WO2021081960A1 - 一种航线规划方法、设备、***及存储介质 - Google Patents

一种航线规划方法、设备、***及存储介质 Download PDF

Info

Publication number
WO2021081960A1
WO2021081960A1 PCT/CN2019/114892 CN2019114892W WO2021081960A1 WO 2021081960 A1 WO2021081960 A1 WO 2021081960A1 CN 2019114892 W CN2019114892 W CN 2019114892W WO 2021081960 A1 WO2021081960 A1 WO 2021081960A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
waypoint
flight route
points
drone
Prior art date
Application number
PCT/CN2019/114892
Other languages
English (en)
French (fr)
Inventor
邹亭
赵力尧
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980030367.9A priority Critical patent/CN112166394A/zh
Priority to PCT/CN2019/114892 priority patent/WO2021081960A1/zh
Publication of WO2021081960A1 publication Critical patent/WO2021081960A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Definitions

  • the embodiment of the present invention relates to the technical field of drone navigation, in particular to a route planning method, equipment, system and storage medium.
  • UAVs are used more and more widely, such as agricultural UAVs, industrial UAVs, etc.
  • route planning of UAVs is a very important step.
  • the route planning of the UAV in the application process is to generate a work area by surveying and mapping the terrain, and generate a round-trip route in the work area.
  • this round-trip route only considers the two-dimensional information of the planned area, and does not consider the factors of terrain fluctuations, which may cause the planned route to rise and fall many times when performing tasks with complex terrain, which reduces the execution efficiency. .
  • this kind of round-trip route often performs a lot of useless movement during the round-trip movement, which reduces the operating efficiency of the UAV. Therefore, how to plan routes more effectively is an urgent problem to be solved.
  • the embodiment of the present invention provides a route planning method, equipment, system and storage medium, which realizes custom route planning, improves the user's freedom to edit the route, and effectively avoids multiple ascents and descents or round trips through the user's selection. Complicated routes such as formulas have improved the operating efficiency of UAVs.
  • an embodiment of the present invention provides a route planning method, including:
  • each waypoint in the first flight route includes altitude information.
  • an embodiment of the present invention provides a route planning device, including: a memory and a processor;
  • the memory is used to store programs
  • the processor is used to call the program, and when the program is executed, it is used to perform the following operations:
  • each waypoint in the first flight route includes altitude information.
  • an embodiment of the present invention provides a route planning system, including: route planning equipment and drones,
  • the route planning device is configured to obtain a reference point selection operation on the first user interface; determine a plurality of reference points according to the selection operation; generate a second reference point according to the sequence of the selection operation and the plurality of reference points A flight route, and sending the first flight route to the drone, wherein each waypoint in the first flight route includes altitude information;
  • the unmanned aerial vehicle is configured to perform a first designated task according to the first flight route.
  • an embodiment of the present invention provides a computer-readable storage medium that stores a computer program that, when executed by a processor, implements the route planning method as described in the first aspect.
  • a reference point selection operation on the first user interface by acquiring a reference point selection operation on the first user interface, a plurality of reference points are determined according to the selection operation, and a second reference point is generated according to the sequence of the selection operation and the plurality of reference points.
  • a flight route so that the UAV can perform the first designated task according to the first flight route; wherein each waypoint in the first flight route includes altitude information.
  • Setting reference points by selection operations and customizing the planning route according to the order of the selection operations improves the user's freedom to edit the route.
  • the generated route can better reflect the user's intention, making it possible to generate arbitrary The desired route, and the user’s choice can effectively avoid complicated routes such as multiple ascents and descents or round-trips, which improves the operating efficiency of the drone, and also achieves a balance between automated planning and manual planning, with a smaller manual workload , Has brought great efficiency improvement.
  • Fig. 1 is a schematic structural diagram of a route planning system provided by an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a route planning method provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an interface of a selection operation provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an interface of another selection operation provided by an embodiment of the present invention.
  • Fig. 5a is a schematic diagram of an interface of a reference point provided by an embodiment of the present invention.
  • Fig. 5b is a schematic diagram of an interface of a route provided by an embodiment of the present invention.
  • Fig. 5c is a schematic diagram of an interface of another route provided by an embodiment of the present invention.
  • Figure 5d is a schematic diagram of an interface of yet another route provided by an embodiment of the present invention.
  • Fig. 6a is a schematic diagram of an interface for inserting a waypoint according to an embodiment of the present invention.
  • Figure 6b is a schematic diagram of another interface for inserting a waypoint provided by an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of another route planning method provided by an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of yet another route planning method provided by an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an interface of yet another route provided by an embodiment of the present invention.
  • Fig. 10 is a schematic structural diagram of a route planning device provided by an embodiment of the present invention.
  • the route planning method proposed in the embodiment of the present invention can be applied to a route planning system, and specifically can be applied to a route planning device in the route planning system.
  • the route planning system further includes a drone.
  • the route planning device can be installed on a drone; in some embodiments, the route planning device can be spatially independent from the drone, for example, the route planning device can be installed on a drone. Remote control equipment, smart terminals (such as mobile phones, tablet computers, etc.), etc.
  • a communication connection is established between the route planning device and the drone.
  • the drone includes one or more motors for providing movement power for the drone; in some embodiments, the drone further includes a power component that is rotatably connected to the motor.
  • the power component includes a propeller.
  • the drone may be an agricultural drone, such as a spraying drone, or an industrial drone, such as a surveying drone.
  • the route planning system provided by the embodiment of the present invention will be schematically described below with reference to FIG. 1.
  • FIG. 1 is a schematic structural diagram of a route planning system according to an embodiment of the present invention.
  • the route planning system includes: route planning equipment 11 and unmanned aerial vehicle 12.
  • the unmanned aerial vehicle 12 and the route planning device 11 can establish a communication connection through a wireless communication connection.
  • the UAV 12 and the route planning device 11 may also establish a communication connection through a wired communication connection.
  • the route planning device 11 may be installed on the drone 12, and the drone 12 includes a power system 121, and the power system 121 is used to provide power for the drone 12 to move.
  • the drone 12 and the route planning device 11 are independent of each other, and the route planning device 11 may include one or more of a remote control device, a smart phone, a tablet computer, a laptop computer, and a wearable device.
  • the route planning device 11 may even be another terminal device independent of the remote control device of the UAV 12, and the terminal device may be communicatively connected with the remote control device of the UAV 12.
  • the route planning device 11 may be independent of the drone 12, for example, the route planning device 11 is set in a cloud server and establishes a communication connection with the drone 12 through a wireless communication connection.
  • the route planning system can obtain the reference point selection operation on the first user interface through the route planning device 11, and determine multiple reference points according to the selection operation, so as to generate the first reference point according to the sequence of the selection operation and the multiple reference points.
  • a flight route so that the UAV 12 can perform a first designated task according to the first flight route, wherein each waypoint in the first flight route includes altitude information.
  • each waypoint in the route includes altitude information, which can effectively adjust the altitude of the drone according to the terrain to perform effective operations within a suitable altitude range.
  • the route planning method, equipment, system, and storage medium provided by the embodiments of the present invention can be applied to a scenario where an agricultural drone (such as a spray drone) sprays multiple target crops in a crop area. Therefore, the following schematically illustrates the route planning method provided by the embodiments of the present invention by taking agricultural drones as an example in conjunction with FIGS. 2 to 9.
  • the embodiments of the present invention can also be applied to scenes other than the above-mentioned work scenes, and there is no specific limitation here.
  • Figure 2 is a schematic flow chart of a route planning method provided by an embodiment of the present invention.
  • the method can be executed by the route planning device in the route planning system.
  • the detailed explanation of the route planning system is as described above.
  • the embodiment of the present invention is described with an example in which the route planning device is a remote control device of an unmanned aerial vehicle.
  • the method of the embodiment of the present invention includes the following steps.
  • the route planning device can obtain the reference point selection operation on the first user interface.
  • the selection operation includes, but is not limited to, a click operation, a sliding operation, a pressing operation, and the like.
  • the first user interface may be a user interface on a map on a route planning device.
  • the first user interface may be a user interface on a display device other than the route planning device.
  • the display information of the first user interface includes, but is not limited to, map information of the work area, selected reference points, and height information of the selected reference points.
  • FIG. 3 can be taken as an example for description.
  • FIG. 3 is a schematic diagram of an interface of a selection operation provided by an embodiment of the present invention. As shown in FIG. 3, assuming that the selection operation on the reference point is a click operation, the route planning device can obtain the click operation 31 on the reference point on the first user interface on the route planning device.
  • the route planning device may output the altitude information of the reference point.
  • the height information of the reference point may be determined by the three-dimensional space information obtained after three-dimensional reconstruction of the work area displayed on the first user interface.
  • the image captured by the camera of the drone (with the surveying and mapping function) in the work area can be acquired, and the position information of the drone and the posture of the camera can be acquired, so as to obtain the image and the posture of the camera.
  • the position information and the posture acquire three-dimensional space information of the work area, and the three-dimensional space information may include position information and height information of each position point in the work area.
  • the location information may be obtained by using the Global Positioning System (GPS).
  • the position information may be obtained using real-time dynamic carrier phase difference technology (Real-time kinematic, RTK).
  • the altitude information of the reference point may include its actual altitude information in three-dimensional space, and it may also include the safe flight altitude information of the drone.
  • the actual altitude information is obtained from the three-dimensional space information after the above-mentioned three-dimensional reconstruction. .
  • the reference point 311 corresponding to the click operation 31 can be determined on the first user interface. And by performing three-dimensional reconstruction on the reference point 311, the height information of the reference point 311 is output as 5 m.
  • the route planning device may output to prompt the user to reselect the current reference point Information.
  • the route planning device can output the height information of the current reference point, and determine the height information of the previous reference point according to the sequence of the selection operation. If the height difference between the reference points is greater than the preset height threshold, then information that prompts the user to reselect the current reference point may be output.
  • FIG. 4 is a schematic diagram of an interface for another selection operation provided by an embodiment of the present invention.
  • the height information of the previous reference point 41 is determined to be 5m according to the sequence of the selection operation. If the preset height threshold is 2m, the height difference between the current reference point 42 and the previous reference point 41 is 10m, it can be determined that the height difference between the current reference point 42 and the previous reference point 41 is 10m greater than the preset height threshold of 2m, so ,
  • the route planning device can output information 43 prompting the user to reselect the current reference point.
  • the route planning device may determine multiple reference points according to the selection operation.
  • the route planning device may determine multiple reference points according to the sequence of the selection operation. In some embodiments, according to the sequence of the selection operation, the height difference between adjacent reference points is less than or equal to a preset height threshold.
  • FIG. 5a is a schematic diagram of an interface of a reference point provided by an embodiment of the present invention.
  • three reference points are determined according to the sequence of the selection operation, namely reference point 51, reference point 52, and reference point 53, the height difference between reference point 51 and reference point 52, and the reference point
  • the height difference between 52 and reference point 53 is less than or equal to the preset height threshold.
  • S203 Generate a first flight route according to the sequence of the selection operation and the multiple reference points, so that the UAV performs a first designated task according to the first flight route, wherein Each waypoint includes altitude information.
  • the route planning device may generate a first flight route according to the sequence of the selection operation and a plurality of the reference points, so that the drone performs a first designated task according to the first flight route, wherein: Each waypoint in the first flight route includes altitude information.
  • the first designated task may include, but is not limited to, a spraying task, a surveying task, and the like.
  • the route planning device when the route planning device is set on the remote control device, the route planning device may send the first flight route to the remote control device after generating the first flight route according to the sequence of the selection operation and the plurality of reference points.
  • the drone to instruct the drone to perform the first designated task according to the first flight route.
  • the route planning device may obtain the current mission mode of the drone, and generate the first flight according to the sequence of the selection operation, multiple reference points, and the current mission mode of the drone. route.
  • the route planning device may acquire the selection operation of the mission mode on the second user interface, and determine the non-commissioning mode according to the selection operation.
  • the selection operation includes, but is not limited to, a click operation, a pressing operation, a sliding operation, and the like.
  • the second user interface is different from the first user interface.
  • the second user interface is the same as the first user interface, and the area corresponding to the reference point selection operation and the area corresponding to the task mode selection operation can be displayed in different areas of the same user interface .
  • the second user interface may be a user interface on a map on a route planning device.
  • the second user interface may be a user interface on a display device other than the route planning device.
  • the display information of the second user interface includes but is not limited to a task mode; in some embodiments, the task mode includes a first mode and a second mode.
  • the The first mode may be a continuous spraying mission mode, which is used to instruct to spray on the first flight path formed by a reference point
  • the second mode may be a tree core spraying mission mode, which is used to indicate The first flight route formed by the tree core determined by the reference point is sprayed, where the tree core may be the tree core of a crop, such as a fruit tree, or of course, it may not be a crop, such as a plant landscape in urban construction. It can be understood that when the route planning device is a drone, the second user interface may be a user interface on a display device other than the route planning device.
  • the mission mode includes a first mode, wherein the first mode is used to indicate that a waypoint in the first flight route includes the reference point.
  • the first mode may be a continuous spraying task mode. If the route planning device obtains a selection operation on the continuous spraying task mode on the second user interface, the route planning device may determine according to the selection operation The current mission mode of the drone is a continuous spray mission mode.
  • the route planning device may obtain the selected flight route when generating the first flight route according to the sequence of the selection operations and the plurality of reference points.
  • each of the reference points is a waypoint in the first flight route.
  • FIG. 5b is a schematic diagram of an interface of a route provided by an embodiment of the present invention.
  • the route planning device acquires the sequence of the selection operations as the selection operation of the reference point 51, the selection operation of the reference point 52, and the selection operation of the reference point 53
  • the selection operation can determine the order of the reference points as reference point 51, reference point 52, reference point 53, therefore, according to the order of reference point 51, reference point 52, and reference point 53, the reference point 51 and the reference point 52 can be connected and combined.
  • the reference point 52 and the reference point 53 are connected to generate a reference route 54 and the reference route 54 is determined to be the first flight route.
  • the route planning device can also determine whether the distance between adjacent waypoints of the UAV meets the condition for inserting a waypoint, and if so, it can insert a waypoint between adjacent waypoints, And determine at least part of the waypoints as waypoints in the first flight route.
