to the first indoor board 2A and the second indoor board 2B instead of one indoor board 2.
  • the main CPU 23 and the memory 24 shown in FIG. 4 are mounted on the first indoor board 2A.
  • the sub CPU 26 shown in FIG. 4 is mounted on the second indoor substrate 2B.
  • the operations of the main CPU 23 and the sub CPU 26 are the same as those in the first embodiment.
  • the first indoor board 2A is provided with the first indoor board connector 21A
  • the second indoor board 2B is provided with the second indoor board connector 22A. That is, the operation information is input from the first indoor board 2A to the wireless LAN interface 33 via the operation information signal line 13.
  • the thermal image sensor information is input from the second indoor substrate 2B to the wireless LAN interface 33 via the thermal image sensor information signal line 14.
  • the first cable 11 and the second cable 12 cover the operation information signal line 13 and the thermal image sensor information signal line 14, and are bifurcated in the vicinity of the first indoor board connector 21A and the second indoor board connector 22A. Cable may be used. By using the bifurcated cable in this way, the wiring between the first indoor board 2A and the second indoor board 2B and the wireless LAN interface board 30 can be completed with one cable.
  • the embodiment is presented as an example and is not intended to limit the scope of the embodiment.
  • the embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the embodiment. These embodiments and variations thereof are included in the scope and gist of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

空気調和機は、圧縮機、負荷側熱交換器、膨張弁及び熱源側熱交換器が配管で接続され、配管内を冷媒が循環する冷媒回路と、空調対象である室内の熱情報を取得する熱画像センサと、冷媒回路の運転情報を伝送する運転情報信号線及び熱画像センサにより取得された空調対象である室内の熱情報に基づく熱画像センサ情報を伝送する熱画像センサ情報信号線を接続するインターフェイス基板コネクタと、インターフェイス基板コネクタに接続された運転情報信号線により伝送された運転情報とインターフェイス基板コネクタに接続された熱画像センサ情報信号線により伝送された熱画像センサ情報とを外部電子機器に別々に送信する無線LANインターフェイスとを具備する無線LAN通信部とを具備する。

