WO2021082357A1 - 一种水声定位与授时浮标及其工作方法 - Google Patents

一种水声定位与授时浮标及其工作方法 Download PDF

Info

Publication number
WO2021082357A1
WO2021082357A1 PCT/CN2020/084684 CN2020084684W WO2021082357A1 WO 2021082357 A1 WO2021082357 A1 WO 2021082357A1 CN 2020084684 W CN2020084684 W CN 2020084684W WO 2021082357 A1 WO2021082357 A1 WO 2021082357A1
Authority
WO
WIPO (PCT)
Prior art keywords
buoy
underwater acoustic
positioning
underwater
signal
Prior art date
Application number
PCT/CN2020/084684
Other languages
English (en)
French (fr)
Inventor
王胜利
郑衍宁
周兴华
胡亮亮
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Publication of WO2021082357A1 publication Critical patent/WO2021082357A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/02Transmission systems in which the medium consists of the earth or a large mass of water thereon, e.g. earth telegraphy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B22/00Buoys
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18545Arrangements for managing station mobility, i.e. for station registration or localisation
    • H04B7/18547Arrangements for managing station mobility, i.e. for station registration or localisation for geolocalisation of a station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0602Systems characterised by the synchronising information used

Definitions

  • the invention belongs to the technical field of underwater acoustic positioning, and specifically relates to an underwater acoustic positioning and timing buoy and a working method thereof.
  • Location information and time information are essential basic information for marine scientific research, seabed resource exploration, offshore structure construction, and marine information network construction.
  • the availability, accuracy and economy of positioning, navigation and timing in the marine field determine high-level marine science The normal conduct or construction of research, high-yield ocean investment and high-quality ocean intelligence network.
  • a commonly used underwater positioning method is the underwater acoustic positioning method that uses underwater acoustic ranging. This method uses the timing of sound wave transmission to measure the distance between certain spatial entities, and calculates the position by geometric or least square methods.
  • the underwater acoustic positioning method is mainly divided into three forms: install a receiving/transmitting transducer on the carrier, and install the transmitting/receiving transducers with known positions at several distant points in the space.
  • LBL long baseline
  • SBL short baseline
  • the transducer since underwater acoustic positioning requires a transducer with a known position in space, the transducer is usually mounted by a sink mark fixed on the seabed or a sea surface buoy or other carrier that uses the GNSS method for positioning.
  • the seabed sinking mark can be used for crustal deformation monitoring and other purposes, it has the disadvantages of difficult deployment and calibration, limited power consumption, and inability to accurately time the carrier, while the sea surface buoy is the opposite.
  • the purpose of the present invention is to solve the above shortcomings and propose a combination of multi-antenna GNSS data and IMU data to obtain position, attitude and clock error information that takes into account the absolute accuracy of GNSS and the high sampling rate of IMU, and then perform USBL asynchronous positioning , And use the hydroacoustic communication method to transmit the calculated carrier position and time information to the carrier’s hydroacoustic positioning and timing buoys and their working methods.
  • An underwater acoustic positioning and timing buoy including GNSS receiver, IMU, USBL equipment, satellite communication machine, underwater acoustic communication equipment, battery and controller;
  • the GNSS receiver is used to obtain the coordinates of the buoy's ground-fixed coordinate system and the attitude information of the buoy;
  • IMU gives the angular velocity and acceleration information of the buoy, and uses the IMU algorithm to continuously calculate the position, velocity and attitude at any time thereafter based on a set of initial position, velocity and attitude information with additional errors;
  • the USBL device transmits the signal and receives the return signal of the underwater carrier transducer, thereby calculating the round-trip propagation time between the two and the relative propagation time of the signal between the array elements;
  • the satellite communication machine is used to obtain real-time precise correction information from the satellite;
  • the underwater acoustic communication equipment is used to communicate with underwater vehicles and send positioning results
  • the battery is used to power all the electrical appliances of the entire buoy
  • the controller is used to receive data, locate, send results and control other devices.
  • the GNSS receiver is a single multi-antenna GNSS receiver.
  • the GNSS receiver has multiple single-antenna GNSS receivers.
  • a working method for underwater acoustic positioning and timing buoys using the above-mentioned underwater acoustic positioning and timing buoys, includes the following steps:
  • the buoy receives GNSS observation data, IMU observation data and precision correction information from the GNSS receiver, IMU and satellite communication antenna respectively.
  • the satellite communication antenna can be omitted;
  • the buoy performs high-precision PPP/INS integrated navigation and positioning based on the received GNSS observation data, GNSS precision correction information and IMU observation data, and obtains high-precision buoy position, clock error and attitude information;
  • the USBL device of the buoy sends a signal to the underwater carrier and records the sending epoch time
  • the underwater carrier uses the underwater acoustic positioning equipment to receive the signal and immediately transmit another signal;
  • the USBL device of the buoy receives the signal sent by the carrier, and records the receiving epoch time and the signal phase difference measured between the array elements;
  • the PPP algorithm used by the underwater acoustic positioning and timing buoy uses satellites broadcast in real time. Real-time correction information such as orbit and clock error, more comprehensive system error model, Kalman filter data processing method, GNSS carrier phase ambiguity fixing method, etc., to improve the accuracy and anti-error ability of buoy positioning.
  • sea surface buoy is used instead of the commonly used submarine sinking mark. It is difficult to place the submarine sinking mark, it needs to be more accurate to use, power consumption is limited, it is impossible to provide high-precision timing, and it is difficult to replenish energy.
  • the sea surface buoy used can be directly put on the sea surface by various ships or even aircraft, and its autonomous positioning and orientation process does not require manual intervention, the power consumption limit is loose, it is easy to replace the battery to supplement energy, and it can be equipped with solar panels and thermoelectric generators. As a power source, it overcomes the above-mentioned shortcomings of submarine sinking.
  • the underwater acoustic positioning and timing buoy and its working method use the combination of multi-antenna GNSS data and IMU data to obtain position, attitude and clock error information that takes into account the absolute accuracy of GNSS and the high sampling rate of IMU, and then perform USBL asynchronous positioning, and The calculated position and time information of the carrier is transmitted to the carrier using the underwater acoustic communication method to realize high-precision underwater positioning and timing.
  • Figure 1 is a block diagram of the underwater acoustic positioning and timing buoy structure
  • Figure 2 is a flowchart of the working method of underwater acoustic positioning and timing buoys.