  • the waypoints in the first flight route can be optimized to avoid the problem that the distance between the reference points is large, and the terrain between the reference points has high and low undulations, which causes the drone to hit obstacles. It can also avoid the problem of waste of spraying resources when the distance between the reference points is large and there is no spraying demand between the reference points.
  • the route planning device when determining whether the distance between adjacent waypoints of the drone meets the condition of inserting a waypoint, can obtain the position information of each waypoint of the drone, and According to the position information of each waypoint of the drone, the distance between adjacent waypoints is determined. If the distance between adjacent waypoints is greater than the preset distance threshold, it can be determined that the condition for inserting the waypoint is satisfied.
  • the distance between adjacent waypoints can be the connection distance between adjacent waypoints, or the horizontal distance between adjacent waypoints, which can be specifically set as required.
  • the route planning device can obtain the position information of each reference point of the drone, and use it according to each reference point of the drone. To determine the distance between adjacent reference points, if the distance between adjacent reference points is greater than the preset distance threshold, it can be determined that the condition for inserting path points is satisfied.
  • the route planning device can obtain the position information of the reference point 51, the reference point 52, and the reference point 53 of the drone, and according to the The position information of the reference point 51, the reference point 52, and the reference point 53 of the UAV determines the distance between the reference point 51 and the reference point 52, and the distance between the reference point 52 and the reference point 53, if the reference point 51 is The distance between the reference points 52 is greater than the preset distance threshold, or the distance between the reference point 52 and the reference point 53 is greater than the preset distance threshold, it can be determined that the condition for inserting the path point is satisfied.
  • the route planning device when the route planning device inserts a waypoint between adjacent waypoints, it can insert the waypoint at the average distance point between the adjacent waypoints by calculating the average distance between the adjacent waypoints. .
  • other ways can be used to insert waypoints between adjacent waypoints.
  • the embodiment of the present invention does not specifically limit it. It only needs to satisfy that after inserting one or more waypoints, the adjacent reference points and The distance between the path points is less than the preset distance threshold.
  • the route planning device can calculate the average distance between adjacent reference points by calculating the average distance between adjacent reference points. Insert path points. It can be understood that, in some embodiments, the inserted waypoints may be waypoints. Therefore, after the waypoints are inserted between the reference points, the waypoints may be inserted between the waypoints or between the reference points and the path.
  • FIG. 6a is a schematic diagram of an interface for inserting a path point according to an embodiment of the present invention.
  • the route planning device calculates that the distance between the reference point 51 and the reference point 52 is greater than the preset distance threshold, it can average the distance between the reference point 51 and the reference point.
  • the path point 61 is inserted between the points 52. If the calculated distance between the reference point 51 and the path point 61 is greater than the preset distance threshold, the path point 62 can be inserted between the reference point 51 and the path point 61 by means of an average distance.
  • the path point 63 can be inserted between the path point 61 and the reference point 52 by means of an average distance. If the distance between the way point 61 and the way point 63 and the distance between the way point 63 and the reference point 52 are both smaller than the preset distance threshold, stop inserting the way point between the way point 61 and the reference point 52.
  • the route planning device can also determine whether the inserted waypoint is collinear with the adjacent waypoint. If they are collinear, the route planning device that is collinear with the adjacent waypoint can be deleted from the first flight route. The inserted path point. That is, not all inserted waypoints are the waypoints in the first flight route, and not all inserted waypoints will remain.
  • the route planning device determines that the inserted waypoint 61 is collinear with the reference point 51 and the reference point 52, the inserted waypoint 61 may be deleted from the first flight route 54.
  • redundant waypoints that are not waypoints that are collinear can be deleted, and the waypoints in the first flight route are further optimized.
  • the reference points may not be deleted.
  • the route planning device can determine whether the waypoint and the adjacent waypoint are collinear according to the inserted waypoint and the height information of the adjacent waypoint . For example, if the inserted waypoint is not at the same height as the adjacent waypoint, it can be known that the inserted waypoint is not collinear with the adjacent waypoint. Specifically, you can connect the adjacent waypoints and then calculate the inserted waypoint to the adjacent waypoint. Whether the connection distance between the points is less than the preset threshold, if it is less than the preset threshold, it can be determined that the inserted waypoint is collinear with the adjacent waypoint. It can be understood that collinear includes that the inserted waypoint is on the same straight line as the adjacent waypoint, and the distance between the inserted waypoint and the line between the adjacent waypoint is also allowed to be within a certain distance range.
  • each of the waypoints includes semantic information
  • the semantic information includes task attributes
  • the task attributes are used to instruct the UAV to execute or stop executing the first at each of the waypoints.
  • the task attribute of the semantic information of each waypoint includes the spraying switch attribute, that is, the open state and the closed state of the spraying switch.
  • the drone may execute or stop executing the first designated task at each waypoint in the order of each waypoint according to the task attributes included in the semantic information of each waypoint on the first flight route.
  • the first flight route is the route in which the inserted waypoint 61 is deleted in the first flight route 54, and the first designated task is a spraying task. If the task attribute of the reference point 51 is on, the waypoint If the mission attribute of 62 is closed, the mission attribute of waypoint 63 is open, and the mission attribute of reference point 52 is open, the drone can perform spraying tasks at reference point 51 in the order of each waypoint, and at the waypoint 62 Stop spraying tasks, and perform spraying tasks at waypoint 63 and reference point 52.
  • At least part of the waypoints include semantic information, the semantic information includes obstacle information, and the obstacle information is used to instruct the UAV to perform obstacle avoidance operations at the corresponding waypoints.
  • the UAV can circumvent the waypoints including obstacle information in the order of each waypoint according to the obstacle information included in the semantic information of each waypoint on the first flight route. Through this implementation, it helps the UAV to avoid obstacles and improve the safety of the UAV.
  • the first flight route is the route in which the inserted waypoint 61 is deleted in the first flight route 54
  • the first designated task is a spraying task. If the task attribute of the reference point 51 is on, the waypoint The mission attribute of 62 is closed, the semantic information of waypoint 63 is obstacle information, and the mission attribute of reference point 52 is open. Then the drone can perform spraying tasks at reference point 51 in the order of each waypoint, and on the path The spraying task is stopped at point 62, and the spraying task is performed when flying around the path point 63 to the reference point 52.
  • the route planning device may obtain a reference point selection operation on the first user interface, and determine a plurality of reference points according to the selection operation, and according to the sequence of the selection operation and the plurality of reference points.
  • the reference point generates the first flight route, so that the drone can perform the first designated task according to the first flight route; wherein, each waypoint in the first flight route includes altitude information. Setting reference points by selection operations and customizing the planning route according to the order of the selection operations improves the user's freedom to edit the route.
  • the generated route can better reflect the user's intention, making it possible to generate arbitrary The desired route, and the user’s choice can effectively avoid complicated routes such as multiple ascents and descents or round-trips, which improves the operating efficiency of the drone, and also achieves a balance between automated planning and manual planning, with a smaller manual workload , Has brought great efficiency improvement.
  • FIG. 7 is a schematic flowchart of another route planning method provided by an embodiment of the present invention.
  • the method can be executed by the route planning device in the route planning system.
  • the detailed explanation of the route planning system is as before
  • the embodiment of the present invention is described by taking the route planning device as a remote control device of a drone as an example.
  • the difference between the embodiment of the present invention and the embodiment shown in FIG. 2 is that the embodiment of the present invention is to describe the embodiment in the second mode.
  • the method of the embodiment of the present invention includes the following steps.
  • S701 Acquire a reference point selection operation on the first user interface.
  • the route planning device may obtain the selection operation of the reference point on the first user interface.
  • the specific embodiment is the foregoing description, and will not be repeated here.
  • S702 Determine multiple reference points according to the selection operation.
  • the route planning device may determine multiple reference points according to the selection operation.
  • the specific embodiments and examples are as described above, and will not be repeated here.
  • S703 Acquire the current mission mode of the drone, and generate a first flight route according to the sequence of the selection operation, multiple reference points, and the current mission mode of the drone, where the mission mode Including the second mode, each waypoint in the first flight path includes altitude information.
  • the route planning device may obtain the current mission mode of the drone, and generate the first flight according to the sequence of the selection operation, the plurality of reference points, and the current mission mode of the drone Air route, each waypoint in the first flight route includes altitude information.
  • the mission mode includes a second mode, and the second mode is used to indicate that waypoints in the first flight route include mission points determined based on the reference points.
  • the second mode may be a tree core spraying task, and the task point may be a tree core.
  • the second mode when the method is applied to spraying drones, the second mode may be the tree core spraying task mode, if the route planning device obtains the information about the tree core spraying task mode on the second user interface If the operation is selected, the route planning device may determine, according to the selection operation, that the current mission mode of the drone is the tree core spray mission mode.
  • the route planning device may obtain the selected flight route when generating the first flight route according to the sequence of the selection operation and the plurality of reference points.
  • the sequence of operations, and the sequence of each reference point is determined according to the sequence of the selection operation, and according to the sequence of each reference point, the reference points are connected in pairs to generate a reference route, according to the The first flight route of the drone is determined with reference to the route.
  • the route planning device when the route planning device determines the first flight route of the UAV according to the reference route, it may determine the mission points within the preset range of the reference route, and according to the mission points The first flight route of the drone is determined, wherein each of the mission points is a waypoint in the first flight route.
  • the task point may be obtained by recognizing the task point in the work area after the route planning device performs three-dimensional reconstruction of the work area on the map to determine three-dimensional spatial information.
  • the route planning device performs three-dimensional reconstruction of the target crop area on the map to determine the three-dimensional spatial information, and then can identify the tree center of the trees in the work area .
  • the recognition of the tree core can be achieved through machine learning.
  • task points such as the center of the tree can be determined based on the reference route generated by the user-defined reference point, which helps to generate a route for the task point based on the determined task point.
  • the route planning device may determine two reference lines parallel to the reference route on both sides of the reference route, and determine The task point between the two reference lines.
  • the preset distance between each of the reference lines and the reference route is the same.
  • the points on the two reference lines may belong to task points.
  • FIG. 5c is a schematic diagram of the interface of another route provided by an embodiment of the present invention.
  • the route planning device can determine that it is parallel to the reference route 54 on both sides of the reference route 54
  • the two reference lines are reference line 55 and reference line 56, and task point 57, task point 58, task point 59, task point 510, and task point 511 between reference line 55 and reference line 56 are determined.
  • the route planning device may use each reference point as the center of the circle and the preset distance as the radius to construct a circle, and determine the mission point in each circle. In other embodiments, the route planning device may also determine mission points in other ways. The embodiment of the present invention does not specifically limit the mission points that are determined within the preset range of the reference route.
  • the route planning device when the route planning device determines the first flight route of the UAV according to the mission point, it may acquire the length of the projection point of the mission point on the reference route along the reference route.
  • Figure 5d is a schematic diagram of another route interface provided by an embodiment of the present invention.
  • the route planning device can obtain mission points 57, mission points 58, mission points 59, mission points 510, and mission points 511.
  • the sequence of the projection points on the reference route 54 along the length of the reference route 54 is arranged, and the first flight route 512 of the UAV is generated by connecting each task point in pairs according to the arrangement sequence.
  • the route planning device can obtain the position information of each mission point of the drone, and use it according to each mission point of the drone. To determine the distance between adjacent task points, if the distance between adjacent task points is greater than the preset distance threshold, it can be determined that the condition for inserting path points is satisfied.
  • the route planning device can obtain mission points 57, mission points 58, mission points 59, mission points 510, and mission points 511 of the drone.
  • the distance between mission point 57 and mission point 58 and the mission point are determined
  • the distance from the task point 58 is greater than the preset distance threshold, or the distance between the task point 58 and the task point 59 is greater than the preset distance threshold, or the distance between the task point 59 and the task point 510 If the distance is greater than the preset distance threshold, or the distance between the task point 510 and the task point 511 is greater than the preset
  • the route planning device can calculate the average distance between adjacent mission points by calculating the average distance between adjacent mission points. Insert path points.
  • Fig. 6b is a schematic diagram of another interface for inserting path points according to an embodiment of the present invention.
  • the route planning device calculates that the distance between mission point 57 and mission point 58 is greater than the preset distance threshold, it can average the distance between mission point 57 and mission point 57.
  • the path point 64 is inserted between the points 58. After the path point 64 is inserted, the distance between the task point 57 and the path point 64, and the distance between the path point 64 and the task point 58 are all less than a preset distance threshold.
  • the route planning device can also determine whether the inserted waypoint is collinear with the adjacent waypoint. If they are collinear, the route planning device that is collinear with the adjacent waypoint can be deleted from the first flight route. The inserted path point. Taking FIG. 6b as an example, if the route planning device determines that the inserted waypoint 64 is collinear with the reference point 57 and the reference point 58, the inserted waypoint 64 can be deleted from the first flight route 512. Through this implementation method, redundant collinear waypoints can be deleted, and the waypoints in the route are further optimized.
  • the route planning device when determining whether the inserted waypoint and the adjacent waypoint are collinear, can determine whether the waypoint and the adjacent waypoint are collinear according to the inserted waypoint and the height information of the adjacent waypoint .
  • each of the waypoints includes semantic information
  • the semantic information includes task attributes
  • the task attributes are used to instruct the UAV to execute or stop executing the first at each of the waypoints.
  • the task attribute of the semantic information of each waypoint includes the spraying switch attribute, that is, the open state and the closed state of the spraying switch.
  • the drone may execute or stop executing the first designated task at each waypoint in the order of each waypoint according to the task attributes included in the semantic information of each waypoint on the first flight route.
  • the first flight route is the route in which the inserted waypoint 64 is deleted in the first flight route 512
  • the first designated task is a spraying task.
  • the task attribute of task point 57 is on, the task point The mission attribute of 58 is closed, the mission attribute of mission point 59 is closed, the mission attribute of mission point 510 is open, and the mission attribute of mission point 511 is open. Then the drone can be in the order of each mission point.
  • the task point 57 executes the spraying task, the spraying task is stopped at the task point 58, the spraying task is stopped at the task point 59, the spraying task is executed at the task point 510, and the spraying task is executed at the task point 511.
  • the semantic information of each waypoint on the first flight route may include mission attributes and obstacle information; in some embodiments, the semantic information of some waypoints on the first flight route May include mission attributes and obstacle information; in some embodiments, the semantic information of each waypoint on the first flight route may include obstacle information; in some embodiments, the first flight route
  • the semantic information of some waypoints may include obstacle information.
