WO2021073592A1 - 作为rho激酶抑制剂的苯并吡唑类化合物的盐型、晶型及其制备方法 - Google Patents

作为rho激酶抑制剂的苯并吡唑类化合物的盐型、晶型及其制备方法 Download PDF

Info

Publication number
WO2021073592A1
WO2021073592A1 PCT/CN2020/121388 CN2020121388W WO2021073592A1 WO 2021073592 A1 WO2021073592 A1 WO 2021073592A1 CN 2020121388 W CN2020121388 W CN 2020121388W WO 2021073592 A1 WO2021073592 A1 WO 2021073592A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal form
formula
compound
preparation
carbon atom
Prior art date
Application number
PCT/CN2020/121388
Other languages
English (en)
French (fr)
Inventor
吴凌云
肖哲明
蒋春艳
黎健
陈曙辉
Original Assignee
南京明德新药研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发有限公司 filed Critical 南京明德新药研发有限公司
Priority to JP2022523071A priority Critical patent/JP7252417B2/ja
Priority to CN202080072404.5A priority patent/CN114555561B/zh
Priority to US17/767,104 priority patent/US11702400B2/en
Priority to EP20876972.9A priority patent/EP4046686B1/en
Publication of WO2021073592A1 publication Critical patent/WO2021073592A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • A61K31/4161,2-Diazoles condensed with carbocyclic ring systems, e.g. indazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the present invention relates to a kind of salt forms, crystal forms and preparation methods of benzopyrazole compounds as RHO kinase inhibitors, in particular to the hydrochloride and acetate salts of compounds of formula (I) and their crystal forms, and Including the application of the salt form and crystal form in the preparation of RHO inhibitor drugs.
  • RHO-associated protein kinase which belongs to serine/threonine protein kinase, is the downstream target effector molecule of RHO, and is widely expressed in the human body.
  • RHO-related protein kinase (ROCK) is involved in the regulation of myosin light chain (MLC) and is suitable for the treatment of vasodilation.
  • MLC myosin light chain
  • ROCK kinase is involved in the regulation of TH17 cell immune response and the activation of fibroblasts, which can expand adaptation It is used for lung diseases such as pulmonary fibrosis and asthma. Further indications include autoimmune diseases.
  • the ROCK kinase family includes two subtypes of ROCK1 and ROCK2.
  • ROCK2 kinase is related to inflammation and fibrosis. Selective ROCK2 inhibitors did not cause vasodilation at high concentrations in isolated vasodilation experiments, which can reduce cardiovascular side effects. Although ROCK1 knockout mice have low embryonic mortality, most of them die after birth due to cytoskeletal mutations caused by reduced MLC phosphorylation, while 90% of ROCK2 knockout mice die in the embryonic stage, but the surviving mice and wild-type mice No difference, selective inhibition of ROCK2 activity may have higher safety. Therefore, selective ROCK2 protein kinase inhibitors can avoid the cardiovascular side effects of drugs.
  • KD025 (WO2006105081A1, WO2008054599A1, WO2010104851A1 and WO2014055996A1) is a selective inhibitor of oral ROCK2 kinase developed by Kadmon. Studies have shown that KD025 is a representative of a new mechanism for the treatment of idiopathic pulmonary fibrosis (IPF) by inhibiting proteins that regulate fibrosis such as RHO kinase. The cause of idiopathic pulmonary fibrosis (IPF) may be body damage.
  • IPF idiopathic pulmonary fibrosis
  • the body's response to injury involves the reorganization of the actin cytoskeleton of a variety of cells (such as epithelial cells, fibroblasts, endothelial cells, and macrophages), and the assembly of actin filaments and actin spheres.
  • actomyosin is regulated by RHO kinase family proteins (including ROCK1 and ROCK2).
  • ROCK1 and ROCK2 RHO kinase family proteins
  • Previous studies have shown that RHO kinase family proteins are activated in the lungs of IPF patients and animal models of this disease, and RHO kinase inhibitors can prevent tissue fibrosis in these models and can induce the regression of established fibrosis. .
  • the Phase II clinical trial for the treatment of moderate to severe psoriasis has been completed, and the Phase II clinical research phase for the treatment of idiopathic pulmonary fibrosis (IPF) has been completed.
  • IPF idiopathic pulmonary fibros
  • WO2014134388A1 and WO2016028971A1 also disclose a class of compounds whose general structural formulas are shown in formula (a) and formula (b). Such compounds can also be used for cardiovascular diseases, neuropathological diseases, tumors, autoimmune diseases, and pulmonary fibrosis. , Inflammatory diseases, etc.
  • the present invention provides a hydrochloride salt of a compound of formula (I), which has a structure represented by formula (I'),
  • n 1.6 to 2.4
  • the carbon atom with "*" is a chiral carbon atom, which exists in the form of (R) or (S) single enantiomer or rich in (R) or (S) single enantiomer. .
  • n is 1.9, 2.0 or 2.1.
  • the hydrochloride salt has a structure represented by formula (I-1),
  • the carbon atom with "*" is a chiral carbon atom, which exists in the form of (R) or (S) single enantiomer or rich in (R) or (S) single enantiomer.
  • the hydrochloride salt has a structure represented by formula (II-1),
  • the X-ray powder diffraction (XRPD) pattern of Cu K ⁇ radiation of the crystalline form A of the hydrochloride salt has characteristic diffraction peaks at the following 2 ⁇ angles: 14.77 ⁇ 0.20°, 20.50 ⁇ 0.20°, 22.38 ⁇ 0.20° and 24.15 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of Cu K ⁇ radiation of the crystalline form A of the hydrochloride salt has characteristic diffraction peaks at the following 2 ⁇ angles: 10.22 ⁇ 0.20°, 13.36 ⁇ 0.20°, 14.77 ⁇ 0.20°, 18.69 ⁇ 0.20°, 20.50 ⁇ 0.20°, 22.38 ⁇ 0.20°, 24.15 ⁇ 0.20° and 25.03 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of Cu K ⁇ radiation of the crystalline form A of the hydrochloride salt has characteristic diffraction peaks at the following 2 ⁇ angles: 7.38°, 9.32°, 10.22°, 13.36°, 14.77°, 15.21°, 18.69°, 20.50°, 21.69°, 22.08°, 22.38°, 24.15°, 24.58°, 25.03°, 26.28°, 27.13°, 28.15°, 29.44°, 30.15°, 31.49°, 32.1°, 32.69° , 35.17° and 38.51°.
  • the XRPD pattern of the crystalline form A of the hydrochloride salt is shown in FIG. 1.
  • the differential scanning calorimetry (DSC) curve of the crystalline form A of the hydrochloride salt shows that the starting point of the endothermic peak is 245.2°C+3°C.
  • the DSC spectrum of the crystalline form A of the hydrochloride salt is shown in FIG. 2.
  • thermogravimetric analysis (TGA) curve of the crystalline form A of the hydrochloride salt has a weight loss of 3.14% at 190.0°C ⁇ 3°C.
  • the TGA pattern of the crystalline form A of the hydrochloride salt is shown in FIG. 3.
  • the present invention also provides a method for preparing the crystal form A of the hydrochloride salt, the method comprising the following steps:
  • the organic solvent is ethanol.
  • the appropriate temperature is 25°C.
  • the stirring time is 10-12 hours.
  • the present invention also provides the acetate salt of the compound of formula (I),
  • the carbon atom with "*" is a chiral carbon atom, which exists in the form of (R) or (S) single enantiomer or rich in (R) or (S) single enantiomer.
  • the above-mentioned acetate salt has a structure represented by formula (I-2),
  • the carbon atom with "*" is a chiral carbon atom, which exists in the form of (R) or (S) single enantiomer or rich in (R) or (S) single enantiomer.
  • the above-mentioned acetate salt has a structure represented by formula (II-2),
  • the X-ray powder diffraction pattern of Cu K ⁇ radiation of the above-mentioned acetate crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 6.18 ⁇ 0.20°, 12.37 ⁇ 0.20°, 17.08 ⁇ 0.20°, 21.22 ⁇ 0.20° and 24.88 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of Cu K ⁇ radiation of the above-mentioned acetate crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 6.18 ⁇ 0.20°, 11.94 ⁇ 0.20°, 12.37 ⁇ 0.20°, 17.08 ⁇ 0.20°, 20.76 ⁇ 0.20°, 21.22 ⁇ 0.20°, 22.01 ⁇ 0.20° and 24.88 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of Cu K ⁇ radiation of the above-mentioned acetate crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 6.18°, 10.57°, 11.94°, 12.37°, 12.94°, 13.93°, 16.22°, 17.08°, 17.93°, 18.30°, 19.47°, 20.34°, 20.76°, 21.22°, 21.58°, 22.01°, 22.25°, 23.06°, 24.07°, 24.46°, 24.88°, 25.28° , 25.69°, 25.99°, 26.66°, 27.03°, 28.85°, 29.54°, 31.14°, 31.88°, 32.48°, 33.70°, 34.43°, 35.54°, 36.33°, 37.89° and 39.67°.
  • the X-ray powder diffraction pattern of the crystalline form B of the acetate salt is shown in FIG. 4.
  • the differential scanning calorimetry (DSC) curve of the crystalline form B of the acetate salt shows that the starting point of the endothermic peak is 157.9°C.
  • the DSC spectrum of the crystalline form B of the acetate salt is shown in FIG. 5.
  • thermogravimetric analysis (TGA) curve of the crystalline form B of the above acetate has a weight loss of 2.00% at 120.0°C ⁇ 3°C.
  • the TGA spectrum of the above-mentioned acetate crystal form B is shown in FIG. 6.
  • the present invention also provides a method for preparing the crystal form B of the above acetate, the method comprising the following steps:
  • the organic solvent is ethyl acetate.
  • the present invention also provides the application of the hydrochloride salt, the crystal form A of the hydrochloride salt, the acetate salt and the crystal form B of the acetate salt in the preparation of RHO inhibitor drugs.
  • the present invention also provides the application of the hydrochloride salt, the crystal form A of the hydrochloride salt, the acetate salt and the crystal form B of the acetate salt in the preparation of a medicine for treating pulmonary fibrosis and radioactive pulmonary fibrosis.
  • the preparation process of the crystal form of the present invention is simple, and the crystal form is stable, less affected by heat and light, and is convenient for preparation.
  • the intermediate compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by combining them with other chemical synthesis methods, and those of those skilled in the art.
  • Well-known equivalent alternatives, preferred implementations include but are not limited to the embodiments of the present invention.
  • the solvent used in the present invention is commercially available.
  • ACN stands for acetonitrile
  • Bis-Tris stands for bis(2-hydroxyethyl)amino(trihydroxymethyl)methane
  • DMSO stands for dimethylsulfoxide.
  • the compounds of the present invention are used according to conventional naming principles in the field or The software is named, and the commercially available compounds use the supplier catalog name.
  • Test method about 10mg sample is used for XRPD detection
  • Radiation source Cu, Cu,
  • Light tube voltage 45kV
  • light tube current 40mA
  • Test method Take a sample (about 1-5 mg) and place it in a DSC aluminum pan for testing.