  • GSNN Global Satellite Navigation System
  • IMU Inertial measurement unit
  • USBL Ultra-short baseline hydroacoustic positioning system
  • an underwater acoustic positioning and timing buoy includes a single multi-antenna GNSS receiver, IMU, USBL equipment, satellite communication machine, underwater acoustic communication equipment, battery and controller;
  • GNSS receiver with appropriate multi-antenna directional algorithm and PPP algorithm can measure the precise coordinates of the main antenna, and the coordinate increment value of each antenna relative to the main antenna to obtain the coordinates of the buoy's ground-fixed coordinate system and the attitude information of the buoy; PPP algorithm is used
  • the real-time correction information such as satellite orbit and clock error broadcast by the satellite in real time, a more comprehensive system error model, Kalman filter data processing method, GNSS carrier phase ambiguity fixation method, etc., improve the accuracy and anti-error ability of buoy positioning.
  • IMU can give the angular velocity and acceleration information of the buoy, and continuously calculate the position, velocity and posture at any time afterwards with additional error based on a set of initial position, velocity and posture information through the IMU algorithm;
  • Using the combination of multi-antenna GNSS technology and IMU can better ensure high-precision, high-frequency buoy position, attitude and clock error information update.
  • the USBL device transmits the signal and receives the return signal of the underwater carrier transducer, so as to calculate the round-trip propagation time between the two and the relative propagation time of the signal between the array elements (in the form of phase difference);
  • the satellite communication machine is used to obtain real-time precise correction information from the satellite;
  • the underwater acoustic communication equipment is used to communicate with underwater vehicles and send positioning results
  • the battery is used to power all the electrical appliances of the entire buoy
  • the controller is used to receive data, locate, send results and control other devices.
  • the working method of underwater acoustic positioning and timing buoy in combination with Fig. 2, adopting the above-mentioned underwater acoustic positioning and timing buoy includes the following steps:
  • the underwater acoustic positioning and timing buoys are placed on the sea surface to ensure that the buoys float upward on the water surface, using the form of sea surface buoys instead of the commonly used submarine sinking buoys. It is difficult to place the submarine sunk standard, it needs to be more accurate before it can be used, the power consumption is limited, it is impossible to provide high-precision timing, and it is difficult to supplement energy.
  • the sea surface buoy used can be directly put on the sea surface by various ships or even aircraft, and its autonomous positioning and orientation process does not require manual intervention, the power consumption limit is loose, it is easy to replace the battery to supplement energy, and it can be equipped with solar panels and thermoelectric generators. As a source of power, it overcomes the above-mentioned shortcomings of subsea sinking;
  • the buoy receives GNSS observation data, IMU observation data and precision correction information from the GNSS receiver, IMU and satellite communication antenna respectively.
  • the satellite communication antenna can be omitted;
  • the buoy performs high-precision PPP/INS integrated navigation and positioning based on the received GNSS observation data, GNSS precision correction information and IMU observation data, and obtains high-precision buoy position, clock error and attitude information;
  • the USBL device of the buoy sends a signal to the underwater carrier and records the sending epoch time
  • the underwater carrier uses the underwater acoustic positioning equipment to receive the signal and immediately transmit another signal;
  • the USBL device of the buoy receives the signal sent by the carrier, and records the receiving epoch time and the signal phase difference measured between the array elements;
  • an underwater acoustic positioning and timing buoy includes multiple single-antenna GNSS receivers, IMUs, USBL equipment, satellite communications, underwater acoustic communications equipment, batteries and controllers;
  • the GNSS receiver is used to obtain the coordinates of the buoy's ground-fixed coordinate system and the attitude information of the buoy;
  • IMU gives the angular velocity and acceleration information of the buoy, and uses the IMU algorithm to continuously calculate the position, velocity and attitude at any time thereafter based on a set of initial position, velocity and attitude information with additional errors;
  • the USBL device transmits the signal and receives the return signal of the underwater carrier transducer, so as to calculate the round-trip propagation time between the two and the relative propagation time of the signal between the array elements (in the form of phase difference);
  • the satellite communication machine is used to obtain real-time precise correction information from the satellite;
  • the underwater acoustic communication equipment is used to communicate with underwater vehicles and send positioning results
  • the battery is used to power all the electrical appliances of the entire buoy
  • the controller is used to receive data, locate, send results and control other devices.
  • a working method for underwater acoustic positioning and timing buoys using the above-mentioned underwater acoustic positioning and timing buoys, includes the following steps:
  • the underwater acoustic positioning and timing buoys are placed on the sea surface to ensure that the buoys float upward on the water surface, using the form of sea surface buoys instead of the commonly used submarine sinking buoys. It is difficult to place the submarine sunk standard, it needs to be more accurate before it can be used, the power consumption is limited, it is impossible to provide high-precision timing, and it is difficult to supplement energy.
  • the sea surface buoy used in this patent can be directly put on the sea surface by various ships or even aircraft, and its autonomous positioning and orientation process does not require manual intervention, the power consumption limit is loose, it is easy to replace the battery to supplement energy, and it can be equipped with solar panels and temperature differences. Generators, etc., as a source of electricity, overcome the above-mentioned shortcomings of submarine sinking;
  • the buoy receives GNSS observation data, IMU observation data and precision correction information from the GNSS receiver, IMU and satellite communication antenna respectively.
  • the satellite communication antenna can be omitted;
  • the buoy performs high-precision PPP/INS integrated navigation and positioning based on the received GNSS observation data, GNSS precision correction information and IMU observation data, and obtains high-precision buoy position, clock error and attitude information;
  • the USBL device of the buoy sends a signal to the underwater carrier and records the sending epoch time
  • the underwater carrier uses the underwater acoustic positioning equipment to receive the signal and immediately transmit another signal;
  • the USBL device of the buoy receives the signal sent by the carrier, and records the receiving epoch time and the signal phase difference measured between the array elements;
  • USBL device space absolute position of the sending epoch using the USBL device space absolute position of the sending epoch, the USBL space absolute position and attitude of the receiving epoch, the sending epoch time, the receiving epoch time, the signal phase difference between the array elements, and calculating the signal phase difference in the USBL coordinate system