  • the obstacle information can indicate that obstacle avoidance is necessary or unnecessary, and when the semantic information of some waypoints includes obstacle information, the obstacle information can indicate Need to avoid obstacles.
  • the UAV may perform obstacle avoidance operations at the corresponding waypoints in the order of each waypoint according to the obstacle information included in the semantic information of the corresponding waypoint on the first flight route. Through this implementation, it helps the UAV to avoid obstacles and improve the safety of the UAV.
  • the first flight route is the route in which the inserted waypoint 64 is deleted in the first flight route 512, and the first designated task is the spraying task.
  • the task attribute of the task point 57 is on, the task point 58
  • the task attribute of task point 59 is closed, the semantic information of task point 510 includes obstacle information, and the task attribute of task point 511 is open, then the drone can be in the order of each task point
  • the task point 57 performs the spraying task, the spraying task is stopped at the task point 58, the spraying task is stopped at the task point 59, and the task point 510 is bypassed to fly to the task point 511 to perform the spraying task.
  • the route planning device may obtain the reference point selection operation on the first user interface, and determine a plurality of reference points according to the selection operation, by obtaining the current mission mode of the drone, according to The sequence of the selection operation, the plurality of reference points, and the current mission mode of the UAV generate a first flight route, wherein the mission mode includes a second mode, so that the UAV can fly according to the first flight.
  • the route executes the first designated task; wherein, each waypoint in the first flight route includes altitude information.
  • the user sets the reference point to make The generated route better reflects the user's intention, so that any desired route can be generated, and through the user's choice, it can effectively avoid complicated routes such as multiple ascents and descents or round-trips, which improves the operating efficiency of the drone and also Achieved a balance between automated planning and manual planning, and a small manual workload has brought great efficiency improvements.
  • FIG. 8 is a schematic flowchart of another route planning method provided by an embodiment of the present invention.
  • the method can be executed by the route planning device in the route planning system.
  • the detailed explanation of the route planning system is as before
  • the embodiment of the present invention is described by taking the route planning device as a remote control device of a drone as an example.
  • the difference between the embodiment of the present invention and the embodiment described in FIG. 7 is that the embodiment of the present invention describes an embodiment of generating a second flight route based on the altitude information of the reference point and the reference point.
  • the method of the embodiment of the present invention includes the following steps.
  • the route planning device can obtain the selection operation of the reference point on the first user interface.
  • the specific embodiment is as described above, and will not be repeated here.
  • the route planning device may determine multiple reference points according to the selection operation.
  • the specific embodiments and examples are as described above, and will not be repeated here.
  • the route planning device can obtain the altitude information of each of the reference points. As shown in FIG. 3, the route planning device can obtain the altitude information of the reference point 311 as 5m.
  • S804 Generate a second flight route according to the altitude information of each reference point and the multiple reference points, so that the UAV performs a second designated task according to the second flight route, wherein the second flight route Each waypoint in the flight path includes altitude information.
  • the route planning device may generate a second flight route according to the altitude information of each of the reference points and a plurality of the reference points, so that the drone executes the second designation according to the second flight route.
  • Mission wherein each waypoint in the second flight path includes altitude information.
  • the second designated task may be a task within the same height range.
  • the second designated task may be a terrace spraying task. Among them, in a task execution process, it can include multiple tasks in different height ranges.
  • the route planning device when the route planning device generates the second flight route according to the altitude information of each reference point and the multiple reference points, it may determine each reference point according to the altitude information of each reference point. According to the altitude ranking of each reference point, the reference points are connected in pairs to generate a second flight route.
  • the second flight route can be automatically generated according to the altitude information of the reference point and the reference point, which realizes the customized planning of the route within the same altitude range, which helps to improve the drone's performance in the same altitude range. The efficiency of the task.
  • Figure 9 is a schematic diagram of another route interface provided by an embodiment of the present invention. It is assumed that the route planning device obtains the reference point 91, the reference point 92, and the reference point 93. If the height of the reference point 91 is obtained If the information is 5m, the height information of the reference point 92 is 6m, and the height information of the reference point 93 is 4m, the route planning device can determine the height order of each reference point from low to high according to the height information of each reference point. The order is reference point 93, reference point 91, reference point 92. The route planning device can sort the reference points from low to high according to the height of each reference point, connect reference point 93 to reference point 91, and connect reference point 91 to reference point.
  • Point 92 is connected to generate a second flight route 94, so that the drone can operate in sequence in order of altitude, effectively avoiding repeated movements of the drone.
  • the spraying drone can be made to effectively perform the terrace spraying task according to the second flight route 94.
  • the terraces may include multiple spraying areas with different height ranges. In this way, spraying areas at the same altitude can be used. Spraying, and can be sorted according to the size of the height range, and spray the spraying areas in different height ranges in sequence.
  • the route planning device may obtain a reference point selection operation on the first user interface, determine a plurality of reference points according to the selection operation, and obtain the height information of each of the reference points, thereby The altitude information of each of the reference points and the multiple reference points generate a second flight path, so that the UAV performs a second designated task according to the second flight path, wherein the second flight path is Each waypoint includes altitude information.
  • the route planning device includes a memory 1001, a processor 1002, and a data interface 1003.
  • the memory 1001 may include a volatile memory (volatile memory); the memory 1001 may also include a non-volatile memory (non-volatile memory); the memory 1001 may also include a combination of the foregoing types of memories.
  • the processor 1002 may be a central processing unit (CPU).
  • the processor 1002 may further include a hardware route planning device.
  • the aforementioned hardware route planning device may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof. Specifically, for example, it may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), or any combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • FPGA field-programmable gate array
  • the memory 1001 is used to store a program, and when the program is executed, the processor 1002 can call the program stored in the memory 1001 to perform the following steps:
  • each waypoint in the first flight route includes altitude information.
  • processor 1002 is further configured to:
  • the processor 1002 When the processor 1002 generates the first flight route according to the sequence of the selection operation and the multiple reference points, it is specifically configured to:
  • a first flight route is generated according to the sequence of the selection operation, the plurality of reference points, and the current mission mode of the drone.
  • processor 1002 obtains the current mission mode of the drone, it is specifically configured to:
  • the current mission mode of the drone is determined according to the selection operation.
  • the task mode includes a first mode and a second mode
  • the first mode is used to indicate that the waypoints in the first flight route include the reference point
  • the second mode is used to indicate that the waypoints in the first flight route include based on the reference point. Determined mission point.
  • processor 1002 when the processor 1002 generates the first flight route according to the sequence of the selection operation and the multiple reference points, it is specifically configured to:
  • the reference route generated by connecting each of the reference points in pairs is determined as the first flight route.
  • each of the reference points is a waypoint in the first flight route.
  • processor 1002 determines the reference route generated by connecting each of the reference points in pairs as the first flight route according to the sequence of each reference point, it is specifically used for:
  • each reference point connect each of the reference points in pairs to generate a reference route
  • the first flight route of the drone is determined according to the reference route.
  • processor 1002 determines the first flight route of the drone according to the reference route, it is specifically configured to:
  • the first flight route of the drone is determined according to the mission points, wherein each of the mission points is a waypoint in the first flight route.
  • processor 1002 determines the mission point within the preset range of the reference route, it is specifically configured to:
  • the preset distance between each of the reference lines and the reference route is the same.
  • processor 1002 determines the first flight route of the drone according to the mission point, it is specifically configured to:
  • the task points are connected in pairs to generate the first flight route of the UAV.
  • processor 1002 is further configured to:
  • a waypoint is inserted between adjacent waypoints, and at least part of the waypoint is determined as a waypoint in the first flight route.
  • the processor 1002 determines whether the distance between adjacent waypoints of the drone meets the condition for inserting a waypoint, it is specifically used to:
  • processor 1002 is further configured to:
  • each of the waypoints includes semantic information
  • the semantic information includes task attributes
  • the task attributes are used to instruct the drone to perform or stop performing the first designated task at each of the waypoints.
  • the waypoints include semantic information
  • the semantic information includes obstacle information
  • the obstacle information is used to instruct the UAV to perform obstacle avoidance operations at the corresponding waypoints.
  • processor 1002 is further configured to:
  • the height information of the reference point is output.
  • processor 1002 is further configured to:
  • processor 1002 is further configured to:
  • each waypoint in the second flight route includes altitude information.
  • processor 1002 when the processor 1002 generates the second flight route according to the altitude information of each reference point and the multiple reference points, it is specifically configured to:
  • the reference points are connected in pairs to generate a second flight route.
  • the route planning device may obtain a reference point selection operation on the first user interface, and determine a plurality of reference points according to the selection operation, and according to the sequence of the selection operation and the plurality of reference points.
  • the reference point generates the first flight route, so that the drone can perform the first designated task according to the first flight route; wherein, each waypoint in the first flight route includes altitude information. Setting reference points by selection operations and customizing the planning route according to the order of the selection operations improves the user's freedom to edit the route.
  • the generated route can better reflect the user's intention, making it possible to generate arbitrary The desired route, and the user’s choice can effectively avoid complicated routes such as multiple ascents and descents or round-trips, which improves the operating efficiency of the drone, and also achieves a balance between automated planning and manual planning, with a smaller manual workload , Has brought great efficiency improvement.
  • the embodiment of the present invention also provides a route planning system, which includes a route planning device and an unmanned aerial vehicle,
  • the route planning device is configured to obtain a reference point selection operation on the first user interface; determine a plurality of reference points according to the selection operation; generate a second reference point according to the sequence of the selection operation and the plurality of reference points A flight route, and sending the first flight route to the drone, wherein each waypoint in the first flight route includes altitude information;
  • the unmanned aerial vehicle is configured to perform a first designated task according to the first flight route.
  • route planning equipment is also used for:
  • the route planning device When the route planning device generates the first flight route according to the sequence of the selection operation and the plurality of reference points, it is specifically used for:
  • a first flight route is generated according to the sequence of the selection operation, the plurality of reference points, and the current mission mode of the drone.
  • the route planning device obtains the current mission mode of the drone, it is specifically used to:
  • the current mission mode of the drone is determined according to the selection operation.
  • the task mode includes a first mode and a second mode
  • the first mode is used to indicate that the waypoints in the first flight route include the reference point
  • the second mode is used to indicate that the waypoints in the first flight route include based on the reference point. Determined mission point.
  • the route planning device when the route planning device generates the first flight route according to the sequence of the selection operation and the multiple reference points, it is specifically configured to:
  • the reference route generated by connecting each of the reference points in pairs is determined as the first flight route.
  • each of the reference points is a waypoint in the first flight route.
  • the route planning device determines the reference route generated by connecting each of the reference points in pairs as the first flight route according to the order of each reference point, it is specifically used for:
  • each reference point connect each of the reference points in pairs to generate a reference route
  • the first flight route of the drone is determined according to the reference route.
  • the route planning device determines the first flight route of the UAV according to the reference route, it is specifically used for:
  • the first flight route of the drone is determined according to the mission points, wherein each of the mission points is a waypoint in the first flight route.
  • the route planning device determines the mission points within the preset range of the reference route, it is specifically used for:
  • the preset distance between each of the reference lines and the reference route is the same.
  • the route planning device determines the first flight route of the drone according to the mission point, it is specifically used for:
  • the task points are connected in pairs to generate the first flight route of the UAV.
  • route planning equipment is also used for:
  • a waypoint is inserted between adjacent waypoints, and at least part of the waypoint is determined as a waypoint in the first flight route.
  • the route planning device determines whether the distance between adjacent waypoints of the drone meets the condition for inserting a waypoint, it is specifically used for:
  • route planning equipment is also used for:
  • each of the waypoints includes semantic information, and the semantic information includes mission attributes; the UAV is also used for:
  • the waypoints include semantic information, and the semantic information includes obstacle information; the UAV is also used for:
  • an obstacle avoidance operation is performed at the corresponding waypoint.
  • route planning equipment is also used for:
  • the height information of the reference point is output.
  • route planning equipment is also used for:
  • route planning equipment is also used for:
  • each waypoint in the second flight route includes altitude information.
  • the route planning device when the route planning device generates the second flight route according to the altitude information of each reference point and the multiple reference points, it is specifically used for:
  • the reference points are connected in pairs to generate a second flight route.
  • the route planning system may obtain the selection operation on the reference point on the first user interface through the route planning device, and determine a plurality of reference points according to the selection operation, and according to the sequence of the selection operation and A first flight route is generated from a plurality of the reference points, and the first flight route is sent to the drone so that the drone can perform a first designated task according to the first flight route; wherein, in the first flight route
  • Each waypoint includes altitude information. Setting reference points by selection operations and customizing the planning route according to the order of the selection operations improves the user's freedom to edit the route.
  • the generated route can better reflect the user's intention, making it possible to generate arbitrary The desired route, and the user’s choice can effectively avoid complicated routes such as multiple ascents and descents or round-trips, which improves the operating efficiency of the drone, and also achieves a balance between automated planning and manual planning, with a smaller manual workload , Has brought great efficiency improvement.
  • a computer-readable storage medium is also provided, and the computer-readable storage medium stores a computer program.
  • the embodiment of the present invention is implemented as shown in FIG. 2, FIG. 7 or FIG.
  • the route planning method described in FIG. 8 can also implement the route planning device according to the embodiment of the present invention described in FIG. 10, and will not be repeated here.
  • the computer-readable storage medium may be an internal storage unit of the device described in any of the foregoing embodiments, such as a hard disk or memory of the device.
  • the computer-readable storage medium may also be an external storage device of the device, such as a plug-in hard disk equipped on the device, a Smart Media Card (SMC), or a Secure Digital (SD) card. , Flash Card, etc.
  • the computer-readable storage medium may also include both an internal storage unit of the device and an external storage device.
  • the computer-readable storage medium is used to store the computer program and other programs and data required by the device.
  • the computer-readable storage medium can also be used to temporarily store data that has been output or will be output.
  • the program can be stored in a computer readable storage medium. During execution, it may include the procedures of the above-mentioned method embodiments.
  • the storage medium may be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)

