WO2021017770A1 - 无线充电方法和待充电设备 - Google Patents

无线充电方法和待充电设备 Download PDF

Info

Publication number
WO2021017770A1
WO2021017770A1 PCT/CN2020/100568 CN2020100568W WO2021017770A1 WO 2021017770 A1 WO2021017770 A1 WO 2021017770A1 CN 2020100568 W CN2020100568 W CN 2020100568W WO 2021017770 A1 WO2021017770 A1 WO 2021017770A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
circuit
wireless
current
output
Prior art date
Application number
PCT/CN2020/100568
Other languages
English (en)
French (fr)
Inventor
林尚波
万世铭
杨军
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2021017770A1 publication Critical patent/WO2021017770A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the embodiments of the present application relate to the field of charging technology, and in particular to a wireless charging method and a device to be charged.
  • the present application provides a wireless charging method and a device to be charged, which can reduce the heat generated by the electronic device during the wireless charging process.
  • a wireless charging method in a first aspect, includes a wireless receiving circuit, a charging management circuit, a communication control circuit, a detection circuit, and a battery.
  • the output of the wireless receiving circuit and the input of the charging management circuit The input terminal of the charging management circuit is connected to the battery, the communication control circuit controls the output current and/or output voltage of the wireless receiving circuit and the charging management circuit, and the method includes: In the process of adjusting the wireless charging state of the battery from the first charging mode to the second charging mode, the communication control circuit instructs the wireless transmitting device to increase the transmission power so as to increase the voltage output by the wireless receiving circuit; when the wireless When the voltage output by the receiving circuit reaches the first voltage threshold, the communication control circuit instructs the wireless transmitting device to increase the transmission power to increase the current output by the charging management circuit; the detection circuit detects the wireless receiving circuit Output current; when the output current of the wireless receiving circuit is greater than the first current threshold, the communication control circuit boosts the output voltage of the wireless receiving circuit so that the output current of the
  • a device to be charged including: a communication control circuit for instructing the wireless transmitting device to increase the transmitting power during the process of adjusting the wireless charging state of the battery from the first charging mode to the second charging mode The voltage output by the wireless receiving circuit is increased; the communication control circuit is also used for: when the voltage output by the wireless receiving circuit reaches a first voltage threshold, instruct the wireless transmitting device to increase the transmission power so that the charging management circuit The output current is increased; the device to be charged further includes: a detection circuit for detecting the output current of the wireless receiving circuit; the communication control circuit is also used for: when the output current of the wireless receiving circuit is greater than the first current When the threshold is set, the output voltage of the wireless receiving circuit is increased so that the output current of the wireless receiving circuit is less than or equal to the first current threshold.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute the method described in the first aspect or any one of its implementation manners.
  • the present application provides a computer program product, which is characterized by including computer program instructions that enable a computer to execute the method described in the first aspect or any one of its implementation manners.
  • FIG. 1 is a schematic diagram of a wireless charging system provided by an embodiment of the present application
  • Figure 2 is a schematic diagram of a device to be charged provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a wireless charging method provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a wireless charging method provided by another embodiment of the present application.
  • FIG. 5 is a schematic diagram of a wireless charging method provided by another embodiment of the present application.
  • FIG. 6 is a schematic diagram of a device to be charged according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a wireless charging system provided by another embodiment of the present application.
  • FIG. 8 is a schematic diagram of a wireless charging system provided by another embodiment of the present application.
  • FIG. 9 is a schematic diagram of a wireless charging system provided by another embodiment of the present application.
  • Fig. 10 is a schematic diagram of a wireless charging system provided by another embodiment of the present application.
  • a wireless charging method 300 of the embodiment of the present application is applied to a device to be charged 600.
  • the device to be charged 600 includes a wireless receiving circuit 610, a charging management circuit 620, a communication control circuit 640, and a detection circuit. 650 and battery 630, the output terminal of the wireless receiving circuit 610 is connected to the input terminal of the charging management circuit 620, the input terminal of the charging management circuit 620 is connected to the battery 630, the communication control circuit 640 controls the output of the wireless receiving circuit 610 and the charging management circuit 620 Current and/or output voltage, method 300 includes:
  • the communication control circuit 640 instructs the wireless transmitting device to increase the transmission power, so as to increase the voltage output by the wireless receiving circuit 610;
  • the communication control circuit 640 instructs the wireless transmitting device to increase the transmission power, so as to increase the current output by the charging management circuit 620;
  • the detection circuit 650 detects the output current of the wireless receiving circuit 610.
  • the communication control circuit 640 increases the output voltage of the wireless receiving circuit 610 so that the output current of the wireless receiving circuit 610 is less than or equal to the first current threshold.
  • the method further includes:
  • the communication control circuit 640 increases the output current of the charging management circuit 620 until the output current of the charging management circuit 620 reaches the second current threshold.
  • the wireless charging when the output current of the charging management circuit 620 reaches the second current threshold, the wireless charging enters the second charging mode; or when the output current of the charging management circuit 620 does not reach the second current threshold And when the output voltage of the wireless receiving circuit 610 reaches the second voltage threshold, the wireless charging enters the second charging mode.
  • the communication control circuit 640 instructs the wireless transmitting device to increase the transmission power, including: the power difference between the expected received power and the actual received power of the wireless receiving circuit 610 is greater than or When it is equal to the first threshold, the communication control circuit 640 sends first indication information to the wireless transmitting device so that the power difference is smaller than the first threshold; wherein the first indication information is used to instruct the wireless transmitting device to increase the output voltage.
  • the first threshold is zero.
  • the method before the wireless charging state of the battery 630 is adjusted from the first charging mode to the second charging mode, the method further includes:
  • the communication control circuit 640 sets the current output by the charging management circuit 620 to the third current threshold.
  • the method further includes: the device to be charged 30 obtains first information: temperature information of the battery 33, voltage information of the battery 33, state of charge information of the battery 33, and the wireless transmitting device 20 The type of the connected power supply device 10; when the first information satisfies the conditions for entering the second charging mode, the adjustment is made from the first charging mode to the second charging mode.
  • the method further includes: in the second charging mode, the detection circuit 34 of the device to be charged 30 detects the following information: battery 33 temperature information, battery 33 charging current information , The battery 33 voltage information, the output voltage of the wireless receiving circuit 31, and the power difference between the power expected to be received by the wireless receiving circuit 31 and the power actually received.
  • the communication control circuit adjusts the output current of the charging management circuit 32 or the output voltage of the wireless receiving circuit 31 according to at least one of the information detected by the detection circuit 34.
  • the communication control circuit feeds back the adjusted output current of the charging management circuit 32 or the adjusted output voltage of the wireless receiving circuit 31 to the wireless transmitting device 20.
  • a device to be charged 600 includes: a communication control circuit 610, a charging management circuit 620, a battery 630, a communication control circuit 640, and a detection circuit 650.
  • the communication control circuit 610 is used to instruct the wireless transmitting device to increase the transmission power during the adjustment of the wireless charging state of the battery 630 from the first charging mode to the second charging mode, so that the voltage output by the wireless receiving circuit 610 is increased.
  • the communication control circuit 640 is further configured to: when the voltage output by the wireless receiving circuit 610 reaches the first voltage threshold, instruct the wireless transmitting device to increase the transmission power, so as to increase the current output by the charging management circuit 620.
  • the device to be charged 600 further includes a detection circuit 650 for detecting the output current of the wireless receiving circuit 610.
  • the communication control circuit 640 is also used to: when the output current of the wireless receiving circuit 610 is greater than the first current threshold, increase the output voltage of the wireless receiving circuit 610 so that the output current of the wireless receiving circuit 610 is less than or equal to the first current threshold.
  • the communication control circuit 610 is also used to increase the output current of the charging management circuit 620 when the output current of the wireless receiving circuit 610 is less than or equal to the first current threshold.
  • the output current of the charging management circuit 620 reaches the second current threshold.
  • the wireless charging when the output current of the charging management circuit 620 reaches the second current threshold, the wireless charging enters the second charging mode; or when the output current of the charging management circuit 620 does not reach the second current threshold And when the output voltage of the wireless receiving circuit 610 reaches the second voltage threshold, the wireless charging enters the second charging mode.
  • the communication control circuit 640 is specifically used for: when the power difference between the expected received power and the actual received power of the wireless receiving circuit 610 is greater than or equal to the first threshold Next, send the first indication information to the wireless transmitting device so that the power difference is smaller than the first threshold; where the first indication information is used to instruct the wireless transmitting device to increase the output voltage.
  • the first threshold is zero.
  • the communication control circuit 640 is also used to output the charging management circuit 620 before the wireless charging state of the battery 630 is adjusted from the first charging mode to the second charging mode.
  • the current of is set to the third current threshold.
  • the communication control circuit 640 is also used to: obtain first information: temperature information of the battery 630, voltage information of the battery 630, information about the state of charge of the battery 630, and wireless transmitting device connection The type of power supply equipment; when the first information meets the conditions for entering the second charging mode, the adjustment is made from the first charging mode to the second charging mode.
  • the detection circuit 650 is also used to detect the following information during the second charging mode: battery temperature information, battery charging current information, battery voltage information, and wireless receiving circuit 610
  • the output voltage is the power difference between the expected received power and the actual received power of 610 wireless receiving circuits
  • the communication control circuit 640 is also used to: adjust the charging management circuit according to at least one of the information detected by the detection circuit 650
  • the output current of 620 or the output voltage of the wireless receiving circuit 610; the adjusted output current of the charging management circuit 620 or the adjusted output voltage of the wireless receiving circuit 610 is fed back to the wireless transmitting device.
  • a computer-readable storage medium is used for storing computer programs.
  • the computer-readable storage medium is used for a device to be charged 600, and the device to be charged 600 includes a wireless receiving circuit 610 , The charging management circuit 620, the communication control circuit 640, the detection circuit 650 and the battery 630, the output terminal of the wireless receiving circuit 610 is connected with the input terminal of the charging management circuit 620, the input terminal of the charging management circuit 620 is connected with the battery 630, the communication control circuit 640 controls the output current and/or output voltage of the wireless receiving circuit 610 and the charging management circuit 620, and the computer program causes the computer to execute the method including:
  • the communication control circuit 640 instructs the wireless transmitting device to increase the transmission power, so as to increase the voltage output by the wireless receiving circuit 610;
  • the communication control circuit 640 instructs the wireless transmitting device to increase the transmission power, so as to increase the current output by the charging management circuit 620;
  • the detection circuit 650 detects the output current of the wireless receiving circuit 610.
  • the communication control circuit 640 increases the output voltage of the wireless receiving circuit 610 so that the output current of the wireless receiving circuit 610 is less than or equal to the first current threshold.
  • the computer program stored in the readable storage medium causes the computer to execute the method further including:
  • the communication control circuit 640 increases the output current of the charging management circuit 620 until the output current of the charging management circuit 620 reaches the second current threshold.
  • the wireless charging when the output current of the charging management circuit 620 reaches the second current threshold, the wireless charging enters the second charging mode; or when the output current of the charging management circuit 620 does not reach the second current threshold And when the output voltage of the wireless receiving circuit 610 reaches the second voltage threshold, the wireless charging enters the second charging mode.
  • the communication control circuit 640 instructs the wireless transmitting device to increase the transmission power, including: the power difference between the expected received power and the actual received power of the wireless receiving circuit 610 is greater than or When it is equal to the first threshold, the communication control circuit 640 sends first indication information to the wireless transmitting device so that the power difference is smaller than the first threshold; wherein the first indication information is used to instruct the wireless transmitting device to increase the output voltage.
  • the first threshold is zero.
  • the computer program stored in the readable storage medium causes the computer to execute
  • the method also includes:
  • the communication control circuit 640 sets the current output by the charging management circuit 620 to the third current threshold.
  • the computer program stored in the readable storage medium causes the computer to execute the method further comprising: the device to be charged 30 obtains first information: temperature information of the battery 33, voltage information of the battery 33, The state of charge information of the battery 33 and the type of the power supply device 10 connected to the wireless transmitting device 20; when the first information satisfies the conditions for entering the second charging mode, adjustment is made from the first charging mode to the second charging mode.
  • the computer program stored in the readable storage medium causes the computer to execute the method further comprising: during the second charging mode, the detection circuit 34 of the device to be charged 30 detects the following Information: battery 33 temperature information, battery 33 charging current information, battery 33 voltage information, output voltage of the wireless receiving circuit 31, and the power difference between the expected power received by the wireless receiving circuit 31 and the power actually received.
  • the communication control circuit adjusts the output current of the charging management circuit 32 or the output voltage of the wireless receiving circuit 31 according to at least one of the information detected by the detection circuit 34.
  • the communication control circuit feeds back the adjusted output current of the charging management circuit 32 or the adjusted output voltage of the wireless receiving circuit 31 to the wireless transmitting device 20.
  • Fig. 1 shows a wireless charging system provided by an embodiment of the application.
  • the wireless charging method will be briefly introduced below in conjunction with Fig. 1.
  • the wireless charging system may include a power supply device 110, a wireless transmitting device 120, and a device to be charged 130.
  • the wireless transmitting device 120 may be a wireless charging base, and the device to be charged 130 may be a terminal, for example.
  • the wireless transmitting device 120 can convert the output voltage and output current of the power supply device 110 into a wireless charging signal (for example, an electromagnetic signal) for transmission through an internal wireless transmitting circuit 122.
  • the wireless transmitting circuit 122 can convert the output current of the power supply device 110 into alternating current, and convert the alternating current into a wireless charging signal through a transmitting coil or a transmitting antenna (not shown in the figure).
  • the voltage conversion circuit 121 can convert the voltage output by the power supply device 110, and the micro-control unit 123 can control the voltage of the voltage conversion circuit 121 and the wireless transmitting circuit 122.
  • the device to be charged 130 can receive the wireless charging signal transmitted by the wireless transmitting circuit 122 through the wireless receiving circuit 131 and convert the wireless charging signal into the output voltage and output current of the wireless receiving circuit 131.
  • the wireless receiving circuit 131 may convert the electromagnetic signal emitted by the wireless transmitting circuit 122 into alternating current through a receiving coil or a receiving antenna (not shown in the figure), and perform operations such as rectification and/or filtering on the alternating current, and the alternating current Converted into the output voltage and output current of the wireless receiving circuit 131, the output voltage and output current received by the wireless receiving circuit 131 are adjusted by the charging management circuit 132 to obtain the expected charging voltage and/or the battery 133 in the device to be charged 130 Or the charging current is required, so that the battery 133 can be charged.
  • the charging management circuit 132 may be a charging integrated circuit (Integrated Circuit, IC).
  • the circuit to be detected in the implementation of this application can detect battery 133 information, such as battery temperature, battery voltage and battery current, etc., and can also detect the output current and output voltage of the charging management circuit 132 and the output voltage and output current of the wireless receiving circuit 131 Wait.
  • battery 133 information such as battery temperature, battery voltage and battery current, etc.
  • Fig. 2 is a schematic diagram of a device to be charged according to an embodiment of the application.
  • the device to be charged may include a Universal Serial Bus (USB) interface 210, a load switch 220, a charging management circuit 230, a battery 240, a detection circuit 250, an application processor (AP) 260, and a wireless receiving circuit 270.
  • USB Universal Serial Bus
  • AP application processor
  • the device to be charged in the embodiment of the present application can realize wireless charging and wired charging of the device to be charged by switching the load switch 220.
  • the load switch is switched to the USB interface 210 and connected to the USB interface 210
  • the standby device can be realized through the USB interface 210.
  • the load switch is switched to the wireless receiving circuit 270 to connect to the wireless receiving circuit 270
  • the device to be charged can be charged by means of wireless charging.
  • 1 in Figure 2 can be a control signal pin.
  • the OTG (On-The-Go) function of the load switch 220 is activated; when the signal is controlled to be low, the load switch 220 is turned off
  • the OTG function; 2 and 3 can be Inter-Integrated Circuit (I2C) buses, which are used for AP's access to the wireless receiving circuit 270 to control the wireless charging process, where 2 can be used to transmit clock signals 3 can be a bus used to transmit data signals; 4 can be a signal provided by the wireless receiving circuit 270 to notify the AP to read its internal specific address register through the I2C bus; 5 can also be a wireless receiving circuit A signal provided by 270 is used to tell whether the AP is connected to the wireless transmitter; 6 can be a control signal from the AP to the wireless receiving circuit 270 to turn on or turn off the wireless charging function. When the control signal is low, turn it on The function of the wireless charging circuit, when the control signal is high, the function of the wireless charging circuit is turned off.
  • I2C Inter-
  • the transmitting power of the wireless transmitting device can be increased to increase the receiving power (including voltage and current) of the wireless receiving circuit.
  • the management of the voltage and current and the voltage and current output by the charging management circuit can realize rapid charging of the device to be charged.
  • the receiving coil in the wireless receiving circuit generates severe heat, which reduces the service life of the device to be charged.
  • the embodiments of the present application provide a charging method, which can reduce the heat of the device to be charged, and further reduce the temperature of the device to be charged during the charging process, thereby prolonging the service life of the device to be charged;
  • a charging method which can reduce the heat of the device to be charged, and further reduce the temperature of the device to be charged during the charging process, thereby prolonging the service life of the device to be charged;
  • the device to be charged 130 used in the embodiments of this application may refer to a terminal, and the “terminal” may include, but is not limited to, set to be connected via a wired line (such as via a public switched telephone network (PSTN)) , Digital Subscriber Line (DSL), digital cable, direct cable connection, and/or another data connection/network) and/or via (for example, for cellular networks, Wireless Local Area Network (WLAN) , Digital TV networks such as Digital Video Broadcasting Handheld (DVB-H) networks, satellite networks, AM-FM (Amplitude Modulation-Frequency Modulation) broadcast transmitters, and/or another communication terminal ⁇ )
  • a device for receiving/sending communication signals on a wireless interface A terminal set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a "wireless terminal” and/or a "mobile terminal”.
  • mobile terminals include, but are not limited to satellite or cellular phones; Personal Communication System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, and the Internet/ Personal Digital Assistant (PDA) with intranet access, Web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop Receiver or other electronic device including a radio telephone transceiver.
  • the device to be charged may refer to the mobile terminal being a device or a handheld terminal device, such as a mobile phone, a pad, and so on.
  • the device to be charged mentioned in the embodiments of the present application may refer to a chip system. In this embodiment, the battery of the device to be charged may or may not belong to the chip system.
  • the devices to be charged can also include other devices to be charged that require charging, such as mobile phones, mobile power sources (such as power banks, travel chargers, etc.), electric cars, laptops, drones, tablets, e-books, and e-cigarettes. , Smart standby charging equipment and small electronic products, etc. Smart devices to be charged can include, for example, watches, bracelets, smart glasses, and sweeping robots. Small electronic products may include, for example, wireless headsets, Bluetooth speakers, electric toothbrushes, and rechargeable wireless mice.
  • the wireless charging method 300 provided by an embodiment of the present application will be described in detail below with reference to FIG. 3.
  • the method 300 provided by the embodiment of the present application may include steps 310-340.
  • the communication control circuit instructs the wireless transmitting device to increase the transmission power, so as to increase the voltage output by the wireless receiving circuit.
  • the communication control circuit in the embodiments of the present application may be the internal AP of the device to be charged mentioned above, and the control function of the communication control circuit may be realized by the AP, or may be realized by the micro control unit (MCU) and the AP Realize together.
  • MCU micro control unit
  • the first charging mode in the embodiment of the present application may be a BPP mode, and its power is generally 5W, that is, a charging mode with a voltage of 5V and a current of 1A, and the second charging mode may be an EPP mode, and its power is generally 15W-25W.
  • the BPP mode and the EPP mode may also be referred to as the BPP state and the EPP state.
  • the BPP state and the EPP state in the embodiments of the present application refer to two of the charging states in the wireless charging process. To facilitate understanding, the wireless charging process will be briefly introduced first.
  • the charging state of the device to be charged may include four states: BPP, boost, current boost, and EPP.
  • BPP the state where the charging power is equal to 5W
  • EPP the state where the charging power is between 15W-25W.
  • BPP and EPP the boost state and the up current state can be passed.
  • boost state the charging voltage of the battery can be increased, and the charging current of the battery can be increased during the up current state.
  • the device to be charged may not enter the wireless charging state.
  • the communication control circuit of the device to be charged first detects the signal of the wireless receiving circuit, and determines whether to enter the BPP state to charge according to the signal. If the communication control circuit of the device to be charged detects a rising edge interrupt signal, it starts a 500ms cycle execution task, and then starts to monitor the wireless charging process; if the communication control circuit in the device to be charged detects a falling edge interrupt Signal, the communication control circuit controls the device to be charged to exit the wireless charging process.
  • the first charging mode takes the BPP state
  • the second charging mode takes the EPP state as an example.
  • the communication control circuit instructs the wireless transmitting device to increase the transmission power, so as to increase the current output by the charging management circuit.
  • the wireless receiving circuit in the embodiment of the present application may include a receiving coil or a receiving antenna, and a shaping circuit such as a rectifier circuit and/or a filter circuit connected to the receiving coil and the receiving antenna.
  • the receiving antenna or the receiving coil can be used to convert electromagnetic signals into alternating current
  • the shaping circuit can be used to convert the alternating current into the output voltage and output current of the wireless receiving circuit.