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Astronomy & Astrophysics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本发明公开了一种水声定位与授时浮标及其工作方法,属于水声定位技术领域,其解决了现有基于海面浮标的水声定位方式中浮标姿态信息的缺失引入了***性的观测误差;使用SPP算法限制了***定位、授时精度和可靠性的进一步提高的不足。该水声定位与授时浮标,包括GNSS接收机、IMU、USBL设备、卫星通讯机、水声通讯设备、电池和控制器;GNSS接收机用于获取浮标的地固坐标系坐标和浮标的姿态信息;IMU给出浮标的角速度和加速度信息,并通过IMU算法根据一组起始的位置、速度和姿态信息,附加误差地连续推算之后任意时刻的位置、速度和姿态;USBL设备发射信号并接收水下载体换能器的返回信号,从而计算两者间的往返传播时间和信号在阵元间的相对传播时间。

Description

一种水声定位与授时浮标及其工作方法 技术领域
本发明属于水声定位技术领域,具体涉及一种水声定位与授时浮标及其工作方法。
背景技术
随着从重视陆地资源、陆权空权转换到重视海洋资源和海权等,研究海洋科学、发展海洋经济、加强海洋国防成为战略的新方向。位置信息和时间信息对于海洋科考、海底资源勘探、海工结构建设、海洋情报网建设等是必要的基础信息,海洋领域定位、导航和授时的可用性、精度和经济性决定了高层次海洋科学研究、高收益的海洋投资和高质量的海洋情报网的正常进行或建设。
对于海面以上一般载体的定位、导航与授时,通常可以使用GPS、北斗等GNSS技术来实现,并且其定位、导航与授时的精度、可用性和隐蔽性等均较佳。而水面以下的定位与授时一直缺少有效的解决方案。一种常用的水下定位方法是使用水声测距来实现的水声定位方法。该方法使用对声波传递进行计时来测量某些空间实体间的距离,通过几何或最小二乘等方法进行位置的解算。具体来说,水声定位方法主要分为三种形式:在载体上安装一台接收/发射换能器,在空间中相隔较远的几个点安装位置已知的发射/接收换能器,并测量发射换能器发射的信号到接收换能器的传播时间,称之为长基线(LBL)***;在空间中某一已知点安装一台发射换能器,在载体上安装多台接收换能器并测量发射换能器发射的信号到他们各自的传播时间,或该信号到主接收换能器的传播时间以及在接收换能器之间的时间差,称之为短基线(SBL)***;在空间中某一已知点安装一台发射换能器,在载体上安装多台接收换能器并测量发射换能器发射的信号到主接收换能器的传播时间和信号在接收换能器之间的相位差,称之为超短基线(USBL)***。
一般而言,由于水声定位要求空间中存在位置已知的换能器,因此通常通过固定于海底的沉标或者使用GNSS方法进行定位的海面浮标或其他载体来搭载换能 器。这两种方法中,海底沉标虽然可以兼顾地壳形变监测等用途,但具有布放和校准困难、功耗受限、无法对载体精确授时等缺点,海面浮标则相反。
在常规的USBL海面浮标方法中,浮标上通常只搭载单天线的GNSS接收机和USBL水声定位设备,并且GNSS定位算法使用的是精度较低的SPP(标准单点定位)算法。这一通用设计存在如下几点问题:(1)浮标自身仅使用单个GNSS天线进行定位,而未考虑浮标的姿态(航向、横滚角、俯仰角),这一未经考虑的姿态误差对USBL定位精度的影响非常显著且会随深度增加越来越大;(2)SPP定位算法的精度、可靠性等均较差,会限制水声定位的精度和可靠性。从前述内容可知,目前常用的基于海面浮标的水声定位方式主要存在两类问题:(1)浮标姿态信息的缺失引入了***性的观测误差;(2)使用SPP算法限制了***定位、授时精度和可靠性的进一步提高。
发明概述
技术问题
问题的解决方案
技术解决方案
本发明的目的是针对上述不足,提出了一种通过多天线GNSS数据和IMU数据的组合,从而获得兼顾GNSS绝对精度和IMU高采样率的位置、姿态和钟差信息,进而进行USBL非同步定位,并将计算得到的载***置和时间信息使用水声通讯方法传递给载体的水声定位与授时浮标及其工作方法。
本发明具体采用如下技术方案:
一种水声定位与授时浮标,包括GNSS接收机、IMU、USBL设备、卫星通讯机、水声通讯设备、电池和控制器;
GNSS接收机用于获取浮标的地固坐标系坐标和浮标的姿态信息;
IMU给出浮标的角速度和加速度信息,并通过IMU算法根据一组起始的位置、速度和姿态信息,附加误差地连续推算之后任意时刻的位置、速度和姿态;