Abstract

一种航线规划方法、设备、***及存储介质,其中,该方法包括:获取在第一用户界面上的关于参考点的选取操作;根据所述选取操作确定多个参考点;根据所述选取操作的顺序以及多个所述参考点生成第一飞行航线,以使得无人机根据所述第一飞行航线执行第一指定任务;其中,所述第一飞行航线中的每个航点包括高度信息。通过选取操作设置参考点并根据选取操作的顺序自定义规划航线提高了用户编辑航线的自由度,有效避免了多次上升下降或往返式等复杂航线,提高了无人机的作业效率。

Description

一种航线规划方法、设备、***及存储介质 技术领域
本发明实施例涉及无人机导航技术领域,尤其涉及一种航线规划方法、设备、***及存储介质。
背景技术
无人机的应用越来越广泛,如农业无人机、行业无人机等,在无人机的应用过程中,无人机的航线规划是非常重要的步骤。目前无人机在应用过程中的航线规划是通过测绘地形生成作业区域,并在作业区域内生成往返式的航线。
然而,一方面,这种往返式的航线只考虑了规划区域的二维信息,未考虑地形起伏的因素,可能导致规划的航线在执行地形复杂的任务时,多次上升下降,降低了执行效率。另一方面,这种往返式的航线常常在往返运动中,进行了大量的无用运动,降低了无人机的作业效率。因此,如何更有效地规划航线是一项亟待解决的问题。
发明内容
本发明实施例提供了一种航线规划方法、设备、***及存储介质,实现了自定义航线规划,提高了用户编辑航线的自由度,并借由用户的选择有效避免了多次上升下降或往返式等复杂航线,提高了无人机的作业效率。
第一方面,本发明实施例提供了一种航线规划方法,包括:
获取在第一用户界面上的关于参考点的选取操作;
根据所述选取操作确定多个参考点;
根据所述选取操作的顺序以及多个所述参考点生成第一飞行航线,以使得无人机根据所述第一飞行航线执行第一指定任务;
其中,所述第一飞行航线中的每个航点包括高度信息。
第二方面,本发明实施例提供了一种航线规划设备,包括:存储器和处理器;
所述存储器,用于存储程序;
所述处理器,用于调用所述程序,当所述程序被执行时,用于执行以下操 作:
获取在第一用户界面上的关于参考点的选取操作;
根据所述选取操作确定多个参考点;
根据所述选取操作的顺序以及多个所述参考点生成第一飞行航线,以使得无人机根据所述第一飞行航线执行第一指定任务;
其中,所述第一飞行航线中的每个航点包括高度信息。
第三方面,本发明实施例提供了一种航线规划***,包括:航线规划设备和无人机,
所述航线规划设备,用于获取在第一用户界面上的关于参考点的选取操作;根据所述选取操作确定多个参考点;根据所述选取操作的顺序以及多个所述参考点生成第一飞行航线,并将所述第一飞行航线发送给所述无人机,其中,所述第一飞行航线中的每个航点包括高度信息;
所述无人机,用于根据所述第一飞行航线执行第一指定任务。
第四方面,本发明实施例提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行时实现如上述第一方面所述的航线规划方法。
本发明实施例,通过获取在第一用户界面上的关于参考点的选取操作,并根据所述选取操作确定多个参考点,以及根据所述选取操作的顺序以及多个所述参考点生成第一飞行航线,以使无人机可以根据第一飞行航线执行第一指定任务;其中,所述第一飞行航线中的每个航点包括高度信息。通过选取操作设置参考点并根据选取操作的顺序自定义规划航线提高了用户编辑航线的自由度,用户通过设置参考点的形式,使生成的航线更好地反应了用户的意图,使得可以生成任意的期望航线,并借由用户的选择可以有效避免多次上升下降或往返式等复杂航线,提高了无人机的作业效率,也做到了自动化规划与人工规划的平衡,较小的人工工作量,带来了极大的效率提升。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的 前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种航线规划***的结构示意图;
图2是本发明实施例提供的一种航线规划方法的流程示意图;
图3是本发明实施例提供的一种选取操作的界面示意图;
图4是本发明实施例提供的另一种选取操作的界面示意图;
图5a是本发明实施例提供的一种参考点的界面示意图;
图5b是本发明实施例提供的一种航线的界面示意图;
图5c是本发明实施例提供的另一种航线的界面示意图;
图5d是本发明实施例提供的又一种航线的界面示意图;
图6a是本发明实施例提供的一种***路径点的界面示意图;
图6b是本发明实施例提供的另一种***路径点的界面示意图;
图7是本发明实施例提供的另一种航线规划方法的流程示意图;
图8是本发明实施例提供的又一种航线规划方法的流程示意图;
图9是本发明实施例提供的又一种航线的界面示意图;
图10是本发明实施例提供的一种航线规划设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本发明实施例提出的航线规划方法可以应用于一种航线规划***,具体可以应用于航线规划***中的航线规划设备。在某些实施例中,所述航线规划***还包括无人机。在某些实施例中,所述航线规划设备可以安装在无人机上;在某些实施例中,所述航线规划设备可以在空间上独立于无人机,如所述航线规划设备可以安装在遥控设备、智能终端(如手机、平板电脑等)等。在某些实施例中,航线规划设备和无人机之间建立通信连接。在某些实施例中,所述无人机包括用于为无人机提供移动动力的一个或多个电机;在某些实施例中, 所述无人机还包括与电机转动连接的动力部件,在某些实施例中,所述动力部件包括螺旋桨。在某些实施例中,所述无人机可以为农业无人机,如喷洒无人机,也可以为行业无人机,如测绘无人机。
下面结合附图1对本发明实施例提供的航线规划***进行示意性说明。
请参见图1,图1是本发明实施例提供的一种航线规划***的结构示意图。所述航线规划***包括:航线规划设备11、无人机12。其中,无人机12和航线规划设备11之间可以通过无线通信连接方式建立通信连接。其中,在某些场景下,所述无人机12和航线规划设备11之间也可以通过有线通信连接方式建立通信连接。在某些实施例中,所述航线规划设备11可以设置在无人机12上,所述无人机12包括动力***121,所述动力***121用于为无人机12提供移动的动力。在其他实施例中,无人机12和航线规划设备11彼此独立,所述航线规划设备11可以包括遥控设备、智能手机、平板电脑、膝上型电脑和穿戴式设备中的一种或者多种,其中,航线规划设备11甚至可以为独立于无人机12的遥控设备的其它终端设备,该终端设备可以与无人机12的遥控设备通信连接。在其他实施例中,航线规划设备11可以独立于所述无人机12,例如,航线规划设备11设置在云端服务器中,通过无线通信连接方式与无人机12建立通信连接。
航线规划***可以通过航线规划设备11获取在第一用户界面上的关于参考点的选取操作,并根据该选取操作确定多个参考点,从而根据选取操作的顺序以及多个该参考点生成第一飞行航线,以使得无人机12可以根据该第一飞行航线执行第一指定任务,其中,所述第一飞行航线中的每个航点包括高度信息。
通过这种选取操作设置参考点并根据选取操作的顺序自定义规划航线的实施方式,提高了用户编辑航线的自由度,可以生成任意的期望航线,该期望航线结合了用户对第一用户界面上显示的地图中的地形的高度信息的考量,能够在选取参考点的过程中,主动避开高度相差较大的参考点的选取,从而可以有效避免多次上升下降或往返式等复杂航线,满足了用户对航线规划的自动化和智能化需求,提升了无人机的作业效率。同时,航线中的各个航点包括高度信息,可以有效地根据地形调整无人机的高度,以在合适的高度范围内进行有效的作业。
本发明实施例提供的一种航线规划方法、设备、***及存储介质可以应用于农业无人机(如喷洒无人机)对作物区域中的多株目标作物进行喷洒控制的场景。因此,下面以农业无人机为例结合附图2-附图9对本发明实施例提供的航线规划方法进行示意性说明。当然,本发明实施例也可以应用于除上述作业场景以外的场景,此处不做具体限定。
具体请参见图2,图2是本发明实施例提供的一种航线规划方法的流程示意图,所述方法可以由航线规划***中的航线规划设备执行,其中,航线规划***的具体解释如前所述,本发明实施例以航线规划设备为无人机的遥控设备为例进行说明。具体地,本发明实施例的所述方法包括如下步骤。
S201:获取在第一用户界面上的关于参考点的选取操作。
本发明实施例中,航线规划设备可以获取在第一用户界面上的关于参考点的选取操作。在某些实施例中,所述选取操作包括但不限于点击操作、滑动操作、按压操作等。在某些实施例中,所述第一用户界面可以为航线规划设备上地图上的用户界面,在其他实施例中,所述第一用户界面可以为航线规划设备以外的显示装置上的用户界面。在某些实施例中,所述第一用户界面的显示信息包括但不限于作业区域的地图信息、选取的参考点、选取的参考点的高度信息等。通过这种实施方式,用户可以通过选取操作自定义选取参考点,提高了用户编辑航线的自由度。可以理解,当航线规划设备为无人机时,第一用户界面可以为航线规划设备以外的显示装置上的用户界面。
具体可以图3为例进行说明,图3是本发明实施例提供的一种选取操作的界面示意图。如图3所示,假设关于参考点的选取操作为点击操作,则航线规划设备可以获取在航线规划设备上的第一用户界面上的关于参考点的点击操作31。
在一个实施例中,在所述选取操作的过程中,航线规划设备可以输出所述参考点的高度信息。在某些实施例中,所述参考点的高度信息可以通过第一用户界面上显示的作业区域在三维重建后得到的三维空间信息确定。在一些实施例中,可以获取无人机(具有测绘功能)的拍摄装置在作业区域拍摄到的图像,并可以获取该无人机的位置信息和拍摄装置的姿态,以根据所述图像、所述位置信息和所述姿态获取作业区域的三维空间信息,所述三维空间信息可以包括作业区域中各个位置点的位置信息和高度信息等。在某些实施例中,所述位置 信息可以是利用全球定位***(Global Positioning System,GPS)获取到的。在其他实施例中,所述位置信息可以是利用实时动态载波相位差分技术(Real-time kinematic,RTK)获取到的。
当然,除了利用上述三维空间信息获取参考点的高度信息,还可以采用其它方式,此处不做具体限定。
可以理解,参考点的高度信息可以包括其在三维空间中的实际高度信息,也可以包括无人机的安全飞行高度信息,其中,实际高度信息即通过诸如上述三维重建后的三维空间信息中获取。
以图3为例,当获取到在航线规划设备上第一用户界面上的关于参考点的点击操作31时,可以在该第一用户界面上确定出与该点击操作31对应的参考点311,并通过对参考点311进行三维重建输出该参考点311的高度信息为5m。
在一个实施例中,在所述选取操作的过程中,若当前的参考点与前一参考点之间的高度差大于预设高度阈值,则航线规划设备可以输出提示用户重新选取当前的参考点的信息。
在一种实施方式中,在选取操作的过程中,航线规划设备可以输出当前的参考点的高度信息,并根据选取操作的顺序确定前一参考点的高度信息,若当前的参考点与前一参考点之间的高度差大于预设高度阈值,则可以输出提示用户重新选取当前的参考点的信息。
通过这种实施方式,可以避免用户随意点击参考点而导致航线上各个参考点之间的高度差太大,从而避免无人机在不同坡度的复杂地形上通过反复上下坡来执行如喷洒等任务,有助于提高无人机执行任务的效率。
以图4为例,图4是本发明实施例提供的另一种选取操作的界面示意图。如图4所示,在所述选取操作的过程中,假设当前的参考点42的高度信息为15m,根据选取操作的顺序确定出前一参考点41的高度信息为5m,如果预设高度阈值为2m,则当前的参考点42与前一参考点41之间的高度差为10m,则可以确定当前的参考点42与前一参考点41之间的高度差10m大于预设高度阈值2m,因此,航线规划设备可以输出提示用户重新选取当前的参考点的信息43。
S202:根据所述选取操作确定多个参考点。
本发明实施例中,航线规划设备可以根据所述选取操作确定多个参考点。
在一个实施例中,航线规划设备可以根据所述选取操作的顺序确定出多个参考点。在某些实施例中,按照所述选取操作的顺序,各相邻参考点之间的高度差小于或等于预设高度阈值。
以图5a为例,图5a是本发明实施例提供的一种参考点的界面示意图。如图5a所示,假设根据选取操作的顺序确定出3个参考点,分别为参考点51、参考点52、参考点53,则参考点51与参考点52之间的高度差,以及参考点52与参考点53之间的高度差均小于或等于预设高度阈值。
S203:根据所述选取操作的顺序以及多个所述参考点生成第一飞行航线,以使得无人机根据所述第一飞行航线执行第一指定任务,其中,所述第一飞行航线中的每个航点包括高度信息。
本发明实施例中,航线规划设备可以根据所述选取操作的顺序以及多个所述参考点生成第一飞行航线,以使得无人机根据所述第一飞行航线执行第一指定任务,其中,所述第一飞行航线中的每个航点包括高度信息。在某些实施例中,所述第一指定任务可以包括但不限于喷洒任务、测绘任务等。
在一个实施例中,当航线规划设备设置在遥控设备上时,航线规划设备在根据所述选取操作的顺序以及多个所述参考点生成第一飞行航线之后,可以将第一飞行航线发送给无人机,以指示无人机根据所述第一飞行航线执行第一指定任务。
在一个实施例中,航线规划设备可以获取所述无人机当前的任务模式,并根据所述选取操作的顺序、多个所述参考点以及所述无人机当前的任务模式生成第一飞行航线。
在一个实施例中,航线规划设备在获取所述无人机当前的任务模式时,可以获取在第二用户界面上的关于所述任务模式的选择操作,并根据所述选择操作确定所述无人机当前的任务模式。在某些实施例中,所述选择操作包括但不限于点击操作、按压操作、滑动操作等。在某些实施例中,所述第二用户界面与所述第一用户界面不相同。在某些实施例中,第二用户界面与第一用户界面相同,关于参考点的选取操作所对应的区域以及关于任务模式的选择操作所对应的区域可以在同一个用户界面的不同区域进行显示。在某些实施例中,所述第二用户界面可以为航线规划设备上地图上的用户界面。在其他实施例中,所述第二用户界面可以为航线规划设备之外的显示装置上的用户界面。在某些实 施例中,所述第二用户界面的显示信息包括但不限于任务模式;在某些实施例中,所述任务模式包括第一模式和第二模式,在一个示例中,所述第一模式可以为连续喷洒任务模式,连续喷洒模式用于指示以参考点形成的第一飞行航线进行喷洒,所述第二模式可以为树心喷洒任务模式,树心喷洒任务模式用于指示以参考点确定的树心形成的第一飞行航线进行喷洒,其中,树心可以为农作物的树心,例如,果树,当然也可以不为农作物,例如城市建设中的植物景观。可以理解,当航线规划设备为无人机时,第二用户界面可以为航线规划设备以外的显示装置上的用户界面。
在一些实施例中,所述任务模式包括第一模式,其中,所述第一模式用于指示所述第一飞行航线中的航点包括所述参考点。在一个示例中,所述第一模式可以为连续喷洒任务模式,如果航线规划设备获取到在第二用户界面上的关于连续喷洒任务模式的选择操作,则航线规划设备可以根据所述选择操作确定所述无人机当前的任务模式为连续喷洒任务模式。
在一个实施例中,当无人机当前的任务模式为第一模式时,航线规划设备在根据所述选取操作的顺序以及多个所述参考点生成第一飞行航线时,可以获取所述选取操作的顺序,并根据所述选取操作的顺序,确定每个所述参考点的顺序,以及按照每个所述参考点的顺序,将各个所述参考点两两连接生成的参考航线确定为第一飞行航线。在某些实施例中,每个所述参考点为所述第一飞行航线中的航点。通过这种实施方式,用户可以自定义确定航点以生成航线,实现了自定义规划航线。
在一个示例中,以图5b为例,图5b是本发明实施例提供的一种航线的界面示意图。当无人机的当前任务模式为第一模式如连续喷洒任务模式时,如果航线规划设备获取到所述选取操作的顺序为参考点51的选取操作、参考点52的选取操作、参考点53的选取操作,则可以确定参考点的顺序为参考点51、参考点52、参考点53,因此可以根据参考点51、参考点52、参考点53的顺序,将参考点51与参考点52连接并将参考点52与参考点53连接生成参考航线54,并确定参考航线54为第一飞行航线。
在一个实施例中,航线规划设备还可以确定所述无人机的相邻航点之间的距离是否满足***路径点的条件,若满足,则可以在相邻航点之间***路径点,并将至少部分所述路径点确定为所述第一飞行航线中的航点。通过这种实施方 式,可以优化第一飞行航线中的航点,避免在参考点之间的距离较大,而参考点之间的地形具有高低起伏时导致无人机撞上障碍物的问题,也可以避免在参考点之间的距离较大,而参考点之间没有喷洒需求时导致的喷洒资源浪费的问题。
在一个实施例中,航线规划设备在确定所述无人机的相邻航点之间的距离是否满足***路径点的条件时,可以获取所述无人机的各个航点的位置信息,并根据所述无人机的各个航点的位置信息,确定相邻航点之间的距离,若相邻航点之间的距离大于预设距离阈值,则可以确定满足***路径点的条件。其中,相邻航点之间的距离可以是相邻航点之间的连线距离,也可以是相邻航点之间的水平距离,具体可以根据需要设定。