  • the embodiment of the present application does not specifically limit the specific form of the shaping circuit and the form of the output voltage and output current of the wireless receiving circuit obtained after the shaping circuit is shaped.
  • the charging management circuit in the embodiment of the present application may be a charging integrated circuit (Integrated Circuit, IC).
  • the charging management circuit can be used to manage the charging voltage and/or charging current of the battery.
  • the charging management circuit may include a voltage feedback function and/or a current feedback function to realize the management of the charging voltage and/or charging current of the battery.
  • the detection circuit detects the output current of the wireless receiving circuit.
  • the communication control circuit increases the output voltage of the wireless receiving circuit so that the output current of the wireless receiving circuit is less than or equal to the first current threshold. Current threshold.
  • the first voltage threshold is 12V and the first current threshold is 1.05A as an example for description.
  • the temperature is appropriate, For example, if the battery temperature is in the range of -3°C to 55°C, the device to be charged first enters the BPP state for charging, and then can be adjusted from the BPP state to the EPP state.
  • the output voltage of the wireless receiving circuit can be increased first.
  • the communication control circuit can increase the output current of the charging management circuit, for example, the communication control circuit It can send instruction information to the charging management circuit to instruct the charging management circuit to increase the output current.
  • the communication control circuit can feed back the output voltage and output current of the charging management circuit to the wireless transmitting device, so that the wireless transmitting device is based on the received feedback information Adjust the output voltage of the wireless transmitting circuit.
  • the communication control circuit can The output voltage of the wireless receiving circuit is increased.
  • the communication control circuit can directly control and increase the output voltage of the wireless receiving circuit, or can send instruction information to instruct the wireless receiving circuit to increase the output voltage, thereby reducing the output current of the wireless receiving circuit.
  • the communication control circuit may also increase the output voltage of the wireless receiving circuit to make the output current of the wireless receiving circuit smaller than the first current threshold.
  • the communication control circuit can adjust the output voltage of the wireless receiving circuit by judging whether the output current of the wireless receiving circuit is greater than the first current threshold, thereby reducing the output of the wireless receiving circuit.
  • the heating of the device to be charged can be reduced, and the temperature of the device to be charged during the charging process can be further reduced, so as to extend the service life of the device to be charged;
  • the heating of the wireless receiving circuit can be controlled, so that the charging speed can be improved.
  • the wireless charging method 300 may further include step 340.
  • the communication control circuit increases the output current of the charging management circuit until the output current of the charging management circuit reaches the first current threshold. 2. Current threshold.
  • the output voltage of the wireless receiving circuit can be increased first.
  • the communication control circuit can increase the output current of the charging management circuit.
  • the communication control circuit can increase the output voltage of the wireless receiving circuit, thereby reducing the output current of the wireless receiving circuit.
  • the communication control circuit increases the output voltage of the wireless receiving circuit to reduce the output current of the wireless receiving circuit, if the output current of the wireless receiving circuit is less than or equal to 1.05A, the communication control circuit can continue to increase the output of the charging management circuit The current until the output current of the charging management circuit reaches the second current threshold, for example, it can be 1.5A.
  • the first current threshold may be 1.05A
  • the second current threshold may be 1.5A
  • the numerical values in the embodiments of the present application are only examples, and may also be other numerical values, which should not specifically limit the present application.
  • the wireless charging when the output current of the charging management circuit reaches a second current threshold, the wireless charging enters the EPP state; or when the output current of the charging management circuit does not reach the first current threshold.
  • the output current of the charging management circuit when the communication control circuit increases the output current of the charging management circuit by the second current threshold, the output current of the charging management circuit may no longer be increased. It is understandable that if the output current of the charging management circuit is continuously increased and exceeds the maximum charging current of the battery, the battery of the device to be charged may be damaged, thereby reducing the service life of the battery. In severe cases, the safety of the device to be charged may be endangered. .
  • the communication control circuit in the process of increasing the output current of the charging management circuit, it can be determined whether the output current of the wireless receiving circuit is greater than the first current threshold, and the communication control circuit can dynamically adjust the output voltage of the wireless receiving circuit so as to make wireless receiving The output current of the circuit is less than or equal to the first current threshold to reduce the heating of the receiving coil in the wireless receiving circuit. Therefore, in the process of increasing the output current of the charging management circuit, it is possible that the output current of the charging management circuit does not reach the second current threshold, but the output voltage of the wireless receiving circuit has increased to the first voltage threshold. At this time, the communication control The circuit can no longer increase the output current of the charging management circuit, and enter the EPP state in advance to charge the device to be charged.
  • the second voltage threshold is 15V
  • the first current threshold is 1.05A
  • the second current threshold is 1.5A.
  • the device to be charged when the device to be charged is connected to the wireless transmitter, the device to be charged first enters the BPP state for charging, and then can be adjusted from the BPP state to the EPP state. In the process of adjusting from the BPP state to the EPP state, the output voltage of the wireless reception can be increased first, and then the output current of the charging management circuit can be increased.
  • the communication control circuit increases the output current of the charging management circuit to 1.2A, the power transmitted by the wireless transmitting circuit cannot meet the voltage and voltage required by the battery.
  • the current is current, it can communicate with the wireless transmitting device through the communication control circuit, so that the voltage regulating circuit of the wireless transmitting device increases the output voltage of the wireless transmitting circuit.
  • the output voltage of the wireless transmitting circuit increases to 14V, the power of the wireless receiving circuit It will also increase, including an increase in the output voltage of the wireless receiving circuit and/or an increase in output current.
  • the communication control circuit can again increase the charging management circuit The output current is increased to 1.4A. Similarly, the communication control circuit feeds back its output current and output voltage to the wireless transmitting device, and the wireless transmitting device adjusts the output voltage of the wireless transmitting circuit according to the feedback output current and output voltage of the charging management circuit. For example, it is increased to 16V. At this time, if the output voltage of the wireless receiving circuit increases and the output current of the wireless receiving circuit is still less than the first current threshold, the output current of the charging management circuit can continue to be increased until the output current of the charging management circuit reaches At the second current threshold, the wireless charging enters the EPP state.
  • the communication control circuit increases the output current of the charging management circuit to 1.2A, after the voltage regulating circuit of the wireless transmitting device increases the output voltage of the wireless transmitting circuit, the output current of the wireless receiving circuit is greater than the first
  • the communication control circuit can increase the output voltage of the wireless receiving circuit to reduce the output current of the wireless receiving circuit; after the communication control circuit adjusts the output voltage of the wireless receiving circuit, the output current of the wireless receiving circuit is still greater than In the case of the first current threshold, the communication control circuit can continue to increase the output voltage of the wireless receiving circuit.
  • the output voltage of the wireless receiving circuit reaches the first voltage threshold, it can enter the EPP state in advance regardless of the output current of the charging management circuit.
  • the communication control circuit may also feed back the output voltage and output current of the wireless receiving circuit to the wireless transmitting device, so that the wireless transmitting device adjusts the output voltage of the wireless transmitting circuit according to the feedback voltage and current.
  • the communication control circuit instructs the wireless transmitting device to increase the transmitting power of the wireless transmitting device, including: a power difference between the power expected to be received by the wireless receiving circuit and the power actually received In the case that the power difference is greater than or equal to the first threshold, the communication control circuit sends the first indication information to the wireless transmitting device, so that the power difference is less than the first threshold; wherein, the The first indication information is used to instruct the wireless transmitting device to increase the output voltage of the wireless transmitting circuit.
  • the communication control circuit may feed back the first indication information to the wireless transmitting device when the power difference between the power expected to be received by the wireless receiving circuit and the power actually received is greater than or equal to the first threshold. , Instruct the voltage regulating circuit of the wireless transmitting device to adjust the voltage to increase the output voltage of the wireless transmitting circuit.
  • the communication control circuit can communicate wirelessly with the wireless transmitting device so that the wireless transmitting device can adjust the output voltage of the wireless transmitting circuit so that the output voltage of the wireless receiving circuit can be increased. Therefore, the output voltage of the charging management circuit can meet the charging demand of the battery.
  • the wireless charging before the wireless charging is ready to enter the boost state, it can be determined whether the power difference between the expected received power of the wireless receiving circuit and the actually received power is greater than or equal to the first threshold, because before the boost state , The wireless charging is in the BPP state, and the expected received power of the wireless receiving circuit is consistent with the actual received power, so the output voltage of the wireless transmitting circuit can be fed back to the wireless transmitting device. In this process, the output voltage of the wireless receiving circuit can be gradually increased.
  • the device to be charged sends first indication information to the wireless transmitting device, instructing the output voltage of the wireless transmitting circuit of the wireless transmitting device to increase by 1V, and the wireless transmitting device uses the voltage regulating circuit to increase the output voltage of the wireless transmitting circuit. After the output voltage is increased by 1V, the power of the wireless receiving circuit increases accordingly.
  • the communication control circuit sends the first indication information to the wireless transmitting device again, indicating wireless The output voltage of the wireless transmitting circuit of the transmitting device is increased by 1V, and the cycle is repeated until the output voltage of the wireless receiving circuit is increased to 12V.
  • the wireless charging method 300 may further include step 360.
  • the method further includes: the communication control circuit setting the current output by the charging management circuit to a third current threshold.
  • the communication control circuit may set the current output by the charging management circuit to the battery to the third current threshold, for example, it may be set to 0.3A, That is to say, in this process, the current output from the charging management circuit to the battery can be set to be smaller, so as to avoid the undercharge caused by the excessive charging current of the battery during the adjustment of the charging state from the BPP state to the EPP state. Pressure protection issues.
  • the receiving chip in the wireless receiving circuit may be damaged. That is to say, in the process of adjusting from the BPP state to the EPP state, if the output current of the charging management circuit to the battery is set to 0, it will cause the battery to be temporarily charged. At this time, if the output voltage of the wireless receiving circuit is continuously increased , May cause damage to the receiving chip.
  • the communication control circuit sets the output current of the charging management circuit to the third current threshold, which can make the boost state during the wireless charging process more stable, and can avoid the excessive charging current of the battery during the boost process.
  • the resulting undervoltage protection problem can also avoid damage to the device to be charged due to suspension of charging the battery, thereby protecting the device to be charged.
  • the communication control circuit may not set the current output by the charging management circuit to the battery to 0.3A, or it may be set It is 0.4A or 0.25A, etc., which is not specifically limited in this application.
  • the method further includes: the device to be charged acquiring first information: temperature information of the battery, voltage information of the battery, state of charge information of the battery, and The type of power supply equipment connected to the wireless transmitting device; when the first information satisfies the conditions for entering the EPP state, adjust from the BPP state to the EPP state
  • the detection circuit first detects the temperature information of the battery, and determines the charging state according to the temperature information of the battery. For example, when the battery temperature is less than -3.5°C or greater than or equal to 54°C, turn off charging and stop charging the battery; if the battery temperature is greater than or equal to -3.5°C and less than 18.5°C or the battery temperature is greater than or equal to 44°C and less than 54°C °C, the wireless charging is forced to always work in the BPP state, and the battery is charged in the BPP mode.
  • the device to be charged when the battery temperature is greater than or equal to 18.5°C and less than 44°C, the device to be charged will enter the BPP state for charging by default. At this temperature, the device to be charged may enter the EPP state for charging, and a wireless transmitting device needs to be obtained.
  • the type of the connected power supply device so that the device to be charged can determine whether the charging can enter the EPP state according to the type returned by the wireless transmitting device. If the power supply device does not respond or the type of power supply device connected to the power supply device does not support fast charging, the device to be charged will always work in the BPP state; if the power supply device returns to the connected power supply device, the type of power supply device supports fast charging.
  • the battery voltage is greater than 3.3V and less than 4.4V, and when the battery state of charge is less than or equal to 90, the device to be charged can start to enter the wireless fast charging state, that is, the EPP state.
  • the power supply device can be an adapter, a mobile power supply, a car charger, or a computer.
  • the detection circuit can continuously detect some information during the charging process to dynamically adjust The output current of the charging management circuit and the output voltage of the wireless receiving circuit.
  • the detection circuit of the device to be charged detects any one of the following information, including the battery temperature information and the battery charging current information, The battery voltage information, the output voltage of the wireless receiving circuit, the power difference between the expected power received by the wireless receiving circuit and the power actually received; the communication control circuit is based on the information detected by the detection circuit Any one of the information in adjusting the output current of the charging management circuit or the output voltage of the wireless receiving circuit; the communication control circuit adjusts the adjusted output current of the charging management circuit or the adjusted wireless receiving circuit The output voltage of the circuit is fed back to the wireless transmitting device.
  • the detection circuit can continuously detect the battery temperature, battery charging current, battery voltage, the output voltage of the wireless receiving circuit, and the expected received power of the wireless receiving circuit and the actual received power Information such as the power difference between the powers, so that the communication control circuit adjusts the output current of the charging management circuit or the output voltage of the wireless receiving circuit according to the information detected by the detection circuit, and feeds the adjusted current or voltage back to the first
  • the communication control circuit is used for the first communication control circuit to adjust the transmission power of the wireless transmission circuit according to the received feedback information.
  • the communication control circuit adjusting the output current of the charging management circuit according to at least one of the information detected by the detection circuit includes: When the temperature of the battery is greater than or equal to the first temperature threshold, and the detected output current of the charging management circuit is greater than the fourth current threshold, the communication control circuit reduces the output current of the charging management circuit by the fifth current threshold And the lowest is lowered to the fourth current threshold; when the temperature of the battery detected by the detection circuit is greater than or equal to the second temperature threshold, and the detected output current of the charge management circuit is greater than the sixth current threshold, The communication control circuit sets the output current of the charging management circuit to a sixth current threshold; the temperature of the battery detected by the detection circuit is less than the third temperature threshold, and the detected output current of the charging management circuit is less than In the case of the seventh current threshold, the communication control circuit sets the output current of the charging management circuit to the seventh current threshold.
  • the communication control circuit can be based on the battery temperature. And the current output from the charging management circuit to the battery determine and adjust the current output from the charging management circuit to the battery.
  • the communication control circuit can reduce the current output by the charging management circuit to the battery by 0.2A, but it should be noted that during the reduction process, the current output by the charging management circuit to the battery can be as low as 0.5A.
  • the current output from the charging management circuit to the battery can be reduced by 0.2A, that is, 0.6A; if the current output from the charging management circuit to the battery is 0.65A, you can Reduce the current output from the charging management circuit to the battery to 0.5A.
  • the communication control circuit can set the current output from the charging management circuit to the battery to 0.8A; if the battery temperature is less than 37°C and the output current of the charging management circuit is less than 1.6A, for example, when the battery temperature is 36°C and the charging management When the current output by the circuit to the battery is 1.5A, the communication control circuit can switch to the up-current state to increase the current output by the charging management circuit to the battery to the maximum charging current value, for example, 1.5A.
  • the communication control circuit adjusting the output current of the charging management circuit according to at least one of the information detected by the detection circuit includes:
  • the detection circuit detects that the absolute value of the power difference between the power expected to be received by the wireless receiving circuit and the power actually received is greater than or equal to the first threshold for three consecutive times and the output current of the charging management circuit is less than or
  • the communication control circuit adjusts the output voltage of the wireless receiving circuit according to the power difference; when the power difference is less than In the case of 5, the communication control circuit reduces the output voltage of the wireless receiving circuit by a third voltage threshold; in the case that the power difference is greater than or equal to 5 and less than 20, the communication control circuit reduces the The output voltage of the wireless receiving circuit is lowered by a fourth voltage threshold; when the power difference is greater than or equal to 20, the communication control circuit lowers the output voltage of the wireless receiving circuit by a fifth voltage threshold.
  • the output voltage of the wireless receiving circuit may be determined and adjusted according to the power difference between the power expected to be received by the wireless receiving circuit and the power actually received.
  • the power difference between the expected received power of the wireless receiving circuit and the actually received power is 1, it means that the power difference between the actual received power and the expected received power of the wireless receiving circuit is relatively low.
  • the output voltage of the wireless receiving circuit can be reduced by 0.02V; if the power difference is 10, it means that the power difference between the power actually received by the wireless receiving circuit and the expected received power is large at this time, and the wireless The output voltage of the receiving circuit is reduced by 0.05V; if the power difference is 23, it means that the power difference between the power actually received by the wireless receiving circuit and the expected received power is very large, and the output voltage of the wireless receiving circuit can be reduced. Decrease by 0.1V. But it should be noted that in this process, the output voltage of the reduced wireless receiving circuit is at least 12V.
  • the frequency at which the detection circuit detects the power difference between the power expected to be received by the wireless receiving circuit and the power actually received can be of the ms level, for example, it can be detected once in 10 ms.
  • the power difference is greater than or equal to the first threshold, and the output voltage of the wireless receiving circuit can be adjusted.
  • a device to be charged 600 may include a wireless receiving circuit 610, a charging management circuit 620, a battery 630, a communication control circuit 640, and a detection circuit 650.
  • the communication control circuit 640 is configured to instruct the wireless transmitting device to increase the transmission power during the adjustment of the wireless charging state of the battery 630 from the first charging mode to the second charging mode, so that the voltage output by the wireless receiving circuit 610 is increased.
  • the communication control circuit 640 is further configured to: when the voltage output by the wireless receiving circuit 610 reaches a first voltage threshold, instruct the wireless transmitting device to increase the transmission power so as to increase the current output by the charging management circuit 620.
  • the device to be charged further includes a detection circuit 650 for detecting the output current of the wireless receiving circuit 610.
  • the communication control circuit 640 is further configured to: when the output current of the wireless receiving circuit 610 is greater than a first current threshold, increase the output voltage of the wireless receiving circuit 610 so that the output current of the wireless receiving circuit 610 is less than Or equal to the first current threshold.
  • the communication control circuit 640 is further configured to: when the output current of the wireless receiving circuit 610 is less than or equal to the first current threshold, increase the charging management circuit 620 Until the output current of the charging management circuit 620 reaches the second current threshold.
  • the wireless charging when the output current of the charging management circuit 620 reaches a second current threshold, the wireless charging enters the second charging mode; or when the output current of the charging management circuit 620 does not When the second current threshold is reached and the output voltage of the wireless receiving circuit 610 reaches the second voltage threshold, the wireless charging enters the second charging mode.
  • the communication control circuit 640 is specifically configured to: when the power difference between the expected power received by the wireless receiving circuit 610 and the actually received power is greater than or equal to a first threshold In this case, the first indication information is sent to the wireless transmission device so that the power difference is smaller than the first threshold; wherein, the first indication information is used to instruct the wireless transmission device to increase the The output voltage of the wireless transmitting circuit.
  • the first threshold is zero.
  • the communication control circuit 640 is further configured to: before the wireless charging state of the battery 630 is adjusted from the first charging mode to the second charging mode, manage the charging The current output by the circuit 620 is set to the third current threshold.
  • the communication control circuit 640 is further configured to: obtain first information: temperature information of the battery 630, voltage information of the battery 630, and state of charge information of the battery 630 And the type of the power supply device connected to the wireless transmitting device; when the first information satisfies the condition for entering the second charging mode, adjustment is made from the first charging mode to the second charging mode.
  • the detection circuit 650 is further configured to detect the following information during the second charging mode: the battery temperature information, the battery charging current information, and the battery voltage Information, the output voltage of the wireless receiving circuit 610, the power difference between the power expected to be received by the wireless receiving circuit 610 and the power actually received; the communication control circuit 640 is also used to: according to the detection circuit At least one of the information detected by 650 adjusts the output current of the charging management circuit 620 or the output voltage of the wireless receiving circuit 610; adjusts the adjusted output current of the charging management circuit 620 or the adjusted output current The output voltage of the wireless receiving circuit 610 is fed back to the wireless transmitting device.
  • the communication control circuit 640 is specifically configured to: the temperature of the battery detected by the detection circuit is greater than or equal to a first temperature threshold, and the detected output of the charge management circuit When the current is greater than the fourth current threshold, the output current of the charging management circuit is reduced by the fifth current threshold and to the fourth current threshold at the lowest; the temperature of the battery detected by the detection circuit is greater than or equal to the second Temperature threshold, and the detected output current of the charging management circuit is greater than the sixth current threshold, the output current of the charging management circuit is set to the sixth current threshold; the detection circuit detects the battery In a case where the temperature is less than the third temperature threshold and the detected output current of the charging management circuit is less than the seventh current threshold, the output current of the charging management circuit is set to the seventh current threshold.