USBL设备发射信号并接收水下载体换能器的返回信号,从而计算两者间的往返传播时间和信号在阵元间的相对传播时间;
卫星通讯机用于从卫星获取实时的精密改正信息;
水声通讯设备用于与水下载体通讯,发送定位结果;
电池用于为整个浮标所有的用电器供电;
控制器用于接收数据、定位、发送结果和控制其他设备。
优选地,GNSS接收机为单个多天线GNSS接收机。
优选地,GNSS接收机多个单天线GNSS接收机。
一种水声定位与授时浮标的工作方法,采用如上所述的水声定位与授时浮标,包括以下步骤:
①、在载体上安装水声定位设备,用于与浮标进行双向通信测量时间差;
②、在海面上安放水声定位与授时浮标,保证浮标正面向上漂浮在水面上;
③、浮标从GNSS接收机、IMU和卫星通讯天线分别接收GNSS观测数据、IMU观测数据以及精密改正信息,当使用GNSS卫星自身播发的精密改正信息时,卫星通信天线可省略;
④、浮标根据接收的GNSS观测数据、GNSS精密改正信息和IMU观测数据,进行高精度PPP/INS组合导航定位,得到高精度的浮标位置、钟差和姿态信息;
⑤、浮标的USBL设备向水下载体发送信号,并记录发送历元时间;
⑥、水下载体使用水声定位设备接收到信号并立刻发射另一信号;
⑦、浮标的USBL设备接收到载体发出的信号,记录下接收历元时间以及阵元间测量的信号相位差;
⑧、利用发送历元的USBL设备空间绝对位置,接收历元的USBL空间绝对位置、姿态,发送历元时刻、接受历元时刻,阵元间测量的信号相位差,计算在USBL坐标系下的载体三维位置以及载体接收信号的历元时刻;
⑨、使用高精度的浮标位置钟差和姿态信息,对⑧计算的位置和历元时刻进行坐标***和时间***的转换,得到地心地固坐标系的载体坐标和与某个GNSS时间***同步的载体接收信号历元时刻;
⑩、将⑨的结果使用水声通讯设备发送给水下载体,完成高精度定位与授时。
发明的有益效果
有益效果
本发明具有如下有益效果:
使用GNSS领域的PPP定位算法代替传统的SPP定位算法,SPP算法逻辑和模型简单,但定位的精度和抗差性等均一般,该水声定位与授时浮标使用的PPP算法使用卫星实时播发的卫星轨道和钟差等实时改正信息、更加全面的***误差模型、卡尔曼滤波数据处理方法、GNSS载波相位模糊度固定方法等,提高浮标定位的精度和抗差能力等。
采用了海面浮标的形式,代替了常用的海底沉标形式,海底沉标安放困难、需要较准才能使用、功耗受限、无法高精度授时、难以补充能源。使用的海面浮标可直接通过各类船只甚至飞机投放于海面,并且其自主定位、定向过程无需人工干预,功耗限制较松,易于更换电池补充能源,更可以加装太阳能电池板和温差发电机等作为电力来源,克服了海底沉标的上述缺陷。
该水声定位与授时浮标及其工作方法通过多天线GNSS数据和IMU数据的组合,从而获得兼顾GNSS绝对精度和IMU高采样率的位置、姿态和钟差信息,进而进行USBL非同步定位,并将计算得到的载***置和时间信息使用水声通讯方法传递给载体,实现高精度水下定位和授时。
对附图的简要说明
附图说明
图1为水声定位与授时浮标结构框图
图2为水声定位与授时浮标工作方法流程图。
发明实施例
本发明的实施方式
下面结合附图和具体实施例对本发明的具体实施方式做进一步说明:
GSNN:全球卫星导航***;
IMU:惯性测量单元(Inertial measurement unit,简称IMU)是测量物体三轴姿态角(或角速率)以及加速度的装置;
USBL:超短基线水声定位***;
实施例1
结合图1,一种水声定位与授时浮标,包括为单个多天线GNSS接收机、IMU、USBL设备、卫星通讯机、水声通讯设备、电池和控制器;
GNSS接收机配合合适的多天线定向算法和PPP算法能够测量主天线的精确坐标,和各天线相对于主天线的坐标增量值获取浮标的地固坐标系坐标和浮标的姿态信息;PPP算法使用卫星实时播发的卫星轨道和钟差等实时改正信息、更加全面的***误差模型、卡尔曼滤波数据处理方法、GNSS载波相位模糊度固定方法等,提高浮标定位的精度和抗差能力等。
IMU可以给出浮标的角速度和加速度信息,并通过IMU算法根据一组起始的位置、速度和姿态信息,附加误差地连续推算之后任意时刻的位置、速度和姿态;
使用多天线GNSS技术和IMU的组合能够更好地保证高精度、高频率的浮标位置、姿态和钟差信息更新。
USBL设备发射信号并接收水下载体换能器的返回信号,从而计算两者间的往返传播时间和信号在阵元间的相对传播时间(以相位差的形式);
卫星通讯机用于从卫星获取实时的精密改正信息;
水声通讯设备用于与水下载体通讯,发送定位结果;
电池用于为整个浮标所有的用电器供电;