在一种实施方式中,当无人机的当前任务模式为第一模式时,航线规划设备可以获取所述无人机的各个参考点的位置信息,并根据所述无人机的各个参考点的位置信息,确定相邻参考点之间的距离,若相邻参考点之间的距离大于预设距离阈值,则可以确定满足***路径点的条件。
以图5b为例,当无人机的当前任务模式为第一模式时,航线规划设备可以获取所述无人机的参考点51、参考点52、参考点53的位置信息,并根据所述无人机的参考点51、参考点52、参考点53的位置信息,确定参考点51与参考点52之间的距离,以及参考点52与参考点53之间的距离,若参考点51与参考点52之间的距离大于预设距离阈值,或者参考点52与参考点53之间的距离之间的距离大于预设距离阈值,则可以确定满足***路径点的条件。
在一个实施例中,航线规划设备在相邻航点之间***路径点时,可以通过计算相邻航点之间的平均距离的方式,在相邻航点之间的平均距离点***路径点。在某些实施例中,还可以采用其他方式在相邻航点之间***路径点,本发明实施例不做具体限定,只需要满足***一个或多个路径点之后,相邻的参考点和路径点之间的距离小于预设距离阈值即可。
在一种实施方式中,当无人机的当前任务模式为第一模式时,航线规划设备可以通过计算相邻参考点之间的平均距离的方式,在相邻参考点之间的平均距离点***路径点。可以理解,在某些实施例中,所述***的路径点可以为航点,因此,在参考点之间***路径点之后,路径点之间或参考点与路径之间可以再***路径点。
在一个示例中,以图6a为例,图6a是本发明实施例提供的一种***路径点的界面示意图。当无人机的当前任务模式为第一模式时,航线规划设备如果计算得到参考点51与参考点52之间的距离大于预设距离阈值,则可以通过平均距离的方式在参考点51与参考点52之间***路径点61,若计算得到参考点51与路径点61之间的距离大于预设距离阈值,则可以通过平均距离的方式在参考点51与路径点61之间***路径点62,若路径点62与参考点51之间的距离以及路径点62与路径点61之间的距离均小于预设距离阈值时,停止在参考点51和路径点61之间***路径点。若计算得到路径点61与参考点52之间的距离大于预设距离阈值,则可以通过平均距离的方式在路径点61与参考点52之间***路径点63。若路径点61与路径点63之间的距离以及路径点63与参考点52之间的距离均小于预设距离阈值时,停止在路径点61和参考点52之间***路径点。
在一个实施例中,航线规划设备还可以确定***的路径点与相邻航点是否共线,若共线,则可以在所述第一飞行航线中删除与相邻航点共线的所述***的路径点。也即,并非所有***的路径点均为第一飞行航线中的航点,并非所有***的路径点会保留。
以图6a为例,如果航线规划设备确定出***的路径点61与参考点51和参考点52共线,则可以在所述第一飞行航线54中删除***的路径点61。
通过这种实施方式,可以删除共线的不是航点的冗余路径点,进一步优化了第一飞行航线中的航点。其中,在优化第一航飞行航线中的航点时,可以不对参考点进行删除。
其中,除了上述优化方式之外,也可以对与相邻航点之间的高度差大于预设高度值的***的路径点,和/或,与相邻航点之间的前后距离差均小于预设距离值的***的路径点进行删除,以进一步增加无人机在实际飞行过程中的平滑度。
在一种实施方式,航线规划设备在确定***的路径点与相邻航点是否共线时,可以根据***的路径点以及相邻航点的高度信息确定路径点与相邻航点是否共线。例如,***的路径点与相邻航点不在同一高度,可知该***的路径点与相邻航点不共线,具体可以通过连接相邻航点,再计算该***的路径点到相邻航点之间的连线距离是否小于预设阈值,若小于预设阈值,则可以确定该插 入的路径点与相邻航点共线。可以理解,共线包括***的路径点与相邻航点在同一直线上,也允许***的路径点到相邻航点之间的连线的距离在一定距离范围内。
在一个实施例中,每个所述航点包括语义信息,所述语义信息包括任务属性,所述任务属性用于指示所述无人机在各个所述航点执行或停止执行所述第一指定任务。在一个示例中,当所述第一指定任务为喷洒任务时,每个航点的语义信息的任务属性包括喷洒开关属性,即喷洒开关的打开状态和关闭状态。
在一种实施方式,无人机可以根据第一飞行航线上每个航点的语义信息包括的任务属性,按照各个航点的顺序在各个航点执行或停止执行第一指定任务。通过这种实施方式,可以避免无人机在执行第一指定任务时在不需要执行任务的航点执行任务,节约了资源。
以6a为例,假设第一飞行航线为在所述第一飞行航线54中删除***的路径点61的航线,第一指定任务为喷洒任务,如果参考点51的任务属性为打开状态、路径点62的任务属性为关闭状态、路径点63的任务属性为打开状态、参考点52的任务属性为打开状态,则无人机可以按照各个航点的顺序在参考点51执行喷洒任务、在路径点62停止执行喷洒任务、在路径点63和参考点52执行喷洒任务。
在一个实施例中,至少部分所述航点包括语义信息,所述语义信息包括障碍物信息,所述障碍物信息用于指示所述无人机在相应航点执行避障操作。
在一种实施方式中,无人机可以根据第一飞行航线上每个航点的语义信息包括的障碍物信息,按照各个航点的顺序绕开包括障碍物信息的航点。通过这种实施方式,有助于无人机规避障碍物,提高无人机的安全性。
以6a为例,假设第一飞行航线为在所述第一飞行航线54中删除***的路径点61的航线,第一指定任务为喷洒任务,如果参考点51的任务属性为打开状态、路径点62的任务属性为关闭状态、路径点63的语义信息为障碍物信息、参考点52的任务属性为打开状态,则无人机可以按照各个航点的顺序在参考点51执行喷洒任务、在路径点62停止执行喷洒任务、绕开路径点63飞行至参考点52时执行喷洒任务。
本发明实施例中,航线规划设备可以获取在第一用户界面上的关于参考点的选取操作,并根据所述选取操作确定多个参考点,以及根据所述选取操作的 顺序以及多个所述参考点生成第一飞行航线,以使无人机可以根据第一飞行航线执行第一指定任务;其中,所述第一飞行航线中的每个航点包括高度信息。通过选取操作设置参考点并根据选取操作的顺序自定义规划航线提高了用户编辑航线的自由度,用户通过设置参考点的形式,使生成的航线更好地反应了用户的意图,使得可以生成任意的期望航线,并借由用户的选择可以有效避免多次上升下降或往返式等复杂航线,提高了无人机的作业效率,也做到了自动化规划与人工规划的平衡,较小的人工工作量,带来了极大的效率提升。
具体请参见图7,图7是本发明实施例提供的另一种航线规划方法的流程示意图,所述方法可以由航线规划***中的航线规划设备执行,其中,航线规划***的具体解释如前所述,本发明实施例以航线规划设备为无人机的遥控设备为例进行说明。本发明实施例与图2所述实施例的区别在于本发明实施例是对在第二模式下的实施例进行说明。具体地,本发明实施例的所述方法包括如下步骤。
S701:获取在第一用户界面上的关于参考点的选取操作。
本发明实施例中,航线规划设备可以获取在第一用户界面上的关于参考点的选取操作,具体实施例即举例如前所述,此处不再赘述。
S702:根据所述选取操作确定多个参考点。
本发明实施例中,航线规划设备可以根据所述选取操作确定多个参考点。具体实施例及举例说明如前所述,此处不再赘述。
S703:获取所述无人机当前的任务模式,并根据所述选取操作的顺序、多个所述参考点以及所述无人机当前的任务模式生成第一飞行航线,其中,所述任务模式包括第二模式,所述第一飞行航线中的每个航点包括高度信息。
本发明实施例中,航线规划设备可以获取所述无人机当前的任务模式,并根据所述选取操作的顺序、多个所述参考点以及所述无人机当前的任务模式生成第一飞行航线,所述第一飞行航线中的每个航点包括高度信息。在某些实施例中,所述任务模式包括第二模式,所述第二模式用于指示所述第一飞行航线中的航点包括基于所述参考点确定的任务点,在一个示例中,所述第二模式可以为树心喷洒任务,所述任务点可以为树心。
在一个示例中,当所述方法应用于喷洒无人机时,所述第二模式可以为树 心喷洒任务模式,如果航线规划设备获取到在第二用户界面上的关于树心喷洒任务模式的选择操作,则航线规划设备可以根据所述选择操作确定所述无人机当前的任务模式为树心喷洒任务模式。
在一个实施例中,当无人机的当前任务模式为第二模式时,航线规划设备在根据所述选取操作的顺序以及多个所述参考点生成第一飞行航线时,可以获取所述选取操作的顺序,并根据所述选取操作的顺序,确定每个所述参考点的顺序,以及按照每个所述参考点的顺序,将各个所述参考点两两连接生成参考航线,根据所述参考航线确定所述无人机的第一飞行航线。
在一个实施例中,航线规划设备在根据所述参考航线确定所述无人机的第一飞行航线时,可以确定在所述参考航线的预设范围内的任务点,并根据所述任务点确定所述无人机的第一飞行航线,其中,每个所述任务点为所述第一飞行航线中的航点。
在某些实施例中,所述任务点可以是所述航线规划设备在地图上对做作业区域进行三维重建确定出三维空间信息之后,对所述作业区域中的任务点进行识别得到的。在一个示例中,假设所述任务点为树心,则所述航线规划设备在地图上对目标作物区域进行三维重建确定出三维空间信息之后,可以对所述作业区域中树木的树心进行识别。其中,树心的识别可以通过机器学习实现。
通过这种实施方式,可以根据用户自定义的参考点生成的参考航线确定如树心等任务点,有助于根据确定的任务点生成针对任务点的航线。
在一个实施例中,航线规划设备在确定在所述参考航线的预设范围内的任务点时,可以在所述参考航线的两侧确定与所述参考航线平行的两条参考线,并确定在两条所述参考线之间的任务点。在某些实施例中,每条所述参考线与所述参考航线之间的预设距离相同。在某些实施例中,两条所述参考线上的点可以属于任务点。通过这种实施方式,可以有效地确定出任务点,以确定出由任务点组成的航线,从而有助于无人机执行在树心等任务点执行喷洒等任务。
以图5c为例,图5c是本发明实施例提供的另一种航线的界面示意图,如图5c所示,航线规划设备可以在所述参考航线54的两侧确定与所述参考航线54平行的两条参考线即参考线55和参考线56,并确定在参考线55和参考线56之间的任务点57、任务点58、任务点59、任务点510、任务点511。
在某些实施例中,航线规划设备可以以各个参考点为圆心,预设距离为半 径构建圆形,并确定在各个圆形内的任务点。在其他实施例中,所述航线规划设备还可以通过其他的方式确定任务点,本发明实施例对确定在所述参考航线的预设范围内的任务点不做具体限定。
在一个实施例中,航线规划设备在根据所述任务点确定所述无人机的第一飞行航线时,可以获取所述任务点在所述参考航线上的投影点沿所述参考航线的长度方向的排列顺序,并根据所述排列顺序,将各个所述任务点两两连接生成所述无人机的第一飞行航线。
以图5d为例,图5d是本发明实施例提供的又一种航线的界面示意图,航线规划设备可以获取任务点57、任务点58、任务点59、任务点510、任务点511在所述参考航线54上的投影点沿所述参考航线54的长度方向的排列顺序,并根据所述排列顺序,将各个任务点两两连接生成所述无人机的第一飞行航线512。
在一种实施方式中,当无人机的当前任务模式为第二模式时,航线规划设备可以获取所述无人机的各个任务点的位置信息,并根据所述无人机的各个任务点的位置信息,确定相邻任务点之间的距离,若相邻任务点之间的距离大于预设距离阈值,则可以确定满足***路径点的条件。
以图5d为例,当无人机的当前任务模式为第二模式时,航线规划设备可以获取所述无人机的任务点57、任务点58、任务点59、任务点510、任务点511的位置信息,并根据所述无人机的任务点57、任务点58、任务点59、任务点510、任务点511的位置信息,确定任务点57与任务点58之间的距离、任务点58与任务点59之间的距离、任务点59与任务点510之间的距离、任务点510与任务点511之间的距离、任务点511与任务点512之间的距离,若任务点57与任务点58之间的距离大于预设距离阈值,或者任务点58与任务点59之间的距离之间的距离大于预设距离阈值,或者任务点59与任务点510之间的距离之间的距离大于预设距离阈值,或者任务点510与任务点511之间的距离之间的距离大于预设距离阈值,则可以确定满足***路径点的条件。
在一种实施方式中,当无人机的当前任务模式为第二模式时,航线规划设备可以通过计算相邻任务点之间的平均距离的方式,在相邻任务点之间的平均距离点***路径点。
在一个示例中,以图6b为例,图6b是本发明实施例提供的另一种***路 径点的界面示意图。当无人机的当前任务模式为第二模式时,航线规划设备如果计算得到任务点57与任务点58之间的距离大于预设距离阈值,则可以通过平均距离的方式在任务点57与任务点58之间***路径点64,其中,在***路径点64之后,任务点57与路径点64之间的距离,以及路径点64与任务点58之间的距离均小于预设距离阈值。
在一个实施例中,航线规划设备还可以确定***的路径点与相邻航点是否共线,若共线,则可以在所述第一飞行航线中删除与相邻航点共线的所述***的路径点。以图6b为例,如果航线规划设备确定出***的路径点64与参考点57和参考点58共线,则可以在所述第一飞行航线512中删除***的路径点64。通过这种实施方式,可以删除共线的冗余路径点,进一步优化了航线中的航点。
在一种实施方式,航线规划设备在确定***的路径点与相邻航点是否共线时,可以根据***的路径点以及相邻航点的高度信息确定路径点与相邻航点是否共线。
在一个实施例中,每个所述航点包括语义信息,所述语义信息包括任务属性,所述任务属性用于指示所述无人机在各个所述航点执行或停止执行所述第一指定任务。在一个示例中,当所述第一指定任务为喷洒任务时,每个航点的语义信息的任务属性包括喷洒开关属性,即喷洒开关的打开状态和关闭状态。
在一种实施方式,无人机可以根据第一飞行航线上每个航点的语义信息包括的任务属性,按照各个航点的顺序在各个航点执行或停止执行第一指定任务。通过这种实施方式,可以避免无人机在执行第一指定任务时在不需要执行任务的航点执行任务,节约了资源。
以6b为例,假设第一飞行航线为在所述第一飞行航线512中删除***的路径点64的航线,第一指定任务为喷洒任务,如果任务点57的任务属性为打开状态、任务点58的任务属性为关闭状态、任务点59的任务属性为关闭状态、任务点510的任务属性为打开状态、任务点511的任务属性为打开状态,则无人机可以按照各个任务点的顺序在任务点57执行喷洒任务、在任务点58停止执行喷洒任务、在任务点59停止执行喷洒任务、在任务点510执行喷洒任务以及在任务点511执行喷洒任务。
在一个实施例中,至少部分所述航点包括语义信息,所述语义信息包括障碍物信息,所述障碍物信息用于指示所述无人机在相应航点执行避障操作。在 某些实施例中,所述第一飞行航线上每个航点的语义信息可以包括任务属性和障碍物信息;在某些实施例中,所述第一飞行航线上部分航点的语义信息可以包括任务属性和障碍物信息;在某些实施例中,所述第一飞行航线上每个航点的语义信息可以包括障碍物信息;在某些实施例中,所述第一飞行航线上部分航点的语义信息可以包括障碍物信息。其中,在每个航点的语义信息包括障碍物信息时,该障碍物信息可以表示需要避障或无需避障,而在部分航点的语义信息包括障碍物信息时,该障碍物信息可以表示需要避障。
在一种实施方式中,无人机可以根据第一飞行航线上相应航点的语义信息包括的障碍物信息,按照各个航点的顺序在相应航点执行避障操作。通过这种实施方式,有助于无人机规避障碍物,提高无人机的安全性。
以6b为例,第一飞行航线为在所述第一飞行航线512中删除***的路径点64的航线,第一指定任务为喷洒任务,如果任务点57的任务属性为打开状态、任务点58的任务属性为关闭状态、任务点59的任务属性为关闭状态、任务点510的语义信息包括障碍物信息、任务点511的任务属性为打开状态,则无人机可以按照各个任务点的顺序在任务点57执行喷洒任务、在任务点58停止执行喷洒任务、在任务点59停止执行喷洒任务、绕过任务点510飞行至任务点511执行喷洒任务。
本发明实施例中,航线规划设备可以获取在第一用户界面上的关于参考点的选取操作,并根据所述选取操作确定多个参考点,通过获取所述无人机当前的任务模式,根据所述选取操作的顺序、多个所述参考点以及所述无人机当前的任务模式生成第一飞行航线,其中,所述任务模式包括第二模式,以使无人机可以根据第一飞行航线执行第一指定任务;其中,所述第一飞行航线中的每个航点包括高度信息。通过选取操作设置的参考点并根据选取操作的顺序以及识别得到的任务点,自定义规划执行针对任务点的任务的航线,提高了用户编辑航线的自由度,用户通过设置参考点的形式,使生成的航线更好地反应了用户的意图,使得可以生成任意的期望航线,并借由用户的选择可以有效避免多次上升下降或往返式等复杂航线,提高了无人机的作业效率,也做到了自动化规划与人工规划的平衡,较小的人工工作量,带来了极大的效率提升。例如,对于诸如果树的树心喷洒任务,由于果树并非被种植在严格的直线上,有时甚至是零散的分布在区域内,相比于传统的Z字形往返模式,通过用户对于参考 点的选择,减少了无人机大量的无用运动,可以保证无人机根据实际果树分布以及用户期望的方式进行高效作业,绕开大面积的无树区域,而其中果树的具体分布并非需要用户一一选择,而是结合用户的选择进行自动地范围划分,并在其中识别到树心,如此体现了自动化规划与人工规划的平衡。