  • the aluminum pan is covered with no holes. Under the condition of 50 mL/min N 2 and at a heating rate of 10° C./min, the sample is heated from 25 °C (room temperature) until the sample decomposes.
  • Test method Take a sample (about 1-5 mg) and place it in an open TGA aluminum pan for testing. Under the condition of 10-25 mL/min N 2 and at a heating rate of 10°C/min, heat the sample from room temperature to 350°C.
  • scanning method scanning
  • the total number of diffraction points collected is 16,827, the number of independent diffraction points is 5091, and the number of observable points (I/sigma ⁇ 2) is 2177.
  • 2 ), S 0.957.
  • Figure 1 is the XRPD spectrum of the crystal form A of the compound of formula (II-1).
  • Figure 2 is a DSC spectrum of the crystal form A of the compound of formula (II-1).
  • Figure 3 is a TGA spectrum of the crystal form A of the compound of formula (II-1).
  • Figure 4 is the XRPD spectrum of the crystal form B of the compound of formula (II-2).
  • Figure 5 is a DSC chart of the crystal form B of the compound of formula (II-2).
  • Figure 6 is the TGA spectrum of the crystal form B of the compound of formula (II-2).
  • Figure 7 is a comparison of XRPD spectra of crystalline form A of the compound of formula (II-1) under high temperature, high humidity and light conditions.
  • Figure 8 is a comparison of XRPD spectra of the crystalline form A of the compound of formula (II-1) under 92.5% high humidity conditions.
  • Figure 9 is a comparison of XRPD spectra of the crystalline form B of the compound of formula (II-2) under high temperature, high humidity and light conditions.
  • Figure 10 is a single crystal X-ray diffraction spectrum of Compound 8.
  • N,N-dimethylformamide (15L) to the reaction kettle, turn on the stirring, add compound 3 (1.50kg, 5.63mol, the carbon atom with "*" in compound 3 is a chiral carbon atom, and (R ) Or (S) single enantiomer form or rich (R) or (S) single enantiomer form) and compound 4 (1.19kg, 5.91mol), control the internal temperature to 10 ⁇ 30°C, and then add N , N-Diisopropylethylamine (1.96L), slowly add tri-n-propyl phosphoric anhydride in 50% ethyl acetate solution (5.02L) at an internal temperature of -5 ⁇ 5°C, the reaction solution is Stir at 25°C for 19 hours.
  • the temperature of the reaction solution was lowered to room temperature, water (2.50 L) and ethyl acetate (2.50 L) were added to the reaction solution, and the mixture was stirred for 30 minutes. Filter through a pad of diatomaceous earth, and rinse the filter cake with ethyl acetate (1.00L ⁇ 3). The filtrate was allowed to stand for liquid separation, the aqueous phase was extracted with ethyl acetate (1.50L ⁇ 3), the organic phases were combined, washed with saturated brine (5.00L), dried with anhydrous sodium sulfate (1.00kg), and concentrated under reduced pressure to obtain rude product.
  • LCMS monitors the remaining compound of formula (I-1), add diisopropylethylamine (2.31mL, 13.3mmol) and tri-n-propyl cyclic phosphoric anhydride (50% ethyl acetate solution) (2.63mL, 4.43mmol), Continue to stir the reaction at 15°C for 4h. LCMS monitored the completion of the reaction and stopped the reaction. It was quenched by adding saturated sodium bicarbonate solution (20 mL), and the mixture was extracted with ethyl acetate (20 mL ⁇ 2).
  • the absolute configuration of the compound of formula (I-1) can be determined from the absolute configuration of compound 8. Its structure is as follows:
  • the compound of formula (II-1) (25.0g, 52.7mmol) after concentration under reduced pressure (25.0g, 52.7mmol) was diluted with water (100mL), then the pH of the solution was adjusted to about 8 with saturated aqueous sodium bicarbonate solution, the aqueous phase was poured out, and ethanol ( 100 mL) The compound was dissolved and concentrated under reduced pressure.
  • the aqueous phase was extracted with ethyl acetate (200 mL ⁇ 3), the combined organic phase was washed with saturated brine (150 mL ⁇ 1), dried over anhydrous sodium sulfate, filtered, and all the above organic phases were concentrated under reduced pressure.
  • the obtained crude product was separated and purified by high performance liquid chromatography column (basic) to obtain the compound of formula (I).
  • the calculated value of MS-ESI [M+H] + 402, the measured value of 402, is determined by the absolute value of the compound of formula (I-1) Configuration
  • the compound of formula (II-1) can determine the absolute configuration of the compound of formula (I), and its structure is shown in the following formula (II):
  • the compound of formula (II) (1.05 g, 2.62 mmol) was dissolved in ethyl acetate (30 mL), acetic acid (310 ⁇ L) was added at room temperature and stirred for 24.5 hours. Filter under reduced pressure, and spin-dry the filter cake under reduced pressure with an oil pump at 45°C. By XRPD detection, the crystal form B of the compound of formula (II-2) was obtained.
  • Example 1 The solid stability test of the crystal form A of the compound of formula (II-1)
  • the lid is closed, sealed with a parafilm, and stored in the refrigerator at -20°C.
  • the liquid phase is used for sample injection analysis.
  • the test result is the same as the 0 day initial The test results are compared, and the test results are shown in Table 3 below.
  • Preparation of 0-day standard solution Weigh about 10 mg of the crystal form into a 10 mL volumetric flask, dissolve it with 80% ACN, and dilute to the mark.
  • Example 2 Influencing factors and accelerated stability test of the crystal form A of the compound of formula (II-1)
  • High humidity 25°C/92.5%RH: Weigh 1g of each sample, put the sample under 25°C/92.5%RH condition into an open flat weighing bottle (70 ⁇ 35mm), and then put it into the comprehensive drug stability test Examined in a box (25°C/92.5%RH).
  • Illumination Weigh 1g of each sample, put the sample into a clean watch glass, spread it into a thin layer, and irradiate it under the conditions of 5000 ⁇ 500lux (visible light) and 90 ⁇ w/cm 2 (ultraviolet).
  • Table 4 Stability test results of influencing factors of crystal form A of the compound of formula (II-1)
  • Stability acceleration test Weigh 0.8g (accelerated for 1 month, accelerated for 2 months) or 1.2g (accelerated for 3 months, accelerated for 6 months) of each sample and put them into double-layer low-density polyethylene (LDPE) bags, each layer is low
  • LDPE double-layer low-density polyethylene
  • the density polyethylene bags are respectively buckled and sealed, and then the low density polyethylene bags are put into the aluminum foil bag and heat sealed, and they are respectively placed under the conditions of 40°C/75%RH for inspection.
  • Table 5 The experimental results are as follows in Table 5:
  • Table 5 Stability test results of influencing factors of crystal form A of the compound of formula (II-1)
  • the lid is closed, sealed with a parafilm, and stored in the refrigerator at -20°C.
  • the lid is closed, sealed with a parafilm, and stored in the refrigerator at -20°C.
  • take the sample out of the refrigerator return to room temperature, add 80% ACN (10 mL), and sonicate for 2 min to dissolve the sample to obtain a solution with a concentration of about 1 mg/mL.
  • the liquid phase is used for sample injection analysis.
  • the test result is 0 days. The initial test results are compared, and the test results are shown in Table 6 below.
  • Preparation of 0-day standard solution Weigh about 10 mg of the crystal form into a 10 mL volumetric flask, dissolve it with 80% ACN, and dilute to the mark.
  • the crystal form B of the compound of formula (II-2) has good stability under the conditions of high temperature, high humidity and strong light, as shown in Figure 9.
  • Assay buffer solution 20mM 4-hydroxyethylpiperazine ethanesulfonic acid (pH 7.5), 10mM magnesium chloride, 1mM ethylene glycol diethyl ether diamine tetraacetic acid, 0.02% polyoxyethylene lauryl ether, 0.02mg/mL cattle Serum albumin, 0.1 mM sodium vanadate, 2 mM dithiothreitol, 1% DMSO.
  • the protein kinase inhibitory activity of the compound is expressed as the protein kinase activity remaining relative to the blank substrate (only DMSO). And the values of IC 50 was calculated using the Prism software package curve (GraphPad Software, San Diego California, USA).
  • the compound of formula (II) has a good inhibitory activity on ROCK2, and at the same time has a certain selectivity for ROCK2.
  • Plasma samples were collected at 0.25, 0.5, 1, 2, 3, 4, 6, 8, 24 h after administration. Collect whole blood samples within 24 hours, centrifuge at 3000g for 15 minutes, separate the supernatant to obtain a plasma sample, add acetonitrile solution containing internal standard to precipitate the protein, mix well and centrifuge to take the supernatant for injection, and quantify by LC-MS/MS analysis method Analyze blood drug concentration and calculate pharmacokinetic parameters, such as peak concentration (C max ), clearance rate (CL), half-life (T 1/2 ), tissue distribution (Vdss), area under the drug-time curve (AUC 0-last) ), bioavailability (F), etc.
  • C max peak concentration
  • CL clearance rate
  • T 1/2 half-life
  • Vdss tissue distribution
  • AUC 0-last area under the drug-time curve
  • bioavailability F
  • racemate of the compound of formula (I) has good pharmacokinetic properties, including good oral bioavailability, oral exposure, half-life and clearance rate.
  • LC-MS/MS analysis method quantitatively analyzes blood drug concentration and calculates pharmacokinetic parameters, such as peak concentration (C max ), clearance rate (CL), half-life (T 1/2 ), tissue distribution (Vdss), drug time Area under the curve (AUC 0-last ), bioavailability (F), etc.
  • the crystal form A of the compound of formula (II-1) has good pharmacokinetic properties in rats, including good oral bioavailability, oral exposure, half-life and clearance rate.
  • Plasma samples at 2, 4, 8, 12, 24, 36, 48, and 72 hours. Take 15 ⁇ L of plasma sample into a 96-well plate, add 300 ⁇ L of internal standard working solution (containing 1.00ng/mL Verapamil and 0.1% formic acid (FA) in MeOH:ACN (v:v,50:50) solution) to precipitate the protein. The 96-well plate was shaken for 15 minutes, and then centrifuged at 4°C and 3220g for 15 minutes.
  • internal standard working solution containing 1.00ng/mL Verapamil and 0.1% formic acid (FA) in MeOH:ACN (v:v,50:50) solution
  • the LC-MS/MS analysis method quantitatively analyzes the blood drug concentration, and calculates the pharmacokinetic parameters, such as peak concentration (C max ), clearance rate (CL), half-life (T 1/2 ), tissue distribution (Vdss), drug time Area under the curve (AUC 0-last ), bioavailability (F), etc.
  • the compound crystal form A of formula (II-1) has good pharmacokinetic properties in beagle dogs, including good oral bioavailability, oral exposure, half-life and clearance rate.