控制器用于接收数据、定位、发送结果和控制其他设备。
结合图2一种水声定位与授时浮标的工作方法,采用如上所述的水声定位与授时浮标,包括以下步骤:
①、在载体上安装水声定位设备,用于与浮标进行双向通信测量时间差;
②、在海面上安放水声定位与授时浮标,保证浮标正面向上漂浮在水面上,采用了海面浮标的形式,代替了常用的海底沉标形式。海底沉标安放困难、需要较准才能使用、功耗受限、无法高精度授时、难以补充能源。使用的海面浮标可直接通过各类船只甚至飞机投放于海面,并且其自主定位、定向过程无需人工干预,功耗限制较松,易于更换电池补充能源,更可以加装太阳能电池板和温差发电机等作为电力来源,克服了海底沉标的上述缺陷;
③、浮标从GNSS接收机、IMU和卫星通讯天线分别接收GNSS观测数据、IMU观测数据以及精密改正信息,当使用GNSS卫星自身播发的精密改正信息时,卫星通信天线可省略;
④、浮标根据接收的GNSS观测数据、GNSS精密改正信息和IMU观测数据,进行高精度PPP/INS组合导航定位,得到高精度的浮标位置、钟差和姿态信息;
⑤、浮标的USBL设备向水下载体发送信号,并记录发送历元时间;
⑥、水下载体使用水声定位设备接收到信号并立刻发射另一信号;
⑦、浮标的USBL设备接收到载体发出的信号,记录下接收历元时间以及阵元间测量的信号相位差;
⑧、利用发送历元的USBL设备空间绝对位置,接收历元的USBL空间绝对位置、姿态,发送历元时刻、接受历元时刻,阵元间测量的信号相位差,计算在USBL坐标系下的载体三维位置以及载体接收信号的历元时刻;
⑨、使用高精度的浮标位置钟差和姿态信息,对⑧计算的位置和历元时刻进行坐标***和时间***的转换,得到地心地固坐标系的载体坐标和与某个GNSS时间***同步的载体接收信号历元时刻;
⑩、将⑨的结果使用水声通讯设备发送给水下载体,完成高精度定位与授时。
实施例2
结合图1,一种水声定位与授时浮标,包括为多个单天线GNSS接收机、IMU、USBL设备、卫星通讯机、水声通讯设备、电池和控制器;
GNSS接收机用于获取浮标的地固坐标系坐标和浮标的姿态信息;
IMU给出浮标的角速度和加速度信息,并通过IMU算法根据一组起始的位置、速度和姿态信息,附加误差地连续推算之后任意时刻的位置、速度和姿态;
USBL设备发射信号并接收水下载体换能器的返回信号,从而计算两者间的往返传播时间和信号在阵元间的相对传播时间(以相位差的形式);
卫星通讯机用于从卫星获取实时的精密改正信息;
水声通讯设备用于与水下载体通讯,发送定位结果;
电池用于为整个浮标所有的用电器供电;
控制器用于接收数据、定位、发送结果和控制其他设备。
结合图2,一种水声定位与授时浮标的工作方法,采用如上所述的水声定位与授时浮标,包括以下步骤:
①、在载体上安装水声定位设备,用于与浮标进行双向通信测量时间差;
②、在海面上安放水声定位与授时浮标,保证浮标正面向上漂浮在水面上,采用了海面浮标的形式,代替了常用的海底沉标形式。海底沉标安放困难、需要较准才能使用、功耗受限、无法高精度授时、难以补充能源。本专利使用的海面浮标可直接通过各类船只甚至飞机投放于海面,并且其自主定位、定向过程无需人工干预,功耗限制较松,易于更换电池补充能源,更可以加装太阳能电池板和温差发电机等作为电力来源,克服了海底沉标的上述缺陷;
③、浮标从GNSS接收机、IMU和卫星通讯天线分别接收GNSS观测数据、IMU观测数据以及精密改正信息,当使用GNSS卫星自身播发的精密改正信息时,卫星通信天线可省略;
④、浮标根据接收的GNSS观测数据、GNSS精密改正信息和IMU观测数据,进行高精度PPP/INS组合导航定位,得到高精度的浮标位置、钟差和姿态信息;
⑤、浮标的USBL设备向水下载体发送信号,并记录发送历元时间;
⑥、水下载体使用水声定位设备接收到信号并立刻发射另一信号;
⑦、浮标的USBL设备接收到载体发出的信号,记录下接收历元时间以及阵元间测量的信号相位差;
⑧、利用发送历元的USBL设备空间绝对位置,接收历元的USBL空间绝对位置、姿态,发送历元时刻、接受历元时刻,阵元间测量的信号相位差,计算在USBL坐标系下的载体三维位置以及载体接收信号的历元时刻;
⑨、使用高精度的浮标位置钟差和姿态信息,对⑧计算的位置和历元时刻进行坐标***和时间***的转换,得到地心地固坐标系的载体坐标和与某个GNSS时间***同步的载体接收信号历元时刻;
⑩、将⑨的结果使用水声通讯设备发送给水下载体,完成高精度定位与授时。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (4)