具体请参见图8,图8是本发明实施例提供的又一种航线规划方法的流程示意图,所述方法可以由航线规划***中的航线规划设备执行,其中,航线规划***的具体解释如前所述,本发明实施例以航线规划设备为无人机的遥控设备为例进行说明。本发明实施例与图7所述实施例的区别在于本发明实施例是对根据参考点的高度信息以及参考点生成第二飞行航线的实施例进行说明。具体地,本发明实施例的所述方法包括如下步骤。
S801:获取在第一用户界面上的关于参考点的选取操作。
本发明实施例中,航线规划设备可以获取在第一用户界面上的关于参考点的选取操作,具体实施例即举例如前所述,此处不再赘述。
S802:根据所述选取操作确定多个参考点。
本发明实施例中,航线规划设备可以根据所述选取操作确定多个参考点。具体实施例及举例说明如前所述,此处不再赘述。
S803:获取各个所述参考点的高度信息。
本发明实施例中,航线规划设备可以获取各个所述参考点的高度信息。如图3所示,航线规划设备可以获取到参考点311的高度信息为5m。
S804:根据各个所述参考点的高度信息以及多个所述参考点生成第二飞行航线,以使得所述无人机根据所述第二飞行航线执行第二指定任务,其中,所述第二飞行航线中的每个航点包括高度信息。
本发明实施例中,航线规划设备可以根据各个所述参考点的高度信息以及多个所述参考点生成第二飞行航线,以使得所述无人机根据所述第二飞行航线执行第二指定任务,其中,所述第二飞行航线中的每个航点包括高度信息。在某些实施例中,所述第二指定任务可以为在同一高度范围内的任务,在一个示例中,所述第二指定任务可以是梯田喷洒任务。其中,在一次任务执行过程中,可以包括多个不同高度范围内的任务。
在一个实施例中,航线规划设备在根据各个所述参考点的高度信息以及多 个所述参考点生成第二飞行航线时,可以根据各个所述参考点的高度信息确定每个所述参考点的高度排序,并根据每个所述参考点的高度排序,将各个所述参考点两两连接生成第二飞行航线。通过这种实施方式,可以根据参考点和参考点的高度信息自动生成第二飞行航线,实现了自定义的规划在同一高度范围内的航线,有助于提高无人机执行同一高度范围内的任务的效率。
以图9为例,图9是本发明实施例提供的又一种航线的界面示意图,假设航线规划设备获取到参考点91、参考点92、参考点93,如果获取到的参考点91的高度信息为5m、参考点92的高度信息为6m、参考点93的高度信息为4m,则航线规划设备可以根据各个所述参考点的高度信息确定每个所述参考点的高度排序从低到高的顺序为参考点93、参考点91、参考点92,航线规划设备可以根据每个所述参考点从低到高的高度排序,将参考点93与参考点91连接以及将参考点91与参考点92连接生成第二飞行航线94,以使得无人机可以按照高度顺序依次作业,有效避免了无人机反复升降的动作。例如,可以使得喷洒无人机根据所述第二飞行航线94有效执行梯田喷洒任务,梯田由于地形的原因,可以包括多个不同高度范围的喷洒区域,如此,可以对同一海拔高度上的喷洒区域进行喷洒,并且可以按照高度范围的大小排序,依次对不同高度范围内的喷洒区域进行喷洒。
可以理解,在生成第二飞行航线的过程中,也可以沿用前述实施例中的相关技术,例如任务模式的选择、路径点的***、航线的优化等,并达到类似的技术效果,此处不再赘述。
本发明实施例中,航线规划设备可以获取在第一用户界面上的关于参考点的选取操作,并根据所述选取操作确定多个参考点,以及获取各个所述参考点的高度信息,从而根据各个所述参考点的高度信息以及多个所述参考点生成第二飞行航线,以使得所述无人机根据所述第二飞行航线执行第二指定任务,其中,所述第二飞行航线中的每个航点包括高度信息。通过选取操作设置的参考点的高度信息以及参考点生成在同一高度范围内的第二飞行航线,提高了无人机执行在同一高度范围内的第二指定任务的作业效率。
请参见图10,图10是本发明实施例提供的一种航线规划设备的结构示意图,具体的,所述航线规划设备包括:存储器1001、处理器1002以及数据接 口1003。
所述存储器1001可以包括易失性存储器(volatile memory);存储器1001也可以包括非易失性存储器(non-volatile memory);存储器1001还可以包括上述种类的存储器的组合。所述处理器1002可以是中央处理器(central processing unit,CPU)。所述处理器1002还可以进一步包括硬件航线规划设备。上述硬件航线规划设备可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。具体例如可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA)或其任意组合。
进一步地,所述存储器1001用于存储程序,当程序被执行时所述处理器1002可以调用存储器1001中存储的程序,用于执行如下步骤:
获取在第一用户界面上的关于参考点的选取操作;
根据所述选取操作确定多个参考点;
根据所述选取操作的顺序以及多个所述参考点生成第一飞行航线,以使得无人机根据所述第一飞行航线执行第一指定任务;
其中,所述第一飞行航线中的每个航点包括高度信息。
进一步地,所述处理器1002还用于:
获取所述无人机当前的任务模式;
所述处理器1002根据所述选取操作的顺序以及多个所述参考点生成第一飞行航线时,具体用于:
根据所述选取操作的顺序、多个所述参考点以及所述无人机当前的任务模式生成第一飞行航线。
进一步地,所述处理器1002获取所述无人机当前的任务模式时,具体用于:
获取在第二用户界面上的关于所述任务模式的选择操作;
根据所述选择操作确定所述无人机当前的任务模式。
进一步地,所述任务模式包括第一模式和第二模式;
其中,所述第一模式用于指示所述第一飞行航线中的航点包括所述参考点,所述第二模式用于指示所述第一飞行航线中的航点包括基于所述参考点确 定的任务点。
进一步地,所述处理器1002根据所述选取操作的顺序以及多个所述参考点生成第一飞行航线时,具体用于:
获取所述选取操作的顺序;
根据所述选取操作的顺序,确定每个所述参考点的顺序;
按照每个所述参考点的顺序,将各个所述参考点两两连接生成的参考航线确定为第一飞行航线。
进一步地,每个所述参考点为所述第一飞行航线中的航点。
进一步地,所述处理器1002按照每个所述参考点的顺序,将各个所述参考点两两连接生成的参考航线确定为第一飞行航线时,具体用于:
按照每个所述参考点的顺序,将各个所述参考点两两连接生成参考航线;
根据所述参考航线确定所述无人机的第一飞行航线。
进一步地,所述处理器1002根据所述参考航线确定所述无人机的第一飞行航线时,具体用于:
确定在所述参考航线的预设范围内的任务点;
根据所述任务点确定所述无人机的第一飞行航线,其中,每个所述任务点为所述第一飞行航线中的航点。
进一步地,所述处理器1002确定在所述参考航线的预设范围内的任务点时,具体用于:
在所述参考航线的两侧确定与所述参考航线平行的两条参考线;
确定在两条所述参考线之间的任务点。
进一步地,每条所述参考线与所述参考航线之间的预设距离相同。
进一步地,所述处理器1002根据所述任务点确定所述无人机的第一飞行航线时,具体用于:
获取所述任务点在所述参考航线上的投影点沿所述参考航线的长度方向的排列顺序;
根据所述排列顺序,将各个所述任务点两两连接生成所述无人机的第一飞行航线。
进一步地,所述处理器1002还用于:
确定所述无人机的相邻航点之间的距离是否满足***路径点的条件;
若满足,则在相邻航点之间***路径点,并将至少部分所述路径点确定为所述第一飞行航线中的航点。
进一步地,所述处理器1002确定所述无人机的相邻航点之间的距离是否满足***路径点的条件时,具体用于:
获取所述无人机的各个航点的位置信息;
根据所述无人机的各个航点的位置信息,确定相邻航点之间的距离;
若相邻航点之间的距离大于预设距离阈值,则确定满足***路径点的条件。
进一步地,所述处理器1002还用于:
确定***的路径点与相邻航点是否共线;
若共线,则在所述第一飞行航线中删除与相邻航点共线的所述***的路径点。
进一步地,每个所述航点包括语义信息,所述语义信息包括任务属性,所述任务属性用于指示所述无人机在各个所述航点执行或停止执行所述第一指定任务。
进一步地,至少部分所述航点包括语义信息,所述语义信息包括障碍物信息,所述障碍物信息用于指示所述无人机在相应航点执行避障操作。
进一步地,所述处理器1002还用于:
在所述选取操作的过程中,输出所述参考点的高度信息。
进一步地,所述处理器1002还用于:
在所述选取操作的过程中,若当前的参考点与前一参考点之间的高度差大于预设高度阈值,则输出提示用户重新选取当前的参考点的信息。
进一步地,所述处理器1002还用于:
获取各个所述参考点的高度信息;
根据各个所述参考点的高度信息以及多个所述参考点生成第二飞行航线,以使得所述无人机根据所述第二飞行航线执行第二指定任务;
其中,所述第二飞行航线中的每个航点包括高度信息。
进一步地,所述处理器1002根据各个所述参考点的高度信息以及多个所述参考点生成第二飞行航线时,具体用于:
根据各个所述参考点的高度信息确定每个所述参考点的高度排序;
根据每个所述参考点的高度排序,将各个所述参考点两两连接生成第二飞行航线。
本发明实施例中,航线规划设备可以获取在第一用户界面上的关于参考点的选取操作,并根据所述选取操作确定多个参考点,以及根据所述选取操作的顺序以及多个所述参考点生成第一飞行航线,以使无人机可以根据第一飞行航线执行第一指定任务;其中,所述第一飞行航线中的每个航点包括高度信息。通过选取操作设置参考点并根据选取操作的顺序自定义规划航线提高了用户编辑航线的自由度,用户通过设置参考点的形式,使生成的航线更好地反应了用户的意图,使得可以生成任意的期望航线,并借由用户的选择可以有效避免多次上升下降或往返式等复杂航线,提高了无人机的作业效率,也做到了自动化规划与人工规划的平衡,较小的人工工作量,带来了极大的效率提升。
本发明实施例还提供了一种航线规划***,所述***包括航线规划设备和无人机,
所述航线规划设备,用于获取在第一用户界面上的关于参考点的选取操作;根据所述选取操作确定多个参考点;根据所述选取操作的顺序以及多个所述参考点生成第一飞行航线,并将所述第一飞行航线发送给所述无人机,其中,所述第一飞行航线中的每个航点包括高度信息;
所述无人机,用于根据所述第一飞行航线执行第一指定任务。
进一步地,所述航线规划设备还用于:
获取所述无人机当前的任务模式;
所述航线规划设备根据所述选取操作的顺序以及多个所述参考点生成第一飞行航线时,具体用于:
根据所述选取操作的顺序、多个所述参考点以及所述无人机当前的任务模式生成第一飞行航线。
进一步地,所述航线规划设备获取所述无人机当前的任务模式时,具体用于:
获取在第二用户界面上的关于所述任务模式的选择操作;
根据所述选择操作确定所述无人机当前的任务模式。
进一步地,所述任务模式包括第一模式和第二模式;
其中,所述第一模式用于指示所述第一飞行航线中的航点包括所述参考点,所述第二模式用于指示所述第一飞行航线中的航点包括基于所述参考点确定的任务点。
进一步地,所述航线规划设备根据所述选取操作的顺序以及多个所述参考点生成第一飞行航线时,具体用于:
获取所述选取操作的顺序;
根据所述选取操作的顺序,确定每个所述参考点的顺序;
按照每个所述参考点的顺序,将各个所述参考点两两连接生成的参考航线确定为第一飞行航线。
进一步地,每个所述参考点为所述第一飞行航线中的航点。
进一步地,所述航线规划设备按照每个所述参考点的顺序,将各个所述参考点两两连接生成的参考航线确定为第一飞行航线时,具体用于:
按照每个所述参考点的顺序,将各个所述参考点两两连接生成参考航线;
根据所述参考航线确定所述无人机的第一飞行航线。
进一步地,所述航线规划设备根据所述参考航线确定所述无人机的第一飞行航线时,具体用于:
确定在所述参考航线的预设范围内的任务点;
根据所述任务点确定所述无人机的第一飞行航线,其中,每个所述任务点为所述第一飞行航线中的航点。
进一步地,所述航线规划设备确定在所述参考航线的预设范围内的任务点时,具体用于:
在所述参考航线的两侧确定与所述参考航线平行的两条参考线;
确定在两条所述参考线之间的任务点。
进一步地,每条所述参考线与所述参考航线之间的预设距离相同。
进一步地,所述航线规划设备根据所述任务点确定所述无人机的第一飞行航线时,具体用于:
获取所述任务点在所述参考航线上的投影点沿所述参考航线的长度方向的排列顺序;
根据所述排列顺序,将各个所述任务点两两连接生成所述无人机的第一飞行航线。
进一步地,所述航线规划设备还用于:
确定所述无人机的相邻航点之间的距离是否满足***路径点的条件;
若满足,则在相邻航点之间***路径点,并将至少部分所述路径点确定为所述第一飞行航线中的航点。
进一步地,所述航线规划设备确定所述无人机的相邻航点之间的距离是否满足***路径点的条件时,具体用于:
获取所述无人机的各个航点的位置信息;
根据所述无人机的各个航点的位置信息,确定相邻航点之间的距离;
若相邻航点之间的距离大于预设距离阈值,则确定满足***路径点的条件。
进一步地,所述航线规划设备还用于:
确定***的路径点与相邻航点是否共线;
若共线,则在所述第一飞行航线中删除与相邻航点共线的所述***的路径点。
进一步地,每个所述航点包括语义信息,所述语义信息包括任务属性;所述无人机还用于:
根据所述第一飞行航线中每个航点的语义信息包括的任务属性,在各个所述航点执行或停止执行所述第一指定任务。
进一步地,至少部分所述航点包括语义信息,所述语义信息包括障碍物信息;所述无人机还用于:
根据所述第一飞行航线中相应航点的语义信息包括的障碍物信息,在相应航点执行避障操作。
进一步地,所述航线规划设备还用于:
在所述选取操作的过程中,输出所述参考点的高度信息。
进一步地,所述航线规划设备还用于:
在所述选取操作的过程中,若当前的参考点与前一参考点之间的高度差大于预设高度阈值,则输出提示用户重新选取当前的参考点的信息。
进一步地,所述航线规划设备还用于:
获取各个所述参考点的高度信息;
根据各个所述参考点的高度信息以及多个所述参考点生成第二飞行航线, 以使得所述无人机根据所述第二飞行航线执行第二指定任务;
其中,所述第二飞行航线中的每个航点包括高度信息。
进一步地,所述航线规划设备根据各个所述参考点的高度信息以及多个所述参考点生成第二飞行航线时,具体用于:
根据各个所述参考点的高度信息确定每个所述参考点的高度排序;
根据每个所述参考点的高度排序,将各个所述参考点两两连接生成第二飞行航线。
本发明实施例中,航线规划***可以通过航线规划设备获取在第一用户界面上的关于参考点的选取操作,并根据所述选取操作确定多个参考点,以及根据所述选取操作的顺序以及多个所述参考点生成第一飞行航线,将该第一飞行航线发送给无人机,以使无人机可以根据第一飞行航线执行第一指定任务;其中,所述第一飞行航线中的每个航点包括高度信息。通过选取操作设置参考点并根据选取操作的顺序自定义规划航线提高了用户编辑航线的自由度,用户通过设置参考点的形式,使生成的航线更好地反应了用户的意图,使得可以生成任意的期望航线,并借由用户的选择可以有效避免多次上升下降或往返式等复杂航线,提高了无人机的作业效率,也做到了自动化规划与人工规划的平衡,较小的人工工作量,带来了极大的效率提升。
在本发明的实施例中还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本发明实施例图2、图7或图8中描述的航线规划方法方式,也可实现图10所述本发明所对应实施例的航线规划设备,在此不再赘述。
所述计算机可读存储介质可以是前述任一项实施例所述的设备的内部存储单元,例如设备的硬盘或内存。所述计算机可读存储介质也可以是所述设备的外部存储设备,例如所述设备上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述计算机可读存储介质还可以既包括所述设备的内部存储单元也包括外部存储设备。所述计算机可读存储介质用于存储所述计算机程序以及所述设备所需的其他程序和数据。所述计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明部分实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (61)

