WO2021077933A1 - 充电控制方法、充电控制设备和电子设备 - Google Patents

充电控制方法、充电控制设备和电子设备 Download PDF

Info

Publication number
WO2021077933A1
WO2021077933A1 PCT/CN2020/114583 CN2020114583W WO2021077933A1 WO 2021077933 A1 WO2021077933 A1 WO 2021077933A1 CN 2020114583 W CN2020114583 W CN 2020114583W WO 2021077933 A1 WO2021077933 A1 WO 2021077933A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
stage
electronic device
current
sub
Prior art date
Application number
PCT/CN2020/114583
Other languages
English (en)
French (fr)
Inventor
李志杰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2021077933A1 publication Critical patent/WO2021077933A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the embodiments of the present application relate to the field of charging technology, and more specifically, to a charging control method, a charging control device, and an electronic device.
  • the internal resistance of the battery will increase, and the float voltage (the voltage on the internal resistance of the battery) will also increase, so that the collected battery voltage will be higher than the actual battery voltage.
  • the battery power at the end of the fast charging phase is less than that under normal conditions, and the remaining power to be fully charged needs to continue constant current charging for a period of time.
  • the preset period of constant current charging is relatively short, which leads to an increase in the time to enter the normal charging stage and a decrease in charging efficiency.
  • the embodiments of the present application provide a charging control method, a charging control device, and an electronic device to solve the charging problem in the related art.
  • a charging control method which includes: in the process of charging the electronic device, controlling the electronic device to enter a multi-stage second charging stage from a first charging stage.
  • the charging current of the second charging stage is a constant current
  • the charging current of the multi-stage second charging stage is smaller than the charging current of the first charging stage, and the cut-off voltage and the charging current of the multi-stage second charging stage are sequentially reduced; if In the last charging stage of the multi-stage second charging stage, if the battery voltage and/or charging current of the electronic device meets a preset condition, control to exit the multi-stage second charging stage.
  • a charging control device including: a control unit, configured to control the electronic device from a first charging stage to a multi-stage second charging stage during a process of charging the electronic device.
  • the charging currents of the first charging stage and the second charging stage are constant currents, the charging currents of the multiple second charging stages are smaller than the charging currents of the first charging stage, and the cut-off voltages and charging currents of the multiple second charging stages are The current decreases sequentially; if the battery voltage and/or charging current of the electronic device meets a preset condition in the last charging stage of the multi-stage second charging stage, control to exit the multi-stage second charging stage.
  • an electronic device including: a processor, configured to control the electronic device to enter multiple second charging stages from a first charging stage during a process of charging the electronic device.
  • the charging current in the charging phase and the multi-stage second charging stage is a constant current, the charging current in the multi-stage second charging stage is less than the charging current in the first charging stage, and the cut-off voltage and charging of the multi-stage second charging stage The current decreases sequentially; if the battery voltage and/or charging current of the electronic device meets a preset condition in the last charging stage of the multi-stage second charging stage, control to exit the multi-stage second charging stage.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute the method described in the first aspect or any one of its implementation manners.
  • a computer program product which is characterized by including computer program instructions that cause a computer to execute the method described in the first aspect or any one of its implementation manners.
  • the charging control method provided by this application, if the battery of the electronic device is aging or the current electronic device is in a low temperature environment during the charging of the electronic device, the charging time can be reduced by controlling the cut-off voltage and charging current during the charging process. , Thereby improving charging efficiency.
  • Fig. 1a is a schematic diagram of a charging current change during charging of a device to be charged according to an embodiment of the present application
  • FIG. 1b is a schematic diagram of charging voltage changes during charging of a device to be charged according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a charging current change during charging of a device to be charged according to another embodiment of the present application
  • FIG. 3 is a schematic flowchart of a charging control method provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a charging control method provided by another embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a charging control device provided by an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a wired charging system provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a wired charging system provided by another embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a wireless charging system provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a wireless charging system provided by another embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a wireless charging system provided by another embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a wireless charging system provided by still another embodiment of the present application.
  • the charging process generally includes three stages: trickle charging stage, constant current charging stage and constant voltage charging stage. Take the charging process of lithium ion as an example.
  • FIG. 1a is a schematic diagram of the change of the charging current during the charging of the device to be charged according to an embodiment of the application
  • FIG. 1b is the charging voltage during the charging of the device to be charged according to an embodiment of the application Schematic diagram of changes.
  • the charging device can be charged with a constant large current, for example, it can be 6.5A.
  • the charging voltage gradually increases; when the charging voltage is greater than a certain voltage threshold, it can enter the constant voltage charging stage, that is, the period (t2-t3) in Figure 1a and Figure 1b.
  • the charging current can be gradually reduced until the charging is cut off.
  • a schematic diagram of charging current changes during charging of a device to be charged may include a trickle charging phase, a fast charging phase, a preset constant current charging phase, and a normal charging phase.
  • the fast charging stage and the preset constant current charging stage both charge the device to be charged with a constant current.
  • the charging current of the preset constant current charging stage is less than the charging current of the fast charging stage.
  • the normal charging stage can be the constant voltage in Figure 1. During the charging phase, the charging device is charged with a gradually decreasing charging current.
  • the battery in the device to be charged is an aging battery or the ambient temperature of the device to be charged is low, for example, the ambient temperature is lower than -10°C.
  • the internal resistance of the battery will increase and the floating voltage (in the battery) The voltage on the resistance) will also increase, so that the collected battery voltage will be higher than the actual battery voltage.
  • the battery power at the end of the fast charging phase is less than the power under normal conditions, and the remaining power to be fully charged needs to continue constant current charging for a period of time.
  • the preset period of constant current charging is relatively short, which leads to an increase in the time to enter the normal charging stage and a decrease in charging efficiency.
  • the embodiment of the present application provides a charging method, which can reduce the charging time and improve the charging efficiency.
  • the device to be charged used in the embodiments of this application may refer to a terminal, and the “terminal” may include, but is not limited to, set to be connected via a wired line (such as via a public switched telephone network (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connection, and/or another data connection/network) and/or via (for example, for cellular networks, Wireless Local Area Network (WLAN), Digital TV networks such as Digital Video Broadcasting Handheld (DVB-H) networks, satellite networks, AM-FM (Amplitude Modulation-Frequency Modulation) broadcast transmitters, and/or another communication terminal )
  • a device for receiving/sending communication signals through a wireless interface may be referred to as a "wireless communication terminal", a "wireless terminal", and/or a "mobile terminal”.
  • mobile terminals include, but are not limited to satellite or cellular phones; Personal Communication System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, and the Internet/ Personal Digital Assistant (PDA) with intranet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop Receiver or other electronic device including a radio telephone transceiver.
  • the device to be charged may refer to that the mobile terminal is a device or a handheld terminal device, such as a mobile phone, a pad, and so on.
  • the device to be charged mentioned in the embodiments of this application may refer to a chip system. In this embodiment, the battery of the device to be charged may or may not belong to the chip system.
  • the devices to be charged can also include other devices that require charging, such as mobile phones, mobile power sources (such as power banks, travel chargers, etc.), electric cars, laptops, drones, tablets, e-books, and e-cigarettes. , Smart standby charging equipment and small electronic products, etc. Smart devices to be charged can include, for example, watches, bracelets, smart glasses, and sweeping robots. Small electronic products may include, for example, wireless headsets, Bluetooth speakers, electric toothbrushes, and rechargeable wireless mice.
  • the method 300 provided by the embodiment of the present application may include steps 310-320.
  • control the electronic device to enter a multi-stage second charging stage from the first charging stage, and the charging currents of the first charging stage and the multi-stage second charging stage are constant
  • the charging current of the multi-stage second charging stage is smaller than the charging current of the first charging stage, and the cut-off voltage and the charging current of the multi-stage second charging stage are sequentially reduced.
  • the first charging stage in the embodiments of the present application may be a stage in the fast charging mode.
  • a fast charging stage it may be referred to as a fast charging stage here;
  • the multi-stage second charging stage may include three sub-charging stages or two sub-charging stages. This application does not specifically limit this.
  • the cut-off voltage of the multiple second charging stages can be sequentially reduced. It is assumed that the multiple second charging stages include three sub-charging stages, namely: the first sub-charging stage, the second sub-charging stage, and the third sub-charging stage .
  • the cut-off voltage of the first sub-charging stage may be 4.35V
  • the cut-off voltage of the second sub-charging stage may be 4.30V
  • the cut-off voltage of the third sub-charging stage may be 4.28V.
  • the cut-off voltage of the multi-stage charging is sequentially reduced, which may not substantially affect the charging speed of the unaged battery and the battery at room temperature (for example, the temperature is 0-50° C.).
  • the cut-off voltages of the first sub-charging phase, the second sub-charging phase, and the third sub-charging phase are 4.35V, 4.30V, and 4.28V, respectively. If the maximum charging voltage of the battery is 4.4V, when the measured battery voltage reaches 4.38V, you can enter the first sub-charging stage.
  • the actual battery voltage may be 4.38 Therefore, after exiting the fast charging stage and entering the first sub-charging stage, it may immediately exit the first sub-charging stage and enter the second sub-charging stage, because the voltage at this time is still greater than the cut-off voltage of the second sub-charging stage, similarly After entering the second charging stage, it may immediately exit the second charging stage and enter the third charging stage. Similarly, after entering the third charging stage, it may immediately exit the third charging stage and enter the normal charging Stage, thus completing the charging of the battery.
  • the charging currents of the multiple second charging stages can also be sequentially reduced. It is assumed that the multiple second charging stages include three sub-charging stages, namely: the first sub-charging stage, the second sub-charging stage, and the third sub-charging stage. Then the charging current in the first sub-charging stage may be 0.8A, the charging current in the second sub-charging stage may be 0.5A, and the charging current in the third sub-charging stage may be 0.3A.
  • the method in the embodiment of the present application can be implemented by an application processor (Application Processor, AP) and a microcontroller (Micro Controller Unit, MCU) in an electronic device.
  • application processor Application Processor
  • MCU Micro Controller Unit
  • the last charging stage in the embodiment of the present application may be the third sub-charging stage mentioned above, that is, the sub-charging stage in which the cut-off voltage and/or the charging current of the multiple second charging stages are the smallest.
  • the charging current in the ordinary charging phase in the embodiments of the present application may be a non-constant current, that is, starting from a certain current, the charging current charges the electronic device with a gradually decreasing current until the electronic device is fully charged.
  • the charging control method provided by this application, if the battery of the electronic device is aging or the current electronic device is in a low temperature environment during the charging of the electronic device, the charging time can be reduced by controlling the cut-off voltage and charging current during the charging process. , Thereby improving charging efficiency.
  • the preset condition includes at least one of the following conditions: the battery voltage of the electronic device is greater than or equal to the cut-off voltage of the last charging stage of the plurality of second charging stages, The charging current of the electronic device is less than the charging current of the last charging stage in the plurality of second charging stages.
  • the multi-stage second charging stage includes three sub-charging stages, namely: a first sub-charging stage, a second sub-charging stage, and a third sub-charging stage.
  • the cut-off voltage of the first sub-charging stage may be 4.35V
  • the cut-off voltage of the second sub-charging stage may be 4.30V
  • the cut-off voltage of the third sub-charging stage may be 4.28V.
  • the battery voltage of the electronic device is greater than or equal to the cut-off voltage of the last charging stage of the multiple second charging stages, that is, the battery voltage of the electronic device is greater than or equal to 4.28V.
  • the charging current in the first sub-charging stage may be 0.8A
  • the charging current in the second sub-charging stage may be 0.5A
  • the charging current in the third sub-charging stage may be 0.3A.
  • the charging current of the electronic device in the embodiment of the present application is less than the charging current of the last charging stage of the multiple second charging stages, that is, the charging current of the electronic device is less than 0.3A. If the charging current of the electronic device is less than 0.3A, it can be controlled to exit the third sub-charging phase and enter the normal charging phase.
  • the multi-stage second charging stage may include three sub-charging stages or two sub-charging stages. The following will take the three-stage sub-charging stage as an example for specific description.
  • the controlling the electronic device to enter multiple second charging stages from the first charging stage includes: if the battery voltage of the electronic device is greater than or equal to the cut-off of the first charging stage Voltage, controlling the electronic device to enter the first sub-charging stage of the multi-stage second charging stage from the first charging stage; if the battery voltage of the electronic device is greater than or equal to the cut-off voltage of the first sub-charging stage And/or the charging current of the electronic device is less than the preset charging current of the first sub-charging stage, controlling the electronic device to enter the second sub-charging stage from the first sub-charging stage, and the first sub-charging The charging current of the second sub-charging stage is greater than the charging current of the second sub-charging stage; if the battery voltage of the electronic device is greater than or equal to the cut-off voltage of the second sub-charging stage and/or the charging current of the electronic device is less than the The preset charging current of the second sub-charging stage controls the electronic device to enter the third sub-
  • the cut-off voltage of the fast charging stage is 4.38V
  • the cut-off voltages of the first sub-charging stage, the second sub-charging stage, and the third sub-charging stage are 4.35V, 4.30V, and 4.28V, respectively.
  • the maximum charging voltage of the battery is 4.40V
  • the charging current can be gradually increased to charge the battery.
  • the fast charging stage can be entered.
  • high current can be used.
  • the current for fast charging is 6.5A, after a period of continuous charging, when the measured battery voltage reaches 4.38V, the first sub-charging stage can be entered.
  • the actual battery voltage may be 4.35V at this time, and the voltage may fall back, that is, the battery is not charged for a short period of time, assuming that the battery is not charged within 10ms,
  • the battery voltage drops to 4.30V, it enters the first sub-charging stage.
  • the battery can be charged with a charging current of 0.8A.
  • the battery voltage is greater than the cut-off voltage of the first sub-charge. 4.35V, you can exit the first sub-charging stage and prepare to enter the second sub-charging stage to charge the battery.
  • the measured battery voltage is 4.35V.
  • the actual battery voltage may be 4.32V.
  • the battery voltage may fall back to 4.25V.
  • the battery can be charged with a charging current of 0.5A.
  • the battery voltage is greater than the charge cut-off voltage of the second sub-charge 4.30V, it will exit The second sub-charging process prepares to enter the third sub-charging stage to charge the battery.
  • the measured battery voltage is 4.30V.
  • the actual battery voltage may be 4.25V.
  • the battery voltage may fall back to 4.23V.
  • the third sub-charging stage the battery can be charged with a charging current of 0.3A. After a period of continuous charging, if the battery voltage is greater than the charge cut-off voltage of the third sub-charge 4.28V, it will exit The third sub-charging stage, prepares to enter the normal charging stage to charge the battery.
  • the charging current can be gradually increased to charge the battery.
  • the charging voltage reaches 1V, it enters the fast charging stage.
  • the battery is charged, for example, the current of fast charging is 6.5A, after a period of continuous charging, when the measured battery voltage reaches 4.38V, the first sub-charging stage can be entered.
  • the voltage may drop, that is, the battery is not charged for a short period of time. Assuming that the battery is not charged within 10ms, the battery voltage drops to 4.30V, then Enter the first sub-charging stage. In this charging stage, the battery can be charged with a constant 0.8A charging current. After charging for a period of time, the charging current begins to decrease. For example, the charging current drops to 0.7A, which means that the battery cannot be charged. If the battery is charged with a charging current of 0.8A, the first sub-charging phase can be exited and the battery is ready to enter the second sub-charging phase.
  • the measured battery voltage is 4.35V.
  • the actual battery voltage may be 4.30V.
  • the battery voltage may fall back to 4.25V.
  • the second sub-charging stage the battery can be charged with a 0.5A charging current. After a period of continuous charging, the charging current begins to decrease. For example, the charging current drops to 0.4A, which means it cannot be maintained.
  • the second sub-charging phase can be exited and the battery is ready to enter the third sub-charging phase.
  • the measured battery voltage is 4.30V.
  • the actual battery voltage may be 4.25V.
  • the battery voltage may fall back to 4.23V.
  • the third sub-charging stage the battery can be charged with a charging current of 0.3A.
  • the charging current begins to decrease, that is, the battery cannot be charged with a charging current of 0.3A.
  • the method further includes: setting the cut-off voltage and cut-off current of the electronic device to preset values after the charging of the electronic device is stopped.
  • the stopping of charging of the electronic device in the embodiment of the present application may include the completion of charging (or full charge) of the electronic device or the disconnection of the charger.
  • the relevant cut-off voltage and cut-off current can be set to preset values, and the relevant cut-off voltage and cut-off current can be set to the cut-off voltage and the cut-off current in the normal charging mode. Cut-off current. For example, assuming that the maximum charging voltage of the battery is 4.4V, the cut-off voltage in the normal charging mode can be set to 4.3V.
  • the charging device After the charging device is connected to the power supply device, it may first identify whether the connected power supply device supports the fast charging mode. If the fast charging mode is not supported, the charging device can be charged in the normal charging mode, that is, the charging voltage can be used The voltage and current are 5V and the charging current is 1A to charge the device to be charged; if the fast charging mode is supported, the relevant parameters can be adjusted to the parameters in the fast charging mode, for example, the cut-off voltage and cut-off current of the fast charging, the first sub The cut-off voltage and cut-off current of the charging stage, the second sub-charging stage, and the third sub-charging stage.
  • the device to be charged when charging the device to be charged, it can enter the fast charging mode after the trickle charging stage to charge the device to be charged, and the battery voltage and/or charging current of the device to be charged reaches the cut-off voltage and voltage in the fast charging mode. / Or when the current is cut off; the device to be charged can enter the first sub-charging stage for charging.
  • the device to be charged can enter the second sub-charging stage for charging; when the battery voltage and/or charging current of the device to be charged reaches the cut-off voltage and/or cut-off current of the second sub-charging stage, the device to be charged can enter the third sub-charging stage for charging.