Description

空気調和機
 本発明は、熱画像センサにより撮像された室内の情報を外部電子機器に送信する空気調和機に関する。
 近年、駆動可能な熱画像センサ及び無線LAN通信部が設けられた室内ユニットを有する空気調和機が知られている。このような空気調和機の無線LAN通信部は、熱画像センサにより得られた空調対象となる室内の熱情報に基づく熱画像センサ情報をネットワークに接続されたサーバに送信する。サーバは送信された熱画像センサ情報に基づいて処理を行ない室内の熱画像情報を生成して蓄積する。ユーザは、携帯端末等を使用して、サーバに蓄積された熱画像情報を参照することにより、室内の状況を確認することができる。また、空気調和機は、熱画像センサ情報に加えて空気調和機の冷媒回路等の運転情報も外部機器に送信している。これら運転情報及び熱画像センサ情報は大容量のデータである。
 一方、大容量のデータを送信する場合、大容量データを分割することにより外部機器に送信する通信機器が知られている。
特開2019-4414号公報
 空気調和機から外部機器に送る情報には、熱画像センサにより得られた熱情報に基づく熱画像センサ情報に加えて、冷媒回路などの運転情報があり、近年、熱画像センサ情報及び運転情報の容量は増大している。特に、熱画像センサにより得られた熱情報は比較的容量が大きい情報である。
 このような運転情報と熱情報に基づく熱画像センサ情報とを含む大容量の情報を、特許文献1のような技術を使用して、運転情報と熱画像センサ情報とを分割して送信する場合、分割処理に時間がかかり、熱画像センサ情報の通信時間が長くなってしまう。また、熱画像センサ情報の送信に時間がかかるとユーザが参照する熱画像情報の応答性も悪くなってしまうという課題もある。
 本発明は、上記実情に鑑みてなされたものであり、熱画像センサ情報の通信速度を向上することができる空気調和機を提供することを目的とする。
 本発明に係る空気調和機によれば、圧縮機、負荷側熱交換器、膨張弁及び熱源側熱交換器が配管で接続され、前記配管内を冷媒が循環する冷媒回路と、空調対象である室内の熱情報を取得する熱画像センサと、前記冷媒回路の運転情報を伝送する運転情報信号線及び前記熱画像センサにより取得された前記空調対象である室内の熱情報に基づく熱画像センサ情報を伝送する熱画像センサ情報信号線を接続するインターフェイス基板コネクタと、前記インターフェイス基板コネクタに接続された前記運転情報信号線により伝送された前記運転情報と前記インターフェイス基板コネクタに接続された前記熱画像センサ情報信号線により伝送された前記熱画像センサ情報とを外部電子機器に別々に送信する無線LANインターフェイスとを具備する無線LAN通信部とを具備する。
 本発明によれば、運転情報は運転情報信号線を介して、熱画像センサ情報は熱画像センサ情報信号線を介して、無線LANインターフェイスに別々に伝送される。そして、無線LANインターフェイスは、熱情報に基づく熱画像センサ情報を運転情報と別々に送信する。これにより、熱画像センサ情報と運転情報とを分割する処理をすることなく熱画像センサ情報を受信次第、順次送信することができるので、熱画像センサ情報の通信速度を向上することができる。また、熱画像センサ情報の通信速度を向上することができるので、ユーザが参照する熱画像情報の応答性も向上することができる。
実施の形態1に係る空気調和機の室内ユニットの外観構成を示す図である。 実施の形態1に係る空気調和機の室内ユニットの室内基板と無線LAN通信部の無線LANインターフェイス基板との関係を示す図である。 実施の形態1に係る空気調和機の無線LANインターフェイスの熱画像センサ情報及び運転情報の送信方法を説明するためのフローチャートである。 実施の形態1に係る空気調和機の室内ユニットの室内基板を説明するための図である。 実施の形態1に係る空気調和機の熱画像センサ情報が格納されるサーバの機能を説明するための機能ブロック図である。 実施の形態1に係る空気調和機の熱画像センサの空調対象の部屋における検知領域の範囲を示す図である。 実施の形態1に係る空気調和機の空調対象の部屋のスマートフォンに表示される熱画像の例を示す図である。 実施の形態2に係る空気調和機の室内ユニットの第1室内基板及び第2室内基板と無線LAN通信部の無線LANインターフェイス基板との関係を示す図である。
 以下、図面を参照して、実施の形態に係る空気調和機について説明する。なお、図面において、同一の構成要素には同一符号を付して説明し、重複説明は必要な場合にのみ行なう。
実施の形態1.
 図1は、実施の形態1に係る空気調和機の室内ユニット1の外観構成を示す図である。
 図1に示すように、空気調和機の室内ユニット1には、空調対象の室内の熱情報を取得し、回転駆動可能に制御されるダイオードセンサーである熱画像センサ54が設けられている。
 また、室内ユニット1の内部には、熱画像センサ54により取得された空調対象の室内の熱情報に基づく熱画像センサ情報を外部機器に送信する無線LAN(Local Area Network)通信部3が内蔵されている。熱画像センサ情報の詳細については、後述する。
 図2は、実施の形態1に係る空気調和機の室内ユニット1の室内基板2と無線LAN通信部3(後述する図2参照)の無線LANインターフェイス基板30との関係を示す図である。
 図2に示すように、空気調和機の室内ユニット1の室内基板2には、第1室内基板コネクタ21及び第2室内基板コネクタ22が設けられている。