  1. 一种航线规划方法,其特征在于,包括:
    获取在第一用户界面上的关于参考点的选取操作;
    根据所述选取操作确定多个参考点;
    根据所述选取操作的顺序以及多个所述参考点生成第一飞行航线,以使得无人机根据所述第一飞行航线执行第一指定任务;
    其中,所述第一飞行航线中的每个航点包括高度信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取所述无人机当前的任务模式;
    所述根据所述选取操作的顺序以及多个所述参考点生成第一飞行航线,包括:
    根据所述选取操作的顺序、多个所述参考点以及所述无人机当前的任务模式生成第一飞行航线。
  3. 根据权利要求2所述的方法,其特征在于,所述获取所述无人机当前的任务模式,包括:
    获取在第二用户界面上的关于所述任务模式的选择操作;
    根据所述选择操作确定所述无人机当前的任务模式。
  4. 根据权利要求2所述的方法,其特征在于,
    所述任务模式包括第一模式和第二模式;
    其中,所述第一模式用于指示所述第一飞行航线中的航点包括所述参考点,所述第二模式用于指示所述第一飞行航线中的航点包括基于所述参考点确定的任务点。
  5. 根据权利要求1所述的方法,其特征在于,所述根据所述选取操作的顺序以及多个所述参考点生成第一飞行航线,包括:
    获取所述选取操作的顺序;
    根据所述选取操作的顺序,确定每个所述参考点的顺序;
    按照每个所述参考点的顺序,将各个所述参考点两两连接生成的参考航线确定为第一飞行航线。
  6. 根据权利要求5所述的方法,其特征在于,每个所述参考点为所述第一飞行航线中的航点。
  7. 根据权利要求5所述的方法,其特征在于,所述按照每个所述参考点的顺序,将各个所述参考点两两连接生成的参考航线确定为第一飞行航线,包括:
    按照每个所述参考点的顺序,将各个所述参考点两两连接生成参考航线;
    根据所述参考航线确定所述无人机的第一飞行航线。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述参考航线确定所述无人机的第一飞行航线,包括:
    确定在所述参考航线的预设范围内的任务点;
    根据所述任务点确定所述无人机的第一飞行航线,其中,每个所述任务点为所述第一飞行航线中的航点。
  9. 根据权利要求8所述的方法,其特征在于,所述确定在所述参考航线的预设范围内的任务点,包括:
    在所述参考航线的两侧确定与所述参考航线平行的两条参考线;
    确定在两条所述参考线之间的任务点。
  10. 根据权利要求9所述的方法,其特征在于,每条所述参考线与所述参考航线之间的预设距离相同。
  11. 根据权利要求8所述的方法,其特征在于,所述根据所述任务点确定所述无人机的第一飞行航线,包括:
    获取所述任务点在所述参考航线上的投影点沿所述参考航线的长度方向 的排列顺序;
    根据所述排列顺序,将各个所述任务点两两连接生成所述无人机的第一飞行航线。
  12. 根据权利要求6或8所述的方法,其特征在于,所述方法还包括:
    确定所述无人机的相邻航点之间的距离是否满足***路径点的条件;
    若满足,则在相邻航点之间***路径点,并将至少部分所述路径点确定为所述第一飞行航线中的航点。
  13. 根据权利要求12所述的方法,其特征在于,所述确定所述无人机的相邻航点之间的距离是否满足***路径点的条件,包括:
    获取所述无人机的各个航点的位置信息;
    根据所述无人机的各个航点的位置信息,确定相邻航点之间的距离;
    若相邻航点之间的距离大于预设距离阈值,则确定满足***路径点的条件。
  14. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    确定***的路径点与相邻航点是否共线;
    若共线,则在所述第一飞行航线中删除与相邻航点共线的所述***的路径点。
  15. 根据权利要求6、8或12所述的方法,其特征在于,
    每个所述航点包括语义信息,所述语义信息包括任务属性,所述任务属性用于指示所述无人机在各个所述航点执行或停止执行所述第一指定任务。
  16. 根据权利要求6、8或12所述的方法,其特征在于,
    至少部分所述航点包括语义信息,所述语义信息包括障碍物信息,所述障碍物信息用于指示所述无人机在相应航点执行避障操作。
  17. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述选取操作的过程中,输出所述参考点的高度信息。
  18. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述选取操作的过程中,若当前的参考点与前一参考点之间的高度差大于预设高度阈值,则输出提示用户重新选取当前的参考点的信息。
  19. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取各个所述参考点的高度信息;
    根据各个所述参考点的高度信息以及多个所述参考点生成第二飞行航线,以使得所述无人机根据所述第二飞行航线执行第二指定任务;
    其中,所述第二飞行航线中的每个航点包括高度信息。
  20. 根据权利要求19所述的方法,其特征在于,所述根据各个所述参考点的高度信息以及多个所述参考点生成第二飞行航线,包括:
    根据各个所述参考点的高度信息确定每个所述参考点的高度排序;
    根据每个所述参考点的高度排序,将各个所述参考点两两连接生成第二飞行航线。
  21. 一种航线规划设备,其特征在于,包括:存储器和处理器;
    所述存储器,用于存储程序;
    所述处理器,用于调用所述程序,当所述程序被执行时,用于执行以下操作:
    获取在第一用户界面上的关于参考点的选取操作;
    根据所述选取操作确定多个参考点;
    根据所述选取操作的顺序以及多个所述参考点生成第一飞行航线,以使得无人机根据所述第一飞行航线执行第一指定任务;
    其中,所述第一飞行航线中的每个航点包括高度信息。
  22. 根据权利要求21所述的设备,其特征在于,所述处理器还用于:
    获取所述无人机当前的任务模式;
    所述处理器根据所述选取操作的顺序以及多个所述参考点生成第一飞行航线时,具体用于:
    根据所述选取操作的顺序、多个所述参考点以及所述无人机当前的任务模式生成第一飞行航线。
  23. 根据权利要求22所述的设备,其特征在于,所述处理器获取所述无人机当前的任务模式时,具体用于:
    获取在第二用户界面上的关于所述任务模式的选择操作;
    根据所述选择操作确定所述无人机当前的任务模式。
  24. 根据权利要求22所述的设备,其特征在于,
    所述任务模式包括第一模式和第二模式;
    其中,所述第一模式用于指示所述第一飞行航线中的航点包括所述参考点,所述第二模式用于指示所述第一飞行航线中的航点包括基于所述参考点确定的任务点。
  25. 根据权利要求21所述的设备,其特征在于,所述处理器根据所述选取操作的顺序以及多个所述参考点生成第一飞行航线时,具体用于:
    获取所述选取操作的顺序;
    根据所述选取操作的顺序,确定每个所述参考点的顺序;
    按照每个所述参考点的顺序,将各个所述参考点两两连接生成的参考航线确定为第一飞行航线。
  26. 根据权利要求25所述的设备,其特征在于,每个所述参考点为所述第一飞行航线中的航点。
  27. 根据权利要求25所述的设备,其特征在于,所述处理器按照每个所述参考点的顺序,将各个所述参考点两两连接生成的参考航线确定为第一飞行航线时,具体用于:
    按照每个所述参考点的顺序,将各个所述参考点两两连接生成参考航线;
    根据所述参考航线确定所述无人机的第一飞行航线。
  28. 根据权利要求27所述的设备,其特征在于,所述处理器根据所述参考航线确定所述无人机的第一飞行航线时,具体用于:
    确定在所述参考航线的预设范围内的任务点;
    根据所述任务点确定所述无人机的第一飞行航线,其中,每个所述任务点为所述第一飞行航线中的航点。
  29. 根据权利要求28所述的设备,其特征在于,所述处理器确定在所述参考航线的预设范围内的任务点时,具体用于:
    在所述参考航线的两侧确定与所述参考航线平行的两条参考线;
    确定在两条所述参考线之间的任务点。
  30. 根据权利要求29所述的设备,其特征在于,每条所述参考线与所述参考航线之间的预设距离相同。
  31. 根据权利要求28所述的设备,其特征在于,所述处理器根据所述任务点确定所述无人机的第一飞行航线时,具体用于:
    获取所述任务点在所述参考航线上的投影点沿所述参考航线的长度方向的排列顺序;
    根据所述排列顺序,将各个所述任务点两两连接生成所述无人机的第一飞行航线。
  32. 根据权利要求26或28所述的设备,其特征在于,所述处理器还用于:
    确定所述无人机的相邻航点之间的距离是否满足***路径点的条件;
    若满足,则在相邻航点之间***路径点,并将至少部分所述路径点确定为所述第一飞行航线中的航点。
  33. 根据权利要求32所述的设备,其特征在于,所述处理器确定所述无人机的相邻航点之间的距离是否满足***路径点的条件时,具体用于:
    获取所述无人机的各个航点的位置信息;
    根据所述无人机的各个航点的位置信息,确定相邻航点之间的距离;
    若相邻航点之间的距离大于预设距离阈值,则确定满足***路径点的条件。
  34. 根据权利要求32所述的设备,其特征在于,所述处理器还用于:
    确定***的路径点与相邻航点是否共线;
    若共线,则在所述第一飞行航线中删除与相邻航点共线的所述***的路径点。
  35. 根据权利要求26、28或32所述的设备,其特征在于,
    每个所述航点包括语义信息,所述语义信息包括任务属性,所述任务属性用于指示所述无人机在各个所述航点执行或停止执行所述第一指定任务。
  36. 根据权利要求26、28或32所述的设备,其特征在于,
    至少部分所述航点包括语义信息,所述语义信息包括障碍物信息,所述障碍物信息用于指示所述无人机在相应航点执行避障操作。
  37. 根据权利要求21所述的设备,其特征在于,所述处理器还用于:
    在所述选取操作的过程中,输出所述参考点的高度信息。
  38. 根据权利要求21所述的设备,其特征在于,所述处理器还用于:
    在所述选取操作的过程中,若当前的参考点与前一参考点之间的高度差大于预设高度阈值,则输出提示用户重新选取当前的参考点的信息。
  39. 根据权利要求21所述的设备,其特征在于,所述处理器还用于:
    获取各个所述参考点的高度信息;
    根据各个所述参考点的高度信息以及多个所述参考点生成第二飞行航线,以使得所述无人机根据所述第二飞行航线执行第二指定任务;
    其中,所述第二飞行航线中的每个航点包括高度信息。
  40. 根据权利要求39所述的设备,其特征在于,所述处理器根据各个所述参考点的高度信息以及多个所述参考点生成第二飞行航线时,具体用于:
    根据各个所述参考点的高度信息确定每个所述参考点的高度排序;
    根据每个所述参考点的高度排序,将各个所述参考点两两连接生成第二飞行航线。
  41. 一种航线规划***,其特征在于,包括:航线规划设备和无人机,
    所述航线规划设备,用于获取在第一用户界面上的关于参考点的选取操作;根据所述选取操作确定多个参考点;根据所述选取操作的顺序以及多个所述参考点生成第一飞行航线,并将所述第一飞行航线发送给所述无人机,其中,所述第一飞行航线中的每个航点包括高度信息;
    所述无人机,用于根据所述第一飞行航线执行第一指定任务。
  42. 根据权利要求41所述的***,其特征在于,所述航线规划设备还用于:
    获取所述无人机当前的任务模式;
    所述航线规划设备根据所述选取操作的顺序以及多个所述参考点生成第一飞行航线时,具体用于:
    根据所述选取操作的顺序、多个所述参考点以及所述无人机当前的任务模式生成第一飞行航线。
  43. 根据权利要求42所述的***,其特征在于,所述航线规划设备获取所述无人机当前的任务模式时,具体用于:
    获取在第二用户界面上的关于所述任务模式的选择操作;
    根据所述选择操作确定所述无人机当前的任务模式。
  44. 根据权利要求42所述的***,其特征在于,
    所述任务模式包括第一模式和第二模式;
    其中,所述第一模式用于指示所述第一飞行航线中的航点包括所述参考 点,所述第二模式用于指示所述第一飞行航线中的航点包括基于所述参考点确定的任务点。
  45. 根据权利要求41所述的***,其特征在于,所述航线规划设备根据所述选取操作的顺序以及多个所述参考点生成第一飞行航线时,具体用于:
    获取所述选取操作的顺序;
    根据所述选取操作的顺序,确定每个所述参考点的顺序;
    按照每个所述参考点的顺序,将各个所述参考点两两连接生成的参考航线确定为第一飞行航线。
  46. 根据权利要求45所述的***,其特征在于,每个所述参考点为所述第一飞行航线中的航点。
  47. 根据权利要求45所述的***,其特征在于,所述航线规划设备按照每个所述参考点的顺序,将各个所述参考点两两连接生成的参考航线确定为第一飞行航线时,具体用于:
    按照每个所述参考点的顺序,将各个所述参考点两两连接生成参考航线;
    根据所述参考航线确定所述无人机的第一飞行航线。
  48. 根据权利要求47所述的***,其特征在于,所述航线规划设备根据所述参考航线确定所述无人机的第一飞行航线时,具体用于:
    确定在所述参考航线的预设范围内的任务点;
    根据所述任务点确定所述无人机的第一飞行航线,其中,每个所述任务点为所述第一飞行航线中的航点。
  49. 根据权利要求48所述的***,其特征在于,所述航线规划设备确定在所述参考航线的预设范围内的任务点时,具体用于:
    在所述参考航线的两侧确定与所述参考航线平行的两条参考线;
    确定在两条所述参考线之间的任务点。
  50. 根据权利要求49所述的***,其特征在于,每条所述参考线与所述参考航线之间的预设距离相同。
  51. 根据权利要求48所述的***,其特征在于,所述航线规划设备根据所述任务点确定所述无人机的第一飞行航线时,具体用于:
    获取所述任务点在所述参考航线上的投影点沿所述参考航线的长度方向的排列顺序;
    根据所述排列顺序,将各个所述任务点两两连接生成所述无人机的第一飞行航线。
  52. 根据权利要求46或48所述的***,其特征在于,所述航线规划设备还用于:
    确定所述无人机的相邻航点之间的距离是否满足***路径点的条件;
    若满足,则在相邻航点之间***路径点,并将至少部分所述路径点确定为所述第一飞行航线中的航点。
  53. 根据权利要求52所述的***,其特征在于,所述航线规划设备确定所述无人机的相邻航点之间的距离是否满足***路径点的条件时,具体用于:
    获取所述无人机的各个航点的位置信息;
    根据所述无人机的各个航点的位置信息,确定相邻航点之间的距离;
    若相邻航点之间的距离大于预设距离阈值,则确定满足***路径点的条件。
  54. 根据权利要求52所述的***,其特征在于,所述航线规划设备还用于:
    确定***的路径点与相邻航点是否共线;
    若共线,则在所述第一飞行航线中删除与相邻航点共线的所述***的路径点。
  55. 根据权利要求46、48或52所述的***,其特征在于,每个所述航点 包括语义信息,所述语义信息包括任务属性;所述无人机还用于:
    根据所述第一飞行航线中每个航点的语义信息包括的任务属性,在各个所述航点执行或停止执行所述第一指定任务。
  56. 根据权利要求46、48或52所述的***,其特征在于,至少部分所述航点包括语义信息,所述语义信息包括障碍物信息;所述无人机还用于:
    根据所述第一飞行航线中相应航点的语义信息包括的障碍物信息,在相应航点执行避障操作。
  57. 根据权利要求41所述的***,其特征在于,所述航线规划设备还用于:
    在所述选取操作的过程中,输出所述参考点的高度信息。
  58. 根据权利要求41所述的***,其特征在于,所述航线规划设备还用于:
    在所述选取操作的过程中,若当前的参考点与前一参考点之间的高度差大于预设高度阈值,则输出提示用户重新选取当前的参考点的信息。
  59. 根据权利要求41所述的***,其特征在于,所述航线规划设备还用于:
    获取各个所述参考点的高度信息;
    根据各个所述参考点的高度信息以及多个所述参考点生成第二飞行航线,以使得所述无人机根据所述第二飞行航线执行第二指定任务;
    其中,所述第二飞行航线中的每个航点包括高度信息。
  60. 根据权利要求59所述的***,其特征在于,所述航线规划设备根据各个所述参考点的高度信息以及多个所述参考点生成第二飞行航线时,具体用于:
    根据各个所述参考点的高度信息确定每个所述参考点的高度排序;
    根据每个所述参考点的高度排序,将各个所述参考点两两连接生成第二飞 行航线。
  61. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至20任一项所述方法。
PCT/CN2019/114892 2019-10-31 2019-10-31 一种航线规划方法、设备、***及存储介质 WO2021081960A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980030367.9A CN112166394A (zh) 2019-10-31 2019-10-31 一种航线规划方法、设备、***及存储介质
PCT/CN2019/114892 WO2021081960A1 (zh) 2019-10-31 2019-10-31 一种航线规划方法、设备、***及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/114892 WO2021081960A1 (zh) 2019-10-31 2019-10-31 一种航线规划方法、设备、***及存储介质