  • the communication control circuit 640 is specifically configured to: the detection circuit detects the absolute value of the power difference between the power expected to be received by the wireless receiving circuit and the power actually received When three consecutive times are greater than or equal to the first threshold, the output current of the charging management circuit is less than or equal to the eighth current threshold, and the output voltage of the wireless receiving circuit is greater than the first voltage threshold, adjust according to the power difference The output voltage of the wireless receiving circuit; when the power difference is less than 5, the output voltage of the wireless receiving circuit is reduced by a third voltage threshold; when the power difference is greater than or equal to 5 and less than 20 Next, the output voltage of the wireless receiving circuit is reduced by a fourth voltage threshold; if the power difference is greater than or equal to 20, the output voltage of the wireless receiving circuit is reduced by a fifth voltage threshold.
  • An embodiment of the present application also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are configured to execute any one of the above-mentioned wireless charging methods 300.
  • the embodiments of the present application also provide a computer program product.
  • the computer program product includes a computer program stored on a computer-readable storage medium.
  • the computer program includes program instructions. When the program instructions are executed by a computer, the computer program The computer executes any one of the wireless charging methods 300 described above.
  • the traditional wireless charging technology generally connects the power supply device (such as an adapter) with a wireless charging device (such as a wireless charging base), and transmits the output power of the power supply device wirelessly (such as electromagnetic waves) to the waiting device through the wireless charging device. Charging equipment, charging equipment to be charged wirelessly.
  • wireless charging methods are mainly divided into three methods: magnetic coupling (or electromagnetic induction), magnetic resonance, and radio waves.
  • mainstream wireless charging standards include QI standards, Power Matters Alliance (PMA) standards, and Wireless Power Alliance (Alliance for Wireless Power, A4WP).
  • QI QI standards
  • PMA Power Matters Alliance
  • A4WP Wireless Power Alliance
  • Both the QI standard and the PMA standard use magnetic coupling for wireless charging.
  • the A4WP standard uses magnetic resonance for wireless charging.
  • the wireless charging system includes a power supply device 10, a wireless charging signal transmitting device 20, and a charging control device 30.
  • the transmitting device 20 may be, for example, a wireless charging base, and the charging control device 30 may refer to the device to be charged, such as It can be a terminal.
  • the output voltage and output current of the power supply device 10 are transmitted to the transmitting device 20.
  • the transmitting device 20 can convert the output voltage and output current of the power supply device 10 into a wireless charging signal (for example, an electromagnetic signal) through an internal wireless transmitting circuit 21 for transmission.
  • a wireless charging signal for example, an electromagnetic signal
  • the wireless transmitting circuit 21 can convert the output current of the power supply device 10 into alternating current, and convert the alternating current into a wireless charging signal through a transmitting coil or a transmitting antenna.
  • FIG. 7 only exemplarily shows a schematic structural diagram of the wireless charging system, but the embodiment of the present application is not limited thereto.
  • the transmitting device 20 may also be called a wireless charging signal transmitting device
  • the charging control device 30 may also be called a wireless charging signal receiving device.
  • the wireless charging signal receiving device may be, for example, a chip with a wireless charging signal receiving function, which can receive the wireless charging signal transmitted by the transmitting device 20; the wireless charging signal receiving device may also be a device to be charged.
  • the charging control device 30 can receive the wireless charging signal transmitted by the wireless transmitting circuit 21 through the wireless receiving circuit 31, and convert the wireless charging signal into the output voltage and output current of the wireless receiving circuit 31.
  • the wireless receiving circuit 31 may convert the wireless charging signal transmitted by the wireless transmitting circuit 21 into alternating current through a receiving coil or a receiving antenna, and perform operations such as rectification and/or filtering on the alternating current to convert the alternating current into the wireless receiving circuit 31 The output voltage and output current.
  • the transmitting device 20 and the charging control device 30 negotiate in advance the transmitting power of the wireless transmitting circuit 21. Assuming that the power negotiated between the transmitting device 20 and the charging control device 30 is 5W, the output voltage and output current of the wireless receiving circuit 31 are generally 5V and 1A. Assuming that the power negotiated between the transmitting device 20 and the charging control device 30 is 10.8W, the output voltage and output current of the wireless receiving circuit 31 are generally 9V and 1.2A.
  • the output voltage of the wireless receiving circuit 31 is not suitable to be directly applied to both ends of the battery 33, it is necessary to perform constant voltage and/or constant current control through the charging management circuit 32 in the charging control device 30 to obtain the charging control device 30 The expected charging voltage and/or charging current of the battery 33 inside.
  • the charging management circuit 32 can be used to transform the output voltage of the wireless receiving circuit 31 so that the output voltage and/or output current of the charging management circuit 32 meets the expected charging voltage and/or charging current requirements of the battery 33.
  • the charging management circuit 32 may be, for example, the charging management circuit mentioned in the embodiment of the present application.
  • the conversion circuit 32 can be used to manage the charging voltage and/or charging current of the battery 33.
  • the conversion circuit 32 may include a voltage feedback function and/or a current feedback function to realize the management of the charging voltage and/or charging current of the battery 33.
  • the communication control circuit may transmit instruction information to the transmitting device to instruct the transmitting device to increase the transmitting power to increase the output power of the wireless receiving circuit. Therefore, during the charging process, the communication control circuit can communicate with the transmitting device, so that the output power of the wireless receiving circuit can meet the charging requirements of the battery in different charging stages.
  • the embodiment of the present application does not specifically limit the communication mode between the charging control device 30 and the transmitting device 20.
  • the charging control device 30 and the transmitting device 20 may adopt Bluetooth (bluetooth) communication, wireless fidelity (Wi-Fi) communication, or backscatter modulation (or power Load modulation method) communication, short-range wireless communication based on high carrier frequency, optical communication, ultrasonic communication, ultra-wideband communication or mobile communication and other wireless communication methods for communication.
  • the short-range wireless communication module based on a high carrier frequency may include an IC chip with an extremely high frequency (EHF) antenna encapsulated inside.
  • the high carrier frequency may be 60 GHz.
  • the optical communication may use an optical communication module for communication.
  • the optical communication module may include an infrared communication module, and the infrared communication module may use infrared to transmit information.
  • mobile communication may be communication using a mobile communication module.
  • the mobile communication module can use mobile communication protocols such as 5G communication protocol, 4G communication protocol or 3G communication protocol for information transmission.
  • the reliability of communication can be improved, and the voltage ripple caused by signal coupling communication can be avoided. Wave affects the voltage processing process of the step-down circuit.
  • the charging control device 30 and the transmitting device 20 may also communicate in a wired communication manner of a data interface.
  • Fig. 8 is another schematic diagram of a charging system provided by an embodiment of the present application.
  • the wireless charging signal transmitting device 20 may further include a charging interface 23, and the charging interface 23 may be used to connect to an external power supply device 10.
  • the wireless transmitting circuit 21 can also be used to generate a wireless charging signal according to the output voltage and output current of the power supply device 10.
  • the first communication control circuit 22 can also adjust the amount of power drawn by the wireless transmission circuit 21 from the output power of the power supply device 10 during the wireless charging process to adjust the transmission power of the wireless transmission circuit 21 so that the wireless transmission circuit transmits
  • the power can meet the charging demand of the battery.
  • the power supply device 10 can also directly output a relatively large fixed power (such as 40W), and the first communication control circuit 22 can directly adjust the amount of power drawn by the wireless transmitting circuit 21 from the fixed power provided by the power supply device 10.
  • the output power of the power supply device 10 may be fixed.
  • the power supply device 10 can directly output a relatively large fixed power (such as 40W), and the power supply device 10 can provide the wireless charging device 20 with output voltage and output current according to the fixed output power.
  • the first communication control circuit 22 can extract a certain amount of power from the fixed power of the power supply device for wireless charging according to actual needs. That is to say, the embodiment of the present application allocates the control right to adjust the transmission power of the wireless transmission circuit 21 to the first communication control circuit 22, and the first communication control circuit 22 can receive the instruction information sent by the second communication control circuit 35.
  • the transmission power of the wireless transmission circuit 21 is adjusted immediately to meet the current charging requirements of the battery, which has the advantages of fast adjustment speed and high efficiency.
  • the embodiment of the present application does not specifically limit the manner in which the first communication control circuit 22 extracts the amount of power from the maximum output power provided by the power supply device 10.
  • a voltage conversion circuit 24 may be provided inside the transmitting device 20 of the wireless charging signal, and the voltage conversion circuit 24 may be connected to the transmitting coil or the transmitting antenna for adjusting the power received by the transmitting coil or the transmitting antenna.
  • the voltage conversion circuit 24 may include, for example, a pulse width modulation (Pulse Width Modulation, PWM) controller and a switch unit.
  • PWM pulse width modulation
  • the first communication control circuit 22 can adjust the transmission power of the wireless transmission circuit 21 by adjusting the duty ratio of the control signal sent by the PWM controller.
  • the charging interface 23 may be a USB interface.
  • the USB interface may be, for example, a USB 2.0 interface, a micro USB interface, or a USB TYPE-C interface.
  • the charging interface 23 may also be a lightning interface, or any other type of parallel port and/or serial port that can be used for charging.
  • the embodiment of the present application does not specifically limit the communication mode between the first communication control circuit 22 and the power supply device 10.
  • the first communication control circuit 22 may be connected to the power supply device 10 through a communication interface other than the charging interface, and communicate with the power supply device 10 through the communication interface. As another example, the first communication control circuit 22 may communicate with the power supply device 10 in a wireless manner. For example, the first communication control circuit 22 may perform Near Field Communication (NFC) with the power supply device 10.
  • NFC Near Field Communication
  • the first communication control circuit 22 can communicate with the power supply device 10 through the charging interface 23 without setting an additional communication interface or other wireless communication module, which can simplify the implementation of the wireless charging device 20.
  • the charging interface 23 is a USB interface
  • the first communication control circuit 22 can communicate with the power supply device 10 based on the data lines (such as D+ and/or D- lines) in the USB interface.
  • the charging interface 23 may be a USB interface (such as a USB TYPE-C interface) supporting a power delivery (PD) communication protocol, and the first communication control circuit 22 and the power supply device 10 may communicate based on the PD communication protocol.
  • PD power delivery
  • adjusting the transmission power of the wireless charging signal by the first communication control circuit 22 may refer to that the first communication control circuit 22 adjusts the transmission power of the wireless charging signal by adjusting the input voltage and/or input current of the wireless transmission circuit 21.
  • the first communication control circuit may increase the transmission power of the wireless transmission circuit by increasing the input voltage of the wireless transmission circuit.
  • the device to be charged 30 may further include a first charging channel 36, through which the output voltage and/or output current of the wireless receiving circuit 31 can be provided to the battery 33, The battery 33 is charged.
  • a voltage conversion circuit 32 may be further provided on the first charging channel 36, and the input end of the voltage conversion circuit 32 is electrically connected to the output end of the wireless receiving circuit 31, and is used to perform a constant voltage on the output voltage of the wireless receiving circuit 31. And/or constant current control to charge the battery 33 so that the output voltage and/or output current of the voltage conversion circuit 32 matches the charging voltage and/or charging current currently required by the battery.
  • increasing the transmitting power of the wireless transmitting circuit 21 may refer to increasing the transmitting voltage of the wireless transmitting circuit 21, and increasing the transmitting voltage of the wireless transmitting circuit 21 may be achieved by increasing the output voltage of the voltage conversion circuit 24.
  • the first communication control circuit 22 receives the instruction to increase the transmission power sent by the second communication control circuit 35, it can increase the transmission power of the wireless transmission circuit 21 by increasing the output voltage of the voltage conversion circuit 24.
  • the wireless charging signal receiving device may further include a detection circuit 34 that can detect the voltage and/or charging current of the battery 33, and the second communication control circuit 35 can be based on the voltage and/or charging current of the battery 33 , Sending instruction information to the first communication control circuit 22 to instruct the first communication control circuit 22 to adjust the output voltage and output current corresponding to the transmitting power of the wireless transmitting circuit 21.
  • the transmit power of the wireless charging signal needs to be increased to meet the current charging requirements of the battery.
  • the charging current of the battery may continue to decrease, and the charging power required by the battery will also decrease accordingly.
  • the transmit power of the wireless charging signal needs to be reduced to meet the current charging requirements of the battery.
  • the first communication control circuit 22 can adjust the transmission power of the wireless charging signal according to the instruction information. It can mean that the first communication control circuit 22 adjusts the transmission power of the wireless charging signal so that the transmission power of the wireless charging signal is equal to the current required charging voltage of the battery. And/or the charging current.
  • the matching of the transmission power of the wireless transmission circuit 21 with the charging voltage and/or charging current currently required by the battery 33 may refer to the configuration of the transmission power of the wireless charging signal by the first communication control circuit 22 such that the output voltage of the first charging channel 36 And/or the output current matches the charging voltage and/or charging current currently required by the battery 33 (or, the configuration of the transmission power of the wireless charging signal by the first communication control circuit 22 makes the output voltage of the first charging channel 36 and/or Or the output current meets the charging requirements of the battery 33 (including the requirements of the battery 33 for charging voltage and/or charging current)).
  • the output voltage and/or output current of the first charging channel 36 matches the charging voltage and/or charging current currently required by the battery 33” includes: the first charging channel 36
  • the voltage value and/or current value of the output direct current is equal to the charging voltage value and/or charging current value required by the battery 33 or within a floating preset range (for example, the voltage value fluctuates from 100 mV to 200 mV, the current value Floating from 0.001A to 0.005A, etc.).
  • the second communication control circuit 35 described above performs wireless communication with the first communication control circuit 22 based on the voltage and/or charging current of the battery 33 detected by the detection circuit 34, so that the first communication control circuit 22 can perform wireless communication according to the voltage and/or charging current of the battery 33
  • the charging current and adjusting the transmission power of the wireless transmission circuit 21 may include: during the constant current charging phase of the battery 33, the second communication control circuit 35 performs wireless communication with the first communication control circuit 22 according to the detected voltage of the battery, so that A communication control circuit 22 adjusts the transmission power of the wireless transmission circuit 21 so that the output voltage of the first charging channel 36 matches the charging voltage required by the battery in the constant current charging stage (or, so that the output voltage of the first charging channel 36 meets The battery 33 requires charging voltage during the constant current charging stage).
  • Fig. 9 is another example of a charging system provided by an embodiment of the present application.
  • the wireless charging signal transmitting device 20 corresponding to the embodiment of FIG. 9 does not obtain electric energy from the power supply device 10, but directly converts the externally input AC power (such as commercial power) into the above-mentioned wireless charging signal.
  • the wireless charging signal transmitting device 20 may further include a voltage conversion circuit 24 and a power supply circuit 25.
  • the power supply circuit 25 can be used to receive externally input AC power (such as commercial power), and generate the output voltage and output current of the power supply circuit 25 according to the AC power.
  • the power supply circuit 25 can rectify and/or filter the alternating current to obtain direct current or pulsating direct current, and transmit the direct current or pulsating direct current to the voltage conversion circuit 24.
  • the voltage conversion circuit 24 can be used to receive the output voltage of the power supply circuit 25 and convert the output voltage of the power supply circuit 25 to obtain the output voltage and output current of the voltage conversion circuit 24.
  • the wireless transmission circuit 21 can also be used to generate a wireless charging signal according to the output voltage and output current of the voltage conversion circuit 24.
  • the embodiment of the present application integrates an adapter-like function inside the wireless charging signal transmitting device 20, so that the wireless charging signal transmitting device 20 does not need to obtain power from an external power supply device, which improves the integration of the wireless charging signal transmitting device 20 And reduce the number of devices required to realize the wireless charging process.
  • the wireless charging signal transmitting device 20 may support the first wireless charging mode and the second wireless charging mode, and the wireless charging signal transmitting device 20 charges the device to be charged in the first wireless charging mode.
  • the wireless charging signal transmitting device 20 working in the first wireless charging mode is filled with the equipment to be charged with the same capacity The battery time is shorter.
  • the charging method provided in the embodiment of the present application may use the first charging mode for charging, and may also use the second charging mode for charging, which is not limited in the embodiment of the present application.
  • the second wireless charging mode may be a so-called normal wireless charging mode, for example, may be a traditional wireless charging mode based on the QI standard, the PMA standard, or the A4WP standard.
  • the first wireless charging mode may be a fast wireless charging mode.
  • the normal wireless charging mode may refer to a wireless charging mode in which the transmitting power of the transmitting device 20 of the wireless charging signal is relatively small (usually less than 15W, and the commonly used transmitting power is 5W or 10W). In the normal wireless charging mode, you want to fully charge it. A large-capacity battery (such as a 3000 mAh battery) usually takes several hours; and in the fast wireless charging mode, the transmission power of the wireless charging signal transmitter 20 is relatively large (usually greater than or equal to 15W ).
  • the wireless charging signal transmitting device 20 in the fast wireless charging mode requires a charging time to fully charge a battery of the same capacity can be significantly shortened and the charging speed is faster.
  • the device to be charged 30 further includes: a second charging channel 38.
  • the second charging channel 38 may be a wire.
  • the second charging channel 38 may be provided with a conversion circuit 37 for voltage control of the direct current output by the wireless receiving circuit 31 to obtain the output voltage and output current of the second charging channel 38 to charge the battery 33.
  • the conversion circuit 37 can be used in a step-down circuit, and outputs constant current and/or constant voltage electric energy. In other words, the conversion circuit 37 can be used to perform constant voltage and/or constant current control on the battery charging process.
  • the wireless transmitting circuit 21 can use a constant transmitting power to transmit an electromagnetic signal. After the wireless receiving circuit 31 receives the electromagnetic signal, it is processed by the conversion circuit 37 into a voltage sum that meets the charging requirements of the battery 33. The current is also input to the battery 33 to charge the battery 33. It should be understood that, in some embodiments, the constant transmission power does not necessarily mean that the transmission power remains completely unchanged, and it can vary within a certain range, for example, the transmission power is 7.5W and fluctuates 0.5W.
  • the charging method for charging the battery 33 through the first charging channel 36 is the first wireless charging mode
  • the charging method for charging the battery 33 through the second charging channel 38 is called the second wireless charging mode.
  • the wireless charging signal transmitter and the device to be charged can determine whether to use the first wireless charging mode or the second wireless charging mode to charge the battery 33 through handshake communication.
  • the maximum transmitting power of the wireless transmitting circuit 21 when the device to be charged is charged in the first wireless charging mode, the maximum transmitting power of the wireless transmitting circuit 21 may be the first transmitting power value.
  • the maximum transmission power of the wireless transmission circuit 21 may be the second transmission power value.
  • the first transmission power value is greater than the second transmission power value, and thus, the charging speed of the device to be charged in the first wireless charging mode is greater than the second wireless charging mode.
  • the second communication control circuit 35 can also be used to control the switching between the first charging channel 36 and the second charging channel 38.
  • a switch 39 can be provided on the first charging channel 36, and the second communication control circuit 35 can control the first charging channel 36 and the second charging channel 38 by controlling the on and off of the switch 39. Switch between.
  • the wireless charging signal transmitting device 20 may include a first wireless charging mode and a second wireless charging mode, and the wireless charging signal transmitting device 20 is to be charged in the first wireless charging mode.
  • the charging speed of 30 is faster than that of the wireless charging signal transmitting device 20 in the second wireless charging mode.
  • the second communication control circuit 35 can switch between the first charging channel 36 and the second charging channel 38 according to the charging mode.
  • the second communication control circuit 35 controls the voltage conversion circuit 32 on the first charging channel 36 to work.
  • the second communication control circuit 35 controls the conversion circuit 37 on the second charging channel 38 to work.
  • the wireless charging signal transmitting device 20 may communicate with the device to be charged 30 to negotiate a charging mode between the wireless charging signal transmitting device 20 and the device to be charged 30.
  • the first communication control circuit 22 in the wireless charging signal transmitting device 20 and the second communication control circuit 35 in the device to be charged 30 can also exchange many other communication information.
  • the first communication control circuit 22 and the second communication control circuit 35 can exchange information for safety protection, anomaly detection or fault handling, such as the temperature information of the battery 33, enter the overvoltage protection or overcurrent Information such as protection indication information, power transmission efficiency information (the power transmission efficiency information can be used to indicate the power transmission efficiency between the wireless transmitting circuit 21 and the wireless receiving circuit 31).
  • the communication between the second communication control circuit 35 and the first communication control circuit 22 may be one-way communication or two-way communication, which is not specifically limited in the embodiment of the present application.
  • the function of the second communication control circuit can be implemented by the application processor of the device to be charged 30, thereby saving hardware costs.
  • it can also be implemented by an independent control chip, which can improve the reliability of control.
  • the embodiment of the present application may integrate the wireless receiving circuit 33 and the voltage conversion circuit 37 in the same wireless charging chip, which can improve the integration of the device to be charged and simplify the implementation of the device to be charged.
  • the functions of traditional wireless charging chips can be expanded to support charging management functions.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a Digital Video Disc (DVD)), or a semiconductor medium (for example, a Solid State Disk (SSD)), etc. .
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种无线充电方法(300)和待充电设备(600),包括:在电池(630)的无线充电状态从第一充电模式向第二充电模式调整的过程中,通信控制电路(640)指示无线发射装置提升发射功率,以使无线接收电路(610)输出的电压提升;当无线接收电路(610)向充电管理电路(620)输出的电压达到第一电压阈值时,通信控制电路(640)指示无线发射装置提升发射功率,以使充电管理电路(620)输出的电流提升;检测电路(650)检测无线接收电路(610)的输出电流;当无线接收电路(610)的输出电流大于第一电流阈值时,通信控制电路(640)提升无线接收电路(610)的输出电压,以使得无线接收电路(610)的输出电流小于或等于第一电流阈值。