  • the device to be charged can enter the normal charging mode for charging until the charging is completed.
  • the method further includes: detecting the internal resistance of the battery of the electronic device; if the internal resistance of the battery is greater than a preset threshold, the control delay is entered from the first charging stage to the Multiple periods of time for the second charging stage.
  • the device to be charged may include an AP and an MCU, where the AP can control the ordinary charging process of the device to be charged, and the MCU can control the fast charging process of the device to be charged.
  • the MCU detects that the battery has a large internal resistance or is at a low ambient temperature, the charging device can be charged for a period of time with a relatively small current and a relatively high cut-off voltage when the fast charging process of the device to be charged is almost full.
  • the fast charging process reports the full time, so the normal charging time will be relatively shorter, so that the charging time can be reduced, and further, the charging efficiency can be improved.
  • the MCU detects that the battery has a large internal resistance or is at a low ambient temperature, it can increase the cut-off voltage of the fast charging phase.
  • the device to be charged can continue to be charged with a relatively small current for a period of time . Therefore, the time of the ordinary charging phase will be relatively shorter, so that the charging time can be reduced, and further, the charging efficiency can be improved.
  • the preset threshold value in the embodiment of the present application may be the internal resistance of the battery under normal temperature conditions, or the resistance under the condition that the battery is not aging, or may be a set value, which is not specifically limited in this application.
  • FIG. 4 is a schematic flowchart of a charging control method 400 provided by an embodiment of the application.
  • the method 400 may include steps 402-434.
  • step 404 If yes, go to step 404; if not, go to step 406.
  • the BC1.2 strategy in the embodiment of the present application defines the detection, control, and reporting mechanism of Universal Serial Bus (USB) port charging. These mechanisms are extensions of the USB2.0 specification and are used for charging devices with dedicated chargers, hosts, and high-current charging ports.
  • USB Universal Serial Bus
  • step 410 If yes, go to step 410; if not, go to step 422.
  • step 414 If yes, go to step 414; if not, go to step 416.
  • step 420 If yes, go to step 420; if no, go back to step 414.
  • step 424 If yes, go to step 424; if not, go back to step 422 to continue the judgment.
  • a charging control device 500 provided in this embodiment of the application, the device 500 may include a control unit 510.
  • the control unit 510 is configured to control the electronic device to enter a multi-stage second charging stage from the first charging stage during the charging of the electronic device, and the charging of the first charging stage and the second charging stage
  • the current is a constant current
  • the charging current of the multi-stage second charging stage is less than the charging current of the first charging stage
  • the cut-off voltage and the charging current of the multi-stage second charging stage are sequentially reduced; if in the multi-stage second charging In the last charging phase of the phase, if the battery voltage and/or charging current of the electronic device meets the preset condition, then the control is controlled to exit the multi-stage second charging phase.
  • the preset condition includes at least one of the following conditions: the battery voltage of the electronic device is greater than or equal to the cut-off voltage of the last charging stage of the plurality of second charging stages, The charging current of the electronic device is less than the charging current of the last charging stage in the plurality of second charging stages.
  • control unit 510 is further configured to: if the battery voltage of the electronic device is greater than or equal to the cut-off voltage of the first charging stage, control the electronic device from the first charging stage.
  • the charging phase enters the first sub-charging phase of the multi-stage second charging phase; if the battery voltage of the electronic device is greater than or equal to the cut-off voltage of the first sub-charging phase and/or the charging current of the electronic device is less than all
  • the preset charging current of the first sub-charging stage controls the electronic device to enter the second sub-charging stage from the first sub-charging stage, and the charging current of the first sub-charging stage is greater than that of the second sub-charging stage If the battery voltage of the electronic device is greater than or equal to the cut-off voltage of the second sub-charging phase and/or the charging current of the electronic device is less than the preset charging current of the second sub-charging phase, control The electronic device enters the third sub-charging stage from the second sub-charging stage, and the charging
  • the device 500 further includes: a setting unit configured to set the cut-off voltage and cut-off current of the electronic device to preset values after the charging of the electronic device is stopped.
  • the device 500 further includes: a detection unit configured to detect the internal resistance of the battery of the electronic device; the control unit 510 is further configured to: if the internal resistance of the battery is greater than A preset threshold is used to control the delay from the first charging stage to the multiple second charging stages.
  • an electronic device 600 provided in an embodiment of this application, the device 600 may include a processor 610.
  • the processor 610 is configured to control the electronic device to enter a multi-stage second charging stage from a first charging stage in the process of charging the electronic device.
  • the charging current is a constant current, the charging current of the multiple second charging stages is less than the charging current of the first charging stage, and the cut-off voltage and charging current of the multiple second charging stages are sequentially reduced; In the last charging stage of the charging stage, if the battery voltage and/or charging current of the electronic device meets the preset condition, then the control is controlled to exit the multi-stage second charging stage.
  • the preset condition includes at least one of the following conditions: the battery voltage of the electronic device is greater than or equal to the cut-off voltage of the last charging stage of the plurality of second charging stages, The charging current of the electronic device is less than the charging current of the last charging stage in the plurality of second charging stages.
  • the processor 610 is further configured to: if the battery voltage of the electronic device is greater than or equal to the cut-off voltage of the first charging stage, control the electronic device from the first charging stage Enter the first sub-charge stage of the multi-stage second charging stage; if the battery voltage of the electronic device is greater than or equal to the cut-off voltage of the first sub-charge stage and/or the charging current of the electronic device is less than the first sub-stage The preset charging current of the charging stage, controlling the electronic device to enter the second sub-charging stage from the first sub-charging stage, and the charging current of the first sub-charging stage is greater than the charging current of the second sub-charging stage; If the battery voltage of the electronic device is greater than or equal to the cut-off voltage of the second sub-charging stage and/or the charging current of the electronic device is less than the preset charging current of the second sub-charging stage, the electronic device is controlled From the second sub-charging stage to the third sub-charging stage, the charging current of the second sub
  • the processor 610 is further configured to: after the charging of the electronic device is stopped, set the cut-off voltage and the cut-off current of the electronic device to preset values.
  • the processor 610 is further configured to: detect the internal resistance of the battery of the electronic device; if the internal resistance of the battery is greater than a preset threshold, control the delay from the first charging The time when the phase enters the plurality of second charging phases.
  • the embodiment of the present application also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are configured to execute any one of the charging methods 300 or 400 described above.
  • the embodiments of the present application also provide a computer program product.
  • the computer program product includes a computer program stored on a computer-readable storage medium.
  • the computer program includes program instructions. When the program instructions are executed by a computer, the computer program The computer executes any one of the charging methods 300 or 400 described above.
  • the solution in the embodiment of the present application can be applied in a wired charging process, and can also be applied in a wireless charging process, which is not specifically limited in the embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of a charging system provided by an embodiment of the present application.
  • the charging system includes a power supply device 10, a battery management circuit 20 and a battery 30.
  • the battery management circuit 20 can be used to manage the battery 30.
  • the charging control device 500 and the electronic device 600 in the embodiment of the present application may include a battery management circuit 20 and a battery 30.
  • the battery management circuit 20 can manage the charging process of the battery 30, such as selecting the charging channel, controlling the charging voltage and/or charging current, etc.; as another example, the battery management circuit 20 can perform the charging on the cells of the battery 30 Management, such as equalizing the voltage of the cells in the battery 30, etc.
  • the battery management circuit 20 may include a first charging channel 21 and a communication control circuit 23.
  • the first charging channel 21 may be used to receive the charging voltage and/or charging current provided by the power supply device 10 and load the charging voltage and/or charging current on both ends of the battery 30 to charge the battery 30.
  • the first charging channel 21 may be, for example, a wire, and some other circuit devices that are not related to the conversion of the charging voltage and/or the charging current may also be provided on the first charging channel 21.
  • the power management circuit 20 includes a first charging channel 21 and a second charging channel, and a switching device for switching between the charging channels may be provided on the first charging channel 21 (see the description of FIG. 8 for details).
  • the power supply device 10 may be the power supply device with adjustable output voltage described above, but the embodiment of the present application does not specifically limit the type of the power supply device 20.
  • the power supply device 20 may be a device dedicated to charging such as an adapter and a power bank, or may be a computer and other devices capable of providing power and data services.
  • the first charging channel 21 may be a direct charging channel, and the charging voltage and/or charging current provided by the power adapter 10 may be directly loaded on both ends of the battery 30.
  • the embodiment of the present application introduces a control circuit with a communication function, that is, the communication control circuit 23, into the battery management circuit 20.
  • the communication control circuit 23 can maintain communication with the power supply device 10 during the direct charging process to form a closed-loop feedback mechanism, so that the power supply device 10 can learn the status of the battery in real time, thereby continuously adjusting the charging voltage and the charging voltage injected into the first charging channel. /Or the charging current to ensure that the charging voltage and/or the charging current provided by the power supply device 10 match the current charging stage of the battery 30.
  • the communication control circuit 23 can communicate with the power supply device 10 when the voltage of the battery 30 reaches the charging cut-off voltage corresponding to the constant current stage, so that the power supply device 10 converts the charging process of the battery 30 from constant current charging to constant current charging. Pressure charging.
  • the communication control circuit 23 may communicate with the power supply device 10 when the charging current of the battery 30 reaches the charging cut-off current corresponding to the constant voltage stage, so that the power supply device 10 converts the charging process of the battery 30 from constant voltage charging Charge for constant current.
  • the battery management circuit provided in the embodiment of the present application can directly charge the battery.
  • the battery management circuit provided in the embodiment of the present application is a battery management circuit that supports a direct charge architecture.
  • the direct charge architecture there is no need for a direct charge channel.
  • the conversion circuit is provided to reduce the calorific value of the device to be charged during the charging process.
  • the battery management circuit 20 may further include a second charging channel 24.
  • a boost circuit 25 is provided on the second charging channel 24.
  • the boost circuit 25 can be used to receive the initial voltage provided by the power supply device 10, boost the initial voltage to the target voltage, and provide the battery based on the target voltage.
  • the communication control circuit 23 can also be used to control the switching between the first charging channel 21 and the second charging channel 24.
  • the second charging channel 24 can be compatible with a common power supply device to charge the battery 30, which solves the problem that the common power supply device cannot charge multiple batteries.
  • the battery management circuit 20 may also include an equalization circuit 22, referring to the above description, the equalization circuit 22 can be used to balance the multiple cells during the charging process and/or discharging process of the battery.
  • the voltage of the core may also include an equalization circuit 22, referring to the above description, the equalization circuit 22 can be used to balance the multiple cells during the charging process and/or discharging process of the battery. The voltage of the core.
  • the embodiment of the present application does not limit the specific form of the boost circuit 25.
  • a Boost boost circuit can be used, or a charge pump can be used for boosting.
  • the second charging channel 24 may adopt a traditional charging channel design method, that is, a conversion circuit (such as a charging IC) is provided on the second charging channel 24.
  • the conversion circuit can perform constant voltage and constant current control on the charging process of the battery 30, and adjust the initial voltage provided by the power supply device 10 according to actual needs, such as step-up or step-down.
  • the embodiment of the present application can use the boost function of the conversion circuit to boost the initial voltage provided by the power supply device 10 to the target voltage.
  • the communication control circuit 23 can switch between the first charging channel 21 and the second charging channel 24 through a switching device. Specifically, as shown in FIG. 8, a switching tube Q5 may be provided on the first charging channel 21, and when the communication control circuit 23 controls the switching tube Q5 to be turned on, the first charging channel 21 works to directly charge the battery 30; When the communication control circuit 23 controls the switching tube Q5 to be turned off, the second charging channel 24 works, and the second charging channel 24 is used to charge the battery 30.
  • a circuit or device for step-down can also be provided on the second charging channel 24.
  • the step-down process can be performed.
  • the circuit or module included in the second charging channel 24 is not limited.
  • Traditional wireless charging technology generally connects a power supply device (such as an adapter) with a wireless charging device (such as a wireless charging base), and wirelessly transmits the output power of the power supply device (such as electromagnetic waves) to the waiting device through the wireless charging device.
  • the device to be charged may be the above electronic device.
  • wireless charging methods are mainly divided into three methods: magnetic coupling (or electromagnetic induction), magnetic resonance, and radio waves.
  • mainstream wireless charging standards include the QI standard, the power matters alliance (PMA) standard, and the wireless power alliance (alliance for wireless power, A4WP). Both the QI standard and the PMA standard use magnetic coupling for wireless charging.
  • the A4WP standard uses magnetic resonance for wireless charging.
  • the wireless charging method of an embodiment will be introduced below in conjunction with FIG. 9.
  • the wireless charging system includes a power supply device 110, a wireless charging signal transmitting device 120, and a charging control device 130.
  • the transmitting device 120 may be, for example, a wireless charging base, and the charging control device 130 may refer to the embodiment of the present application. ⁇ charge control device 500 or electronic device 600.
  • the output voltage and output current of the power supply device 110 are transmitted to the transmitting device 120.
  • the transmitting device 120 may convert the output voltage and output current of the power supply device 110 into a wireless charging signal (for example, an electromagnetic signal) through an internal wireless transmitting circuit 121 for transmission.
  • a wireless charging signal for example, an electromagnetic signal
  • the wireless transmitting circuit 121 can convert the output current of the power supply device 110 into alternating current, and convert the alternating current into a wireless charging signal through a transmitting coil or a transmitting antenna.
  • FIG. 9 only exemplarily shows a schematic structural diagram of the wireless charging system, but the embodiment of the present application is not limited to this.
  • the transmitting device 120 may also be called a wireless charging signal transmitting device, and the charging control device 130 may also be called a wireless charging signal receiving device.
  • the wireless charging signal receiving device may be, for example, a chip with a wireless charging signal receiving function, which can receive the wireless charging signal transmitted by the transmitting device 120; the wireless charging signal receiving device may also be a device to be charged.
  • the charging control device 130 may receive the wireless charging signal transmitted by the wireless transmitting circuit 121 through the wireless receiving circuit 131, and convert the wireless charging signal into the output voltage and output current of the wireless receiving circuit 131.
  • the wireless receiving circuit 131 may convert the wireless charging signal transmitted by the wireless transmitting circuit 121 into alternating current through a receiving coil or a receiving antenna, and perform operations such as rectification and/or filtering on the alternating current to convert the alternating current into the wireless receiving circuit 131 The output voltage and output current.
  • the transmitting device 120 and the charging control device 130 negotiate the transmission power of the wireless transmitting circuit 121 in advance. Assuming that the power negotiated between the transmitting device 120 and the charging control device 130 is 5W, the output voltage and output current of the wireless receiving circuit 131 are generally 5V and 1A. Assuming that the power negotiated between the transmitting device 120 and the charging control device 130 is 10.8W, the output voltage and output current of the wireless receiving circuit 131 are generally 9V and 1.2A.
  • the output voltage of the wireless receiving circuit 131 is not suitable to be directly applied to both ends of the battery 133, it is necessary to perform constant voltage and/or constant current control through the conversion circuit 132 in the charging control device 130 to obtain the charging control device 130.
  • the expected charging voltage and/or charging current of the battery 133 is not suitable to be directly applied to both ends of the battery 133, it is necessary to perform constant voltage and/or constant current control through the conversion circuit 132 in the charging control device 130 to obtain the charging control device 130.
  • the expected charging voltage and/or charging current of the battery 133 is necessary to perform constant voltage and/or constant current control through the conversion circuit 132 in the charging control device 130 to obtain the charging control device 130.
  • the conversion circuit 132 may be used to convert the output voltage of the wireless receiving circuit 131 so that the output voltage and/or output current of the conversion circuit 132 meet the expected charging voltage and/or charging current requirements of the battery 133.
  • the conversion circuit 132 may be, for example, a charging integrated circuit (integrated circuit, IC), or may be a power management circuit. During the charging process of the battery 133, the conversion circuit 132 can be used to manage the charging voltage and/or charging current of the battery 133.
  • the conversion circuit 132 may include a voltage feedback function and/or a current feedback function to realize the management of the charging voltage and/or charging current of the battery 133.
  • the required charging voltage and/or charging current of the battery may be constantly changing in different charging stages.
  • the output voltage and/or output current of the wireless receiving circuit may need to be continuously adjusted to meet the current charging requirements of the battery. For example, in the constant current charging phase of the battery, during the charging process, the charging current of the battery remains unchanged, but the voltage of the battery is constantly increasing, so the charging voltage required by the battery is also constantly increasing. As the charging voltage required by the battery continues to increase, the charging power required by the battery also continues to increase. When the charging power required by the battery increases, the wireless receiving circuit needs to increase the output power to meet the charging demand of the battery.
  • the communication control circuit may transmit instruction information to the transmitting device to instruct the transmitting device to increase the transmitting power, so as to increase the output power of the wireless receiving circuit. Therefore, during the charging process, the communication control circuit can communicate with the transmitting device, so that the output power of the wireless receiving circuit can meet the charging requirements of the battery in different charging stages.
  • the embodiment of the present application does not specifically limit the communication mode between the communication control circuit 235 and the transmitting device 220.