Abstract

一类作为RHO激酶抑制剂的苯并吡唑类化合物的盐型、晶型及其制备方法,具体公开了式(I)化合物的盐酸盐和乙酸盐以及它们的晶型,还包括所述盐型和晶型在制备RHO抑制剂药物中的应用。

Description

作为RHO激酶抑制剂的苯并吡唑类化合物的盐型、晶型及其制备方法
本申请主张如下优先权:
CN201910993446.1,申请日2019年10月18日。
技术领域
本发明涉及一类作为RHO激酶抑制剂的苯并吡唑类化合物的盐型、晶型及其制备方法,具体涉及式(I)化合物的盐酸盐和乙酸盐以及它们的晶型,还包括所述盐型和晶型在制备RHO抑制剂药物中的应用。
背景技术
RHO相关蛋白激酶(Rho associated kinase,简称ROCK),属于丝氨酸/苏氨酸蛋白激酶,是RHO的下游靶效应分子,在人体内广泛表达。RHO相关蛋白激酶(ROCK)参与肌球蛋白轻链(MLC)的调节,适用于血管舒张的治疗,新的研究支持ROCK激酶参与TH17细胞的免疫反应的调控和纤维母细胞的活化,可以扩展适应症用于肺纤维化,哮喘等肺部疾病,进一步的适应症拓展包括自身免疫疾病。ROCK激酶家族包括ROCK1和ROCK2两个亚型,ROCK2激酶和炎症作用和纤维化作用相关,选择性ROCK2抑制剂在离体血管舒张实验中在高浓度也没有引起血管舒张,可以减少心血管副作用。ROCK1敲除小鼠虽然胚胎死亡率不高,但是出生后大部分死于MLC磷酸化降低造成的细胞骨架变异,而ROCK2敲除小鼠90%在胚胎期死亡,但是存活的小鼠和野生型没有区别,选择性抑制ROCK2的活性可能具有更高的安全性。因此,选择性ROCK2蛋白激酶抑制剂可以避免药物的心血管副作用。
KD025(WO2006105081A1、WO2008054599A1、WO2010104851A1和WO2014055996A1)是Kadmon公司开发的口服ROCK2激酶选择性的抑制剂。研究表明,KD025是通过抑制RHO激酶这类调节纤维化的蛋白来治疗特发性肺纤维化(IPF)这种新机制的代表。特发性肺纤维化(IPF)的诱因可能是肌体损伤。肌体对损伤的应答涉及多种细胞(比如上皮细胞、成纤维细胞、内皮细胞和巨噬细胞等)的肌动蛋白细胞骨架的重组,而肌动蛋白丝(actin filament)的组装和肌动球蛋白(actomyosin)的收缩则由RHO激酶家族蛋白质(包括ROCK1和ROCK2)指导调控。之前的研究显示,RHO激酶家族蛋白会在IPF患者以及这种疾病的动物模型肺部激活,而RHO激酶抑制剂可以预防这些模型中的组织纤维化过程,并且能诱导已经建立的纤维化出现消退。目前已完成中度至重度银屑病治疗的II期临床试验,并处于特发性肺纤维化(IPF)治疗的II期临床研究阶段。
Figure PCTCN2020121388-appb-000001
WO2014134388A1和WO2016028971A1也公开了一类化合物,其结构通式如式(a)和式(b)所示,这类化合物也可用于心血管疾病、神经病理学疾病、肿瘤、自免疫疾病、肺纤维化、炎症疾病等的治疗。
Figure PCTCN2020121388-appb-000002
发明内容
本发明提供了式(I)化合物的盐酸盐,其具有式(I')所示结构,
Figure PCTCN2020121388-appb-000003
其中,n为1.6~2.4,带“*”的碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含(R)或(S)单一对映体形式存在。
本发明的一些方案中,上述n为1.9、2.0或2.1。
本发明的一些方案中,上述盐酸盐具有式(I-1)所示结构,
Figure PCTCN2020121388-appb-000004
其中,带“*”的碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含(R)或(S)单一对映体形式存在。
本发明的一些方案中,上述盐酸盐具有式(Ⅱ-1)所示结构,
Figure PCTCN2020121388-appb-000005
本发明的一些方案中,上述盐酸盐的晶型A的Cu Kα辐射的X射线粉末衍射(XRPD)图谱在下列2θ角处具有特征衍射峰:14.77±0.20°、20.50±0.20°、22.38±0.20°和24.15±0.20°。
本发明的一些方案中,上述盐酸盐的晶型A的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.22±0.20°、13.36±0.20°、14.77±0.20°、18.69±0.20°、 20.50±0.20°、22.38±0.20°、24.15±0.20°和25.03±0.20°。
本发明的一些方案中,上述盐酸盐的晶型A的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.38°、9.32°、10.22°、13.36°、14.77°、15.21°、18.69°、20.50°、21.69°、22.08°、22.38°、24.15°、24.58°、25.03°、26.28°、27.13°、28.15°、29.44°、30.15°、31.49°、32.1°、32.69°、35.17°和38.51°。
本发明的一些方案中,上述盐酸盐的晶型A的XRPD图谱如图1所示。
本发明的一些方案中,上述盐酸盐的晶型A的Cu Kα辐射的XRPD图谱中,衍射峰的峰位置及相对强度由下表1表示:
表1式(Ⅱ-1)化合物晶型A的XRPD衍射数据
Figure PCTCN2020121388-appb-000006
Figure PCTCN2020121388-appb-000007
本发明的一些方案中,上述盐酸盐的晶型A的差示扫描量热(DSC)曲线显示吸热峰的起始点为245.2℃+3℃。
本发明的一些方案中,上述盐酸盐的晶型A的DSC图谱如图2所示。
本发明的一些方案中,上述盐酸盐的晶型A的热重分析(TGA)曲线在190.0℃±3℃处失重达3.14%。
本发明的一些方案中,上述盐酸盐的晶型A的TGA图谱如图3所示。
本发明还提供了一种上述盐酸盐的晶型A的制备方法,所述方法包括如下步骤:
1)将式(I-1)化合物加入有机溶剂中,在适当温度下搅拌;
2)抽滤,收集滤饼;
3)滤饼真空干燥。
本发明的一些方案中,上述盐酸盐的晶型A的制备方法中,所述有机溶剂为乙醇。
本发明的一些方案中,上述盐酸盐的晶型A的制备方法中,所述适当温度为25℃。
本发明的一些方案中,上述盐酸盐的晶型A的制备方法中,所述搅拌的时间为10~12个小时。
本发明还提供了式(I)化合物的乙酸盐,
Figure PCTCN2020121388-appb-000008
其中,带“*”的碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含(R)或(S)单一对映体形式存在。
本发明的一些方案中,上述乙酸盐具有式(I-2)所示结构,
Figure PCTCN2020121388-appb-000009
其中,带“*”的碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含(R)或(S)单一对映体形式存在。
本发明的一些方案中,上述乙酸盐具有式(II-2)所示结构,
Figure PCTCN2020121388-appb-000010
本发明的一些方案中,上述乙酸盐的晶型B的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.18±0.20°、12.37±0.20°、17.08±0.20°、21.22±0.20°和24.88±0.20°。
本发明的一些方案中,上述乙酸盐的晶型B的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.18±0.20°、11.94±0.20°、12.37±0.20°、17.08±0.20°、20.76±0.20°、21.22±0.20°、22.01±0.20°和24.88±0.20°。
本发明的一些方案中,上述乙酸盐的晶型B的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.18°、10.57°、11.94°、12.37°、12.94°、13.93°、16.22°、17.08°、17.93°、18.30°、19.47°、20.34°、20.76°、21.22°、21.58°、22.01°、22.25°、23.06°、24.07°、24.46°、24.88°、25.28°、25.69°、25.99°、26.66°、27.03°、28.85°、29.54°、31.14°、31.88°、32.48°、33.70°、34.43°、35.54°、36.33°、37.89°和39.67°。
本发明的一些方案中,上述乙酸盐的晶型B的X-射线粉末衍射图谱如图4所示。
本发明的一些方案中,上述乙酸盐的晶型B的Cu Kα辐射的XRPD图谱中,衍射峰的峰位置及相对强度由下表2表示:
表2式(Ⅱ-2)化合物晶型B的XRPD衍射数据
Figure PCTCN2020121388-appb-000011
Figure PCTCN2020121388-appb-000012
本发明的一些方案中,上述乙酸盐的晶型B的差示扫描量热(DSC)曲线显示吸热峰的起始点为157.9℃。
本发明的一些方案中,上述乙酸盐的晶型B的DSC图谱如图5所示。