 第1室内基板コネクタ21は、空気調和機の運転情報を伝送する運転情報信号線13を接続する。この運転情報は、空気調和機の運転情報であり、例えば、空気調和機の冷媒回路の運転情報である。冷媒回路の運転情報としては、例えば、圧縮機の運転周波数、吐出温度、冷媒流路切替え装置の切替状態、室外ファン及び室内ファンの状態情報等である。また、運転情報には、室内温度センサ及び室外温度センサの温度情報、空気調和機のリモコンの設定情報、時刻情報等が含まれていても良い。運転情報信号線13は、第1ケーブル11により被覆されている。
 第2室内基板コネクタ22は、空気調和機の熱画像センサ情報を伝送する熱画像センサ情報信号線14を接続する。この熱画像センサ情報は、空気調和機の熱画像センサ54により取得された空調対象の室内の熱情報に基づく熱画像センサ情報である。熱画像センサ情報には、室内温度センサ及び室外温度センサの温度情報、時刻情報等が含まれていても良い。熱画像センサ情報信号線14は、第2ケーブル12により被覆されている。
 無線LAN通信部3は、無線LANインターフェイス基板30を有する。無線LANインターフェイス基板30には、第1インターフェイス基板コネクタ31、第2インターフェイス基板コネクタ32及び無線LANインターフェイス33が設けられている。
 第1インターフェイス基板コネクタ31は、運転情報信号線13を接続する。運転情報信号線13により伝送された運転情報は、無線LANインターフェイス33に入力される。
 第2インターフェイス基板コネクタ32は、熱画像センサ情報信号線14を接続する。熱画像センサ情報信号線14により伝送された熱画像センサ情報は、無線LANインターフェイス33に入力される。また、第1インターフェイス基板コネクタ31及び第2インターフェイス基板コネクタ32は、1つのインターフェイス基板コネクタCCであっても良い。この場合、1つのインターフェイス基板コネクタCCに運転情報信号線13及び熱画像センサ情報信号線14が接続される。インターフェイス基板コネクタCCに接続された運転情報信号線13及び熱画像センサ情報信号線14のケーブルは、第1室内基板コネクタ21及び第2室内基板コネクタ22へ二股に分かれる。
 無線LANインターフェイス33は、第1インターフェイス基板コネクタ31に接続された運転情報信号線13により伝送された運転情報と第2インターフェイス基板コネクタ32に接続された熱画像センサ情報信号線14により伝送された熱画像センサ情報とを外部機器であるスマートフォン4に無線LANネットワークを利用して別々に送信する。なお、スマートフォン4とは別にルータを設け、スマートフォン4は、操作機器として使用しても良い。
 また、熱画像センサ情報信号線14を介した無線LANインターフェイス33への熱画像センサ情報の伝送速度は、運転情報信号線13を介した無線LANインターフェイス33への運転情報の伝送速度よりも高速である。例えば、熱画像センサ情報の送信には、SPI(Serial Peripheral Interface)が使用される。運転情報信号線13の送信には、SPI通信よりも低速の通信であり、異なる通信方式が使用される。
 スマートフォン4は、無線LANネットワークのルータ及び操作端末としての役割を果たし、公衆回線のアクセスポイント(図示せず)を介してインターネット5に接続される。インターネット5にはサーバ6が接続されている。すなわち、室内ユニット1は、無線LAN通信部3により、スマートフォン4及びサーバ6と通信が可能である。
 室内ユニット1からスマートフォン4に入力された熱画像センサ情報及び運転情報は、インターネット5を介してサーバ6に入力される。サーバ6は、入力された熱画像センサ情報に後述する所定の処理を行ない、熱画像情報として記憶する。また、サーバ6は、入力された運転情報を記憶するとともに、スマートフォン4に出力する。
 図3は、実施の形態1に係る空気調和機の室内ユニット1の無線LANインターフェイス33の熱画像センサ情報及び運転情報の送信方法を説明するためのフローチャートである。
 図3に示すように、無線LANインターフェイス33は、熱画像センサ情報を受信したか否かを判断する(S1)。ステップS1で熱画像センサ情報を受信したと判断した場合(S1のYES)、熱画像センサ情報をスマートフォン4に送信する(S2)。ステップS2で熱画像センサ情報を送信した後、ステップS3に移る。
 一方、ステップS1で熱画像センサ情報を受信していないと判断した場合(S1のNO)、ステップS3の処理に移る。ステップS3では、無線LANインターフェイス33は、運転情報を受信したか否かを判断する。ステップS3で運転情報を受信していないと判断した場合(S3のNO)、ステップS1の処理に戻る。
 ステップS3で熱画像センサ情報を受信したと判断した場合(S3のYES)、スマートフォン4に運転情報を送信し(S4)、ステップS1の処理に戻る。ここで、ステップS4における運転情報の送信は、所定間隔(例えば、5分)毎に行われる。すなわち、無線LANインターフェイス33は、熱画像センサ情報と運転情報とを別々にスマートフォン4に送信する。
 図4は、実施の形態1に係る空気調和機の室内ユニット1の室内基板2を説明するための図である。図4に示すように、1枚の室内基板2には、第1室内基板コネクタ21、第2室内基板コネクタ22、メインCPU23、メモリ24及びサブCPU26が搭載されている。