  • the communication control circuit 235 and the transmitting device 220 may adopt Bluetooth (bluetooth) communication, wireless fidelity (Wi-Fi) communication, or backscatter modulation (or power).
  • Load modulation method) communication short-range wireless communication based on high carrier frequency, optical communication, ultrasonic communication, ultra-wideband communication or mobile communication and other wireless communication methods for communication.
  • the short-range wireless communication module based on a high carrier frequency may include an integrated circuit (IC) chip with an extremely high frequency (EHF) antenna encapsulated inside.
  • the high carrier frequency may be 60 GHz.
  • the optical communication may use an optical communication module for communication.
  • the optical communication module may include an infrared communication module, and the infrared communication module may use infrared to transmit information.
  • the mobile communication may be communication using a mobile communication module.
  • the mobile communication module can use mobile communication protocols such as 5G communication protocol, 4G communication protocol or 3G communication protocol for information transmission.
  • the reliability of communication can be improved, and the voltage ripple caused by the signal coupling method can be avoided. Wave affects the voltage processing process of the step-down circuit.
  • the communication control circuit 235 and the transmitting device 220 may also communicate in a wired communication manner of a data interface.
  • Fig. 10 is another schematic diagram of a charging system provided by an embodiment of the present application.
  • the wireless charging signal transmitting device 220 may further include a charging interface 223, and the charging interface 223 may be used to connect to an external power supply device 210.
  • the wireless transmitting circuit 221 can also be used to generate a wireless charging signal according to the output voltage and output current of the power supply device 210.
  • the first communication control circuit 222 can also adjust the amount of power that the wireless transmission circuit 221 extracts from the output power of the power supply device 210 during the wireless charging process to adjust the transmission power of the wireless transmission circuit 221 so that the wireless transmission circuit transmits
  • the power can meet the charging requirements of the battery.
  • the power supply device 210 can also directly output a relatively large fixed power (such as 40W), and the first communication control circuit 222 can directly adjust the amount of power drawn by the wireless transmitting circuit 221 from the fixed power provided by the power supply device 210.
  • the output power of the power supply device 210 may be fixed.
  • the power supply device 210 can directly output a relatively large fixed power (for example, 40W), and the power supply device 210 can provide the wireless charging device 220 with output voltage and output current according to the fixed output power.
  • the first communication control circuit 222 may extract a certain amount of power from the fixed power of the power supply device for wireless charging according to actual needs.
  • the embodiment of the present application allocates the control right of the transmission power adjustment of the wireless transmission circuit 221 to the first communication control circuit 222, and the first communication control circuit 222 can receive the instruction information sent by the second communication control circuit 235
  • the transmission power of the wireless transmission circuit 221 is adjusted immediately to meet the current charging requirements of the battery, which has the advantages of fast adjustment speed and high efficiency.
  • the embodiment of the present application does not specifically limit the manner in which the first communication control circuit 222 extracts the amount of power from the maximum output power provided by the power supply device 210.
  • a voltage conversion circuit 224 may be provided inside the transmitting device 220 of the wireless charging signal, and the voltage conversion circuit 224 may be connected to the transmitting coil or the transmitting antenna for adjusting the power received by the transmitting coil or the transmitting antenna.
  • the voltage conversion circuit 224 may include, for example, a pulse width modulation (PWM) controller and a switch unit.
  • PWM pulse width modulation
  • the first communication control circuit 222 can adjust the transmission power of the wireless transmission circuit 221 by adjusting the duty ratio of the control signal sent by the PWM controller.
  • the embodiment of the present application does not specifically limit the type of the power supply device 210.
  • the power supply device 210 may be a device such as an adapter, a power bank, a car charger, or a computer.
  • the charging interface 223 may be a USB interface.
  • the USB interface may be, for example, a USB 2.0 interface, a micro USB interface, or a USB TYPE-C interface.
  • the charging interface 223 may also be a lightning interface, or any other type of parallel port and/or serial port that can be used for charging.
  • the embodiment of the present application does not specifically limit the communication mode between the first communication control circuit 222 and the power supply device 210.
  • the first communication control circuit 222 may be connected to the power supply device 210 through a communication interface other than the charging interface, and communicate with the power supply device 210 through the communication interface.
  • the first communication control circuit 222 may communicate with the power supply device 210 in a wireless manner.
  • the first communication control circuit 222 may perform Near Field Communication (NFC) with the power supply device 210.
  • NFC Near Field Communication
  • the first communication control circuit 222 can communicate with the power supply device 210 through the charging interface 223 without setting an additional communication interface or other wireless communication module, which can simplify the implementation of the wireless charging device 220.
  • the charging interface 223 is a USB interface, and the first communication control circuit 222 can communicate with the power supply device 210 based on the data lines (such as D+ and/or D- lines) in the USB interface.
  • the charging interface 223 may be a USB interface (such as a USB TYPE-C interface) supporting a power delivery (PD) communication protocol, and the first communication control circuit 222 and the power supply device 210 may communicate based on the PD communication protocol.
  • PD power delivery
  • adjusting the transmission power of the wireless charging signal by the first communication control circuit 222 may refer to that the first communication control circuit 222 adjusts the transmission power of the wireless charging signal by adjusting the input voltage and/or input current of the wireless transmission circuit 221.
  • the first communication control circuit may increase the transmission power of the wireless transmission circuit by increasing the input voltage of the wireless transmission circuit.
  • the device to be charged 230 further includes a first charging channel 233, through which the output voltage and/or output current of the wireless receiving circuit 231 can be provided to the battery 232, which is useful for the battery 232 for charging.
  • a voltage conversion circuit 239 may be further provided on the first charging channel 233, and the input end of the voltage conversion circuit 239 is electrically connected to the output end of the wireless receiving circuit 231, and is used to perform a constant voltage on the output voltage of the wireless receiving circuit 231. And/or constant current control to charge the battery 232 so that the output voltage and/or output current of the voltage conversion circuit 239 matches the current required charging voltage and/or charging current of the battery.
  • increasing the transmission power of the wireless transmission circuit 221 may refer to increasing the transmission voltage of the wireless transmission circuit 221, and increasing the transmission voltage of the wireless transmission circuit 221 may be achieved by increasing the output voltage of the voltage conversion circuit 224.
  • the first communication control circuit 222 receives the instruction to increase the transmission power sent by the second communication control circuit 235, it can increase the transmission power of the wireless transmission circuit 221 by increasing the output voltage of the voltage conversion circuit 224.
  • the embodiment of the present application does not specifically limit the manner in which the second communication control circuit 235 sends the instruction information to the first communication control circuit 222.
  • the second communication control circuit 235 may periodically send instruction information to the first communication control circuit 222.
  • the second communication control circuit 235 may send the instruction information to the first communication control circuit 222 only when the voltage of the battery reaches the charging cut-off voltage or the charging current of the battery reaches the charging cut-off current.
  • the wireless charging signal receiving device may further include a detection circuit 234 that can detect the voltage and/or charging current of the battery 232, and the second communication control circuit 235 can be based on the voltage and/or charging current of the battery 232 , Sending instruction information to the first communication control circuit 222 to instruct the first communication control circuit 222 to adjust the output voltage and output current corresponding to the transmitting power of the wireless transmitting circuit 221.
  • the transmit power of the wireless charging signal needs to be increased to meet the current charging requirements of the battery.
  • the charging current of the battery may continue to decrease, and the charging power required by the battery will also decrease accordingly.
  • the transmit power of the wireless charging signal needs to be reduced to meet the current charging requirements of the battery.
  • the first communication control circuit 222 can adjust the transmission power of the wireless charging signal according to the instruction information. It can mean that the first communication control circuit 222 adjusts the transmission power of the wireless charging signal so that the transmission power of the wireless charging signal is equal to the current required charging voltage of the battery. And/or the charging current.
  • the matching of the transmission power of the wireless transmission circuit 221 with the charging voltage and/or charging current currently required by the battery 232 may refer to the configuration of the transmission power of the wireless charging signal by the first communication control circuit 222 such that the output voltage of the first charging channel 233 And/or the output current matches the charging voltage and/or charging current currently required by the battery 232 (or, the configuration of the transmission power of the wireless charging signal by the first communication control circuit 222 makes the output voltage of the first charging channel 233 and/or Or the output current meets the charging requirements of the battery 232 (including the requirements of the battery 232 for charging voltage and/or charging current)).
  • the output voltage and/or output current of the first charging channel 232 matches the charging voltage and/or charging current currently required by the battery 232
  • the voltage value and/or current value of the output direct current is equal to the charging voltage value and/or charging current value required by the battery 232 or within a floating preset range (for example, the voltage value fluctuates from 100 mV to 200 mV, the current value Floating up and down 0.001A ⁇ 0.005A, etc.).
  • the above-mentioned second communication control circuit 235 performs wireless communication with the first communication control circuit 222 according to the voltage and/or charging current of the battery 232 detected by the detection circuit 234, so that the first communication control circuit 222 performs wireless communication according to the voltage and/or charging current of the battery 232
  • the charging current and adjusting the transmission power of the wireless transmission circuit 221 may include: during the constant current charging phase of the battery 232, the second communication control circuit 235 performs wireless communication with the first communication control circuit 222 according to the detected voltage of the battery, so that A communication control circuit 222 adjusts the transmission power of the wireless transmission circuit 221 so that the output voltage of the first charging channel 233 matches the charging voltage required by the battery in the constant current charging stage (or, so that the output voltage of the first charging channel 233 meets The battery 232 requires charging voltage during the constant current charging stage).
  • Fig. 11 is another example of a charging system provided by an embodiment of the present application.
  • the wireless charging signal transmitting device 220 corresponding to the embodiment of FIG. 11 does not obtain electric energy from the power supply device 210, but directly converts the externally input AC power (such as commercial power) into the above-mentioned wireless charging signal.
  • the wireless charging signal transmitting device 220 may further include a voltage conversion circuit 224 and a power supply circuit 225.
  • the power supply circuit 225 may be used to receive external AC power (such as commercial power), and generate the output voltage and output current of the power supply circuit 225 according to the AC power.
  • the power supply circuit 225 may rectify and/or filter the alternating current to obtain direct current or pulsating direct current, and transmit the direct current or pulsating direct current to the voltage conversion circuit 224.
  • the voltage conversion circuit 224 can be used to receive the output voltage of the power supply circuit 225 and convert the output voltage of the power supply circuit 225 to obtain the output voltage and output current of the voltage conversion circuit 224.
  • the wireless transmission circuit 221 can also be used to generate a wireless charging signal according to the output voltage and output current of the voltage conversion circuit 224.
  • the embodiment of the present application integrates a function similar to an adapter inside the wireless charging signal transmitting device 220, so that the wireless charging signal transmitting device 220 does not need to obtain power from an external power supply device, which improves the integration of the wireless charging signal transmitting device 220 It also reduces the number of devices required to realize the wireless charging process.
  • the wireless charging signal transmitting device 220 may support the first wireless charging mode and the second wireless charging mode, and the wireless charging signal transmitting device 220 charges the device to be charged in the first wireless charging mode.
  • the transmitting device 220 which is faster than the wireless charging signal, charges the device to be charged in the second wireless charging mode.
  • the wireless charging signal transmitting device 220 working in the first wireless charging mode is filled with devices to be charged with the same capacity The battery time is shorter.
  • the charging method provided in the embodiment of the present application may use the first charging mode for charging, and may also use the second charging mode for charging, which is not limited in the embodiment of the present application.
  • the second wireless charging mode may be a so-called normal wireless charging mode, for example, may be a traditional wireless charging mode based on the QI standard, the PMA standard, or the A4WP standard.
  • the first wireless charging mode may be a fast wireless charging mode.
  • the normal wireless charging mode may refer to a wireless charging mode in which the transmitting power of the wireless charging signal transmitter 220 is relatively small (usually less than 15W, and the commonly used transmitting power is 5W or 10W). In the normal wireless charging mode, you want to fully charge it A large-capacity battery (such as a 3000 mAh battery) usually takes several hours; and in the fast wireless charging mode, the transmission power of the wireless charging signal transmitter 220 is relatively large (usually greater than or equal to 15W ). Compared with the normal wireless charging mode, the wireless charging signal transmitting device 220 in the fast wireless charging mode requires a charging time to fully charge the battery with the same capacity, which can be significantly shortened and the charging speed is faster.
  • the device to be charged 230 further includes: a second charging channel 236.
  • the second charging channel 236 may be a wire.
  • a conversion circuit 237 can be provided on the second charging channel 236 to perform voltage control on the DC power output by the wireless receiving circuit 231 to obtain the output voltage and output current of the second charging channel 236 to charge the battery 232.
  • the conversion circuit 237 can be used in a step-down circuit, and output constant current and/or constant voltage electric energy. In other words, the conversion circuit 237 can be used to perform constant voltage and/or constant current control on the battery charging process.
  • the wireless transmitting circuit 221 can use a constant transmitting power to transmit an electromagnetic signal. After the wireless receiving circuit 231 receives the electromagnetic signal, it is processed by the conversion circuit 237 into a voltage sum that meets the charging requirements of the battery 232. The current is also input to the battery 232 to charge the battery 232. It should be understood that, in some embodiments, the constant transmission power does not necessarily mean that the transmission power remains completely unchanged, and it can vary within a certain range, for example, the transmission power is 7.5W and fluctuates by 0.5W.
  • the charging method for charging the battery 232 through the first charging channel 233 is the first wireless charging mode
  • the charging method for charging the battery 232 through the second charging channel 236 is called the second wireless charging mode.
  • the transmitter of the wireless charging signal and the device to be charged can determine whether to use the first wireless charging mode or the second wireless charging mode to charge the battery 232 through handshake communication.
  • the maximum transmitting power of the wireless transmitting circuit 221 may be the first transmitting power value.
  • the maximum transmission power of the wireless transmission circuit 221 may be the second transmission power value.
  • the first transmission power value is greater than the second transmission power value, and therefore, the charging speed of the device to be charged in the first wireless charging mode is greater than that of the second wireless charging mode.
  • the second communication control circuit 235 can also be used to control the switching between the first charging channel 233 and the second charging channel 236.
  • a switch 238 can be provided on the first charging channel 233, and the second communication control circuit 235 can control the first charging channel 233 and the second charging channel 236 by controlling the on and off of the switch 238. Switch between.
  • the wireless charging signal transmitting device 220 may include a first wireless charging mode and a second wireless charging mode, and the wireless charging signal transmitting device 220 is to be charged in the first wireless charging mode.
  • the charging speed of 230 is faster than that of the wireless charging signal transmitting device 220 in the second wireless charging mode.
  • the device to be charged 230 can control the operation of the first charging channel 233; when the transmitting device 220 of the wireless charging signal uses the second wireless When the charging mode is that the battery in the device to be charged 230 is charged, the device to be charged 230 can control the second charging channel 236 to work.
  • the second communication control circuit 235 can switch between the first charging channel 233 and the second charging channel 236 according to the charging mode.
  • the second communication control circuit 235 controls the voltage conversion circuit 239 on the first charging channel 233 to work.
  • the second communication control circuit 235 controls the conversion circuit 237 on the second charging channel 236 to work.
  • the wireless charging signal transmitting device 220 may communicate with the device to be charged 230 to negotiate a charging mode between the wireless charging signal transmitting device 220 and the device to be charged 230.
  • the first communication control circuit 222 in the wireless charging signal transmitting device 220 and the second communication control circuit 235 in the device to be charged 230 can also exchange many other communication information.
  • the first communication control circuit 222 and the second communication control circuit 235 can exchange information for safety protection, anomaly detection or fault handling, such as the temperature information of the battery 232, enter the overvoltage protection or overcurrent Information such as protection indication information, and power transmission efficiency information (the power transmission efficiency information can be used to indicate the power transmission efficiency between the wireless transmitting circuit 221 and the wireless receiving circuit 231).
  • the communication between the second communication control circuit 235 and the first communication control circuit 222 may be one-way communication or two-way communication, which is not specifically limited in the embodiment of the present application.
  • the function of the second communication control circuit can be implemented by the application processor of the device to be charged 230, thus, the hardware cost can be saved.
  • it can also be implemented by an independent control chip, and implementation by an independent control chip can improve the reliability of control.
  • the embodiment of the present application may integrate the wireless receiving circuit 232 and the voltage conversion circuit 239 in the same wireless charging chip, which can improve the integration of the device to be charged and simplify the implementation of the device to be charged.
  • the functions of traditional wireless charging chips can be expanded to support charging management functions.
  • the computer may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a Digital Video Disc (DVD)), or a semiconductor medium (for example, a Solid State Disk (SSD)), etc.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • first, second, etc. may be used in this application to describe various devices, these devices should not be limited by these terms. These terms are only used to distinguish one device from another.
  • the first device can be called the second device, and similarly, the second device can be called the first device, as long as all occurrences of the "first device” are renamed consistently and all occurrences
  • the “second device” can be renamed consistently.
  • the first device and the second device are both devices, but they may not be the same device.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种充电控制方法、充电控制设备和电子设备,所述方法包括:在对电子设备进行充电的过程中,控制所述电子设备从第一充电阶段进入多段第二充电阶段,所述多段第二充电阶段的截止电压和充电电流依次降低(310);若在所述多段第二充电阶段的最后一段充电阶段,所述电子设备的电池电压和/或充电电流满足预设条件,则控制退出所述多段第二充电阶段(320)。