  1. 一种水声定位与授时浮标,其特征在于,包括GNSS接收机、IMU、USBL设备、卫星通讯机、水声通讯设备、电池和控制器;
    GNSS接收机用于获取浮标的地固坐标系坐标和浮标的姿态信息;
    IMU给出浮标的角速度和加速度信息,并通过IMU算法根据一组起始的位置、速度和姿态信息,附加误差地连续推算之后任意时刻的位置、速度和姿态;
    USBL设备发射信号并接收水下载体换能器的返回信号,从而计算两者间的往返传播时间和信号在阵元间的相对传播时间;
    卫星通讯机用于从卫星获取实时的精密改正信息;
    水声通讯设备用于与水下载体通讯,发送定位结果;
    电池用于为整个浮标所有的用电器供电;
    控制器用于接收数据、定位、发送结果和控制其他设备。
  2. 如权利要求1所述的一种水声定位与授时浮标,其特征在于,GNSS接收机为单个多天线GNSS接收机。
  3. 如权利要求1所述的一种水声定位与授时浮标,其特征在于,GNSS接收机多个单天线GNSS接收机。
  4. 一种水声定位与授时浮标的工作方法,采用如权利要求1-3任一所述的水声定位与授时浮标,其特征在于,包括以下步骤:
    ①、在载体上安装水声定位设备,用于与浮标进行双向通信测量时间差;
    ②、在海面上安放水声定位与授时浮标,保证浮标正面向上漂浮在水面上;
    ③、浮标从GNSS接收机、IMU和卫星通讯天线分别接收GNSS观测数据、IMU观测数据以及精密改正信息,当使用GNSS卫星自身播发的精密改正信息时,卫星通信天线可省略;
    ④、浮标根据接收的GNSS观测数据、GNSS精密改正信息和IMU观测数据,进行高精度PPP/INS组合导航定位,得到高精度的浮标 位置、钟差和姿态信息;
    ⑤、浮标的USBL设备向水下载体发送信号,并记录发送历元时间;
    ⑥、水下载体使用水声定位设备接收到信号并立刻发射另一信号;
    ⑦、浮标的USBL设备接收到载体发出的信号,记录下接收历元时间以及阵元间测量的信号相位差;
    ⑧、利用发送历元的USBL设备空间绝对位置,接收历元的USBL空间绝对位置、姿态,发送历元时刻、接受历元时刻,阵元间测量的信号相位差,计算在USBL坐标系下的载体三维位置以及载体接收信号的历元时刻;
    ⑨、使用高精度的浮标位置钟差和姿态信息,对⑧计算的位置和历元时刻进行坐标***和时间***的转换,得到地心地固坐标系的载体坐标和与某个GNSS时间***同步的载体接收信号历元时刻;
    ⑩、将⑨的结果使用水声通讯设备发送给水下载体,完成高精度定位与授时。
PCT/CN2020/084684 2019-10-30 2020-04-14 一种水声定位与授时浮标及其工作方法 WO2021082357A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911041290.3 2019-10-30
CN201911041290.3A CN110855343B (zh) 2019-10-30 2019-10-30 一种水声定位与授时浮标及其工作方法