Description

无线充电方法和待充电设备
优先权信息
本申请请求2019年7月30日向中国国家知识产权局提交的、专利申请号为201910693649.9的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请实施例涉及充电技术领域,具体涉及一种无线充电方法和待充电设备。
背景技术
随着无线充电的普及,越来越多的电子设备都支持无线充电或无线传输等功能,然而在实际应用中,对电子设备进行无线充电时,存在发热严重的缺陷从而影响待充电设备的使用寿命。因此,如何降低电子设备在无线充电过程中的发热是需要解决的问题。
发明内容
本申请提供一种无线充电方法和待充电设备,能够降低电子设备在无线充电过程中的发热。
第一方面,提供一种无线充电方法,所述待充电设备包括无线接收电路,充电管理电路,通信控制电路,检测电路以及电池,所述无线接收电路的输出端与所述充电管理电路的输入端连接,所述充电管理电路的输入端与所述电池连接,所述通信控制电路控制所述无线接收电路和所述充电管理电路的输出电流和/或输出电压,所述方法包括:在所述电池的无线充电状态从第一充电模式向第二充电模式调整的过程中,所述通信控制电路指示无线发射装置提升发射功率,以使所述无线接收电路输出的电压提升;当所述无线接收电路输出的电压达到第一电压阈值时,所述通信控制电路指示所述无线发射装置提升发射功率,以使所述充电管理电路输出的电流提升;所述检测电路检测所述无线接收电路的输出电流;当所述无线接收电路的输出电流大于第一电流阈值时,所述通信控制电路提升所述无线接收电路的输出电压,以使得所述无线接收电路的输出电流小于或等于所述第一电流阈值。
第二方面,提供一种待充电设备,包括:通信控制电路,用于在电池的无线充电状态从第一充电模式向第二充电模式调整的过程中,指示无线发射装置提升发射功率,以使无线接收电路输出的电压提升;所述通信控制电路还用于:当所述无线接收电路输出的电压达到第一电压阈值时,指示所述无线发射装置提升发射功率,以使所述充电管理电路输出的电流提升;所述待充电设备还包括:检测电路,用于检测所述无线接收电路的输出电流;所述通信控制电路还用于:当所述无线接收电路的输出电流大于第一电流阈值时,提升所述无线接收电路的输出电压,以使得所述无线接收电路的输出电流小于或等于所述第一电流阈值。
第三方面,提供一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行上述第一方面或其各实现方式中任一项所述的方法。
第四方面,本申请提供一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面或其各实现方式中任一项所述的方法。
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请一个实施例提供的无线充电***的示意图;
图2是本申请实施例提供的待充电设备的示意性图;
图3是本申请一个实施例提供的无线充电方法的示意性图;
图4是本申请另一个实施例提供的无线充电方法的示意性图;
图5是本申请又一个实施例提供的无线充电方法的示意性图;
图6是本申请一个实施例提供的待充电设备的示意性图;
图7是本申请另一个实施例提供的无线充电***的示意图;
图8是本申请又一个实施例提供的无线充电***的示意图;
图9是本申请再一个实施例提供的无线充电***的示意图;
图10是本申请再一个实施例提供的无线充电***的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了更加清楚地理解本申请的方案,以下将简单介绍无线充电工作原理。但应理解,以下介绍的内容仅仅是为了更好的理解本申请,不应对本申请造成特别限定。
如图3和图6所示,本申请实施方式的一种无线充电方法300,应用于待充电设备600,待充电设备600包括无线接收电路610,充电管理电路620,通信控制电路640,检测电路650以及电池630,无线接收电路610的输出端与充电管理电路620的输入端连接,充电管理电路620的输入端与电池630连接,通信控制电路640控制无线接收电路610和充电管理电路620的输出电流和/或输出电压,方法300包括:
310,在电池630的无线充电状态从第一充电模式向第二充电模式调整的过程中,通信控制电路640指示无线发射装置提升发射功率,以使无线接收电路610输出的电压提升;
320,当无线接收电路610输出的电压达到第一电压阈值时,通信控制电路640指示无线发射装置提升发射功率,以使充电管理电路620输出的电流提升;
330,检测电路650检测无线接收电路610的输出电流;
340,当无线接收电路610的输出电流大于第一电流阈值时,通信控制电路640提升无线接收电路610的输出电压,以使得无线接收电路610的输出电流小于或等于第一电流阈值。
如图4和图6所示,在某些实施方式中,方法还包括:
350,在无线接收电路610的输出电流小于或等于第一电流阈值的情况下,通信控制电路640提升充电管理电路620的输出电流,直到充电管理电路620的输出电流达到第二电流阈值。
如图6所示,在某些实施方式中,当充电管理电路620的输出电流达到第二电流阈值,无线充电进入第二充电模式;或当充电管理电路620的输出电流未达到第二电流阈值且无线接收电路610的输出电压达到第二电压阈值时,无线充电进入第二充电模式。
如图6所示,在某些实施方式中,通信控制电路640指示无线发射装置提升发射功率,包括:在无线接收电路610预期接收的功率与实际接收到的功率之间的功率差值大于或等于第一阈值的情况下,通信控制电路640向无线发射装置发送第一指示信息,以使得功率差值小于第一阈值;其中,第一指示信息用于指示无线发射装置提升输出电压。
在某些实施方式中,第一阈值为0。
如图5和图6所示,在某些实施方式中,在电池630的无线充电状态从第一充电模式向第二充电模式调整的过程中之前,方法还包括:
360,通信控制电路640将充电管理电路620输出的电流设置为第三电流阈值。
如图7所示,在某些实施方式中,方法还包括:待充电设备30获取第一信息:电池33的温度信息,电池33的电压信息,电池33的荷电状态信息以及无线发射装置20连接的电源提供设备10的类型;在第一信息满足进入第二充电模式的条件时,从第一充电模式向第二充电模式进行调整。
如图7和图8所示,在某些实施方式中,方法还包括:在第二充电模式过程中,待充电设备30的检测电路34检测以下信息:电池33温度信息,电池33充电电流信息,电池33电压信息,无线接收电路31的输出电压,无线接收电路31预期接收的功率与实际接收到的功率之间的功率差值。
通信控制电路根据检测电路34检测的信息中的至少一种信息调整充电管理电路32的输出电流 或无线接收电路31的输出电压。
通信控制电路将调整后的充电管理电路32的输出电流或调整后的无线接收电路31的输出电压反馈至无线发射装置20。
如图6所示,本申请实施方式的一种待充电设备600,包括:通信控制电路610,充电管理电路620,电池630,通信控制电路640以及检测电路650。
通信控制电路610,用于在电池630的无线充电状态从第一充电模式向第二充电模式调整的过程中,指示无线发射装置提升发射功率,以使无线接收电路610输出的电压提升。
通信控制电路640还用于:当无线接收电路610输出的电压达到第一电压阈值时,指示无线发射装置提升发射功率,以使充电管理电路620输出的电流提升。
待充电设备600还包括:检测电路650,用于检测无线接收电路610的输出电流。
通信控制电路640还用于:当无线接收电路610的输出电流大于第一电流阈值时,提升无线接收电路610的输出电压,以使得无线接收电路610的输出电流小于或等于第一电流阈值。
如图6所示,在某些实施方式中,通信控制电路610还用于:在无线接收电路610的输出电流小于或等于第一电流阈值的情况下,提升充电管理电路620的输出电流,直到充电管理电路620的输出电流达到第二电流阈值。
如图6所示,在某些实施方式中,当充电管理电路620的输出电流达到第二电流阈值,无线充电进入第二充电模式;或当充电管理电路620的输出电流未达到第二电流阈值且无线接收电路610的输出电压达到第二电压阈值时,无线充电进入第二充电模式。
如图6所示,在某些实施方式中,通信控制电路640具体用于:在无线接收电路610预期接收的功率与实际接收到的功率之间的功率差值大于或等于第一阈值的情况下,向无线发射装置发送第一指示信息,以使得功率差值小于第一阈值;其中,第一指示信息用于指示无线发射装置提升输出电压。
在某些实施方式中,第一阈值为0。
如图6所示,在某些实施方式中,通信控制电路640还用于:在电池630的无线充电状态从第一充电模式向第二充电模式调整的过程中之前,将充电管理电路620输出的电流设置为第三电流阈值。
如图6所示,在某些实施方式中,通信控制电路640还用于:获取第一信息:电池630的温度信息,电池630的电压信息,电池630的荷电状态信息以及无线发射装置连接的电源提供设备的类型;在第一信息满足进入第二充电模式的条件时,从第一充电模式向第二充电模式进行调整。
如图6所示,在某些实施方式中,检测电路650还用于:在第二充电模式过程中,检测以下信息:电池温度信息,电池充电电流信息,电池电压信息,无线接收电路610的输出电压,无线接收电610路预期接收的功率与实际接收到的功率之间的功率差值;通信控制电路640还用于:根据检测电路650检测的信息中的至少一种信息调整充电管理电路620的输出电流或无线接收电路610的输出电压;将调整后的充电管理电路620的输出电流或调整后的无线接收电路610的输出电压反馈至无线发射装置。
如图3和图6所示,本申请实施方式的一种计算机可读存储介质,用于存储计算机程序,计算机可读存储介质用于待充电设备600,待待充电设备600包括无线接收电路610,充电管理电路620,通信控制电路640,检测电路650以及电池630,无线接收电路610的输出端与充电管理电路620的输入端连接,充电管理电路620的输入端与电池630连接,通信控制电路640控制无线接收电路610和充电管理电路620的输出电流和/或输出电压,计算机程序使得计算机执行的方法包括:
310,在电池630的无线充电状态从第一充电模式向第二充电模式调整的过程中,通信控制电路640指示无线发射装置提升发射功率,以使无线接收电路610输出的电压提升;
320,当无线接收电路610输出的电压达到第一电压阈值时,通信控制电路640指示无线发射装置提升发射功率,以使充电管理电路620输出的电流提升;
330,检测电路650检测无线接收电路610的输出电流;
340,当无线接收电路610的输出电流大于第一电流阈值时,通信控制电路640提升无线接收电路610的输出电压,以使得无线接收电路610的输出电流小于或等于第一电流阈值。
如图4和图6所示,在某些实施方式中,可读存储介质存储的计算机程序使得计算机执行的方 法还包括:
350,在无线接收电路610的输出电流小于或等于第一电流阈值的情况下,通信控制电路640提升充电管理电路620的输出电流,直到充电管理电路620的输出电流达到第二电流阈值。
如图6所示,在某些实施方式中,当充电管理电路620的输出电流达到第二电流阈值,无线充电进入第二充电模式;或当充电管理电路620的输出电流未达到第二电流阈值且无线接收电路610的输出电压达到第二电压阈值时,无线充电进入第二充电模式。
如图6所示,在某些实施方式中,通信控制电路640指示无线发射装置提升发射功率,包括:在无线接收电路610预期接收的功率与实际接收到的功率之间的功率差值大于或等于第一阈值的情况下,通信控制电路640向无线发射装置发送第一指示信息,以使得功率差值小于第一阈值;其中,第一指示信息用于指示无线发射装置提升输出电压。
在某些实施方式中,第一阈值为0。
如图5和图6所示,在某些实施方式中,在电池630的无线充电状态从第一充电模式向第二充电模式调整的过程中之前,可读存储介质存储的计算机程序使得计算机执行的方法还包括:
360,通信控制电路640将充电管理电路620输出的电流设置为第三电流阈值。
如图7所示,在某些实施方式中,可读存储介质存储的计算机程序使得计算机执行的方法还包括:待充电设备30获取第一信息:电池33的温度信息,电池33的电压信息,电池33的荷电状态信息以及无线发射装置20连接的电源提供设备10的类型;在第一信息满足进入第二充电模式的条件时,从第一充电模式向第二充电模式进行调整。
如图7和图8所示,在某些实施方式中,可读存储介质存储的计算机程序使得计算机执行的方法还包括:在第二充电模式过程中,待充电设备30的检测电路34检测以下信息:电池33温度信息,电池33充电电流信息,电池33电压信息,无线接收电路31的输出电压,无线接收电路31预期接收的功率与实际接收到的功率之间的功率差值。
通信控制电路根据检测电路34检测的信息中的至少一种信息调整充电管理电路32的输出电流或无线接收电路31的输出电压。
通信控制电路将调整后的充电管理电路32的输出电流或调整后的无线接收电路31的输出电压反馈至无线发射装置20。
如图1所示为本申请实施例提供的无线充电***,下面结合图1对无线充电方式进行简单介绍。
如图1所示,无线充电***可以包括电源提供设备110、无线发射装置120以及待充电设备130,其中无线发射装置120例如可以是无线充电底座,待充电设备130例如可以是终端。
电源提供设备110与无线发射装置120连接之后,会将电源提供设备110的输出电压和输出电流传输至无线发射装置120。无线发射装置120可以通过内部的无线发射电路122将电源提供设备110的输出电压和输出电流转换成无线充电信号(例如,电磁信号)进行发射。例如,该无线发射电路122可以将电源提供设备110的输出电流转换成交流电,并通过发射线圈或发射天线(图中未示出)将该交流电转换成无线充电信号。其中,电压转换电路121可以对电源提供设备110输出的电压进行转换,微控制单元123可以控制电压转换电路121和无线发射电路122的电压。
待充电设备130可以通过无线接收电路131接收无线发射电路122发射的无线充电信号,并将该无线充电信号转换成无线接收电路131的输出电压和输出电流。
例如,该无线接收电路131可以通过接收线圈或接收天线(图中未示出)将无线发射电路122发射的电磁信号转换成交流电,并对该交流电进行整流和/或滤波等操作,将该交流电转换成无线接收电路131的输出电压和输出电流,通过充电管理电路132对无线接收电路131接收的输出电压和输出电流进行调节,以得到待充电设备130内的电池133所预期的充电电压和/或充电电流的需求,从而可以实现为电池133的充电。
上述充电管理电路132可以为充电集成电路(Integrated Circuit,IC)。
本申请实施中的待检测电路可以检测电池133的信息,例如电池温度,电池电压和电池电流等,也可以检测充电管理电路132的输出电流和输出电压以及无线接收电路131的输出电压和输出电流等。
如图2所示为本申请实施例提供的一个待充电设备的示意性图。该待充电设备可以包括通用串行总线(Universal Serial Bus,USB)接口210,负载开关220,充电管理电路230,电池240, 检测电路250,应用处理器(Application Processor,AP)260以及无线接收电路270。
其中,本申请实施例中的待充电设备可以通过切换负载开关220实现对待充电设备的无线充电和有线充电,当负载开关切换至USB接口210与USB接口210连接时,可以通过USB接口210实现待充电设备的有线充电,当负载开关切换至无线接收电路270与无线接收电路270连接时,可以通过无线充电的方式对待充电设备进行充电。
图2中的①可以为一个控制信号引脚,当控制该信号为高电平时,启动负载开关220的OTG(On-The-Go)功能;当控制该信号为低电平时,关闭负载开关220的OTG功能;②和③可以为内部集成电路(Inter-Integrated Circuit,I2C)总线,该总线用于AP对无线接收电路270的访问,控制无线充电过程,其中,②可以为用于传输时钟信号的总线,③可以为用于传输数据信号的总线;④可以为无线接收电路270提供的一个信号,用于通知AP通过I2C总线读取其内部的特定地址的寄存器;⑤也可以为无线接收电路270提供的一个信号,用于告诉AP是否连接上无线发射端;⑥可以为AP给无线接收电路270的一个控制信号,用于打开或关闭无线充电功能,当该控制信号为低电平时,开启无线充电电路的功能,当该控制信号为高电平时,关闭无线充电电路的功能。
在利用无线充电的方式对待充电设备进行充电时,为了缩短充电时间,可以通过提高无线发射装置的发射功率,以提高无线接收电路的接收功率(包括电压和电流),通过对无线接收电路输出的电压和电流和充电管理电路输出的电压和电流的管理从而可以实现对待充电设备的快速充电。然而在无线接收电路的接收功率提高的情况下,导致无线接收电路中的接收线圈发热严重,减少待充电设备的使用寿命。
因此,本申请实施例提供了一种充电方法,能够降低待充电设备的发热,进一步地可以降低待充电设备在充电过程中的温度,从而可以延长待充电设备的使用寿命;此外,在对待充电设备进行充电的过程中,通过对无线接收电路和充电管理电路的输出电压和/或输出电流的调整,可以控制无线接收电路的发热,从而可以提高充电速度。
本申请实施例中所使用到的待充电设备130可以是指终端,该“终端”可包括,但不限于被设置成经由有线线路连接(如经由公共交换电话网络(Public Switched Telephone Network,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络)和/或经由(例如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如手持数字视频广播(Digital Video Broadcasting Handheld,DVB-H)网络的数字电视网络、卫星网络、调幅-调频(Amplitude Modulation-Frequency Modulation,AM-FM)广播发送器,以及/或另一通信终端的)无线接口接收/发送通信信号的装置。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”以及/或“移动终端”。