Description

充电控制方法、充电控制设备和电子设备
优先权信息
本申请请求2019年10月25日向中国国家知识产权局提交的、申请号为201911025920.8的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请实施例涉及充电技术领域,并且更具体地,涉及一种充电控制方法、充电控制设备和电子设备。
背景技术
随着电子设备(如手机、pad、手环等)的普及,电子设备的功能不断丰富,有些厂商推出了支持快速充电模式的电子设备,快充技术大大缩短了电子设备的充电时间,受到用户的广泛青睐。
然而,对于老化电池或低温环境,电池的内阻会增加,浮压(电池内阻上的电压)也会随之增加,这样采集到的电池电压会比电池的实际电压高。换句话说,在电池老化或低温情况下,快速充电阶段结束时电池的电量相对正常情况下的电量较少,则剩下的待充满电量需要继续一段时间的恒流充电。但是,由于此时采集到的电池电压虚高,短时间内降不下来,在预设的一段恒流充电阶段的时间较短,导致最后进入到普通充电阶段的时间增加,充电效率降低。
发明内容
本申请实施例提供一种充电控制方法、充电控制设备和电子设备,以解决相关技术中的充电问题。
第一方面,提供一种充电控制方法,包括:在对所述电子设备进行充电的过程中,控制所述电子设备从第一充电阶段进入多段第二充电阶段,所述第一充电阶段和所述第二充电阶段的充电电流为恒定电流,所述多段第二充电阶段的充电电流小于所述第一充电阶段的充电电流,所述多段第二充电阶段的截止电压和充电电流依次降低;若在所述多段第二充电阶段的最后一段充电阶段,所述电子设备的电池电压和/或充电电流满足预设条件,则控制退出所述多段第二充电阶段。
第二方面,提供一种充电控制设备,包括:控制单元,用于在对所述电子设备进行充电的过程中,控制所述电子设备从第一充电阶段进入多段第二充电阶段,所述第一充电阶段和所述第二充电阶段的充电电流为恒定电流,所述多段第二充电阶段的充电电流小于所述第一充电阶段的充电电流,所述多段第二充电阶段的截止电压和充电电流依次降低;若在所述多段第二充电阶段的最后一段充电阶段,所述电子设备的电池电压和/或充电电流满足预设条件,则控制退出所述多段第二充电阶段。
第三方面,提供一种电子设备,包括:处理器,用于在对所述电子设备进行充电的过程中,控制所述电子设备从第一充电阶段进入多段第二充电阶段,所述第一充电阶段和所述多段第二充电阶段的充电电流为恒定电流,所述多段第二充电阶段的充电电流小于所述第一充电阶段的充电电流,所述多段第二充电阶段的截止电压和充电电流依次降低;若在所述多段第二充电阶段的最后一段充电阶段,所述电子设备的电池电压和/或充电电流满足预设条件,则控制退出所述多段第二充电阶段。
第四方面,提供一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行上述第一方面或其各实现方式中任一项所述的方法。
第五方面,提供一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机 程序指令使得计算机执行上述第一方面或其各实现方式中任一项所述的方法。
本申请提供的充电控制方法,在对电子设备进行充电的过程中,若电子设备的电池老化或者当前电子设备处于低温环境下,通过控制充电过程中的截止电压和充电电流,可以减小充电时间,从而提高充电效率。
附图说明
图1a是本申请一实施例提供的对待充电设备进行充电过程中的充电电流变化的示意图;
图1b是本申请一实施例提供的对待充电设备进行充电过程中的充电电压变化的示意图;
图2是本申请另一实施例提供的待充电设备充电过程中的充电电流变化的示意图;
图3是本申请一个实施例提供的充电控制方法的示意性流程图;
图4是本申请另一个实施例提供的充电控制方法的示意性流程图;
图5是本申请一个实施例提供的充电控制设备的示意性框图;
图6是本申请一个实施例提供的电子设备的示意性框图;
图7是本申请一个实施例提供的有线充电***的示意结构图;
图8是本申请另一个实施例提供的有线充电***的示意结构图;
图9是本申请一个实施例提供的无线充电***的示意性结构图;
图10是本申请另一实施例提供的无线充电***的示意性结构图;
图11是本申请又一实施例提供的无线充电***的示意性结构图;
图12是本申请再一实施例提供的无线充电***的示意性结构图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本申请保护的范围。
为了更加清楚地理解本申请,以下将介绍充电的工作原理,便于后续理解本申请的方案。但应理解,以下介绍的内容仅仅是为了更好的理解本申请,不应对本申请造成特别限定。
充电过程一般包括三个阶段:涓流充电阶段、恒流充电阶段和恒压充电阶段。以锂离子的充电过程为例进行说明。如图1a所示为本申请一实施例提供的对待充电设备进行充电过程中的充电电流变化的示意图,如图1b所示为本申请一实施例提供的对待充电设备进行充电过程中的充电电压变化的示意图。
其中,在时间为(0-t1)这一段时间内,可以为涓流充电阶段,这段时间内,充电电流和充电电压都以较小的速率在逐渐地增加;当充电电压大于某一电压阈值时,进入恒流充电阶段,即图1中的(t1-t2段),这段时间内,可以以恒定的较大电流对待充电设备进行充电,例如,可以为6.5A,在这一过程中,充电电压逐渐地增加;当充电电压大于某一电压阈值时,可以进入恒压充电阶段,即图1a和图1b中的(t2-t3)段,这段时间内,由于待充电设备的电量快要充满,因此,充电电流可以逐渐减小,直到充电截止。
如图2所示,为本申请另一实施例提供的待充电设备充电过程中的充电电流变化的示意图,可以包括涓流充电阶段,快速充电阶段,预设恒流充电阶段和普通充电阶段。其中快速充电阶段和预设恒流充电阶段均为以恒定电流对待充电设备进行充电,预设恒流充电阶段的充电电流小于快速充电阶段的充电电流,普通充电阶段可以为图1中的恒压充电阶段,以逐渐减小的充电电流对待充电设备进行充电。
若待充电设备中的电池为老化电池或待充电设备所处的环境温度为低温,例如,环境 温度低于-10℃,在这种情况下,电池的内阻会增加,浮压(电池内阻上的电压)也会随之增加,这样采集到的电池电压会比电池的实际电压高。换句话说,在电池老化或低温情况下,快速充电阶段结束时电池的电量相对正常情况下的电量较少,则剩下的待充满的电量需要继续一段时间的恒流充电。但是,由于此时采集到的电池电压虚高,短时间内降不下来,在预设的一段恒流充电阶段的时间较短,导致最后进入到普通充电阶段的时间增加,充电效率降低。
因此,本申请实施例提供了一种充电方法,能够减少充电的时间,提高充电效率。
本申请实施例中所使用到的待充电设备可以是指终端,该“终端”可包括,但不限于被设置成经由有线线路连接(如经由公共交换电话网络(Public Switched Telephone Network,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络)和/或经由(例如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如手持数字视频广播(Digital Video Broadcasting Handheld,DVB-H)网络的数字电视网络、卫星网络、调幅-调频(Amplitude Modulation-Frequency Modulation,AM-FM)广播发送器,以及/或另一通信终端的)无线接口接收/发送通信信号的装置。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”以及/或“移动终端”。
移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信***(Personal Communication System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位***(Global Positioning System,GPS)接收器的个人数字助理(Personal Digital Assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。在某些实施例中,待充电设备可指移动终端是设备或手持终端设备,如手机、pad等。在某些实施例中,本申请实施例提及的待充电设备可以是指芯片***,在该实施例中,待充电设备的电池可以属于或也可以不属于该芯片***。
另外,待充电设备还可以包括其他有充电需求的待充电设备,例如手机、移动电源(如充电宝、旅充等)、电动汽车、笔记本电脑、无人机、平板电脑、电子书、电子烟、智能待充电设备和小型电子产品等。智能待充电设备例如可以包括手表、手环、智能眼镜和扫地机器人等。小型电子产品例如可以包括无线耳机、蓝牙音响、电动牙刷和可充电无线鼠标等。
下面结合图3,对本申请实施例提供的充电控制方法300进行详细介绍。
如图3所示,本申请实施例提供的方法300可以包括步骤310-320。
310,在对所述电子设备进行充电的过程中,控制所述电子设备从第一充电阶段进入多段第二充电阶段,所述第一充电阶段和所述多段第二充电阶段的充电电流为恒定电流,所述多段第二充电阶段的充电电流小于所述第一充电阶段的充电电流,所述多段第二充电阶段的截止电压和充电电流依次降低。
本申请实施例中的第一充电阶段可以为快速充电模式下的阶段,为了简洁,这里可以称为快速充电阶段;多段第二充电阶段可以包括三段子充电阶段,也可以为两段子充电阶段,本申请对此不作具体限定。
本申请实施例中,多段第二充电阶段的截止电压可以依次降低,假设多段第二充电阶段包括三段子充电阶段,分别为:第一子充电阶段,第二子充电阶段以及第三子充电阶段。则第一子充电阶段的截止电压可以为4.35V,第二子充电阶段的截止电压可以为4.30V,第三子充电阶段的截止电压可以为4.28V。
可以理解的是,多段子充电的截止电压依次降低,可以基本不影响对于未老化的电池以及在常温下(例如,温度为0-50℃)的电池的充电速度。具体地,假设第一子充电阶段、第二子充电阶段、第三子充电阶段的截止电压分别为4.35V、4.30V以及4.28V。若电池的最大充电电压为4.4V,当测量的电池电压达到4.38V时,可以进入第一子充电阶段,此时 由于电池未老化或处于常温环境对电池进行充电,电池的实际电压可能就是4.38V,因此,当退出快速充电阶段进入第一子充电阶段后,可能会立即退出第一子充电阶段进入第二子充电阶段,由于此时电压仍然大于第二子充电阶段的截止电压,类似地,在进入第二子充电阶段后,可能会立即退出第二子充电阶段进入第三子充电阶段,类似地,在进入第三子充电阶段后,可能会立即退出第三子充电阶段进入普通充电阶段,从而完成对电池的充电。
本申请实施例中,多段第二充电阶段的充电电流也可以依次降低,假设多段第二充电阶段包括三段子充电阶段,分别为:第一子充电阶段,第二子充电阶段以及第三子充电阶段。则第一子充电阶段的充电电流可以为0.8A,第二子充电阶段的充电电流可以为0.5A,第三子充电阶段的充电电流可以为0.3A。
本申请实施例中的数值仅为举例说明,还可以为其它数值,不应对本申请造成特别限定。
本申请实施例的方法可以通过电子设备中的应用处理器(Application Processor,AP)和微控制器(Micro Controller Unit,MCU)共同来实现。
320,若在所述多段第二充电阶段的最后一段充电阶段,所述电子设备的电池电压和/或充电电流满足预设条件,则控制退出所述多段第二充电阶段。
本申请实施例中的最后一段充电阶段可以为上文提到的第三子充电阶段,即多段第二充电阶段中的截止电压和/或充电电流最小的子充电阶段。
在控制电子设备退出多段第二充电阶段后,可以控制电子设备进入普通充电阶段。本申请实施例中的普通充电阶段的充电电流可以为非恒定电流,即从某一电流开始,其充电电流以逐渐下降的电流对电子设备进行充电,直到将电子设备充满。
本申请提供的充电控制方法,在对电子设备进行充电的过程中,若电子设备的电池老化或者当前电子设备处于低温环境下,通过控制充电过程中的截止电压和充电电流,可以减小充电时间,从而提高充电效率。
可选地,在一些实施例中,所述预设条件包括以下条件中的至少一个:所述电子设备的电池电压大于或等于所述多段第二充电阶段中的最后一段充电阶段的截止电压,所述电子设备的充电电流小于所述多段第二充电阶段中的最后一段充电阶段的充电电流。
本申请实施例中,假设多段第二充电阶段包括三段子充电阶段,分别为:第一子充电阶段,第二子充电阶段以及第三子充电阶段。则第一子充电阶段的截止电压可以为4.35V,第二子充电阶段的截止电压可以为4.30V,第三子充电阶段的截止电压可以为4.28V。本申请实施例中电子设备的电池电压大于或等于多段第二充电阶段中的最后一段充电阶段的截止电压,即电子设备的电池电压大于或等于4.28V。
本申请实施例中,假设第一子充电阶段的充电电流可以为0.8A,第二子充电阶段的充电电流可以为0.5A,第三子充电阶段的充电电流可以为0.3A。本申请实施例中电子设备的充电电流小于多段第二充电阶段中的最后一段充电阶段的充电电流,即电子设备的充电电流小于0.3A。若电子设备的充电电流小于0.3A,则可以控制退出第三子充电阶段且进入普通充电阶段。
上文指出,多段第二充电阶段可以包括三段子充电阶段,也可以包括两段子充电阶段,下文将以三段子充电阶段为例进行具体说明。
可选地,在一些实施例中,所述控制所述电子设备从第一充电阶段进入多段第二充电阶段,包括:若所述电子设备的电池电压大于或等于所述第一充电阶段的截止电压,控制所述电子设备从所述第一充电阶段进入所述多段第二充电阶段的第一子充电阶段;若所述电子设备的电池电压大于或等于所述第一子充电阶段的截止电压和/或所述电子设备的充电电流小于所述第一子充电阶段的预设充电电流,控制所述电子设备从所述第一子充电阶段进入第二子充电阶段,所述第一子充电阶段的充电电流大于所述第二子充电阶段的充电电流;若所述电子设备的电池电压大于或等于所述第二子充电阶段的截止电压和/或所述电 子设备的充电电流小于所述第二子充电阶段的预设充电电流,控制所述电子设备从所述第二子充电阶段进入第三子充电阶段,所述第二子充电阶段的充电电流大于所述第三子充电阶段的充电电流。
以电池电压所满足的条件为例进行说明。本申请实施例中,假设快速充电阶段的截止电压为4.38V,第一子充电阶段、第二子充电阶段、第三子充电阶段的截止电压分别为4.35V、4.30V以及4.28V。若电池的最大充电电压为4.40V,在涓流充电阶段,可以开始逐渐增加充电电流,对电池进行充电,当充电电压达到1V时,可以进入快速充电阶段,在这一阶段,可以以大电流对电池进行充电,例如,快速充电的电流为6.5A,持续充电一段时间后,当测量的电池电压达到4.38V时,可以进入第一子充电阶段。
在测量的电池电压达到4.38V时,此时电池的实际电压可能为4.35V,电压可能会回落,即在一段很短的时间内不对电池进行充电,假设在10ms的时间内不对电池进行充电,电池电压回落到4.30V,则进入第一子充电阶段,在这一充电阶段中,可以以0.8A的充电电流对电池进行充电,持续充电一段时间后,电池电压大于第一子充电的截止电压4.35V,则可以退出第一子充电阶段,准备进入第二子充电阶段对电池进行充电。