 メインCPU23は、メモリ24に記憶された制御プログラム25と協働して空気調和機の全体の制御を司る。メインCPU23は、冷媒回路51、各種センサ52などから運転情報を受信する。冷媒回路51は、少なくとも圧縮機51a、膨張弁51b、熱源側熱交換器51c及び負荷側熱交換器51dが配管で接続され、配管内を冷媒が循環する回路である。メインCPU23は、入力された運転情報を運転情報信号線13を介して無線LAN通信部3の無線LANインターフェイス基板30に出力する。また、メインCPU23は、冷媒回路51及びセンサ駆動部53に制御情報を出力する。熱画像センサ54は、センサ駆動部53により空調対象の室内の熱情報を取得するように駆動される。
 メモリ24は、制御プログラム25の他、熱画像センサ54からの熱情報、冷媒回路51、各種センサ52などからの運転情報を記憶する他、ワークエリアとしても使用される。
 サブCPU26は、メモリ24に記憶された制御プログラム25と協働して熱画像センサ54からの熱情報を熱画像センサ情報に変換する処理を行なう。熱画像センサ情報は、熱画像センサ54により取得される熱情報の空調対象の室内の1枚の熱画像である。すなわち、熱画像センサ54が、空調対象の室内の熱情報を複数回駆動して取得する場合、複数回駆動して得られる熱画像センサ54からの熱情報が1枚の熱画像である熱画像センサ情報となる。サブCPU26は、熱情報を基に得られた熱画像センサ情報を熱画像センサ情報信号線14を介して無線LAN通信部3の無線LANインターフェイス基板30に出力する。なお、タイミングよく前回の熱画像センサ情報が送れず、最新熱画像センサ情報の取得が送信より先になった場合、メモリ24には熱画像センサ情報が上書きされ、最新の一枚が送られる
 ここで、サブCPU26は、専用のハードウェアであっても良い。サブCPU26は、例えば、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又はこれらを組み合わせたものであっても良い。また、サブCPU26が実現する各機能部のそれぞれを、個別のハードウェアで実現してもよいし、各機能部を一つのハードウェアで実現してもよい。
 図5は、実施の形態1に係る空気調和機の熱画像センサ情報が格納されるサーバ6の機能を説明するための機能ブロック図である。
 図5に示すように、サーバ6は、送受信部101、熱画像情報処理部102、運転情報処理部103及び記憶部104を有する。
 送受信部101は、室内ユニット1の無線LAN通信部3からの熱画像センサ情報、運転情報、スマートフォン4からの熱画像リクエスト等を受信する。また、送受信部101は、熱画像リクエストに応答する熱画像情報をスマートフォン4に送信し、運転情報に基づく制御情報をルータであるスマートフォン4を介して室内ユニット1の無線LAN通信部3に送信する。
 熱画像情報処理部102は、無線LAN通信部3からの熱画像センサ情報に基づいて、所定の処理を行ない、熱画像センサ情報を熱画像情報に変換する。例えば、所定の処理には、熱画像センサ情報と空調対象の室内のカメラ画像を合成するなどの処理を行なう。熱画像情報処理部102は、得られた熱画像情報を記憶部104に格納する。また、熱画像情報処理部102は、熱画像リクエストを受信すると、対応する熱画像センサ情報をインターネット5及びスマートフォン4を介して、無線LAN通信部3のメモリ(図示せず)から取得する。そして、熱画像情報処理部102は、無線LAN通信部3から取得した対応する熱画像センサ情報を熱画像情報に変換して、送受信部101からスマートフォン4に送信する。
 運転情報処理部103は、無線LAN通信部3からの運転情報を記憶部104に記憶するとともに、インターネット5を介してスマートフォン4に送信する。スマートフォン4は、サーバ6から送信された運転情報を表示し、ユーザからの操作情報を無線LAN通信部3を介して室内ユニット1に送信する。
 次に、熱画像センサ54の熱情報の取得方法について説明する。
 図6は、実施の形態1に係る空気調和機の熱画像センサ54の空調対象の部屋における検知領域の範囲RRを示す図である。図6において、斜線範囲は熱画像センサ54の温度情報が取得できる検知領域の範囲RRを示している。また、白矢印は、熱画像センサ54を初期位置から1回目の駆動をした時の移動方向を示し、黒矢印は、熱画像センサ54の駆動方向を示す。
 スマートフォン4に熱画像を表示する場合、まず、サブCPU26が、熱画像センサ54を初期位置に駆動し、熱画像センサ54の光を初期位置に向ける。図6(A)は、熱画像センサ54の光を初期位置に向けた状態を示す図である。初期位置は、例えば、空調対象となる部屋の最も左側の温度情報を計測できる位置まで回転駆動させる。最も左側の位置とは熱画像センサ54の光が室内ユニット1自身にかからない範囲の最大値の位置である。この位置への熱画像センサ54の駆動量は、予め定められている。そして、この駆動量に基づいて、熱画像センサ54が回転駆動される。
 次に、サブCPU26は、熱画像センサ54から熱情報を取得し、取得した熱情報をメモリ24に記憶する。次に、サブCPU26は、部屋全体の熱情報を取得したか否かを判断する。
 部屋全体の熱情報を取得したかどうかは、例えば、図6(C)に示したように、熱画像センサ54が初期位置を最も左側から回転駆動を開始した場合、部屋の最も右側の熱情報を計測できる光まで回転駆動している状態か判断する。初期位置と同様に、最も右側とは、熱画像センサ54の光が室内ユニット1自身にかからない範囲の最大値として、予めメモリ24に駆動量又は駆動回数を記憶させておきその位置に達したか否かにより判断する。