本发明的一些方案中,上述乙酸盐的晶型B的热重分析(TGA)曲线在120.0℃±3℃处失重达2.00%。
本发明的一些方案中,上述乙酸盐的晶型B的TGA图谱如图6所示。
本发明还提供了一种上述乙酸盐的晶型B的制备方法,所述方法包括如下步骤:
1)将式(I)化合物溶解在有机溶剂中,然后加入乙酸,搅拌;
2)抽滤,收集滤饼;
3)滤饼真空干燥;
本发明的一些方案中,上述乙酸盐的晶型B的制备方法中,所述有机溶剂为乙酸乙酯。
本发明还提供了上述盐酸盐、上述盐酸盐的晶型A、上述乙酸盐以及上述乙酸盐的晶型B在制备RHO抑制剂药物中的应用。
本发明还提供了上述盐酸盐、上述盐酸盐的晶型A、上述乙酸盐以及上述乙酸盐的晶型B在制备治疗肺纤维化和放射性肺纤维化的药物中的应用。
技术效果
本发明的晶型的制备工艺简单,并且所述晶型稳定、受热和光照影响较小,便于制剂。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在含有下列含义。一个特定的短语或术语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文出现商品名时,旨在指代其对应的商品或其活性成分。
本发明的中间体化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
下面会通过实施例具体描述本发明,这些实施例并不意味着对本发明的任何限制。
本发明所使用的所有溶剂是市售的,无需进一步纯化即可使用。
本发明所使用的溶剂可经市售获得。
本发明采用下述缩略词:
ACN代表乙腈;Bis-Tris代表双(2-羟乙基)氨基(三羟甲基)甲烷;DMSO代表二甲基亚砜。
本发明化合物依据本领域常规命名原则或者使用
Figure PCTCN2020121388-appb-000013
软件命名,市售化合物采用供应商目录名称。
本发明仪器及分析方法
1.1X-射线粉末衍射(X-ray powder diffractometer,XRPD)方法
仪器型号:PANalytical(帕纳科)公司的X’pert3型X射线衍射仪
测试方法:大约10mg样品用于XRPD检测
详细的XRPD参数如下:
射线源:Cu,
Figure PCTCN2020121388-appb-000014
Cu,
Figure PCTCN2020121388-appb-000015
光管电压:45kV,光管电流:40mA
扫描角度范围:3-40deg
步长:46.665秒
1.2差式扫描量热法(Differential Scanning Calorimeter,DSC)
仪器型号:TA 2500差示扫描量热仪
测试方法:取样品(约1-5mg)置于DSC铝盘内进行测试,铝盘压盖不扎孔,在50mL/min N 2条件下,以10℃/min的升温速率,加热样品从25℃(室温)到样品分解前。
1.3热重分析(Thermal Gravimetric Analyzer,TGA)
仪器型号:TA 5500热重分析仪
测试方法:取样品(约1-5mg)置于TGA铝盘内敞口进行测试,在10~25mL/min N 2条件下,以10℃/min的升温速率,加热样品从室温到350℃。
1.4氯元素分析测试
1.4.1仪器设备
Figure PCTCN2020121388-appb-000016
1.4.2仪器试剂
Figure PCTCN2020121388-appb-000017
Figure PCTCN2020121388-appb-000018
1.4.3溶液配制
Figure PCTCN2020121388-appb-000019
1.4.4方法信息
Figure PCTCN2020121388-appb-000020
1.5单晶X射线衍射方法
仪器型号:Bruker D8 Venture Photon II衍射仪
光源:CuKα辐射
扫描方式:
Figure PCTCN2020121388-appb-000021
扫描
收集总衍射点数为16827个,独立衍射点数为5091个,可观察点数(I/sigma≥2)为2177个。
测试方法:采用直接法(Shelxs97)解析晶体结构,获得全部39个非氢原子位置,使用最小二乘法修正结构参数和判别原子种类,使用几何计算法和差值Fourier法获得全部氢原子位置,精修后R 1=0.0783,wR 2=0.2735(w=1/σ|F| 2),S=0.957。
附图说明
图1为式(Ⅱ-1)化合物的晶型A的XRPD谱图。
图2为式(Ⅱ-1)化合物的晶型A的DSC谱图。
图3为式(Ⅱ-1)化合物的晶型A的TGA谱图。
图4为式(Ⅱ-2)化合物的晶型B的XRPD谱图。
图5为式(Ⅱ-2)化合物的晶型B的DSC谱图。
图6为式(Ⅱ-2)化合物的晶型B的TGA谱图。
图7为式(Ⅱ-1)化合物的晶型A在高温、高湿和光照条件下XRPD的谱图对比。
图8为式(Ⅱ-1)化合物的晶型A在92.5%高湿条件下XRPD的谱图对比。
图9为式(Ⅱ-2)化合物的晶型B在高温、高湿和光照条件下XRPD的谱图对比。
图10为化合物8的单晶X射线衍射谱图。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
制备实施例
实施例1:化合物2的制备
Figure PCTCN2020121388-appb-000022
合成路线:
Figure PCTCN2020121388-appb-000023
向反应釜内加入乙醇(12.5L),然后依次加入化合物1(2.5kg,11.8mol),四羟基二硼(1.06kg,11.8mol)和乙酸钾(1.75kg,17.8mol),25-30℃之间开始搅拌。将反应釜密闭,氮气置换三次。然后向釜内加入二氯双[二叔丁基-(4-二甲基氨基苯基)膦]钯(41.3g,59.2mmol),再将反应釜密闭,氮气置换三次,控制内温50℃,搅拌23个小时。反应结束后,继续在内温50℃下进行减压蒸馏(蒸出约4L溶剂),关闭加热。向浓缩后的反应液中加入30L水稀释,并用乙酸乙酯萃取(10L×2,5L×1),将合并的有机相减压浓缩。得到的粗品加入到2.8M的氢氧化钠水溶液(10L)中,搅拌30分钟,过滤,滤饼用水洗涤(1L),得到的滤液(15L)再用水稀释(45L),用12M的盐酸中和溶液pH至6~7,搅拌,此时会有固 体析出,过滤,将滤饼加入到水中,25℃搅拌2.5个小时,过滤,将滤饼真空烘干,得到化合物2。
1H NMR(400MHz,DMSO-d 6)δ12.60(s,1H),8.22(s,1H),7.94(s,2H),7.76(dd,J=0.8Hz,J=8.4Hz,1H),7.40-7.38(m,1H),2.51-2.52(s,3H)。MS-ESI计算值[M+H] +177,实测值177。
实施例2:式(I-1)化合物的制备
Figure PCTCN2020121388-appb-000024
合成路线:
Figure PCTCN2020121388-appb-000025
第一步
向反应釜中加入N,N-二甲基甲酰胺(15L),开启搅拌,加入化合物3(1.50kg,5.63mol,化合物3中带“*”的碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含(R)或(S)单一对映体形式存在)和化合物4(1.19kg,5.91mol),控制内温为10~30℃,再加入N,N-二异丙基乙基胺(1.96L),在内温为-5~5℃下缓慢分批加入三正丙基磷酸酐的50%乙酸乙酯溶液(5.02L),反应液于25℃下搅拌19个小时。反应结束后,向反应液中加入水(30L),有固体析出,搅拌30分钟,减压过滤,滤饼经真空干燥,得到化合物5(化合物5中带“*”的碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含(R)或(S)单一对映体形式存在)。
1H NMR(400MHz,DMSO-d 6)δ9.19(d,J=8.4Hz,1H),8.57(d,J=5.2Hz,1H),8.14(d,J=1.6Hz,1H),7.86-7.96(m,1H),7.26-7.22(m,1H),7.03-7.06(m,1H),6.88-6.98(m,2H),6.78-6.87(m,1H),5.03-5.19(m,1H),3.74(s,3H),3.39-3.51(m,1H),3.24-3.34(m,1H),1.32(s,9H)。
MS-ESI计算值[M+H-t-Bu] +393,396实测值393,396。
第二步