在第一子充电阶段截止时,测量的电池电压为4.35V,此时电池的实际电压可能为4.32V,同样地,假设在10ms的时间内不对电池进行充电,电池电压可能回落到4.25V,则进入第二子充电阶段,在这一充电阶段中,可以以0.5A的充电电流对电池进行充电,持续充电一段时间后,电池电压大于第二子充电的充电截止电压4.30V,则会退出第二子充电过程,准备进入第三子充电阶段对电池进行充电。
在第二子充电阶段截止时,测量的电池电压为4.30V,此时电池的实际电压可能为4.25V,同样地,假设在10ms的时间内不对电池进行充电,电池电压可能回落到4.23V,则进入第三子充电阶段,在这一充电阶段中,可以以0.3A的充电电流对电池进行充电,持续充电一段时间后,电池电压大于第三子充电的充电截止电压4.28V,则会退出第三子充电阶段,准备进入普通充电阶段对电池进行充电。
上文以充电电压所满足的预设条件为例进行说明,下文将以充电电流的预设条件为例进行说明。
假设电池的最大充电电压为4.40V,在涓流充电阶段,可以开始逐渐增加充电电流,对电池进行充电,当充电电压达到1V时,进入快速充电阶段,在这一阶段,可以以大电流对电池进行充电,例如,快速充电的电流为6.5A,持续充电一段时间后,当测量的电池电压达到4.38V时,可以进入第一子充电阶段。
在测量的电池电压达到4.38V时,此时,电压可能会回落,即在一段很短的时间内不对电池进行充电,假设在10ms的时间内不对电池进行充电,电池电压回落到4.30V,则进入第一子充电阶段,在这一充电阶段中,可以以恒定的0.8A的充电电流对电池进行充电,持续充电一段时间后,充电电流开始下降,例如,充电电流下降至0.7A,即不能维持以0.8A的充电电流对电池进行充电了,则可以退出第一子充电阶段,准备进入第二子充电阶段对电池进行充电。
在第一子充电阶段截止时,测量的电池电压为4.35V,此时电池的实际电压可能为4.30V,同样地,假设在10ms的时间内不对电池进行充电,电池电压可能回落到4.25V,则进入第二子充电阶段,在这一充电阶段中,可以以0.5A的充电电流对电池进行充电,持续充电一段时间后,充电电流开始下降,例如,充电电流下降至0.4A,即不能维持0.5A的充电电流对电池进行充电了,则可以退出第二子充电阶段,准备进入第三子充电阶段对电池进行充电。
在第二子充电阶段截止时,测量的电池电压为4.30V,此时电池的实际电压可能为4.25V,同样地,假设在10ms的时间内不对电池进行充电,电池电压可能回落到4.23V,则进入第三子充电阶段,在这一充电阶段中,可以以0.3A的充电电流对电池进行充电,持续充电一 段时间后,充电电流开始下降,即不能维持0.3A的充电电流对电池进行充电了,则可以退出第三子充电阶段,准备进入普通充电阶段对电池进行充电。
本申请实施例中的上述数值仅为举例说明,还可以为其它数值,不应对本申请造成特备限定。
可选地,在一些实施例中,所述方法还包括:在对所述电子设备充电停止后,将所述电子设备的截止电压和截止电流设置为预设值。
本申请实施例中的对电子设备充电停止可以包括对电子设备充电完成(或充满)或充电器被断开。
本申请实施例中,在对电子设备每一次充电停止后,可以将相关的截止电压和截止电流设置为预设值,可以将相关的截止电压和截止电流设置为普通充电模式下的截止电压和截止电流。例如,假设电池的最大充电电压为4.4V,则普通充电模式下的截止电压可以设置为4.3V。
由于待充电设备和电源提供装置连接后,可能会先识别连接的电源提供装置是否支持快速充电模式,若不支持快速充电模式,则可以以普通充电模式对待充电设备进行充电,即可以以充电电压为5V,充电电流为1A的电压和电流对待充电设备进行充电;若支持快速充电模式,可以将相关参数调整为快速充电模式下的参数,例如,快速充电的截止电压和截止电流,第一子充电阶段,第二子充电阶段,第三子充电阶段的截止电压以及截止电流等。这样,则对待充电设备进行充电的时候,可以在经过涓流充电阶段后进入快速充电模式对待充电设备进行充电,在待充电设备的电池电压和/或充电电流达到快速充电模式下的截止电压和/或截止电流时;待充电设备可以进入第一子充电阶段进行充电,在待充电设备的电池电压和/或充电电流达到第一子充电阶段的截止电压和/或截止电流时,待充电设备可以进入第二子充电阶段进行充电;在待充电设备的电池电压和/或充电电流达到第二子充电阶段的截止电压和/或截止电流时,待充电设备可以进入第三子充电阶段进行充电;在待充电设备的电池电压和/或充电电流达到第三子充电阶段的截止电压和/或截止电流时,待充电设备可以进入普通充电模式进行充电,直到充电完成。
可选地,在一些实施中,所述方法还包括:检测所述电子设备的电池的内阻;若所述电池的内阻大于预设阈值,控制延迟从所述第一充电阶段进入所述多段第二充电阶段的时间。
本申请实施例中,待充电设备中可以包括AP和MCU,其中,AP可以控制待充电设备的普通充电过程,MCU可以控制待充电设备的快速充电过程。若MCU检测到电池内阻较大或处于较低的环境温度,在待充电设备快速充电过程快满时可以以相对较小的电流以及相对较高的截止电压再对待充电设备充电一段时间,延迟快速充电过程报满的时间,这样普通充电时间的时间会相对较短一些,从而可以减少充电时间,进一步地,可以提高充电效率。
例如,若MCU检测到电池内阻较大或处于较低的环境温度,可以将提高快速充电阶段的截止电压,在这种情况下,待充电设备可以继续以相对较小的电流再充电一段时间。从而普通充电阶段的时间会相对较短一些,从而可以减少充电时间,进一步地,可以提高充电效率。
本申请实施例中的预设阈值可以为常温情况下的电池的内阻,或电池未老化情况下的电阻,也可以为设定的值,本申请对此不作具体限定。
为了更加了解本申请的方案,结合图4进行具体说明。
如图4所示为本申请实施例提供的充电控制方法400的示意性流程图,该方法400可以包括步骤402-434。
402,电子设备是否连接电源提供装置。
若是,则执行步骤404;若否,则执行步骤406。
404,重置截止电压和截止电流。
406,进入电池充电(Battery Charging,BC)1.2策略。
本申请实施例中的BC1.2策略定义了通用串行总线(Universal Serial Bus,USB)端口充电的检测、控制和报告机制。这些机制是USB2.0规范的扩展,用于专用充电器、主机和大电流充电端口对设备的充电。
408,判断电源提供装置是否为电子设备的专用充电器。
若是,则执行步骤410;若否,则执行步骤422。
410,切换开关。
412,判断是否进入快充。
若是,则执行步骤414;若否,则执行步骤416。
414,打开快速充电线程。
416,打开普通充电线程。
418,判断快速充电是否已满。
若是,则执行步骤420;若否,则返回步骤414。
420,设置快速充电已满标志。
422,判断是否为快速充电已满标志。
若是,则执行步骤424;若否,返回至步骤422继续判断。
424,打开第一子充电阶段。
426,设置第一子充电阶段截止电压和充电电流。
428,打开第二子充电阶段。
430,设置第二子充电阶段截止电压和充电电流。
432,打开第三子充电阶段。
434,设置第三子充电阶段截止电压和充电电流。
上文结合图1-图4,详细描述了本申请的方法实施例,下面结合图5-图12,详细描述本申请的设备实施例,设备实施例与方法实施例相互对应,因此未详细描述的部分可以参见前面各方法实施例。
如图5所示,为本申请实施例提供的一种充电控制设备500,该设备500可以包括控制单元510。
控制单元510,用于在对所述电子设备进行充电的过程中,控制所述电子设备从第一充电阶段进入多段第二充电阶段,所述第一充电阶段和所述第二充电阶段的充电电流为恒定电流,所述多段第二充电阶段的充电电流小于所述第一充电阶段的充电电流,所述多段第二充电阶段的截止电压和充电电流依次降低;若在所述多段第二充电阶段的最后一段充电阶段,所述电子设备的电池电压和/或充电电流满足预设条件,则控制退出所述多段第二充电阶段。
可选地,在一些实施例中,所述预设条件包括以下条件中的至少一个:所述电子设备的电池电压大于或等于所述多段第二充电阶段中的最后一段充电阶段的截止电压,所述电子设备的充电电流小于所述多段第二充电阶段中的最后一段充电阶段的充电电流。
可选地,在一些实施例中,所述控制单元510进一步用于:若所述电子设备的电池电压大于或等于所述第一充电阶段的截止电压,控制所述电子设备从所述第一充电阶段进入所述多段第二充电阶段的第一子充电阶段;若所述电子设备的电池电压大于或等于所述第一子充电阶段的截止电压和/或所述电子设备的充电电流小于所述第一子充电阶段的预设充电电流,控制所述电子设备从所述第一子充电阶段进入第二子充电阶段,所述第一子充电阶段的充电电流大于所述第二子充电阶段的充电电流;若所述电子设备的电池电压大于或等于所述第二子充电阶段的截止电压和/或所述电子设备的充电电流小于所述第二子充电阶段的预设充电电流,控制所述电子设备从所述第二子充电阶段进入第三子充电阶段, 所述第二子充电阶段的充电电流大于所述第三子充电阶段的充电电流。
可选地,在一些实施例中,所述设备500还包括:设置单元,用于在对所述电子设备充电停止后,将所述电子设备的截止电压和截止电流设置为预设值。
可选地,在一些实施例中,所述设备500还包括:检测单元,用于检测所述电子设备的电池的内阻;所述控制单元510进一步用于:若所述电池的内阻大于预设阈值,控制延迟从所述第一充电阶段进入所述多段第二充电阶段的时间。
如图6所示,为本申请实施例提供的一种电子设备600,该设备600可以包括处理器610。
处理器610,用于在对所述电子设备进行充电的过程中,控制所述电子设备从第一充电阶段进入多段第二充电阶段,所述第一充电阶段和所述多段第二充电阶段的充电电流为恒定电流,所述多段第二充电阶段的充电电流小于所述第一充电阶段的充电电流,所述多段第二充电阶段的截止电压和充电电流依次降低;若在所述多段第二充电阶段的最后一段充电阶段,所述电子设备的电池电压和/或充电电流满足预设条件,则控制退出所述多段第二充电阶段。
可选地,在一些实施例中,所述预设条件包括以下条件中的至少一个:所述电子设备的电池电压大于或等于所述多段第二充电阶段中的最后一段充电阶段的截止电压,所述电子设备的充电电流小于所述多段第二充电阶段中的最后一段充电阶段的充电电流。
可选地,在一些实施例中,所述处理器610进一步用于:若所述电子设备的电池电压大于或等于所述第一充电阶段的截止电压,控制所述电子设备从第一充电阶段进入多段第二充电阶段的第一子充电阶段;若所述电子设备的电池电压大于或等于所述第一子充电阶段的截止电压和/或所述电子设备的充电电流小于所述第一子充电阶段的预设充电电流,控制所述电子设备从所述第一子充电阶段进入第二子充电阶段,所述第一子充电阶段的充电电流大于所述第二子充电阶段的充电电流;若所述电子设备的电池电压大于或等于所述第二子充电阶段的截止电压和/或所述电子设备的充电电流小于所述第二子充电阶段的预设充电电流,控制所述电子设备从所述第二子充电阶段进入第三子充电阶段,所述第二子充电阶段的充电电流大于所述第三子充电阶段的充电电流。
可选地,在一些实施例中,所述处理器610还用于:在对所述电子设备充电停止后,将所述电子设备的截止电压和截止电流设置为预设值。
可选地,在一些实施例中,所述处理器610还用于:检测所述电子设备的电池的内阻;若所述电池的内阻大于预设阈值,控制延迟从所述第一充电阶段进入所述多段第二充电阶段的时间。
本申请实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述充电方法300或400中的任何一种方法。
本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述充电方法300或400中的任何一种方法。
本申请实施例的方案可以应用在有线充电过程中,也可以应用在无线充电过程中,本申请实施例对此不做具体限定。
下面结合图7-图8,对本申请实施例应用的有线充电过程进行描述。
图7是本申请实施例提供的一种充电***的示意性结构图。该充电***包括电源提供装置10、电池管理电路20和电池30。电池管理电路20可用于对电池30进行管理。其中,本申请实施例中的充电控制设备500和电子设备600可以包括电池管理电路20和电池30。
作为一个示例,电池管理电路20可以对电池30的充电过程进行管理,比如选择充电通道、控制充电电压和/或充电电流等;作为另一个示例,电池管理电路20可以对电池30的电芯进行管理,如均衡电池30中的电芯的电压等。
电池管理电路20可以包括第一充电通道21和通信控制电路23。
第一充电通道21可用于接收电源提供装置10提供的充电电压和/或充电电流,并将充电电压和/或充电电流加载在电池30的两端,为电池30进行充电。
第一充电通道21例如可以是一根导线,也可以在第一充电通道21上设置一些与充电电压和/或充电电流变换无关的其他电路器件。例如,电源管理电路20包括第一充电通道21和第二充电通道,第一充电通道21上可以设置用于充电通道间切换的开关器件(具体参见图8的描述)。
电源提供装置10可以是上文描述的输出电压可调的电源提供装置,但本申请实施例对电源提供装置20的类型不做具体限定。例如,该电源提供装置20可以是适配器和移动电源(power bank)等专门用于充电的设备,也可以是电脑等能够提供电源和数据服务的其他设备。
第一充电通道21可以为直充通道,可以将电源适配器10提供的充电电压和/或充电电流直接加载在电池30的两端。为了实现直充充电方式,本申请实施例在电池管理电路20中引入了具有通信功能的控制电路,即通信控制电路23。该通信控制电路23可以在直充过程中与电源提供装置10保持通信,以形成闭环反馈机制,使得电源提供装置10能够实时获知电池的状态,从而不断调整向第一充电通道注入的充电电压和/或充电电流,以保证电源提供装置10提供的充电电压和/或充电电流的大小与电池30当前所处的充电阶段相匹配。
例如,该通信控制电路23可以在电池30的电压达到恒流阶段对应的充电截止电压时,与电源提供装置10进行通信,使得电源提供装置10对电池30的充电过程从恒流充电转换为恒压充电。又例如,该通信控制电路23可以在电池30的充电电流达到恒压阶段对应的充电截止电流时,与电源提供装置10进行通信,使得电源提供装置10对电池30的充电过程从恒压充电转换为恒流充电。
本申请实施例提供的电池管理电路能够对电池进行直充,换句话说,本申请实施例提供的电池管理电路是支持直充架构的电池管理电路,在直充架构中,直充通道上无需设置变换电路,从而能够降低待充电设备在充电过程的发热量。
可选地,在一些实施例中,如图8所示,电池管理电路20还可包括第二充电通道24。第二充电通道24上设置有升压电路25。在电源提供装置10通过第二充电通道24为电池30充电的过程中,升压电路25可用于接收电源提供装置10提供的初始电压,将初始电压升压至目标电压,并基于目标电压为电池30充电,其中初始电压小于电池30的总电压,目标电压大于电池30的总电压;通信控制电路23还可用于控制第一充电通道21和第二充电通道24之间的切换。
假设该电池30包括多节电芯,该第二充电通道24能够兼容普通的电源提供装置为该电池30进行充电,解决了普通电源提供装置无法为多节电池进行充电的问题。
对于包含多节电芯的电池30来说,电池管理电路20还可以包括均衡电路22,参见上文的描述,该均衡电路22可用于在电池的充电过程和/或放电过程中均衡多节电芯的电压。