 サブCPU26が部屋全体の熱情報を取得していないと判断した場合、サブCPU26は、熱画像センサ54を一定量回転駆動させる。ここで、回転駆動量は、例えば、図6(B1)に示すように、熱画像センサ54の光が前回取得した検知領域の範囲と少なくとも隙間が無いように回転駆動させる。1回の回転駆動量は予めメモリ24に記憶しておく。駆動後は、再び、サブCPU26は、熱情報を取得して、メモリ24に取得した熱情報を記憶する。
 以降、部屋全体の熱情報が取得できるまで、図6(B2)のように左から右へ熱画像センサ54を回転駆動させながら、熱情報の取得とメモリ24への記憶を繰り返す。
 一方、サブCPU26が部屋全体の熱情報を取得できたと判断した場合、サブCPU26はメモリ24に今まで記憶された複数箇所の熱情報を組み合わせて1枚の熱画像センサ情報を作成する。サブCPU26は、1枚の熱画像センサ情報を、熱画像センサ情報信号線14に出力する。
 以降、サブCPU26は、熱画像センサ54を初期位置に駆動させ再度熱情報の取得を行う。実施の形態1では、サブCPU26は、熱画像センサ情報を送信後に、熱画像センサ54を初期位置に戻している。
 実施の形態1では、サブCPU26は、図6(A)に示す左端から図6(C)に示す右端に熱画像センサ54を回転駆動したあと、熱画像センサ54を再び左端に戻しているがこれに限定されない。サブCPU26は、熱画像センサ54が右端に到達して熱画像センサ情情報を送信後に、熱画像センサ54を右端から左端に向けて一定量ずつ回転駆動させて熱情報を取得してもよい。
 図7は、実施の形態1に係る空気調和機の空調対象の部屋のスマートフォン4に表示される熱画像の例を示す図である。図7に示すように、スマートフォン4に表示される熱画像情報には、熱画像の他に、日付時刻情報及び空調対象の部屋のカメラ画像が合成されても良い。また、熱画像情報の作成は、スマートフォン4のアプリケーションプログラムで行っても良い。
 実施の形態1に係る空気調和機によれば、運転情報は運転情報信号線13を介して、熱画像センサ情報は熱画像センサ情報信号線14を介して、無線LANインターフェイス33に別々に伝送される。これにより、熱画像センサ情報と運転情報とを分割することなく熱画像センサ情報を順次送信することができ、熱画像センサ情報の通信速度を向上することができる。
 また、熱画像センサ情報の伝送方式は運転情報の伝送方式よりも高速である。従って、さらに、熱画像センサ情報の通信速度を向上することができる。そして、熱画像センサ情報の伝送速度を向上することができるので、ユーザが参照する熱画像情報の応答性も向上することができる。
実施の形態2.
 図8は、実施の形態2に係る空気調和機の室内ユニット1の第1室内基板2A及び第2室内基板2Bと無線LAN通信部3の無線LANインターフェイス基板30との関係を示す図である。
 図2に示した実施の形態1と異なる点は、無線LAN通信部3は、1つの室内基板2ではなく、第1室内基板2A及び第2室内基板2Bに接続されていることにある。
 第1室内基板2Aには、図4に示したメインCPU23及びメモリ24が搭載される。第2室内基板2Bには、図4に示したサブCPU26が搭載される。メインCPU23及びサブCPU26の動作は実施の形態1と同様である。また、第1室内基板2Aには、第1室内基板コネクタ21Aが設けられ、第2室内基板2Bには、第2室内基板コネクタ22Aが設けられる。すなわち、運転情報は、第1室内基板2Aから運転情報信号線13を介して無線LANインターフェイス33に入力される。熱画像センサ情報は、第2室内基板2Bから熱画像センサ情報信号線14を介して無線LANインターフェイス33に入力される。
 なお、第1ケーブル11及び第2ケーブル12は、運転情報信号線13及び熱画像センサ情報信号線14を被覆し、第1室内基板コネクタ21Aと第2室内基板コネクタ22Aとの付近で分岐する二股のケーブルであっても良い。このように二股のケーブルを使用することにより、第1室内基板2A及び第2室内基板2Bと、無線LANインターフェイス基板30との配線を1つのケーブルで済ますことができる。
 実施の形態は、例として提示したものであり、実施の形態の範囲を限定することは意図していない。実施の形態は、その他の様々な形態で実施されることが可能であり、実施の形態の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行なうことができる。これら実施の形態及びその変形は、実施の形態の範囲及び要旨に含まれる。
 1 室内ユニット、2 室内基板、2A 第1室内基板、2B 第2室内基板、3 無線LAN通信部、4 スマートフォン、5 インターネット、6 サーバ、11 第1ケーブル、12 第2ケーブル、13 運転情報信号線、14 熱画像センサ情報信号線、21、21A 第1室内基板コネクタ、22、22A 第2室内基板コネクタ、23 メインCPU、24 メモリ、25 制御プログラム、26 サブCPU、30 無線LANインターフェイス基板、31 第1インターフェイス基板コネクタ、32 第2インターフェイス基板コネクタ、33 無線LANインターフェイス、41 熱情報処理部、42 運転情報処理部、51 冷媒回路、51a 圧縮機、51b 膨張弁、51c 熱源側熱交換器、51d 負荷側熱交換器、52 各種センサ、53 センサ駆動部、54 熱画像センサ、101 送受信部、102 熱画像情報処理部、103 運転情報処理部、104 記憶部、RR 検知領域の範囲、CC インターフェイス基板コネクタ。