移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信***(Personal Communication System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位***(Global Positioning System,GPS)接收器的个人数字助理(Personal Digital Assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。在某些实施例中,待充电设备可指移动终端是设备或手持终端设备,如手机、pad等。在某些实施例中,本申请实施例提及的待充电设备可以是指芯片***,在该实施例中,待充电设备的电池可以属于或也可以不属于该芯片***。
另外,待充电设备还可以包括其他有充电需求的待充电设备,例如手机、移动电源(如充电宝、旅充等)、电动汽车、笔记本电脑、无人机、平板电脑、电子书、电子烟、智能待充电设备和小型电子产品等。智能待充电设备例如可以包括手表、手环、智能眼镜和扫地机器人等。小型电子产品例如可以包括无线耳机、蓝牙音响、电动牙刷和可充电无线鼠标等。
下面结合图3,对本申请实施例提供的无线充电方法300进行详细介绍。
如图3所示,本申请实施例提供的方法300可以包括步骤310-340。
310,在所述电池的无线充电状态从第一充电模式向第二充电模式调整的过程中,所述通信控制电路指示无线发射装置提升发射功率,以使所述无线接收电路输出的电压提升。
本申请实施例中的通信控制电路可以为上文提到的待充电设备的内部的AP,通信控制电路的控制功能可以通过AP实现,或者可以通过微控制单元(Micro Control Unit,MCU)与AP共同实 现。
本申请实施例中的第一充电模式可以为BPP模式,其功率一般为5W,即电压为5V,电流为1A的充电模式,第二充电模式可以为EPP模式,其功率一般为15W-25W。
在一些情况下,BPP模式和EPP模式也可以称为BPP状态和EPP状态。本申请实施例中的BPP状态和EPP状态指的是无线充电过程中的其中两个充电状态,为了便于理解,先对无线充电的过程进行简单介绍。
本申请实施例中,在对待充电设备进行无线充电的过程中,待充电设备的充电状态可以包括BPP、升压、升流和EPP四个状态。其中,按照功率不同可以分为BPP和EPP这两种状态,BPP状态指的是充电功率等于5W的状态,EPP状态指的是充电功率在15W-25W之间的状态。从BPP状态到EPP状态可以经过升压状态和升流状态,在升压状态过程中可以提高电池的充电电压,在升流状态过程中可以提高电池的充电电流。
需要说明的是,在一些情况下,待充电设备可能不会进入无线充电状态。待充电设备的通信控制电路首先检测无线接收电路的信号,根据该信号确定是否要进入BPP状态充电。若待充电设备的通信控制电路检测到一个上升沿中断信号,则启动一个周期为500ms的循环执行的任务,即开始监测无线充电过程;若待充电设备中的通信控制电路检测到一个下降沿中断信号,则通信控制电路控制待充电设备退出无线充电过程。
为了简洁,下文中,第一充电模式以BPP状态,第二充电模式以EPP状态为例进行说明。
320,当所述无线接收电路输出的电压达到第一电压阈值时,所述通信控制电路指示所述无线发射装置提升发射功率,以使所述充电管理电路输出的电流提升。
本申请实施例中的无线接收电路可包括接收线圈或接收天线,以及与该接收线圈和接收天线相连的整流电路和/或滤波电路等整形电路。接收天线或接收线圈可用于将电磁信号转换成交流电,整形电路可用于将交流电转换成无线接收电路的输出电压和输出电流。
需要说明的是,本申请实施例对整形电路的具体形式以及整形电路整形之后得到的无线接收电路的输出电压和输出电流的形式不做具体限定。
本申请实施例中的充电管理电路可以为充电集成电路(Integrated Circuit,IC)。在对电池的充电过程中,该充电管理电路可用于对电池的充电电压和/或充电电流进行管理。该充电管理电路可以包含电压反馈功能,和/或电流反馈功能,以实现对电池的充电电压和/或充电电流的管理。
330,所述检测电路检测所述无线接收电路的输出电流。
340,当所述无线接收电路的输出电流大于第一电流阈值时,所述通信控制电路提升所述无线接收电路的输出电压,以使得所述无线接收电路的输出电流小于或等于所述第一电流阈值。
本申请实施例中,例如,以第一电压阈值为12V,第一电流阈值为1.05A为例进行说明,一般情况下,当待充电设备与无线发射装置连接后,在温度合适的情况下,例如,电池温度在-3℃到55℃范围内,待充电设备首先进入BPP状态进行充电,然后可以再从BPP状态调整至EPP状态。
在从BPP状态调整至EPP状态的过程中,可以先提升无线接收电路的输出电压,当无线接收电路的输出电压达到12V时,通信控制电路可以提升充电管理电路的输出电流,例如,通信控制电路可以向充电管理电路发送指示信息,指示充电管理电路提升输出电流,同时,通信控制电路可以将充电管理电路的输出电压和输出电流反馈至无线发射装置,以使得无线发射装置根据接收到的反馈信息调整无线发射电路的输出电压。
可以理解的是,在无线发射电路的输出电压改变的情况下,无线接收电路的输出电压和/或输出电流也会随之改变,当无线接收电路的输出电流大于1.05A时,通信控制电路可以提升无线接收电路的输出电压,例如,通信控制电路可以直接控制提升无线接收电路的输出电压,也可以发送指示信息,指示无线接收电路提升输出电压,从而使得无线接收电路的输出电流降低。
应理解,本申请实施例中的数值仅为举例说明,也可以为其它数值,不应对本申请造成特别限定。还应理解,当无线接收电路的输出电流等于第一电流阈值时,通信控制电路也可以提升无线接收电路的输出电压以使得无线接收电路的输出电流小于第一电流阈值。
本申请实施例在从BPP状态调整至EPP状态的过程中,通信控制电路可以通过判断无线接收电路的输出电流是否大于第一电流阈值,调整无线接收电路的输出电压从而可以降低无线接收电路的输出电流,以降低无线接收电路中的线圈发热,从而可以降低待充电设备的发热,进一步地可以 降低待充电设备在充电过程中的温度,从而可以延长待充电设备的使用寿命;此外,在对待充电设备进行充电的过程中,通过对无线接收电路和充电管理电路的输出电压和/或输出电流的调整,可以控制无线接收电路的发热,从而可以提高充电速度。
可选地,在一些实施例中,如图4所示,无线充电方法300还可以包括步骤340。
340,在所述无线接收电路的输出电流小于或等于所述第一电流阈值的情况下,所述通信控制电路提升所述充电管理电路的输出电流,直到所述充电管理电路的输出电流达到第二电流阈值。
上文指出,在从BPP状态调整至EPP状态的过程中,可以先提升无线接收电路的输出电压,当无线接收电路的输出电压达到12V时,通信控制电路可以提升充电管理电路的输出电流,当无线接收电路的输出电流大于1.05A时,通信控制电路可以提升无线接收电路的输出电压,从而使得无线接收电路的输出电流降低。
在通信控制电路通过提升无线接收电路的输出电压以使得无线接收电路的输出电流降低的情况下,若无线接收电路的输出电流小于或等于1.05A时,通信控制电路可以继续提升充电管理电路的输出电流,直到充电管理电路的输出电流达到第二电流阈值,例如,可以为1.5A。
应理解,本申请实施例中的第二电流阈值与第一电流阈值没有绝对的大小关系,例如,在一些情况下,第一电流阈值可以为1.05A,第二电流阈值可以为1.5A,也可以为1.05A,还可以为1A。还应理解,本申请实施例中的数值仅为举例说明,也可以为其它数值,不应对本申请造成特别限定。
可选地,在一些实施例中,当所述充电管理电路的输出电流达到第二电流阈值,所述无线充电进入所述EPP状态;或当所述充电管理电路的输出电流未达到所述第二电流阈值且所述无线接收电路的输出电压达到第二电压阈值时,所述无线充电进入所述EPP状态。
本申请实施例中,在通信控制电路将充电管理电路的输出电流提升第二电流阈值时,可以不再提升充电管理电路的输出电流。可以理解的是,若持续地提升充电管理电路的输出电流,超过电池的最大充电电流,可能会损坏待充电设备的电池,从而减小电池的使用寿命,严重者可能会危及待充电设备的安全。
本申请实施例中,在提升充电管理电路的输出电流的过程中,可以判断无线接收电路的输出电流是否大于第一电流阈值,通信控制电路可以动态地调整无线接收电路的输出电压从而使得无线接收电路的输出电流小于或等于第一电流阈值,以减小无线接收电路中的接收线圈的发热。因此,在提升充电管理电路的输出电流的过程中,有可能存在充电管理电路的输出电流未达到第二电流阈值,但是无线接收电路的输出电压已经提升至第一电压阈值,此时,通信控制电路可以不再提升充电管理电路的输出电流,提前进入EPP状态对待充电设备进行充电。
举例来说,以第二电压阈值为15V,第一电流阈值为1.05A,第二电流阈值为1.5A为例进行说明。上文指出,一般情况下,当待充电设备与无线发射装置连接后,待充电设备首先进入BPP状态进行充电,然后可以再从BPP状态调整至EPP状态。在从BPP状态调整至EPP状态的过程中,可以先提升无线接收的输出电压,再提升充电管理电路的输出电流。
在一种实施例中,在提升充电管理电路的输出电流的过程中,若通信控制电路将充电管理电路的输出电流提升至1.2A,无线发射电路发射的功率不能够满足电池所需的电压和电流时,可以通过通信控制电路与无线发射装置进行通信,使得无线发射装置的调压电路提升无线发射电路的输出电压,若无线发射电路的输出电压提升至14V,此时,无线接收电路的功率也会提高,包括无线接收电路的输出电压的提高和/或输出电流的提高,在无线接收电路的电压提高以及电流仍然小于第一电流阈值的情况下,通信控制电路可以再次提升充电管理电路的输出电流,例如提升至1.4A,同样地,通信控制电路将其输出电流和输出电压反馈至无线发射装置,无线发射装置根据反馈的充电管理电路的输出电流和输出电压调整无线发射电路的输出电压,例如提升至16V,此时,若无线接收电路的输出电压提高以及无线接收电路的输出电流仍然小于第一电流阈值时,可以继续提升充电管理电路的输出电流,直到充电管理电路的输出电流达到第二电流阈值时,无线充电进入EPP状态。
在另一种实施例中,若通信控制电路将充电管理电路的输出电流提升至1.2A,无线发射装置的调压电路将无线发射电路的输出电压提升后,无线接收电路的输出电流大于第一电流阈值时,通信控制电路可以提升无线接收电路的输出电压,以减小无线接收电路的输出电流;在经过通信控制电路对无线接收电路的输出电压的调整后,无线接收电路的输出电流仍然大于第一电流阈值的情况下,通信控制电路可以继续提升无线接收电路的输出电压,当无线接收电路的输出电压达到第一电 压阈值时,可以不考虑充电管理电路的输出电流而提前进入EPP状态。
应理解,本申请实施例中的数值仅为举例说明,也可以为其它数值,不应对本申请造成特别限定。
当然,在一些实施例中,通信控制电路也可以将无线接收电路的输出电压和输出电流反馈至无线发射装置,以使得无线发射装置根据反馈的电压和电流调整无线发射电路的输出电压。
可选地,在一些实施例中,所述通信控制电路指示无线发射装置提升所述无线发射装置的发射功率,包括:在所述无线接收电路预期接收的功率与实际接收到的功率之间的功率差值大于或等于第一阈值的情况下,所述通信控制电路向所述无线发射装置发送所述第一指示信息,以使得所述功率差值小于所述第一阈值;其中,所述第一指示信息用于指示所述无线发射装置提升所述无线发射电路的输出电压。
本申请实施例中,通信控制电路可以在无线接收电路预期接收的功率与实际接收到的功率之间的功率差值大于或等于第一阈值的情况下,可以向无线发射装置反馈第一指示信息,指示无线发射装置的调压电路进行调压以提升无线发射电路的输出电压。
换句话说,通信控制电路为了满足电池充电所预期的充电电压的大小,可以与无线发射装置进行无线通信,以便无线发射装置调整无线发射电路的输出电压,使得无线接收电路的输出电压得以提升,从而充电管理电路的输出的电压能够满足电池的充电需求。
具体地,在无线充电准备进入升压状态前,可以先判断无线接收电路的预期接收的功率与实际接收到的功率之间的功率差值是否大于或等于第一阈值,由于在升压状态前,无线充电处于BPP状态,无线接收电路的预期接收到的功率与实际接收到的功率一致,因此可以向无线发射装置反馈提升无线发射电路的输出电压。在这一过程中,可以逐次提升无线接收电路的输出电压。
举例来说,若第一阈值为0.5,待充电设备向无线发射装置发送第一指示信息,指示无线发射装置的无线发射电路的输出电压提升1V,无线发射装置通过调压电路将无线发射电路的输出电压提升1V后,无线接收电路的功率随之提升,在无线接收电路预期接收功率与实际接收到的功率的差值小于0.5,通信控制电路再次向无线发射装置发送第一指示信息,指示无线发射装置的无线发射电路的输出电压提升1V,依次循环,直到无线接收电路的输出电压提升至12V。
应理解,本申请实施例中的数值仅为举例说明,也可以为其它数值,不应对本申请造成特别限定。
可选地,在一些实施中,如图5所示,无线充电方法300还可以包括步骤360。
360,在所述电池的无线充电状态从BPP状态向EPP状态调整的过程中之前,所述方法还包括:所述通信控制电路将所述充电管理电路输出的电流设置为第三电流阈值。
本申请实施例中,在通信控制电路指示无线发射装置提升无线发射电路的输出电压之前,通信控制电路可以将充电管理电路向电池输出的电流设置为第三电流阈值,例如可以设置为0.3A,即在这一过程中,可以将充电管理电路向电池输出的电流设置的较小一些,从而可以避免充电状态从BPP状态向EPP状态调整的过程中,由于电池的充电电流过大而导致的欠压保护问题。
应理解,本申请实施例中,若将充电管理电路向电池输出的电流设置为0,可能会损坏无线接收电路的中的接收芯片。也就是说,在从BPP状态向EPP状态调整的过程中,若将充电管理电路向电池的输出电流设置为0,会导致暂停对电池进行充电,此时,若持续提升无线接收电路的输出电压,可能导致接收芯片的损坏。
本申请实施例中,通信控制电路将充电管理电路的输出电流设置为第三电流阈值,可以使得无线充电过程中的升压状态更稳定,能够避免在升压过程中由于电池的充电电流过大而导致的欠压保护问题,此外,也能够避免由于暂停对电池进行充电而导致的待充电设备受到损坏,从而可以保护待充电设备。
在一些实施例中,在电池的无线充电状态从BPP状态向EPP状态调整的升压过程中,通信控制电路也可以不将充电管理电路向电池输出的电流设置为0.3A,也可以将其设置为0.4A或0.25A等,本申请对此不作具体限定。
上文指出,无线充电从BPP状态调整至EPP状态的过程,但应理解,并非所有的无线充电过程均可以从BPP状态调整至EPP状态,可能需要满足一些条件才能从BPP状态调整至EPP状态,以下将具体进行介绍。
可选地,在一些实施中,所述方法还包括:所述待充电设备获取第一信息:所述电池的温度信息,所述电池的电压信息,所述电池的荷电状态信息以及所述无线发射装置连接的电源提供设备的类型;在所述第一信息满足进入所述EPP状态的条件时,从所述BPP状态向所述EPP状态进行调整
本申请实施例中,在无线发射装置和待充电设备连接后,检测电路首先会检测电池的温度信息,根据电池的温度信息确定充电状态。例如,在电池温度小于-3.5℃或大于或等于54℃,则关闭充电,停止对电池进行充电;如果电池温度大于或等于-3.5℃且小于18.5℃或电池温度大于或等于44℃且小于54℃,则强制无线充电工作一直在BPP状态,利用BPP模式对电池进行充电。
此外,在电池温度大于或等于18.5℃且小于44℃时,待充电设备会默认进入BPP状态进行充电,在这一温度下,待充电设备有可能进入EPP状态进行充电,还需要获取无线发射装置所连接的电源提供设备的类型,以便于待充电设备根据无线发射装置回复的类型确定充电能否进入EPP状态。若电源提供设备没有回复或电源提供设备回复连接的电源提供设备的类型不支持快速充电,则待充电设备会一直工作在BPP状态;若电源提供设备回复连接的电源提供设备的类型支持快速充电,同时电池电压大于3.3V小于4.4V,电池荷电状态小于或等于90时,待充电设备可以启动进入无线快充的状态,即EPP状态。
本申请实施例对电源提供设备不做具体限定。例如,电源提供设备可以为适配器、移动电源、车载充电器或电脑等设备。
上文说明了在满足一些条件的情况下,无线充电从BPP状态调整至EPP状态的过程,在无线充电完全进入EPP状态后,检测电路可以持续地检测充电过程中的一些信息,以动态地调整充电管理电路的输出电流和无线接收电路的输出电压。
可选地,在一些实施例中,在所述EPP状态过程中,所述待充电设备的检测电路检测以下信息中的任何一种信息,包括所述电池温度信息,所述电池充电电流信息,所述电池电压信息,所述无线接收电路的输出电压,所述无线接收电路预期接收的功率与实际接收到的功率之间的功率差值;所述通信控制电路根据所述检测电路检测的信息中的任何一种信息调整所述充电管理电路的输出电流或所述无线接收电路的输出电压;所述通信控制电路将调整后的所述充电管理电路的输出电流或调整后的所述无线接收电路的输出电压反馈至所述无线发射装置。
本申请实施例中,在无线充电进入EPP状态后,检测电路可以持续地检测电池温度,电池充电电流,电池电压,无线接收电路的输出电压以及无线接收电路的预期接收的功率与实际接收到的功率之间的功率差值等信息,以使得通信控制电路根据检测电路所检测到的信息调整充电管理电路的输出电流或无线接收电路的输出电压,并且将调整后的电流或电压反馈至第一通信控制电路,以用于第一通信控制电路根据接收到的反馈信息调整无线发射电路的发射功率。
可选地,在一些实施例中,所述通信控制电路根据所述检测电路检测的信息中的至少一种信息调整所述充电管理电路的输出电流,包括:在所述检测电路检测的所述电池的温度大于或等于第一温度阈值,且检测的所述充电管理电路的输出电流大于第四电流阈值的情况下,所述通信控制电路将所述充电管理电路的输出电流降低第五电流阈值且最低降至第四电流阈值;在所述检测电路检测的所述电池的温度大于或等于第二温度阈值,且检测的所述充电管理电路的输出电流大于第六电流阈值的情况下,所述通信控制电路将所述充电管理电路的输出电流设置为第六电流阈值;在所述检测电路检测的所述电池的温度小于第三温度阈值,且检测的所述充电管理电路的输出电流小于第七电流阈值的情况下,所述通信控制电路将所述充电管理电路的输出电流设置为第七电流阈值。
本申请实施例中,在无线充电的EPP状态中,由于电池的温度对充电电流比较敏感,在温度过高或过低时用同一充电电流对电池有损坏,因此,通信控制电路可以根据电池温度和充电管理电路向电池输出的电流确定调整充电管理电路向电池输出的电流。
例如,在电池温度大于或等于40℃,且充电管理电路向电池输出的电流大于0.4A的情况下,例如,在电池温度为41℃且充电管理电路向电池输出的电流为0.55A的情况下,通信控制电路可以将充电管理电路向电池输出的电流降低0.2A,但应注意的是,在降低的过程中,充电管理电路向电池输出的电流最低可以为0.5A。也就是说,若充电管理电路向电池输出的电流为0.8A时,可以将充电管理电路向电池输出的电流降低0.2A,即0.6A;若充电管理电路向电池输出的电流为0.65A,可以将充电管理电路向电池输出的电流降低至0.5A。