本申请实施例对升压电路25的具体形式不作限定。例如,可以采用Boost升压电路,还可以采用电荷泵进行升压。可选地,在一些实施例中,第二充电通道24可以采用传统的充电通道设计方式,即在第二充电通道24上设置变换电路(如充电IC)。该变换电路可以对电池30的充电过程进行恒压、恒流控制,并根据实际需要对电源提供装置10提供的初始电压进行调整,如升压或降压。本申请实施例可以利用该变换电路的升压功能,将电源提供装置10提供的初始电压升压至目标电压。
通信控制电路23可以通过开关器件实现第一充电通道21和第二充电通道24之间的切换。具体地,如图8所示,第一充电通道21上可以设置有开关管Q5,当通信控制电路23控制开关管Q5导通时,第一充电通道21工作,对电池30进行直充;当通信控制电路23 控制开关管Q5关断时,第二充电通道24工作,采用第二充电通道24对电池30进行充电。
在另外一些实施例中,也可在第二充电通道24上设置用于降压的电路或器件,当电源提供装置提供的电压高于电池30的需求电压时,可进行降压处理。本申请实施例,对第二充电通道24包含的电路或模块不进行限制。
下面结合图9-图12,对本申请实施例应用的无线充电过程进行描述。
传统的无线充电技术一般将电源提供装置(如适配器)与无线充电装置(如无线充电底座)相连,并通过该无线充电装置将电源提供装置的输出功率以无线的方式(如电磁波)传输至待充电设备,对待充电设备进行无线充电。该待充电设备可以为上文中的电子设备。
按照无线充电原理不同,无线充电方式主要分为磁耦合(或电磁感应)、磁共振以及无线电波三种方式。目前,主流的无线充电标准包括QI标准、电源实物联盟(power matters alliance,PMA)标准、无线电源联盟(alliance for wireless power,A4WP)。QI标准和PMA标准均采用磁耦合方式进行无线充电。A4WP标准采用磁共振方式进行无线充电。
下面结合图9,对一实施例的无线充电方式进行介绍。
如图9所示,无线充电***包括电源提供装置110、无线充电信号的发射装置120以及充电控制装置130,其中发射装置120例如可以是无线充电底座,充电控制装置130可以指本申请实施例中的充电控制设备500或电子设备600。
电源提供装置110与发射装置120连接之后,会将电源提供装置110的输出电压和输出电流传输至发射装置120。
发射装置120可以通过内部的无线发射电路121将电源提供装置110的输出电压和输出电流转换成无线充电信号(例如,电磁信号)进行发射。例如,该无线发射电路121可以将电源提供装置110的输出电流转换成交流电,并通过发射线圈或发射天线将该交流电转换成无线充电信号。
图9只是示例性地给出了无线充电***的示意性结构图,但本申请实施例并不限于此。例如,发射装置120也可以称为无线充电信号的发射装置,充电控制装置130也可以称为无线充电信号的接收装置。无线充电信号的接收装置例如可以是具有无线充电信号接收功能的芯片,可以接收发射装置120发射的无线充电信号;该无线充电信号的接收装置也可以是待充电设备。
充电控制装置130可以通过无线接收电路131接收无线发射电路121发射的无线充电信号,并将该无线充电信号转换成无线接收电路131的输出电压和输出电流。例如,该无线接收电路131可以通过接收线圈或接收天线将无线发射电路121发射的无线充电信号转换成交流电,并对该交流电进行整流和/或滤波等操作,将该交流电转换成无线接收电路131的输出电压和输出电流。
在一些实施例中,在无线充电之前,发射装置120与充电控制装置130会预先协商无线发射电路121的发射功率。假设发射装置120与充电控制装置130之间协商的功率为5W,则无线接收电路131的输出电压和输出电流一般为5V和1A。假设发射装置120可与充电控制装置130之间协商的功率为10.8W,则无线接收电路131的输出电压和输出电流一般为9V和1.2A。
若无线接收电路131的输出电压并不适合直接加载到电池133两端,则是需要先经过充电控制装置130内的变换电路132进行恒压和/或恒流控制,以得到充电控制装置130内的电池133所预期的充电电压和/或充电电流。
变换电路132可用于对无线接收电路131的输出电压进行变换,以使得变换电路132的输出电压和/或输出电流满足电池133所预期的充电电压和/或充电电流的需求。
作为一种示例,该变换电路132例如可以是充电集成电路(integrated circuit,IC),或者可以为电源管理电路。在电池133的充电过程中,变换电路132可用于对电池133的充电电压和/或充电电流进行管理。该变换电路132可以包含电压反馈功能,和/或,电流反馈 功能,以实现对电池133的充电电压和/或充电电流的管理。
在正常的充电过程中,电池所需的充电电压和/或充电电流在不同的充电阶段可能在不断发生变化。无线接收电路的输出电压和/或输出电流可能就需要不断地调整,以满足电池当前的充电需求。例如,在电池的恒流充电阶段,在充电过程中,电池的充电电流保持不变,但是电池的电压在不断升高,因此电池所需的充电电压也在不断升高。随着电池所需的充电电压的不断增大,电池所需的充电功率也在不断增大。当电池所需的充电功率增大时,无线接收电路需要增大输出功率,以满足电池的充电需求。
当无线接收电路的输出功率小于电池当前所需的充电功率时,通信控制电路可以向发射装置发射指示信息以指示发射装置提升发射功率,以增大无线接收电路的输出功率。因此,在充电过程中,通信控制电路可以与发射装置通信,使得无线接收电路的输出功率能够满足电池不同充电阶段的充电需求。
本申请实施例对通信控制电路235与发射装置220的通信方式不做具体限定。可选地,在一些实施例中,通信控制电路235与发射装置220可以采用蓝牙(bluetooth)通信、无线保真(wireless fidelity,Wi-Fi)通信或反向散射(backscatter)调制方式(或功率负载调制方式)通信、基于高载波频率的近距离无线通信、光通信、超声波通信、超宽带通信或移动通信等无线通信方式进行通信。
在一实施例中,基于高载波频率的近距离无线通信模块可以包括内部封装有极高频(extremely high frequency,EHF)天线的集成电路(integrated circuit,IC)芯片。可选地,高载波频率可以为60GHz。
在一实施例中,光通信可以是利用光通信模块进行通信。光通信模块可以包括红外通信模块,红外通信模块可利用红外线传输信息。
在一实施例中,移动通信可以是利用移动通信模块进行通信。移动通信模块可利用5G通信协议、4G通信协议或3G通信协议等移动通信协议进行信息传输。
采用上述的无线通信方式,相比于Qi标准中通过信号调制的方式耦合到无线接收电路的线圈进行通信的方式,可提高通信的可靠性,且可避免采用信号耦合方式通信带来的电压纹波,影响降压电路的电压处理过程。
可选地,通信控制电路235与发射装置220也可以采用数据接口的有线通信方式进行通信。
图10是本申请实施例提供的充电***的另一示意图。请参见图10,无线充电信号的发射装置220还可以包括充电接口223,充电接口223可用于与外部的电源提供装置210相连。无线发射电路221还可用于根据电源提供装置210的输出电压和输出电流,生成无线充电信号。
第一通信控制电路222还可以在无线充电的过程中,调整无线发射电路221从电源提供装置210的输出功率中抽取的功率量,以调整无线发射电路221的发射功率,使得无线发射电路发射的功率能够满足电池的充电需求。例如,电源提供装置210也可以直接输出较大的固定功率(如40W),第一通信控制电路222可以直接调整无线发射电路221从电源提供装置210提供的固定功率中抽取的功率量。
本申请实施例中,电源提供装置210的输出功率可以是固定的。例如,电源提供装置210可以直接输出较大的固定功率(如40W),电源提供装置210可以按照该固定的输出功率向无线充电装置220提供输出电压和输出电流。在充电过程中,第一通信控制电路222可以根据实际需要从该电源提供装置的固定功率中抽取一定的功率量用于无线充电。也就是说,本申请实施例将无线发射电路221的发射功率调整的控制权分配给第一通信控制电路222,第一通信控制电路222能够在接收到第二通信控制电路235发送的指示信息之后立刻对无线发射电路221的发射功率进行调整,以满足电池当前的充电需求,具有调节速度快、效率高的优点。
本申请实施例对第一通信控制电路222从电源提供装置210提供的最大输出功率中抽取功率量的方式不做具体限定。例如,可以在无线充电信号的发射装置220内部设置电压转换电路224,该电压转换电路224可以与发射线圈或发射天线相连,用于调整发射线圈或发射天线接收到的功率。该电压转换电路224例如可以包括脉冲宽度调制(pulse width modulation,PWM)控制器和开关单元。第一通信控制电路222可以通过调整PWM控制器发出的控制信号的占空比调整无线发射电路221的发射功率。
本申请实施例对电源提供装置210的类型不做具体限定。例如,电源提供装置210可以为适配器、移动电源(power bank)、车载充电器或电脑等设备。
本申请实施例对充电接口223的类型不做具体限定。可选地,在一些实施例中,该充电接口223可以为USB接口。该USB接口例如可以是USB 2.0接口,micro USB接口,或USB TYPE-C接口。可选地,在另一些实施例中,该充电接口223还可以是lightning接口,或者其他任意类型的能够用于充电的并口和/或串口。
本申请实施例对第一通信控制电路222与电源提供装置210之间的通信方式不做具体限定。作为一个示例,第一通信控制电路222可以通过除充电接口之外的其他通信接口与电源提供装置210相连,并通过该通信接口与电源提供装置210通信。作为另一个示例,第一通信控制电路222可以以无线的方式与电源提供装置210进行通信。例如,第一通信控制电路222可以与电源提供装置210进行近场通信(Near Field Communication,NFC)。作为又一个示例,第一通信控制电路222可以通过充电接口223与电源提供装置210进行通信,而无需设置额外的通信接口或其他无线通信模块,这样可以简化无线充电装置220的实现。例如,充电接口223为USB接口,第一通信控制电路222可以与电源提供装置210基于该USB接口中的数据线(如D+和/或D-线)进行通信。又如,充电接口223可以为支持功率传输(Power Delivery,PD)通信协议的USB接口(如USB TYPE-C接口),第一通信控制电路222与电源提供装置210可以基于PD通信协议进行通信。
可选地,第一通信控制电路222调整无线充电信号的发射功率可以指,第一通信控制电路222通过调整无线发射电路221的输入电压和/或输入电流来调整无线充电信号的发射功率。例如,第一通信控制电路可以通过增大无线发射电路的输入电压来增大无线发射电路的发射功率。
可选地,如图12所示,待充电设备230还包括第一充电通道233,通过该第一充电通道233可将无线接收电路231的输出电压和/或输出电流提供给电池232,对电池232进行充电。
可选地,第一充电通道233上还可以设置电压转换电路239,该电压转换电路239的输入端与无线接收电路231的输出端电连接,用于对无线接收电路231的输出电压进行恒压和/或恒流控制,以对电池232进行充电,使得电压转换电路239的输出电压和/或输出电流与电池当前所需的充电电压和/或充电电流相匹配。
可选地,增大无线发射电路221的发射功率可以指增大无线发射电路221的发射电压,增大无线发射电路221的发射电压可以通过增大电压转换电路224的输出电压来实现。例如,第一通信控制电路222接收到第二通信控制电路235发送的指示增大发射功率的指示信息后,可以通过增大电压转换电路224的输出电压来增大无线发射电路221的发射功率。
本申请实施例对第二通信控制电路235向第一通信控制电路222发送指示信息的方式不做具体限定。
例如,第二通信控制电路235可以定期向第一通信控制电路222发送指示信息。或者,第二通信控制电路235可以仅在电池的电压达到充电截止电压,或者电池的充电电流达到充电截止电流的情况下,再向第一通信控制电路222发送指示信息。
可选地,无线充电信号的接收装置还可包括检测电路234,该检测电路234可以检测电池232的电压和/或充电电流,第二通信控制电路235可以根据电池232的电压和/或充电 电流,向第一通信控制电路222发送指示信息,以指示第一通信控制电路222调整无线发射电路221的发射功率对应的输出电压和输出电流。
在一实施例中,对待充电设备而言,在恒流充电的过程中,电池的电压会不断上升,电池所需的充电功率也会随之增大。此时,需要增大无线充电信号的发射功率,以满足电池当前的充电需求。在恒压充电的过程中,电池的充电电流可能会不断减小,电池所需的充电功率也会随之减小。此时,需要减小无线充电信号的发射功率,以满足电池当前的充电需求。
第一通信控制电路222可以根据指示信息调整无线充电信号的发射功率,可以指第一通信控制电路222调整无线充电信号的发射功率,使得无线充电信号的发射功率与电池的当前所需的充电电压和/或充电电流相匹配。
无线发射电路221的发射功率与电池232当前所需的充电电压和/或充电电流相匹配可以指:第一通信控制电路222对无线充电信号的发射功率的配置使得第一充电通道233的输出电压和/或输出电流与电池232当前所需的充电电压和/或充电电流相匹配(或者,第一通信控制电路222对无线充电信号的发射功率的配置使得第一充电通道233的输出电压和/或输出电流满足电池232的充电需求(包括电池232对充电电压和/或充电电流的需求))。
应理解,在本公开的一实施例中,“第一充电通道232的输出电压和/或输出电流与电池232当前所需的充电电压和/或充电电流相匹配”包括:第一充电通道232输出的直流电的电压值和/或电流值与电池232所需的充电电压值和/或充电电流值相等或在浮动预设范围(例如,电压值上下浮动100毫伏~200毫伏,电流值上下浮动0.001A~0.005A等)。
上述第二通信控制电路235根据检测电路234检测到的电池232的电压和/或充电电流,与第一通信控制电路222进行无线通信,以便第一通信控制电路222根据电池232的电压和/或充电电流,调整无线发射电路221的发射功率可以包括:在电池232的恒流充电阶段,第二通信控制电路235根据检测到的电池的电压,与第一通信控制电路222进行无线通信,以便第一通信控制电路222调整无线发射电路221的发射功率,使得第一充电通道233的输出电压与该恒流充电阶段电池所需的充电电压相匹配(或者,使得第一充电通道233的输出电压满足电池232在恒流充电阶段对充电电压的需求)。
图11是本申请实施例提供的充电***的另一示例。图11的实施例对应的无线充电信号的发射装置220并非从电源提供装置210获取电能,而是直接将外部输入的交流电(如市电)转换成上述无线充电信号。
如图11所示,无线充电信号的发射装置220还可包括电压转换电路224和电源提供电路225。电源提供电路225可用于接收外部输入的交流电(如市电),并根据交流电生成电源提供电路225的输出电压和输出电流。例如,电源提供电路225可以对交流电进行整流和/或滤波,得到直流电或脉动直流电,并将该直流电或脉动直流电传输至电压转换电路224。