Claims (6)

  1.  圧縮機、負荷側熱交換器、膨張弁及び熱源側熱交換器が配管で接続され、前記配管内を冷媒が循環する冷媒回路と、
     空調対象である室内の熱情報を取得する熱画像センサと、
     前記冷媒回路の運転情報を伝送する運転情報信号線及び前記熱画像センサにより取得された前記空調対象である室内の熱情報に基づく熱画像センサ情報を伝送する熱画像センサ情報信号線を接続するインターフェイス基板コネクタと、前記インターフェイス基板コネクタに接続された前記運転情報信号線により伝送された前記運転情報と前記インターフェイス基板コネクタに接続された前記熱画像センサ情報信号線により伝送された前記熱画像センサ情報とを外部電子機器に別々に送信する無線LANインターフェイスとを具備する無線LAN通信部と
    を具備する
    空気調和機。
  2.  前記運転情報信号線が接続される第1室内基板コネクタと、前記第1室内基板コネクタに接続され、前記冷媒回路の運転情報を前記運転情報信号線を介して前記無線LANインターフェイスに伝送するメインCPUと、前記熱画像センサ情報信号線が接続される第2室内基板コネクタと、前記第2室内基板コネクタに接続され、前記熱画像センサにより取得された前記空調対象である室内の熱情報を熱画像単位の熱画像センサ情報として、前記熱画像センサ情報信号線を介して前記無線LANインターフェイスに伝送するサブCPUとを具備する室内基板
    をさらに具備する請求項1記載の空気調和機。
  3.  前記運転情報信号線が接続される第1室内基板コネクタと、前記第1室内基板コネクタに接続され、前記冷媒回路の運転情報を前記運転情報信号線を介して前記無線LANインターフェイスに伝送するメインCPUとを具備する第1室内基板と、
     前記熱画像センサ情報信号線が接続される第2室内基板コネクタと、前記第2室内基板コネクタに接続され、前記熱画像センサにより取得された前記空調対象である室内の熱情報を熱画像単位の熱画像センサ情報として、前記熱画像センサ情報信号線を介して前記無線LANインターフェイスに伝送するサブCPUとを具備する第2室内基板と
    をさらに具備する請求項1記載の空気調和機。
  4.  前記インターフェイス基板コネクタ及び前記無線LANインターフェイスを搭載する無線LANインターフェイス基板をさらに具備し、
     前記運転情報信号線及び前記熱画像センサ情報信号線は、二股のケーブルで被覆されている
    請求項3記載の空気調和機。
  5.  前記室内基板から前記熱画像センサ情報信号線を介して前記無線LANインターフェイスに伝送される前記熱画像センサ情報は、SPI通信方式で伝送され、
     前記室内基板から前記運転情報信号線を介して前記無線LANインターフェイスに伝送される前記運転情報は、前記SPI通信方式よりも低速の通信方式である
    請求項2記載の空気調和機。
  6.  前記無線LAN通信部は、前記空気調和機の室内ユニットに搭載される
    請求項1~5のいずれか1項に記載の空気調和機。
PCT/JP2019/042801 2019-10-31 2019-10-31 空気調和機 WO2021084686A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112019007870.4T DE112019007870T5 (de) 2019-10-31 2019-10-31 Klimaanlage
JP2021553985A JP7150190B2 (ja) 2019-10-31 2019-10-31 空気調和機
PCT/JP2019/042801 WO2021084686A1 (ja) 2019-10-31 2019-10-31 空気調和機
US17/629,842 US11994312B2 (en) 2019-10-31 2019-10-31 Air-conditioning apparatus
CN201980101601.2A CN114585863B (zh) 2019-10-31 2019-10-31 空调机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/042801 WO2021084686A1 (ja) 2019-10-31 2019-10-31 空気調和機