类似地,在电池温度大于或等于38℃且充电管理电路向电池输出的电流大于0.7A的情况下,例如,在电池温度为39℃且充电管理电路向电池输出的电流为0.8A的情况下,通信控制电路可以将充电管理电路向电池输出的电流设置为0.8A;若电池温度小于37℃且充电管理电路的输出电流小于1.6A的情况下,例如,在电池温度为36℃且充电管理电路向电池输出的电流为1.5A的情况下,通信控制电路可以切换到升流状态,将充电管理电路向电池输出的电流提升到最大充电电流值,例如可以为1.5A。
可选地,在一些实施例中,所述通信控制电路根据所述检测电路检测的信息中的至少一种信息调整所述充电管理电路的输出电流,包括:
在所述检测电路检测所述无线接收电路预期接收的功率与实际接收到的功率的所述功率差值的绝对值连续3次大于或等于第一阈值且所述充电管理电路的输出电流小于或等于第八电流阈值且所述无线接收电路的输出电压大于第一电压阈值的情况下,所述通信控制电路根据所述功率差值调整所述无线接收电路输出电压;在所述功率差值小于5的情况下,所述通信控制电路将所述无线接收电路的输出电压降低第三电压阈值;在所述功率差值大于或等于5且小于20的情况下,所述通信控制电路将所述无线接收电路的输出电压降低第四电压阈值;在所述功率差值大于或等于20的情况下,所述通信控制电路将所述无线接收电路的输出电压降低第五电压阈值。
本申请实施例中,可以根据无线接收电路预期接收的功率与实际接收到的功率之间的功率差值确定调整所述无线接收电路的输出电压。
具体地,若无线接收电路的预期接收的功率与实际接收到的功率之间的功率差值为1,说明此时无线接收电路实际接收到的功率与预期接收的功率之间的功率差值较小,可以将无线接收电路的输出电压降低0.02V;若该功率差值为10,说明此时无线接收电路实际接收到的功率与预期接收的功率之间的功率差值较大,可以将无线接收电路的输出电压降低0.05V;若该功率差值为23,说明此时无线接收电路实际接收到的功率与预期接收的功率之间的功率差值很大,可以将无线接收电路的输出电压降低0.1V。但应注意的是,在这一过程中,降低后的无线接收电路的输出电压最低为12V。
本申请实施例中,检测电路检测检测无线接收电路预期接收的功率与实际接收到的功率之间的功率差值的频率可以为ms级别,例如,可以为10ms检测一次,若连续3次检测的结果,其功率差值均大于或等于第一阈值,可以对无线接收电路的输出电压进行调整。
上文结合图3-图5,详细描述了本申请的方法实施例,下面结合图6,详细描述本申请的装置实施例,装置实施例与方法实施例相互对应,因此未详细描述的部分可以参见前面各方法实施例。
如图6所示,为本申请实施例提供的一种待充电设备600,该设备可以包括无线接收电路610,充电管理电路620,电池630,通信控制电路640以及检测电路650。
通信控制电路640,用于在电池630的无线充电状态从第一充电模式向第二充电模式调整的过程中,指示无线发射装置提升发射功率,以使无线接收电路610输出的电压提升。
所述通信控制电路640还用于:当所述无线接收电路610输出的电压达到第一电压阈值时,指示所述无线发射装置提升发射功率,以使所述充电管理电路620输出的电流提升。
所述待充电设备还包括:检测电路650,用于检测所述无线接收电路610的输出电流。
所述通信控制电路640还用于:当所述无线接收电路610的输出电流大于第一电流阈值时,提升所述无线接收电路610的输出电压,以使得所述无线接收电路610的输出电流小于或等于所述第一电流阈值。
可选地,在一些实施例中,所述通信控制电路640还用于:在所述无线接收电路610的输出电流小于或等于所述第一电流阈值的情况下,提升所述充电管理电路620的输出电流,直到所述充电管理电路620的输出电流达到第二电流阈值。
可选地,在一些实施例中,当所述充电管理电路620的输出电流达到第二电流阈值,所述无线充电进入所述第二充电模式;或当所述充电管理电路620的输出电流未达到所述第二电流阈值且所述无线接收电路610的输出电压达到第二电压阈值时,所述无线充电进入所述第二充电模式。
可选地,在一些实施例中,所述通信控制电路640具体用于:在所述无线接收电路610预期接收的功率与实际接收到的功率之间的功率差值大于或等于第一阈值的情况下,向所述无线发射装置发送所述第一指示信息,以使得所述功率差值小于所述第一阈值;其中,所述第一指示信息用于指 示所述无线发射装置提升所述无线发射电路的输出电压。
可选地,在一些实施例中,所述第一阈值为0。
可选地,在一些实施例中,所述通信控制电路640还用于:在所述电池630的无线充电状态从第一充电模式向第二充电模式调整的过程中之前,将所述充电管理电路620输出的电流设置为第三电流阈值。
可选地,在一些实施例中,所述通信控制电路640还用于:获取第一信息:所述电池630的温度信息,所述电池630的电压信息,所述电池630的荷电状态信息以及所述无线发射装置连接的电源提供设备的类型;在所述第一信息满足进入所述第二充电模式的条件时,从所述第一充电模式向所述第二充电模式进行调整。
可选地,在一些实施例中,所述检测电路650还用于:在所述第二充电模式过程中,检测以下信息:所述电池温度信息,所述电池充电电流信息,所述电池电压信息,所述无线接收电路610的输出电压,所述无线接收电路610预期接收的功率与实际接收到的功率之间的功率差值;所述通信控制电路640还用于:根据所述检测电路650检测的信息中的至少一种信息调整所述充电管理电路620的输出电流或所述无线接收电路610的输出电压;将调整后的所述充电管理电路620的输出电流或调整后的所述无线接收电路610的输出电压反馈至所述无线发射装置。
可选地,在一些实施例中,所述通信控制电路640具体用于:在所述检测电路检测的所述电池的温度大于或等于第一温度阈值,且检测的所述充电管理电路的输出电流大于第四电流阈值的情况下,将所述充电管理电路的输出电流降低第五电流阈值且最低降至第四电流阈值;在所述检测电路检测的所述电池的温度大于或等于第二温度阈值,且检测的所述充电管理电路的输出电流大于第六电流阈值的情况下,将所述充电管理电路的输出电流设置为第六电流阈值;在所述检测电路检测的所述电池的温度小于第三温度阈值,且检测的所述充电管理电路的输出电流小于第七电流阈值的情况下,将所述充电管理电路的输出电流设置为第七电流阈值。
可选地,在一些实施例中,所述通信控制电路640具体用于:在所述检测电路检测所述无线接收电路预期接收的功率与实际接收到的功率的所述功率差值的绝对值连续3次大于或等于第一阈值且所述充电管理电路的输出电流小于或等于第八电流阈值且所述无线接收电路的输出电压大于第一电压阈值的情况下,根据所述功率差值调整所述无线接收电路输出电压;在所述功率差值小于5的情况下,将所述无线接收电路的输出电压降低第三电压阈值;在所述功率差值大于或等于5且小于20的情况下,将所述无线接收电路的输出电压降低第四电压阈值;在所述功率差值大于或等于20的情况下,将所述无线接收电路的输出电压降低第五电压阈值。
本申请实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述无线充电方法300中的任何一种方法。
本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述无线充电方法300中的任何一种方法。
下面结合图7-图10,对本申请实施例应用的无线充电过程进行描述。
传统的无线充电技术一般将电源提供设备(如适配器)与无线充电装置(如无线充电底座)相连,并通过该无线充电装置将电源提供设备的输出功率以无线的方式(如电磁波)传输至待充电设备,对待充电设备进行无线充电。
按照无线充电原理不同,无线充电方式主要分为磁耦合(或电磁感应)、磁共振以及无线电波三种方式。目前,主流的无线充电标准包括QI标准、电源实物联盟(Power Matters Alliance,PMA)标准、无线电源联盟(Alliance for Wireless Power,A4WP)。QI标准和PMA标准均采用磁耦合方式进行无线充电。A4WP标准采用磁共振方式进行无线充电。
下面结合图7,对一实施例的无线充电方式进行介绍。
如图7所示,无线充电***包括电源提供设备10、无线充电信号的发射装置20以及充电控制装置30,其中发射装置20例如可以是无线充电底座,充电控制装置30可以指待充电设备,例如可以是终端。
电源提供设备10与发射装置20连接之后,会将电源提供设备10的输出电压和输出电流传输至发射装置20。
发射装置20可以通过内部的无线发射电路21将电源提供设备10的输出电压和输出电流转换成无线充电信号(例如,电磁信号)进行发射。例如,该无线发射电路21可以将电源提供设备10的输出电流转换成交流电,并通过发射线圈或发射天线将该交流电转换成无线充电信号。
图7只是示例性地给出了无线充电***的示意性结构图,但本申请实施例并不限于此。例如,发射装置20也可以称为无线充电信号的发射装置,充电控制装置30也可以称为无线充电信号的接收装置。无线充电信号的接收装置例如可以是具有无线充电信号接收功能的芯片,可以接收发射装置20发射的无线充电信号;该无线充电信号的接收装置也可以是待充电设备。
充电控制装置30可以通过无线接收电路31接收无线发射电路21发射的无线充电信号,并将该无线充电信号转换成无线接收电路31的输出电压和输出电流。例如,该无线接收电路31可以通过接收线圈或接收天线将无线发射电路21发射的无线充电信号转换成交流电,并对该交流电进行整流和/或滤波等操作,将该交流电转换成无线接收电路31的输出电压和输出电流。
在一些实施例中,在无线充电之前,发射装置20与充电控制装置30会预先协商无线发射电路21的发射功率。假设发射装置20与充电控制装置30之间协商的功率为5W,则无线接收电路31的输出电压和输出电流一般为5V和1A。假设发射装置20可与充电控制装置30之间协商的功率为10.8W,则无线接收电路31的输出电压和输出电流一般为9V和1.2A。
若无线接收电路31的输出电压并不适合直接加载到电池33两端,则是需要先经过充电控制装置30内的充电管理电路32进行恒压和/或恒流控制,以得到充电控制装置30内的电池33所预期的充电电压和/或充电电流。
充电管理电路32可用于对无线接收电路31的输出电压进行变换,以使得充电管理电路32的输出电压和/或输出电流满足电池33所预期的充电电压和/或充电电流的需求。
作为一种示例,该充电管理电路32例如可以是本申请实施例中的所提到的充电管理电路。在电池33的充电过程中,变换电路32可用于对电池33的充电电压和/或充电电流进行管理。该变换电路32可以包含电压反馈功能,和/或,电流反馈功能,以实现对电池33的充电电压和/或充电电流的管理。
当无线接收电路的输出功率小于电池当前所需的充电功率时,通信控制电路可以向发射装置发射指示信息以指示发射装置提升发射功率,以增大无线接收电路的输出功率。因此,在充电过程中,通信控制电路可以与发射装置通信,使得无线接收电路的输出功率能够满足电池不同充电阶段的充电需求。
本申请实施例对充电控制装置30与发射装置20的通信方式不做具体限定。可选地,在一些实施例中,充电控制装置30与发射装置20可以采用蓝牙(bluetooth)通信、无线保真(wireless fidelity,Wi-Fi)通信或反向散射(backscatter)调制方式(或功率负载调制方式)通信、基于高载波频率的近距离无线通信、光通信、超声波通信、超宽带通信或移动通信等无线通信方式进行通信。
在一实施例中,基于高载波频率的近距离无线通信模块可以包括内部封装有极高频(extremely high frequency,EHF)天线的IC芯片。可选地,高载波频率可以为60GHz。
在一实施例中,光通信可以是利用光通信模块进行通信。光通信模块可以包括红外通信模块,红外通信模块可利用红外线传输信息。
在一实施例中,移动通信可以是利用移动通信模块进行通信。移动通信模块可利用5G通信协议、4G通信协议或3G通信协议等移动通信协议进行信息传输。
采用上述的无线通信方式,相比于Qi标准中通过信号调制的方式耦合到无线接收电路的线圈进行通信的方式,可提高通信的可靠性,且可避免采用信号耦合方式通信带来的电压纹波,影响降压电路的电压处理过程。
可选地,充电控制装置30与发射装置20也可以采用数据接口的有线通信方式进行通信。
图8是本申请实施例提供的充电***的另一示意图。请参见图8,无线充电信号的发射装置20还可以包括充电接口23,充电接口23可用于与外部的电源提供设备10相连。无线发射电路21还可用于根据电源提供设备10的输出电压和输出电流,生成无线充电信号。
第一通信控制电路22还可以在无线充电的过程中,调整无线发射电路21从电源提供设备10的输出功率中抽取的功率量,以调整无线发射电路21的发射功率,使得无线发射电路发射的功率能够满足电池的充电需求。例如,电源提供设备10也可以直接输出较大的固定功率(如40W), 第一通信控制电路22可以直接调整无线发射电路21从电源提供设备10提供的固定功率中抽取的功率量。
本申请实施例中,电源提供设备10的输出功率可以是固定的。例如,电源提供设备10可以直接输出较大的固定功率(如40W),电源提供设备10可以按照该固定的输出功率向无线充电装置20提供输出电压和输出电流。在充电过程中,第一通信控制电路22可以根据实际需要从该电源提供设备的固定功率中抽取一定的功率量用于无线充电。也就是说,本申请实施例将无线发射电路21的发射功率调整的控制权分配给第一通信控制电路22,第一通信控制电路22能够在接收到第二通信控制电路35发送的指示信息之后立刻对无线发射电路21的发射功率进行调整,以满足电池当前的充电需求,具有调节速度快、效率高的优点。
本申请实施例对第一通信控制电路22从电源提供设备10提供的最大输出功率中抽取功率量的方式不做具体限定。例如,可以在无线充电信号的发射装置20内部设置电压转换电路24,该电压转换电路24可以与发射线圈或发射天线相连,用于调整发射线圈或发射天线接收到的功率。该电压转换电路24例如可以包括脉冲宽度调制(Pulse Width Modulation,PWM)控制器和开关单元。第一通信控制电路22可以通过调整PWM控制器发出的控制信号的占空比调整无线发射电路21的发射功率。
本申请实施例对充电接口23的类型不做具体限定。可选地,在一些实施例中,该充电接口23可以为USB接口。该USB接口例如可以是USB 2.0接口,micro USB接口,或USB TYPE-C接口。可选地,在另一些实施例中,该充电接口23还可以是lightning接口,或者其他任意类型的能够用于充电的并口和/或串口。
本申请实施例对第一通信控制电路22与电源提供设备10之间的通信方式不做具体限定。
作为一个示例,第一通信控制电路22可以通过除充电接口之外的其他通信接口与电源提供设备10相连,并通过该通信接口与电源提供设备10通信。作为另一个示例,第一通信控制电路22可以以无线的方式与电源提供设备10进行通信。例如,第一通信控制电路22可以与电源提供设备10进行近场通信(Near Field Communication,NFC)。
作为又一个示例,第一通信控制电路22可以通过充电接口23与电源提供设备10进行通信,而无需设置额外的通信接口或其他无线通信模块,这样可以简化无线充电装置20的实现。例如,充电接口23为USB接口,第一通信控制电路22可以与电源提供设备10基于该USB接口中的数据线(如D+和/或D-线)进行通信。又如,充电接口23可以为支持功率传输(power delivery,PD)通信协议的USB接口(如USB TYPE-C接口),第一通信控制电路22与电源提供设备10可以基于PD通信协议进行通信。
可选地,第一通信控制电路22调整无线充电信号的发射功率可以指,第一通信控制电路22通过调整无线发射电路21的输入电压和/或输入电流来调整无线充电信号的发射功率。例如,第一通信控制电路可以通过增大无线发射电路的输入电压来增大无线发射电路的发射功率。
可选地,如图8所示,待充电设备30还可以包括第一充电通道36,通过该第一充电通道36可将无线接收电路31的输出电压和/或输出电流提供给电池33,对电池33进行充电。
可选地,第一充电通道36上还可以设置电压转换电路32,该电压转换电路32的输入端与无线接收电路31的输出端电连接,用于对无线接收电路31的输出电压进行恒压和/或恒流控制,以对电池33进行充电,使得电压转换电路32的输出电压和/或输出电流与电池当前所需的充电电压和/或充电电流相匹配。
可选地,增大无线发射电路21的发射功率可以指增大无线发射电路21的发射电压,增大无线发射电路21的发射电压可以通过增大电压转换电路24的输出电压来实现。例如,第一通信控制电路22接收到第二通信控制电路35发送的指示增大发射功率的指示信息后,可以通过增大电压转换电路24的输出电压来增大无线发射电路21的发射功率。
可选地,无线充电信号的接收装置还可包括检测电路34,该检测电路34可以检测电池33的电压和/或充电电流,第二通信控制电路35可以根据电池33的电压和/或充电电流,向第一通信控制电路22发送指示信息,以指示第一通信控制电路22调整无线发射电路21的发射功率对应的输出电压和输出电流。
在一实施例中,对待充电设备而言,在恒流充电的过程中,电池的电压会不断上升,电池所需 的充电功率也会随之增大。此时,需要增大无线充电信号的发射功率,以满足电池当前的充电需求。在恒压充电的过程中,电池的充电电流可能会不断减小,电池所需的充电功率也会随之减小。此时,需要减小无线充电信号的发射功率,以满足电池当前的充电需求。
第一通信控制电路22可以根据指示信息调整无线充电信号的发射功率,可以指第一通信控制电路22调整无线充电信号的发射功率,使得无线充电信号的发射功率与电池的当前所需的充电电压和/或充电电流相匹配。
无线发射电路21的发射功率与电池33当前所需的充电电压和/或充电电流相匹配可以指:第一通信控制电路22对无线充电信号的发射功率的配置使得第一充电通道36的输出电压和/或输出电流与电池33当前所需的充电电压和/或充电电流相匹配(或者,第一通信控制电路22对无线充电信号的发射功率的配置使得第一充电通道36的输出电压和/或输出电流满足电池33的充电需求(包括电池33对充电电压和/或充电电流的需求))。
应理解,在本公开的一实施例中,“第一充电通道36的输出电压和/或输出电流与电池33当前所需的充电电压和/或充电电流相匹配”包括:第一充电通道36输出的直流电的电压值和/或电流值与电池33所需的充电电压值和/或充电电流值相等或在浮动预设范围(例如,电压值上下浮动100毫伏~200毫伏,电流值上下浮动0.001A~0.005A等)。