向反应釜中加入二氧六环(4.00L)和水(1.00L),搅拌下依次加入化合物5(1.00kg,2.22mol),化合物2(0.41kg,2.33mol)和磷酸钾(0.71kg,3.33mol),控制内温小于30℃,氮气置换三次后加入三苯基膦(28.8g,110mmol)和三(二亚苄基丙酮)二钯(50.3g,54.9mmol),再用氮气置换三次,85℃下搅拌12小时。反应结束后,将反应液温度降到室温,向反应液中加入水(2.50L)和乙酸乙酯(2.50L),搅拌30分钟。垫硅藻土过滤,滤饼用乙酸乙酯淋洗(1.00L×3)。滤液静置分液,水相再用乙酸乙酯萃取(1.50L×3),合并有机相,用饱和食盐水(5.00L)洗涤,用无水硫酸钠(1.00kg)干燥,减压浓缩得到粗产品。粗品加入叔丁基甲醚(10.0L),25℃下搅拌16个小时。将反应液减压抽滤,滤饼用叔丁基甲醚洗涤(1.00L×3),收集滤饼,减压浓缩。将得到的粗品溶于乙醇(10.0L)中,加入与粗品等质量的硫脲树脂,90℃下搅拌16小时。趁热过滤,滤饼用乙醇(1.00L)洗涤一次。将滤液重新放入反应釜中,搅拌下再加入约与粗品等质量的硫脲树脂,90℃下搅拌3小时。趁热过滤,滤饼用乙醇(1.00L)洗涤一次。将滤液重新放入反应釜中,搅拌下再一次加入约是粗品质量的一半的硫脲树脂,90℃下搅拌3小时。再将反应液趁热过滤,滤饼用乙醇(1.00L)洗涤一次。将得到的滤液再放入到反应釜中,氮气置换,加入约是粗品质量的十分之一的活性炭,再氮气置换,并于90℃下搅拌1小时。反应液趁热垫硅藻土减压抽滤,滤饼用乙醇洗涤(2.00L×2),将收集的滤液减压浓缩得粗品。向粗品中加入叔丁基甲醚(3.50L),室温下搅拌2个小时。减压抽滤,滤饼,用叔丁基甲醚洗涤(500mL×2),收集滤饼,滤饼真空干燥得化合物6(化合物6中带“*”的碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含(R)或(S)单一对映体形式存在)。
1H NMR(400MHz,DMSO-d 6)δ12.85(s,1H),9.24-9.11(m,1H),8.70(d,J=5.2Hz,1H),8.37-8.32(m,1H),8.27(s,1H),8.01-7.09(m,1H),7.81-7.79(m,1H),7.60(d,J=8.4Hz,1H),7.31-7.20(m,1H),7.10-7.07(m,1H),7.01-6.93(m,2H),6.89-6.78(m,1H),5.25-5.05(m,1H),3.75(s,3H),3.53-3.38(m,2H),2.57(s,3H),1.33(s,9H)。MS-ESI计算值[M+H] +502,实测值502。
第三步
将化合物6(451g,879mmol)溶于乙酸乙酯(2.30L)中,开起搅拌,缓慢分批加入乙酸乙酯的氯化氢溶液(4M,2.30L),并于25℃搅拌反应16小时。反应结束后,将反应液减压浓缩,将减压浓缩后的式(I-1)化合物溶于水(1.30L)和乙腈(900mL)中,搅拌,溶解澄清后减压抽滤,滤液转移到30L桶中,加入乙腈(12L),25℃下搅拌30分钟。减压抽滤,滤饼用乙腈洗涤(500mL×2),收集滤饼,将滤饼真空干燥(45℃,压力<-0.1MPa)得式(I-1)化合物(式(I-1)化合物中带“*”的碳原子为手性碳原子,以(R)或(S)单一对映体形式 或富含(R)或(S)单一对映体形式存在)的粗品。
MS-ESI计算值[M+H] +402,实测值402。
实施例3:式(I-1)化合物绝对构型的确定
式(I-1)化合物衍生物8的合成:
Figure PCTCN2020121388-appb-000026
称取式(I-1)化合物(1.78g,4.43mmol)和4-溴苯甲酸(化合物7,0.98g,4.88mmol)溶于DMF(15mL)中,加入二异丙基乙胺(2.31mL,13.3mmol)和三正丙基环磷酸酐(50%乙酸乙酯溶液)(3.95mL,6.64mmol),反应液在15℃搅拌18h。LCMS监测式(I-1)化合物剩余,补加二异丙基乙胺(2.31mL,13.3mmol)和三正丙基环磷酸酐(50%乙酸乙酯溶液)(2.63mL,4.43mmol),继续在15℃下搅拌反应4h。LCMS监测反应完全,停止反应。加入饱和碳酸氢钠溶液(20mL)淬灭,混合物用乙酸乙酯萃取(20mL×2)。合并有机相,有机相用饱和氯化钠溶液(40mL×2)洗涤,经无水硫酸钠干燥,过滤,滤液减压浓缩。所得粗品经高效液相色谱制备分离得到化合物8(化合物8中带“*”的碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含(R)或(S)单一对映体形式存在)。
化合物8的单晶培养过程:称取化合物8(10.66mg,18.2μmol),加0.5mL甲醇溶解,用有机相针头式滤器过滤,转移至2mL无色透明玻璃瓶中。在15~25℃下静置挥发得到针状晶体。
通过化合物8的单晶衍射结果,如图10所示,可以确定其以(S)单一对映体形式或富含(S)单一对映体形式存在,其绝对构型结构如下:
Figure PCTCN2020121388-appb-000027
由化合物8的绝对构型可以确定式(I-1)化合物的绝对构型,其结构如下:
Figure PCTCN2020121388-appb-000028
实施例4:式(Ⅱ-1)化合物晶型A的制备
Figure PCTCN2020121388-appb-000029
将烘干后的式(Ⅱ-1)化合物(401g,0.85mol)放入5L的反应瓶中,加入乙醇(4L),25℃下搅拌12小时。将混合物减压抽滤,滤饼用乙醇(200mL×2)洗涤,收集滤饼,将滤饼真空干燥(50℃,压力<-0.1Mp),经XRPD检测,得到式(Ⅱ-1)化合物的晶型A。
1H NMR(400MHz,DMSO-d 6)δ10.34-10.13(m,1H),8.99(s,1H),8.79(d,J=5.6Hz,1H),8.66(s,1H),8.41(s,3H),8.32-8.25(m,1H),8.02(dd,J=1.2,8.8Hz,1H),7.64(d,J=8.8Hz,1H),7.37-7.25(m,1H),7.18(s,1H),7.10(d,J=8.0Hz,1H),6.89(dd,J=2.0,8.0Hz,1H),5.52-5.40(m,1H),3.77(s,3H),3.70-3.58(m,1H),3.29-3.17(m,1H),2.61(s,3H);MS-ESI计算值[M+H] +402,实测值402;氯离子含量测试显示氯离子含量为15.7%,含两个氯原子。
实施例5:式(Ⅱ-2)化合物晶型B的制备
Figure PCTCN2020121388-appb-000030
合成路线:
Figure PCTCN2020121388-appb-000031
第一步
将减压浓缩后的式(Ⅱ-1)化合物(25.0g,52.7mmol)用水(100mL)稀释,然后用饱和碳酸氢钠水溶液调节溶液pH至8左右,将水相倾倒出来,再用乙醇(100mL)将化合物溶解,减压浓缩。水相再用乙酸乙酯(200mL×3)萃取,合并的有机相用饱和食盐水(150mL×1)洗涤,无水硫酸钠干燥,过滤,将上述所有有机相减压浓缩。将得到的粗品经高效液相色谱柱(碱性)分离纯化得式(I)化合物,MS-ESI计算值[M+H] +402,实测值402,由式 (I-1)化合物的绝对构型结构式(II-1)化合物可以确定式(I)化合物的绝对构型,其结构如下式(II)所示:
Figure PCTCN2020121388-appb-000032
将式(II)化合物(1.05g,2.62mmol)溶于乙酸乙酯(30mL)中,室温下加入乙酸(310μL)并搅拌24.5个小时。减压过滤,将滤饼用油泵45℃下减压旋干。经XRPD检测,得到式(Ⅱ-2)化合物的晶型B。
1H NMR(400MHz,DMSO-d 6)δ9.21(d,J=8.4Hz,1H),8.80-8.64(m,1H),8.34(d,J=1.6Hz,1H),8.26(s,1H),8.01-7.997(m,1H),7.80(dd,J=1.6,8.8Hz,1H),7.60(d,J=8.4Hz,1H),7.26-7.22(m,1H),7.01-6.92(m,2H),6.86-6.76(m,1H),5.10-4.93(m,1H),3.73(s,3H),3.08-3.03(m,1H),2.99-2.90(m,1H),2.56(m,3H),1.88(s,3H)。MS-ESI计算值[M+H] +402,实测值402。
表征实施例
实施例1:式(Ⅱ-1)化合物晶型A的固体稳定性试验
依据《原料药与制剂稳定性试验指导原则》(中国药典2015版四部通则9001),式(Ⅱ-1)化合物晶型A在高温(60℃敞口),高湿(室温/相对湿度(RH)92.5%,敞口)及光照(总照度=1.2×10 6Lux·hr/近紫外=200w·hr/m 2,敞口)条件下的稳定性。
准确称取该晶型约10mg置于干燥洁净的玻璃瓶中,摊成薄薄一层,用铝箔纸盖上,扎上小孔,放置于影响因素试验条件下和加速条件下。光照(可见光1200000Lux,紫外200W)条件下放置的样品采用透明玻璃瓶,完全暴露,用于XRPD检测的样品单独放置。
样品到时间点取出后,盖好盖子,使用封口膜密封,置于-20℃冰箱保存。配样时,将样品从冰箱取出,恢复至室温,加入80%ACN 10mL,超声2min使样品溶解,得浓度约为1mg/mL溶液,使用液相进行进样分析,检测结果与0天的初始检测结果进行比较,试验结果见下表3所示。
0天标准溶液的配制:称取该晶型约10mg于10mL容量瓶中,使用80%ACN溶解并定容至刻度。
表3:式(Ⅱ-1)化合物晶型A的固体稳定性试验结果
Figure PCTCN2020121388-appb-000033
Figure PCTCN2020121388-appb-000034
结论:式(Ⅱ-1)化合物晶型A在高温、75%湿度和强光照条件下具有良好的稳定性,如图7所示,但是在92.5%高湿条件下会发生转晶,如图8所示。
实施例2:式(Ⅱ-1)化合物晶型A的影响因素和加速稳定性试验
式(Ⅱ-1)化合物晶型A在影响因素实验中的稳定性研究:
高湿(25℃/92.5%RH):每份样品称取1g,25℃/92.5%RH条件样品放入敞口的扁形称量瓶(70×35mm)中,然后放入综合药品稳定性试验箱(25℃/92.5%RH)中考察。