Publications (1)

Publication Number Publication Date
WO2021084686A1 true WO2021084686A1 (ja) 2021-05-06

Family

ID=75714987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042801 WO2021084686A1 (ja) 2019-10-31 2019-10-31 空気調和機

Country Status (5)

Country Link
US (1) US11994312B2 (ja)
JP (1) JP7150190B2 (ja)
CN (1) CN114585863B (ja)
DE (1) DE112019007870T5 (ja)
WO (1) WO2021084686A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004975A (ja) * 2006-06-20 2008-01-10 Mitsubishi Electric Corp 情報端末及びホームネットワークシステム
US20160116178A1 (en) * 2014-10-23 2016-04-28 Vivint, Inc. Real-time temperature management
WO2017017791A1 (ja) * 2015-07-28 2017-02-02 三菱電機株式会社 判定支援装置、判定支援方法及びプログラム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004077063A (ja) 2002-08-21 2004-03-11 Daikin Ind Ltd 空調室内機
EP1976133B1 (en) 2006-01-17 2017-08-16 Hitachi Metals, Ltd. High frequency circuit component and communication apparatus using such high frequency circuit component
KR200419750Y1 (ko) 2006-03-15 2006-06-23 이준희 냉온열기기 제어장치
JP5111417B2 (ja) * 2009-03-13 2013-01-09 三菱電機株式会社 空気調和機
US8948918B2 (en) * 2009-05-21 2015-02-03 Lennox Industries Inc. Outdoor fan and indoor blower controller for heating, ventilation and air conditioning system and method of operation thereof
JP5501990B2 (ja) * 2011-01-27 2014-05-28 三菱電機株式会社 空気調和機
CN108981932B (zh) * 2013-05-17 2020-08-18 松下电器(美国)知识产权公司 热图像传感器以及空气调节机
CN110274355B (zh) * 2014-03-03 2022-01-11 松下电器(美国)知识产权公司 传感方法、传感***及包含它们的空调设备
WO2015182061A1 (ja) * 2014-05-27 2015-12-03 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 空気調和装置が実行するセンサの制御方法
JP6190342B2 (ja) 2014-09-04 2017-08-30 キヤノン株式会社 通信システム、通信装置及びその制御方法、並びにプログラム
JP5967392B1 (ja) * 2015-02-06 2016-08-10 パナソニックIpマネジメント株式会社 赤外線検出装置
KR101762149B1 (ko) * 2016-02-04 2017-07-27 김석준 바람 발생 장치
DE112017002805T5 (de) * 2016-06-03 2019-02-28 Mitsubishi Electric Corporation Ausrüstungssteuerungseinrichtung und Ausrüstungssteuerungsverfahren
JP6631592B2 (ja) 2017-06-19 2020-01-15 カシオ計算機株式会社 通信機器、通信方法及びプログラム
US10684035B2 (en) * 2018-01-08 2020-06-16 Trane International Inc. HVAC system that collects customer feedback in connection with failure triage
US10619880B2 (en) * 2018-04-27 2020-04-14 Johnson Controls Technology Company Masterless air handler unit (AHU) controller system
JP7202973B2 (ja) 2019-05-29 2023-01-12 株式会社日立製作所 データ分析装置、データ分析方法、およびデータ分析プログラム
CA3169653A1 (en) * 2020-01-31 2021-08-05 Objectvideo Labs, Llc Temperature regulation based on thermal imaging