上述第二通信控制电路35根据检测电路34检测到的电池33的电压和/或充电电流,与第一通信控制电路22进行无线通信,以便第一通信控制电路22根据电池33的电压和/或充电电流,调整无线发射电路21的发射功率可以包括:在电池33的恒流充电阶段,第二通信控制电路35根据检测到的电池的电压,与第一通信控制电路22进行无线通信,以便第一通信控制电路22调整无线发射电路21的发射功率,使得第一充电通道36的输出电压与该恒流充电阶段电池所需的充电电压相匹配(或者,使得第一充电通道36的输出电压满足电池33在恒流充电阶段对充电电压的需求)。
图9是本申请实施例提供的充电***的另一示例。图9的实施例对应的无线充电信号的发射装置20并非从电源提供设备10获取电能,而是直接将外部输入的交流电(如市电)转换成上述无线充电信号。
如图9所示,无线充电信号的发射装置20还可包括电压转换电路24和电源提供电路25。电源提供电路25可用于接收外部输入的交流电(如市电),并根据交流电生成电源提供电路25的输出电压和输出电流。例如,电源提供电路25可以对交流电进行整流和/或滤波,得到直流电或脉动直流电,并将该直流电或脉动直流电传输至电压转换电路24。
电压转换电路24可用于接收电源提供电路25的输出电压,并对电源提供电路25的输出电压进行转换,得到电压转换电路24的输出电压和输出电流。无线发射电路21还可用于根据电压转换电路24的输出电压和输出电流,生成无线充电信号。
本申请实施例在无线充电信号的发射装置20内部集成了类似适配器的功能,使得该无线充电信号的发射装置20无需从外部的电源提供设备获取功率,提高了无线充电信号的发射装置20的集成度,并减少了实现无线充电过程所需的器件的数量。
可选地,在一些实施例中,无线充电信号的发射装置20可以支持第一无线充电模式和第二无线充电模式,无线充电信号的发射装置20在第一无线充电模式下对待充电设备的充电速度快于无线充电信号的发射装置20在第二无线充电模式下对待充电设备的充电速度。换句话说,相较于工作在第二无线充电模式下的无线充电信号的发射装置20来说,工作在第一无线充电模式下的无线充电信号的发射装置20充满相同容量的待充电设备中的电池的耗时更短。
本申请实施例提供的充电方法可以使采用第一充电模式进行充电,也可以使采用第二充电模式进行充电,本申请实施例对此不做限定。
第二无线充电模式可为称为普通无线充电模式,例如可以是传统的基于QI标准、PMA标准或A4WP标准的无线充电模式。第一无线充电模式可为快速无线充电模式。该普通无线充电模式可以指无线充电信号的发射装置20的发射功率较小(通常小于15W,常用的发射功率为5W或10W)的无线充电模式,在普通无线充电模式下想要完全充满一较大容量电池(如3000毫安时容量的电池),通常需要花费数个小时的时间;而在快速无线充电模式下,无线充电信号的发射装置20的发射功率相对较大(通常大于或等于15W)。相较于普通无线充电模式而言,无线充电信号的发射装置20在快速无线充电模式下完全充满相同容量电池所需要的充电时间能够明显缩短、充电速度 更快。
参见图10,在本公开的一实施例中,待充电设备30还包括:第二充电通道38。第二充电通道38可为导线。在第二充电通道38上可设置变换电路37,用于对无线接收电路31输出的直流电进行电压控制,得到第二充电通道38的输出电压和输出电流,以对电池33进行充电。
在一个实施例中,变换电路37可用于降压电路,并且输出恒流和/或恒压的电能。换句话说,该变换电路37可用于对电池的充电过程进行恒压和/或恒流控制。
当采用第二充电通道38对电池33进行充电时,无线发射电路21可采用恒定发射功率发射电磁信号,无线接收电路31接收电磁信号后,由变换电路37处理为满足电池33充电需求的电压和电流并输入电池33,实现对电池33的充电。应理解,在一些实施例中,恒定发射功率不一定是发射功率完全保持不变,其可在一定的范围内变动,例如,发射功率为7.5W上下浮动0.5W。
在本公开的实施例中,通过第一充电通道36对电池33进行充电的充电方式为第一无线充电模式,通过第二充电通道38对电池33进行充电的方式称为第二无线充电模式。无线充电信号的发射装置和待充电设备可通过握手通信确定采用第一无线充电模式还是第二无线充电模式对电池33进行充电。
本公开实施例中,对于无线充电信号的发射装置,当通过第一无线充电模式对待充电设备充电时,无线发射电路21的最大发射功率可为第一发射功率值。而通过第二无线充电模式对待充电设备进行充电时,无线发射电路21的最大发射功率可为第二发射功率值。其中,第一发射功率值大于第二发射功率值,由此,采用第一无线充电模式对待充电设备的充电速度大于第二无线充电模式。
可选地,第二通信控制电路35还可用于控制第一充电通道36和第二充电通道38之间的切换。例如,如图10所示,第一充电通道36上可以设置开关39,第二通信控制电路35可以通过控制该开关39的导通与关断控制第一充电通道36和第二充电通道38之间的切换。
上文指出,在某些实施例中,无线充电信号的发射装置20可以包括第一无线充电模式和第二无线充电模式,且无线充电信号的发射装置20在第一无线充电模式下对待充电设备30的充电速度快于无线充电信号的发射装置20在第二无线充电模式下对待充电设备30的充电速度。当无线充电信号的发射装置20使用第一无线充电模式为待充电设备30内的电池充电时,待充电设备30可以控制第一充电通道36工作;当无线充电信号的发射装置20使用第二无线充电模式为待充电设备30内的电池充电时,待充电设备30可以控制第二充电通道38工作。
在待充电设备侧,第二通信控制电路35可以根据充电模式,在第一充电通道36和第二充电通道38之间进行切换。当采用第一无线充电模式时,第二通信控制电路35控制第一充电通道36上的电压转换电路32工作。当采用第二无线充电模式时,第二通信控制电路35控制第二充电通道38上的变换电路37工作。
可选地,无线充电信号的发射装置20可以与待充电设备30之间进行通信,以协商无线充电信号的发射装置20与待充电设备30之间的充电模式。
除了上文描述的通信内容外,无线充电信号的发射装置20中的第一通信控制电路22与待充电设备30中的第二通信控制电路35之间还可以交互许多其他通信信息。在一些实施例中,第一通信控制电路22和第二通信控制电路35之间可以交互用于安全保护、异常检测或故障处理的信息,如电池33的温度信息,进入过压保护或过流保护的指示信息等信息,功率传输效率信息(该功率传输效率信息可用于指示无线发射电路21和无线接收电路31之间的功率传输效率)。
可选地,第二通信控制电路35与第一通信控制电路22之间的通信可以为单向通信,也可以为双向通信,本申请实施例对此不做具体限定。
在本申请的实施例中,第二通信控制电路的功能可由待充电设备30的应用处理器实现,由此,可以节省硬件成本。或者,也可由独立的控制芯片实现,由独立的控制芯片实现可提高控制的可靠性。
可选地,本申请实施例可以将无线接收电路33与电压转换电路37均集成在同一无线充电芯片中,这样可以提高待充电设备集成度,简化待充电设备的实现。例如,可以对传统无线充电芯片的功能进行扩展,使其支持充电管理功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其他任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多 个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种无线充电方法,应用于待充电设备,其特征在于,所述待充电设备包括无线接收电路,充电管理电路,通信控制电路,检测电路以及电池,所述无线接收电路的输出端与所述充电管理电路的输入端连接,所述充电管理电路的输入端与所述电池连接,所述通信控制电路控制所述无线接收电路和所述充电管理电路的输出电流和/或输出电压,所述方法包括:
    在所述电池的无线充电状态从第一充电模式向第二充电模式调整的过程中,所述通信控制电路指示无线发射装置提升发射功率,以使所述无线接收电路输出的电压提升;
    当所述无线接收电路输出的电压达到第一电压阈值时,所述通信控制电路指示所述无线发射装置提升发射功率,以使所述充电管理电路输出的电流提升;
    所述检测电路检测所述无线接收电路的输出电流;
    当所述无线接收电路的输出电流大于第一电流阈值时,所述通信控制电路提升所述无线接收电路的输出电压,以使得所述无线接收电路的输出电流小于或等于所述第一电流阈值。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述无线接收电路的输出电流小于或等于所述第一电流阈值的情况下,所述通信控制电路提升所述充电管理电路的输出电流,直到所述充电管理电路的输出电流达到第二电流阈值。
  3. 根据权利要求1或2所述的方法,其特征在于,当所述充电管理电路的输出电流达到第二电流阈值,所述无线充电进入所述第二充电模式;或
    当所述充电管理电路的输出电流未达到所述第二电流阈值且所述无线接收电路的输出电压达到第二电压阈值时,所述无线充电进入所述第二充电模式。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述通信控制电路指示无线发射装置提升发射功率,包括:
    在所述无线接收电路预期接收的功率与实际接收到的功率之间的功率差值大于或等于第一阈值的情况下,所述通信控制电路向所述无线发射装置发送所述第一指示信息,以使得所述功率差值小于所述第一阈值;
    其中,所述第一指示信息用于指示所述无线发射装置提升输出电压。
  5. 根据权利要求4所述的方法,其特征在于,所述第一阈值为0。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,在所述电池的无线充电状态从第一充电模式向第二充电模式调整的过程中之前,所述方法还包括:
    所述通信控制电路将所述充电管理电路输出的电流设置为第三电流阈值。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    所述待充电设备获取第一信息:所述电池的温度信息,所述电池的电压信息,所述电池的荷电状态信息以及所述无线发射装置连接的电源提供设备的类型;
    在所述第一信息满足进入所述第二充电模式的条件时,从所述第一充电模式向所述第二充电模式进行调整。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    在所述第二充电模式过程中,所述待充电设备的检测电路检测以下信息:所述电池温度信息,所述电池充电电流信息,所述电池电压信息,所述无线接收电路的输出电压,所述无线接收电路预期接收的功率与实际接收到的功率之间的功率差值;
    所述通信控制电路根据所述检测电路检测的信息中的至少一种信息调整所述充电管理电路的输出电流或所述无线接收电路的输出电压;
    所述通信控制电路将调整后的所述充电管理电路的输出电流或调整后的所述无线接收电路的输出电压反馈至所述无线发射装置。
  9. 一种待充电设备,其特征在于,包括:
    通信控制电路,用于在电池的无线充电状态从第一充电模式向第二充电模式调整的过程中,指示无线发射装置提升发射功率,以使无线接收电路输出的电压提升;
    所述通信控制电路还用于:当所述无线接收电路输出的电压达到第一电压阈值时,指示所述无线发射装置提升发射功率,以使所述充电管理电路输出的电流提升;
    所述待充电设备还包括:
    检测电路,用于检测所述无线接收电路的输出电流;
    所述通信控制电路还用于:当所述无线接收电路的输出电流大于第一电流阈值时,提升所述无线接收电路的输出电压,以使得所述无线接收电路的输出电流小于或等于所述第一电流阈值。
  10. 根据权利要求9所述的待充电设备,其特征在于,所述通信控制电路还用于:
    在所述无线接收电路的输出电流小于或等于所述第一电流阈值的情况下,提升所述充电管理电路的输出电流,直到所述充电管理电路的输出电流达到第二电流阈值。
  11. 根据权利要求9或10所述的待充电设备,其特征在于,当所述充电管理电路的输出电流达到第二电流阈值,所述无线充电进入所述第二充电模式;或
    当所述充电管理电路的输出电流未达到所述第二电流阈值且所述无线接收电路的输出电压达到第二电压阈值时,所述无线充电进入所述第二充电模式。
  12. 根据权利要求9至11中任一项所述的待充电设备,其特征在于,所述通信控制电路具体用于:
    在所述无线接收电路预期接收的功率与实际接收到的功率之间的功率差值大于或等于第一阈值的情况下,向所述无线发射装置发送所述第一指示信息,以使得所述功率差值小于所述第一阈值;
    其中,所述第一指示信息用于指示所述无线发射装置提升输出电压。
  13. 根据权利要求12所述的待充电设备,其特征在于,所述第一阈值为0。
  14. 根据权利要求9至13中任一项所述的待充电设备,其特征在于,所述通信控制电路还用于:
    在所述电池的无线充电状态从第一充电模式向第二充电模式调整的过程中之前,将所述充电管理电路输出的电流设置为第三电流阈值。
  15. 根据权利要求9至14中任一项所述的待充电设备,其特征在于,所述通信控制电路还用于:
    获取第一信息:所述电池的温度信息,所述电池的电压信息,所述电池的荷电状态信息以及所述无线发射装置连接的电源提供设备的类型;
    在所述第一信息满足进入所述第二充电模式的条件时,从所述第一充电模式向所述第二充电模式进行调整。
  16. 根据权利要求9至15中任一项所述的待充电设备,其特征在于,所述检测电路还用于:
    在所述第二充电模式过程中,检测以下信息:所述电池温度信息,所述电池充电电流信息,所述电池电压信息,所述无线接收电路的输出电压,所述无线接收电路预期接收的功率与实际接收到的功率之间的功率差值;
    所述通信控制电路还用于:
    根据所述检测电路检测的信息中的至少一种信息调整所述充电管理电路的输出电流或所述无线接收电路的输出电压;
    将调整后的所述充电管理电路的输出电流或调整后的所述无线接收电路的输出电压反馈至所述无线发射装置。
  17. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机可读存储介质用于待充电设备,所述待充电设备包括无线接收电路,充电管理电路,通信控制电路,检测电路以及电池,所述无线接收电路的输出端与所述充电管理电路的输入端连接,所述充电管理电路的输入端与所述电池连接,所述通信控制电路控制所述无线接收电路和所述充电管理电路的输出电流和/或输出电压,所述计算机程序使得计算机执行的方法包括:
    在所述电池的无线充电状态从第一充电模式向第二充电模式调整的过程中,所述通信控制电路指示无线发射装置提升发射功率,以使所述无线接收电路输出的电压提升;
    当所述无线接收电路输出的电压达到第一电压阈值时,所述通信控制电路指示所述无线发射装置提升发射功率,以使所述充电管理电路输出的电流提升;
    所述检测电路检测所述无线接收电路的输出电流;
    当所述无线接收电路的输出电流大于第一电流阈值时,所述通信控制电路提升所述无线接收电路的输出电压,以使得所述无线接收电路的输出电流小于或等于所述第一电流阈值。
  18. 根据权利要求17所述的可读存储介质,其特征在于,所述可读存储介质存储的计算机程 序使得计算机执行的方法还包括:
    在所述无线接收电路的输出电流小于或等于所述第一电流阈值的情况下,所述通信控制电路提升所述充电管理电路的输出电流,直到所述充电管理电路的输出电流达到第二电流阈值。
  19. 根据权利要求17或18所述的可读存储介质,其特征在于,
    当所述充电管理电路的输出电流达到第二电流阈值,所述无线充电进入所述第二充电模式;或
    当所述充电管理电路的输出电流未达到所述第二电流阈值且所述无线接收电路的输出电压达到第二电压阈值时,所述无线充电进入所述第二充电模式。
  20. 根据权利要求17至19中任一项所述的可读存储介质,其特征在于,所述通信控制电路指示无线发射装置提升发射功率,包括:
    在所述无线接收电路预期接收的功率与实际接收到的功率之间的功率差值大于或等于第一阈值的情况下,所述通信控制电路向所述无线发射装置发送所述第一指示信息,以使得所述功率差值小于所述第一阈值;
    其中,所述第一指示信息用于指示所述无线发射装置提升输出电压。
  21. 根据权利要求20所述的可读存储介质,其特征在于,所述第一阈值为0。
  22. 根据权利要求17至21中任一项所述的可读存储介质,在所述电池的无线充电状态从第一充电模式向第二充电模式调整的过程中之前,所述可读存储介质存储的计算机程序使得计算机执行的方法还包括:
    所述通信控制电路将所述充电管理电路输出的电流设置为第三电流阈值。
  23. 根据权利要求17至22中任一项所述的可读存储介质,其特征在于,所述可读存储介质存储的计算机程序使得计算机执行的方法还包括:
    所述待充电设备获取第一信息:所述电池的温度信息,所述电池的电压信息,所述电池的荷电状态信息以及所述无线发射装置连接的电源提供设备的类型;
    在所述第一信息满足进入所述第二充电模式的条件时,从所述第一充电模式向所述第二充电模式进行调整。
  24. 根据权利要求17至23中任一项所述的可读存储介质,其特征在于,所述可读存储介质存储的计算机程序使得计算机执行的方法还包括:
    在所述第二充电模式过程中,所述待充电设备的检测电路检测以下信息:所述电池温度信息,所述电池充电电流信息,所述电池电压信息,所述无线接收电路的输出电压,所述无线接收电路预期接收的功率与实际接收到的功率之间的功率差值;
    所述通信控制电路根据所述检测电路检测的信息中的至少一种信息调整所述充电管理电路的输出电流或所述无线接收电路的输出电压;
    所述通信控制电路将调整后的所述充电管理电路的输出电流或调整后的所述无线接收电路的输出电压反馈至所述无线发射装置。
PCT/CN2020/100568 2019-07-30 2020-07-07 无线充电方法和待充电设备 WO2021017770A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910693649.9 2019-07-30
CN201910693649.9A CN112332501B (zh) 2019-07-30 2019-07-30 无线充电方法和待充电设备