高温(60℃):每份样品称取1g,60℃条件样品放入敞口的扁形称量瓶中,然后放入鼓风干燥箱中(60℃)中考察。
光照:每份样品称取1g,光照条件样品放入干净的表面皿中,铺成薄层,放入5000±500lux(可见光)与90μw/cm 2(紫外)条件下照射。
实验结果如下表4:
表4:式(Ⅱ-1)化合物晶型A的影响因素稳定性试验结果
Figure PCTCN2020121388-appb-000035
结果表明:式(Ⅱ-1)化合物晶型A在光照、高温和高湿条件下较稳定,主要杂质和总杂质均没有明显变化。
式(Ⅱ-1)化合物晶型A在加速实验中的稳定性研究:
稳定性加速实验:每份样品称取0.8g(加速1月,加速2月)或1.2g(加速3月,加速6月)分别装入双层低密度聚乙烯(LDPE)袋,每层低密度聚乙烯袋分别扎扣密封,再将低密度聚乙烯袋子放入铝箔袋中并热封,分别放入40℃/75%RH条件下考察。实验结果如下表5:
表5:式(Ⅱ-1)化合物晶型A的影响因素稳定性试验结果
Figure PCTCN2020121388-appb-000036
结果表明:式(Ⅱ-1)化合物晶型A在长期放置条件下是稳定的。
实施例3:式(Ⅱ-2)化合物晶型B的固体稳定性试验
依据《原料药与制剂稳定性试验指导原则》(中国药典2015版四部通则9001),式(Ⅱ-2)化合物的晶型B在高温(60℃,敞口),高湿(室温/相对湿度(RH)92.5%,敞口)及光照(总照度=1.2×10 6Lux·hr/近紫外=200w·hr/m 2,敞口)条件下的稳定性。
准确称取该晶型约10mg置于干燥洁净的玻璃瓶中,摊成薄薄一层,用铝箔纸盖上,扎上小孔,放置于影响因素试验条件下和加速条件下。光照(可见光1200000Lux,紫外200W)条件下放置的样品采用透明玻璃瓶,完全暴露,用于XRPD检测的样品单独放置。
样品到时间点取出后,盖好盖子,使用封口膜密封,置于-20℃冰箱保存。配样时,将样品从冰箱取出,恢复至室温,加入80%ACN(10mL),超声2min使样品溶解,得浓度约为1mg/mL溶液,使用液相进行进样分析,检测结果与0天的初始检测结果进行比较,试验结果见下表6所示。
0天标准溶液的的配制:称取该晶型约10mg于10mL容量瓶中,使用80%ACN溶解并定容至刻度。
表6:式(Ⅱ-2)化合物晶型B的固体稳定性试验结果
Figure PCTCN2020121388-appb-000037
结论:式(Ⅱ-2)化合物晶型B在高温、高湿、强光照条件下具有良好的稳定性,如图9所示。
活性测试
1.体外评价ROCK蛋白激酶抑制活性
实验目的:检测化合物的ROCK蛋白激酶抑制IC 50值。
实验材料:测定緩沖溶液:20mM 4-羟乙基哌嗪乙磺酸(pH 7.5),10mM氯化镁,1mM乙二醇二***二胺四乙酸,0.02%聚氧乙烯月桂醚,0.02mg/mL牛血清白蛋白,0.1mM钒酸钠,2mM二硫苏糖醇,1%DMSO。
实验操作:将新鲜制备的缓冲溶液中加入ROCK蛋白激酶底物Long S6 Kinase substrate peptide,浓度20μM,然后加入1nM ROCK蛋白激酶,均匀搅拌。使用Echo550加入含有待测化合物的系列DMSO稀释液(始于10μM,按3倍系列稀释),室温下预温育20分钟,加入 33P-ATP(放射强度10μCi/μL)引发反应,室温反应两小时。然后使用P81离子交换纸(Whatman#3698-915)过滤,用0.75%磷酸洗涤。使用Filter-Binding方法检测放射强度。
化合物的蛋白激酶抑制活性表达为相对空白底物(单纯DMSO)残存的蛋白激酶活性。利用Prism软件包(GraphPad Software,San Diego California,USA)计算IC 50值和曲线。
实验结果:
表7:式(I)化合物的ROCK抑制活性测试结果
Figure PCTCN2020121388-appb-000038
结论:式(Ⅱ)化合物对ROCK2具有很好的抑制活性,同时对ROCK2具有一定的选择性。
2.药代动力学评价
2.1式(I)化合物的消旋体在SD大鼠体内药代动力学研究
实验目的:研究化合物在SD大鼠体内药代动力学
实验材料:SD大鼠(雄性,7-10周龄,WTLH/SLAC)
实验操作:以标准方案测试化合物静脉注射(IV)及口服(PO)给药后的啮齿类动物药代特征,实验中候选化合物配成0.2mg/mL澄清溶液,给予大鼠单次静脉注射及口服给药。静注及口服溶媒均为5%DMSO/95%(10%羟丙基β环糊精)水溶液。该项目使用四只雄性SD大鼠,两只大鼠进行静脉注射给药,给药剂量为1mg/kg,收集给药后0.0833,0.25,0.5,1,2,4,6,8,24h的血浆样品,另外两只大鼠口服灌胃给药,给药剂量为2mg/kg,收集给药后0.25,0.5,1,2,3,4,6,8,24h的血浆样品。收集24小时内的全血样品,3000g离心15分钟,分离上清得血浆样品,加入含内标的乙腈溶液沉淀蛋白,充分混匀离心取上清液进样,以LC-MS/MS分析方法定量分析血药浓度,并计算药代参数,如达峰浓度(C max),清除率(CL),半衰期(T 1/2),组织分布(Vdss),药时曲线下面积(AUC 0-last),生物利用度(F)等。
本发明实施例在大鼠体内的药代动力学相关参数如下表8所示。
表8:药代动力学测试结果
Figure PCTCN2020121388-appb-000039
结论:式(I)化合物的消旋体具有良好的药代动力学性质,包括良好的口服生物利用度,口服暴露量,半衰期和清除率等。
2.2式(Ⅱ-1)化合物晶型A在SD大鼠体内药代动力学研究
实验目的:研究化合物在SD大鼠体内药代动力学
实验材料:SD大鼠(12只,雌雄各半)
实验操作:以标准方案测试化合物静脉注射(IV)及口服(PO)给药后的啮齿类动物药代特征,实验中候选化合物配成0.5mg/mL和1mg/mL澄清溶液,给予大鼠单次静脉注射及口服给药。静注及口服溶媒均为5%DMSO/95%(10%羟丙基β环糊精)水溶液。该项目使用12只SD大鼠,6只大鼠(雌雄各半)进行静脉注射给药,给药剂量为1mg/kg,收集给药后0.0833,0.25,0.5,1,2,4,8,12,24h的血浆样品,另外6只大鼠(雌雄各半)口服灌胃给药,给药剂量为10mg/kg,收集给药后0.25,0.5,1,2,4,8,12,24h的血浆样品。取15μL血浆样品加入96孔板中,加入300μL内标工作液(含1.00ng/mL Verapamil和0.1%甲酸(FA)的MeOH:ACN(v:v,50:50)溶液)沉淀蛋白,将96孔板振摇15分钟,随后在4℃、3220g条件下离心15分钟。取上清液150μL置于新的96孔板中,加入150μL含0.1%甲酸(FA)的水溶液振摇10分钟,然后将其在4℃、3220g条件下离心5分钟,样品直接进样,以LC-MS/MS分析方法定量分析血药浓度,并计算药代参数,如达峰浓度(C max),清除率(CL),半衰期(T 1/2),组织分布(Vdss),药时曲线下面积(AUC 0-last),生物利用度(F)等。
本发明式(Ⅱ-1)化合物晶型A在大鼠体内的药代动力学相关参数如下表9所示。
表9:式(Ⅱ-1)化合物晶型A药代动力学测试结果
Figure PCTCN2020121388-appb-000040
结论:式(Ⅱ-1)化合物晶型A在大鼠体内具有良好的药代动力学性质,包括良好的口服生物利用度,口服暴露量,半衰期和清除率等。
2.3式(Ⅱ-1)化合物晶型A在比格犬体内药代动力学研究
实验目的:研究化合物在比格犬体内药代动力学
实验材料:SD大鼠(12只,雌雄各半)
实验操作:以标准方案测试化合物静脉注射(IV)及口服(PO)给药后的比格犬药代特征,实验中候选化合物配成0.5mg/mL和1.5mg/mL澄清溶液,给予比格犬单次静脉注射及口服给药。静注及口服溶媒均为5%DMSO/95%(10%羟丙基β环糊精)水溶液。该项目使用12只比格犬,6只比格犬(雌雄各半)进行静脉注射给药,给药剂量为1mg/kg,收集给 药后0.083、0.25、0.5、1、2、4、8、12、24、36、48和72h的血浆样品,另外6只比格犬(雌雄各半)口服灌胃给药,给药剂量为7.5mg/kg,收集给药后0.25、0.5、1、2、4、8、12、24、36、48和72h的血浆样品。取15μL血浆样品加入96孔板中,加入300μL内标工作液(含1.00ng/mL Verapamil和含0.1%甲酸(FA)的MeOH:ACN(v:v,50:50)溶液)沉淀蛋白,将96孔板振摇15分钟,随后在4℃、3220g条件下离心15分钟。取上清液150μL置于新的96孔板中,加入150μL含0.1%甲酸(FA)的水溶液振摇10分钟,然后将其在4℃、3220g条件下离心5分钟,样品直接进样,以LC-MS/MS分析方法定量分析血药浓度,并计算药代参数,如达峰浓度(C max),清除率(CL),半衰期(T 1/2),组织分布(Vdss),药时曲线下面积(AUC 0-last),生物利用度(F)等。
本发明式(Ⅱ-1)化合物晶型A在大鼠体内的药代动力学相关参数如下表10所示。
表10:式(Ⅱ-1)化合物晶型A药代动力学测试结果
Figure PCTCN2020121388-appb-000041
结论:式(Ⅱ-1)化合物晶型A在比格犬体内具有良好的药代动力学性质,包括良好的口服生物利用度,口服暴露量,半衰期和清除率等。