Publications (1)

Publication Number Publication Date
WO2021082357A1 true WO2021082357A1 (zh) 2021-05-06

Family

ID=69598097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084684 WO2021082357A1 (zh) 2019-10-30 2020-04-14 一种水声定位与授时浮标及其工作方法

Country Status (2)

Country Link
CN (1) CN110855343B (zh)
WO (1) WO2021082357A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230176579A1 (en) * 2020-04-07 2023-06-08 InSitu, Inc., a subsidiary of the Boeing Company Aircraft guidance with transmitting beacons

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110855343B (zh) * 2019-10-30 2020-12-04 山东科技大学 一种水声定位与授时浮标及其工作方法
CN111142144B (zh) * 2020-01-09 2021-04-30 山东科技大学 一种水声定位与授时浮标及水下定位方法
CN112346102A (zh) * 2020-10-23 2021-02-09 中国科学院声学研究所东海研究站 一种水下声学定位导航授时***
CN112612046A (zh) * 2020-11-06 2021-04-06 中国船舶重工集团公司第七0七研究所 一种基于北斗的水上/水下一体化高精度导航定位***
CN113296055B (zh) * 2021-04-21 2024-05-17 中国人民解放军63686部队 一种半实物仿真技术的长基线水声落点测试***
CN114089280B (zh) * 2021-10-27 2024-05-07 山东科技大学 一种基于浮标的lbl/usbl混合基线合作目标水下定位方法
CN114275101A (zh) * 2022-01-05 2022-04-05 中国人民解放军海军工程大学 一种海光缆潜水浮标的定位***
CN114660644A (zh) * 2022-05-25 2022-06-24 山东科技大学 一种用于卫星高度计定标的多天线组合浮标***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6212476B1 (en) * 1998-05-14 2001-04-03 Baker Hughes Incorporated Apparatus to measure the earth's local gravity and magnetic field in conjunction with global positioning attitude determining
CN106125084A (zh) * 2016-08-08 2016-11-16 山东省科学院海洋仪器仪表研究所 基于浮标的海洋云高长期在线监测装置及方法
CN108955678A (zh) * 2018-08-03 2018-12-07 国家深海基地管理中心 一种深海运载器通信定位导航授时一体化方法及***
CN109631884A (zh) * 2018-12-19 2019-04-16 航天恒星科技有限公司 一种基于单浮标的无源水下导航方法
CN110121662A (zh) * 2016-10-28 2019-08-13 索纳达因国际有限公司 海上gnss参考站装置、海上gnss定位***以及生成海上定位参考数据的方法
CN110366095A (zh) * 2019-05-28 2019-10-22 浙江大学 一种水下节点分布式定位***及方法
CN110855343A (zh) * 2019-10-30 2020-02-28 山东科技大学 一种水声定位与授时浮标及其工作方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100495066C (zh) * 2003-12-16 2009-06-03 中国测绘科学研究院 无高稳定频标的水下gps定位导航方法及其***
US8130142B2 (en) * 2009-09-21 2012-03-06 Appareo Systems, Llc GNSS ultra-short baseline heading determination system and method
CN102128618B (zh) * 2010-12-09 2012-11-21 中国测绘科学研究院 主动式动态定位方法
CN103913758A (zh) * 2012-12-29 2014-07-09 天津港湾水运工程有限公司 一种用于水下定位综合***
CN103364056A (zh) * 2013-07-22 2013-10-23 鲍李峰 一种三天线多模gnss卫星高度计定标浮标
CN103823229B (zh) * 2014-02-28 2016-10-19 上海交通大学 一种基于dgps浮标的水下定位导航***和方法
CN105066967B (zh) * 2015-07-30 2017-04-26 国家海洋技术中心 基于mems运动传感器的测量波浪方法
ES2952860T3 (es) * 2017-04-03 2023-11-06 Centre Nat Etd Spatiales Vehículo de retransmisión para transmitir señales de posicionamiento a unidades móviles y procedimiento correspondiente
CN108303715B (zh) * 2017-12-19 2020-05-01 浙江大学 基于北斗信标的水下移动节点无源定位方法及其***
CN108414982A (zh) * 2018-05-29 2018-08-17 中国科学院声学研究所 一种用于水声定位的通信浮标及其组网
CN109061675B (zh) * 2018-07-24 2021-09-07 西安空间无线电技术研究所 一种基于卫星通信信号的导航方法
CN108680942B (zh) * 2018-09-07 2018-12-07 湖南天羿领航科技有限公司 一种惯性/多天线gnss组合导航方法及装置
CN209342926U (zh) * 2018-11-11 2019-09-03 北京国泰星云科技有限公司 一种rtg大车定位测姿***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6212476B1 (en) * 1998-05-14 2001-04-03 Baker Hughes Incorporated Apparatus to measure the earth's local gravity and magnetic field in conjunction with global positioning attitude determining
CN106125084A (zh) * 2016-08-08 2016-11-16 山东省科学院海洋仪器仪表研究所 基于浮标的海洋云高长期在线监测装置及方法
CN110121662A (zh) * 2016-10-28 2019-08-13 索纳达因国际有限公司 海上gnss参考站装置、海上gnss定位***以及生成海上定位参考数据的方法
CN108955678A (zh) * 2018-08-03 2018-12-07 国家深海基地管理中心 一种深海运载器通信定位导航授时一体化方法及***
CN109631884A (zh) * 2018-12-19 2019-04-16 航天恒星科技有限公司 一种基于单浮标的无源水下导航方法
CN110366095A (zh) * 2019-05-28 2019-10-22 浙江大学 一种水下节点分布式定位***及方法
CN110855343A (zh) * 2019-10-30 2020-02-28 山东科技大学 一种水声定位与授时浮标及其工作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230176579A1 (en) * 2020-04-07 2023-06-08 InSitu, Inc., a subsidiary of the Boeing Company Aircraft guidance with transmitting beacons
US11726480B2 (en) * 2020-04-07 2023-08-15 Insitu, Inc. Aircraft guidance with transmitting beacons