Publications (1)

Publication Number Publication Date
WO2021017770A1 true WO2021017770A1 (zh) 2021-02-04

Family

ID=74230082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100568 WO2021017770A1 (zh) 2019-07-30 2020-07-07 无线充电方法和待充电设备

Country Status (2)

Country Link
CN (1) CN112332501B (zh)
WO (1) WO2021017770A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115117947A (zh) * 2021-03-19 2022-09-27 北京小米移动软件有限公司 无线充电控制方法、装置、设备及存储介质
CN117040059B (zh) * 2023-08-09 2024-06-04 深圳市雅为智能技术有限公司 基于智能手表的无线充电方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106532831A (zh) * 2016-11-30 2017-03-22 珠海市魅族科技有限公司 一种充电控制方法及装置
CN107658951A (zh) * 2017-11-24 2018-02-02 厦门市科力电子有限公司 一种多路电池充电的均衡方法及***
US20180262047A1 (en) * 2017-03-13 2018-09-13 Dell Products, Lp Wireless Power System with Foreign Object Detection and Method Therefor
CN109787325A (zh) * 2017-04-07 2019-05-21 Oppo广东移动通信有限公司 无线充电***、装置、方法及待充电设备
CN110808637A (zh) * 2018-08-06 2020-02-18 西安中兴新软件有限责任公司 无线充电方法、装置、电路及计算机存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI556543B (zh) * 2015-01-23 2016-11-01 廣達電腦股份有限公司 電源輸入電路
KR102328496B1 (ko) * 2017-04-07 2021-11-17 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 무선 충전 시스템, 장치, 방법 및 충전 대기 기기
CN108233506A (zh) * 2017-07-31 2018-06-29 珠海市魅族科技有限公司 一种充电电路、电子设备及无线充电***
CN109256873B (zh) * 2018-11-16 2021-10-15 京东方科技集团股份有限公司 无线充电提示方法及装置、无线充电***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106532831A (zh) * 2016-11-30 2017-03-22 珠海市魅族科技有限公司 一种充电控制方法及装置
US20180262047A1 (en) * 2017-03-13 2018-09-13 Dell Products, Lp Wireless Power System with Foreign Object Detection and Method Therefor
CN109787325A (zh) * 2017-04-07 2019-05-21 Oppo广东移动通信有限公司 无线充电***、装置、方法及待充电设备
CN107658951A (zh) * 2017-11-24 2018-02-02 厦门市科力电子有限公司 一种多路电池充电的均衡方法及***
CN110808637A (zh) * 2018-08-06 2020-02-18 西安中兴新软件有限责任公司 无线充电方法、装置、电路及计算机存储介质

Also Published As

Publication number Publication date
CN112332501A (zh) 2021-02-05
CN112332501B (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
US11368050B2 (en) Wireless charging device, method, and device to-be-charged
US10998751B2 (en) Wireless charging system, wireless charging device, wireless charging method, and device to be charged
WO2018184285A1 (zh) 无线充电***、装置、方法及待充电设备
WO2017133379A1 (zh) 适配器和充电控制方法
WO2020172868A1 (zh) 充电方法和充电装置
TWI661291B (zh) 適配器和充電控制方法
WO2021077933A1 (zh) 充电控制方法、充电控制设备和电子设备
US11171499B2 (en) Device to be charged with multiple charging channels, charging method, and charging control circuit with multiple charging channels
WO2020124582A1 (zh) 接收装置和无线充电方法
AU2018423401B2 (en) Device to be charged and charging control method
WO2020191540A1 (zh) 供电装置、电子设备和供电方法
US20210273497A1 (en) Transmitting apparatus, receiving apparatus, power supply device and wireless charging method
WO2021017770A1 (zh) 无线充电方法和待充电设备
WO2020133081A1 (zh) 充电方法和装置、待充电设备、存储介质及芯片***
US11552503B2 (en) Terminal device and charging control method
US11502557B2 (en) Wireless charging control method and charging control device
WO2021012951A1 (zh) 无线充电装置、方法及***
WO2021052346A1 (zh) 充电方法、充电设备和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20846419

Country of ref document: EP

Kind code of ref document: A1