电压转换电路224可用于接收电源提供电路225的输出电压,并对电源提供电路225的输出电压进行转换,得到电压转换电路224的输出电压和输出电流。无线发射电路221还可用于根据电压转换电路224的输出电压和输出电流,生成无线充电信号。
本申请实施例在无线充电信号的发射装置220内部集成了类似适配器的功能,使得该无线充电信号的发射装置220无需从外部的电源提供装置获取功率,提高了无线充电信号的发射装置220的集成度,并减少了实现无线充电过程所需的器件的数量。
可选地,在一些实施例中,无线充电信号的发射装置220可以支持第一无线充电模式和第二无线充电模式,无线充电信号的发射装置220在第一无线充电模式下对待充电设备的充电速度快于无线充电信号的发射装置220在第二无线充电模式下对待充电设备的充电速度。换句话说,相较于工作在第二无线充电模式下的无线充电信号的发射装置220来说,工作在第一无线充电模式下的无线充电信号的发射装置220充满相同容量的待充电设备中的电池的耗时更短。
本申请实施例提供的充电方法可以使采用第一充电模式进行充电,也可以使采用第二充电模式进行充电,本申请实施例对此不做限定。
第二无线充电模式可为称为普通无线充电模式,例如可以是传统的基于QI标准、PMA标准或A4WP标准的无线充电模式。第一无线充电模式可为快速无线充电模式。该普通无线充电模式可以指无线充电信号的发射装置220的发射功率较小(通常小于15W,常用的发射功率为5W或10W)的无线充电模式,在普通无线充电模式下想要完全充满一较大容量电池(如3000毫安时容量的电池),通常需要花费数个小时的时间;而在快速无线充电模式下,无线充电信号的发射装置220的发射功率相对较大(通常大于或等于15W)。相较于普通无线充电模式而言,无线充电信号的发射装置220在快速无线充电模式下完全充满相同容量电池所需要的充电时间能够明显缩短、充电速度更快。
参见图12,在本公开的一实施例中,待充电设备230还包括:第二充电通道236。第二充电通道236可为导线。在第二充电通道236上可设置变换电路237,用于对无线接收电路231输出的直流电进行电压控制,得到第二充电通道236的输出电压和输出电流,以对电池232进行充电。
在一个实施例中,变换电路237可用于降压电路,并且输出恒流和/或恒压的电能。换句话说,该变换电路237可用于对电池的充电过程进行恒压和/或恒流控制。
当采用第二充电通道236对电池232进行充电时,无线发射电路221可采用恒定发射功率发射电磁信号,无线接收电路231接收电磁信号后,由变换电路237处理为满足电池232充电需求的电压和电流并输入电池232,实现对电池232的充电。应理解,在一些实施例中,恒定发射功率不一定是发射功率完全保持不变,其可在一定的范围内变动,例如,发射功率为7.5W上下浮动0.5W。
在本公开的实施例中,通过第一充电通道233对电池232进行充电的充电方式为第一无线充电模式,通过第二充电通道236对电池232进行充电的方式称为第二无线充电模式。无线充电信号的发射装置和待充电设备可通过握手通信确定采用第一无线充电模式还是第二无线充电模式对电池232进行充电。
本公开实施例中,对于无线充电信号的发射装置,当通过第一无线充电模式对待充电设备充电时,无线发射电路221的最大发射功率可为第一发射功率值。而通过第二无线充电模式对待充电设备进行充电时,无线发射电路221的最大发射功率可为第二发射功率值。其中,第一发射功率值大于第二发射功率值,由此,采用第一无线充电模式对待充电设备的充电速度大于第二无线充电模式。
可选地,第二通信控制电路235还可用于控制第一充电通道233和第二充电通道236之间的切换。例如,如图12所示,第一充电通道233上可以设置开关238,第二通信控制电路235可以通过控制该开关238的导通与关断控制第一充电通道233和第二充电通道236之间的切换。上文指出,在某些实施例中,无线充电信号的发射装置220可以包括第一无线充电模式和第二无线充电模式,且无线充电信号的发射装置220在第一无线充电模式下对待充电设备230的充电速度快于无线充电信号的发射装置220在第二无线充电模式下对待充电设备230的充电速度。当无线充电信号的发射装置220使用第一无线充电模式为待充电设备230内的电池充电时,待充电设备230可以控制第一充电通道233工作;当无线充电信号的发射装置220使用第二无线充电模式为待充电设备230内的电池充电时,待充电设备230可以控制第二充电通道236工作。
在待充电设备侧,第二通信控制电路235可以根据充电模式,在第一充电通道233和第二充电通道236之间进行切换。当采用第一无线充电模式时,第二通信控制电路235控制第一充电通道233上的电压转换电路239工作。当采用第二无线充电模式时,第二通信控制电路235控制第二充电通道236上的变换电路237工作。
可选地,无线充电信号的发射装置220可以与待充电设备230之间进行通信,以协商 无线充电信号的发射装置220与待充电设备230之间的充电模式。
除了上文描述的通信内容外,无线充电信号的发射装置220中的第一通信控制电路222与待充电设备230中的第二通信控制电路235之间还可以交互许多其他通信信息。在一些实施例中,第一通信控制电路222和第二通信控制电路235之间可以交互用于安全保护、异常检测或故障处理的信息,如电池232的温度信息,进入过压保护或过流保护的指示信息等信息,功率传输效率信息(该功率传输效率信息可用于指示无线发射电路221和无线接收电路231之间的功率传输效率)。
可选地,第二通信控制电路235与第一通信控制电路222之间的通信可以为单向通信,也可以为双向通信,本申请实施例对此不做具体限定。
在本申请的实施例中,第二通信控制电路的功能可由待充电设备230的应用处理器实现,由此,可以节省硬件成本。或者,也可由独立的控制芯片实现,由独立的控制芯片实现可提高控制的可靠性。
可选地,本申请实施例可以将无线接收电路232与电压转换电路239均集成在同一无线充电芯片中,这样可以提高待充电设备集成度,简化待充电设备的实现。例如,可以对传统无线充电芯片的功能进行扩展,使其支持充电管理功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其他任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
当用于本申请中时,虽然术语“第一”、“第二”等可能会在本申请中使用以描述各设备,但这些设备不应受到这些术语的限制。这些术语仅用于将一个设备与另一个设备区别开。比如,在不改变描述的含义的情况下,第一设备可以叫做第二设备,并且同样地,第二设备可以叫做第一设备,只要所有出现的“第一设备”一致重命名并且所有出现的“第二设备”一致重命名即可。第一设备和第二设备都是设备,但可以不是相同的设备。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的 部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种充电控制方法,其特征在于,所述方法用于电子设备,所述方法包括:
    在对所述电子设备进行充电的过程中,控制所述电子设备从第一充电阶段进入多段第二充电阶段,所述第一充电阶段和所述第二充电阶段的充电电流为恒定电流,所述多段第二充电阶段的充电电流小于所述第一充电阶段的充电电流,所述多段第二充电阶段的截止电压和充电电流依次降低;
    若在所述多段第二充电阶段的最后一段充电阶段,所述电子设备的电池电压和/或充电电流满足预设条件,则控制退出所述多段第二充电阶段。
  2. 根据权利要求1所述的方法,其特征在于,所述预设条件包括以下条件中的至少一个:
    所述电子设备的电池电压大于或等于所述多段第二充电阶段中的最后一段充电阶段的截止电压,所述电子设备的充电电流小于所述多段第二充电阶段中的最后一段充电阶段的充电电流。
  3. 根据权利要求1或2所述的方法,其特征在于,所述控制所述电子设备从第一充电阶段进入多段第二充电阶段,包括:
    若所述电子设备的电池电压大于或等于所述第一充电阶段的截止电压,控制所述电子设备从所述第一充电阶段进入所述多段第二充电阶段的第一子充电阶段;
    若所述电子设备的电池电压大于或等于所述第一子充电阶段的截止电压和/或所述电子设备的充电电流小于所述第一子充电阶段的预设充电电流,控制所述电子设备从所述第一子充电阶段进入第二子充电阶段,所述第一子充电阶段的充电电流大于所述第二子充电阶段的充电电流;
    若所述电子设备的电池电压大于或等于所述第二子充电阶段的截止电压和/或所述电子设备的充电电流小于所述第二子充电阶段的预设充电电流,控制所述电子设备从所述第二子充电阶段进入第三子充电阶段,所述第二子充电阶段的充电电流大于所述第三子充电阶段的充电电流。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    在对所述电子设备充电停止后,将所述电子设备的截止电压和截止电流设置为预设值。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    检测所述电子设备的电池的内阻;
    若所述电池的内阻大于预设阈值,控制延迟从所述第一充电阶段进入所述多段第二充电阶段的时间。
  6. 根据权利要求1所述的方法,其特征在于,在控制所述电子设备退出所述多段第二充电阶段后,控制所述电子设备进入普通充电阶段。
  7. 根据权利要求1所述的方法,其特征在于,所述方法包括:
    所述电子设备和电源提供装置连接后,识别连接的所述电源提供装置是否支持快速充电模式;
    若所述电源提供装置不支持所述快速充电模式,则以普通充电模式对所述电子设备进行充电;和
    若所述电源提供装置支持所述快速充电模式,则将相关参数调整为所述快速充电模式下的参数。
  8. 根据权利要求6或7任一项所述的方法,其特征在于,所述普通充电阶段的充电电流以逐渐下降的电流对所述电子设备进行充电,直到将所述电子设备充满。
  9. 根据权利要求1所述的方法,其特征在于,所述方法包括:
    在对所述电子设备进行充电的过程中,控制所述电子设备经过涓流充电阶段后进入所述第一充电阶段。
  10. 一种充电控制设备,其特征在于,所述设备包括:
    控制单元,用于在对所述电子设备进行充电的过程中,控制所述电子设备从第一充电阶段进入多段第二充电阶段,所述第一充电阶段和所述第二充电阶段的充电电流为恒定电流,所述多段第二充电阶段的充电电流小于所述第一充电阶段的充电电流,所述多段第二充电阶段的截止电压和充电电流依次降低;
    若在所述多段第二充电阶段的最后一段充电阶段,所述电子设备的电池电压和/或充电电流满足预设条件,则控制退出所述多段第二充电阶段。
  11. 根据权利要求10所述的设备,其特征在于,所述预设条件包括以下条件中的至少一个:
    所述电子设备的电池电压大于或等于所述多段第二充电阶段中的最后一段充电阶段的截止电压,所述电子设备的充电电流小于所述多段第二充电阶段中的最后一段充电阶段的充电电流。
  12. 根据权利要求10或11所述的设备,其特征在于,所述控制单元进一步用于:
    若所述电子设备的电池电压大于或等于所述第一充电阶段的截止电压,控制所述电子设备从所述第一充电阶段进入所述多段第二充电阶段的第一子充电阶段;
    若所述电子设备的电池电压大于或等于所述第一子充电阶段的截止电压和/或所述电子设备的充电电流小于所述第一子充电阶段的预设充电电流,控制所述电子设备从所述第一子充电阶段进入第二子充电阶段,所述第一子充电阶段的充电电流大于所述第二子充电阶段的充电电流;
    若所述电子设备的电池电压大于或等于所述第二子充电阶段的截止电压和/或所述电子设备的充电电流小于所述第二子充电阶段的预设充电电流,控制所述电子设备从所述第二子充电阶段进入第三子充电阶段,所述第二子充电阶段的充电电流大于所述第三子充电阶段的充电电流。
  13. 根据权利要求10至12中任一项所述的设备,其特征在于,所述设备还包括:
    设置单元,用于在对所述电子设备充电停止后,将所述电子设备的截止电压和截止电流设置为预设值。
  14. 根据权利要求10至13中任一项所述的设备,其特征在于,所述设备还包括:
    检测单元,用于检测所述电子设备的电池的内阻;
    所述控制单元进一步用于:若所述电池的内阻大于预设阈值,控制延迟从所述第一充电阶段进入所述多段第二充电阶段的时间。
  15. 一种电子设备,其特征在于,所述设备包括:
    处理器,用于在对所述电子设备进行充电的过程中,控制所述电子设备从第一充电阶段进入多段第二充电阶段,所述第一充电阶段和所述多段第二充电阶段的充电电流为恒定电流,所述多段第二充电阶段的充电电流小于所述第一充电阶段的充电电流,所述多段第二充电阶段的截止电压和充电电流依次降低;
    若在所述多段第二充电阶段的最后一段充电阶段,所述电子设备的电池电压和/或充电电流满足预设条件,则控制退出所述多段第二充电阶段。
  16. 根据权利要求15所述的设备,其特征在于,所述预设条件包括以下条件中的至少一个:
    所述电子设备的电池电压大于或等于所述多段第二充电阶段中的最后一段充电阶段的截止电压,所述电子设备的充电电流小于所述多段第二充电阶段中的最后一段充电阶段的充电电流。
  17. 根据权利要求15或16所述的设备,其特征在于,所述处理器进一步用于:
    若所述电子设备的电池电压大于或等于所述第一充电阶段的截止电压,控制所述电子设备从第一充电阶段进入多段第二充电阶段的第一子充电阶段;
    若所述电子设备的电池电压大于或等于所述第一子充电阶段的截止电压和/或所述电子设备的充电电流小于所述第一子充电阶段的预设充电电流,控制所述电子设备从所述第一子充电阶段进入第二子充电阶段,所述第一子充电阶段的充电电流大于所述第二子充电阶段的充电电流;
    若所述电子设备的电池电压大于或等于所述第二子充电阶段的截止电压和/或所述电子设备的充电电流小于所述第二子充电阶段的预设充电电流,控制所述电子设备从所述第二子充电阶段进入第三子充电阶段,所述第二子充电阶段的充电电流大于所述第三子充电阶段的充电电流。
  18. 根据权利要求15至17中任一项所述的设备,其特征在于,所述处理器还用于:
    在对所述电子设备充电停止后,将所述电子设备的截止电压和截止电流设置为预设值。
  19. 根据权利要求15至19中任一项所述的设备,其特征在于,所述处理器还用于:
    检测所述电子设备的电池的内阻;
    若所述电池的内阻大于预设阈值,控制延迟从所述第一充电阶段进入所述多段第二充电阶段的时间。
  20. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行权利要求1至9中任一项所述的方法。
PCT/CN2020/114583 2019-10-25 2020-09-10 充电控制方法、充电控制设备和电子设备 WO2021077933A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911025920.8A CN110739739B (zh) 2019-10-25 2019-10-25 充电控制方法、充电控制设备和电子设备
CN201911025920.8 2019-10-25