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004975A (ja) * 2006-06-20 2008-01-10 Mitsubishi Electric Corp 情報端末及びホームネットワークシステム
US20160116178A1 (en) * 2014-10-23 2016-04-28 Vivint, Inc. Real-time temperature management
WO2017017791A1 (ja) * 2015-07-28 2017-02-02 三菱電機株式会社 判定支援装置、判定支援方法及びプログラム

Also Published As

Publication number Publication date
JPWO2021084686A1 (ja) 2021-05-06
US11994312B2 (en) 2024-05-28
US20220275958A1 (en) 2022-09-01
JP7150190B2 (ja) 2022-10-07
CN114585863B (zh) 2023-03-28
DE112019007870T5 (de) 2022-09-08
CN114585863A (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
US10129746B2 (en) Mobile terminal, home appliance, and method of operating the same
CA2615065C (en) Method and apparatus for providing extended range wireless remote control of ductless space conditioning systems
EP1657639A1 (en) Outdoor-unit software upgrade system and method
JP6501973B2 (ja) 空気調和システム
WO2021084686A1 (ja) 空気調和機
JPWO2018220820A1 (ja) 空気調和機および空気調和機システム
US11022357B2 (en) System and method of operating a variable speed compressor with a two-stage controller
KR20140092510A (ko) 공기 조화 시스템 및 그 제어방법
WO2017104059A1 (ja) 冷凍サイクルシステム
KR102137461B1 (ko) 공기조화기의 동작 방법
JPWO2017149660A1 (ja) 空調システム
WO2021001934A1 (ja) 空調用検出装置、空調制御装置、空調装置、空調システム及び空調方法
WO2021117236A1 (ja) 空調制御システム、空調システム及び関連付け方法
US20240230131A9 (en) Hvac sensor information and sensor communication over relay-controlled power line
US20240133570A1 (en) Hvac sensor information and sensor communication over relay-controlled power line
JP2881461B2 (ja) 空気調和機の動作制御装置
JP7212500B2 (ja) 遠隔管理装置及び遠隔管理システム
US20210278100A1 (en) Air-cooling/heating switching type air-conditioning system and operation control method for same system
KR20190013044A (ko) 각도조절 및 확대 기능이 가능한 카메라가 내장된 실내온도 조절장치
WO2021038663A1 (ja) 空気調和機システム
JP2005221116A (ja) 空気調和機の室外ユニットの制御方法および装置
WO2021181698A1 (ja) 空気調和機のリモートコントロール装置
JP2021148385A (ja) 空調制御装置、撮影装置、空調制御システム、空調システム及び空調制御方法
KR101966950B1 (ko) 멀티형 공기 조화기 및 그의 제어방법
WO2016194115A1 (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951134

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021553985

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19951134

Country of ref document: EP

Kind code of ref document: A1