Claims (25)

  1. 式(I)化合物的盐酸盐,其具有式(I')所示结构,
    Figure PCTCN2020121388-appb-100001
    其中,n为1.6~2.4,带“*”的碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含(R)或(S)单一对映体形式存在。
  2. 根据权利要求1所述的盐酸盐,其中n为1.9、2.0或2.1。
  3. 根据权利要求2所述的盐酸盐,其具有式(I-1)所示结构,
    Figure PCTCN2020121388-appb-100002
    其中,带“*”的碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含(R)或(S)单一对映体形式存在。
  4. 根据权利要求3所述的盐酸盐,其具有式(II-1)所示结构,
    Figure PCTCN2020121388-appb-100003
  5. 根据权利要求4所述盐酸盐的晶型A,其Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:14.77±0.20°、20.50±0.20°、22.38±0.20°和24.15±0.20°。
  6. 根据权利要求5所述的晶型A,其Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.22±0.20°、13.36±0.20°、14.77±0.20°、18.69±0.20°、20.50±0.20°、22.38±0.20°、24.15±0.20°和25.03±0.20°。
  7. 根据权利要求6所述的晶型A,其Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.38°、9.32°、10.22°、13.36°、14.77°、15.21°、18.69°、20.50°、21.69°、22.08°、22.38°、24.15°、24.58°、25.03°、26.28°、27.13°、28.15°、29.44°、30.15°、31.49°、32.1°、32.69°、35.17°和38.51°。
  8. 根据权利要求6或7所述的晶型A,其XRPD图谱如图1所示。
  9. 根据权利要求8所述的晶型A,其差示扫描量热曲线显示吸热峰的起始点为245.2℃±3℃。
  10. 根据权利要求9所述的晶型A,其DSC图谱如图2所示。
  11. 根据权利要求5~10任一项所述的晶型A的制备方法,其包括如下步骤:
    1)将式(I-1)化合物加入有机溶剂中,在适当温度下搅拌;
    2)抽滤,收集滤饼;
    3)滤饼真空干燥。
  12. 根据权利要求11所述的制备方法,其中所述有机溶剂为乙醇。
  13. 根据权利要求11所述的制备方法,其中所述适当温度为25℃。
  14. 根据权利要求11所述的制备方法,其中所述搅拌的时间为10~12个小时。
  15. 式(I)化合物的乙酸盐,
    Figure PCTCN2020121388-appb-100004
    其中,带“*”的碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含(R)或(S)单一对映体形式存在。
  16. 根据权利要求15所述的乙酸盐,其具有式(I-2)所示结构,
    Figure PCTCN2020121388-appb-100005
    其中,带“*”的碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含(R)或(S)单一对映体形式存在。
  17. 根据权利要求16所述的乙酸盐,其具有式(II-2)所示结构,
    Figure PCTCN2020121388-appb-100006
  18. 根据权利要求17所述乙酸盐的晶型B,其Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.18±0.20°、12.37±0.20°、17.08±0.20°、21.22±0.20°和24.88±0.20°。
  19. 根据权利要求18所述的晶型B,其Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.18±0.20°、11.94±0.20°、12.37±0.20°、17.08±0.20°、20.76±0.20°、21.22±0.20°、22.01±0.20°和24.88±0.20°。
  20. 根据权利要求19所述的晶型B,其Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.18°、10.57°、11.94°、12.37°、12.94°、13.93°、16.22°、17.08°、17.93°、18.30°、19.47°、20.34°、20.76°、21.22°、21.58°、22.01°、22.25°、23.06°、24.07°、24.46°、24.88°、25.28°、25.69°、25.99°、26.66°、27.03°、28.85°、29.54°、31.14°、31.88°、32.48°、33.70°、34.43°、35.54°、36.33°、37.89°和39.67°。
  21. 根据权利要求19或20所述的晶型B,其X-射线粉末衍射图谱如图4所示。
  22. 根据权利要求18~21任一项所述的晶型B的制备方法,其包括如下步骤:
    1)将式(I)化合物溶解在有机溶剂中,然后加入乙酸,搅拌;
    2)抽滤,收集滤饼;
    3)滤饼真空干燥。
  23. 根据权利要求22所述的制备方法,其中所述有机溶剂为乙酸乙酯。
  24. 根据权利要求1~4任一项所述的盐酸盐、5~10任一项所述的晶型A、11~14任一项所述制备方法得到的晶型A、15~17任一项所述的乙酸盐、18~21任一项所述的晶型B或根据权利要求22或23所述制备方法得到的晶型B在制备RHO抑制剂药物中的应用。
  25. 根据权利要求1~4任一项所述的盐酸盐、5~10任一项所述的晶型A、11~14任一项所述制备方法得到的晶型A、15~17任一项所述的乙酸盐、18~21任一项所述的晶型B或根据权利要求22或23所述制备方法得到的晶型B在制备治疗肺纤维化和放射性肺纤维化的药物中的应用。
PCT/CN2020/121388 2019-10-18 2020-10-16 作为rho激酶抑制剂的苯并吡唑类化合物的盐型、晶型及其制备方法 WO2021073592A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022523071A JP7252417B2 (ja) 2019-10-18 2020-10-16 Rhoキナーゼ阻害剤としてのベンゾピラゾール化合物の塩形、結晶形及びその製造方法
CN202080072404.5A CN114555561B (zh) 2019-10-18 2020-10-16 作为rho激酶抑制剂的苯并吡唑类化合物的盐型、晶型及其制备方法
US17/767,104 US11702400B2 (en) 2019-10-18 2020-10-16 Salt types, crystal forms, and preparation methods for benzopyrazole compounds as RHO kinase inhibitors
EP20876972.9A EP4046686B1 (en) 2019-10-18 2020-10-16 Salt types, crystal forms, and preparation methods for benzopyrazole compounds as rho kinase inhibitors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910993446 2019-10-18
CN201910993446.1 2019-10-18