Publications (1)

Publication Number Publication Date
WO2021077933A1 true WO2021077933A1 (zh) 2021-04-29

Family

ID=69271587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114583 WO2021077933A1 (zh) 2019-10-25 2020-09-10 充电控制方法、充电控制设备和电子设备

Country Status (2)

Country Link
CN (1) CN110739739B (zh)
WO (1) WO2021077933A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110739739B (zh) * 2019-10-25 2021-08-20 Oppo广东移动通信有限公司 充电控制方法、充电控制设备和电子设备
CN111371140B (zh) * 2020-03-11 2024-03-29 Oppo广东移动通信有限公司 充电控制方法、装置、终端设备以及存储介质
CN113410529A (zh) * 2020-03-16 2021-09-17 上海汽车集团股份有限公司 一种电池充电方法及装置
CN114388911A (zh) * 2020-10-16 2022-04-22 Oppo广东移动通信有限公司 充电方法、电子设备和可读存储介质
CN113507154B (zh) * 2021-07-12 2023-02-28 海南小鲨鱼智能科技有限公司 充电方法、装置、充电机和电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6326769B1 (en) * 2000-11-29 2001-12-04 Telefonaktiebolaget Lm Ericsson (Publ) Limitation of power dissipation in Li battery
CN103078372A (zh) * 2012-12-29 2013-05-01 杭州汇点网络科技有限公司 一种多电池组模式的电动汽车充电方法
CN104092254A (zh) * 2014-06-19 2014-10-08 深圳天珑无线科技有限公司 一种充电方法及充电***
CN105978103A (zh) * 2016-06-30 2016-09-28 努比亚技术有限公司 一种充电控制装置和方法
CN106233565A (zh) * 2015-09-24 2016-12-14 广东欧珀移动通信有限公司 充电方法和设备
CN108767909A (zh) * 2018-03-30 2018-11-06 超威电源有限公司 一种标准的充电曲线及充电方法
CN110739739A (zh) * 2019-10-25 2020-01-31 Oppo广东移动通信有限公司 充电控制方法、充电控制设备和电子设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105553036B (zh) * 2016-02-04 2018-07-03 努比亚技术有限公司 一种快速充电的装置和方法
CN106026269A (zh) * 2016-06-27 2016-10-12 深圳天珑无线科技有限公司 快速充电设备及方法
CN106451640B (zh) * 2016-10-31 2019-03-05 维沃移动通信有限公司 一种充电方法及移动终端
CN106655396B (zh) * 2017-01-13 2019-02-12 Oppo广东移动通信有限公司 充电控制方法、装置及终端
CN108336431B (zh) * 2017-01-19 2020-07-14 宁德时代新能源科技股份有限公司 电池模组的充电控制方法、装置和***
CN108539804B (zh) * 2017-03-03 2020-07-28 北京小米移动软件有限公司 电池充电控制方法、电池充电控制装置和电子设备
CN107359378B (zh) * 2017-06-30 2019-08-09 宁德时代新能源科技股份有限公司 电池充电方法、装置和设备
CN107612075A (zh) * 2017-09-27 2018-01-19 宁德时代新能源科技股份有限公司 电池充电方法、装置、设备和存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6326769B1 (en) * 2000-11-29 2001-12-04 Telefonaktiebolaget Lm Ericsson (Publ) Limitation of power dissipation in Li battery
CN103078372A (zh) * 2012-12-29 2013-05-01 杭州汇点网络科技有限公司 一种多电池组模式的电动汽车充电方法
CN104092254A (zh) * 2014-06-19 2014-10-08 深圳天珑无线科技有限公司 一种充电方法及充电***
CN106233565A (zh) * 2015-09-24 2016-12-14 广东欧珀移动通信有限公司 充电方法和设备
CN105978103A (zh) * 2016-06-30 2016-09-28 努比亚技术有限公司 一种充电控制装置和方法
CN108767909A (zh) * 2018-03-30 2018-11-06 超威电源有限公司 一种标准的充电曲线及充电方法
CN110739739A (zh) * 2019-10-25 2020-01-31 Oppo广东移动通信有限公司 充电控制方法、充电控制设备和电子设备

Also Published As

Publication number Publication date
CN110739739B (zh) 2021-08-20
CN110739739A (zh) 2020-01-31

Similar Documents

Publication Publication Date Title
US11368050B2 (en) Wireless charging device, method, and device to-be-charged
WO2021077933A1 (zh) 充电控制方法、充电控制设备和电子设备
WO2020172868A1 (zh) 充电方法和充电装置
US20220060038A1 (en) Charging method and charging device
WO2018184230A1 (zh) 无线充电***、装置、方法及待充电设备
WO2018184285A1 (zh) 无线充电***、装置、方法及待充电设备
US11735941B2 (en) Charging method and charging device
US11722062B2 (en) Power supply device, electronic device and power supply method
US11616400B2 (en) Electronic device
US20220006303A1 (en) Charging and discharging control method, and device
US20220006312A1 (en) Device to be charged, and charging and discharging control method
WO2020124582A1 (zh) 接收装置和无线充电方法
WO2020133081A1 (zh) 充电方法和装置、待充电设备、存储介质及芯片***
WO2021017770A1 (zh) 无线充电方法和待充电设备
US11502557B2 (en) Wireless charging control method and charging control device
WO2021012951A1 (zh) 无线充电装置、方法及***
WO2021013259A1 (zh) 待充电设备、无线充电方法及***
WO2021052346A1 (zh) 充电方法、充电设备和电子设备
US20220263351A1 (en) Wireless receiving device, wireless charging system, wireless charging method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20878276

Country of ref document: EP

Kind code of ref document: A1