Publications (1)

Publication Number Publication Date
WO2021081960A1 true WO2021081960A1 (zh) 2021-05-06

Family

ID=73859377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114892 WO2021081960A1 (zh) 2019-10-31 2019-10-31 一种航线规划方法、设备、***及存储介质

Country Status (2)

Country Link
CN (1) CN112166394A (zh)
WO (1) WO2021081960A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114200527B (zh) * 2021-10-26 2024-04-26 山东省物化探勘查院 一种基于倾斜摄影的无人机航磁测量方法及***
CN114200953B (zh) * 2021-10-28 2024-05-28 山东省物化探勘查院 基于无人机航磁测量的污染物扩散通道识别方法及***
CN114138020B (zh) * 2021-11-26 2023-09-15 广东电网有限责任公司 一种对变电站无人机的航线进行校核的方法和装置
CN114694422B (zh) * 2022-06-01 2022-09-06 浙江这里飞科技有限公司 一种飞行航线的冲突检测方法、装置及电子设备
CN115586791A (zh) * 2022-09-29 2023-01-10 亿航智能设备(广州)有限公司 一种基于信号丢失的无人驾驶航空器控制方法、***和介质
CN116009421A (zh) * 2022-12-29 2023-04-25 中电普信(北京)科技发展有限公司 全自由度固定翼飞机通用仿真方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105929847A (zh) * 2016-06-24 2016-09-07 南京奇蛙智能科技有限公司 一种无人机跟随航点可靠性的判断方法
CN106054920A (zh) * 2016-06-07 2016-10-26 南方科技大学 一种无人机飞行路径规划方法和装置
CN106249757A (zh) * 2016-09-21 2016-12-21 中国科学院遥感与数字地球研究所 一种飞行航线的自动选择方法与装置
US20170221368A1 (en) * 2014-10-22 2017-08-03 SZ DJI Technology Co., Ltd. Method and device for setting a flight route
CN109074093A (zh) * 2017-12-18 2018-12-21 深圳市大疆创新科技有限公司 一种无人机的航线规划方法、控制设备及存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102582826B (zh) * 2011-01-06 2015-09-30 佛山市安尔康姆航拍科技有限公司 一种四旋翼无人飞行器的驾驶方法和***
CN103901892B (zh) * 2014-03-04 2016-12-07 清华大学 无人机的控制方法及***
CN107990897B (zh) * 2016-10-26 2020-06-05 杭州海康机器人技术有限公司 一种航线数据确定方法及装置
CN109035869A (zh) * 2017-07-26 2018-12-18 广州极飞科技有限公司 无人机航线的生成方法和装置
CN109035871B (zh) * 2018-07-17 2020-05-22 深圳常锋信息技术有限公司 无人机飞行路线规划方法、装置、***及智能终端
CN109542119B (zh) * 2018-12-08 2022-03-01 深圳飞马机器人科技有限公司 飞行器航线规划方法及***
CN110134143A (zh) * 2019-05-30 2019-08-16 广东电网有限责任公司 一种电力巡检方法、***及电子设备和存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170221368A1 (en) * 2014-10-22 2017-08-03 SZ DJI Technology Co., Ltd. Method and device for setting a flight route
CN106054920A (zh) * 2016-06-07 2016-10-26 南方科技大学 一种无人机飞行路径规划方法和装置
CN105929847A (zh) * 2016-06-24 2016-09-07 南京奇蛙智能科技有限公司 一种无人机跟随航点可靠性的判断方法
CN106249757A (zh) * 2016-09-21 2016-12-21 中国科学院遥感与数字地球研究所 一种飞行航线的自动选择方法与装置
CN109074093A (zh) * 2017-12-18 2018-12-21 深圳市大疆创新科技有限公司 一种无人机的航线规划方法、控制设备及存储介质

Also Published As

Publication number Publication date
CN112166394A (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
WO2021081960A1 (zh) 一种航线规划方法、设备、***及存储介质
WO2017211029A1 (zh) 无人机飞行路径规划方法和装置
EP3885871B1 (en) Surveying and mapping system, surveying and mapping method and apparatus, device and medium
CN107735737B (zh) 一种航点编辑方法、装置、设备及飞行器
US20240086862A1 (en) System, devices and methods for tele-operated robotics
WO2019062648A1 (zh) 一种导航路径规划方法及设备
WO2021008264A1 (zh) 一种无人机的植保喷洒方法、无人机及存储介质
WO2020220195A1 (zh) 无人机的控制方法、设备、喷洒***、无人机及存储介质
Chen et al. DroneTalk: An Internet-of-Things-based drone system for last-mile drone delivery
WO2021237448A1 (zh) 路径规划方法、装置及***
CN110362102B (zh) 一种无人机航线生成的方法、装置和***
JP6804706B1 (ja) 管理装置、管理方法及び管理システム
WO2020087297A1 (zh) 一种无人机测试方法、设备及存储介质
KR20190068955A (ko) 무인 항공기의 비행 시뮬레이션 장치 및 이를 이용한 무인 항공기 비행 시뮬레이션 시스템
CN115951598B (zh) 一种多无人机的虚实结合仿真方法、装置及***
WO2023273415A1 (zh) 基于无人机的定位方法、装置、存储介质、电子设备和产品
CN110785355A (zh) 一种无人机测试方法、设备及存储介质
KR102058510B1 (ko) 무인비행체의 안전 운영을 위한 장애물 정보를 제공하는 방법 및 이를 위한 지도 서버, 그리고 이를 포함하는 무선통신망 기반의 무인비행체 자동운항 운영 시스템
WO2020113447A1 (zh) 无人机的喷洒作业方法和装置
WO2021087718A1 (zh) 无人机的控制方法、装置、设备及存储介质
JP6997591B2 (ja) コンピュータシステムおよびプログラム
WO2018053768A1 (zh) 一种航线生成方法、装置及终端
US20210357620A1 (en) System, moving object, and information processing apparatus
Ertugrul et al. Autonomous aerial navigation and mapping for security of smart buildings
CN113574487A (zh) 无人机控制方法、装置及无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950581

Country of ref document: EP

Kind code of ref document: A1