Publications (1)

Publication Number Publication Date
WO2021073592A1 true WO2021073592A1 (zh) 2021-04-22

Family

ID=75537712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121388 WO2021073592A1 (zh) 2019-10-18 2020-10-16 作为rho激酶抑制剂的苯并吡唑类化合物的盐型、晶型及其制备方法

Country Status (5)

Country Link
US (1) US11702400B2 (zh)
EP (1) EP4046686B1 (zh)
JP (1) JP7252417B2 (zh)
CN (1) CN114555561B (zh)
WO (1) WO2021073592A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022100614A1 (zh) * 2020-11-11 2022-05-19 南京明德新药研发有限公司 苯并脲环衍生物及其制备方法和应用
WO2022229351A1 (en) * 2021-04-28 2022-11-03 Graviton Bioscience Bv Selective inhibitors of rock2 for the treatment of muscular dystrophy

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005074643A2 (en) * 2004-01-30 2005-08-18 Smithkline Beecham Corporation Benzamide compounds useful as rock inhibitors
WO2006105081A2 (en) 2005-03-25 2006-10-05 Surface Logix, Inc. Pharmacokinetically improved compounds
WO2008054599A2 (en) 2006-09-27 2008-05-08 Surface Logix, Inc. Rho kinase inhibitors
WO2010104851A1 (en) 2009-03-09 2010-09-16 Surface Logix, Inc. Rho kinase inhibitors
CN102595899A (zh) * 2009-08-10 2012-07-18 埃皮瑟瑞克斯有限公司 作为wnt/b-联蛋白信号传导途径抑制剂的吲唑及其治疗用途
WO2013028445A1 (en) * 2011-08-19 2013-02-28 Glaxosmithkline Llc Fatty acid synthase inhibitors
WO2014055996A2 (en) 2012-10-05 2014-04-10 Kadmon Corporation, Llc Rho kinase inhibitors
WO2014134388A1 (en) 2013-02-28 2014-09-04 Bristol-Myers Squibb Company Phenylpyrazole derivatives as potent rock1 and rock2 inhibitors
WO2016028971A1 (en) 2014-08-21 2016-02-25 Bristol-Myers Squibb Company Tied-back benzamide derivatives as potent rock inhibitors
WO2019201297A1 (zh) * 2018-04-18 2019-10-24 南京明德新药研发有限公司 作为rho激酶抑制剂的苯并吡唑类化合物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2760862B1 (en) * 2011-09-27 2015-10-21 Sanofi 6-(4-hydroxy-phenyl)-3-alkyl-1h-pyrazolo[3,4-b]pyridine-4-carboxylic acid amide derivatives as kinase inhibitors
CN106279101B (zh) 2015-05-28 2020-03-17 中国科学院上海药物研究所 苯并吡唑联吡啶类化合物、包含此类化合物的药物组合物及其用途

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005074643A2 (en) * 2004-01-30 2005-08-18 Smithkline Beecham Corporation Benzamide compounds useful as rock inhibitors
WO2006105081A2 (en) 2005-03-25 2006-10-05 Surface Logix, Inc. Pharmacokinetically improved compounds
WO2008054599A2 (en) 2006-09-27 2008-05-08 Surface Logix, Inc. Rho kinase inhibitors
WO2010104851A1 (en) 2009-03-09 2010-09-16 Surface Logix, Inc. Rho kinase inhibitors
CN102595899A (zh) * 2009-08-10 2012-07-18 埃皮瑟瑞克斯有限公司 作为wnt/b-联蛋白信号传导途径抑制剂的吲唑及其治疗用途
WO2013028445A1 (en) * 2011-08-19 2013-02-28 Glaxosmithkline Llc Fatty acid synthase inhibitors
WO2014055996A2 (en) 2012-10-05 2014-04-10 Kadmon Corporation, Llc Rho kinase inhibitors
WO2014134388A1 (en) 2013-02-28 2014-09-04 Bristol-Myers Squibb Company Phenylpyrazole derivatives as potent rock1 and rock2 inhibitors
WO2016028971A1 (en) 2014-08-21 2016-02-25 Bristol-Myers Squibb Company Tied-back benzamide derivatives as potent rock inhibitors
CN107108581A (zh) * 2014-08-21 2017-08-29 百时美施贵宝公司 作为强效rock抑制剂的回接苯甲酰胺衍生物
WO2019201297A1 (zh) * 2018-04-18 2019-10-24 南京明德新药研发有限公司 作为rho激酶抑制剂的苯并吡唑类化合物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022100614A1 (zh) * 2020-11-11 2022-05-19 南京明德新药研发有限公司 苯并脲环衍生物及其制备方法和应用
WO2022229351A1 (en) * 2021-04-28 2022-11-03 Graviton Bioscience Bv Selective inhibitors of rock2 for the treatment of muscular dystrophy

Also Published As

Publication number Publication date
EP4046686A4 (en) 2022-08-24
JP2022543924A (ja) 2022-10-14
US11702400B2 (en) 2023-07-18
EP4046686A1 (en) 2022-08-24
EP4046686B1 (en) 2023-11-01
CN114555561A (zh) 2022-05-27
CN114555561B (zh) 2023-08-11
JP7252417B2 (ja) 2023-04-04
US20220380336A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
JP6725530B2 (ja) 軸方向キラル異性体及びその製造方法と製薬用途
WO2021073592A1 (zh) 作为rho激酶抑制剂的苯并吡唑类化合物的盐型、晶型及其制备方法
BR112015022857B1 (pt) Sal de omecamtiv mecarbil e processo para preparar sal
JP6501773B2 (ja) 結晶形態のダサチニブの塩
JP2015522037A (ja) ベムラフェニブコリン塩の固体形態
TW201938558A (zh) 吡啶并咪唑類化合物的晶型、鹽型及其製備方法
TW438746B (en) New phenylamidine derivatives, processes for preparing them and their use as pharmaceutical compositions
WO2020147838A1 (zh) 一种egfr抑制剂的盐、晶型及其制备方法
TWI752553B (zh) 嘧啶衍生物的優勢鹽型及其晶型
Blokhina et al. New diclofenac choline hydrate salt: Synthesis, characterization and solubility
TWI816690B (zh) 化合物的鹽及其晶型
WO2019149090A1 (zh) 一种尿酸转运体1抑制剂的晶体及其制备方法和用途
CN111393377B (zh) 具有抗癌作用的氘代嘧啶衍生物
CN108863955B (zh) 二苯基吡嗪类化合物或其药学上可接受的盐、异构体及其制备方法和用途
WO2018137670A1 (zh) 一种病毒蛋白抑制剂药物vx-787的晶型及其制备方法和用途
TW201945359A (zh) 一種c-MET抑制劑的晶型及其鹽型和製備方法
WO2023185979A1 (zh) 一种atx抑制剂或其盐的结晶形式及其制备方法与应用
TW201925192A (zh) Urat1抑制劑的晶型及其製備方法
CN112500353B (zh) 一种左西孟旦的前药化合物、制备方法及其应用
WO2023143350A1 (zh) 吩噻嗪类化合物的晶型、盐、制备方法及用途
WO2023078424A1 (zh) Kras突变体抑制剂的晶型、其制备方法及其应用
WO2023222103A1 (zh) 一种三嗪二酮类衍生物的晶型及制备方法
JP7282780B2 (ja) 4-(ナフタレン-1-イル)-4h-1,2,4-トリアゾール系化合物の結晶形、塩形態及びその製造方法
US20220281879A1 (en) Salt and crystal forms of an activin receptor-like kinase inhibitor
US20200361919A1 (en) Deuterated indoleamine 2,3-dioxygenase inhibitor and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022523071

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020876972

Country of ref document: EP

Effective date: 20220518