Also Published As

Publication number Publication date
CN110855343A (zh) 2020-02-28
CN110855343B (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
WO2021082357A1 (zh) 一种水声定位与授时浮标及其工作方法
CN100495066C (zh) 无高稳定频标的水下gps定位导航方法及其***
CN110208812A (zh) 半潜无人航行器海底三维地形探测装置及方法
WO2021139022A1 (zh) 一种水声定位与授时浮标及水下定位方法
Jinwu et al. Study on installation error analysis and calibration of acoustic transceiver array based on SINS/USBL integrated system
CN111366962A (zh) 一种深远海低成本长航时协同导航定位***
CN110121662A (zh) 海上gnss参考站装置、海上gnss定位***以及生成海上定位参考数据的方法
CN203714144U (zh) 一种基于声学和gps智能定位的浮标装置
CN204676554U (zh) 一种沉管水下施工定位***
CN109884647B (zh) 水声被动探测或被动定位的节点装置及分布式的节点***
CN105547290B (zh) 一种基于超短基线定位***的从潜器导航方法
CN109116360B (zh) 一种深海实时高精度定位方法及***
CN107664758B (zh) 基于长基线或超短基线组网的深海导航定位***及方法
CN111896962B (zh) 一种海底应答器定位方法、***、存储介质及应用
CN111751856B (zh) 一种基于ppp技术的海底大地基准点精确定位方法
CN107576939A (zh) 一种基于虚拟测距信标的单信标测距定位方法
CN102288170A (zh) 一种水下航行器内电子罗盘的校正方法
CN109814069A (zh) 一种基于单定位信标的水下移动节点无源定位方法及其***
WO2024007365A1 (zh) 一种基于北斗/gnss的实时高精度海表测量方法及浮标
CN104913768A (zh) 多波束测深仪自适应动态调节***及调节方法
CN108919324B (zh) 一种水下滑翔机的定位方法
CN107678032A (zh) 一种基于虚拟收发信标的单信标测距定位方法
CN110294080A (zh) 一种利用超短基线实现水下精确作业的方法
CN106840113A (zh) 一种基于星基差分增强技术的深远海波浪和潮位测量方法
US11719784B2 (en) Method for positioning underwater glider based on virtual time difference of arrival of single beacon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20882230

Country of ref document: EP

Kind code of ref document: A1